首都师范大学2003年高等代数

合集下载

学科数学804数学教育概论是哪个学校的自命题

学科数学804数学教育概论是哪个学校的自命题

学科数学804数学教育概论是哪个学校的自命题珠海考试科目:(812)专业综合(1)《代数学基础》(上),张英伯,王恺顺,北京师范大学出版社(2)《高等代数学》第三版,姚慕生,吴泉水,谢启鸿。

(3)《空间解析几何》(第四版),高红铸,王敬庚,傅若男,北京师范大学出版社(4)《解析几何》尤承业,北京大学出版社(5)《解析几何》(第三版),丘维声,北京大学出版社二、首都师范大学考试科目:(873)数学基础(1)《数学分析》高等教育出版社,第二、三版华东师范大学数学系;(2)《高等代数》高等教育出版社,第二、三版北京大学。

三、中央民族大学考试科目:(850)数学(微积分、线性代数)(不招收同等学力考生、双少生)四、天津师范大学考试科目:(904)数学教育理论(1)吴立宝,李春兰主编.《数学学科知识与教学能力(高中)》.北京师范大学出版社.2018;(2)张筱玮,潘超主编.《数学学科知识与教学能力(初中)》.北京师范大学出版社.2018五、河北北方学院考试科目:(904)数学分析与线性代数(1)《数学分析》华东师范大学数学系,高等教育出版社;(2)《线性代数》同济大学数学系,高等教育出版社。

六、太原师范学院考试科目:(824)数学教学论(不招收同等学力考生报名,要求本科阶段具有相同或相近专业背景)考试范围:数学教学论、现代数学教育观、数学教学反思、数学的基本特征、数学的文化价值、数学课程论的研究内容、数学课程的发展、义务教育数学课程标准(2011年版)和普通高中数学课程标准(2017年版)的基本理念及基本结构、数学有意义学习、数学建构主义学习、探究性学习理论、数学教学原则、数学教学方法、数学概念的教学、数学解题的教学、数学思想方法的教学、数学课堂教学的情境创设、数学课堂教学的提问、数学课堂教学语言、数学课的备课与说课、数学教育科研与写作。

七、山西师范大学考试科目:(829)教学技能与方法(只接收具有相同学科专业背景的考生)(1)教学技能(2015年)北京师范大学出版社陈旭远(2)教学技能(2013年)北京师范大学出版社张海珠八、内蒙古科技大学考试科目:(879)数学教学论九、内蒙古师范大学考试科目:(909)中学数学教学论(1)《数学教学论》曹一鸣张生春北京师范大学出版社2010(2)《中学数学教学论》代钦斯钦孟克陕西师范大学出版社2009。

2003年考研数学试题详解及评分参考

2003年考研数学试题详解及评分参考

相互独立,于是 Z 2 ~ c 2 (1) ,从而
c2 n 1 = : F (n,1) . 故选 (C) . X 2 Z2 1
三、 (本题满分 10 分) 过坐标原点作曲线 y = ln x 的切线, 该切线与曲线 y = ln x 及 x 轴围成平面图形 D . (1) 求 D 的面积 A ; (2) 求 D 绕直线 x = e 旋转一周所得旋转体的体积 V . 解 (1) 设切点的横坐标为 x0 ,则曲线 y = ln x 在点 ( x0 , ln x0 ) 处的切线方程是
2
有 a2 =
p p 2 p 2 1 x cos 2 xdx = [ x 2 sin 2 x - ò 2 x sin 2 xdx] ò 0 0 p 0 p
p 1 p [ x cos 2p 0 - ò cos 2 xdx] = 1 . 0 p æ1 ö æ1 ö æ1ö æ1 ö ÷ ç ÷ ç ÷ ç (4) 从 R 2 的基 a 1 = ç , a = 到基 b = , b = 2 1 2 ç 0÷ ç - 1÷ ç1÷ ç 2÷ ÷ 的过渡矩阵为 è ø è ø è ø è ø æ2 3 ö 【答】 应填 ç ç - 1 - 2÷ ÷. è ø
s s za , X + za ) ,由于 za = z0.025 , 1 - 0.025 = 0.975 = F (1.96 ) ,数据代入, n 2 n 2 2 1 1 得置信区间为 (40 ´1.96, 40 + ´ 1.96) = ( 39.51, 40.49 ) 16 16
(X 二、选择题(本题共 6 小题,每小题 4 分,满分 24 分) (1) 设函数 f ( x) 在 (-¥,+¥) 内连续,其导函数的图形如图所示,则 f ( x) 有 (A) 一个极小值点和两个极大值点 (B) 两个极小值点和一个极大值点 (C) 两个极小值点和两个极大值点 (D) 三个极小值点和一个极大值点 【答】 应选 (C). 【解】 在 y 轴左侧,因 f ¢( x) 由正变负再变正,故 f ( x ) 由增变减再变增,从而有一个极 大值点和一个极小值点;而在 y 轴右侧,因 f ¢( x) 由负变正,故 f ( x) 由减变增,从而有 一个极小值点;又在点 x = 0 左右领域, f ¢( x) 由正变负, f ( x) 由增变减,且 f ( x) 在点

数学分析与高等代数考研真题详解--中科院卷

数学分析与高等代数考研真题详解--中科院卷

校教师,硕博研究生报名参与本丛书的编写工作,他们在工作学习的过程中挤时间,编写审
稿严肃认真,不辞辛苦,这使我们看到了中国数学的推广和科研的进步,离不开这些默默无
闻的广大数学工作者,我们向他们表示最崇高的敬意!
国际数学大师陈省身先生提出:“要把中国建成 21 世纪的数学大国。”每年有上万名数
学专业的学生为了更好的深造而努力考研,但是过程是艰难的。我们为了给广大师生提供更
∫∫∫ 算积分 I = ex+y+zdxdydz . D
4.(15
⎛ 分)定义向量场 F (x, y) = ⎜⎜⎝
xe x2 + y2 ,
x2 + y2
ye
x2 + y2
⎞ ⎟, x2 + y2 > 0
x2 + y2 ⎟⎠
证明 F (x, y) 是有势
场, 并求出 F (x, y) 的一个势函数.
∑ 5.(25
没有编配解答,很多同学感到复习时没有参照标准,所以本丛书挑选了重点名校数学专业的
试题,由众多编委共同编辑整理成书。在此感谢每一位提供试题的老师,同时感谢各个院校
的教师参与解答。以后我们会继续更新丛书,编入更新的试题及解答,希望您继续关注我们
的丛书系列。也欢迎您到博士家园数学专业网站参加学术讨论,了解考研考博,下载最新试
博士家园考研丛书 (2010 版)
全国重点名校数学专业考研真题及解答
数学分析与高等代数 考研真题详解
中国科学院数学专卷 博士家园 编著
博士家园系列内部资料
《 博士家园数学专业考研丛书》
编委会
这是一本很多数学考研人期待已久的参考书,对于任何一个想通过考取重点院校的研究

2020年数学分析高等代数考研试题参考解答

2020年数学分析高等代数考研试题参考解答

安徽大学2008年高等代数考研试题参考解答北京大学1996年数学分析考研试题参考解答北京大学1997年数学分析考研试题参考解答北京大学1998年数学分析考研试题参考解答北京大学2015年数学分析考研试题参考解答北京大学2016年高等代数与解析几何考研试题参考解答北京大学2016年数学分析考研试题参考解答北京大学2020年高等代数考研试题参考解答北京大学2020年数学分析考研试题参考解答北京师范大学2006年数学分析与高等代数考研试题参考解答北京师范大学2020年数学分析考研试题参考解答大连理工大学2020年数学分析考研试题参考解答赣南师范学院2012年数学分析考研试题参考解答各大高校考研试题参考解答目录2020/04/29版各大高校考研试题参考解答目录2020/06/21版各大高校数学分析高等代数考研试题参考解答目录2020/06/04广州大学2013年高等代数考研试题参考解答广州大学2013年数学分析考研试题参考解答国防科技大学2003年实变函数考研试题参考解答国防科技大学2004年实变函数考研试题参考解答国防科技大学2005年实变函数考研试题参考解答国防科技大学2006年实变函数考研试题参考解答国防科技大学2007年实变函数考研试题参考解答国防科技大学2008年实变函数考研试题参考解答国防科技大学2009年实变函数考研试题参考解答国防科技大学2010年实变函数考研试题参考解答国防科技大学2011年实变函数考研试题参考解答国防科技大学2012年实变函数考研试题参考解答国防科技大学2013年实变函数考研试题参考解答国防科技大学2014年实变函数考研试题参考解答国防科技大学2015年实变函数考研试题参考解答国防科技大学2016年实变函数考研试题参考解答国防科技大学2017年实变函数考研试题参考解答国防科技大学2018年实变函数考研试题参考解答哈尔滨工程大学2011年数学分析考研试题参考解答哈尔滨工业大学2020年数学分析考研试题参考解答合肥工业大学2012年高等代数考研试题参考解答湖南大学2006年数学分析考研试题参考解答湖南大学2007年数学分析考研试题参考解答湖南大学2008年数学分析考研试题参考解答湖南大学2009年数学分析考研试题参考解答湖南大学2010年数学分析考研试题参考解答湖南大学2011年数学分析考研试题参考解答湖南大学2019年高等代数考研试题参考解答湖南大学2020年数学分析考研试题参考解答湖南师范大学2011年数学分析考研试题参考解答湖南师范大学2011年数学分析考研试题参考解答湖南师范大学2012年数学分析考研试题参考解答湖南师范大学2012年数学分析考研试题参考解答湖南师范大学2012年数学基础综合之高等代数考研试题参考解答湖南师范大学2012年数学基础综合之高等代数考研试题参考解答湖南师范大学2012年数学基础综合之数学分析考研试题参考解答湖南师范大学2013年数学分析考研试题参考解答湖南师范大学2013年数学分析考研试题参考解答湖南师范大学2013年数学基础之高等代数考研试题参考解答湖南师范大学2013年数学基础之数学分析考研试题参考解答湖南师范大学2014年数学分析考研试题参考解答华东师范大学2002年数学分析考研试题参考解答华东师范大学2012年数学分析考研试题参考解答华东师范大学2013年高等代数考研试题参考解答华东师范大学2013年数学分析考研试题参考解答华东师范大学2013年数学分析考研试题参考解答华东师范大学2014年高等代数考研试题参考解答华东师范大学2014年数学分析考研试题参考解答华东师范大学2015年高等代数考研试题参考解答华东师范大学2015年数学分析考研试题参考解答华东师范大学2016年高等代数考研试题参考解答华东师范大学2016年数学分析考研试题参考解答华东师范大学2020年高等代数考研试题参考解答华东师范大学2020年数学分析考研试题参考解答华南理工大学2005年高等代数考研试题参考解答华南理工大学2006年高等代数考研试题参考解答华南理工大学2007年高等代数考研试题参考解答华南理工大学2008年高等代数考研试题参考解答华南理工大学2009年高等代数考研试题参考解答华南理工大学2009年数学分析考研试题参考解答华南理工大学2010年高等代数考研试题参考解答华南理工大学2010年数学分析考研试题参考解答华南理工大学2011年高等代数考研试题参考解答华南理工大学2011年数学分析考研试题参考解答华南理工大学2012年高等代数考研试题参考解答华南理工大学2012年数学分析考研试题参考解答华南理工大学2012年数学分析考研试题参考解答华南理工大学2013年高等代数考研试题参考解答华南理工大学2013年数学分析考研试题参考解答华南理工大学2014年高等代数考研试题参考解答华南理工大学2014年数学分析考研试题参考解答华南理工大学2015年高等代数考研试题参考解答华南理工大学2015年数学分析考研试题参考解答华南理工大学2016年高等代数考研试题参考解答华南理工大学2016年数学分析考研试题参考解答华南理工大学2020年高等代数考研试题参考解答华南理工大学2020年数学分析考研试题参考解答华南师范大学1999年高等代数考研试题参考解答华南师范大学1999年数学分析考研试题参考解答华南师范大学2002年高等代数考研试题参考解答华南师范大学2013年数学分析考研试题参考解答华中科技大学1999年高等代数考研试题参考解答华中科技大学2000年数学分析考研试题参考解答华中科技大学2001年数学分析考研试题参考解答华中科技大学2002年高等代数考研试题参考解答华中科技大学2002年数学分析考研试题参考解答华中科技大学2003年数学分析考研试题参考解答华中科技大学2004年数学分析考研试题参考解答华中科技大学2005年高等代数考研试题参考解答华中科技大学2005年数学分析考研试题参考解答华中科技大学2006年高等代数考研试题参考解答华中科技大学2006年数学分析考研试题参考解答华中科技大学2007年高等代数考研试题参考解答华中科技大学2007年数学分析考研试题参考解答华中科技大学2008年高等代数考研试题参考解答华中科技大学2008年数学分析考研试题参考解答华中科技大学2009年高等代数考研试题参考解答华中科技大学2009年数学分析考研试题参考解答华中科技大学2010年高等代数考研试题参考解答华中科技大学2010年数学分析考研试题参考解答华中科技大学2011年高等代数考研试题参考解答华中科技大学2011年数学分析考研试题参考解答华中科技大学2013年高等代数考研试题参考解答华中科技大学2013年数学分析考研试题参考解答华中科技大学2014年高等代数考研试题参考解答华中科技大学2020年数学分析考研试题参考解答华中师范大学1998年数学分析考研试题参考解答华中师范大学1999年数学分析考研试题参考解答华中师范大学2001年数学分析考研试题参考解答华中师范大学2002年数学分析考研试题参考解答华中师范大学2003年数学分析考研试题参考解答华中师范大学2004年高等代数考研试题参考解答华中师范大学2004年数学分析考研试题参考解答华中师范大学2005年高等代数考研试题参考解答华中师范大学2005年数学分析考研试题参考解答华中师范大学2006年高等代数考研试题参考解答华中师范大学2006年数学分析考研试题参考解答华中师范大学2014年高等代数考研试题参考解答华中师范大学2014年数学分析考研试题参考解答吉林大学2020年数学分析考研试题参考解答暨南大学2013年数学分析考研试题参考解答暨南大学2014年数学分析考研试题参考解答江南大学2007年数学分析考研试题参考解答江南大学2008年数学分析考研试题参考解答江南大学2009年数学分析考研试题参考解答兰州大学2004年数学分析考研试题参考解答兰州大学2005年数学分析考研试题参考解答兰州大学2006年数学分析考研试题参考解答兰州大学2007年数学分析考研试题参考解答兰州大学2008年数学分析考研试题参考解答兰州大学2009年数学分析考研试题参考解答兰州大学2010年数学分析考研试题参考解答兰州大学2011年数学分析考研试题参考解答兰州大学2020年高等代数考研试题参考解答兰州大学2020年数学分析考研试题参考解答南京大学2010年数学分析考研试题参考解答南京大学2014年高等代数考研试题参考解答南京大学2015年高等代数考研试题参考解答南京大学2015年数学分析考研试题参考解答南京大学2016年高等代数考研试题参考解答南京大学2016年数学分析考研试题参考解答南京大学2020年数学分析考研试题参考解答南京航空航天大学2010年数学分析考研试题参考解答南京航空航天大学2011年数学分析考研试题参考解答南京航空航天大学2012年数学分析考研试题参考解答南京航空航天大学2013年数学分析考研试题参考解答南京航空航天大学2014年高等代数考研试题参考解答南京航空航天大学2014年数学分析考研试题参考解答南京师范大学2012年高等代数考研试题参考解答南京师范大学2013年高等代数考研试题参考解答南京师范大学2014年高等代数考研试题参考解答南京师范大学2014年高等代数考研试题参考解答南京师范大学2014年数学分析考研试题参考解答南开大学2002年数学分析考研试题参考解答南开大学2003年数学分析考研试题参考解答南开大学2004年高等代数考研试题参考解答南开大学2005年高等代数考研试题参考解答南开大学2005年数学分析考研试题参考解答南开大学2006年高等代数考研试题参考解答南开大学2006年数学分析考研试题参考解答南开大学2007年高等代数考研试题参考解答南开大学2007年数学分析考研试题参考解答南开大学2008年高等代数考研试题参考解答南开大学2008年数学分析考研试题参考解答南开大学2009年高等代数考研试题参考解答南开大学2009年数学分析考研试题参考解答南开大学2010年高等代数考研试题参考解答南开大学2010年数学分析考研试题参考解答南开大学2011年高等代数考研试题参考解答南开大学2011年数学分析考研试题参考解答南开大学2012年高等代数考研试题参考解答南开大学2012年数学分析考研试题参考解答南开大学2014年高等代数考研试题参考解答南开大学2014年数学分析考研试题参考解答南开大学2016年高等代数考研试题参考解答南开大学2016年数学分析考研试题参考解答南开大学2016年数学分析考研试题参考解答南开大学2017年高等代数考研试题参考解答南开大学2017年数学分析考研试题参考解答南开大学2018年高等代数考研试题参考解答南开大学2018年数学分析考研试题参考解答南开大学2019年高等代数考研试题参考解答南开大学2019年数学分析考研试题参考解答南开大学2020年高等代数考研试题参考解答南开大学2020年数学分析考研试题参考解答南开大学2020年数学分析考研试题参考解答清华大学2011年数学分析考研试题参考解答厦门大学1999年高等代数考研试题参考解答厦门大学2000年高等代数考研试题参考解答厦门大学2001年高等代数考研试题参考解答厦门大学2009年高等代数考研试题参考解答厦门大学2009年数学分析考研试题参考解答厦门大学2010年高等代数考研试题参考解答厦门大学2010年数学分析考研试题参考解答厦门大学2011年高等代数考研试题参考解答厦门大学2011年数学分析考研试题参考解答厦门大学2012年高等代数考研试题参考解答厦门大学2012年数学分析考研试题参考解答厦门大学2013年高等代数考研试题参考解答厦门大学2013年数学分析考研试题参考解答厦门大学2014年高等代数考研试题参考解答厦门大学2014年数学分析考研试题参考解答厦门大学2015年高等代数考研试题参考解答厦门大学2016年高等代数考研试题参考解答厦门大学2016年数学分析考研试题参考解答厦门大学2016年数学分析考研试题参考解答厦门大学2017年高等代数考研试题参考解答厦门大学2018年高等代数考研试题参考解答厦门大学2019年高等代数考研试题参考解答厦门大学2020年数学分析考研试题参考解答上海交通大学2020年高等代数考研试题参考解答上海交通大学2020年数学分析考研试题参考解答首都师范大学2011年高等代数考研试题参考解答首都师范大学2011年高等代数考研试题参考解答首都师范大学2011年数学分析考研试题参考解答首都师范大学2012年高等代数考研试题参考解答首都师范大学2012年数学分析考研试题参考解答首都师范大学2013年高等代数考研试题参考解答首都师范大学2013年数学分析考研试题参考解答首都师范大学2014年高等代数考研试题参考解答首都师范大学2014年数学分析考研试题参考解答首都师范大学2020年高等代数考研试题参考解答首都师范大学2020年数学分析考研试题参考解答四川大学2005年数学分析考研试题参考解答四川大学2006年数学分析考研试题参考解答四川大学2009年数学分析考研试题参考解答四川大学2011年数学分析考研试题参考解答四川大学2020年数学分析考研试题参考解答苏州大学2010年数学分析考研试题参考解答苏州大学2011年数学分析考研试题参考解答苏州大学2012年数学分析考研试题参考解答同济大学2011年数学分析考研试题参考解答同济大学2020年高等代数考研试题参考解答同济大学2020年数学分析考研试题参考解答武汉大学2010年高等代数考研试题参考解答武汉大学2010年数学分析考研试题参考解答武汉大学2011年高等代数考研试题参考解答武汉大学2011年数学分析考研试题参考解答武汉大学2011年数学分析考研试题参考解答武汉大学2012年数学分析考研试题参考解答武汉大学2012年线性代数考研试题参考解答武汉大学2013年高等代数考研试题参考解答武汉大学2013年数学分析考研试题参考解答武汉大学2014年高等代数考研试题参考解答武汉大学2014年数学分析考研试题参考解答武汉大学2015年高等代数考研试题参考解答武汉大学2015年数学分析考研试题参考解答武汉大学2020年高等代数考研试题参考解答武汉大学2020年数学分析考研试题参考解答西南大学2002年数学分析考研试题参考解答西南大学2003年数学分析考研试题参考解答西南大学2004年数学分析考研试题参考解答西南大学2006年高等代数考研试题参考解答西南大学2006年高等代数考研试题参考解答西南大学2007年高等代数考研试题参考解答西南大学2007年高等代数考研试题参考解答西南大学2007年数学分析考研试题参考解答西南大学2008年高等代数考研试题参考解答西南大学2008年高等代数考研试题参考解答西南大学2008年学分析考研试题参考解答西南大学2009年高等代数考研试题参考解答西南大学2009年学分析考研试题参考解答西南大学2010年高等代数考研试题参考解答西南大学2010年学分析考研试题参考解答西南大学2011年高等代数考研试题参考解答西南大学2011年学分析考研试题参考解答西南大学2012年高等代数考研试题参考解答西南大学2012年学分析考研试题参考解答西南师范大学2000年高等代数考研试题参考解答湘潭大学2011年数学分析考研试题参考解答浙江大学2009年高等代数考研试题参考解答浙江大学2009年高等代数考研试题参考解答浙江大学2009年数学分析考研试题参考解答浙江大学2010年高等代数考研试题参考解答浙江大学2010年数学分析考研试题参考解答浙江大学2011年高等代数考研试题参考解答浙江大学2011年数学分析考研试题参考解答浙江大学2012年高等代数考研试题参考解答浙江大学2012年数学分析考研试题参考解答浙江大学2013年数学分析考研试题参考解答浙江大学2014年高等代数考研试题参考解答浙江大学2014年数学分析考研试题参考解答浙江大学2015年数学分析考研试题参考解答浙江大学2016年高等代数考研试题参考解答浙江大学2016年数学分析考研试题参考解答浙江大学2020年高等代数考研试题参考解答浙江大学2020年数学分析考研试题参考解答中国海洋大学2020年数学分析考研试题参考解答中国科学技术大学2010年数学分析考研试题参考解答中国科学技术大学2010年线性代数与解析几何考研试题参考解答中国科学技术大学2011年分析与代数考研试题参考解答中国科学技术大学2011年高等数学B考研试题参考解答中国科学技术大学2011年数学分析考研试题参考解答中国科学技术大学2011年线性代数与解析几何考研试题参考解答中国科学技术大学2012年分析与代数考研试题参考解答中国科学技术大学2012年高等数学B考研试题参考解答中国科学技术大学2012年数学分析考研试题参考解答中国科学技术大学2012年线性代数与解析几何考研试题参考解答中国科学技术大学2013年分析与代数考研试题参考解答中国科学技术大学2013年高等数学B考研试题参考解答中国科学技术大学2013年数学分析考研试题参考解答中国科学技术大学2014年分析与代数考研试题参考解答中国科学技术大学2014年高等数学B考研试题参考解答中国科学技术大学2014年数学分析考研试题参考解答中国科学技术大学2014年数学分析考研试题参考解答中国科学技术大学2014年线性代数与解析几何考研试题参考解答中国科学技术大学2014年线性代数与解析几何考研试题参考解答中国科学技术大学2015年分析与代数考研试题参考解答中国科学技术大学2015年高等数学B考研试题参考解答中国科学技术大学2015年高等数学理考研试题参考解答中国科学技术大学2015年数学分析考研试题参考解答中国科学技术大学2015年线性代数与解析几何考研试题参考解答中国科学技术大学2016年数学分析考研试题参考解答中国科学技术大学2020年数学分析考研试题参考解答中国科学院大学2013年高等代数考研试题参考解答中国科学院大学2013年数学分析考研试题参考解答中国科学院大学2014年高等代数考研试题参考解答中国科学院大学2014年数学分析考研试题参考解答中国科学院大学2016年高等代数考研试题参考解答中国科学院大学2016年数学分析考研试题参考解答中国科学院大学2020年高等代数考研试题参考解答中国科学院大学2020年数学分析考研试题参考解答中国科学院数学与系统科学研究院2001年数学分析考研试题参考解答中国科学院数学与系统科学研究院2002年数学分析考研试题参考解答中国科学院数学与系统科学研究院2003年数学分析考研试题参考解答中国科学院数学与系统科学研究院2004年高等代数考研试题参考解答中国科学院数学与系统科学研究院2005年高等代数考研试题参考解答中国科学院数学与系统科学研究院2005年数学分析考研试题参考解答中国科学院数学与系统科学研究院2006年高等代数考研试题参考解答中国科学院数学与系统科学研究院2006年数学分析考研试题参考解答中国科学院数学与系统科学研究院2007年数学分析考研试题参考解答中国科学院研究生院2011年数学分析考研试题参考解答中国科学院研究生院2012年数学分析考研试题参考解答中国科学院-中国科学技术大学2000年数学分析考研试题参考解答中国人民大学1999年高等代数考研试题参考解答中国人民大学1999年数学分析考研试题参考解答中国人民大学2000年高等代数考研试题参考解答中国人民大学2000年数学分析考研试题参考解答中国人民大学2000年数学分析考研试题参考解答中国人民大学2003年高等代数考研试题参考解答中国人民大学2003年高等代数考研试题参考解答中国人民大学2003年数学分析考研试题参考解答中国人民大学2003年数学分析考研试题参考解答中国人民大学2004年高等代数考研试题参考解答中国人民大学2004年数学分析考研试题参考解答中国人民大学2017年高等代数考研试题参考解答中国人民大学2017年数学分析考研试题参考解答中国人民大学2018年高等代数考研试题参考解答中国人民大学2018年数学分析考研试题参考解答中国人民大学2019年高等代数考研试题参考解答中国人民大学2019年数学分析考研试题参考解答中国人民大学2020年高等代数考研试题参考解答中国人民大学2020年数学分析考研试题参考解答中南大学2011年数学分析考研试题参考解答中南大学2013年高等代数考研试题参考解答中山大学2005年数学分析高等代数考研试题参考解答中山大学2006年数学分析高等代数考研试题参考解答中山大学2007年高等代数考研试题参考解答中山大学2007年数学分析考研试题参考解答中山大学2008年数学分析高等代数考研试题参考解答中山大学2008年数学分析考研试题参考解答中山大学2009年数学分析高等代数考研试题参考解答中山大学2009年数学分析考研试题参考解答中山大学2010年数学分析高等代数考研试题参考解答中山大学2010年数学分析考研试题参考解答。

(NEW)中国人民大学《828高等代数》历年考研真题汇编

(NEW)中国人民大学《828高等代数》历年考研真题汇编
3.设V1,V2,…,Vn是欧氏空间V的互不相同的子空间,则下述结论 成立的是( ).
A.设V1⊕V2⊕…⊕Vn=V,若ξ∈V,则ξ必属于V1,V2,…,Vn中的 一个
B.V1∪V2∪…∪Vn也是V的子空间 C.设α是V1中的一个向量,β∈V,若(β,α)=0,则β∈V1⊥ D.存在一个α∈V1⊥,α∈V2⊥,但α∈V1⊥⊕V2⊥
6.若Am×m,Bn×n均是可逆矩阵,C是任意n×m矩阵,
,则D-
1=_______,如果
,则D-1=________.
7.设
,并设Aij为元素aij的代数余子式,则A21+A22+
ห้องสมุดไป่ตู้
A23+A24=________,A31+A32+A33+A34=________.
8.如果二次型f(x1,x2,…,xn)在实数域上合同于[-f(x1,x2, …,xn)],那么F(x1,x2,…,xn)的符号差为_______.
2001年中国人民大学449高等代数考研真题 一、填空题(每题4分,共24分,把答案写在题中的横线上)
1.以
为根的有理数的不可约多项式为________.
2.设
,则A100=________.
3.矩阵
的全部特征值为________.
4.已知向量η1=(2,1/3,2/3),η2=(1/3,-4/3,-1)是线性方 程组
的两个解,则该方程组的全部解为________.
5.二次型x12+x22+x32-2x42-2x1x2+2x1x3-2x1x4+2x2x3-4x2x4的标 准型为________,秩为_______,正惯性指数为_______,符号差为 ________.
6.设α=(2,2,1,1),β=(1/2,1,-1,1/2),则α的长度为 ________,α与β的距离为________,α与β的夹角为________.

首师大考研复试班-首都师范大学教师教育学院课程与教学论考研复试经验分享

首师大考研复试班-首都师范大学教师教育学院课程与教学论考研复试经验分享

首师大考研复试班-首都师范大学教师教育学院课程与教学论考研复试经验分享首都师范大学建于1954年,办学历史可追溯至1905年成立的通州师范,是国家“双一流”建设高校、北京市与教育部“省部共建”高校。

学校现有学科专业涵盖文、理、工、管、法、教育、外语、艺术等,六十多年来已培养各类高级专门人才二十余万名,是北京市人才培养的重要基地。

学校现有博士学位授权一级学科17个,博士点100个,博士后流动站16个,硕士学位授权一级学科26个,硕士点141个,专业学位类别14个。

国家重点学科4个,国家重点培育学科1个,北京市一级重点学科8个,北京市二级重点学科12个,北京市一级重点建设学科2个,北京市二级重点建设学科13个,北京市一级重点培育学科4个,交叉学科北京市重点学科2个;1个省部共建国家重点实验室培育基地,2个教育部重点实验室,1个教育部省属高校人文社会科学重点研究基地,1个教育部工程研究中心,1个民政部重点实验室,1个国家级实验教学示范中心,1个国家虚拟仿真实验教学中心,1个国家国际科技合作基地,1个国家语委科研基地,1个北京市高校高精尖创新中心,1个北京实验室,11个北京市重点实验室,2个北京市高等学校工程研究中心,1个北京市工程技术研究中心,1个北京市工程实验室,1个北京市社会科学与自然科学协同创新研究基地,4个北京高等学校市级校外人才培养基地,7个北京市实验教学示范中心,10个省、部级设置的研究(院、所、中心)、实验室。

启道考研复试班根据历年辅导经验,编辑整理以下关于考研复试相关内容,希望能对广大复试学子有所帮助,提前预祝大家复试金榜题名!专业介绍课程与教学论是教育学科的一个分支学科,该学科的形成经历了很长的历史时期。

目前正朝着新的、更高水平的理论综合和不同学科教学论专门化研究的方向发展。

本学科着重探索先进的课程与教学理念,研究学校课程与教学的基本问题,积极参与现行的课程教学改革。

复试科目与人数复试时间地点复试内容复试参考书复试材料1、初试准考证、有效身份证、毕业证书原件(应届生除外)、学历(学籍)认证报告原件及复印件(未通过网上学历学籍校验的考生);2、应届毕业生还须携带学生证(学生证须加盖有效注册章),报考“大学生士兵计划”的考生还应提交本人的《入伍批准书》和《退出现役证》原件及复印件;3、同等学力考生须提供在学术刊物上公开发表的相当于大学本科毕业论文水平的文章(不限学科专业)原件或进修学校教务部门开具的进修本科课程合格成绩单(六门或六门以上);4、报考定向就业的考生须携带单位开具的同意报考证明;参加单独考试考生须上交毕业证书复印件复试分数线名单复试经验复试准备事项考研复试可以准备的时间很短,联系导师,专业课笔试,面试,英语口语等都需要意义准备。

数学与统计学院本科生课程建设一览表

数学与统计学院本科生课程建设一览表
校级精品课程(张凯军)、省级精品课程(张凯军)
现代分析学基础(XL)
杨唯、张凯军
张凯军.分析数学讲义,科学出版社.(尚未出版)
编写中
凸分析(XL)
刁怀安、高巍、宋海燕
Dimitri P.Bertsekas.Convex Analysis and Optimization (影印版),清华大学出版社, 2006.
中译本:冯绪宁等,科学出版社,1982.
赵宏亮
公共数学
(11)
高等数学1(TS)
陈亮、胡果荣、雷沛东、李冰玉、李晓月、李亚军、刘红、宋海燕、孙佳宁、孙雪楠、王静、魏竹、徐英祥、杨青山、杨唯、张伟鹏、赵宏亮、郑术蓉
同济大学数学系编.高等数学(第六版),上下册,高等教育出版社, 2007
高等数学2(TS)
修订
(高夯)
数学教育心理学(XL)
李清、李淑文、秦德生
李士锜.PME:数学教育心理.华东师范大学出版社.2001.
中学数学课程与教学论(ZY)
郭民、李清、李淑文、秦德生
王晓辉.数学课程与教学论,东北师范大学出版社, 2005.
中学数学课程标准及教材研究(ZY)
秦德生
张定强、吕世虎.高中数学新课程内容解析,首都师范大学出版社, 2004.
校级精品课程(张永正、2006年)
近世代数(ZG)
陈良云、陈银、扶先辉、魏竹、张庆成
1、韩士安,林磊.近世代数,科学出版社, 2004.
2、丘维声.抽象代数基础,高等教育出版社, 2006.
3、姚募生.抽象代数学,复旦大学出版社, 1997.
4、冯克勤.近世代数引论,中国科大出版社, 2002.
修订袁秉成老师的〈近世代数〉教材
蔡守峰、刁怀安、孙佳宁、盛中平

2003--2010高等代数真题

2003--2010高等代数真题

2003年高等代数(综合卷)6.(14)设P 是数域,n n P B A ⨯∈,,E 是n 阶单位矩阵.证明:P b a ∈∀,(1)当bB aA +是可逆矩阵时,bB aA B bB aA B b A bB aA A a -=+-+--1212)()(.(2)当bB aA +,bB aA -都是可逆矩阵时, E bB aA B bB aA B b bB aA A bB aA A a =+--+-----112112)()()()(7.(20)设Ax x '是秩为r 的n 元半正定二次型,(1)证明:存在秩为r 的r n ⨯实矩阵C ,使C C A '=. (2)证明:x E A x )(+'是n 元正定二次型.8.(20)设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2212221212121n n n n n a a a a a a a a a a a a a a a A是数域P 上的n 阶非零矩阵)1(>n (1)求A 的行列式A 和A 的秩. (2)当022221≠=+++k a a a n 时,证明存在n 阶可逆矩阵T 使⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-001 k AT T . 9.(21)设P 是数域,m n P A ⨯∈,如果m n P X ⨯∈∀规定AX X A :(1)证明A 是数域上线性空间n n P ⨯的线性变换.(2)令},{m n m n O AY P Y Y W ⨯⨯=∈=,证明W 是m n P ⨯的-A 子空间.(3)设秩n r A <=,求W 的维数W dim .2004年 高等代数1.(15)设n a a ,,1 是数域P 上n 个不同的数,解线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++----11212111222221212211211n nn n n n n n n n n n n n a x a x a x a a x a x a x a a x a x a x a x x x . 2.(15)设P 是数域,12)(,3++=∈⨯x x x m P A n n 是A 的最小多项式,求—A ,3.(20) 设P 是数域,n n n ij P a A ⨯∈==),,()(1αα ,nn a 的代数余子式0≠nn A ,(1)证明: n αα,,1 线性无关.(2)当0=A 时,求线性方程组O X A =*的基础解系,其中*A 是A 的伴随矩阵4.(30) 设P 是数域,}{1A A P A V n n ='∈=⨯, }{2是上三角矩阵B P B V n n ⨯∈=,(1)证明: 21V V ,都是n n P ⨯的子空间.(2)证明2121,V V P V V P n n n n ⊕≠+=⨯⨯.5.(30)设)(x p 是数域P 上的不可约多项式,α是)(x p 的复根,(1)证明:)(x p 的常数项不等于零.(2)证明:对任意正整数1)),((,=m x x p m (3)设22)(3+-=x x x p ,求51x. 6.(20)设n 元实二次型Ax x x x x f n '=),,,(21 经过正交替换Qy x =(其中Q 是正交矩阵)化为223222132n ny y y y ++++ ,证明: (1)A 的特征值是n ,,2,1 . (2)存在正定矩阵B ,使2B A =7.(20)设A 是数域P 上n 维线形空间V 的线性变换,0)(,0)(1=A ≠A ∈=αααn n V ,,证明:(1))(,),(),(,12αααα-A A A n 是V 的基.(2)设W 是A 的不变子空间,0,,,,121≠∈a P a a a n ,并且存在向量W a a a a n n ∈A ++A +A +=-)()()(12321ααααβ ,则V W =.2005年 高等代数1.(15)设A 是数域P 上的r r ⨯阶矩阵,D 是s s ⨯阶矩阵,A B M C D ⎛⎫= ⎪⎝⎭,并且r A r M r ==)()(,证明:1D CA B -=.2.(15)设A 是数域P 上的m n ⨯矩阵,12,,,t ααα 是齐次方程组0Ax =的线形无关的解,0A β≠,证明12,,,t ββαβαβα+++ 线性无关.3.(30)设P 是数域,1110{()|,0,1,2,,}n n n n i V f x a x a x a x a a P i n --==++++∈= .(1)证明V 关于多项式的加数乘多项式构成数域P 上的线性空间.(2)(),f x V ∀∈规定:()().'(),A f x f x x f x - 证明A 是V 的线性变换.(3)求线性变换A 在基21,,,,n x x x 上的矩阵.4.(20)设A 是n n ⨯阶复矩阵,0,k A =123,,,,r λλλλ 是A 的所有非零的特征值,(1)证明E A -是可逆矩阵,并求1()E A --. (2)求1()E A --的所有特征值.5.(20)设A 是n 阶正定矩阵,B 是n 阶半正定矩阵,(1)证明1A -是n 阶正矩阵;(2)求实的可逆矩阵T ,使得1210000'()00n a a T A B T a -⎛⎫ ⎪ ⎪+= ⎪ ⎪⎝⎭ (0,1,2,,.ia i n >= )是对角矩阵,并说明主对角线上的元素6.(20)设()ij A a =是n 阶矩阵,1()nii i Tr A a ==∑是主对角线上的元素之和,22P ⨯表示数域P 上所有2阶构成的集合,22,A P ⨯∀∈规定:()f A Tr A ,(1)证明f 是线性空间22P ⨯线性函数.(2)1112212210000000,,,00011001E E E E ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭是22P ⨯的一组基.求22P ⨯上的线性函数g ,使得11122122()2,()3,()4,() 1.g E g E g E g E ====-7.(20)设V 是数域P 上的线性变换,A 的最小多项式是2()23,m x x x KerA =--表示A 的核,Im A 表示A的值域,证明:(1)V 中存在一组基,使A 在这基下的矩阵是对角矩阵;(2)(3)Im()Ker A E A E -=+,其中E 是V 的恒等变换; (3)(3)()V Ker A E Ker A E =-⊕+2006年 高等代数1.(14)计算n 阶行列式:213141111222324221222331323334244142434421234n n n n n n n n n n na a a a a a x a a a a a a a a a a a x a a a a a a a x a a a D a a a a a a a a x a a a a a a a a a x a +++=++,其中120n x x x ≠…. 2.(20)设11112122122212(,,),(,,),(,,),n n r r r rn a a a a a a a a a ααα===…………且12,,αααr …线性无关,12(,,,)n b b b β=….证明:12,,,αααβr …线性相关的充分必要条件是:线性方程组111122121122221122000n n n n r r rn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩………的解都是方程11220n n b x b x b x +++=…的解.3.(24)R 是实数域,V 是线性方程组1234513451234512345242470224034440426340x x x x x x x x x x x x x x x x x x x +-+-=⎧⎪+--=⎪⎨-++-=⎪⎪-++-=⎩的所有解构成的集合.(1)证明:V 是5R (列向量组成的空间)的子空间. (2)求V 的基个维数.(3)求V 的正交补V +的基与维数(5R 的内积(,)'αβαβ=).4.(32)设P 是数域,{()[]|()0()}.V f x P x f x f x n =∈=∂<或121210()n n n n f x a x a x a x a V ----∀=++++∈…,规定11:().n n A f x a x --(1)证明A 是V 的线性变换. (2)求A 在基12,,,,1n n x x x --…下的矩阵.(3)求A 在核10A -()的基. (4)求A 的所有特征值和特征向量.5.(20)设P 是数域,,,.n n A B P C AB BA BC CB ⨯∈=-=,且 证明:(1)对大于1的自然数k,有1k k k A B B A kB C --=.(2)设()f λ是B 的特征多项式,'()f λ是()f λ的微商,则'()0f B C =.6.(20)R 实数域,n n A R ⨯∈,且A 是对称矩阵. (1)证明A 的伴随矩阵*A 也是实对称矩阵.(2)试问A 与*A 合同的充分必要条件是什么?并证明你的结论.7.(20)设V 是数域P 上的n 维线性空间,n r r εεεεε,,,121 +,,,是V 的基,),,(),(12211n r r V L V εεεεε +==,,,.(1)证明:V 是12,V V 的直和(即12V V V =⊕); (2)设A 是1V 的线性变换,B 是2V 的线性变换,求V 的线性变换C ,使得1V 与2V 的不变子空间,并且C 在1V 与2V 上的限制分别是 12|,|C V A C V B ==2007年 高等代数1.(20)设)(x f 是非零复多项式,用)(x f '记)(x f 的微分(导数)多项式;设)(x d 是)(x f 与)(x f '的最大公因式,设整数1>m .证明:复数c 为)(x f 的m 重根的必要充分条件是c 为)(x d 的1-m 重根.请说明这里为什么要假设1>m ?2.(30)设A 是n m ⨯矩阵,设⎪⎪⎪⎭⎫ ⎝⎛n a a 1是线性方程组0=AX 的非零解.证明:(1)如果A 的任何列向量非零,则n a a ,,1 中至少两个非零.(2)如果的A 任何两个列向量线性无关,则n a a ,,1 中至少三个非零.(3)推广(1),(2),你得到什么结论?请证明你的结论.3.(30)对n m ⨯矩阵A ,记A '是A 的转置矩阵.(1)设A 是实矩阵,证明:实线性方程组0=AX 与实线性方程组0)(='X A A 同解.(2)证明:实矩阵A 的秩与A A '矩阵的秩相等.(3)在复数域,上述结论成立吗?为什么?(4)对复数域,你认为应如何修改断言(2)得到一个正确的断言?为什么?4.(20)设A 是实方阵,证明:如果下面三条中的任意两条成立,则另外一条也成立:(1) A 是正交矩阵; (2)A 是对称矩阵; (3) E A =2,其中E 表示单位矩阵.5.(20)已知⎪⎪⎪⎭⎫ ⎝⎛=a b a b a A 0000的特征根为3,2,1,其中b a ,是实数.求b a ,,并求正交矩阵T 使得AT T '是对角矩阵,其对角线元素依次为3,2,1.6.(30)用C 表示复数域.设A 是n m ⨯复矩阵,设A 的特征多项式)()()(λλλg f A =∆,其中)(λf 与)(λg 互素.在n 维向量空间n C 中,设F 是齐次线性方程组0)(=⋅X A f 的解子空间,G 是齐次线性方程组0)(=⋅X A g 的解子空间,证明: (1) ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⋅=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⋅=n n n n n n C c c c c A f G C c c c c A g F 1111)(,)(; (2)G F C n ⊕=.2008年 高等代数1.(20)以下陈述是否正确?正确的请予以证明,不正确的请举反例(例子的正确性要求论证).(1)有理系数多项式)(x f ,如果在有理数域上不可约,则在任何数域上不可约.(2)两个有理系数多项式)(x f 与)(x g ,如果在有理数域上互素,则在任何数域上互素.{定义1 数域F 上的多项式)(x f 称为在上不可约.如果)(x f 次数大于0而且只要F 上的多项式)(x g 是)(x f 的因式,那么,)(x g 要么与)(x f 相伴,要么与1相伴.定义2 数域F 上的多项式)(x f 与)(x g 称为在F 上互素,如果它们在F 上的最大公因式与1相伴. }2.(20) (1)设B A ,都是n 阶方阵,且O AB =.证明:BA 的秩]2/[n ≤.其中]2/[n 表示不超过2/n 的最大整数(2)对于任意正整数n ,都存在n 阶方阵B A ,满足O AB =而BA 的秩]2/[n =.3.(30)令R 表示实数域,⎪⎪⎪⎭⎫ ⎝⎛=001000100A .(1)求实矩阵A 的实特征值和实特向量.(2)求3R 中所有的-A 不变子空间(实向量空间3R 的子空间U 称为不变的,如果U Au ∈,U u ∈∀,其中u 写为列向量).4.(30)(1)请叙述什么是实二次型?什么是化实二次型为平方和定理?什么是实二次型的惯性定理?(2)证明实二次型的惯性定理.5.(20)设n 维复向量空间V 的线性变换P 满足P P =2,证明:(1)KerP P V ⊕=Im ,其中P Im 表示P 的像子空间, KerP 表示P 核子空间.(2)像子空间维数trP P =Im dim ,其中trP 表示线性变换P 的迹,即P 的所有特征根(计重数)之和.6. (30)设n 2阶方阵⎪⎪⎭⎫ ⎝⎛-=E E E E A ,其中E 是n 阶单位矩阵, (1)求A 的特征多项式. (2)求A 的极小多项式. (3) 求A 的约尔当标准形.2009年 高等代数1.(20)设n a a ,,1 是n 个复数,x 是复变元.求x 取哪些复数值时下述等式(等式左边是1+n 阶行列式)成立:011112122221221=n n n n n n n a a a x a a a x a a a x2.(20) 设)(x f 是n 次实系数多项式,设)(x f '是)(x f 的导数多项式,证明:(1)如果r 是)(x f 的m 重根,0>m ,则r 是)(x f '的1-m 重根(若r 是)(x f '的零重根,则表示r 不是)(x f '的根).(2)如果)(x f 的根都是实数,则)(x f '的根也都是实数.3.(20)设A 是秩为r 的n m ⨯阶矩阵,B 是非零的1⨯m 阶矩阵,考虑线性方程组B AX =,其中X 是变元n x x ,,1 的列向量.证明:(1)线性方程组B AX =的任意有限个解向量n X X ,,1 的向量组的秩1+-≤r n .(2)若线性方程组B AX =有解,则它有1+-r n 个解向量是线性无关的.4.(30)设C B A ,,都是n 阶方阵,⎪⎪⎭⎫ ⎝⎛O C B A 是分块构成的n 2阶方阵,其中右下块O 表示n 阶零方阵.(1)证明:)()(C rank B rank O C B A rank +≥⎪⎪⎭⎫ ⎝⎛,这里)(B rank 表示B 矩阵的秩. (2)举例说明:(1)中的等号和不等号都可能成立.5.(30)设V 是有限维向量空间,设W U ,是V 两个字空间.(1)什么是U 与W 的和子空间W U +,请叙述关于W U +的维数公式.(2)证明关于和子空间的维数公式.6. (30)设A 是阶实矩阵,si r t +=λ是A 的特征根,其中s r ,是实数,i 是虚数单位.(1)证明:)(21A A '+的特征根都是实数,令n μμ≤≤ 1是)(21A A '+的全部特征根. (2)证明: n r μμ≤≤1.(3)你有类似估计s 的办法吗?2010年 高等代数1.(20)设F 是任意数域,][)(x F x p ∈.证明:)(x p 是不可约多项式当且仅当是)(x p 素多项式.2.(20) (1)设A 是n 阶方阵,E 是单位矩阵,0≠k .证明kA A =2当且仅当n kE A rank A rank =-+)()(.(2)证明:任意方阵可以表示为满秩矩阵和幂等矩阵的乘积.3.(20)设R 表示实数域,)(3R M V =表示所有33⨯实矩阵构成的向量空间.对给定的)(3R M A =定义在V 上的线性替换V V T A →:为BA AB B T A -=)(,对任意的)(3R M B =.设⎪⎪⎪⎭⎫ ⎝⎛=200010000A ,求A T 的特征值和相应的特征子空间;并求此时A T 的极小多项式.4.(30)设有三元实二次型xz z y x z y x f 43),,(222+++=,并设z y x ,,满足1222=++z y x .试求f 的最大值和最小值,并求当z y x ,,取什么值时,f 分别达到最大值和最小值.5.(30)设R 是实数域,])1,0([1C V =是闭区间]1,0[上的连续可微函数的集合. V 在函数的加法和数乘函数的运算下是一个向量空间.(1)证明函数x e x h x x g x x f ===)(,2)(,cos )(在V 中线性无关.(2)任意给定0>n ,在V 中找出1+n 个线性无关的元素,并证明你的结论.(3)对某个m ,是否有V 和m R 同构,如果是,给出证明;如果不是,说明理由.6. (30)(1)设A 和B 均为n 阶复方阵,证明:A 与B 相似当且仅当作为-λ矩阵有A E -λ等价于B E -λ.(2)设B A ,都是3阶幂零矩阵,证明: A 相似于B 当且仅当A 与B 有相同的极小多项式.(3)试说明上述结论(2)对4阶幂零矩阵是否成立,为什么?。

2003年高考北京卷数学-理试题与解答

2003年高考北京卷数学-理试题与解答

2003年普通高等学校招生全国统一考试(北京卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3到11页。

共150分。

考试时间120分钟。

第Ⅰ卷(选择题共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

3.考试结束,监考人将本试卷和答题卡一并收回。

参考公式:三角函数的积化和差公式)]sin()[sin(21cos sin βαβαβα-++= )]sin()[sin(21sin cos βαβαβα--+= )]cos()[cos(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--++-=正棱台、圆台的侧面积公式l c c S )'(21+=台侧其中c ′、c 分别表示上、下底面周长,l 表示斜高或母线长 球体的体积公式334R V π=球其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合}01|{2>-=x x A ,}0log |{2>=x x B ,则A ∩B 等于(A ){x|x>1} (B ){x|x>0} (C ){x|x<-1} (D ){x|x<-1或x>1}(2)设9.014=y ,48.028=y ,5.13)21(-=y ,则(A )213y y y >> (B )312y y y >> (C )321y y y >> (D )231y y y >>(3)“232c o s -=α”是“65ππα+=k ,k ∈Z ”的(A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件 (D )既非充分又非必要条件(4)已知α,β是平面,m ,n 是直线。

首师大333教育综合参考书目一览----考研专用

首师大333教育综合参考书目一览----考研专用

首师大333教育综合参考书目一览----考研专用(感谢凯程罗老师对本文的有益指导.)一、全日制教育硕士参考书目老师提醒大家一定要按照专家的意见购买书籍,以免耽误备考。

869 教育管理《教育管理学》北京师范大学(微博)出版社1999年版陈孝彬869 教育管理《教育管理学导论》原子能出版社2007年4月(第三版)傅树京870 人格心理学《人格心理学--世纪心理学丛书》浙江教育出版社2002年09月黄希庭著870 人格心理学《人格理论》陕西师范大学出版社(美)里赫曼(Ryckman,R.M.)著871 思想政治教育学《课程研究》教育科学出版社(最新版)施良方871 思想政治教育学《学校道德教育原理》教育科学出版社(最新版)檀传宝871 思想政治教育学《思想政治学科心理研究》人民出版社04年版兰维、田国秀872 汉语与写作《现代汉语》高等教育出版社版本不限黄伯荣廖序东主编873 数学基础《数学分析》高等教育出版社(第二、三版)华东师范大学数学系873 数学基础《高等代数》高等教育出版社(第二、三版)北京大学874 综合物理《力学基础》人民教育出版社1997漆安慎,杜蝉英等874 综合物理《电磁学》高等教育出版社2004梁灿彬875 普通化学《无机化学》(上、下)高等教育出版社(第四版)北京师范大学等三校875 普通化学《有机化学》(上、下)高等教育出版社(第四版)曾昭琼主编876 英语学科教学《语言教学的流派(第二版)(Approaches andmethods in language teaching)》外语教学与研究出版社,2008年11月第1版(翻印)Jack C.Richards & Theodore S. Rodgers编876 英语学科教学《二语习得引论(Introducing SecondLanguage Acquisition)》外语教学与研究出版社,2008年12月第1版(翻印)MurielSaville-Troike编877 历史教育学《历史学科教育学》首都师范大学出版社2000年第1版于友西,叶小兵等著878 地理教育学综合《地理教学论》上海教育出版社,1999陈澄主编879 中外音乐史《西方音乐通史》上海音乐出版社于润洋主编879 中外音乐史《中国音乐通史简编》山东教育出版社孙继南周柱栓主编880 美术教育学《美术教育学新编》高等教育出版社,1990尹少淳著880 美术教育学《全日制义务教育美术课程标准》北京师范大学出版社,2001教育部880 美术教育学《普通高中美术课程标准》人民教育出版社,2003教育部881 计算机应用基础综合考试《计算机科学导论》(第2版)机械工业出版社2009年B. Forouzan881 计算机应用基础综合考试《计算机导论》(第2版)电子工业出版社2008王玉龙主编883 科学技术史自然学科教学设计《科学技术史》武汉大学出版社张密生主编883 科学技术史自然学科教学设计《自然科学学习与教学设计》上海教育出版社,2005年9月陈刚主编884 普通生物学基础《陈阅增普通生物学》高等教育出版社(第2版)2005吴相钰主编888 学前教育学《学前教育学》人民教育出版社黄人颂配套习题:333教育综合通关宝典如何选择考研辅导班考研过程中,大家肯定会选择辅导班,关于报辅导班的问题我有几个特别的建议,如何选择合适的辅导班,是有方法的。

03届,普通高等学校招生全国统一考试(北京卷)数学(文)及答案

03届,普通高等学校招生全国统一考试(北京卷)数学(文)及答案

《03届,普通高等学校招生全国统一考试(北京卷)数学(文)及答案》摘要:学(史类)(北京卷)试卷分Ⅰ卷(选择题)Ⅱ卷(非选择题)两部分共50分考试0分钟Ⅰ卷(选择题共50分)事项.答Ⅰ卷前考生必将己姓名、准考证、考试科目用铅笔涂写答题卡上.每题选出答案用铅笔把答题卡上对应题目答案标涂黑如改动用橡皮擦干净再选涂其它答案不能答试题卷上 3.考试结束监考人将试卷和答题卡并收回参考公式三角函数积化和差公式正棱台、圆台侧面积公式其、分别表示上、下底面周长表示斜高或母线长球体体积公式其R表示球半径、选择题题共0题每题5分共50分每题给出四选项只有项是合要.设集合等(). B....设则().3 B.3 .3 .3 3.“”是“” ().必要非充分条件 B.充分非必要条件.充分必要条件.既非充分又非必要条件.已知αβ是平面是直线下列命题不正确是().若∥αα∩β则 B.若∥α∩β则⊥α .若⊥α⊥β则α∥β .若⊥α则α⊥β 5.如图直线椭圆左焦和顶...003年普通高等学校招生全国统考试数学(史类)(北京卷)试卷分Ⅰ卷(选择题)Ⅱ卷(非选择题)两部分共50分考试0分钟Ⅰ卷(选择题共50分)事项.答Ⅰ卷前考生必将己姓名、准考证、考试科目用铅笔涂写答题卡上.每题选出答案用铅笔把答题卡上对应题目答案标涂黑如改动用橡皮擦干净再选涂其它答案不能答试题卷上 3.考试结束监考人将试卷和答题卡并收回参考公式三角函数积化和差公式正棱台、圆台侧面积公式其、分别表示上、下底面周长表示斜高或母线长球体体积公式其R表示球半径、选择题题共0题每题5分共50分每题给出四选项只有项是合要.设集合等(). B....设则().3 B.3 .3 .3 3.“”是“” ().必要非充分条件 B.充分非必要条件.充分必要条件.既非充分又非必要条件.已知αβ是平面是直线下列命题不正确是().若∥αα∩β则 B.若∥α∩β则⊥α .若⊥α⊥β则α∥β .若⊥α则α⊥β 5.如图直线椭圆左焦和顶B该椭圆离心率(). B... 6.若且值是(). B.3 ..5 7.如圆台母线与底面成60°角那么这圆台侧面积与轴截面面积比(). B... 8.若数列通项公式是则等(). B... 9.从黄瓜、白菜、油菜、扁豆种蔬菜品种选出3种分别种不土质三块土地上其黄瓜必须种植不种植方法共有().种 B.8种.种.6种 0.某班试用电子投票系统选举班干部候选人全班k名学都有选举权和被选举权他们编分别…k规定按“”不(含弃权)按“0”令其…k且…k则学当选人数(). B...Ⅱ卷(非选择题共00分)二、填空题题共题每题分共6分把答案填题横线上.已知某球体体积与其表面积数值相等则球体半径.函数是偶函数 3.以双曲线右顶顶左焦焦抛物线方程是.将长铁丝分成两段分别围成正方形和圆形要使正方形与圆面积和正方形周长应三、答题题共6题共8分答应写出说明证明程或演算步骤 5.(题满分3分)已知函数(Ⅰ)正周期;(Ⅱ)值、值 6.(题满分3分)已知数列是等差数列且(Ⅰ)数列通项公式;(Ⅱ)令数列前项和公式7.(题满分5分)如图正三棱柱B—B是BB (Ⅰ)证直线⊥B;(Ⅱ)到平面距离;(Ⅲ)判断B与平面位置关系并证明你结论 8.(题满分5分)如图椭圆两顶椭圆两焦(Ⅰ)写出椭圆方程及准线方程;(Ⅱ)线段上异任K作垂线交椭圆两直线与交证双曲线上 9.(题满分分)有三新兴城镇分别位B三处且B3kB0k今计划合建心医院方便三镇准备建B垂直平分线上处(建立坐标系如图)(Ⅰ)若希望到三镇距离平方和应位何处?(Ⅱ)若希望到三镇远距离应位何处?0.(题满分分)设是定义区上函数且满足条件()()对任(Ⅰ)证明对任(Ⅱ)判断函数是否满足题设条件;(Ⅲ)区[-]上是否存满足题设条件函数且使得对任若存请举例若不存请说明理由绝密★启用前 003年普通高等学校招生全国统考试数学试题(史类)(北京卷)参考答、选择题题考基知识和基运算每题5分满分50分.. 3.. 5. 6.B 7. 8.B 9.B 0.二、填空题题考基知识和基运算每题分,满分6分.3 . 3..三、答题题共6题共8分答应写出说明证明程或演算步骤5.题主要考三角函数倍角、和角公式以及三角函数性质等基知识考运算能力满分3分(Ⅰ)因所以正周期(Ⅱ)因所以值,值- 6.题主要考等差、等比数列等基知识考综合运用数学知识和方法问题能力满分3分(Ⅰ)设数列公差则又所以(Ⅱ)由得① ② 将①式减②式得所以 7.题主要考直线与平面位置关系正棱柱性质棱锥体积等基知识考空想象能力和逻辑推理能力满分5分(Ⅰ)证法∵是正△BB边∴⊥B 又⊥底面B∴⊥B ∵B∥B∴⊥B 证法二连结则B ∵是正△B底边B ∴⊥B ∵B∥B∴⊥B (Ⅱ)法作⊥ ∵平面⊥平面B ∴⊥平面即长到平面距离R△ ∴所距离法二设到平面距离∵体积即到平面距离(Ⅲ)答直线B平面证明如下证法如图连结交则∵是B∴∥B 又平面B平面∴B∥平面证法二如图,取B则∥∥B∴∥平面B且∥平面B ∴平面∥平面B∵B平面B∴B∥平面 8.主要考直线、椭圆和双曲线等基知识考分析问题和问题能力满分5分(Ⅰ)由图可知, 该椭圆方程准线方程(Ⅱ)证明设K坐标,、坐标分别记其则……① 直线方程分别……② ……③ ②式除以③式得化简上式得代入②式得是直线与交坐标因所以直线与交双曲线 9.题主要考函数不等式等基知识考运用数学知识分析问题和问题能力满分分(Ⅰ)设坐标(0)则至三镇距离平方和所以当函数取得值答坐标是(Ⅱ)法至三镇远距离由得记是因[上是增函数而上是减函数所以,函数取得值答坐标是法二至三镇远距离由得记是函数图象如图因当函数取得值答坐标是法三因△BB3,且所以△B外心线段上,其坐标, 且B 当射线上记;当射线反向延长线上记这到、B、三远距离和且≥≥所以与外心重合到三镇远距离答坐标是0.题考函数、不等式等基知识考综合运用数学知识分析问题和问题能力满分分(Ⅰ)证明由题设条件可知当有即(Ⅱ)答函数满足题设条件验证如下对任当当当不妨设有所以函数满足题设条件(Ⅲ)答这样满足函数不存理由如下假设存函数满足条件则由得① 由对任都有所以② ①与②矛盾因假设不成立即这样函数不存。

首都师范大学学科数学授课安排

首都师范大学学科数学授课安排

学生姓名宫玉洁报考院校首都师范大学报考专业学科教学(数学)辅导科目333教育综合873数学基础专业课教育综合参考书目:1.全国十二所重点师范院校《教育学基础》第三版;2.陈琦《当代教育心理学》第二版;3.宁虹《教育研究导论》。

参考书目数学基础参考书目:1.高等教育出版社华东师大版《数学分析》;2.高等教育出版社北大版《高等代数》。

为了使学员更好的把握复习进度,我机构提前将学员初试前辅导进程做如下安排,希望学员复习紧跟我机构所安排的辅导进度,切勿拖沓,以保证复习效果,每次辅导辅导老师都将会为学员安排阶段性复习任务,请学员务必配合完成。

学员在复习过程中遇到任何复习及辅导过程中的问题,都可以随时和我们的全程教务顾问联系,我们的全程教务顾问将会一直跟踪关注学员的复习情况,及时调整各阶段辅导策略。

第一部分专业课授课计划辅导安排本专业考试科目为:教育综合,数学基础;两门专业课满分均为150分。

课时安排如下总课时:40课时教育综合(13课时,包含真题讲解)数学基础(27课时,包含真题讲解)复习要求1、专业课一复习务必保证3-4遍,本专业考研复习3遍,跨专业复习4遍;专业课二复习务必保证2-3遍,本专业考研复习2遍,跨专业复习3遍。

2、在授课老师进行辅导之前,学员需要复习一遍教材内容,将相关例题、课后习题做一遍,以保证授课的质量和效果。

3、为保证学员的学习效果,在授课期间,辅导老师会不定期安排作业,并检查学员的完成情况,各位学员需要在规定时间内完成任务。

分科目内容详述、重点考点分析科目课时授课内容概述概述:教育综合包含三部分内容,教育学基础,当代教育心理学,教育研究导论。

其中教育学基础包含教育的基本概念、教师与学生、课程、教学、班主任工作、学生评价六部分内容;当代教育心理学包括学生与教师心理,一般心理学,分类心理学三部分内容,教育研究导论包括选择研究问题、理论界定和研究设计、个案研究、测量研究、干预研究、定量分析、定性分析、非介入性研究、研究结果的呈现。

高等代数知识点总结_第三版_王萼芳与石生明编

高等代数知识点总结_第三版_王萼芳与石生明编
高等代数-----知识点总结 首都师范大学数学科学院 1100500070
第四章 矩阵
知识点考点精要
一.矩阵及其运算
1.矩阵的概念
a11
(1)由
s
n
个数
aij
(i=1,2…s;j=1,2……n)排成
n

n
列的数表
as1
矩阵,简记为 A (aij )sn 。
a1n
,称为
s

n

asn
(2)矩阵的相等 设 A (aij )mn ,B (aij )lk ,如果 m=l,n=k,且 aij bij ,对 i=1,2…m;j=1,2……n
B=PAQ。
3.用初等变换求逆矩阵的方法
把 n 级矩阵 A,E 这两个 n n 矩阵凑在一起,得到一个 n 2n 矩阵(AE),用初等行变换把它的左
边一半化成 E,这时,右边的一半就是 A1 。
4
第 4 页 共 17 页
高等代数-----知识点总结 首都师范大学数学科学院 1100500070
第五章 二次型
如果加法与数量乘法满足下述规则,那么 V 称为数域 P 上的线性空间。
(1)
(2) ( ) ( ) (3) 在 V 中有一元素 0,对于 V 中任意元素 都有 0
(具有这个性质的元素 0 称为 V 的零元素);
(4)对于 V 中的每一个元素 ,都有 V 中的元素 ,使得 0 ( 称为 的负元素) (5)1 ; (6) k(l ) (kl)
称为此二次型的负惯指数,2p-q 称为此二次型的符号差。
3.正定二次型及正定矩阵
(1)基本概念
第 5 页 共 17 页
5
高等代数-----知识点总结 首都师范大学数学科学院 1100500070

2003年普通高等学校招生全国统一考试(北京卷)数学(文)及答案

2003年普通高等学校招生全国统一考试(北京卷)数学(文)及答案

绝密★启用前2003年普通高等学校招生全国统一考试数 学(文史类)(北京卷)本试卷分第Ⅰ卷(选择题)第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题 共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧)]sin()[sin(21sin cos βαβαβα--+=⋅ 其中c '、c 分别表示上、下底面)]cos()[cos(21cos cos βαβαβα-++=⋅周长,l 表示斜高或母线长. )]cos()[cos(21sin sin βαβαβα--+-=⋅ 球体的体积公式:334R V π=球,其中R 表示球的半径.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的. 1.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于 ( )A .}1|{>x xB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或 2.设5.1344.029.01)21(,8,4-===y y y ,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 23.“232cos -=α”是“Z k k ∈+=,1252ππα”的( ) A .必要非充分条件 B .充分非必要条件 C .充分必要条件 D .既非充分又非必要条件 4.已知α,β是平面,m,n 是直线.下列命题中不.正确的是 ( )A .若m ∥α,α∩β=n,则m//nB .若m ∥n,α∩β=n,则n ⊥αC .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,β⊂m ,则α⊥β5.如图,直线022:=+-y x l 过椭圆的左焦点F 1和 一个顶点B,该椭圆的离心率为 ( )A .51 B .52C .55 D .552 6.若C z ∈且|22|,1|22|i z i z --=-+则的最小值是( )A .2B .3C .4D .57.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为 ( )A .π2B .π23C .π332 D .π218.若数列{}n a 的通项公式是 ,2,1,23)1(3=-+=--n a nn n n ,则)(lim 21n n a a a +++∞→ 等于( )A .241B .81 C .61 D .21 9.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上, 其中黄瓜必须种植,不同的种植方法共有 ( ) A .24种 B .18种 C .12种 D .6种 10.某班试用电子投票系统选举班干部候选人.全班k 名同学都有选举权和被选举权,他们的编号分别为1,2,…,k ,规定:同意按“1”,不同意(含弃权)按“0”,令 ⎩⎨⎧=.,0.,1号同学当选号同学不同意第第号同学当选号同学同意第第j i j i a ij其中i =1,2,…,k ,且j =1,2,…,k,则同时同意第1,2号同学当选的人数为( ) A .kk a a a a a a 2222111211+++++++B .2221212111k k a a a a a a +++++++C .2122211211k k a a a a a a +++D .k k a a a a a a 2122122111+++第Ⅱ卷(非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.11.已知某球体的体积与其表面积的数值相等,则此球体的半径为12.函数x tg x h x x g x x f 2)(|,|2)(),1lg()(2=-=+=中, 是偶函数.13.以双曲线191622=-y x 右顶点为顶点,左焦点为焦点的抛物线的方程是 14.将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数.sin cos sin 2cos )(44x x x x x f --= (Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 的最大值、最小值. 16.(本小题满分13分)已知数列{}n a 是等差数列,且.12,23211=++=a a a a(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令).(3R x a b nn n ∈=求数列{}n b 前n 项和的公式.17.(本小题满分15分)如图,正三棱柱ABC —A 1B 1C 1中,D 是BC 的中点,AB=a . (Ⅰ)求证:直线A 1D ⊥B 1C 1;(Ⅱ)求点D 到平面ACC 1的距离;(Ⅲ)判断A1B与平面ADC的位置关系, 并证明你的结论.CBC B118.(本小题满分15分)如图,A1,A为椭圆的两个顶点,F1,F2为椭圆的两个焦点.(Ⅰ)写出椭圆的方程及准线方程;(Ⅱ)过线段OA上异于O,A的任一点K作OA的垂线,交椭圆于P,P1两点,直线A1P与AP1交于点M.求证:点M 在双曲线192522=-y x 上.19.(本小题满分14分)有三个新兴城镇,分别位于A,B,C 三点处,且AB=AC=13km,BC=10km.今计划合建一个中心医院,为同时方便三镇,准备建在BC 的垂直平分线上的P 点处,(建立坐标系如图) (Ⅰ)若希望点P 到三镇距离的平方和为最小,点P 应位于何处?(Ⅱ)若希望点P 到三镇的最远距离为最小,点P 应位于何处?20.(本小题满分14分)设)(x f y =是定义在区间]1,1[-上的函数,且满足条件: (i );0)1()1(==-f f(ii )对任意的.|||)()(|],1,1[,v u v f u f v u -≤--∈都有 (Ⅰ)证明:对任意的;1)(1],1,1[x x f x x -≤≤--∈都有(Ⅱ)判断函数⎩⎨⎧∈--∈+=]1,0[,1)0,1[,1)(x x x x x g 是否满足题设条件;(Ⅲ)在区间[-1,1]上是否存在满足题设条件的函数)(x f y =,且使得对任意的 .|)()(|],1,1[,v u v f u f v u -=--∈都有若存在,请举一例:若不存在,请说明理由.绝密★启用前2003年普通高等学校招生全国统一考试 数学试题(文史类)(北京卷)参考解答一、选择题:本题考查基本知识和基本运算. 每小题5分,满分50分.1.A 2.D 3.A 4.A 5.D 6.B 7.C 8.B 9.B 10.C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.11.3 12.)();(x g x f 13.)4(362--=x y 14.44+π三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.本小题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识,考查运算能力,满分13分.(Ⅰ)解:因为x x x x x f 44sin cos sin 2cos )(--=)42cos(22sin 2cos 2sin )sin )(cos sin (cos 2222π+=-=--+=x x x x x x x x所以)(x f 的最小正周期.22ππ==T (Ⅱ)解:因为),42cos(2)(π+=x x f 所以)(x f 的最大值为2,最小值为-216.本小题主要考查等差、等比数列等基本知识,考查综合运用数学知识和方法解决问题的能力.满分13分. (Ⅰ)解:设数列}{n a 公差为d ,则,12331321=+=++d a a a a 又.2,21==d a所以.2n a n=(Ⅱ)解:由,323n n n nn a b ==得,323)22(343212n n n n n S ⋅+-+⋅+⋅=- ①.323)22(34323132+⋅+⋅-++⋅+⋅=n n n n n S ②将①式减去②式,得 .32)13(332)333(22112++⋅--=⋅-++-=-n n n n n n n S所以.32)31(31+⋅+-=n nnn S17.本小题主要考查直线与平面的位置关系,正棱柱的性质,棱锥的体积等基本知识,考查空间想象能力和逻辑推理能力. 满分15分.(Ⅰ)证法一:∵点D 是正△ABC 中BC 边的中点,∴AD ⊥BC,又A 1A ⊥底面ABC,∴A 1D ⊥BC ,∵BC ∥B 1C 1,∴A 1D ⊥B 1C 1.证法二:连结A 1C 1,则A 1C=A 1B. ∵点D 是正△A 1CB 的底边中BC 的中点, ∴A 1D ⊥BC ,∵BC ∥B 1C 1,∴A 1D ⊥B 1C 1.(Ⅱ)解法一:作DE ⊥AC 于E, ∵平面ACC 1⊥平面ABC,∴DE ⊥平面ACC 1于E,即DE 的长为点D 到平面ACC 1的 距离. 在Rt △ADC 中,AC=2CD=.23,a AD a =∴所求的距离.43a AC AD CD DE =⋅=CBC B 1解法二:设点D 到平面ACC 1的距离为x , ∵体积111ACC D ACD C V V --= .21318331112x CC a CC a ⋅⋅⋅=⋅⋅∴,43a x =∴即点D 到平面ACC 1的距离为a43.(Ⅲ)答:直线A 1B//平面ADC 1,证明如下:证法一:如图1,连结A 1C 交AC 1于F,则F 为A 1C 的中点,∵D 是BC 的中点,∴DF ∥A 1B, 又DF ⊂ 平面ADC 1,A 1B ⊄平面ADC 1,∴A 1B ∥平面ADC 1. 证法二:如图2,取C 1B 1的中点D 1,则AD ∥A 1D 1,C 1D ∥D 1B,∴AD ∥平面A 1D 1B,且C 1D ∥平面A 1D 1B,∴平面ADC 1∥平面A 1D 1B,∵A 1B ⊂平面A 1D 1B,∴A 1B ∥平面ADC 1.图(2)图(1)C 11C18.本小主要考查直线、椭圆和双曲线等基本知识,考查分析问题和解决问题的能力.满分15分. (Ⅰ)解:由图可知,.3a b ,4,522=-===c c a 所以该椭圆的方程为,192522=+y x准线方程为.425±=x(Ⅱ)证明:设K 点坐标)0,(0x ,点P 、P 1的坐标分别记为),(),,(0000y x y x -, 其中,500<<x 则,19252020=+y x ……① 直线A 1P,P 1A 的方程分别为:),5()5(00+=+x y y x ……② ).5()5(00-=-x y y x ……③②式除以③式得,555500-+=-+x x x x 化简上式得,250x x =代入②式得,500x y y = 于是,直线A 1P 与AP 1的交点M 的坐标为).5,25(0x y x 因为.1)251(2525)5(91)25(25120202020020=--=-x x x x y x所以,直线A 1P 与AP 1的交点M 在双曲线上192522=+y x .19.本小题主要考查函数,不等式等基本知识,考查运用数学知识分析问题和解决问题的能力.满分14分. (Ⅰ)解:设P 的坐标为(0,y ),则P 至三镇距离的平方和为.146)4(3)12()25(2)(222+-=-++=y y y y f所以,当4=y 时,函数)(y f 取得最小值. 答:点P 的坐标是).4,0((Ⅱ)解法一:P 至三镇的最远距离为 ⎪⎩⎪⎨⎧-<+--≥++=.|12|25|,12||,12|25,25)(222y y y y y y x g 当当由|12|252y y -≥+解得,24119≥y 记,24119*=y 于是⎪⎩⎪⎨⎧<-≥+=.|,12|,,25)(**2y y y y y y x g 当当 因为225y +在[),*+∞y 上是增函数,而]y ,(-|12|*∞-在y 上是减函数. 所以*y y =时,函数)(y g 取得最小值. 答:点P 的坐标是);24119,0( 解法二:P 至三镇的最远距离为 ⎪⎩⎪⎨⎧-<+--≥++=.|12|25|,12||,12|25,25)(222y y y y y y x g 当当由|12|252y y -≥+解得,24119≥y 记,24119*=y 于是 ⎪⎩⎪⎨⎧<-≥+=.|,12|,,25)(**2y y y y y y x g 当当 函数)(y g x =的图象如图)(a ,因此,当*y y =时,函数)(y g 取得最小值.答:点P 的坐标是);24119,0(解法三:因为在△ABC 中,AB=AC=13,且,(b).,4,51222如图π=∠=>=-ACB OC OC AC所以△ABC 的外心M 在线段AO 上,其坐标为)24119,0(, 且AM=BM=CM. 当P 在射线MA 上,记P 为P 1;当P 在射线MA 的反向延长线上,记P 为P 2, 这时P 到A 、B 、C 三点的最远距离为P 1C 和P 2A,且P 1C ≥MC,P 2A ≥MA,所以点P 与外心M 重合时,P 到三镇的最远距离最小. 答:点P 的坐标是);24119,0( 20.本小题考查函数、不等式等基本知识,考查综合运用数学知识分析问题和解决问题的能力.满分14分.(Ⅰ)证明:由题设条件可知,当]1,1[-∈x 时,有,1|1||)1()(||)(|x x f x f x f -=-≤-=即.1)(1x x f x -≤≤-(Ⅱ)答:函数)(x g 满足题设条件.验证如下:).1(0)1(g g ==-对任意的]1,1[,-∈v u , 当|;||)1()1(||)()(|,0,1][,u v u v u v g u g v -=---=-∈有时当|;||)()(|,,0]1-[,u v u v g u g v -=-∈同理有时当0,u <⋅v 不妨设],1,0(),0,1[∈-∈v u有.|||||)1()1(||)()(|u v v u v u v g u g -≤+=--+=-所以,函数)(x g 满足题设条件.(Ⅲ)答:这样满足的函数不存在.理由如下: 假设存在函数)(x f 满足条件,则由,0)1()1(==-f f 得,0|)1()1(|=--f f ①由于对任意的]1,1[,-∈v u ,都有.|||)()(|v u v f u f -=-所以,.2|)1(1||)1()1(|=--=--f f ② ①与②矛盾,因此假设不成立,即这样的函数不存在.。

高等代数_(王萼芳_石生明_著)_课后答案__高等教育出版社

高等代数_(王萼芳_石生明_著)_课后答案__高等教育出版社

高等代数第三版(王萼芳石生明)习题解答首都师范大学数学科学学院1100500070高等代数习题答案(一至四章)第一章多项式习题解答1、(1)由带余除法,得q( x) 1 x 7, r ( x)2623999( 2)q(x) x2x 1, r ( x)5x 72、( 1)p1m20,(2)由m(2p m2 )0得m0或q1。

q m 0q 1 p m20p m2p q 123、( 1)q(x)2x46x3 13x239x109, r ( x)327( 2) q(x) = x22ix(5 2i ) , r (x)98i4、( 1)有综合除法: f ( x)15( x1) 10( x1)210( x1)35( x1)4( x1)5( 2)f (x)1124( x2)22( x2) 28( x2)3(x2) 4( 3)f (x)24(7 5i )5( x i )( 1 i)( x i ) 22i ( x i )3( x i )45、( 1) x+1( 2)1( 3)x222x16、( 1) u(x) =-x-1, v( x) =x+2( 2)u( x)1x1, v( x)2x22x13333( 3) u(x) =-x-1,v( x) x3x23x 2u0u27、或t3t28、思路:根具定义证明证:易见 d( x)是 f(x)与 g( x)的公因式。

另设( x) 是f(x)与g(x)的任意公因式,下证( x) d ( x)。

由于 d(x)是 f ( x)与 g( x)的一个组合,这就是说存在多项式s( x)与 t( x),使d( x) =s(x) f ( x) +t( x)g( x)。

从而(x) f (x) ,( x) g( x) ,可得( x) d ( x) 。

即证。

9、证:因为存在多项式u(x), v( x)使( f( x), g( x)) =u( x) f( x) +v ( x)g( x),所以(f( x),g( x))h( x)= u(x)f ( x)h( x)+v( x)g( x)h( x),上式说明( f( x), g( x))h( x)是f (x) h( x)与 g(x) h( x)的一个组合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

首都师范大学2003年
攻读硕士学位研究生入学考试试卷
专 业:基础数学、应用数学 考试科目:高等代数 研究方向:各方向
一.(20分)用((),())f x g x 表示数域F 上多项式()f x 和()g x 的首项系数为1的最大公因式.证明:
((),())(()2(),()()).f x g x f x g x f x g x =+-
二.(20分)叙述实系数多项式的因式分解定理,并将多项式101x -在实数域上分解为不可约多项式的乘积.
三.(20分)设F 是数域.已知矩阵n r A F
⨯∈的列向量是一齐次线性方程组的基础解系,证明矩阵n r C F ⨯∈的列向量也是该齐次线性方程组的基础解系的充要条件为:存在可逆矩阵r r B F ⨯∈,使得.C AB =
四.(20分)设σ是数域F 上n 维线性空间V 的线性变换,α与β分别是σ的属于特征值1λ与2λ的特征向量,而且12λλ≠.试证:
1.αβ,线性无关;
2.αβ-不可能是σ的特征向量.
五.(20分)设数域F 上维线性空间12V W W =⊕,则任一x V ∈可表为12x x x =+,其中
(1,2).
i i x W i ∈=,我们把变换1():x x x σ 称为在1W 上的投影变换.试证: 1.投影变换是线性变换;
2.V 的线性变换σ是投影变换的充要条件是σ在V 的任何基下的矩阵A 满足2.A A =
六.(20分)设1110()[]n n n f x x a x a x a F x --=++++∈ 是数域F 上的不可约多项式,α是()f x 的一复数根.
1.证明[]{()|()()}F g g x F x αα=∈是F 上n 维线性空间,且1
n
αα ,,,是一基; 2.定义()F α的线性变换αλβαβ :.求αλ在上述基下对应的矩阵A α,并求行列式A α.
七.(15分)设A 与B 是两个n 阶实对称矩阵,且A 是正定矩阵.
试证:存在一个n 阶实可逆矩阵T ,使T AT '及T BT '
都是对角矩阵.
八.(15分)设12r ααα ,,,与12s βββ ,,,是线性空间V 中两组向量,且12r ααα ,,,线性无关,求证:
1.向量组12s βββ ,,,的秩等于()ij A a =矩阵的秩;
2.s r =时,
12s βββ ,,,线性无关的充要条件为0A ≠.。

相关文档
最新文档