基于STM32F4的四轴航拍飞行器

合集下载

基于STM32的四轴飞行器设计

基于STM32的四轴飞行器设计

基于STM32的四轴飞行器设计引言:四轴飞行器(Quadcopter)是一种重量轻、机动性强的飞行器,在无人机技术中应用广泛。

本文将介绍基于STM32的四轴飞行器设计。

一、STM32介绍:STM32是意法半导体公司推出的一款高性能32位微控制器系列,它具有强大的计算处理能力和丰富的外设资源,非常适合用于四轴飞行器的设计和控制。

二、硬件设计:1.处理器选择:选用性能较高的STM32系列微控制器作为飞行器的主控制单元,可根据实际需求选择合适的型号。

考虑到计算处理能力和外设资源的要求,建议采用高性能的STM32F4系列或STM32H7系列微控制器。

2.传感器:四轴飞行器需要借助多种传感器来获取飞行状态的信息,包括陀螺仪、加速度计、磁力计等。

这些传感器可以通过I2C或SPI接口与主控制单元连接,以获取实时的飞行姿态和姿态控制信息。

3.无线通信模块:可选择适合的无线通信模块,如Wi-Fi模块或蓝牙模块,用于与地面站或其他设备进行数据传输和控制指令的交互。

通过无线通信模块,可以实现四轴飞行器的遥控操作和数据传输。

4.电机和电调:四轴飞行器需要四个无刷电机和相应的电调来实现动力推力的控制。

电机和电调的选择应根据载荷和预期飞行能力来确定,同时需要考虑与主控制单元的通信接口兼容性。

5.电源系统:四轴飞行器需要一种可靠的电源系统来驱动其各个部件。

主要包括锂电池、电流传感器和稳压模块。

电流传感器用于监测整个系统的功耗,稳压模块用于为主控制单元和其他模块提供稳定的电源。

6.启动与显示模块:飞行器需要一种方便的启动与显示模块来显示系统状态和预警信息。

可以选择配备一块小型的液晶显示屏或LED指示灯,以及相关的按键和蜂鸣器。

三、软件设计:1.实时操作系统(RTOS):可以选择合适的RTOS系统,如FreeRTOS或CMSIS-RTOS,用于实现四轴飞行器的任务管理和调度。

RTOS可以提供任务优先级调度、实时中断处理等相关功能,保证飞行器的实时性和稳定性。

采用STM32设计的四轴飞行器飞控系统

采用STM32设计的四轴飞行器飞控系统

采用STM32设计的四轴飞行器飞控系统四轴飞行器飞控系统是一种应用于四轴飞行器上的关键控制设备。

它包括硬件和软件两个部分,用于控制飞行器的姿态、稳定性和导航等功能。

其中,采用STM32设计的四轴飞行器飞控系统因其高性能、低功耗和丰富的外设资源而受到广泛关注。

一、硬件设计:1.处理器模块:采用STM32系列微控制器作为处理核心。

STM32系列微控制器具有较高的计算能力和丰富的外设资源,能够满足飞行控制的计算需求。

2.传感器模块:包括加速度计、陀螺仪、磁力计和气压计等传感器。

加速度计用于测量飞行器的线性加速度,陀螺仪用于测量飞行器的角速度,磁力计用于测量飞行器的方向,气压计用于测量飞行器的高度。

3.无线通信模块:采用无线通信模块,如蓝牙、Wi-Fi或者无线射频模块,用于与地面站进行通信,实现飞行参数的传输和遥控指令的接收。

4.电源管理模块:对飞行器的电源进行管理,确保各个模块的正常运行。

包括电池管理、电量检测和电源开关等功能。

5.输出控制模块:用于控制飞行器的电机、舵机等执行机构,实现对飞行器的姿态和动作的控制。

二、软件设计:1.飞行控制程序:运行在STM32微控制器上的程序,用于实时读取传感器数据、运算控制算法、输出控制信号。

该程序包括姿态解算、飞行控制和导航等模块。

-姿态解算模块:根据加速度计、陀螺仪和磁力计等传感器数据,估计飞行器的姿态信息,如俯仰角、横滚角和偏航角。

-飞行控制模块:根据姿态信息和目标控制指令,计算出电机和舵机的控制信号,保证飞行器的稳定性和灵敏度。

-导航模块:利用GPS等导航设备获取飞行器的位置和速度信息,实现自动驾驶功能。

2.地面站程序:在地面计算机上运行的程序,与飞行器的无线通信模块进行数据交互。

地面站程序可以实时监测飞行器的状态和参数,并发送控制指令给飞行器。

总结:采用STM32设计的四轴飞行器飞控系统是一种高性能、低功耗的控制设备,包括硬件和软件两个部分。

硬件包括处理器模块、传感器模块、无线通信模块、电源管理模块和输出控制模块。

基于STM32的四轴飞行器设计

基于STM32的四轴飞行器设计

基于STM32的四轴飞行器设计四轴飞行器是一种常见的航空模型,它由四个电动马达驱动,通过调整转速控制飞行器的姿态和位置。

在本文中,我将介绍如何使用STM32微控制器设计一个四轴飞行器。

这项设计需要以下四个组成部分:飞行控制器、传感器、电动机和通信模块。

首先,我们需要一个飞行控制器来处理飞行器的姿态控制和位置控制。

我们可以使用STM32微控制器作为飞行控制器,因为它具有强大的计算能力和高性能的外设。

STM32微控制器通常具有多个通用输入/输出引脚,用于连接传感器和电动机。

此外,STM32微控制器还可以运行飞行控制算法并控制电动机的转速。

其次,我们需要一些传感器来感知飞行器的姿态和位置。

常见的传感器包括陀螺仪、加速度计和磁力计。

陀螺仪可以测量飞行器的旋转速度和方向,加速度计可以测量飞行器的加速度和倾斜角度,磁力计可以测量飞行器相对于地球磁场的方向。

这些传感器的测量数据将用于计算和控制飞行器的姿态和位置。

第三,我们需要四个电动机来驱动飞行器的运动。

每个电动机都连接到飞行控制器的输出引脚,并通过调整电动机转速来调整飞行器的姿态和位置。

通过控制四个电动机的转速,我们可以实现飞行器在空中的稳定飞行和准确控制。

最后,我们需要一个通信模块来与飞行器进行通信。

通常,我们使用无线通信模块,如蓝牙或无线局域网,来控制飞行器的飞行和监控其状态。

通过与通信模块连接,我们可以使用智能手机或其他设备来发送指令和接收飞行器的数据。

在设计四轴飞行器时,我们需要首先将传感器和电动机连接到STM32微控制器。

然后,我们需要编写飞行控制算法并将其加载到STM32微控制器上。

接下来,我们可以使用通信模块与飞行器连接并发送控制指令。

最后,我们可以启动电动机并观察飞行器的飞行和姿态控制效果。

总之,基于STM32微控制器的四轴飞行器设计是一个复杂而有趣的工程项目。

通过合理选择传感器、编写飞行控制算法和使用通信模块,我们可以实现一个高度稳定和可控的四轴飞行器。

基于STM32的四旋翼飞行器设计

基于STM32的四旋翼飞行器设计

基于STM32的四旋翼飞行器设计四旋翼无人机是一种多轴飞行器,由四个电机驱动四个旋翼产生升力来进行飞行。

它具有简单结构、灵活机动、携带能力强等特点,被广泛应用于航空航天、电力、农业、测绘和娱乐等领域。

本文将基于STM32微控制器,设计一个基本的四旋翼飞行器。

首先,我们需要选用一款合适的STM32微控制器作为核心控制单元。

根据不同需求,可以选择不同型号的STM32芯片。

需要考虑的因素包括处理器性能、输入输出接口、通信接口等。

接下来,我们需要选用合适的电机和电调。

电机和电调是四旋翼飞行器的动力系统,直接影响飞行器的性能。

选择电机时需要考虑电机功率、转速、扭矩等参数。

而选择合适的电调则需要考虑电流容量、控制方式等因素。

四旋翼飞行器还需要传感器来获取飞行状态和环境信息。

常见的传感器包括陀螺仪、加速度计、磁力计和气压计等。

这些传感器将实时提供飞行器的姿态、加速度、地理位置和气压等数据,用于飞行控制。

在飞行控制方面,我们需要实现飞行器稳定的控制算法。

PID控制器是常用的控制算法之一,通过调节电机转速来控制飞行器的姿态。

PID控制器的参数需要根据实际情况进行调整,以实现稳定的飞行。

此外,四旋翼飞行器还需要通信功能,以便与地面站进行数据传输。

常见的通信方式有蓝牙、Wi-Fi和无线电调制解调器等。

通信功能可以实现飞行器的遥控和数据传输,使飞行器具备更广阔的应用空间。

最后,为了实现全自动飞行,还可以加入GPS导航系统和图像处理系统。

GPS导航系统可以提供精准的飞行位置和速度信息,通过编程实现预设航点飞行。

图像处理系统可以通过摄像头获取实时图像,并进行目标识别和跟踪,实现智能飞行等功能。

综上所述,基于STM32的四旋翼飞行器设计需要考虑微控制器选型、电机电调选择、传感器使用、飞行控制算法、通信功能等方面。

通过合理的设计和编程,可以实现一个功能齐全、性能稳定的四旋翼飞行器。

武汉理工大学-基于STM32F4的四轴航拍飞行器-论文【范本模板】

武汉理工大学-基于STM32F4的四轴航拍飞行器-论文【范本模板】

论文格式***********************************************************注意:此为封面格式***********************************************************ARM—STM32校园创新大赛项目报告题目: 基于STM32F4的四轴航拍飞行器学校:武汉理工大学指导教师: 黄立文刘克中参赛队成员名单:视频观看地址:http://v。

youku。

com/v_show/id_XNjE3NzM0NTky。

html 如在报名后有修改,请在此注明。

********************************************************************注意:此为正文起始格式正文和附录中均不得大段复制源代码和原理图,只允许能充分体现创新方法或关键设计的少量源代码示例和原理图。

正文+附录尽量控制在20页内*********************************************************************题目:基于STM32F4的四轴航拍飞行器关键词:四旋翼飞行器,STM32F4,捷联式惯导,飞行控制系统,四元数,云台摘要本设计是基于STM32F4的四轴航拍平台。

以STM32F407为控制核心,四轴飞行器为载体,辅以云台的航拍系统.硬件上由飞控电路,电源管理,通信模块,动力系统,机架,云台伺服系统组成。

算法上采用简洁稳定的四元数加互补滤波作为姿态解算算法,PID作为控制器,实现飞行,云台增稳等功能。

具有灵活轻盈,延展性,适应性强好等特点。

1.引言四轴飞行器是一种利用四个旋翼作为飞行引擎来进行空中飞行的飞行器。

进入20世纪以来,电子技术飞速发展四轴飞行器开始走向小型化,并融入了人工智能,使其发展趋于无人机,智能机器人。

四轴飞行器不但实现了直升机的垂直升降的飞行性能,同时也在一定程度上降低了飞行器机械结构的设计难度。

基于STM32的四轴飞行器设计

基于STM32的四轴飞行器设计
图1.四轴飞行器结构框图
1.主控单元。主控单元采用意法半导体公司生产的STM32F103T8U6。芯片基于ARM crotex-M3内核,工作频率能达到72MHz,具有64KB的片内程序存储器,20KB的SRAM,1个SPI接口,1个IIC接口,2个USART接口以及2个10通道的ADC,足够满足系统要求。并且芯片具有VFQFPN36封装,大小仅为6mm*6mm,极大地节省了电路板上的空间。
4.电机驱动电路。系统采用4个十字对称分布的直流电机提供升力,电机驱动电路由N沟道增强型场效应管搭建,通过STM32引脚输出的PWM信号控制电机的转速。
三、程序设计
系统上电后首先进行硬件的初始化,包括初始化时钟、定时器、IIC总线、SPI总线以及各种外部芯片等等。初始化完成后系统进入主循环。定时器每隔1ms中断一次,在中断程序中将全局变量count加1,当count等于100的时候清零。所以程序每隔10ms进行一次姿态解算,并经过PID算法控制4个电机的转速,调节飞行器姿态。每隔20ms接收无线遥控数据,并对指令进行解析,根据指令控制飞行器的各种动作。每隔100ms检查一次电池电量,当检测到电量不足时向遥控端发出提醒信号。
参考文献
[1]程学功四轴飞行器的研究与设计[D].杭州:杭州电子科技大学,2012。
[2]陈振兴基于STM32的微型四轴飞行器研究与设计[D].天津:河北工业大学,2013。
[3]STMicroelectronics STM32 Reference manual[R],2010。
关键词:四轴飞行器 惯性传感器PID算法
一、引言
四轴飞行器是无人飞行器的一种,飞行器的动力由四个旋翼式的飞行引擎提供。由于四轴飞行器具有结构简单、体积小、单位体积能产生更大升力等优点,使得四轴飞行器的应用范围越来越广泛,从军用到民用、商用领域都有涉及。近十几年来,随着微系统、传感器以及控制理论等技术的发展,四轴飞行器的研究取得了极大的进步。四轴飞行器的发展也更趋于小型化、多样化。本设计采用STM32微控制器作为运算处理单元,通过IIC总线读取惯性传感器数据,通过四元数算法和卡尔曼滤波算法进行融合后进行姿态解算,从而得到当前飞行器姿态角度。微控制器利用当前得到的姿态角度与期望的姿态角度作对比,得到偏差角度输入到PID控制算法,算法的输出控制四个电机的转动,从而实现飞行器自主稳定飞行。

基于STM32的四旋翼飞行器的设计与实现共3篇

基于STM32的四旋翼飞行器的设计与实现共3篇

基于STM32的四旋翼飞行器的设计与实现共3篇基于STM32的四旋翼飞行器的设计与实现1基于STM32的四旋翼飞行器的设计与实现四旋翼飞行器可以说是近年来无人机发展的代表,其在农业、环保、救援等领域的应用越来越广泛。

本文将介绍基于STM32的四旋翼飞行器的设计与实现,着重讲解硬件设计和程序开发两个方面的内容。

一、硬件设计1、传感器模块四旋翼飞行器需要各种传感器模块来获取飞行状态参数,包括加速度计、陀螺仪、罗盘、气压计等。

其中,加速度计和陀螺仪通常被集成在同一个模块中,可以采用MPU6050或MPU9250这种集成传感器的模块。

气压计则可以选择标准的BMP180或BMP280。

罗盘的选型需要考虑到干扰抗性和精度,常用HMC5883L或QMC5883L。

2、电机驱动四旋翼飞行器需要四个电机来驱动,常用的电机是直流无刷电机。

由于电机电压较高,需要使用电机驱动模块进行驱动。

常用的电机驱动模块有L298N和TB6612FNG等。

3、遥控器模块飞行器的遥控器模块通常由一个发射器和一个接收器组成。

发射器采用2.4G无线传输技术,可以通过遥控器上的摇杆控制飞行器,遥控器还可以设置飞行器的航向、高度等参数。

接收器接收发射器传来的信号,必须与飞行器的控制系统进行通信。

4、飞行控制器飞行控制器是飞行器的核心部分,它通过传感器模块获取飞行状态参数,再结合遥控器模块传来的控制信号,计算出飞行控制指令,驱动电机模块控制飞行器的不同动作。

常用的飞行控制器有Naze32、CC3D、Apm等,本文将采用开源的Betaflight飞行控制器。

二、程序开发1、Betaflight固件烧录Betaflight是一款基于Cleanflight的开源固件,它具有良好的稳定性和强大的功能。

将Betaflight固件烧录到飞行控制器中需要使用ST-Link V2工具,同时需要在Betaflight Configurator中进行配置,包括传感器矫正、PID参数调整、遥控器校准等。

基于STM32控制的微型四轴飞行器

基于STM32控制的微型四轴飞行器

西华大学610039摘要:在对我很感兴趣的项目微型四轴飞行器进行了功能描述的基础上展开了对系统深入研究的方案设计。

该系统(装置)主要由飞控,遥控,蓝牙或WIFI模块,通信模块等组成。

飞控是由stm32f103作为主控,采用MPU6050作为惯性测量单元。

遥控是由arduino作为主控。

通信运用2.4G无线模块。

在AD环境中完成对飞控的的设计。

在keil 5中完成软件的设计。

然后,通过proteus软件完成飞控的模块的仿真与调试。

最后,分析了项目的计划完成情况。

关键词:四轴飞行器控制 stm32 通信设计引言随着社会的发展和科技的进步,我们迎来了新的时代。

在这个高速发展时代,所有的物品都在日新月异的变化。

我们小时候的纸飞机玩具变成了现在的遥控飞机,其中的四轴飞行器备受大众喜欢。

但是四轴飞行器的用处还有多,如林业,侦察,航拍,运输,娱乐观赏等领域,目前热门的航拍就是基于稳定四轴及云台搭建的平台实现,然后其他邻域应用还有相当的潜力。

四轴飞行器将会是很有潜力和未来需求的,代替人类运输,派遣去危险的地方拍摄,或者是交通,个人飞行器等等。

所以四轴飞行器以后一定可以成为主流产品,在生活的方方面面都可能会用到。

1项目1.1 项目描述近年来,国内科技领域对四轴飞行器的研究如火如荼,相关技术得到了迅速的发展。

随着信息化时代的蓬勃发展, 科学技术不断更新, 飞行器被广泛的应用在军事侦查、航拍以及民用快递运输等诸多行业。

四轴飞行器结构简单,操作灵活,单位体积内可提供巨大的升力,适合在狭窄环境中飞行,携带各种电子设备可执行各种任务,例如军事侦察、定位跟踪、农田监测等,在军事、民用等领域均有广泛的应用和广阔的前景。

本项目设计了一种基于STM32的微型四轴飞行器控制系统,以STM32单片机为主控制器,MPU6050为惯性测量单元模块核心,3.7V锂电池供电,通过蓝牙模块或wifi模块实现在手机App上来控制飞行器,或者通过自制遥控器来控制。

基于STM32的四轴飞行器设计

基于STM32的四轴飞行器设计

工装设计— 128 —基于STM32的四轴飞行器设计余 亮 项平平(淮南师范学院机械与电气工程学院 安徽 淮南 232000)摘 要:设计一种四轴飞行器。

该飞行器由四片桨叶提供飞行升力,调节电机转速控制飞行姿态与路径。

采用PIXHAWK2.4.8核心开发板,STM32处理数据,陀螺仪解算姿态,电调驱动无刷电机,实现电机转速调节,控制飞行姿态,实现常规姿态飞行。

关键词:飞行器;PIXHAWK;STM32;无刷电机 中图分类号:TP29-AD 文献标志码:A1 引言四轴飞行器具有体积小、灵活度较高、操控简单等众多特点,应用前景广阔[1]。

其未来可能发展成为新概念交通工具,或者用于安保以及高危环境作业等,普遍走进人们的日常生活之中。

2 系统总体分析本设计以单片机STM32F427开发板为核心器件,STM32F103C8T6为系统I/O 口,配合电阻电容等器件,完成最小系统搭建。

其余模块围绕PIXHAWK 开发板核心部分工作。

开发板中具有诸多传感器可供系统控制使用,主要包含128K 非易失闪存FM25V01元器件,TXS0108通用电平驱动芯片,LTC4417电源管理芯片,MIC5332超低压降传感器,BQ24315电池管理芯片,TCA62724三色LED 芯片,LT3469运放, M8N 传感器,5V 供电电源为等。

硬件结构示意图如图1[2][3]。

图1 飞行器硬件结构示意图3 硬件设计系统开发板上部分传感器已焊接完整,留有部分引脚以方便连接外设传感器。

处理单元由STM32F427VIT6(168 Mhz 工作频率、256KB RAM 工作内存与2MB 的flash 闪存100Pin)与STM32F103C8T6故障保护协处理器构成,其具有四十八个引脚,用来控制输入信号采集与输出信号发射,其晶振频率为24MHz 。

开发板中带有多个传感器,包括16位陀螺仪STL3GD20为整个系统提供实时角速度数据;14位加速度计电子罗盘STLSM303D 测量飞行器加速度以及方向;MEASMS5611气压高度计起到测量飞行器飞行高度的作用;InvenSence MPU6000三轴加速度计/陀螺仪采集姿态变化。

基于STM32的四旋翼飞行器设计

基于STM32的四旋翼飞行器设计

【关键词】stm32 四旋翼飞行器变参数pid控制卡尔曼滤波随着航天技术的不断发展和成熟,四旋翼飞行器以其低成本、体积小、对环境要求低、高性能、独特构造和飞行方式等特点,被广泛应用于军事和民用领域。

本文以飞行器控制算法为研究主题,重点研究四旋翼飞行器的算法结构,设计飞行控制算法,提出一套基于卡尔曼滤波算法的姿态检测系统,并以改进的变参数pid控制算法来进行控制,实现了四旋翼飞行器的稳定飞行、悬停、航拍等功能,验证了设计的合理性。

1 飞行器工作原理四旋翼飞行器也称为四旋翼直升机,是一种有四个螺旋桨且螺旋桨呈十字形交叉的飞行器,是固联在刚性十字交叉结构上,由4个独立电机驱动的螺旋桨组成的6自由度系统。

四旋翼一般具有两种飞行模式,x飞行模式和十字飞行模式,实验证明x模式较十字模稳定且便于控制,所以本文设计中采用的是x飞行模式,结构图如图1所示。

在四旋翼的中轴处mcu 将无线模块传达的控制数据发送给电调,再通过电调控制三相无刷电机的转速变化实现俯仰运动、偏航运动、垂直起落运动和空中悬停。

飞行器在做俯仰运动过程中电机0、1或2、3转速同时增减,并且其余两个电机转速也发生变化,变化方向与其相反;偏航动作过程中电机0、2或者1、3转速增加,同时其余两个电机保持原有转速;垂直起落过程中四路电机转速同步加减,当四路电机所产生的升力与四旋翼自身重力相等时,飞行器保持悬停状态。

2 硬件设计四旋翼飞行器的硬件设计包括两部分:飞行器主体硬件结构设计、遥控器硬件结构设计。

2.1 飞行器主体硬件结构设计2.2 遥控器硬件结构设计本文的遥控器是自行设计制作的,利用cad软件设计出了遥控器外壳的双层平面模型,并利用雕刻机对亚克力进行镂空加工,设计pcb外形并导入电路板绘制工具软件,将pcb板嵌在两层亚克力模型版中。

遥控器主要mcu、无线通信模块、显示部分、飞行控制量输入部分、参数微调部分、指示部分组成。

由遥控器的mcu同样采用stm32f103vet6,无线通信模块采用大功率nrf24l01模块通过spi串行通信总线与mcu相连;显示部分由2.4寸tft彩屏和驱动电路组成,通过系统总线与mcu连接实现显示功能;飞行控制量输入部分由碳膜型遥感电位器和拨盘电位器组成,通过mcu的12位ad接口采集模拟信息,作为四旋翼的动作和云台动作控制量;参数微调部分由贴片按键实现,可以微调遥控器的飞行参数,指示部分由贴片led组成。

基于STM32的四旋翼飞行控制器的设计.

基于STM32的四旋翼飞行控制器的设计.

基于STM32的四旋翼飞行控制器设计姓名: XX学号:54130XXXXXXX班级:自动化摘要随着时代的发展,多旋翼飞行器越来越被广泛的应用在军事、民用、以及科学研究等多个领域,同时其本身也向着高效、多功能化方面发展。

四旋翼飞行器也称为四旋翼直升机又叫四轴飞行器,是一种有4个螺旋桨且螺旋桨呈十字形交叉的飞行器,可以搭配微型相机录制空中视频。

四旋翼直升机,国外又称Quadrotor,Four-rotor,4 rotors helicopter,X4-flyer等等,是一种具有四个螺旋桨的飞行器并且四个螺旋桨呈十字形交叉结构,相对的四旋翼具有相同的旋转方向,分两组,两组的旋转方向不同。

与传统的直升机不同,四旋翼直升机只能通过改变螺旋桨的速度来实现各种动作(目前,也出现可以改变螺距的四旋翼飞行器,这种控制方式比改变电机转速更灵活方便)。

一四旋翼飞行基础控制原理1.1 飞行动力原理(图2.1)(图2.2 )四轴飞行器是一个在空间具有6个活动自由度(分别沿3个坐标轴作平移和旋转动作),但是只有4个控制自由度(四个电机的转速)的系统,因此被称为欠驱动系统(只有当控制自由度等于活动自由度的时候才是完整驱动系统)。

不过对于姿态控制本身(分别沿3个坐标轴作旋转动作),它确实是完整驱动的。

1.2 姿态分析因有两对电机转向相反,可以平衡其对机身的反扭矩,当同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,(图2.2.1)实现了沿z轴的垂直运动。

当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。

保证四个旋翼转速同步增加或减小是垂直运动的关键。

电机1的转速上升,电机3的转速下降,电机2、电机4的转速保持不变。

为了不因为旋翼转速的改变引起四旋翼飞行器整体扭矩及总拉力改变,旋翼1与旋翼3转速该变量的大小应相等。

基于stm32的四轴飞行器——开题报告

基于stm32的四轴飞行器——开题报告
起止日期
主要任务
工作地点
检查方式
2015年月日-月日
资料整理、撰写论文
校内
现场检查
2015年月日-月日
完成初稿
校内
现场检查
2015年月日-月日
修改、定稿
校内
现场检查
2015年月日-月日
答辩
校内
现场检查
6指导教师或指导小组评价(题目、工作要点、方法、进度及准备情况):
想要实物和文章请淘宝搜索店铺向日葵电子工作室
[17]E.Altug,J.P.Ostrowski,andR. Mahony. Control of a Quadrotor helicopter using visualfeedback[J]. IEEETrans.onRobotics and Automation.2002:72-77
5工作计划:
指导教师(签名):年月日
7学生开题报告的评审意见(是否同意进入毕业论文或毕业设计撰写阶段):
教学系主任(签字):年月日
[14]ﻩ王广雄.1992.控制系统设计[M].宇航出版社.
[15]ﻩ王彤.1995.PC机在测量和控制中的应用[M].哈尔滨工业大学出版社.
[16]ﻩKiamHeong Ang,Gregory Chong,StudentMember,IEEE, andYunLi,Member, IEEE.PIDControlSystemAnalysis, Design,and Technology[J].IEEE Transactionson Energy Conversion,2005,13(4):559~574.
测量数据处理:利用STM32F103的高速运算速度,处理由6轴加速度传感器MPU6050传送来的状态信息,通过数据运算处理,输出不同的PWM波形驱动高速马达带动旋翼高速旋转产生升力,采用数值运算的软件程序设计方法。使四轴飞行器可以实现稳定飞行。

基于stm32的四轴飞行器设计与控制

基于stm32的四轴飞行器设计与控制
double-loop PID control. After the output to the four rotors according to the X-type
structure and the parameter tests of attitude and height, the smooth control of
Filters with different cutoff frequencies are designed to achieve data filtering,
resulting in more accurate attitude and heading information. The controller adopts
this under-actuated system can be achieved.
Key words:stm32 MCU; Quadcopter; PCB Design; Height Hold
1绪论
人类自古以来就有飞天梦想,世界各地的神话传说、民间故事、敦煌壁画上的“飞天”、小时候玩的竹蜻蜓都可窥一二。但从理想走向现实,也就一百多年的时间。1920年,也就是莱特兄弟发明飞机后的17年,多轴无人飞行器就此诞生。但囿于当时科技水平的落后,控制技术的不成熟,以及相关控制理论的缺乏,多旋翼的发展一直处于休眠期。直到20世纪末,得益于微电子器件技术的发展、多旋翼相关学术讨论和研究方面取得的进展,多旋翼逐渐脱离军事用途而变成消费级玩具,多旋翼逐渐进入复苏期和发展期。越来越多的科研从业者开始研究多旋翼,自己搭建平台,验证算法,如姿态控制算法等。随后四旋翼的发展如雨后春笋般渐渐发展起来。
determined. The wheelbase and power matches and hardware selection and PCB

基于STM32四轴飞行器的设计

基于STM32四轴飞行器的设计

基于STM32四轴飞行器的设计作者:解琛来源:《科学家》2017年第17期摘要四轴飞行器是一种小型的飞行器平台,其控制系统的核心是STM32单片机,具有性价比高、功能强大等特点,基于STM32的飞行器具有十分广泛的用途。

因此,本文就基于STM32四轴飞行器的设计进行了相关介绍,主要内容包括四轴飞行器的动力学分析、基于STM32四轴飞行器的总体设计方案与程序设计以及电子硬件电路与软件程序调试。

关键词四轴飞行器;STM32单片机;电子硬件电路中图分类号 V2 文献标识码 A 文章编号 2095-6363(2017)17-0061-02四轴飞行器由于其体积小、飞行高度与速度较低、飞行状态平稳、灵活等特点,在空间狭小的作业区域具有较高的应用优势。

在实际生活当中,四轴飞行器常被应用与火灾现场探明险情或高层搜救当中;在地震等灾害导致通讯中断的情况下,也可借由四轴飞行器作为空中通讯中转。

四轴飞行器在设计过程中存有很多的技术难点,需要对其实际使用过程中受到的物理效应、气流与环境的干扰等进行重点考量,才能更好地实现其应用价值。

1 四轴飞行器的动力学分析四轴飞行器能够实现的飞行运动包括爬升、横滚调节、下降、俯仰调节、偏航调节,本文选用的四轴飞行器外形呈现为“X”型(如图1所示),电机就安装在“X”的四个角上。

在设计过程中,为避免4个电机同向转动时发生自旋运动,安装时要保证对角电机的转动方向相同,相邻的电机转动方向相反。

关于电机的输出功率,若其提供的升力大于飞行器本身的自重,则飞行器能够垂直升起;若要飞行器降落,则要保持飞行器的输出功率持续降低。

当相邻两个电机的输出功率大于或小于另外两个电机的输出功率时飞行器就能进行向指定方向运动。

若减小对角两个电机的输出功率,同时增加另外两个电机的输出功率,则飞行器能够完成偏航运动。

2 基于STM32四轴飞行器的总体设计方案2.1 飞行器设计方案基于STM32四轴飞行器的控制器即为STM32单片机,在接收到PC端由蓝牙发送的控制或调试指令后,可通过ⅡC接口设置MPU6050传感器,并将传感器的输出设定为DMP的输出模式。

基于STM32的四旋翼飞行器控制系统设计

基于STM32的四旋翼飞行器控制系统设计

基于STM32的四旋翼飞行器控制系统设计四旋翼飞行器是一种由四个旋翼驱动的无人机。

它具有垂直起降和悬停的能力,能够在空中保持稳定飞行。

基于STM32的四旋翼飞行器控制系统设计需要考虑飞行器的姿态控制、飞行模式控制、传感器数据获取与处理等方面,同时还需要实现与地面站的通信和数据传输。

首先,飞行器的姿态控制是控制系统设计的核心。

通过采用传感器获取飞行器的姿态信息,如加速度计、陀螺仪和磁力计等,利用PID控制算法对飞行器进行姿态调整,使其保持平衡和稳定飞行。

STM32可以通过配置外设,如ADC和定时器,来获取传感器数据,同时使用GPIO口来控制电机的转速,实现四旋翼飞行器的姿态控制。

其次,飞行模式控制是四旋翼飞行器控制系统中的另一个重要方面。

飞行模式通常包括手动模式、自稳模式和定点悬停模式等。

在手动模式下,飞行器由遥控器控制飞行方向和速度。

在自稳模式下,飞行器利用姿态控制算法来保持平衡和稳定飞行。

在定点悬停模式下,飞行器根据传感器数据和定位信息,实现在空中固定位置悬停。

通过STM32的串口通信模块与遥控器通信,可以实现飞行模式的切换和控制。

另外,传感器数据获取与处理也是四旋翼飞行器控制系统设计的重要部分。

飞行器需要获取传感器数据,如高度、速度和位置等信息,并进行处理,以进行姿态控制和飞行模式控制。

STM32可以通过配置串口通信、I2C或SPI总线来获取和处理传感器数据,同时利用内部的计算和存储单元进行数据处理和算法运算。

最后,与地面站的通信和数据传输是四旋翼飞行器控制系统设计中的另一个重要方面。

地面站可以通过无线通信方式与飞行器进行通信,获取飞行器的状态信息和传感器数据,并发送飞行指令和控制信号。

通过配置STM32的无线通信模块,如WiFi或蓝牙模块,可以实现与地面站的通信和数据传输。

除了以上提到的关键设计方面,四旋翼飞行器控制系统设计还需要考虑电源管理、动力系统控制(电机控制)、GPS定位和导航等问题。

基于STM32F4的环境探测四轴飞行器[实用新型专利]

基于STM32F4的环境探测四轴飞行器[实用新型专利]

专利名称:基于STM32F4的环境探测四轴飞行器专利类型:实用新型专利
发明人:陈庆华,朱相东,魏杰文,郑泽鸿
申请号:CN201620022377.1
申请日:20160108
公开号:CN205469824U
公开日:
20160817
专利内容由知识产权出版社提供
摘要:本实用新型涉及基于STM32F4的环境探测四轴飞行器,用于环境侦察,它公开了在机架的上板四条力臂末端设置有无刷电机,无刷电机分成两组,一组为逆时针方向转动,另一组为顺时针方向转动,逆时针转动的螺旋桨为正桨,顺时针转动的螺旋桨都为反桨;在下板的底部设置有云台支架管,云台支架管的前端设置有云台架,云台架上安装有运动相机和中舵机;脚架末端都安装有避震棉套。

本实用新型的优点是解决了传统环境侦查设备受地理环境影响大,应用面窄的问题;可应用于气象监测,军事侦察,消防灾情,城市规划等领域;采用单核心控制器方案,具有功能集成度高,结构紧凑,硬件成本低的优点,具有可观的推广价值。

申请人:肇庆学院
地址:526060 广东省肇庆市端州区东岗
国籍:CN
代理机构:广州三辰专利事务所(普通合伙)
代理人:范钦正
更多信息请下载全文后查看。

基于STM32F4处理器的四轴飞行器控制系统设计

基于STM32F4处理器的四轴飞行器控制系统设计

基于STM32F4处理器的四轴飞行器控制系统设计作者:闫晓兵陈春梅白雪艳刘鹏来源:《现代信息科技》2021年第05期摘要:四轴航拍飞行器能够在空中长时间稳定飞行,且携带载荷类型多样,在日常生活中具有广泛的用途。

利用STM32F4处理器并且综合四元数法和PID控制算法进行四轴飞行器的设计是当前普遍的做法,如何做好软硬件之间的接口关系协调是进行设计时需要重点关注的问题;基于STM32F4处理器并综合使用MPU6050传感器能够实现设计出可以稳定飞行的四轴飞行器样机,并且具有灵活机动的转弯和升降能力,能够满足长航时、多广角航拍的需要。

关键词:四轴飞行器;STM32F4处理器;四元数法中图分类号:TP273;V221 文献标识码:A 文章编号:2096-4706(2021)05-0052-04Design of Quadcopter Control System Based on STM32F4 ProcessorYAN Xiaobing1,CHEN Chunmei1,BAI Xueyan2,LIU Peng2(1.School of Communication Engineering,Taishan College of Science and Technology,Taian 271000,China;2.School of Intelligent Engineering,Taishan College of Science and Technology,Taian 271000,China)Abstract:Aerial quadcopter can fly stably in the air for a long time,and carry a variety of loads,which has a wide range of purpose in daily life. Using STM32F4 processor and combining quaternion method and PID control algorithm to design quadcopter is a common practice at present. How to coordinate the interface relationship between software and hardware is a key issue when designing. Based on STM32F4 processor and comprehensive use of MPU6050 sensor,a quadcopter prototype that can flight stably can be designed,and it has flexible turning and lifting ability,which can meet the needs of long sailing time and multi wide angle aerial photography.Keywords:quadcopter;STM32F4 processor;quaternion method0 引言四轴航拍飞行器采用旋翼飞行方式在空中进行飞行,可以同步完成空中航拍任务,这种飞行器具有飞行稳定性强、操作简单、适用范围广的特点[1],因此是当前航拍技术的主要实现载体,同时也吸引了很多研究者。

基于stm32的四轴飞行器的设计

基于stm32的四轴飞行器的设计

1 系统概述
系统方面主要采用现在性价比较高的stm32作为主控制 器,高性能的 MPU6050 陀螺仪和无刷直流电机作为主要部 分。stm32 通过读取陀螺仪 MPU6050 的姿态,来确定飞行器 所处的状态,进行数据处理,进一步控制飞行器的运行轨迹。 四轴飞行器硬件部分主要包括电源部分,驱动部分,显示部分 和控制器部分,和陀螺仪等构成。系统构成如图1所示。
Fu Xiuwei Fu Li
(Department of Automation, Jilin University of Chemical Technology, Jilin 132022)
Abstract:Four rotor helicopter is a micro air vehicle, provides power for the vehicle to flight in the air by driving the propeller with brushless electric machine. Stm32 is used for micro-processing, and mpu6050 collects the vehicle lo⁃ cation. The core module parameters use a single set of power to supply power, reduce interference and ensure the sta⁃ ble operation of the system. Keywords: stm32;vehicle; gyroscope
图 3 第一个稳压模块原理图
2.1.2 XC6206 稳压模块 系 统 升 压 到 5V 后 只 能 对 电 机 进 行 供 电 ,而 控 制 stm32 所用的供电电压为 3.3V,因此需要将 5V 转化成 3.3V。本设计参与 XC6206 系列,它采用 CMOS 工艺,内 部由基准电压源、误差发达器、驱动晶体管、限流电路等 构成。通过采用 CMOS 工艺和激光微调技术,实现了低 消耗电流和高精度。 该设计一共有两个稳压块。第一部分稳压块将经过 升压块输出的 5V 电压稳定在 3.3V,然后接到 STM32 单片 机的 VCC 端口,另一个稳压模块直接为 MPU6050 陀螺仪 进行供电,两个稳压器都采用同一个芯片。原理图如图 3 所示。 2.2 STM32F103 型单片机 STM32 系列单片机是专门对要求高、成本低的嵌入 式应运而生的。高达 72MHz 的频率提高了很多应用场 合,处理速度得到了大大的提高,特别是对四轴飞行器来 说可以完美实现其功能。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于STM32F4的四轴航拍飞行器摘要本设计是基于STM32F4的四轴航拍平台。

以STM32F407为控制核心,四轴飞行器为载体,辅以云台的航拍系统。

硬件上由飞控电路,电源管理,通信模块,动力系统,机架,云台伺服系统组成。

算法上采用简洁稳定的四元数加互补滤波作为姿态解算算法,PID作为控制器,实现飞行,云台增稳等功能。

具有灵活轻盈,延展性,适应性强好等特点。

1.引言四轴飞行器是一种利用四个旋翼作为飞行引擎来进行空中飞行的飞行器。

进入20世纪以来,电子技术飞速发展四轴飞行器开始走向小型化,并融入了人工智能,使其发展趋于无人机,智能机器人。

四轴飞行器不但实现了直升机的垂直升降的飞行性能,同时也在一定程度上降低了飞行器机械结构的设计难度。

四轴飞行器的平衡控制系统由各类惯性传感器组成。

在制作过程中,对整体机身的中心、对称性以及电机性能要求较低,这也正是制作四轴飞行器的优势所在,而且相较于固定翼飞机,四轴也有着可垂直起降,机动性好,易维护等优点。

在实际应用方面,四轴飞行器可以在复杂、危险的环境下可以完成特定的飞行任务,也可以用于监控交通,环境等。

比如,在四轴飞行器上安装甲烷等有害气体的检测装置,则可以在高空定点地检测有害气体;进入辐射区检查核设施;做军事侦察;甚至搬运材料,搭建房屋等等。

本设计利用四轴搭载云台实现航拍任务,当然经过改装也可以执行其他任务。

本设计主要研究了四轴飞行器的姿态结算和飞行控制,并设计制作了一架四轴飞行器,对关键传感器做了标定,并利用用matlab分析数据,设计算法,还进行了单通道平衡试验调试,进行试飞实验取得了一定的效果。

2.系统方案本设计采用STM32F4作为核心处理器,该处理器内核架构ARM Cortex-M4,具有高性能、低成本、低功耗等特点。

主控板包括传感器MPU6050电路模块、无线蓝牙模块、电机启动模块,电源管理模块等;遥控使用商品遥控及接收机。

控制芯片捕获接收机的PPM命令信号,传感器与控制芯片之间采用IIC总线连接,MCU与电调之间用PWM传递控制信号。

软件算法才用基于四元数的互补滤波解算姿态叫,控制算法才用经典PID控制器控制云台舵机和四轴电机。

如图2-1为本设计总体框图。

3.系统硬件设计针对前面提出的整体设计方案,本设计采取模块化策略,将各个功能部分开来设计,最后组合起来。

3.1 电源管理模块四轴飞行器要求整体设计质量较轻,体积较小,因此在电池的选取方面,采用体积小、质量轻、容量大的锂电池供电最合适。

系统的核心芯片为STM32F103,常用工作电压为3.3V,同时惯性测量传感器,蓝牙通信模块的常规供电电压也为3.3V,锂电池的电压为11.4V,要使系统正常工作,需要将11.4V的锂电池电压稳压到3.3V。

常用的78系列稳压芯片已不再适用,必须选择性能更好的稳压芯片。

经综合考虑,本电路采用LM1117-3.3和LM2940-5电源部分的核心芯片。

电池电源经过LM2940-5降到5V后在输入LM1117-3.3稳压为3.3V。

由于电机部分电流较大,故在飞控电路部分加入了过流保护,使用500mA的保险丝。

电路图如下。

表3-1 四轴飞行器硬件清单4.系统软件设计软件设计上由控制核心STM32F4读取传感器信息,解算姿态角,以姿态角为被控制量融合遥控信息后,输出到四个电机及两个舵机以完成四轴飞行控制和云台的稳定补偿。

下图是软件流程:4.1.四元素计算姿态角的实现根据前面给出的姿态解算方程与四元数,即可得到姿态计算系统的计算原理如下图(4-1)本设计基于互补滤波的思想上完成的四元素算法,其核心思路为利用加速度测得的重力向量与估计姿态得到重力向量的误差来矫正陀螺仪积分误差,然后利用矫正后的陀螺仪积分得到姿态角。

首先不妨设处理后的加速度数据为:ax,ay,az,单位m/s^2。

加速度计的向量为(ax,ay,az)陀螺仪数据为:gx,gy,gz,单位rad/s。

陀螺仪向量(gx,gy,gz),由式(4-5)可得由载体到导航坐标系的四元数形式转换矩阵为:根据余弦矩阵和欧拉角的定义,地理坐标系的重力向量,转到机体坐标系,是中的第三列的三个元素,即。

所以加速的向量与估计重力向量叉积:然后利用向量的叉积,可视为误差向量,这个叉积向量仍旧是位于机体坐标系上的,而陀螺积分误差也是在机体坐标系,而且叉积的大小与陀螺积分误差成正比,正好拿来纠正陀螺。

由于陀螺是对机体直接积分,所以对陀螺的纠正量会直接体现在对机体坐标系的纠正。

用上面得到的结果校正陀螺仪:此处k为一个常量系数。

再利用二阶毕卡法解四元数微分方程(4-6),更新四元数为下一次计算做准备。

毕卡二阶算法为:最后将四元数转变为欧拉角:数据流程图如下:通过以上算法我成功得出了飞行器的姿态角,在开启电机的情况下,角度误差在+/-2°以内,满足了控制要求。

姿态计算效果如下图所示,其中红色和蓝色是直接由加速度计算出的俯仰角和横滚角,青色和黄色为姿态结算后的俯仰角和横滚角。

由图中数据可看出,解算的姿态角不仅能即时的反应角度变化切曲线平滑,说明姿态解算算法有效。

4.2.控制设计由于四轴飞行器独特的机械结构,即结构上的对称设计,使得四轴在俯仰角的控制欲横滚角的控制上有这近乎相同的控制特性,且两者相对独立。

四轴飞行器的俯仰,横滚,偏航,升降可以通过四个输入量来控制。

通过设定一个期望角度,调整电机转速,使得测得的姿态角稳定在期望角。

控制律的设计主要采用是闭环控制。

以姿态角做为被控制量,采用经典的PID控制算法。

四轴飞行器系统是一个时变且非线性的系统,采用传统PID算法的单一的反馈控制会使系统存在不同程度的超调和振荡现象,无法得到理想的控制效果。

本文将前馈控制引入到了四轴飞行器系统的控制中,有效地改善了系统的实时性,提高了系统的反应速度;并且根据四轴飞行器系统的特点,对数字PID算法进行了改进,引入了微分先行环节,改善了系统的动态特性;使得控制器能够更好地适应四轴飞行器系统的实际情况。

在姿态角的控制中,本设计将控制器捕获到的遥控器信号转换为一个角度,作为期望角,与解算出来的测量角作差,得到偏差error。

将error乘以一个比例系数kp。

在只有kp作用下,系统会有静差所以考虑利用积分ki控制消除稳态误差。

但积分控制会降低系统的动态性能,甚至造成闭环系统不稳定,因此要对积分进行限幅,防止积分过大。

对于微分,如果采用传统的D方法,在人为操纵四轴时会产生输入的设定值变化频繁且幅度较大,从而造成系统的振荡。

对人为控制十分不利,为了解决设定值的频繁变化给系统带来的不良影响,本文在姿态角控制上引入了微分先行PID算法,其特点是只对输出量进行微分,即只对陀螺仪角速度测量值进行微分,而不对姿态角的设定值进行微分。

这样,在设定值发生变化时,输出量并不会改变,而被控量的变化相对是比较缓和的,这就很好地避免了设定值的频繁变化给系统造成的振荡,明显地改善了系统的动态性能。

控制周期定为4ms,姿态控制系统示意图如下:图5-1姿态控制系统示意图通过前面一章的介绍我们已经的达到了俯仰,横滚,航向三个控制量,然后将它们分别输入三个独立的如上图所示的PID控制器,我们可以得到三个PID输出:pid_roll,pid_pitch,pid_yaw将这三个输出量做简单的线性运算输出给电机。

部分代码如下:#define PIDMIX(X,Y,Z) Motor_Thr + pid_pitch* Y+ pid_roll*X + pid_yaw*ZMOTOR1=MOTORLimit(PIDMIX(+1,+1,-1)); //REAR_R 后右电机MOTOR2=MOTORLimit(PIDMIX(-1,-1,-1)); //FRONT_R 前右电机MOTOR3=MOTORLimit(PIDMIX(-1,+1,+1)); //REAR_L 后左电机MOTOR4=MOTORLimit(PIDMIX(+1,-1,+1)); //FRONT_L 前左电机4.3. PID参数调节PID参数的整定是PID控制的关键环节,直接影响到控制的效果。

故一个PID设计的好不好往往要看其参数能否调节好,本设计的PID参数调节采用凑试法。

凑试法是通过实际的闭环系统,通过观察系统的响应曲线,在本设计中通过观察被调量,PID输出,设定值三条曲线,判断出kp,ki,kd对系统响应的影响,反复尝试,最终达到满意响应,从而达到确定控制参数的kp,ki,kd的目的。

在参数调节过程总遵循以下原则[17]:(1)在输出不振荡时,增大比例增益P。

(2)在输出不振荡时,减小积分时间常数Ti。

(3)在输出不振荡时,增大微分时间常数Td。

(4)一般步骤:a.确定比例增益P确定比例增益P时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。

输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P,设定PID的比例增益P为当前值的60%~70%。

比例增益P调试完成。

b.确定积分时间常数Ti比例增益P确定后,设定一个较大的积分时间常数Ti的初值,然后逐渐减小Ti,直至系统出现振荡,之后在反过来,逐渐加大Ti,直至系统振荡消失。

记录此时的Ti,设定PID 的积分时间常数Ti为当前值的150%~180%。

积分时间常数Ti调试完成。

c.确定积分时间常数Td积分时间常数Td一般不用设定,为0即可。

若要设定,与确定P和Ti的方法相同,取不振荡时的30%。

d.系统空载、带载联调,再对PID参数进行微调,直至满足要求。

(5)最终调试好的标准应该是,PID输出曲线在有一个阶跃响应来是,响应一大一小两个波,小波是大波的四分之一。

四轴飞行器的PID整定,我们首先四轴固定在单轴平衡平台上,让飞行器完成单轴平衡,主要观察姿态角的(1)稳定性,能否平衡在期望角度;(2)响应性,当操纵命令改变时,四轴能否即时的响应期望的变化;(3)操纵性,由操纵员感受四轴的姿态是否已与操纵,会不会产生响应过冲。

在参数调整时,先调P,将I,D给0,先给一个小值P1,如果飞行器不能稳定在一个角度,则P1给小了,下一次给一个较大值P2,如果飞行器产生震荡则证明P2给大了,那么合适的P在P1-P2之间,反复试验几次可找到P震荡的临界点P0,然后保持P0不变按照调P的方法来调D,D是用来消除误差的,当抖动差不多被消除时,此时我们有较合适的P0,D0,在这两个值附近再试几组参数,观察效果得到最优参数。

调好P,D后此时四轴的稳定状态与期望状态间也学会有静差,接下来加入I,参数有小到大,当静差差不多被消除时,我们再对P,I,D三组参数在小范围内联调。

相关文档
最新文档