2015成都一诊数学理科模拟1
2015年四川省成都七中高考一模数学试卷(理科)【解析版】
2015年四川省成都七中高考数学一模试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.1.(5分)已知集合A={x∈R|﹣3≤x≤4},B={x∈R|log2x≥1},则A∩B=()A.[4,+∞)B.(4,+∞)C.[2,4)D.[2,4]2.(5分)复数z=在复平面上对应的点的坐标为()A.(1,﹣3)B.(,﹣)C.(3,﹣3)D.(,﹣)3.(5分)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图,则该样本的中位数、众数分别是()A.45,56B.46,45C.47,45D.45,474.(5分)已知一个三棱锥的三视图如图所示,其中俯视图是等腰三角形,则该三棱锥的体积为()A.B.C.D.25.(5分)已知双曲线﹣=1(a>0,b>0)的左顶点与抛物线y2=2px的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),则双曲线的焦距为()A.2B.2C.4D.46.(5分)函数f(x)=A sin(ωx+φ)(其中)的图象如图所示,为了得到g(x)=sin2x的图象,则只需将f(x)的图象()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位7.(5分)已知不等式组,则目标函数z=2x﹣y的最小值是()A.8B.5C.4D.1+ln28.(5分)将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设任意投掷两次使两条不重合直线l1:ax+by=2,l2:x+2y=2平行的概率为P1,相交的概率为P2,若点(P1,P2)在圆(x﹣m)2+y2=的内部,则实数m的取值范围是()A.(﹣,+∞)B.(﹣∞,)C.(﹣,)D.(﹣,)9.(5分)已知f(x)为R上的可导函数,且∀x∈R,均有f(x)>f′(x),则有()A.e2014f(﹣2014)<f(0),f(2014)>e2014f(0)B.e2014f(﹣2014)<f(0),f(2014)<e2014f(0)C.e2014f(﹣2014)>f(0),f(2014)>e2014f(0)D.e2014f(﹣2014)>f(0),f(2014)<e2014f(0)10.(5分)已知整数a,b,c,t满足:2a+2b=2c,t=,则log2t的最大值是()A.0B.log23C.2D.3二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(x2﹣)6展开式中的常数项为.(用数字作答)12.(5分)在如图所示的程序框图中,若输出S=,则判断框内实数p的取值范围是.13.(5分)已知{a n}是递增数列,且对任意的n∈N*都有a n=n2+2sinθ•n(θ∈[0,2π])恒成立,则角θ的取值范围是.14.(5分)已知点O为△ABC内一点,且=,则△AOB、△AOC、△BOC的面积之比等于.15.(5分)若以曲线y=f(x)上任意一点M(x1,y1)为切点作切线l1,曲线上总存在异于M的点N(x2,y2),以点N为切点作切线l2,且l1∥l2,则称曲线y=f(x)具有“可平行性”.现有下列命题:①函数y=(x﹣2)2+lnx的图象具有“可平行性”;②定义在(﹣∞,0)∪(0,+∞)的奇函数y=f(x)的图象都具有“可平行性”;③三次函数f(x)=x3﹣x2+ax+b具有“可平行性”,且对应的两切点M(x1,y1),N(x2,y2)的横坐标满足x1+x2=;④要使得分段函数f(x )=的图象具有“可平行性”,当且仅当实数m=1.其中的真命题是.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.16.(12分)已知等差数列{a n}的前n项和为S n,且a2=﹣5,S5=﹣20.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求使不等式S n>a n成立的n的最小值.17.(12分)在△ABC中,角A,B,C的对边分别是a,b,c,若a sin A=(a ﹣b)sin B+c sin C,(1)求角C的值:(2)若c=2,且sin C+sin(B﹣A)=3sin2A,求△ABC的面积.18.(12分)如图,在四棱锥P﹣ABCD中,E为AD上一点,PE⊥平面ABCD,AD∥BC,AD⊥CD,BC=ED=2AE=2,EB=3,F为PC上一点,且CF=2FP.(1)求证:P A∥平面BEF;(2)若二面角F﹣BE﹣C为60°,求直线PB与平面ABCD所成角的大小.(用向量法解答)19.(12分)2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如表):(Ⅰ)试根据频率分布直方图估计这60人的平均月收入;(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X,求随机变量X的分布列及数学期望.20.(13分)设椭圆C:的离心率e=,左顶点M到直线=1的距离d=,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,证明:点O到直线AB的距离为定值;(Ⅲ)在(Ⅱ)的条件下,试求△AOB的面积S的最小值.21.(14分)已知向量,,(a为常数).(Ⅰ)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a,求实数a的取值范围.2015年四川省成都七中高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.1.(5分)已知集合A={x∈R|﹣3≤x≤4},B={x∈R|log2x≥1},则A∩B=()A.[4,+∞)B.(4,+∞)C.[2,4)D.[2,4]【解答】解:由B中不等式变形得:log2x≥1=log22,得到x≥2,即B=[2,+∞),∵A=[﹣3,4],∴A∩B=[2,4],故选:D.2.(5分)复数z=在复平面上对应的点的坐标为()A.(1,﹣3)B.(,﹣)C.(3,﹣3)D.(,﹣)【解答】解:由复数=.∴复数在复平面上对应的点的坐标为().故选:B.3.(5分)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图,则该样本的中位数、众数分别是()A.45,56B.46,45C.47,45D.45,47【解答】解:由题意可知茎叶图共有30个数值,所以中位数为:=46.出现次数最多的数是45,故众数是45.故选:B.4.(5分)已知一个三棱锥的三视图如图所示,其中俯视图是等腰三角形,则该三棱锥的体积为()A.B.C.D.2【解答】解:由三视图知:几何体为三棱锥,且一条侧棱与底面垂直,高为2,三棱柱的底面为等腰三角形,且三角形的底边长为2,底边上的高为1,∴几何体的体积V=××2×1×2=.故选:B.5.(5分)已知双曲线﹣=1(a>0,b>0)的左顶点与抛物线y2=2px的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),则双曲线的焦距为()A.2B.2C.4D.4【解答】解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),即点(﹣2,﹣1)在抛物线的准线上,又由抛物线y2=2px的准线方程为x=﹣,则p=4,则抛物线的焦点为(2,0);则双曲线的左顶点为(﹣2,0),即a=2;点(﹣2,﹣1)在双曲线的渐近线上,则其渐近线方程为y=±x,由双曲线的性质,可得b=1;则c=,则焦距为2c=2;故选:B.6.(5分)函数f(x)=A sin(ωx+φ)(其中)的图象如图所示,为了得到g(x)=sin2x的图象,则只需将f(x)的图象()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位【解答】解:由已知中函数f(x)=A sin(ωx+φ)(其中)的图象,过(,0)点,()点,易得:A=1,T=4()=π,即ω=2即f(x)=sin(2x+φ),将()点代入得:+φ=+2kπ,k∈Z又由∴φ=∴f(x)=sin(2x+),设将函数f(x)的图象向左平移a个单位得到函数g(x)=sin2x的图象,则2(x+a)+=2x解得a=﹣故将函数f(x)的图象向右平移个长度单位得到函数g(x)=sin2x的图象,故选:A.7.(5分)已知不等式组,则目标函数z=2x﹣y的最小值是()A.8B.5C.4D.1+ln2【解答】解:作出不等式组所对应的可行域(如图),变形目标函数可得y=2x﹣z,平移直线y=2x可知当直线经过点A(,﹣ln2)时,截距最大,z取最小值,故目标函数z=2x﹣y的最小值为1+ln2故选:D8.(5分)将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设任意投掷两次使两条不重合直线l1:ax+by=2,l2:x+2y=2平行的概率为P1,相交的概率为P2,若点(P1,P2)在圆(x﹣m)2+y2=的内部,则实数m的取值范围是()A.(﹣,+∞)B.(﹣∞,)C.(﹣,)D.(﹣,)【解答】解:对于a与b各有6中情形,故总数为36种设两条直线l1:ax+by=2,l2:x+2y=2平行的情形有a=2,b=4,或a=3,b =6,故概率为P==设两条直线l1:ax+by=2,l2:x+2y=2相交的情形除平行与重合即可,∵当直线l1、l2相交时b≠2a,图中满足b=2a的有(1,2)、(2,4)、(3,6)共三种,∴满足b≠2a的有36﹣3=33种,∴直线l1、l2相交的概率P==,∵点(P1,P2)在圆(x﹣m)2+y2=的内部,∴(﹣m)2+()2<,解得﹣<m<故选:D.9.(5分)已知f(x)为R上的可导函数,且∀x∈R,均有f(x)>f′(x),则有()A.e2014f(﹣2014)<f(0),f(2014)>e2014f(0)B.e2014f(﹣2014)<f(0),f(2014)<e2014f(0)C.e2014f(﹣2014)>f(0),f(2014)>e2014f(0)D.e2014f(﹣2014)>f(0),f(2014)<e2014f(0)【解答】解:构造函数g(x)=,则g′(x)=.因为∀x∈R,均有f(x)>f′(x),并且e x>0,所以g′(x)<0,故函数g(x)=在R上单调递减,所以g(﹣2014)>g(0),g(2014)<g(0),即>f(0),<f(0),即e2014f(﹣2014)>f(0),f(2014)<e2014f(0).故选:D.10.(5分)已知整数a,b,c,t满足:2a+2b=2c,t=,则log2t的最大值是()A.0B.log23C.2D.3【解答】解:∵整数a,b,c,t满足:2a+2b=2c,t=,∴t=≤=当且仅当a=b时,取最大值,∴当a=b>0时,t max==,c=a+1,∵a,b,c,t是整数,∴a=1,t=1,∴log 2t 的最大值为log 21=0. 当a =b =﹣2时,c =﹣1,t ==4,∴log 2t 的最大值为log 24=2. 综上所述,log 2t 的最大值是2. 故选:C .二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(x 2﹣)6展开式中的常数项为 15 .(用数字作答) 【解答】解:展开式的通项公式为T r +1=(﹣1)r C 6r x 12﹣3r 令12﹣3r =0得r =4∴展开式中的常数项为C 64=15 故答案为1512.(5分)在如图所示的程序框图中,若输出S =,则判断框内实数p 的取值范围是 (5,6] .【解答】解:S =++…=(1﹣﹣)=(1﹣),令S =得n =5,所以实数p的取值范围是(5,6].故答案为:(5,6].13.(5分)已知{a n}是递增数列,且对任意的n∈N*都有a n=n2+2sinθ•n(θ∈[0,2π])恒成立,则角θ的取值范围是[0,]∪[,2π].【解答】解:∵{a n}是递增数列,且对任意的n∈N*都有a n=n2+2sinθ•n(θ∈[0,2π])恒成立,∴a n+1≥a n,对任意的n∈N*都成立,∴(n+1)2+2sinθ•(n+1)﹣n2﹣2sinθ•n,∴2n+1+2sinθ≥0,转化为2sinθ≥﹣2n﹣1,恒成立,因为n≥1,n∈N*,∴﹣2n﹣1≥﹣3,∴2sinθ≥﹣3,解得sinθ≥﹣,∵θ∈[0,2π]解得0≤θ≤,或≤θ≤2π,故答案为:[0,]∪[,2π];14.(5分)已知点O为△ABC内一点,且=,则△AOB、△AOC、△BOC的面积之比等于3:2:1.【解答】解:如图所示,延长OB到点E,使得=2,分别以,为邻边作平行四边形OAFE;则+2=+=,∵+2+3=,∴﹣=3,又∵==2,∴=2,∴=,∴S△ABC =2S△AOB;同理:S△ABC =3S△AOC,S△ABC=6S△BOC;∴△AOB,△AOC,△BOC的面积比=3:2:1.故答案为:3:2:1.15.(5分)若以曲线y=f(x)上任意一点M(x1,y1)为切点作切线l1,曲线上总存在异于M的点N(x2,y2),以点N为切点作切线l2,且l1∥l2,则称曲线y=f(x)具有“可平行性”.现有下列命题:①函数y=(x﹣2)2+lnx的图象具有“可平行性”;②定义在(﹣∞,0)∪(0,+∞)的奇函数y=f(x)的图象都具有“可平行性”;③三次函数f(x)=x3﹣x2+ax+b具有“可平行性”,且对应的两切点M(x1,y1),N(x2,y2)的横坐标满足x1+x2=;④要使得分段函数f(x)=的图象具有“可平行性”,当且仅当实数m=1.其中的真命题是④.(写出所有真命题的序号)【解答】解:由“可平行性”的定义,可得曲线y=f(x)具有“可平行性”,则方程y′=a(a是导数值)至少有两个根.①函数y=(x﹣2)2+lnx,则(x>0),方程,即2x2﹣(4+a)x+1=0,当a=﹣4+时有两个相等正根,不符合题意;②定义在(﹣∞,0)∪(0,+∞)的奇函数,如y=x,x∈(﹣∞,0)∪(0,+∞)在各点处没有切线,∴②错误;③三次函数f(x)=x3﹣x2+ax+b,则f′(x)=3x2﹣2x+a,方程3x2﹣2x+a﹣m=0在(﹣2)2﹣12(a﹣m)≤0时不满足方程y′=a(a是导数值)至少有两个根.命题③错误;④函数y=e x﹣1(x<0),y′=e x∈(0,1),函数y=x+,=,由,得,∴x>1,则m=1.故要使得分段函数f(x)=的图象具有“可平行性”,当且仅当实数m=1,④正确.∴正确的命题是④.故答案为:④.三、解答题:本大题共6小题,共75分.16.(12分)已知等差数列{a n}的前n项和为S n,且a2=﹣5,S5=﹣20.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求使不等式S n>a n成立的n的最小值.【解答】解:(Ⅰ)设{a n}的公差为d,依题意,有a2=a1+d=﹣5,S5=5a1+10d=﹣20,联立得解得,所以a n=﹣6+(n﹣1)•1=n﹣7.(Ⅱ)因为a n=n﹣7,所以,令,即n2﹣15n+14>0,解得n<1或n>14,又n∈N*,所以n>14,所以n的最小值为15.17.(12分)在△ABC中,角A,B,C的对边分别是a,b,c,若a sin A=(a ﹣b)sin B+c sin C,(1)求角C的值:(2)若c=2,且sin C+sin(B﹣A)=3sin2A,求△ABC的面积.【解答】解:(Ⅰ)∵a sin A=(a﹣b)sin B+c sin C,由正弦定理,得a2=(a﹣b)b+c2,即a2+b2﹣c2=ab.①由余弦定理得cos C=,结合0<C<π,得C=.…(6分)(Ⅱ)由C=π﹣(A+B),得sin C=sin(B+A)=sin B cos A+cos B sin A,∵sin C+sin(B﹣A)=3sin2A,∴sin B cos A+cos B sin A+sin B cos A﹣cos B sin A=6sin A cos A,整理得sin B cos A=3sin A cos A.…(8分)若cos A=0,即A=时,△ABC是直角三角形,且B=,=bc=.…(10分)于是b=c tan B=2tan=,∴S△ABC若cos A≠0,则sin B=3sin A,由正弦定理得b=3a.②联立①②,结合c=2,解得a=,b=,=ab sin C=×××=.∴S△ABC综上,△ABC的面积为或.…(12分)18.(12分)如图,在四棱锥P﹣ABCD中,E为AD上一点,PE⊥平面ABCD,AD∥BC,AD⊥CD,BC=ED=2AE=2,EB=3,F为PC上一点,且CF=2FP.(1)求证:P A∥平面BEF;(2)若二面角F﹣BE﹣C为60°,求直线PB与平面ABCD所成角的大小.(用向量法解答)【解答】(1)证明:连接AC交BE于点M,连接FM.由EM∥CD,∴===,∴FM∥AP,又∵FM⊂平面BEF,P A⊄平面BEF,∴P A∥平面BEF;(2)以E为坐标原点,EB,EA,EP所在直线为x,y,z轴,建立空间直角坐标系,则设P(0,0,t),由于PE⊥平面ABCD,则向量=(0,0,﹣t)即为平面BEC的法向量,由于AD∥BC,AD⊥CD,BC=ED=2AE=2,EB=3,则四边形BCDE为矩形,B(3,0,0),C(3,﹣2,0),由于F为PC上一点,且CF=2FP,则有F(1,,t),则=(1,,t),=(3,0,0),设平面BEF的法向量为=(x,y,z),则即有=0,即x﹣y=0,又=0,即3x=0,则可取=(0,1,),由二面角F﹣BE﹣C为60°,则与的夹角为120°,即有cos120°===﹣,解得,t=.即P(0,0,).PB==2,由于PE⊥平面ABCD,则∠PBE即为直线PB与平面ABCD所成角.在直角三角形PBE中,cos∠PBE===.故直线PB与平面ABCD所成角为arccos=.19.(12分)2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如表):(Ⅰ)试根据频率分布直方图估计这60人的平均月收入;(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X,求随机变量X的分布列及数学期望.【解答】解:(Ⅰ)这60人的月平均收入为(20×0.015+30×0.015+40×0.025+0.02×50+60×0.015+70×0.01)×10=43.5(百元)(Ⅱ)根据频率分布直方图可知[15,25)的人数为0.015×10×60=9人,其中不赞成的只有1人;[25,35)的人数为0.015×10×60=9人,其中不赞成的有2人.则X的所有取值可能为0,1,2,3.,,P(X=2)=+,.∴随机变量X的分布列为∴E(X)==1.20.(13分)设椭圆C:的离心率e=,左顶点M到直线=1的距离d=,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,证明:点O到直线AB的距离为定值;(Ⅲ)在(Ⅱ)的条件下,试求△AOB的面积S的最小值.【解答】解:(Ⅰ)由已知得,又a2=b2+c2,解得a=2,b=1,c=,∴椭圆C的方程为.(Ⅱ)证明:设A(x1,y1),B(x2,y2),①当直线AB的斜率不存在时,则由椭圆的对称性知x1=x2,y1=﹣y2,∵以AB为直线的圆经过坐标原点,∴=0,∴x1x2+y1y2=0,∴,又点A在椭圆C上,∴=1,解得|x1|=|y1|=.此时点O到直线AB的距离.(2)当直线AB的斜率存在时,设AB的方程为y=kx+m,联立,得(1+4k2)x2+8kmx+4m2﹣4=0,∴,,∵以AB为直径的圆过坐标原点O,∴OA⊥OB,∴=x1x2+y1y2=0,∴(1+k2)x1x2+km(x1+x2)+m2=0,∴(1+k2)•,整理,得5m2=4(k2+1),∴点O到直线AB的距离=,综上所述,点O到直线AB的距离为定值.(3)设直线OA的斜率为k0,当k0≠0时,OA的方程为y=k0x,OB的方程为y=﹣,联立,得,同理,得,∴△AOB的面积S==2,令1+=t,t>1,则S=2=2,令g(t)=﹣++4=﹣9()2+,(t>1)∴4<g(t),∴,当k0=0时,解得S=1,∴,∴S的最小值为.21.(14分)已知向量,,(a为常数).(Ⅰ)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a,求实数a的取值范围.【解答】解:(Ⅰ)∵(a为常数),∴f(x)lnx=x(1﹣alnx),∴f(x)=.(x>1).f′(x)=﹣a(x>1),∵函数f(x)在(1,+∞)上是减函数,∴f′(x)≤0在(1,+∞)上恒成立,∴a≥的最大值,x∈(1,+∞).令g(x)==+≤,当lnx=2,即x=e2时取得最大值.∴,∴实数a的最小值是.(Ⅱ)f(x)=.f′(x)=﹣a.存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立⇔x∈[e,e2],f(x)min≤f(x)max+a =,①当a ≥时,f′(x)≤0,f(x)在x∈[e,e2]上为减函数,则f(x)min=f(e2)=≤,解得a ≥﹣.②当a <时,由f′(x)=+﹣a,在[e,e2]上的值域为[﹣a ,].(i)当﹣a≥0即a≤0时,f′(x)≥0在x∈[e,e2]上恒成立,因此f(x)在x∈[e,e2]上为增函数,∴f(x)min=f(e)=e﹣ae≥e>,不和题意,舍去.(ii)当﹣a<0时,即0<a <时,由f′(x)的单调性和值域可知:存在唯一x0∈(e,e2),使得f′(x0)=0,且满足当x∈[e,x0),f′(x)<0,f(x)为减函数;当x∈(x0,e2)时,f′(x)>0,f(x)为增函数.∴f(x)min=f(x0)=﹣ax0≤,x0∈(e,e2).∴a ≥﹣>﹣>,与0<a <矛盾.综上可得:a 的取值范围是:.第21页(共21页)。
成都七中2015届高三一诊模拟考试数学答案(理,word版)
成都七中2015届高中毕业班第一次诊断性检测模拟题数学(理科参考答案)一、选择题:本大题共10小题,每小题5分,共50分.二、填空题:本大题共5小题,每小题5分,共25分.11.15; 12.[)5,7; 13.450233πππ⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦,,; 14.3:2:1; 15.②④. 提示:9.构造函数()()x f x g x e =,则2()()()()()()x x x xf x e e f x f x f xg x e e''--'==, ∵任意x R ∈均有()()f x f x '>,并且0x e >,∴()0g x '<,故函数()()x f x g x e=在R 上单调递减,也就是20142014(2014)(0),(2014)(0)e f f f e f -><故选C. 10. 不妨设a b ≤,122222221bcabbbb bc b +<=+≤+=⇒<≤+,,b c Z ∈,1c b ∴=+,1222b a b +∴=+1a bc ⇒==-.a b t c +∴=22c=-. ,a t Z ∈,1,2c ∴=±±,0,1,3,4t∴=,故2max 2(log )log 42t ==.15.②④由题,“可平行性”曲线的充要条件是:对域内1x ∀都21x x ∃≠使得12()()f x f x ''=成立.①错,12(2)y x x '=-+,又1212112(2)2(2)x x x x -+=-+ 1212x x ⇔=,显然12x =时不满足;②对,由()()()()f x f x f x f x ''=--⇒=-即奇函数的导函数是偶函数,对10x ∀≠都21x x ∃=-使得12()()f x f x ''=成立(可数形结合);③错,2()32f x x x a '=-+,又当时,2211223232x x a x x a -+=-+2212123()2()x x x x ⇔-=-1223x x ⇔+=,当11=3x 时不合题意;④对,当0x <时,()(0,1)xf x e '=∈,若具有“可平行性”,必要条件是:当0x >时,21()1(0,1)f x x'=-∈,解得1x >,又1x >时,分段函数具有“可平行性”,1m ∴=(可数形结合).三、解答题:本大题共6小题,共75分. 16.解:(Ⅰ)设{}n a 的公差为d ,依题意,有 52115,51020a a d S a d =+=-=+=-.联立得11551020a d a d +=-⎧⎨+=-⎩,解得161a d ⎧⎨⎩=-=.∴ 6(1)17n a n n =-+-⋅=-. n N *∈ ……………6分 (Ⅱ) 7n a n =-,∴1()(13)22n n a a n n n S +-==. 令(13)72n n n ->-,即215140n n -+> , ……………10分 解得1n <或14n >. 又*n ∈N ,∴14n >.n ∴的最小值为15. ……………12分17.解:(Ⅰ)∵asinA=(a-b)sinB+csinC ,结合0C π<<,得3C =. …………………………………………………6分(Ⅱ)由 C=π-(A+B),得sinC=sin(B+A)=sinBcosA+cosBsinA , ∵ sinC+sin(B-A)=3sin2A ,∴ sinBcosA+cosBsinA+sinBcosA-cosBsinA=6sinAcosA ,整理得sinBcosA=3sinAcosA . (8)分 若cosA=0,即A=2π时,△ABC 是直角三角形,且B=6π,于是b=ctanB=2tan6π,∴ S △ABC =12. ……………………10分 若cosA ≠0,则sinB=3sinA ,由正弦定理得b=3a .② 联立①②,结合c=2,解得,∴ S △ABC =12absinC=12.综上,△ABC 12分18.(Ⅰ)证明:连接AC 交BE 于点M ,连接FM .由//EM CD12AM AE PFMC ED FC∴===. //FM AP ∴. ………………4分 FM BEF PA BEF ⊂⊄面,面, //PA BEF ∴面.………………6分(Ⅱ)连CE ,过F 作FH CE ⊥于H .由于//FH PE ,故FH ABCD ⊥面.过H 作HM BE ⊥于M ,连FM .则FM BE ⊥,即FMH ∠为二面角F BE C --的平面角. 60,FMH FH ∴∠==.23FH PE =,1233MH BC AE ==PE ∴=.………………10分1,AE PE =∴=在Rt PBE ∆中,3BE =,tan PBE ∴∠=,6PBE π∴∠=.∴直线PB 与平面ABCD 所成角的大小为6π. ……………12分 解法二:以E 为坐标原点,,,EB ED EP 为,,x y z 轴建立空间直角坐标系. (0,0,0),(3,0,0),(0,0,),(3,2,0)E B P m C2CF FP = ,22(1,,)33F m ∴.………………7分设平面BEF 的法向量1(,,)n x y z =,由n EB n EF ⎧⋅=⎪⎨⋅=⎪⎩ 得1n =(0,,1)m -. 又面ABCD 法向量为2(0,0,1)n =.由1212cos 60n n nn ⋅=⋅ , 解得m =.………………10分在Rt PBE ∆中,3BE =, tan 3PBE ∴∠=,6PBE π∴∠=.∴直线PB 与平面ABCD 所成角的大小为6π. ……………12分 19.解:(Ⅰ)由直方图知:(200.015300.015400.025500.02600.015700.01)1043.5⨯+⨯+⨯+⨯+⨯+⨯⨯=∴这60人的平均月收入约为43.5百元. ………………4分(Ⅱ)根据频率分布直方图和统计表可知道:[15,25)的人数为0.01510609⨯⨯=人,其中1人不赞成.[25,35)的人数为0.01510609⨯⨯=人,其中2人不赞成. ………………6分X 的所有可能取值为0,1,2,3.338733995(0)18C C P X C C ==⋅=,23312878273333999917(1)36C C C C C P X C C C C ==⋅+⋅=, 212321827827333399992(2)9C C C C C C P X C C C C ==⋅+⋅=,21287233991(3)36C C C P X C C ==⋅=.……………10分 X∴的分布列为012311836936EX ∴=⨯+⨯+⨯+⨯=. ………………12分20.(Ⅰ)解 由e =32,得c =32a ,又b 2=a 2-c 2,所以b =12a ,即a =2b . 由左顶点M (-a,0)到直线x a +y b =1,即bx +ay -ab =0的距离d =455,得|b (-a )-ab |a 2+b 2=455,即2ab a 2+b 2=455,把a =2b 代入上式,得4b 25b 2=455,解得b =1.所以a =2b =2,c = 3.所以椭圆C 的方程为x 24+y 2=1. ………………3分(Ⅱ)证明 设A (x 1,y 1),B (x 2,y 2),①当直线AB 的斜率不存在时,则由椭圆的对称性,可知x 1=x 2,y 1=-y 2. 因为以AB 为直径的圆经过坐标原点,故OA →·OB →=0,即x 1x 2+y 1y 2=0,也就是x 21-y 21=0,又点A 在椭圆C 上,所以x 214-y 21=1, 解得|x 1|=|y 1|=255. 此时点O 到直线AB 的距离d 1=|x 1|=255. ②当直线AB 的斜率存在时, 设直线AB 的方程为y =kx +m , 与椭圆方程联立有⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1, 消去y ,得(1+4k 2)x 2+8kmx +4m 2-4=0,所以x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-41+4k 2.因为以AB 为直径的圆过坐标原点O ,所以OA ⊥OB . 所以OA →·OB →=x 1x 2+y 1y 2=0. 所以(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0. 所以(1+k 2)·4m 2-41+4k 2-8k 2m 21+4k2+m 2=0. 整理得5m 2=4(k 2+1), 所以点O 到直线AB 的距离d 1=|m |k 2+1=255.综上所述,点O 到直线AB 的距离为定值255. ………………8分(Ⅲ)解 设直线OA 的斜率为k 0. 当k 0≠0时,则OA 的方程为y =k 0x ,OB 的方程为y =-1k 0x ,联立⎩⎪⎨⎪⎧y =k 0x ,x 24+y 2=1,得⎩⎨⎧x 21=41+4k 20,y 21=4k 201+4k 20.同理可求得⎩⎨⎧x 22=4k 20k 20+4,y 22=4k 20+4.故△AOB 的面积为S =121+k 20·|x 1|·1+1k 20·|x 2|=2(1+k 20)2(1+4k 20)(k 20+4). 令1+k 20=t (t >1),则S =2t 24t 2+9t -9=21-9t 2+9t+4,令g (t )=-9t 2+9t +4=-9(1t -12)2+254(t >1),所以4<g (t )≤254.所以45≤S <1.当k 0=0时,可求得S =1,故45≤S ≤1,故S 的最小值为45. ………………13分 直线的参数方程也可以做,更简洁。
成都市2015届高中毕业班第一次诊断性模拟检测(试题)
成都市2015届高中毕业班第一次诊断性模拟检测理科综合 物理部分命题人:孟兵第Ⅰ卷(选择题,共42分)一、选择题(本题包括7小题.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。
全部选对的得6分,选不全的得3分,有选错或不答的得0分)1.下列说法正确的是( )A .万有引力定律只适用像天体这样质量很大的物体B .牛顿运动定律也适用微观世界C .叮当同学将房价的“上涨”类比成运动学中的“加速”,将房价的“下跌”类比成运动学中的“减速”,据此,认为“房价上涨出现减缓趋势”可以类比成运动学中的速度增加,加速度减小D .物体惯性的大小是由质量和速度共同决定的2.如图甲所示,斜面体固定在水平面上,倾角为θ=30°,质量为m 的物块从斜面体上由静止释放,以加速度a 速率v 、动能E k 、势能E P 、机械能E 跟时间t 或位移x 的关系,错误的是( )3.我国志愿者王跃曾与俄罗斯志愿者一起进行“火星-500”的实验活动。
假设王跃登陆火星后,测得火星半径是地球半径的21,质量是地球质量的91。
已知地球表面的重力加速度是g ,地球的半径为R ,王跃在地面上能向上竖直跳起的最大高度是h,已知万有引力常量为G,忽略自转的影响,下列说法正确的是( )A .火星的密度为GR g 32 B .火星表面的重力加速度是92g C .火星的第一宇宙速度与地球的第一宇宙速度之比为32 D .王跃以在地球上相同的初速度在火星上起跳后,能达到的最大高度是29h 4. 如图甲所示,在粗糙的水平面上,质量分别为m 和M(m ∶M =1∶2)的物块A 、B 用轻弹簧相连,两物块与水平面间的动摩擦因数相同.当用水平力F 作用于B 上且两物块共同向右加速运动时,弹簧的伸长量为x 1.当用同样大小的力F 竖直加速提升两物块时(如图乙所示),弹簧的伸长量为x2,则x 1∶x 2等于( )A.1∶2B.1∶1C.2∶1D.2∶35.如图所示,光滑的金属轨道分水平段和圆弧段两部分,O点为圆弧的圆心.两金属轨道之间的宽度为0.5m,匀强磁场方向如图,大小为0.5T.质量为0.05kg、长为0.5m的金属细杆置于金属轨道上的M点.当在金属细杆内通以电流强度为2A的恒定电流时,金属细杆可以沿杆向右由静止开始运动.已知MN=OP=1m,则( ) A.金属细杆运动到P点时的速度大小为5m/sB.金属细杆运动到P点时的向心加速度大小10m/s2C.金属细杆运动到P点时对每一条轨道的作用力大小为1.5ND.金属细杆从M点运动到P点的过程中消耗的电能至少为1J6.如图甲所示电路中,闭合开关S,当滑动变阻器的滑动触头P向下滑动的过程中,四个理想电表的示数都发生变化,图乙中三条图线分别表示了三个电压表示数随电流表示数变化的情况.以下说法正确的是()A.图线a表示的是电压表V3的示数随电流表示数变化的情况B.电源的总功率减小,输出功率一定先增大后减小C.此过程中电压表V3示数U3和电流表示数I的比值U3/I不变D.此过程中电压表V3示数的变化量ΔU3和电流表示数变化量ΔI的比值不变7.在如图所示的空间区域里,y轴左方有一匀强电场,场强方向跟y轴负方向成30°角,大小为E=4×105N/C,y轴右方有一垂直纸面向里的匀强磁场(图中未画出),有一带正电的粒子以速度v0=2×106m/s由x轴上A点(OA=10cm)先后两次射入磁场,第一次沿x轴正方向射入磁场,第二次沿x磁场,已知粒子质量m为1.6496×10—27kg,电荷量q为1.6×10—19 1.7),则:( )A.粒子两次在磁场中运动的轨道半径都为20cmB.匀强磁场的磁感应强度为1.031T;C.粒子两次在电场中运动的时间都为1.7527×10—7sD.质子先后两次在磁场中运动的时间之比1:7第Ⅱ卷(非选择题,共68分)二、填空题(17分)8. Ⅰ.(7分)某同学利用图(a)所示实验装置及数字化信息系统获得了小车加速度a与钩码的质量m的对应关系图,如图(b)所示。
2018年成都市2015级高中毕业班第一次诊断性检测“一诊”理科数学试卷+答案+答题卡
( 一㊁ 选择题 : 每小题 5 分 , 共6 0 分) 1. A 2. D 3. D 7. A 8. B 9. C 第 Ⅰ 卷( 选择题 , 共6 0 分) 4. C 1 0. C 5. C 1 1. B 6. B 1 2. D
成都市 2 0 1 5 级高中毕业班第一次诊断性检测
( 二㊁ 填空题 : 每小题 5 分 , 共2 0 分) 1 3. 4 0; ㊀㊀1 4. 1 2; ㊀㊀1 5. 6; ㊀㊀1 6. 6. ( 三. 解答题 : 共7 0 分) ( ) 解: 设数列 { 1 7. 1 a n } 的公差为d . ȵ a2 =3, S4 =1 6,ʑ a1 +d =3, 4 a1 +6 d =1 6. ������������������4 分 解得 d =2, a1 =1. ������������������6 分 ʑ a 2 n 1 . - n = 1 1 1 1 ( ) ) ������������������8 分 由题意 , 2 b . = ( - n = ( ) ( ) 2 n -1 2 n +1 22 n -1 2 n +1 ������ ������ ������ ʑTn = b b +b 1+ 2+ n 1é 1 1 1 1 1 ù ú ( ) ������ ������ ������ 1- ) = ê +( - ) + +( - ê 2ë û 3 3 5 2 n -1 2 n +1 ú 1 1 n ) ������������������1 1- . 2分 = ( = 2 2 n +1 2 n +1 ( ) 解: 记 从这 1 至多有 1 天是用水量超标 为 1 8. 1 2 天的数据中随机抽取 3 个 , 事件 A . 1 2 3 C C 1 6 8 4 2 4C 8 8 ������������������4 分 则 P( A )= 3 + 3 = = . 2 2 0 5 5 C C 1 2 1 2 1 ( ) 以这 1 易知其概率为 2 2 天的样本数据中用水量超标的频率作为概率 , . 3 随机变量 X 表示未来三天用水量超标的天数 , ʑ X 的所有可能取值为 0, 1, 2, 3. 1 1 2 k k 3 k - , 易知 X ~ B ( 3, ) P( X= k) k =0, 1, 2, 3. =C 3 ( )( ) , 3 3 3 8 4 2 1 ) ) ) ) ������������������8 分 则 P( X =0 P( X =1 P( X =2 P( X =3 = , = , = , = . 2 7 9 9 2 7 ʑ 随机变量 X 的分布列为
四川省成都市青羊区2015届中考数学一诊试题(含解析)汇总
四川省成都市青羊区2015届中考数学一诊试题一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.4的平方根是()A.±2B.2 C.±D.2.已知点P(3,﹣2)与点Q关于x轴对称,则Q点的坐标为()A.(﹣3,2)B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)3.今年3月5日,温家宝总理在《政府工作报告》中,讲述了六大民生新亮点,其中之一就是全部免除了细部地区和部分中部地区农村义务教育阶段约52 000 000名学生的学杂费.这个数据保留三个有效数字用科学记数法表示为()A.5.2×107B.52×108C.5.2×108D.5.20×1074.如图所示的几何体是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.5.如图,已知a∥b,∠1=40°,则∠2=()A.140°B.120°C.40° D.50°6.若一个多边形的内角和是900°,则这个多边形的边数是()A.5 B.6 C.7 D.87.不等式组的解集的情况为()A.x<﹣1 B.x<C.﹣1<x<D.无解8.在Rt△ABC中,∠C=90°,BC=2,AB=4,则cosA=()A.B.C.D.9.如图,图中正方形ABCD的边长为4,则图中阴影部分的面积为()A.16﹣4πB.32﹣8πC.8π﹣16 D.无法确定|10.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.4.75 B.4.8 C.5 D.4二、填空题(本大题共4个小题,每小题4分,共16分)11.如图,AB是⊙O的直径,点C在⊙O上,OD∥BC,若OD=1,则BC的长为.12.某班开展为班上捐书活动.共捐得科技、文学、教辅、传记四类图书,分别用A、B、C、D表示,如图是未制作完的捐书数量y(单位:百本)与种类x(单位:类)关系的条形统计图,若D类图书占全部捐书的10%,则D类图书的数量(单位:百本)是.13.写出一个图象位于二、四象限的反比例函数的表达式,y= .14.如图,AD是△ABC的高,AD=h,点R在AC边上,点S在AB边上,SR⊥AD,垂足为E.当SR=BC 时,则DE= .三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤.)15.(1)计算:(2)解方程:.16.先化简,后求值:,其中x=﹣.17.过原点的直线交反比例函数y=图象于A、B两点,BD⊥x轴于点D,AE⊥y轴于点E.问:(1)直线AB与直线ED的位置关系是什么?并说明理由.(2)四边形ABDE的面积等于多少?18.某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B1、B2、B3表示)中抽取一个,再在三个上机题(题签分别用代码J1、J2、J3表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地抽取一个题签.(1)用树状图或列表法表示出所有可能的结果;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的概率.19.如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=8m.(1)求∠CAE的度数;(2)求这棵大树折断前的高度?(结果精确到个位,参考数据: =1.4, =1.7, =2.4).20.在△ABC中,∠BAC=90°,AB<AC,∠PMQ是直角,且直角顶点M是BC边的中点,MN⊥BC交AC 于点N.PM边上动点P从点B出发沿射线BA以每秒2cm的速度运动,同时,MQ边上动点Q从点N 出发沿射线NC运动,设运动时间为t秒(t>0).(1)求证:△PBM∽△QNM;(2)探求BP2、PQ2、CQ2三者之间的数量关系,并说明理由.(3)若∠ABC=60°,BC=8cm.①求动点Q的运动速度;②设△APQ的面积为S(平方厘米),求S与t的函数关系式;一、填空(本大题5个小题,每小题4分,共20分.)21.如果关于x的一元二次方程x2﹣4x+3m=0有两个不相等的实数根,则m的取值范围是.22.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED 的最小值是.23.如图,已知一次函数y=x+1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点C,AB⊥x轴于点B,△AOB的面积为1,则AC的长为(保留根号).24.如图,已知A(2,0)、B(0,5),⊙C的圆心坐标为C(﹣1,0),半径为1,若D是⊙C上一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是.25.用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第2015个图形需根火柴棒.二、解答题(本大题共3个小题,共30分.解答题应写出必要的文字说明,证明过程或演算步骤.)26.据我们调查,成都市某家电商场今年一月至六月份销售型号为“JSQ20﹣H”的海尔牌热水器的(2)由于此型号的海尔牌热水器的价格适中,消费者满意度很高,商场计划八月份销售此型号的热水器72台,与上半年平均月销售量相比,七、八月销售此型号的热水器平均每月的增长率是多少?27.如图,已知⊙O的直径AB垂直于弦CD于点E,过C点作CG∥AD交AB的延长线于点G,连接CO 并延长交AD于点F,且CF⊥AD.(1)试问:CG是⊙O的切线吗?说明理由;(2)求证:E为OB的中点;(3)若AB=10,求CD的长.28.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OB=6,tan∠ABO=,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,若△CEF∽△COD,求t的值;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.2015年四川省成都市青羊区中考数学一诊试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.4的平方根是()A.±2B.2 C.±D.【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:A.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.已知点P(3,﹣2)与点Q关于x轴对称,则Q点的坐标为()A.(﹣3,2)B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】利用关于x轴对称的两点,横坐标相同,纵坐标互为相反数的性质来求解.【解答】解:根据轴对称的性质,得点P(3,﹣2)关于x轴对称的点的坐标为(3,2).故选:C.【点评】熟记关于x轴对称的两点,横坐标相同,纵坐标互为相反数,关于y轴对称的两点,横坐标互为相反数,纵坐标相同,关于原点对称的两点,横坐标和纵坐标均互为相反数.3.今年3月5日,温家宝总理在《政府工作报告》中,讲述了六大民生新亮点,其中之一就是全部免除了细部地区和部分中部地区农村义务教育阶段约52 000 000名学生的学杂费.这个数据保留三个有效数字用科学记数法表示为()A.5.2×107B.52×108C.5.2×108D.5.20×107【考点】科学记数法与有效数字.【专题】应用题.【分析】科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n 为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.而保留三个有效数字,要观察第4个有效数字,四舍五入,不足的补0.【解答】解:52 000 000=5.20×107.故选D.【点评】本题考查学生对科学记数法的掌握.科学记数法要求前面的部分是大于或等于1,而小于10,小数点向左移动7位,应该为5.20×107.4.如图所示的几何体是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】俯视图是从上面看到的图形.【解答】解:从上面看,左边和中间都是2个正方形,右上角是1个正方形,故选D.【点评】本题考查了三视图的知识,关键是找准俯视图所看的方向.5.如图,已知a∥b,∠1=40°,则∠2=()A.140°B.120°C.40° D.50°【考点】平行线的性质;对顶角、邻补角.【专题】计算题.【分析】如图:由a∥b,根据两直线平行,同位角相等,可得∠1=∠3;又根据邻补角的定义,可得∠2+∠3=180°,所以可以求得∠2的度数.【解答】解:∵a∥b,∴∠1=∠3=40°;∵∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.故选A.【点评】此题考查了平行线的性质:两直线平行,同位角相等以及邻补角互补.6.若一个多边形的内角和是900°,则这个多边形的边数是()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°,列式求解即可.【解答】解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选:C.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.7.不等式组的解集的情况为()A.x<﹣1 B.x<C.﹣1<x<D.无解【考点】解一元一次不等式组.【分析】由题意分别解出不等式组中的两个不等式,再根据求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)来求出不等式的解集.【解答】解:由移项整理,得x<﹣1,由3x﹣2<0移项,得3x<2,∴x<,∴不等式的解集:x<﹣1,故选A.【点评】主要考查了一元一次不等式组解集的求法,考不等式组解集的口诀,还考查学生的计算能力.8.在Rt△ABC中,∠C=90°,BC=2,AB=4,则cosA=()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据勾股定理求出AC,根据余弦的定义计算即可.【解答】解:∵∠C=90°,BC=2,AB=4,∴AC==2,∴cosA===,故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.9.如图,图中正方形ABCD的边长为4,则图中阴影部分的面积为()A.16﹣4πB.32﹣8πC.8π﹣16 D.无法确定|【考点】扇形面积的计算.【专题】压轴题.【分析】根据图形,知阴影部分的面积即为直径为4的圆面积的2倍减去边长为4的正方形的面积.【解答】解:根据图形,得阴影部分的面积=2×π×22﹣4×4=8π﹣16.故选C.【点评】此题关键是能够看出阴影部分的面积的整体计算方法.10.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.4.75 B.4.8 C.5 D.4【考点】切线的性质.【专题】压轴题.【分析】设QP的中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则有FD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形,FC+FD=PQ,由三角形的三边关系知,FC+FD>CD;只有当点F 在CD上时,FC+FD=PQ有最小值,最小值为CD的长,即当点F在直角三角形ABC的斜边AB的高CD 上时,PQ=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC÷AB=4.8.【解答】解:如图,设QP的中点为F,圆F与AB的切点为D,连接FD、CF、CD,则FD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,FC+FD=PQ,∴F C+FD>CD,∵当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,∴CD=BC•AC÷AB=4.8.故选:B.【点评】本题利用了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解.二、填空题(本大题共4个小题,每小题4分,共16分)11.如图,AB是⊙O的直径,点C在⊙O上,OD∥BC,若OD=1,则BC的长为 2 .【考点】三角形中位线定理;圆的认识.【分析】首先证明OD是△ABC的中位线,根据三角形的中位线定理即可求解.【解答】解:∵OD∥BC,且O是AB的中点.∴OD是△ABC的中位线.∴BC=2OD=2.故答案是:2.【点评】本题主要考查了三角形的中位线定理,正确证明OD是中位线是解题的关键.12.某班开展为班上捐书活动.共捐得科技、文学、教辅、传记四类图书,分别用A、B、C、D表示,如图是未制作完的捐书数量y(单位:百本)与种类x(单位:类)关系的条形统计图,若D类图书占全部捐书的10%,则D类图书的数量(单位:百本)是10本.【考点】条形统计图.【分析】首先设D地车票有x张,根据去D地的车票占全部车票的10%列方程即可求得去D地的车票的数量.【解答】解:设D类图书数量为x,则x=(x+20+40+30)×10%,解得x=10.即D类书有10本.故答案为:10本.【点评】此题考查条形统计图,关键是读懂统计图,会分析数据进行解答问题.13.写出一个图象位于二、四象限的反比例函数的表达式,y= 答案不唯一,如y=﹣x等.【考点】正比例函数的性质.【专题】开放型.【分析】根据正比例函数的系数与图象所过象限的关系,易得答案.【解答】解:根据正比例函数的性质,其图象位于第二、四象限,则其系数k<0;故只要给出k小于0的正比例函数即可;答案不唯一,如y=﹣x等.【点评】解题关键是掌握正比例函数的图象特点.14.如图,AD是△ABC的高,AD=h,点R在AC边上,点S在AB边上,SR⊥AD,垂足为E.当SR=BC时,则DE= h .【考点】相似三角形的判定与性质.【分析】根据AD⊥BC,SR⊥AD可得出SR∥BC,故△ASR∽△ABC,再由相似三角形的性质可得出AE 的长,进而可得出结论.【解答】解:∵AD⊥BC,SR⊥AD,SR=BC,AD=h,∴SR∥BC,∴△ASR∽△ABC,∴=,即=,解得AE=h,∴DE=AD﹣AE=h﹣h=h.故答案为: h.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形对应高的比等于相似比是解答此题的关键.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤.)15.(1)计算:(2)解方程:.【考点】实数的运算;零指数幂;负整数指数幂;解分式方程;特殊角的三角函数值.【专题】实数;分式方程及应用.【分析】(1)原式第一项利用负整数指数幂法则计算,第二项利用二次根式性质化简,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果;(2)分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=4﹣3+1﹣2×=4﹣3+1﹣2=0;(2)原方程可化为: =+,去分母得:1=3x﹣1+43x﹣1=﹣3,解得:x=﹣,经检验x=﹣是原方程的解.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.先化简,后求值:,其中x=﹣.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=+•=+•=+=,当x=﹣时原式==﹣=﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.过原点的直线交反比例函数y=图象于A、B两点,BD⊥x轴于点D,AE⊥y轴于点E.问:(1)直线AB与直线ED的位置关系是什么?并说明理由.(2)四边形ABDE的面积等于多少?【考点】反比例函数与一次函数的交点问题.【分析】(1)根据题意得出A、B关于原点对称,得出AE=OD,AE∥OD,从而证得四边形OAED是平行四边形,即可证得AB∥ED.(2)根据反比例函数系数k的几何意义即可求得.【解答】解:(1)AB∥ED;理由如下:∵过原点的直线交反比例函数y=图象于A、B两点,∴A、B关于原点对称,∴AE=OD,∵AE⊥y轴于点E.∴AE∥x轴,∴AE∥OD,∴四边形OAED是平行四边形,∴AB∥ED.(2)∵四边形OAED是平行四边形,∴S△AOE=S△EOD,根据反比例函数系数k的几何意义:S△AOE=S△BOD=×12=6,∴四边形ABDE的面积=3×6=18.【点评】本题考查了反比例函数和一次函数的交点问题,平行四边形的判定和性质以及反比例函数系数k的几何意义.18.某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B1、B2、B3表示)中抽取一个,再在三个上机题(题签分别用代码J1、J2、J3表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地抽取一个题签.(1)用树状图或列表法表示出所有可能的结果;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中的树状图可求得小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的情况,然后直接利用概率公式求解即可求得答案.【解答】解:(1)画树状图:则共有9种等可能的结果;(2)∵由树状图或表可知,所有可能的结果共有9种,其中笔试题和上机题的题签代码下标为一奇一偶的有4种,∴题签代码下标为一奇一偶的概率是.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=8m.(1)求∠CAE的度数;(2)求这棵大树折断前的高度?(结果精确到个位,参考数据: =1.4, =1.7, =2.4).【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)延长BA交EF于点G.根据三角形内角和定理求出∠CAE的度数;(2)过点A作AE⊥CD,根据余弦和正弦的概念分别求出DH和AH的长,根据等腰直角三角形的性质计算即可.【解答】解:(1)延长BA交EF于点G.在Rt△AGE中,∠E=23°,∴∠GAE=67°,又∵∠BAC=38°,∴∠CAE=180°﹣67°﹣38°=75°.(2)过点A作AE⊥CD,垂足为H.在△ADH中,∠ADC=60°,AD=8,cos∠ADC=,∴DH=4,sin∠ADC=,∴.在Rt△ACH中,∠C=180°﹣75°﹣60°=45°,∴,.∴(米).答:这棵大树折断前高约20米.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,正确标注坡角、倾斜角、灵活运用锐角三角函数的概念是解题的关键,注意特殊角的三角函数值的应用.20.在△ABC中,∠BAC=90°,AB<AC,∠PMQ是直角,且直角顶点M是BC边的中点,MN⊥BC交AC 于点N.PM边上动点P从点B出发沿射线BA以每秒2cm的速度运动,同时,MQ边上动点Q从点N 出发沿射线NC运动,设运动时间为t秒(t>0).(1)求证:△PBM∽△QNM;(2)探求BP2、PQ2、CQ2三者之间的数量关系,并说明理由.(3)若∠ABC=60°,BC=8cm.①求动点Q的运动速度;②设△APQ的面积为S(平方厘米),求S与t的函数关系式;【考点】相似形综合题.【专题】综合题;图形的相似.【分析】(1)根据MQ垂直于MP,MN垂直于BC,利用等式的性质得到一对角相等,再利用同角的余角相等得到一对角相等,利用两角相等的三角形相似即可得证;(2)PQ2=BP2+CQ2,理由如下:如图1,延长QM至D,使MD=MQ,连结BD、PD,利用SAS得到三角形BDM与三角形CQM全等,利用全等三角形的对应角相等,对应边相等得到一对内错角相等,进而确定出BD与CQ平行且相等,利用两直线平行同旁内角互补,得到∠PBD为直角,利用勾股定理列出关系式,等量代换即可得证;(3)由M为BC中点,求出CM的长,在直角三角形MNC中,利用锐角三角函数定义求出MN的长,①设Q点的运动速度为vcm/s,如图1,当0≤t<2时,由(1)知△PBM∽△QNM,由相似得比例求出Q速度,如图2,易知当t≥2时,Q的速度;②由AC﹣NC表示出AN,如图1,当0≤t<2时,根据AP,AQ,表示出S;如图2,当t≥2时,同理表示出AP,AQ,进而表示出S即可.【解答】(1)证明:如图1,∵MQ⊥MP,MN⊥BC,∴∠PMB+∠PMN=90°,∠QMN+∠PMN=90°,∴∠PMB=QMN,∵∠PBM+∠C=90°,∠QNM+∠C=90°,∴∠PBM=∠QNM,∴△PBM∽△QNM;(2)解:PQ2=BP2+CQ2,理由如下:如图1,延长QM至D,使MD=MQ,连结BD、PD,∵BC、DQ互相平分,∴BM=CM,DM=QM,在△BDM和△CQM中,,∴△BDM≌△CQM(SAS),∴∠CQM=∠BDM,BD=CQ,∴BD∥CQ,∵∠BAC=90°,∴∠PBD=90°,∴PD2=BP2+BD2=BP2+CQ2,∵PM垂直平分DQ,∴PQ=PD,则PQ2=BP2+CQ2;(3)解:∵BC=8c m,M为BC的中点,∴BM=CM=4cm,∵∠ABC=60°,∠C=30°,∴MN=CM=cm;①设Q点的运动速度为vcm/s,如图1,当0≤t<2cm时,由(1)知△PBM∽△QNM,∴=,即=,∴v=cm/s;如图2,易知当t≥2时,v=cm/s,综上所述,Q点运动速度为cm/s;②∵BC=8cm,AB=4cm,AC=4cm,NC=cm,∴AN=AC﹣NC=4﹣=cm,∴如图1,当0≤t<2cm时,AP=(4﹣2t)cm,AQ=AN+NQ=(+t)cm,∴S=AP•AQ=(4﹣2t)(+t)=(﹣t2+)cm2;如图2,当t≥2cm时,AP=(2t﹣4)cm,AQ=AN+NQ=(+t)cm,∴S=AP•AQ=(2t﹣4)(+t)=(t2﹣)cm2.【点评】此题属于相似形综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,以及勾股定理,利用了分类讨论的思想,熟练掌握相似三角形的判定与性质是解本题的关键.一、填空(本大题5个小题,每小题4分,共20分.)21.如果关于x的一元二次方程x2﹣4x+3m=0有两个不相等的实数根,则m的取值范围是m<.【考点】根的判别式.【分析】根据题意一元二次方程有两不相等实根,则有△=b2﹣4ac=16﹣12m>0,然后解得m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣4x+3m=0有两个不相等的实数根,∴△>0,即△=16﹣12m>0,∴m<,故答案为:m<.【点评】本题主要考查了利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.22.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是.【考点】轴对称-最短路线问题.【专题】压轴题;动点型.【分析】首先确定DC′=DE+EC′=DE+CE的值最小.然后根据勾股定理计算.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于E,连接CE,此时DE+CE=DE+EC′=DC′的值最小.连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=2,∵D是BC边的中点,∴BD=1,根据勾股定理可得DC′==.故答案为:.【点评】此题考查了线路最短的问题,确定动点E何位置时,使EC+ED的值最小是关键.23.如图,已知一次函数y=x+1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点C,AB⊥x轴于点B,△AOB的面积为1,则AC的长为(保留根号).【考点】反比例函数与一次函数的交点问题;反比例函数系数k的几何意义;勾股定理.【专题】压轴题.【分析】由于△AOB的面积为1,根据反比例函数的比例系数k的几何意义可知k=2,解由y=x+1与联立起来的方程组,得出A点坐标,又易求点C的坐标,从而利用勾股定理求出AC的长.【解答】解:∵点A在反比例函数的图象上,AB⊥x轴于点B,△AOB的面积为1,∴k=2.解方程组,得,.∴A(1,2);在y=x+1中,令y=0,得x=﹣1.∴C(﹣1,0).∴AB=2,BC=2,∴AC==2.【点评】本题考查函数图象交点坐标的求法及反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.24.如图,已知A(2,0)、B(0,5),⊙C的圆心坐标为C(﹣1,0),半径为1,若D是⊙C上一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是5﹣.【考点】一次函数综合题.【分析】△ABE的BE边上高为OA=2,当AD与⊙C相切时,BE最短,此时,△ABE的面积最小,由勾股定理求相切时,AD的长,利用三角形相似求OE,再求BE,由三角形面积公式求面积的最小值.【解答】解:如图,当AD与⊙C相切于D点时,△ABE的面积最小,连接CD,则△ACD为直角三角形,由勾股定理,得AD===2,∵∠CDA=∠EOA=90°,∠CAD=∠EAO,∴△CAD∽△EAO,∴=,即=,解得OE=,BE=OB﹣OE=5﹣,S△ABE=×(5﹣)×2=5﹣.故答案为:5﹣.【点评】本题考查了一次函数的综合运用.关键是根据动点的变化情况,找出使△ABE的面积最小时,D点的位置,利用相似比求OE.25.用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第2015个图形需12096 根火柴棒.【考点】规律型:图形的变化类.【分析】由图可知:第一个图形用了12根火柴;即12=6×(1+1);第二个图形用了18根火柴;即18=6(2+1);…由此得出搭第n个图形需6n+6根火柴.进一步代入求得答案即可.【解答】解:∵搭第1个图形需12根火柴;搭第2个图形需12+6×1=18根;搭第3个图形需12+6×2=24根;…∴搭第n个图形需12+6(n﹣1)=6n+6根;∴搭第2015个图形需2015×6+6=12096根火柴棒.故答案为:12096.【点评】此题考查图形的变化规律,找出图形的变化规律:后面的图形总比前面的图形多6根火柴棒,由此规律解决问题.二、解答题(本大题共3个小题,共30分.解答题应写出必要的文字说明,证明过程或演算步骤.)26.据我们调查,成都市某家电商场今年一月至六月份销售型号为“JSQ20﹣H”的海尔牌热水器的(2)由于此型号的海尔牌热水器的价格适中,消费者满意度很高,商场计划八月份销售此型号的热水器72台,与上半年平均月销售量相比,七、八月销售此型号的热水器平均每月的增长率是多少?【考点】一元二次方程的应用;算术平均数;中位数;众数.【专题】增长率问题.【分析】(1)根据平均数、中位数、众数的概念求解;(2)根据增长率问题的公式:6月份生产台数×(1+增长率)n=72,列方程求解.【解答】解:(1),中位数为:,众数为:50;(2)设七、八月份销售量的平均增长率为x,依题意,得:50(1+x)2=72,解得:x1=0.2,x2=﹣(不合题意,舍去).答:七、八月销售此型号的热水器平均每月的增长率是20%.【点评】考查了一元二次方程的应用及有关统计量的意义,解题的关键是能够了解增长率问题的解法,难度不大.27.如图,已知⊙O的直径AB垂直于弦CD于点E,过C点作CG∥AD交AB的延长线于点G,连接CO并延长交AD于点F,且CF⊥AD.(1)试问:CG是⊙O的切线吗?说明理由;(2)求证:E为OB的中点;(3)若AB=10,求CD的长.【考点】切线的判定;勾股定理;相似三角形的判定与性质.【分析】(1)由CG∥AD,CF⊥AD,易得CF⊥CG,即可证得CG是⊙O的切线;(2)首先连接BD,易证得△BDE∽△OCE,然后由相似三角形的对应边成比例,证得E为OB的中点;(3)首先由E为OB的中点,AB=10,求得OE的长,然后由勾股定理求得CE的长,继而求得答案.【解答】(1)解:CG是⊙O的切线.理由:∵CG∥AD,∴∠FCG+∠CFD=180°,∵CF⊥AD,∴∠CFD=90°,∴∠FCG=90°,即OC⊥CG,又∵OC为⊙O的半径,∴CG是⊙O的切线;(2)证明:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,又∵∠AFO=90°,∴∠ADB=∠AFO,∴CF∥BD,∴△BDE∽△OCE,∴,∵AE⊥CD,且AE过圆心O,∴CE=DE,∴BE=OE,∴点E为OB的中点;(3)解:∵AB=10,∴OC=AB=5,又∵BE=OE,∴OE=,∵AB⊥CD,∴CE=,∴CD=2CE=.【点评】此题考查了切线的性质与判定、勾股定理、垂径定理以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.28.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OB=6,tan∠ABO=,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,若△CEF∽△COD,求t的值;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.【考点】二次函数综合题.【专题】综合题.。
成都市2015-2016学年度“一诊”数学模拟试题
一诊复习试题(一)一、选择题(共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{}0232=+-=x x x A ,{}log 42x B x ==,则A B ⋂=( )A .{}2,1,2-B .{}2,1C .{}2,2-D .{}2 2.已知R a ∈,则“3=a ”是“复数i a z +-=32为纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.如图,函数)(x f y =的图像在点P (5,)5(f )处的切线方程为8+-=x y ,则(5)(5)f f '+=( )A .21B .1C .2D .04.设函数⎩⎨⎧<≥=0),(0,)(x x g x x x f ,若函数)(x f 是奇函数,则)4(-g 的值是( )A .2-,B .21-C .41- D .2 5.已知向量)4,3(-=OA ,)3,6(-=OB ,)1,(+=m m OC ,若AB ∥OC ,则实数m 的值为( ) A .23-B .41- C .21 D .236.某圆柱被一平面所截得到的几何体如图所示,若该几何的正视 图是等腰直角三角形,俯视图是圆,则它的侧视图是( )A .B .C .D .7.已知函数))(42sin()42sin(2)(R x x x x f ∈+⋅-=ππ,下面结论错误的是( ) A .函数)(x f 的最小正周期为π2 B .函数)(x f 在区间[0,]2π上是增函数C .函数)(x f 的图像关于直线0=x 对称D .函数)(x f 是奇函数8.圆C :822=+y x 上有两个相异的点到直线5-=x y 的距离都为d ,则d 的取值范围是( )A .)29,21(B .19[,]22C .)229,22(D .9.(理科做...)直线l与双曲线C:)0,0(12222>>=-babyax交于A、B两点,M是线段AB 的中点,若l与OM(O为坐标原点)的斜率的乘积等于1,则此双曲线的离心率为()A.2 B.2C.3 D.3(文.科做..)若a、b表示不同的直线,α、β表示两个不同的平面,给出如下四个命题:①“a、b不相交”是直线a、b是异面直线“的必要不充分条件”;②“α⊥a”的充要条件是“直线a垂直于平面α内的无数条直线”;③“a∥α”的充分不必要条件是“a 上存在两点到平面α的距离相等”;④“α∥β”的必要不充分条件是“存在aα⊂,bα⊂且a∥β,b∥β”.其中真命题是()A.①B.③④C.②D.①②10.给出四幅图像,则函数21()ln2f x x x=-的部分图像大致是()A.B.C.D.二、填空题(本大题共4个小题,每小题5分,共20分。
四川省成都市2015届高三第一次诊断适应性考试数学(理)试卷
四川省成都市2015届高三第一次诊断适应性考试数学(理)试卷一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1、设集合}021|{≤-+=x x x M ,}212|{>=x x N ,则M N =( )A 、),1(+∞-B 、)2,1[-C 、)2,1(-D 、]2,1[- 2、下列有关命题的说法正确的是( )A 、命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”.B 、“1x =-” 是“2560x x --=”的必要不充分条件.C 、命题“若x y =,则sin sin x y =”的逆否命题为真命题.D 、命题“x ∃∈R 使得210x x ++<”的否定是:“x ∀∈R 均有210x x ++<”. 3、方程()()2ln 10,0x x x+-=>的根存在的大致区间是( ) A 、()0,1 B 、()1,2 C 、()2,e D 、()3,4 4、执行上图所示的程序框图,则输出的结果是( ) A 、5B 、7C 、9D 、115、设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中错误的是( ) A 、若m α⊥,//m n ,//n β,则αβ⊥ B 、若αβ⊥,m α⊄,m β⊥,则//m α C 、若m β⊥,m α⊂,则αβ⊥ D 、若αβ⊥,m α⊂,n β⊂,则m n ⊥6、二项式102)2(x x +展开式中的常数项是( ) A 、180 B 、90 C 、45 D 、360 7、设a 、b 都是非零向量,下列四个条件中,一定能使0||||a b a b +=成立的是( )A 、2a b =B 、//a bC 、13a b =- D 、a b ⊥8、已知O 是坐标原点,点()1,0A -,若()y x M ,为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,则 OA OM+的取值范围是( )A 、[]51,B 、[]52,C 、[]21,D 、[]50, 9、已知抛物线C :x 2=4y 的焦点为F ,直线x-2y+4=0与C 交于A 、B 两点,则sin ∠AFB=( ) A 、54 B 、53 C 、43 D 、5510、已知函数)(x f y =是定义在R 上的偶函数,对于任意R x ∈都)3()()6(f x f x f +=+成立;当]3,0[,21∈x x ,且21x x ≠时,都有0)()(2121>--x x x f x f .给出下列四个命题:①0)3(=f ;②直线6-=x 是函数)(x f y =图象的一条对称轴;③函数)(x f y =在]6,9[--上为增函数;④函数)(x f y =在]2014,0[上有335个零点.其中正确命题的个数为( )A .1B .2C .3D .4 二、填空题:(本大题共5小题,每小题5分,共25分.)11、若复数z 满足(34)43i z i -=+,则z 的虚部为 ; 12、已知某四棱锥,底面是边长为2的正方形,且俯视图如右图所示. 若该四棱锥的侧视图为直角三角形,则它的体积为 ;13、各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生不同的填报专业志愿的方法有 种。
【解析】四川省成都市2015届高中毕业班第一次诊断性检测数学理试题
四川省成都市2015届高中毕业班第一次诊断性检测数学试题(理科)【试卷综述】本试卷是高三理科试卷,以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养的考查.知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:集合、不等式、向量、三视图、导数、简单的线性规划、直线与圆、数列、充要条件等;考查学生解决实际问题的综合能力,是份较好的试卷。
【题文】一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】1.设全集{|0}=≥U x x ,集合{1}=P ,则U P =ð (A )[0,1)(1,)+∞ (B )(,1)-∞(C )(,1)(1,)-∞+∞ (D )(1,)+∞【知识点】集合的补集 A1【答案】【解析】A 解析:因为{|0}=≥U x x ,{1}=P ,所以U P =ð[0,1)(1,)+∞,故选A.【思路点拨】由补集运算直接计算可得.【题文】2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A ) (B ) (C ) (D ) 【知识点】三视图 G2 【答案】【解析】C 解析:由题意可得,A 是正方体,B 是三棱柱,C 是半个圆柱,D 是圆柱,C 不能满足正视图和侧视图是两个全等的正方形,故选C. 【思路点拨】由三视图的基本概念即可判断.【题文】3.已知复数z 43i =--(i 是虚数单位),则下列说法正确的是(A )复数z 的虚部为3i - (B )复数z 的虚部为3(C )复数z 的共轭复数为z 43i =+ (D )复数z 的模为5 【知识点】复数运算 L4 【答案】【解析】D 解析:由复数概念可知虚部为-3,其共轭为43i -+,故选D. 【思路点拨】由复数概念直接可得.【题文】4.函数31,0()1(),03x x x f x x ⎧+<⎪=⎨≥⎪⎩的图象大致为(A ) (B ) (C ) (D ) 【知识点】函数的图像 B6 B8【答案】【解析】A 解析:当0x <时,将3y x =的图像向上平移一个单位即可;当0x ≥时,取1()3xy =的图像即可,故选A.【思路点拨】由基本函数3y x =和1()3xy =的图像即可求得分段函数的图像.【题文】5.已知命题p :“若22≥+x a b ,则2≥x ab ”,则下列说法正确的是( ) (A )命题p 的逆命题是“若22<+x a b ,则2<x ab ” (B )命题p 的逆命题是“若2<x ab ,则22<+x a b ” (C )命题p 的否命题是“若22<+x a b ,则2<x ab ” (D )命题p 的否命题是“若22x a b ≥+,则2<x ab ”【知识点】四种命题 A2 【答案】【解析】C 解析:“若p 则q ”的逆命题是“若q 则p ”,否命题是“若p ⌝则q ⌝”,故选C. 【思路点拨】将原命题的条件和结论互换位置即可得到逆命题,分别写出条件和结论的否定为否命题. 【题文】6.若关于x 的方程240+-=x ax 在区间[2,4]上有实数根,则实数a 的取值范围是( ) (A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3] 【知识点】二次函数 B5【答案】【解析】B 解析:因为240+-=x ax 在区间[2,4]上有实数根,令2(x)4f x ax =+-所以(2)(4)0f f ≤ ,即()21240a x +≤,30a ∴-≤≤ ,故选B.【思路点拨】二次函数在给定区间上根的分布问题,只需找准条件即可,不能丢解.【题文】7.已知F 是椭圆22221+=x y a b(0>>a b )的左焦点,A 为右顶点,P 是椭圆上一点,⊥PF x轴.若14=PF AF ,则该椭圆的离心率是( ) (A )14 (B )34 (C )12(D【知识点】椭圆的几何性质 H5【答案】【解析】B 解析:Rt PFA 中,222|PF ||FA ||PA |+=,||c FA a =+,2|PF |b a=, 又14=PF AF ,21(c)4b a a =+,得22430c ac a +-=,34c a ∴=,故选B.【思路点拨】Rt PFA 中, ||c FA a =+,2|PF |b a=,且14=PF AF ,得22430c ac a +-=,可求离心率.【题文】8.已知m ,n 是两条不同直线,α,β是两个不同的平面,且//m α,n ⊂β,则下列叙述正确的是(A )若//αβ,则//m n (B )若//m n ,则//αβ (C )若n α⊥,则m β⊥ (D )若m β⊥,则αβ⊥ 【知识点】线线关系,线面关系 G4 G5【答案】【解析】D 解析:A 中m ,n 可能异面;B 中α,β可能相交;C 中可能m β⊂或//m β,故选D.【思路点拨】熟悉空间中线线,线面关系的判断,逐一排除即可. 【题文】9.若552sin =α,1010)sin(=-αβ,且],4[ππα∈,]23,[ππβ∈,则αβ+的值是 (A )74π (B )94π (C )54π或74π (D )54π或94π【知识点】两角和与差的正弦、余弦 C7【答案】【解析】A 解析:()2αββαα+=-+,552sin =α,],4[ππα∈cos 2α∴=[,]42ππα∈,又1010)sin(=-αβ,[,]42ππα∈,]23,[ππβ∈,cos()βα∴-=sin()sin[()2]αββαα+=-+sin()cos 2cos()sin 2βααβαα=-+-((=+=, 又5[,2]4παβπ+∈,所以74παβ+=,故选A. 【思路点拨】利用角的变换()2αββαα+=-+,得sin()sin[()2]αββαα+=-+ sin()cos 2cos()sin 2βααβαα=-+-即可求解.【题文】10.如图,已知正方体1111ABCD A B C D -棱长为4,点H 在棱1AA 上,且11HA =.在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长.则当点P 运动时, 2HP 最小值是( )(A )21 (B )22 (C )23 (D )25 【知识点】点、线、面间的距离计算 G11【答案】【解析】B 解析:点P 到平面11CDD C 距离就是点P 到直线1CC 的距离,所以点P 到点F 的距离等于点P 到直线1CC 的距离,因此点P 的轨迹是以F 为焦点,以1CC 为准线的抛物线,在面11A ABB 中作1HK BB ⊥于K ,连接KP ,在Rt HKP 中,222|HK ||PK ||HP |+=,而|HK |4=,要想2|HP |最小,只要|K |P 最小即可,由题意易求得min 2|K |6P =,所以2|HP |最小值为22,故选B.【思路点拨】注意到点P 到点F 的距离等于点P 到直线1CC 的距离,即点P 的轨迹是以F 为焦点,以1CC 为准线的抛物线,在Rt HKP 中,222|HK ||PK ||HP |+=,而|HK |4=,要想2|HP |最小,只要|K |P 最小即可.【题文】二、填空题:本大题共5小题,每小题5分,共25分.【题文】11.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹角的大小为__________. 【知识点】向量的夹角 F3 【答案】【解析】090解析:a b a b +=-22||||a b a b ∴+=-,即0a b =,所以a b ⊥,a ,b 的夹角为090,故答案为090.【思路点拨】由a b a b +=-可得0a b =,所以夹角为090.【题文】12.二项式261()x x-的展开式中含3x 的项的系数是__________.(用数字作答) 【知识点】二项式定理 J3【答案】【解析】-20解析:2r6r6r 361661()()(1)r r r r T C x C x x---+=-=-,求展开式中含3x 的项的系数,此时3633r r -=∴=,因此系数为6r 366(1)120r C C --=-⨯=-,故答案为-20.【思路点拨】利用通项2r6r6r 361661()()(1)r r r r T C x C x x---+=-=-,可求r,即可求出系数.【题文】13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B ,则∆ABC 的面积=S __________.【知识点】余弦定理,正弦定理 C8【答案】2222cos b a c ac B =+-,得222116444a a a =+-⨯,2,4a c ∴==.面积11sin 2422S ac B ==⨯⨯=【思路点拨】【思路点拨】由余弦定理2222cos b a c ac B =+-可求24a =,再利用1sin 2S ac B =即可. 【题文】14.已知定义在R 上的奇函数()f x ,当0x ≥时,3()log (1)=+f x x .若关于x 的不等式2[(2)](22)f x a a f ax x ++≤+的解集为A ,函数()f x 在[8,8]-上的值域为B ,若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________. 【知识点】充分、必要条件 A2【答案】【解析】[2,0]-解析:因为0x ≥时,奇函数3()log (1)=+f x x ,所以函数()f x 在R 上为增函数,2[(2)](22)f x a a f ax x ++≤+,2(2)22x a a ax x ∴++≤+,即()222(2)0x a x a a -+++≤,2a x a ∴≤≤+,{|2}A x a x a =≤≤+,{|22}B x x =-≤≤,因为“x A ∈”是“x B ∈”的充分不必要条件,所以A B ⊄,即22022a a a ≥-⎧∴-≤≤⎨+≤⎩,故答案为[2,0]-. 【思路点拨】因为“x A ∈”是“x B ∈”的充分不必要条件,所以A B ⊄,然后根据题意分别求出集合,A B 即可.【题文】15.已知曲线C :22y x a =+在点n P (n (0,a n >∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且00=x y .给出以下结论: ①1a =;②当*n ∈N 时,n y 的最小值为54;③当*n ∈N 时,n k <;④当*n ∈N 时,记数列{}n k 的前n 项和为n S ,则1)n S . 其中,正确的结论有 (写出所有正确结论的序号) 【知识点】命题的真假判断A2【答案】【解析】①③④解析:因为曲线C :22y x a =+,所以()2'2'2y yy ==,即1'y k y === ,n k =,点n P ()n (0,a n >∈N )处的切线n l 为)y x n =-,,n n x n a y ∴=--= ,①00|x ||y |=,0,|||1n a a ∴=-=∴= ,正确;②1122n y ===12=112≥⨯=,所以n y 的最小值为1,错误;③012n <≤,∴> <亦即n k <,正确;④n k ==121n n n ++=+,22(2n 1)<+,<,<=,因为n k =,所以122(21321)n n S k k k n n =+++<-+-+++- 1), 故正确.【思路点拨】依题意,分别求出n k =, ,n n x n a y =--=,依次进行判断即可. 【题文】三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.【题文】16.(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球. (Ⅰ)求恰有一个黑球的概率; (Ⅱ)记取出红球的个数为随机变量X ,求X 的分布列和数学期望()E X . 【知识点】古典概型,分布列 K2 K6 【答案】【解析】(Ⅰ)15(Ⅱ)X 的分布列为:X 的数学期望1310121555=⨯+⨯+⨯=EX (Ⅰ)记“恰有一个黑球”为事件A ,则21243641()205⋅===C C P A C .……………………………………………………4分 (Ⅱ)X 的可能取值为0,1,2,则343641(0)205====C P X C ………………………………………………………2分122436123(1)205⋅====C C P X C …………………………………………………2分 1(2)()5===P X P A ……………………………………………………2分 ∴X 的分布列为∴X 的数学期望1310121555=⨯+⨯+⨯=EX .………………………………2分【思路点拨】)X 的可能取值为0,1,2,再分别求出(0)P X =,(1)P X =,(2)P X =即可.【题文】17.(本小题满分12分)如图,ABC ∆为正三角形,EC ⊥平面ABC ,//DB EC ,F 为EA 的中点,2EC AC ==,1BD =. (Ⅰ)求证:DF //平面ABC ;(Ⅱ)求平面DEA 与平面ABC 所成的锐二面角的余弦值.【知识点】线面平行,空间向量解决线面位置关系 G4 G10 【答案】【解析】 (Ⅰ)证明:作AC 的中点O ,连结BO .在∆AEC 中,//=FO 12EC ,又据题意知,//=BD 12EC . ∴//=FO BD ,∴四边形FOBD 为平行四边形. ∴//DF OB ,又⊄DF 平面ABC ,⊂OB 平面ABC .∴//DF 平面ABC .……………………………………4分 (Ⅱ)∵//FO EC ,∴⊥FO 平面ABC .在正∆ABC 中,⊥BO AC ,∴,,OA OB OF 三线两两垂直. 分别以,,OA OB OF 为,,z x y 轴,建系如图.则(1,0,0)A ,(1,0,2)-E,D . ∴(2,0,2)=-AE,(1=-AD . 设平面ADE 的一个法向量为1(,,z)=x y n ,则110⎧⋅=⎪⎨⋅=⎪⎩AE AD n n,即2200-+=⎧⎪⎨-++=⎪⎩x z x z ,令1=x ,则1,0==z y .∴平面ADE 的一个法向量为1(1,0,1)=n . 又平面ABC 的一个法向量为2(0,0,1)=n .∴121212,2⋅>===cos <n n n n n n . ∴平面DEA 与平面ABC.…………………………8分 【思路点拨】(Ⅰ)求证线面平行,可以利用线线平行,本题很容易找出//DF OB ; (Ⅱ)分别求平面DEA 与平面ABC 的法向量1(1,0,1)=n 2(0,0,1)=n ,∴121212,2⋅>===cos <n n n n n n ,即可求出余弦值. 【题文】18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n S a =-;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T .【知识点】等差数列,等比数列【答案】【解析】(Ⅰ)2n n a =,21n b n =-(Ⅱ)1(23)24+=-+n n T n (Ⅰ)∵22n n S a =- ①当2≥n 时,1122--=-n n S a ②①-②得,122-=-n n n a a a ,即12-=n n a a (2≥n ). 又当1≥n 时,1122=-S a ,得12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .…………………………………4分 又由题意知,11b =,12n n b b +=+,即12+-=n n b b ∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .………………………2分 (Ⅱ)(Ⅱ)由(Ⅰ)知,(21)2=-n n c n …………………………………………1分 ∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n ③231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由③-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n ……………1分23112(12222)(21)2-+-=++++--⋅n n n n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n ……………………………………………1分 ∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n …………………………………3分【思路点拨】(Ⅰ)由条件直接求解即可;(Ⅱ)数列(21)2=-nn c n ,为差比数列,利用错位相减法直接求解. 【题文】19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象.(Ⅰ)根据图象,求A ,ω,ϕ,B 的值;(Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:【知识点】函数模型及其应用B10 【答案】【解析】(Ⅰ)1,22A B == ,12T =,6πω=(Ⅱ)11.625时(Ⅰ)由图知12T =,6πω=.………………………………………………1分2125.15.22m i n m a x =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分 ∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f . (Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t .又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t .又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分……………………………………………1分∴应该在11.625时停产.……………………………………………………………1分(也可直接由0)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产).【思路点拨】(Ⅰ)由三角函数图像可直接求)1,22A B == ,12T =,6πω=,代点(0,2.5)可求2πϕ=;(Ⅱ)理解二分法定义即可求解本题.【题文】20.(本小题满分13分) 已知椭圆Γ:12222=+byx (0>>b a )的右焦点为)0,22(,且椭圆Γ上一点M 到其两焦点12,F F的距离之和为(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:(l y x m m =+∈R)与椭圆Γ交于不同两点A ,B ,且AB =0(,2)P x 满足=PA PB,求0x 的值.【知识点】直线与椭圆H8【答案】【解析】(Ⅰ)141222=+yx (Ⅱ)0x 的值为3-或1- (Ⅰ)由已知2=a =a ,又=c∴2224=-=b a c . ∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分 ∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m ,得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321m x x -=+, 2123124-⋅=m x x .∴12=-==AB x又由AB =231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点.设AB 的中点为),(00y x E ,则432210m x x x -=+=,400m m x y =+=, ①当2m =时,31(,)22E - ∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--. 令2=y ,得03x =-.…………………………………………………………………2分②当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分综上所述,0x 的值为3-或1-.【思路点拨】联立直线与椭圆,可得2m =±,因为=PA PB ,所以点P 为线段AB 的中垂线与直线2=y 的交点,分情况讨论即可求0x .【题文】21.(本小题满分14分)已知函数2()ln mx f x x =-,2()emx mx g x m =-,其中m ∈R 且0m ≠.e 2.71828=为自然对数的底数.(Ⅰ)当0m <时,求函数()f x 的单调区间和极小值; (Ⅱ)当0m >时,若函数()g x 存在,,a b c 三个零点,且a b c <<,试证明:10e a b c -<<<<<;(Ⅲ)是否存在负数m ,对1(1,)x ∀∈+∞,2(,0)x ∀∈-∞,都有12()()f x g x >成立?若存在,求出m 的取值范围;若不存在,请说明理由.【知识点】函数综合B14【答案】【解析】(Ⅰ)()2f x me =-极小值(Ⅱ)略(Ⅲ)(,(21)∈-∞-+m e e 解:(Ⅰ)2222)(ln )ln 21()(ln ln 2)(ln 1ln 2)(x x mx x x x x m x x x x x m x f -⋅=-=⋅--='(0>x 且1≠x ).∴由0)(>'x f ,得21e x >;由0)(<'x f ,得210e x <<,且1≠x .…………………1分∴函数)(x f的单调递减区间是(0,1),(1,单调递增区间是),(+∞e .……………2分 ∴me e f x f 2)()(-==极小值.……………………………………………………………1分 (Ⅱ)222(2)(),(0)mx mx mx mx mxe mx e m mx mx g x m e e--'=-=>. ∴()g x 在(,0)-∞上单调递增,2(0,)m 上单调递减,2(,)m +∞上单调递增. ∵函数()g x 存在三个零点. ∴20(0)02402()00>⎧>⎧⎪⎪⎪⇒⇒<<⎨⎨<⎪⎪-<⎩⎪⎩m g m e g m m m e . ∴02<<me …………………………………………………………………………………3分由(1)(1)0-=-=-<m m g m me m e . ∴22()(1)0=-=-<em em me e g e m m e e.……………………………………………………1分 综上可知,()0,(0)0,(1)0<>-<g e g g ,结合函数()g x 单调性及a b c <<可得:(1,0),(0,),(,)a b e c e ∈-∈∈+∞.即10a b e c -<<<<<,得证.…………………………………………………………1分(III )由题意,只需min max ()()>f x g x ∵2(12ln )()(ln )-'=mx x f x x 由0<m ,∴函数()f x 在12(1,)e 上单调递减,在12(,)e +∞上单调递增. ∴12min ()()2==-f x f e me .………………………………………………………………2分 ∵(2)()-'=mx mx mx g x e由0<m ,∴函数()g x 在2(,)m -∞上单调递增,2(,0)m 上单调递减. ∴max 224()()==-g x g m m e m.…………………………………………………………2分 ∴242->-me m e m ,不等式两边同乘以负数m ,得22242-<-m e m e.∴224(21)e m e+>,即224(21)m e e >+.由0<m ,解得(21)m e e <-+. 综上所述,存在这样的负数(,)(21)∈-∞-+m e e 满足题意.……………………………1分 【思路点拨】(Ⅰ)2(12ln )()(ln )mx x f x x ⋅-'=,由0)(>'x f 和0)(<'x f ,求得其单调区间,进而可求极值 ;(Ⅱ)(2)(),(0)mx mx mx g x m e -'=>,∴()g x 在(,0)-∞上单调递增,2(0,)m 上单调递减,2(,)m +∞上单调递增,得()0,(0)0,(1)0<>-<g e g g ,结合函数()g x 单调性及a b c <<可得10a b e c -<<<<<.(III )由题意,只需min max ()()>f x g x ,12min ()()2==-f x f e me ,max 224()()==-g x g m m e m,求解即可.。
成都七中2015级高三“一诊”模拟考试数学答案
C D OBE'AH成都七中2015级高三“一诊”模拟考试数学试题参考答案一、选择题:(本大题共10小题,每小题5分,共50分) BAADB ACBAD 二、填空题:(本大题共5小题,每小题5分,共25分) 11. 180 12.12 13. - 14. (-7, 3) 15. ①②③⑤ 三、解答题:本大题共6小题,共75分。
解答应写出文字说明,证明过程或演算步骤。
16、(本小题满分12分)【解析】(I )由已知条件得:cos23cos 1A A +=22cos 3cos 20A A ∴+-=,解得1cos 2A =,角60A =︒ (II )1sin 2S bc A ==4c ⇒=,由余弦定理得:221a =,()222228sin a R A ==25sin sin 47bc B C R ∴==.17、(本小题满分12分) 解答:(1)331328()327p C ==,22232128()33327p C =⋅=,222342114()()33227p C =⋅=(2)由题意可知X 的可能取值为:0, 1, 2, 3. 乙队得分X 的分布列为:乙队得分X 的数学期望:1644170123.27272799EX =⨯+⨯+⨯+⨯=18、(本小题满分12分)【解析】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O = ,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角.3210X P2742742719结合图1可知,H 为AC 中点,故2OH =,从而A H '==所以cos 5OH A HO A H '∠==',所以二面角A CD B '--的平面角的余弦值为5.向量法:以O 点为原点,建立空间直角坐标系O xyz -如图所示, 则(A ',()0,3,0C -,()1,2,0D -所以(CA '= ,(1,DA '=-设(),,n x y z = 为平面A CD '的法向量,则 00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩令1x =,得(1,n =-由(Ⅰ) 知,(OA '=为平面CDB 的一个法向量,所以cos ,n OA n OA n OA '⋅'===',即二面角A CD B '--的平面角的余弦19、(本小题满分12分)(1)解:由222(1)()0n n S n n S n n -+--+=,得2[()](1)0.n n S n n S -++=由于{a n }是正项数列,所以20,.n n S S n n >=+于是112,2a S n ==≥时,221(1)(1)2.n n n a S S n n n n n -=-=+----= 综上,数列{a n }的通项2.n a n = (2)证明:由于2,n a n =221(2)n nn b n a +=+, 则22221111[4(2)16(2)n n b n n n n +==-++.2222222221111111111[11632435(1)(1)(2)n T n n n n =-+-+-++-+--++ 2221111[1]162(1)(2)n n =+--++2115(1).16264<+=【解析】(Ⅰ) 依题意,设抛物线C 的方程为24x cy =,2=结合0c >, 解得1c =.所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设()11,A x y ,()22,B x y (其中221212,44x x y y ==), 则切线,PA PB 的斜率分别为112x ,212x ,所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --= 同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92.。
成都市2015级高中毕业班摸底测试理科数学试题(含答案)
( 以点 A 为 坐 标 原 点 , Ⅱ) A B 所 在 直 线 为x 轴, 建立如图所示的空间直 A B C 的直线为z 轴 , 角坐标系 A x z. y ) , ) , ) , 易知 C( 0, 2, 0 A1( 0, 2, 2 B( 2, 0, 0 过点 A 作垂直于平面 A C 所在直 线 为 y 轴 ,
5
i=1
i=1
1 ������- ∵ a= b x, ∴ a=- . y 2
∧ ∧ ∧
∧ 1 1 ∴ 所求线性回归方程为 y= x- . 2 2
高三数学 ( 理科 ) 摸底测试参考答案第 共 4页) 1 页(
( 根据列表 , 设 1 号至 5 号 小 白 鼠 依 次 为 a1 , 则在这5只小白鼠中 Ⅱ) a2 , a3 , a4 , a5 . 共1 a2 a3 a4 , a2 a3 a5 , a2 a4 a5 , a3 a4 a5 , 0种. ������������������������9 分
数学 ( 理科 ) 参考答案及评分意见
( 一、 选择题 : 每小题 5 分 , 共6 0 分) 1. B; 7. B; 2. A; 8. C; 第 Ⅰ 卷( 选择题 , 共6 0 分) 4. C; 5. A; 6. C;
成都市 2 0 1 5 级高中毕业班摸底测试
3. C;
9. D;
1 0. D;
{
( , 由( 得 f( Ⅱ) ∵ a>0, Ⅰ) x) =x3 +3 x2 -9 x+9. ∴f ′( x) =3 x2 +6 x-9. ) ) ∴f( -2 =3 1, ′( -2 =-9. f
经检验符合题意 .
a=-2 , 或 . b=-9 b=1
a=3
{
∴ 所求切线方程为 9 x+ 3=0. y-1
2015届成都高三第一次诊断试题 数学(理)Word版含答案
成都市2015届高中毕业班第一次诊断性检测数学试题(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{|0}=≥U x x,集合{1}=P,则UP=ð(A)[0,1)(1,)+∞(B)(,1)-∞(C)(,1)(1,)-∞+∞(D)(1,)+∞2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A)(B)(C)(D)3.已知复数z43i=--(i是虚数单位),则下列说法正确的是(A)复数z的虚部为3i-(B)复数z的虚部为3(C)复数z的共轭复数为z43i=+(D)复数z的模为54.函数31,0()1(),03xx xf xx⎧+<⎪=⎨≥⎪⎩的图象大致为(A)(B)(C)(D)5.已知命题p:“若22≥+x a b,则2≥x ab”,则下列说法正确的是(A)命题p的逆命题是“若22<+x a b,则2<x ab”(B)命题p的逆命题是“若2<x ab,则22<+x a b”(C)命题p的否命题是“若22<+x a b,则2<x ab”(D)命题p的否命题是“若22x a b≥+,则2<x ab”yxOxyOxyO xyOGFEHPACBDA 1B 1C 1D 16.若关于x 的方程240+-=x ax 在区间[2,4]上有实数根,则实数a 的取值范围是 (A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3]7.已知F 是椭圆22221+=x y a b(0>>a b )的左焦点,A 为右顶点,P 是椭圆上一点,⊥PF x轴.若14=PF AF ,则该椭圆的离心率是 (A )14 (B )34 (C )12(D )328.已知m ,n 是两条不同直线,α,β是两个不同的平面,且//m α,n ⊂β,则下列叙述正确的是(A )若//αβ,则//m n (B )若//m n ,则//αβ (C )若n α⊥,则m β⊥ (D )若m β⊥,则αβ⊥9.若552sin =α,1010)sin(=-αβ,且],4[ππα∈,]23,[ππβ∈,则αβ+的值是 (A )74π (B )94π (C )54π或74π (D )54π或94π 10.如图,已知正方体1111ABCD A B C D -棱长为4,点H 在棱1AA 上,且11HA =.在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长.则当点P 运动时, 2HP 的最小值是 (A )21(B )22 (C )23 (D )25二、填空题:本大题共5小题,每小题5分,共25分.11.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹角的大小为__________. 12.二项式261()x x-的展开式中含3x 的项的系数是__________.(用数字作答)DB C AFE 13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B ,则∆ABC 的面积=S __________.14.已知定义在R 上的奇函数()f x ,当0x ≥时,3()log (1)=+f x x .若关于x 的不等式2[(2)](22)f x a a f ax x ++≤+的解集为A ,函数()f x 在[8,8]-上的值域为B ,若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________.15.已知曲线C :22y x a =+在点n P (,2)n n a +(0,a n >∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且00=x y .给出以下结论: ①1a =;②当*n ∈N 时,n y 的最小值为54; ③当*n ∈N 时,12sin21n k n <+; ④当*n ∈N 时,记数列{}n k 的前n 项和为n S ,则2(11)<+-n S n .其中,正确的结论有 (写出所有正确结论的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球.(Ⅰ)求恰有一个黑球的概率;(Ⅱ)记取出红球的个数为随机变量X ,求X 的分布列和数学期望()E X .17.(本小题满分12分)如图,ABC ∆为正三角形,EC ⊥平面ABC ,//DB EC ,F 为EA 的中点,2EC AC ==,1BD =.(Ⅰ)求证:DF //平面ABC ;(Ⅱ)求平面DEA 与平面ABC 所成的锐二面角的余弦值. 18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n S a =-;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T . 19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象. (Ⅰ)根据图象,求A ,ω,ϕ,B 的值; (Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:20.(本小题满分13分)已知椭圆Γ:12222=+by a x (0>>b a )的右焦点为)0,22(,且椭圆Γ上一点M 到其两焦点12,F F 的距离之和为43.(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:(l y x m m =+∈R)与椭圆Γ交于不同两点A ,B ,且32AB =.若点0(,2)P x 满足=PA PB ,求0x 的值.21.(本小题满分14分)已知函数2()ln mx f x x =-,2()emx mx g x m =-,其中m ∈R 且0m ≠.e 2.71828=为自然对数的底数.(Ⅰ)当0m <时,求函数()f x 的单调区间和极小值;(Ⅱ)当0m >时,若函数()g x 存在,,a b c 三个零点,且a b c <<,试证明:10e a b c -<<<<<;(Ⅲ)是否存在负数m ,对1(1,)x ∀∈+∞,2(,0)x ∀∈-∞,都有12()()f x g x >成立?若存在,求出m 的取值范围;若不存在,请说明理由.t (时)10 11 12 11.5 11.25 11.75 11.625 11.6875 ()f t (万千瓦时) 2.25 2.4332.5 2.48 2.462 2.496 2.490 2.493 ()g t (万千瓦时)53.522.753.1252.3752.5632.469数学(理科)参考答案及评分意见第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分)1.A ; 2.C ; 3.D ;4.A ;5.C ;6.B ;7.B ;8.D ;9.A ;10.B .第Ⅱ卷(非选择题,共100分)二、填空题:(本大题共5个小题,每小题5分,共25分)11.90︒ 12.20- 13.15 14.[2,0]- 15.①③④ 三、解答题:(本大题共6个小题,共75分) 16.(本小题满分12分) 解:(Ⅰ)记“恰有一个黑球”为事件A ,则21243641()205⋅===C C P A C .……………………………………………………………4分(Ⅱ)X 的可能取值为0,1,2,则343641(0)205====C P X C ……………………………………………………………2分122436123(1)205⋅====C C P X C ………………………………………………………2分 1(2)()5===P X P A ………………………………………………………………2分 ∴X 的分布列为∴X 的数学期望1310121555=⨯+⨯+⨯=EX .…………………………………2分 17.(本小题满分12分)(Ⅰ)证明:作AC 的中点O ,连结BO .在∆AEC 中,//=FO 12EC ,又据题意知,//=BD 12EC . ∴//=FO BD ,∴四边形FOBD 为平行四边形. X 0 1 2 P 15 35 15DBCFEyzO∴//DF OB ,又⊄DF 平面ABC ,⊂OB 平面ABC . ∴//DF 平面ABC .……………………………………4分 (Ⅱ)∵//FO EC ,∴⊥FO 平面ABC .在正∆ABC 中,⊥BO AC ,∴,,OA OB OF 三线两两垂直. 分别以,,OA OB OF 为,,z x y 轴,建系如图. 则(1,0,0)A ,(1,0,2)-E ,(0,3,1)D . ∴(2,0,2)=-AE ,(1,3,1)=-AD . 设平面ADE 的一个法向量为1(,,z)=x y n ,则110⎧⋅=⎪⎨⋅=⎪⎩AE AD n n ,即22030-+=⎧⎪⎨-++=⎪⎩x z x y z ,令1=x ,则1,0==z y .∴平面ADE 的一个法向量为1(1,0,1)=n . 又平面ABC 的一个法向量为2(0,0,1)=n . ∴12121212,22⋅>===cos <n n n n n n . ∴平面DEA 与平面ABC 所成的锐二面角的余弦值22.…………………………8分 18.(本小题满分12分) 解:(Ⅰ)∵22n n S a =- ①当2≥n 时,1122--=-n n S a ②①-②得,122-=-n n n a a a ,即12-=n n a a (2≥n ). 又当1≥n 时,1122=-S a ,得12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .………………………………………4分 又由题意知,11b =,12n n b b +=+,即12+-=n n b b ∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .……………………………2分(Ⅱ)(Ⅱ)由(Ⅰ)知,(21)2=-n n c n ………………………………………………1分∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n …………………1分23112(12222)(21)2-+-=++++--⋅n n n n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n …………………………………………………1分∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n ………………………………………3分 19.(本小题满分12分) 解:(Ⅰ)由图知12T =,6πω=.………………………………………………………1分2125.15.22m i n m a x =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分 ∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f . (Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t . 又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t .又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分 ∵1.00625.0625.116875.11<=-. ……………………………………………1分 ∴应该在11.625时停产.……………………………………………………………1分 (也可直接由)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产) 20.(本小题满分13分)(Ⅰ)由已知243=a 得23=a ,又22=c . ∴2224=-=b a c .∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m , 得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321mx x -=+, 2123124-⋅=m x x .∴2222129312(312)21244=+-=⨯--=⨯-+AB kx x m m m . 又由32AB =,得231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点. 设AB 的中点为),(00y x E ,则432210m x x x -=+=,400mm x y =+=,当2m =时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--.令2=y ,得03x =-.…………………………………………………………………2分当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分 综上所述,0x 的值为3-或1-. 21.(本小题满分14分)解:(Ⅰ)2222)(ln )ln 21()(ln ln 2)(ln 1ln 2)(x x mx x x x x m x x x x x mx f -⋅=-=⋅--='(0>x 且1≠x ).∴由0)(>'x f ,得21e x >;由0)(<'xf ,得210e x <<,且1≠x .……………………1分 ∴函数)(x f 的单调递减区间是(0,1),(1,e),单调递增区间是),(+∞e .………………2分 ∴me e f x f 2)()(-==极小值.………………………………………………………………1分(Ⅱ)222(2)(),(0)mx mx mx mxmxe mx e m mx mx g x m e e --'=-=>. ∴()g x 在(,0)-∞上单调递增,2(0,)m上单调递减,2(,)m +∞上单调递增.∵函数()g x 存在三个零点.∴20(0)02402()00>⎧>⎧⎪⎪⎪⇒⇒<<⎨⎨<⎪⎪-<⎩⎪⎩m g m e g m m m e . ∴02<<me …………………………………………………………………………………3分 由(1)(1)0-=-=-<mmg m me m e .∴22()(1)0=-=-<em em me e g e m m e e.……………………………………………………1分综上可知,()0,(0)0,(1)0<>-<g e g g ,结合函数()g x 单调性及a b c <<可得:(1,0),(0,),(,)a b e c e ∈-∈∈+∞.即10a b e c -<<<<<,得证.…………………………………………………………1分(III )由题意,只需min max ()()>f x g x ∵2(12ln )()(ln )-'=mx x f x x由0<m ,∴函数()f x 在12(1,)e 上单调递减,在12(,)e +∞上单调递增.∴12min ()()2==-f x f e me .………………………………………………………………2分 ∵(2)()-'=mxmx mx g x e由0<m ,∴函数()g x 在2(,)m -∞上单调递增,2(,0)m上单调递减. ∴max 224()()==-g x g m m e m .……………………………………………………………2分 ∴242->-me m e m ,不等式两边同乘以负数m ,得22242-<-m e m e.∴224(21)e m e+>,即224(21)m e e >+. 由0<m ,解得221(21)e m e e +<-+.综上所述,存在这样的负数221(,)(21)+∈-∞-+e m e e 满足题意.……………………………1分。
2015年四川省成都市高考数学一诊试卷(理科)
2015年四川省成都市高考数学一诊试卷(理科)一.选择题:(本大题共10小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2015•成都模拟)设集合,,则M∩N=()A.(﹣1,+∞)B.[﹣1,2)C.(﹣1,2)D.[﹣1,2]2.(5分)(2015•成都模拟)下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x>2”是“x2﹣3x+2>0”的必要不充分条件C.命题“若x=y,则sinx=siny”的逆否命题为真命题D.命题“∃x∈R使得x2+x+1<0”的否定是:“∀x∈R均有x2+x+1<0”3.(5分)(2015•成都模拟)方程ln(x+1)﹣=0,(x>0)的根存在的大致区间是()A.(0,1)B.(1,2)C.(2,e)D.(3,4)4.(5分)(2015•成都模拟)执行如图所示的程序框图,则输出的结果是()A.5 B.7 C.9 D.115.(5分)(2015•余杭区模拟)设m、n是两条不同的直线,α、β是两个不同的平面,下列命题中错误的是()A.若m⊥α,m∥n,n∥β,则α⊥βB.若α⊥β,m⊄α,m⊥β,则m∥αC.若m⊥β,m⊂α,则α⊥βD.若α⊥β,m⊂α,n⊂β,则m⊥n6.(5分)(2015•成都模拟)二项式(+)10展开式中的常数项是()A.180 B.90 C.45 D.3607.(5分)(2015•成都模拟)设、都是非零向量,下列四个条件中,一定能使+=成立的是()A.=2B.∥C.=﹣D.⊥8.(5分)(2015•成都模拟)已知O是坐标原点,点A(﹣1,0),若M(x,y)为平面区域上的一个动点,则|+|的取值范围是()A.[1,]B.[2,]C.[1,2]D.[0,]9.(5分)(2015•成都模拟)已知抛物线C:x2=4y的焦点为F,直线x﹣2y+4=0与C交于A、B两点,则sin∠AFB=()A.B.C.D.10.(5分)(2015•成都模拟)已知函数y=f(x)是定义在R上的偶函数,对于任意x∈R都f(x+6)=f(x)+f(3)成立;当x1,x2∈[0,3],且x1≠x2时,都有>0.给出下列四个命题:①f(3)=0;②直线x=﹣6是函数y=f(x)图象的一条对称轴;③函数y=f(x)在[﹣9,﹣6]上为增函数;④函数y=f(x)在[0,2014]上有335个零点.其中正确命题的个数为()A.1 B.2 C.3 D.4二、填空题:(本大题共5小题,每小题5分,共25分.)11.(5分)(2015•南海区校级模拟)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为.12.(5分)(2015•成都模拟)已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该四棱锥的侧视图为直角三角形,则它的体积为.13.(5分)(2015•岳阳模拟)各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有种不同的填报专业志愿的方法(用数字作答).14.(5分)(2013春•衡水校级月考)若实数a、b、c成等差数列,点P(﹣1,0)在动直线l:ax+by+c=0上的射影为M,点N(0,3),则线段MN长度的最小值是:.15.(5分)(2015•成都模拟)给出下列命题:①函数y=cos(2x﹣)图象的一条对称轴是x=②在同一坐标系中,函数y=sinx与y=lgx的交点个数为3个;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin2x的图象;④存在实数x,使得等式sinx+cosx=成立;其中正确的命题为(写出所有正确命题的序号).三、解答题:(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(12分)(2015•成都模拟)某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入的部分数据如下表:x x1x2x3ωx+ϕ0 π2πAsin(ωx+ϕ)0 0 ﹣0(Ⅰ)请写出上表的x1、x2、x3,并直接写出函数的解析式;(Ⅱ)将f(x)的图象沿x轴向右平移个单位得到函数g(x)的图象,P、Q分别为函数g(x)图象的最高点和最低点(如图),求∠OQP的大小.17.(12分)(2015•成都模拟)每年5月17日为国际电信日,某市电信公司每年在电信日当天对办理应用套餐的客户进行优惠,优惠方案如下:选择套餐一的客户可获得优惠200元,选择套餐二的客户可获得优惠500元,选择套餐三的客户可获得优惠300元.根据以往的统计结果绘出电信日当天参与活动的统计图,现将频率视为概率.(1)求某两人选择同一套餐的概率;(2)若用随机变量X表示某两人所获优惠金额的总和,求X的分布列和数学期望.18.(12分)(2015•衡阳校级模拟)如图,在四棱柱ABCD﹣A1B1C1D1中,侧面A1ADD1⊥底面ABCD,D1A=D1D=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:A1O∥平面AB1C;(Ⅱ)求锐二面角A﹣C1D1﹣C的余弦值.19.(12分)(2015•成都模拟)已知各项均为正数的数列{a n}的前n项和为S n,且a2n+a n=2S n (1)求a1(2)求数列{a n}的通项;(3)若b n=(n∈N*),T n=b1+b2+…b n,求证:T n<.20.(13分)(2015•成都模拟)已知椭圆=1(a>b>0)经过点(,﹣),且椭圆的离心率e=.(1)求椭圆的方程;(2)过椭圆的右焦点F作两条互相垂直的直线,分别交椭圆于点A,C及B,D,设线段AC,BD的中点分别为P,Q.求证:直线PQ恒过一个定点.21.(14分)(2015•成都模拟)已知函数f(x)=lnx+x2.(1)若函数g(x)=f(x)﹣ax在定义域内为增函数,求实数a的取值范围;(2)在(1)的条件下,且a>1,h(x)=e3x﹣3ae x,x∈[0,ln2],求h(x)的极小值;(3)设F(x)=2f(x)﹣3x2﹣k(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且满足2x0=m+n,问:函数F(x)在(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程,若不能,请说明理由.2015年四川省成都市高考数学一诊试卷(理科)参考答案与试题解析一.选择题:(本大题共10小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2015•成都模拟)设集合,,则M∩N=()A.(﹣1,+∞)B.[﹣1,2)C.(﹣1,2)D.[﹣1,2]【考点】指数函数的单调性与特殊点;交集及其运算;其他不等式的解法.【专题】计算题.【分析】由题意,可先化简两个集合,得,,再由交集的运算求出交集,即可选出正确答案.【解答】解:由题意,,∴M∩N={x|﹣1≤x<2}∩{x|x>﹣1}=(﹣1,2),故选C.【点评】本题考查求集合的交,解分式不等式,指数不等式,解题的关键是正确化简两个集合及理解交的运算.2.(5分)(2015•成都模拟)下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x>2”是“x2﹣3x+2>0”的必要不充分条件C.命题“若x=y,则sinx=siny”的逆否命题为真命题D.命题“∃x∈R使得x2+x+1<0”的否定是:“∀x∈R均有x2+x+1<0”【考点】命题的真假判断与应用.【专题】简易逻辑.【分析】分别根据四种命题之间的关系以及充分条件和必要条件的定义即可得到结论.【解答】解:A.命题“若x2=1,则x=1”的否命题为:“若x2≠1,则x≠1”,则A错误.B.由x2﹣3x+2>0,解得x>2或x<1,则“x>2”是“x2﹣3x+2>0”的充分不必要条件,故B 错误.C.命题“若x=y,则sinx=siny”为真命题,则根据逆否命题的等价性可知命题“若x=y,则sinx=siny”的逆否命题为真命题,故C正确.D.命题“∃x∈R使得x2+x+1<0”的否定是:“∀x∈R均有x2+x+1≥0”,故D错误.故选:C【点评】本题主要考查命题的真假判断,要求熟练掌握四种命题,充分条件和必要条件,含有量词的题目的真假判断.3.(5分)(2015•成都模拟)方程ln(x+1)﹣=0,(x>0)的根存在的大致区间是()A.(0,1)B.(1,2)C.(2,e)D.(3,4)【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】令f(x)=ln(x+1)﹣,得出f(1)f(2)<0,从而得出答案.【解答】解:令f(x)=ln(x+1)﹣,而f(1)=ln2﹣2<0,f(2)=ln3﹣1>0,∴方程ln(x+1)﹣=0,(x>0)的根存在的大致区间是(1,2),故选:B.【点评】他考查了函数的零点问题,特殊值代入是方法之一,本题属于基础题.4.(5分)(2015•成都模拟)执行如图所示的程序框图,则输出的结果是()A.5 B.7 C.9 D.11【考点】程序框图.【专题】空间位置关系与距离.【分析】根据框图的流程依次计算运行的结果,直到不满足条件S<20,计算输出k的值.【解答】解:由程序框图知:第一次运行S=1+2=3,k=1+2=3;第二次运行S=1+2+6=9.k=3+2=5;第三次运行S=1+2+6+10=19,k=5+2=7;第四次运行S=1+2+6+10+14=33,k=7+2=9;此时不满足条件S<20,程序运行终止,输出k=9.故选:C.【点评】本题考查了循环结构的程序框图,根据框图的流程依次计算运行的结果是解答此类问题的常用方法.5.(5分)(2015•余杭区模拟)设m、n是两条不同的直线,α、β是两个不同的平面,下列命题中错误的是()A.若m⊥α,m∥n,n∥β,则α⊥βB.若α⊥β,m⊄α,m⊥β,则m∥αC.若m⊥β,m⊂α,则α⊥βD.若α⊥β,m⊂α,n⊂β,则m⊥n【考点】空间中直线与平面之间的位置关系.【分析】利用空间中线线、线面、面面间的位置关系求解.【解答】解:若m⊥α,m∥n,n∥β,则由平面与平面垂直的判定定理得α⊥β,故A正确;若α⊥β,m⊄α,m⊥β,则由直线与平面平行的判定定理得m∥α,故B正确;若m⊥β,m⊂α,则由平面与平面垂直的判定定理得α⊥β,故C正确;若α⊥β,m⊂α,n⊂β,则m与n相交、平行或异面,故D错误.故选:D.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.6.(5分)(2015•成都模拟)二项式(+)10展开式中的常数项是()A.180 B.90 C.45 D.360【考点】二项式定理的应用.【专题】二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.【解答】解:二项式(+)10展开式的通项公式为T r+1=•2r•,令5﹣=0,求得r=2,可得展开式中的常数项是•22=180,故选:A.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.7.(5分)(2015•成都模拟)设、都是非零向量,下列四个条件中,一定能使+=成立的是()A.=2B.∥C.=﹣D.⊥【考点】平面向量的基本定理及其意义.【专题】平面向量及应用.【分析】根据向量共线定理,可得若+=成立,则向量,共线且方向相反,对照各个选项并结合数乘向量的含义,可得本题答案.【解答】解:由+=,得若=﹣≠,即有=﹣,则,共线且方向相反,因此当因此当向量、共线且方向相反时,能使+=成立.对照各个选项,可得A项中向量、的方向相同,B项中向量,共线,方向相同或相反,C项中向量、的方向相反,D项中向量、的方向互相垂直故选:C.【点评】本题考查了数乘向量的含义与向量共线定理等知识,属于基础题.8.(5分)(2015•成都模拟)已知O是坐标原点,点A(﹣1,0),若M(x,y)为平面区域上的一个动点,则|+|的取值范围是()A.[1,]B.[2,]C.[1,2]D.[0,]【考点】简单线性规划.【专题】不等式的解法及应用.【分析】由题意作出可行域,由向量的坐标加法运算求得+的坐标,把||转化为可行域内的点M(x,y)到定点N(1,0)的距离,数形结合可得答案.【解答】解:+=(﹣1,0)+(x,y)=(x﹣1,y),则|+|=,设z=|+|=,则z的几何意义为M到定点D(1,0)的距离,由约束条件作平面区域如图,由图象可知当M位于A(0,2)时,z取得最大值z=,当M位于C(1,1)时,z取得最小值z=1,1≤z≤,即|+|的取值范围是[1,],故选:A【点评】本题考查了简单的线性规划,考查了数形结合、转化与化归等解题思想方法,考查了向量模的求法,是中档题.9.(5分)(2015•成都模拟)已知抛物线C:x2=4y的焦点为F,直线x﹣2y+4=0与C交于A、B两点,则sin∠AFB=()A.B.C.D.【考点】抛物线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】先有抛物线方程求得F的坐标,进而直线方程与抛物线方程联立求得A,B的坐标,利用两点间的距离公式分别求得|AB|,|AF|,|BF|,利用余弦定理求得cos∠AFB,进而求得sin∠AFB.【解答】解:由抛物线方程可知,2p=4,p=2,∴焦点F的坐标为(0,1),联立直线与抛物线方程,求得x=﹣2,y=1或x=4,y=4,令A坐标为(﹣2,1),则B坐标为(4,4),∴|AB|==3,|AF|==2,|BF|==5,∴在△ABF中cos∠AFB===,∴sin∠AFB==,故选:B.【点评】本题主要考查抛物线的简单性质,直线与抛物线的关系,余弦定理的应用等知识.考查了学生综合运用基础知识解决问题的能力.10.(5分)(2015•成都模拟)已知函数y=f(x)是定义在R上的偶函数,对于任意x∈R都f(x+6)=f(x)+f(3)成立;当x1,x2∈[0,3],且x1≠x2时,都有>0.给出下列四个命题:①f(3)=0;②直线x=﹣6是函数y=f(x)图象的一条对称轴;③函数y=f(x)在[﹣9,﹣6]上为增函数;④函数y=f(x)在[0,2014]上有335个零点.其中正确命题的个数为()A.1 B.2 C.3 D.4【考点】命题的真假判断与应用.【专题】综合题;函数的性质及应用.【分析】①在f(x+6)=f (x)+f (3)中,令x=﹣3,可得f(﹣3)=0,f(x)是R上的偶函数,从而可判断①;②由(1)知f(x+6)=f (x),所以f(x)的周期为6,再利用f(x)是R上的偶函数,可得f(﹣6﹣x)=f(﹣6+x),从而可判断②;③依题意知,函数y=f(x)在[0,3]上为增函数,利用f(x)的周期为6,且f(x)是R 上的偶函数,可判断函数y=f(x)在[﹣9,﹣6]上为减函数,从而可判断③;④由题意可知,y=f(x)在[0,6]上只有一个零点3,而2014=335×6+3,从而可判断④.【解答】解:①:对于任意x∈R,都有f(x+6)=f (x)+f (3)成立,令x=﹣3,则f(﹣3+6)=f(﹣3)+f (3),即f(﹣3)=0,又因为f(x)是R上的偶函数,所以f(3)=0,即①正确;②:由(1)知f(x+6)=f (x),所以f(x)的周期为6,又因为f(x)是R上的偶函数,所以f(x+6)=f(﹣x),而f(x)的周期为6,所以f(x+6)=f(﹣6+x),f(﹣x)=f(﹣x﹣6),所以:f(﹣6﹣x)=f(﹣6+x),所以直线x=﹣6是函数y=f(x)的图象的一条对称轴,即②正确;③:当x1,x2∈[0,3],且x1≠x2时,都有>0,所以函数y=f(x)在[0,3]上为增函数,因为f(x)是R上的偶函数,所以函数y=f(x)在[﹣3,0]上为减函数而f(x)的周期为6,所以函数y=f(x)在[﹣9,﹣6]上为减函数,故③错误;④:f(3)=0,f(x)的周期为6,函数y=f(x)在[0,3]上为增函数,在[3,6]上为减函数,所以:y=f(x)在[0,6]上只有一个零点3,而2014=335×6+4,所以,函数y=f(x)在[0,2014]上有335+1=336个零点,故④错误.故正确命题的个数为2个,故选:B.【点评】本题考查命题的真假判断与应用,着重考查函数的奇偶性、周期性、对称性及零点的确定的综合应用,属于难题.二、填空题:(本大题共5小题,每小题5分,共25分.)11.(5分)(2015•南海区校级模拟)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为.【考点】复数代数形式的乘除运算.【专题】计算题.【分析】首先求出|4+3i|,代入后直接利用复数的除法运算求解.【解答】解:∵|4+3i|=.由(3﹣4i)z=|4+3i|,得(3﹣4i)z=5,即z=.∴z的虚部为.故答案为:.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.12.(5分)(2015•成都模拟)已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该四棱锥的侧视图为直角三角形,则它的体积为.【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】根据四棱锥的俯视图得到四棱锥的特征,根据四棱锥的左视图为直角三角形,得到四棱锥的高即可求出它的体积【解答】解:由四棱锥的俯视图可知,该四棱锥底面为ABCD为正方形,PO垂直于BC于点O,其中O为BC的中点,若该四棱锥的左视图为直角三角形,则△BPC为直角三角形,且为等腰直角三角形,∵B0=1,∴PO=BO=1,则它的体积为.故答案为:.【点评】本题主要考查三视图的识别和应用以及锥体的体积的计算,考查线面垂直和面面垂直的判断,考查学生的推理能力.13.(5分)(2015•岳阳模拟)各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有180种不同的填报专业志愿的方法(用数字作答).【考点】计数原理的应用.【专题】应用题;排列组合.【分析】分类讨论,分别求出甲、乙都不选、甲、乙两个专业选1个时的报名方法,根据分类计数原理,可得结论.【解答】解:甲、乙都不选时,有=60种;甲、乙两个专业选1个时,有=120种,根据分类计数原理,可得共有60+120=180种不同的填报专业志愿的方法.故答案为:180.【点评】本题考查计数原理的运用,考查排列组合知识,考查学生分析解决问题的能力,正确分类是关键.14.(5分)(2013春•衡水校级月考)若实数a、b、c成等差数列,点P(﹣1,0)在动直线l:ax+by+c=0上的射影为M,点N(0,3),则线段MN长度的最小值是:4﹣.【考点】等差数列的性质;点到直线的距离公式.【专题】等差数列与等比数列.【分析】由题意可得动直线l:ax+by+c=0过定点Q(1,﹣2),PMQ=90°,点M在以PQ为直径的圆上,求出圆心为PQ的中点C(0,﹣1),且半径为.求得点N到圆心C的距离,再减去半径,即得所求.【解答】解:因为a,b,c成等差数列,故有2b=a+c,即a﹣2b+c=0,对比方程ax+by+c=0可知,动直线恒过定点Q(1,﹣2).由于点P(﹣1,0)在动直线ax+by+c=0上的射影为M,即∠PMQ=90°,所以点M在以PQ为直径的圆上,该圆的圆心为PQ的中点C(0,﹣1),且半径为=,再由点N到圆心C的距离为NC=4,所以线段MN的最小值为NC﹣r=4﹣,故答案为:4﹣.【点评】本题主要考查等差数列的性质,直线过定点问题、圆的定义,以及点与圆的位置关系,属于中档题.15.(5分)(2015•成都模拟)给出下列命题:①函数y=cos(2x﹣)图象的一条对称轴是x=②在同一坐标系中,函数y=sinx与y=lgx的交点个数为3个;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin2x的图象;④存在实数x,使得等式sinx+cosx=成立;其中正确的命题为①②(写出所有正确命题的序号).【考点】命题的真假判断与应用.【专题】计算题;简易逻辑.【分析】①由x=时,y=﹣1,可得结论;②利用函数图象,求解;③根据图象的平移规律可得结论;④根据sinx+cosx=sin(x+)≤<,可以判断.【解答】解:①函数y=cos(2x﹣),x=时,y=﹣1,所以函数y=cos(2x﹣)图象的一条对称轴是x=,正确;②在同一坐标系中,画出函数y=sinx和y=lgx的图象,所以结合图象易知这两个函数的图象有3交点,正确;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin[2(x﹣)+],即y=sin(2x﹣)的图象,故不正确;④sinx+cosx=sin(x+)≤<,故不存在实数x,使得等式sinx+cosx=成立;故答案为:①②.【点评】本题利用三角函数图象与性质,考查命题的真假判断与应用,考查学生分析解决问题的能力,属于中档题.三、解答题:(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(12分)(2015•成都模拟)某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入的部分数据如下表:x x1x2x3ωx+ϕ0 π2πAsin(ωx+ϕ)0 0 ﹣0(Ⅰ)请写出上表的x1、x2、x3,并直接写出函数的解析式;(Ⅱ)将f(x)的图象沿x轴向右平移个单位得到函数g(x)的图象,P、Q分别为函数g(x)图象的最高点和最低点(如图),求∠OQP的大小.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】(Ⅰ)由表中数据列关于ω、φ的二元一次方程组,求得ω、φ的值,得到函数解析式,进一步求得x1、x2、x3;(Ⅱ)由函数图象平移求得,求出最高点和最低点的坐标,进一步求出三角形OPQ的边长,由余弦定理求得∠OQP的大小.【解答】解:(Ⅰ)由表可知,+φ=,+φ=,解得,ω=,φ=.由x1+=0、x2+=π、x3+=2π,得,,.∴;(Ⅱ)将f(x)的图象沿x轴向右平移个单位得到函数,∵P、Q分别为该图象的最高点和最低点,∴.∴OP=2,PQ=4,,∴.∴.【点评】本题考查了由y=Asin(ωx+φ)的部分图象求解函数解析式,考查了y=Asin(ωx+φ)的性质,考查了余弦定理的应用,训练了五点作图法,是中档题.17.(12分)(2015•成都模拟)每年5月17日为国际电信日,某市电信公司每年在电信日当天对办理应用套餐的客户进行优惠,优惠方案如下:选择套餐一的客户可获得优惠200元,选择套餐二的客户可获得优惠500元,选择套餐三的客户可获得优惠300元.根据以往的统计结果绘出电信日当天参与活动的统计图,现将频率视为概率.(1)求某两人选择同一套餐的概率;(2)若用随机变量X表示某两人所获优惠金额的总和,求X的分布列和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【专题】概率与统计.【分析】(1)由题意利用互斥事件加法公式能求出某两人选择同一套餐的概率.(2)由题意知某两人可获得优惠金额X的可能取值为400,500,600,700,800,1000.分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】解:(1)由题意可得某两人选择同一套餐的概率为:.(2)由题意知某两人可获得优惠金额X的可能取值为400,500,600,700,800,1000.,,,,,,综上可得X的分布列为:X 400 500 600 700 800 1000PX的数学期望.【点评】本小题主要考查学生对概率知识的理解,通过分布列的计算,考查学生的数据处理能力.18.(12分)(2015•衡阳校级模拟)如图,在四棱柱ABCD﹣A1B1C1D1中,侧面A1ADD1⊥底面ABCD,D1A=D1D=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:A1O∥平面AB1C;(Ⅱ)求锐二面角A﹣C1D1﹣C的余弦值.【考点】直线与平面平行的判定;用空间向量求平面间的夹角.【专题】计算题;证明题.【分析】(Ⅰ)欲证A1O∥平面AB1C,根据直线与平面平行的判定定理可知只需证A1O与平面AB1C内一直线平行,连接CO、A1O、AC、AB1,利用平行四边形可证A1O∥B1C,又A1O⊄平面AB1C,B1C⊆平面AB1C,满足定理所需条件;(Ⅱ)根据面面垂直的性质可知D1O⊥底面ABCD,以O为原点,OC、OD、OD1所在直线分别为x轴、y轴、z轴建立坐标系,求出平面C1CDD1的一个法向量,以及平面AC1D1的一个法向量,然后求出两个法向量夹角的余弦值即可求出锐二面角A﹣C1D1﹣C的余弦值.【解答】解:(Ⅰ)证明:如图(1),连接CO、A1O、AC、AB1,(1分)则四边形ABCO为正方形,所以OC=AB=A1B1,所以,四边形A1B1CO为平行四边形,(3分)所以A1O∥B1C,又A1O⊄平面AB1C,B1C⊆平面AB1C所以A1O∥平面AB1C(6分)(Ⅱ)因为D1A=D1D,O为AD中点,所以D1O⊥AD又侧面A1ADD1⊥底面ABCD,所以D1O⊥底面ABCD,(7分)以O为原点,OC、OD、OD1所在直线分别为x轴、y轴、z轴建立如图(2)所示的坐标系,则C(1,0,0),D(0,1,0),D1(0,0,1),A(0,﹣1,0).(8分)所以,(9分)设为平面C1CDD1的一个法向量,由,得,令z=1,则y=1,x=1,∴.(10分)又设为平面AC1D1的一个法向量,由,得,令z1=1,则y1=﹣1,x1=﹣1,∴,(11分)则,故所求锐二面角A﹣C1D1﹣C的余弦值为(12分)【点评】本题主要考查了线面平行的判定,以及利用空间向量的方法求解二面角等有关知识,同时考查了空间想象能力、转化与划归的思想,属于中档题.19.(12分)(2015•成都模拟)已知各项均为正数的数列{a n}的前n项和为S n,且a2n+a n=2S n (1)求a1(2)求数列{a n}的通项;(3)若b n=(n∈N*),T n=b1+b2+…b n,求证:T n<.【考点】数列的求和.【专题】计算题;等差数列与等比数列.【分析】(1)a2n+a n=2S n中令n=1求a1(2)又a2n+a n=2S n有a2n+1+a n+1=2S n+1,两式相减得并整理得(a n+1+a n)(a n+1﹣a n﹣1)=0,数列{a n}是以a1=1,公差为1的等差数列,以此求数列{a n}的通项;(3)由(2)得出a n=n,利用放缩法求证:T n<.【解答】解:(1)令n=1,得a12+a1=2S1=2a1,∵a1>0,∴a1=1,(2)又a2n+a n=2S n,有a2n+1+a n+1=2S n+1,两式相减得并整理得(a n+1+a n)(a n+1﹣a n﹣1)=0,∵a n>0,∴a n+1﹣a n=1,∴数列{a n}是以a1=1,公差为1的等差数列,通项公式为a n=1+(n﹣1)×1=n;(3)n=1时b1=1<符合…(9分)n≥2时,因为==2(﹣)所以T n=b1+b2+…b n<1+2(++…+﹣)=1=∴T n<.【点评】本题考查等差数列的判定与通项公式求解,不等式的证明,是数列与不等式的结合.20.(13分)(2015•成都模拟)已知椭圆=1(a>b>0)经过点(,﹣),且椭圆的离心率e=.(1)求椭圆的方程;(2)过椭圆的右焦点F作两条互相垂直的直线,分别交椭圆于点A,C及B,D,设线段AC,BD的中点分别为P,Q.求证:直线PQ恒过一个定点.【考点】直线与圆锥曲线的综合问题.【专题】圆锥曲线中的最值与范围问题.【分析】(1)由已知得,,由此能求出椭圆的方程.(2)当直线AC的斜率不存在时,AC:x=1,则BD:y=0.直线PQ恒过一个定点;当直线AC的斜率存在时,设AC:y=k(x﹣1)(k≠0),BD:.联立方程组,得(4k2+3)x2﹣8k2x+4k2﹣12=0,由此利用韦达定理结合已知条件能证明直线PQ恒过一个定点.【解答】(1)解:由,得,即a2=4c2=4(a2﹣b2),即3a2=4b2.…(1分)由椭圆过点知,.…(2分)联立(1)、(2)式解得a2=4,b2=3.…(3分)故椭圆的方程是.…(4分)(2)证明:直线PQ恒过一个定点.…(5分)椭圆的右焦点为F(1,0),分两种情况.1°当直线AC的斜率不存在时,AC:x=1,则BD:y=0.由椭圆的通径得P(1,0),又Q(0,0),此时直线PQ恒过一个定点.…(6分)2°当直线AC的斜率存在时,设AC:y=k(x﹣1)(k≠0),则BD:.又设点A(x1,y1),C(x2,y2).联立方程组,消去y并化简得(4k2+3)x2﹣8k2x+4k2﹣12=0,…(8分)所以...…(10分)由题知,直线BD的斜率为﹣,同理可得点.…(11分).,…(12分)即4yk2+(7x﹣4)k﹣4y=0.令4y=0,7x﹣4=0,﹣4y=0,解得.故直线PQ恒过一个定点;…(13分)综上可知,直线PQ恒过一个定点.…(14分)【点评】本题考查椭圆方程的求法,考查直线恒过一个定点的证明,解题时要认真审题,注意函数与方程思想的合理运用.21.(14分)(2015•成都模拟)已知函数f(x)=lnx+x2.(1)若函数g(x)=f(x)﹣ax在定义域内为增函数,求实数a的取值范围;(2)在(1)的条件下,且a>1,h(x)=e3x﹣3ae x,x∈[0,ln2],求h(x)的极小值;(3)设F(x)=2f(x)﹣3x2﹣k(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且满足2x0=m+n,问:函数F(x)在(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程,若不能,请说明理由.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【专题】计算题;分类讨论;导数的概念及应用;导数的综合应用.【分析】(1)求出g(x)的导数,函数g(x)=f(x)﹣ax在定义域内为增函数即为g′(x)≥0,x>0恒成立,运用分离参数,运用基本不等式求得函数的最小值即可;(2)令e x=t,则t∈[1,2],则h(x)=H(t)=t3﹣3at,求出H′(t),由H′(t)=0,得t=,讨论①若1<t,②若<t≤2,函数的单调性,即可得到极小值;(3)即证是否存在,使F'(x0)=0,因为x>0时y=F'(x)单调递减,且F'(1)=0,所以即证是否存在使x0=1.即证是否存在m,n使m=2﹣n.求F(x)的导数,求得单调区间,构造函数G(x)=F(x)﹣F(2﹣x),其中0<x<1,求出导数,求得单调性,运用单调性即可得证.【解答】解:(1)g(x)=f(x)﹣ax=lnx+x2﹣ax,g′(x)=+2x﹣a由题意,知g′(x)≥0,x>0恒成立,即a≤(2x+)min.又x>0,2x+,当且仅当x=时等号成立.故(2x+)min=2,所以a.(2)由(Ⅰ)知,1<a,令e x=t,则t∈[1,2],则h(x)=H(t)=t3﹣3atH′(t)=3t2﹣3a=3(t﹣)(t),由H′(t)=0,得t=,由于1<a,则∈[1,],①若1<t,则H′(t)<0,H(t)单调递减;h(x)在(0,ln]也单调递减;②若<t≤2,则H′(t)>0,H(t)单调递增.h(x)在[ln,ln2]也单调递增;故h(x)的极小值为h(ln)=﹣2a.(3)即证是否存在,使F'(x0)=0,因为x>0时y=F'(x)单调递减,且F'(1)=0,所以即证是否存在使x0=1.即证是否存在m,n使m=2﹣n.证明:F(x)=2lnx﹣x2﹣k.x、F'(x)、F(x)的变化如下:x (0,1) 1 (1,+∞)F'(x)+ 0 ﹣F(x)↗↘即y=F(x)在(0,1)单调递增,在(1,+∞)单调递减.又F(m)=F(n)=0且0<m<n所以0<m<1<n.构造函数G(x)=F(x)﹣F(2﹣x),其中0<x<1,即G(x)=(2lnx﹣x2)﹣[2ln(2﹣x)﹣(2﹣x)2]=2lnx﹣2ln(2﹣x)﹣4x+4,=,当且仅当x=1时G'(x)=0,故y=G(x)在(0,1)单调增,所以G(x)<G(1)=0.所以0<x<1时,F(x)<F(2﹣x).又0<m<1<n,所以F(m)<F(2﹣m),所以F(n)=F(m)<F(2﹣m).因为n、2﹣m∈(1,+∞),所以根据y=F(x)的单调性知n>2﹣m,即.又在(0,+∞)单调递减,所以.即函数F(x)在(x0,F(x0))处的切线不能平行于x轴.【点评】本题考查导数的综合应用:求切线方程和极值、最值,考查分类讨论的思想方法,以及构造函数求导数,运用单调性解题,考查运算能力,属于中档题.参与本试卷答题和审题的老师有:xintrl;maths;1619495736;清风慕竹;zlzhan;caoqz;双曲线;wsj1012;wfy814;sxs123;刘长柏;minqi5;zwx097(排名不分先后)菁优网2016年2月2日。
四川省成都市第七中学2015届高三一诊模拟数学(理)试题(纯word版)
成都七中2015届高中毕业班第一次诊断性检测模拟题数学(理工类)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.1.已知集合{}{}234,log 1A x R x B x R x =∈-≤≤=∈≥,则A B =(A )[)4,+∞(B )()4,+∞(C )[)2,4 (D )[]2,42.复数1i2iZ -=+在复平面上对应的点的坐标为 (A )(1,3)- (B )13(,)55- (C )(3,3)- (D )33(,)55-3.对某杂志社一个月内每天收到稿件数量进行了统计,得到 样本的茎叶图(如图所示),则该样本的中位数、众数分别是 (A )47,45 (B )45,47 (C )46,45(D )45,464.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的体积为 (A )13(B )16(C )43(D )835.已知双曲线)0,0(12222>>=-b a by a x 的左顶点与抛物线px y 22=的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为()2,1--,则双曲线的焦距为 (A )2(B )(C )4 (D )46.函数()sin()f x A x ωϕ=+(0,0,2A πωϕ>><其中)的部分图像如图所示,为了得到函数()sin 2g x x =的图象,则只需将()f x 的图象(A )向右平移6π个长度单位 (B )向右平移12π个长度单位(C )向左平移6π个长度单位 (D )向左平移12π个长度单位7.已知不等式组42ln x y x y y x +≤⎧⎪-≤⎨⎪≤⎩,则目标函数2z x y =-的最小值是(A )8 (B )5(C )4 (D )1ln 2+8.将一颗骰子投掷两次,第一次出现的点数记为a ,第二次出现的点数记为b ,设任意投掷两次使两 条不重合直线12:2,:22l ax by l x y +=+=平行的概率为1P ,相交的概率为2P ,若点()12,P P 在圆()22137144x m y -+=的内部,则实数m 的取值范围是 正(主)视图侧(左)视图俯视图2222(A )5(,)18-+∞ (B ) 7(,)18-∞ (C )75(,)1818- (D )57(,)1818- 9. 已知()f x 为R 上的可导函数,且对任意x R ∈均有()()f x f x '>,则以下说法正确的是 (A )20142014(2014)(0),(2014)(0)e f f f e f -<> (B )20142014(2014)(0),(2014)(0)e f f f e f -<<(C )20142014(2014)(0),(2014)(0)e f f f e f ->< (D )20142014(2014)(0),(2014)(0)e f f f e f ->>10.已知整数,,,a b c t 满足:222a b c+=,a bt c+=,则2log t 的最大值是 (A )0 (B )2log 3 (C )2 (D )3第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.二项式261()x x-展开式中的常数项是 . 12.在如图所示的程序框图中,若输出37S =, 则判断框内实数p 的取值范围是 . 13.已知{}n a 是递增数列,且对任意的n N *∈都有[]()20,2n a n n θθπ=+⋅∈恒成立,则角θ的取值范围是 .14.已知点O 为ABC ∆内一点,且230OA OB OC ++=,则AOB ∆、AOC ∆、BOC ∆的面积之比等于 .15.若以曲线()y f x =上任意一点11(,)M x y 为切点作切线1l ,曲线上总存在异于M 的点22(,)N x y ,以点N 为切点作切线2l ,且1l ∥2l ,则称曲线()y f x =具有“可平行性”.现有下列命题: ①函数2(2)ln y x x =-+的图象具有“可平行性”; ②定义在(,0)(0,)-∞+∞的奇函数()y f x =的图象都具有“可平行性”;③三次函数32()f x x x ax b =-++具有“可平行性”,且对应的两切点11(,)M x y ,22(,)N x y 的横坐标满足1223x x +=; ④要使得分段函数1()()1(0)x x m x f x xe x ⎧+<⎪=⎨⎪-<⎩的图象具有“可平行性”,当且仅当实数1m =. 其中的真命题是 .(写出所有真命题的序号)三、解答题:本大题共6小题,共75分. 16.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且25a =-,520S =-.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求使不等式n n S a >成立的n 的最小值.17.(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若()sin sin sin a A a b B c C =-+. (Ⅰ)求角C 的值;(Ⅱ)若2c =,且()sin sin 3sin 2C B A A +-=,求ABC ∆的面积.18.(本小题满分12分)如图,在四棱锥P ABCD -中, E 为AD 上一点,PE ⊥平面A B C D .//AD BC ,AD CD ⊥,22BC ED AE ===,3EB =,F 为PC 上一点,且2CF FP =.(Ⅰ)求证://PA BEF 平面;(Ⅱ)若二面角F BE C --为60,求直线PB 与平面ABCD 所成角的大小.19.(本小题满分12分)2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如下表): (Ⅰ)试根据频率分布直方图估计这60人的平均月收入;(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X ,求随机变量X 的分布列及数学期望. 20.(本小题满分13分)0.010.02设椭圆()2222:10x y C a b a b +=>>的离心率2e =,左顶点M 到直线1x y a b +=的距离5d =,O 为坐标原点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 相交于,A B 两点,若以AB 为直径的圆经过坐标原点,证明:点O 到直线AB 的距离为定值;(Ⅲ)在(Ⅱ)的条件下,试求△AOB 的面积S 的最小值.21.(本小题满分14分)已知向量(ln ,1ln )m x a x =-,(,())n x f x =,m n //(a 为常数). (Ⅰ) 若函数()f x 在(1,)+∞上是减函数,求实数a 的最小值;(Ⅱ)若存在212,,x x e e ⎡⎤∈⎣⎦,使12()()f x f x a '≤+,求实数a 的取值范围.成都七中2015届高中毕业班第一次诊断性检测模拟题数学(理科参考答案)提示:9.构造函数()()x f x g x e =,则2()()()()()()x x x xf x e e f x f x f xg x e e ''--'==, ∵任意x R ∈均有()()f x f x '>,并且0x e >,∴()0g x '<,故函数()()x f x g x e=在R 上单调递减,也就是20142014(2014)(0),(2014)(0)e f f f e f -><故选C. 10. 不妨设a b ≤,122222221bcabbbb bc b +<=+≤+=⇒<≤+,,b c Z ∈,1c b ∴=+,1222b a b +∴=+1a b c ⇒==-.a b t c +∴=22c=-. ,a t Z ∈,1,2c ∴=±±,0,1,3,4t ∴=,故2max 2(log )log 42t ==.15.②④由题,“可平行性”曲线的充要条件是:对域内1x ∀都21x x ∃≠使得12()()f x f x ''=成立.①错,12(2)y x x '=-+,又1212112(2)2(2)x x x x -+=-+ 1212x x ⇔=,显然1x =时不满足;②对,由()()()()f x f x f x f x ''=--⇒=-即奇函数的导函数是偶函数,对10x ∀≠都21x x ∃=-使得12()()f x f x ''=成立(可数形结合);③错,2()32f x x x a '=-+,又当时,2211223232x x a x x a -+=-+2212123()2()x x x x ⇔-=-1223x x ⇔+=,当11=3x 时不合题意;④对,当0x <时,()(0,1)x f x e '=∈,若具有“可平行性”,必要条件是:当0x >时,21()1(0,1)f x x'=-∈,解得1x >,又1x >时,分段函数具有“可平行性”,1m ∴=(可数形结合).三、解答题:本大题共6小题,共75分. 16.解:(Ⅰ)设{}n a 的公差为d ,依题意,有 52115,51020a a d S a d =+=-=+=-.联立得11551020a d a d +=-⎧⎨+=-⎩,解得161a d ⎧⎨⎩=-=.∴ 6(1)17n a n n =-+-⋅=-. n N *∈ ……………6分 (Ⅱ) 7n a n =-,∴1()(13)22n n a a n n n S +-== . 令(13)72n n n ->-,即215140n n -+> , ……………10分 解得1n <或14n >. 又*n ∈N ,∴14n >.n ∴的最小值为15. ……………12分17.解:(Ⅰ)∵asinA=(a-b)sinB+csinC ,结合0C π<<,得3C =. …………………………………………………6分(Ⅱ)由 C=π-(A+B),得sinC=sin(B+A)=sinBcosA+cosBsinA , ∵ sinC+sin(B-A)=3sin2A ,∴ sinBcosA+cosBsinA+sinBcosA-cosBsinA=6sinAcosA ,整理得sinBcosA=3sinAcosA . ………………………………………………8分 若cosA=0,即A=2π时,△ABC 是直角三角形,且B=6π,于是b=ctanB=2tan6π,∴ S △ABC =12. ……………………10分 若cosA ≠0,则sinB=3sinA ,由正弦定理得b=3a .②联立①②,结合c=2,解得,∴ S △ABC =12absinC=12.综上,△ABC 12分(Ⅱ)连CE ,过F 作FH CE ⊥于H .由于//FH PE ,故FH ABCD ⊥面.过H 作HM BE ⊥于M ,连FM .则FM BE ⊥,即FMH ∠为二面角F BE C --的平面角. 60,FMH FH ∴∠==.23FH PE =,1233MH BC AE == PE ∴=.………………10分1,AE PE =∴=在Rt PBE ∆中,3BE =, tan PBE ∴∠=,6PBE π∴∠=.∴直线PB 与平面ABCD 所成角的大小为6π. ……………12分 解法二:以E 为坐标原点,,,EB ED EP 为,,x y z 轴建立空间直角坐标系. (0,0,0),(3,0,0),(0,0,),(3,2,0)E B P m C2CF FP = ,22(1,,)33F m ∴.………………7分设平面BEF 的法向量1(,,)n x y z =,由n EB n EF ⎧⋅=⎪⎨⋅=⎪⎩ 得1n =(0,,1)m -. 又面ABCD 法向量为2(0,0,1)n =.由1212cos 60n n n n⋅=⋅ , 解得m =.………………10分在Rt PBE ∆中,3BE =, tan PBE ∴∠=,6PBE π∴∠=.∴直线PB 与平面ABCD 所成角的大小为6π. ……………12分 19.解:(Ⅰ)由直方图知:(200.015300.015400.025500.02600.015700.01)1043.5⨯+⨯+⨯+⨯+⨯+⨯⨯=∴这60人的平均月收入约为43.5百元. ………………4分(Ⅱ)根据频率分布直方图和统计表可知道:[15,25)的人数为0.01510609⨯⨯=人,其中1人不赞成.[25,35)的人数为0.01510609⨯⨯=人,其中2人不赞成. ………………6分X 的所有可能取值为0,1,2,3.338733995(0)18C C P X C C ==⋅=,23312878273333999917(1)36C C C C C P X C C C C ==⋅+⋅=, 212321827827333399992(2)9C C C C C C P X C C C C ==⋅+⋅=,21287233991(3)36C C C P X C C ==⋅=.……………10分 X∴的分布列为012311836936EX ∴=⨯+⨯+⨯+⨯=. ………………12分20.(Ⅰ)解 由e =32,得c =32a ,又b 2=a 2-c 2,所以b =12a ,即a =2b . 由左顶点M (-a,0)到直线x a +y b =1,即bx +ay -ab =0的距离d =455,得|b (-a )-ab |a 2+b 2=455,即2ab a 2+b 2=455,把a =2b 代入上式,得4b 25b 2=455,解得b =1.所以a =2b =2,c = 3.所以椭圆C 的方程为x 24+y 2=1. ………………3分(Ⅱ)证明 设A (x 1,y 1),B (x 2,y 2),①当直线AB 的斜率不存在时,则由椭圆的对称性,可知x 1=x 2,y 1=-y 2. 因为以AB 为直径的圆经过坐标原点,故OA →·OB →=0,即x 1x 2+y 1y 2=0,也就是x 21-y 21=0,又点A 在椭圆C 上,所以x 214-y 21=1, 解得|x 1|=|y 1|=255. 此时点O 到直线AB 的距离d 1=|x 1|=255. ②当直线AB 的斜率存在时, 设直线AB 的方程为y =kx +m ,所以点O 到直线AB 的距离d 1=|m |k 2+1=255.综上所述,点O 到直线AB 的距离为定值255. ………………8分(Ⅲ)解 设直线OA 的斜率为k 0.当k 0≠0时,则OA 的方程为y =k 0x ,OB 的方程为y =-1k 0x ,联立⎩⎪⎨⎪⎧y =k 0x ,x 24+y 2=1,得⎩⎨⎧x 21=41+4k 20,y 21=4k 201+4k 20.同理可求得⎩⎨⎧x 22=4k 20k 20+4,y 22=4k 20+4.故△AOB 的面积为S =121+k 20·|x 1|·1+1k 20·|x 2|=2(1+k 20)2(1+4k 20)(k 20+4). 令1+k 20=t (t >1),则S =2t 24t 2+9t -9=21-9t 2+9t+4,令g (t )=-9t 2+9t +4=-9(1t -12)2+254(t >1),所以4<g (t )≤254.所以45≤S <1.当k 0=0时,可求得S =1,故45≤S ≤1,故S 的最小值为45. ………………13分 21.解:(Ⅰ)由题意得ln ()(1ln )x f x a x x ⋅=-⋅()(1)ln xf x ax x x∴=-≠. ………………2分 ()f x 在(1,)+∞上是减函数,∴等价于2ln 1()0(ln )x f x a x -'=-≤在(1,)+∞上恒成立max 2ln 1()(ln )x a x -⇔≥.…………4分 222ln 1111111()()(ln )ln ln ln 244x x x x x -=-+=--+≤, 当且仅当11ln 2x =即2x e =时取到最大值. ∴1=4a . ………………6分(Ⅱ)题意等价于min max 1()(())4f x f x a '≤+=.由(Ⅰ)知2111()()ln 24f x a x '=--+-. 2e x e ≤≤,∴1112ln x≤≤. ∴()f x '在2,x e e ⎡⎤∈⎣⎦上单调递增,且()f x '的值域为1,4a a ⎡⎤--⎢⎥⎣⎦. ………8分 1 当0a ≤时,()0f x '≥,()f x 在2,x e e ⎡⎤∈⎣⎦上单调递增,min 1()()4f x f e e ae ==-≤11-04a e⇒≥>与前提矛盾,无解.2 当14a ≥时,()0f x '≤,()f x 在2,x e e ⎡⎤∈⎣⎦上单调递减, 222min1()()24e f x f e ae ==-≤2111244a e ⇒≥->.∴21124a e≥-. 3 当104a <<时, ()y f x '=存在唯一零点20(,)x e e ∈,且[]0,x e x ∈时,()0f x '≤,()f x 单调递减,(20,x x e ⎤∈⎦时,()0f x '>,()f x 单调递增,0min 0001()()ln 4x f x f x ax x ∴==-≤0011ln 4a x x ⇒≥-. 设211()()ln 4h x e x e x x =-<<,2111()()(ln )4h x x x x'∴=--, 211(,1)(ln )4x ∈,2111(,)444x e e ∈211()0()(ln )4h x h x x x '>∴<∴单减. 222111111111()ln 4ln 424244h x x x e e e ∴=->-=->-=. 00111ln 44a x x ⇒≥->与前提矛盾,无解. 综上所述,实数a 的取值范围是211,24e ⎡⎫-+∞⎪⎢⎣⎭. ………………14分。
四川省成都市数学高考理数一模试卷
四川省成都市数学高考理数一模试卷姓名:________ 班级:________ 成绩:________一、选择题. (共10题;共20分)1. (2分) (2015高三上·日喀则期末) 若集合A={x|2x<5},集合B={﹣1,0,1,3},则A∩B等于()A . {0,1}B . {﹣1,0,1}C . {0,1,3}D . {﹣1,0,1,3}2. (2分)设i为虚数单位,则=()A . -2-3iB . -2+3iC . 2-3iD . 2+3i3. (2分)椭圆M: 左右焦点分别为F1,F2 , P为椭圆M上任一点且|PF1||PF2| 最大值取值范围是[2c2,3c2],其中,则椭圆离心率e取值范围()A .B .C .D .4. (2分) (2015高一下·西宁期中) 设x,y满足约束条件,则z=3x﹣y的最大值为()A . 1B . ﹣4C . 7D . 115. (2分) (2018高一下·河南月考) 已知函数满足,函数图象上距轴最近的最高点坐标为,则下列说法正确的是()A . 为函数图象的一条对称轴B . 的最小正周期为C . 为函数图象的一个对称中心D .6. (2分)若函数的图象与轴交于点,过点的直线与函数的图象交于两点,则(其中O为坐标原点)()A .B .C .D .7. (2分)已知四面体A-BCD的棱长均为2,其正视图是边长为2的等边三角形(如图,其中BC为水平线),则其侧视图的面积是()A .B .C .D .8. (2分)设函数,则满足的实数a的有()A . 3个B . 2个C . 1个D . 0个9. (2分)(2016·南平模拟) 若双曲线(a>0,b>0)的一条渐近线方程是3x+2y=0,则它的离心率等于()A .B .C .D .10. (2分)(2017·绵阳模拟) 已知函数f(x)=2lnx﹣ax2+3,若存在实数m、n∈[1,5]满足n﹣m≥2时,f(m)=f(n)成立,则实数a的最大值为()A .B .C .D .二、填空题 (共5题;共5分)11. (1分) (2018高二下·陆川期末) 已知随机变量服从正态分布,,则________.12. (1分)(x2+x+y)5的展开式中,x5y2的系数为________13. (1分)(2016·山东模拟) 执行如图所示的程序框图,则输出的S的值为________.14. (1分)若圆C1:x2+y2=1与圆C2:x2+y2﹣6x﹣8y+m=0外切,则m=________15. (1分)设f(x)是定义在R上的偶函数,∀x∈R,都有f(2﹣x)=f(2+x),且当x∈[0,2]时,f(x)=2x﹣2,若函数g(x)=f(x)﹣loga(x+1)(a>0,a≠1)在区间(﹣1,9]内恰有三个不同零点,则实数a的取值范围是________.三、解答题 (共6题;共65分)16. (10分) (2016高二下·哈尔滨期末) 已知函数f(x)=sin2x+2 sinxcosx+sin(x+ )sin(x﹣),x∈R.(1)求f(x)的最小正周期和单调增区间;(2)若x=x0(0≤x0≤ )为f(x)的一个零点,求cos2x0的值.17. (15分)(2014·安徽理) 如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.(1)证明:Q为BB1的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.18. (10分)(2018高三下·鄂伦春模拟) 设为数列的前项和,已知,.(1)证明:为等比数列;(2)求的通项公式,并判断,,是否成等差数列?19. (10分)(2017·重庆模拟) 某高中学校为了了解在校学生的身体健康状况,从全校学生中,随机抽取12名进行体质健康测试,测试成绩(百分制)以茎叶图形式表示如图:根据学生体质健康标准,成绩不低于76的为为优良(1)将频率视为概率,根据样本估计总体的思想,在该校学生中任选3人进行体质健康测试,求至少有1人成绩是“优良”的概率;(2)从抽取的12人中随机选取3人,记ξ表示成绩“优良”的学生人数,求ξ的分布列及期望.20. (10分) (2019高三上·广东月考) 已知椭圆: .(1)若椭圆的离心率为,且过右焦点垂直于长轴的弦长为,求椭圆的标准方程;(2)点为椭圆长轴上的一个动点,过点作斜率为的直线交椭圆于,两点,试判断是为定值,若为定值,则求出该定值;若不为定值,说明原因.21. (10分) (2019高三上·临沂期中) 已知函数 .(1)若曲线在点处的切线与y轴垂直,求的值;(2)若在区间上至少存在一点,使得成立,求的取值范围.参考答案一、选择题. (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共6题;共65分)16-1、16-2、17-1、17-2、17-3、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都一诊模拟题1理科数学试题第一部分(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分. 1.集合2{||3|4},{|20,},M x x N x x x x Z M N =-<=+-<∈则=A .{|11}x x -≤≤B .{|27}x x ≤≤C .{2}D .{0}2.复数143ii ++的虚部是 A .125i B .125C .125-D .—125i 3.已知平面向量(1,2)a =-,(2,1)=b ,(4,2)--c =,则下列说法中错误..的是 A .c ∥b B .⊥a bC .对同一平面内的任意向量d ,都存在一对实数12,k k ,使得12k k =d b +cD .向量c 与向量-a b 的夹角为 45︒4..下列有关命题的叙述错误的是( )A .对于命题 p :∃x ∈R , 210x x ++<,则p ⌝为: ∀x ∈R ,210x x ++≥B .命题“若2x -3x + 2 = 0,则 x = 1”的逆否命题为“若 x ≠1,则2x -3x+2≠0”C .若 p ∧q 为假命题,则 p ,q 均为假命题D .“x > 2”是“ 2x -3x + 2 > 0”的充分不必要条件5.执行如图的程序框图,则输出的T 值等于 A .91 B . 55 C .54 D .306.某小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m 3)的频率分布直方图如图所示,则小区内用水量超过l5m 3的住户的户数为 A .10 B .50 C .60 D .140 7.要得到函数y=3cos (2x 一4π)的图象,可以将函数3sin 2y x =的图象 A .沿x 轴向左平移8π个单位 B .沿x 向右平移8π个单位C .沿x 轴向左平移4π个单位D .沿x 向右平移4π个单位8.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参加,则他们发言时不能相邻,那么不同的发言顺序的种数为 A .720 B .600 C .520 D .360 9. 已知存在正数,,a b c ,满足12,ln ln cc b a c c e a≤≤=+,则ln b a 的取值范围是A .[1,)+∞B .1[1,ln 2]2+ C .(,1]e -∞- D . [1,1]e - 10.若函数()y f x =,存在区间[],m n ,同时满足下列条件:①()[],f x m n 在内是单调的;②当[],x m n ∈时,()[][],,f x m n m n 的值域也是,则称是该函数的“和谐区间”.若函数()()110a f x a a x +=-> 有“和谐区间”,则函数()()32111532g x x ax a x =++-+的极值点12,x x 满足A. ()()120,1,1,x x ∈∈+∞B. ()()12,0,0,1x x ∈-∞∈C. ()()12,0,,0x x ∈-∞∈-∞D. ()()121,,1,x x ∈+∞∈+∞ 第二部分(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.函数y =的定义域为12.已知51()(21)ax x x+-的展开式中各项系数的和为2,则该展开式中常数项为_ .13.51cos 123πα⎛⎫+=⎪⎝⎭,且2ππα-<<-,则cos 12πα⎛⎫-= ⎪⎝⎭_ .14.若实数x 、y ,满足⎪⎩⎪⎨⎧≤+≥≥123400y x y x ,则132+++=x y x z 的取值范围是 _ .15.设V 是全体平面向量构成的集合,若映射R V :→ f 满足对任意向量,V ),(11∈=y x a,V ),(22 ∈=y x b 以及任意R ∈λ,均有)()1()())1((b f a f b a fλλλλ-+=-+.则称映射f 具有性质P .现给出如下映射:①V y x m y x m f R V f∈=-=→),(,)(,:11; ②V y x m y x m f R V f ∈=+=→),(,)(,:222;③V y x m y x m f R V f∈=++=→),(,1)(,:33其中,具有性质P 映射的序号为 .(写出所有具有性质P 映射的序号).三、解答题:共6小题,满分75分,解答应写出必要的文字说明,证明过程或演算步骤. 16.(本小题满分12分)在等比数列14{},2,16.n a a a ==中已知 (I )求数列{}n a 的通项公式;(II )若35,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n n a b ⋅的通项公式及.n n S 前项和 17.(本小题满分12分)已知函数2()2sin cos .f x x x x x R =+∈ (I )求函数f (x )的周期和最小值(II )在锐角△ABC 中,若()1,2f A AB AC =⋅=,求△ABC 的面积.18.(本小题满分12分)公安部最新修订的《机动车驾驶证申领和使用规定》于2013年1月1日起正式实施,新规实施后,获取驾照要经过三个科目的考试,先考科目一(理论一),科目一过关后才能再考科目二(桩考和路考),科目二过关后还要考科目三(理论二).只有三个科目都过关后才能拿到驾驶证.某驾校现有100(Ⅰ)估计该驾校这100名新学员有多少人一次性(不补考)获取驾驶证;(Ⅱ)第一批参加考试的20人中某一学员已经通过科目一的考试,求他能通过科目二却不能通过科目三的概率;(Ⅲ)驾校为调动教官的工作积极性,规定若所教学员每通过一个科目的考试,则学校奖励教官100元.现从这20人中随机抽取1人,记X 为学校因为该学员而奖励教官的金额数,求X 的数学期望.19.(本小题满分12分)已知A B 、分别在射线CM CN 、(不含端点C )上运动,23MCN ∠=π,在ABC ∆中,角A 、B 、C 所对的边分别是a 、b 、c .(Ⅰ)若a 、b 、c 依次成等差数列,且公差为2.求c 的值;(Ⅱ)若c =ABC ∠=θ,试用θ表示ABC ∆的周长,并求周长的最大值.20.(本小题满分13分)已知函数321()(0)3F x ax bx cx d a =-++≠的图像过原点, ()(),()(),(1)0f x F x g x f x f ''===,函数()()y f x y g x ==与的图像交于不同的两点A 、B .(I )()1y F x x ==-在处取得极大值2,求函数()y F x =的单调区间;(II )若使11()0[,]22g x x x =∈-的值满足,求线段AB 在x 轴上的射影长的取值范围. 21.(本小题满分14分) 已知函数(1)()x a x f x e e λλλ+-=-,其中,a λ是常数,且01λ<<.(I )求函数()f x 的极值;(II )对任意给定的正实数a ,是否存在正数x ,使不等式11x e a x--<成立?若存在,求出x ,若不存在,说明理由;(III )设12,(0,)λλ∈+∞,且121λλ+=,证明:对任意正数21,a a 都有:12121122a a a a λλ≤λ+λ. .成都一诊模拟题1理科数学试题参考答案一、选择题(每小题5分 共50分) DBCCB CABDB 二、填空题:(本大题共5小题,每小题5分,共25分) 11. (0,3] 12. 1013. 14.]11,23[; 15.①③.三、解答题:共6个题,共75分。
16.解:(Ⅰ)由3418a q a ==得 2q = ………(2分) ∴ 1222n n n a -=⋅= ………(3分) (Ⅱ) 31351528432b b d a b b d a =+==⎧⎨=+==⎩ ∴ 11612b d =-⎧⎨=⎩ ………(6分)∴ 16(1)121228n b n n =-+-=- ………7分21(161228)6222n S n n n n =-+-=-(1228)2n n n a b n =-⋅123162(4)282(228)2n n S n =-⋅+-⋅+⋅++-2312162(4)2(1240)2(1228)2n n n S n n +=-⋅+-⋅++-+-∴ 1231216212(222)(1228)2n n n n S S n +-=-⋅++++--∴ 12112(222)56(1228)2n n n S n +-=+++--- …………(10分)=12(12)1256(1228)212n n n +----- ∴3(310)280n n S n +=-+ ……(12分) 17.解:()sin 2cos2)f x x x =+=sin 2x x =2sin(2)3x π+…(2分)(Ⅰ) 22T ππ==…(3分)2232x k πππ+=-+ 即52x x k π=-+ k ∈Z 时 …(4分)min ()2f x =- ……(5分)(Ⅱ) ()2sin(2)13f A A π=+= ∴ 12sin(2)32A π+=………(6分) ∴ 由 0A π<< 得 ∴ 4A π=………(8分)而||||AB AC AB AC COSA ⋅=⋅⋅= ∴ ||||2AB AC ⋅= ……(10分)∴ 1||||sin 22ABC S AB AC A ∆=⋅=………(12分) 18.(本小题满分12分)解:(Ⅰ)由表中数据可知一次性(不补考)获取驾驶证的频率为110,估计这100名新学员中有100×110=10人; ................................................................................................................. 3分(Ⅱ)设“通过科目一、二、三”分别为事件A ,B ,C ,则P =P (B C |A )=21126= ........................................................................................................... 6分............................ 8分EY =0×25+1×25+2×110+3×110=910.................................................................................. 10分 而X =100Y ,所以EX =100EY =100×910=90 ..................................................................... 12分 19. 解:(Ⅰ)a 、b 、c 成等差,且公差为2,∴4a c =-、2b c =-.……………………………………1分又23MCN ∠=π,1cos 2C =-,∴222122a b c ab +-=-, ………………4分∴()()()()2224212422c c c c c -+--=---, 恒等变形得 29140c c -+=,解得7c =或2c =又4c >,∴7c =. ………………………6分20.解: 2()2f x ax bx c =-+ ()22g x ax b =- (1)20f a b c =-+= 2c ba =- (Ⅰ) 由 (0)0F d == (1)20f a b c =-+= (1)20f a b c -=++=1(1)23F a b c -=---=∴303a b d c =⎧⎪==⎨⎪=-⎩∴ 3()3F x x x =- ………(3分) 2()()33F x f x x '==- (1,1)x ∈- ()0F x '< ()F x 单增 ………(4分)(,1)x ∈-∞-和(1,)x ∈+∞ ()0F x '> ()F x 单减 ………(5分)(Ⅱ) 由 22y ax bx c⎧=-+⎨消y 得 2(22)20ax a b x b c -+++= (0)a ≠12122222241a b b x x a ab c b x x a a +⎧+==+⋅⎪⎪⎨+⎪⋅==-⎪⎩……(7分) ∴ AB 在x轴上射影长l =∴ 22(22)4(4)1b bl aa=+--24()8()8b b a a =-+ 24(1)4ba=-+ ……(9分)而 ()0g x =11[,]22b x a =∈-∴ 12b a =- 时max l =……(11分) 21=a b 时m i n l =……(12分) ∴l ≤ ……(13分)21、解:为方便,我们设函数()xg x e =,于是(1)∵()[(1)]()f x g x a g x λλλλ'''=+--, -----------------1分 由()0f x '>得,[(1)]()g x a g x λλ''+->,∴(1)x a x λλ+->,即(1)()0x a λ--<,解得x a <,-----------------3分 故当x a <时,()0f x '>;当x a >时,()0f x '<;∴当x a =时,()f x 取极大值,但()f x 没有极小值.-----------------4分(3)对任意正数12,a a ,存在实数12,x x 使11xa e =,22xa e =, 则121122112212xx x x a a e ee λλλλλλ+=⋅=,12112212x x a a e e λλλλ+=+,原不等式12121122a a a a λλλλ≤+11221212x x x x e e e λλλλ+⇔≤+,11221122()()()g x x g x g x λλλλ⇔+≤+ -----------------12分由(1)()(1)()f x g a λ≤-恒成立,故[(1)]()(1)()g x a g x g a λλλλ+-≤+-, 取1212,,,1x x a x λλλλ===-=,即得11221122()()()g x x g x g x λλλλ+≤+, 即11221212x x x x e e e λλλλ+≤+,故所证不等式成立. -----------------14分。