静安青浦区初三二模数学试卷及答案
2023年上海市青浦区九年级中考二模数学试卷(含答案解析)

2023年上海市青浦区九年级中考二模数学试卷学校:___________姓名:___________班级:___________考号:___________二、填空题平面直角坐标系xOy 内,点P 在第二象限的概率为____.12.若一个正多边形的每一个外角都等于36°,那么这个正多边形的中心角为__________度.13.已知点2()1,M -和点N 都在抛物线22y x x c =-+上,如果MN x ∥轴,那么点N 的坐标为____.14.已知点G 为ABC 的重心,AB a=,AC b = ,那么= AG __.(用a 、b 表示)15.如图,图中反映轿车剩余油量q (升)与行驶路径s (千米)的函数关系,那么q 与s 的函数解析式为____.16.水平放置的圆柱形油槽的圆形截面如图2所示,如果该截面油的最大深度为2分米,油面宽度为8分米,那么该圆柱形油槽的内半径为____分米.17.如图3,在平面直角坐标系xOy 内,已知点(3,1)G -,(1,3)A -,(4,0)B -,如果C 是以线段AB 为直径的圆,那么点G 与C 的最短距离为____.三、解答题18.如图,在Rt ABC △中,90610C BC AB ∠=︒==,,,点D 是边AB 的中点,点M 在边AC 上,将ADM △沿DM 所在的直线翻折,点A 落在点E 处,如果EC AB ,那么CE =____.111 (1)求边AB的长;(2)已知点D在AB边上,且13ADBD=,连接22.某中学初三年级在“阳光体育”活动中,参加各项球类运动的数据信息制作成了扇形统计图,如图所示.已知参加乒乓球运动的人数有题.(1)求参加篮球和足球运动的总人数;(2)学校为本次活动购买了一些体育器材,数每人一只配备的,购买篮球的费用是单价比足球的单价便宜10元多少人?23.如图,在平行四边形ABCDBD于点F,且2AB BF BD=⋅(1)求证:点F 在边AB 的垂直平分线上;(2)求证:AD AE BE BD = .24.如图,已知抛物线214y x bx c =-++为点A .(1)求抛物线的解析式及点A 的坐标;(2)将该抛物线向右平移m 个单位(0m >求m 的值;(3)在(2)的条件下,设新抛物线的顶点为于点F ,求点C 到直线GF 的距离.25.如图,半圆O 的直径10AB =点D 是弧AC 上一点.(1)若点D 是弧AB 的中点,求tan DOC ∠(2)连接BD 交半径OC 于点E ,交CH 于点①用含m 的代数式表示线段CF 的长;②分别以点O 为圆心OE 为半径、点C m 取值范围.参考答案:故选:C .【点睛】本题考查了菱形的判定方法,熟知菱形的判定方法是解题的关键.6.D【分析】根据所给函数的性质逐一判断即可.【详解】解:A.对于y x =-,当x =-二、四象限;当0x >时,y 随x 的增大而减小.故选项B.对于4y x =+,当2x =-时,2y =三象限;当0x >时,y 随x 的增大而增大.故选项1【点睛】本题考查了中线的性质,15.1508q s =-+【分析】根据图象,通过待定系数法,即可解答.【详解】解:根据图象,可得函数与坐标轴的交点为设函数解析式为q ks b =+,将()050,,()4000,代入函数解析式得:解得1850k b ⎧=-⎪⎨⎪=⎩,故q 与s 的函数解析式为18q =-故答案为:1508q s =-+.【点睛】本题考查了待定系数法求一次函数,熟练运用待定系数法是解题的关键.【点睛】本题考查了垂径定理,勾股定理,掌握垂径定理是解题的关键.17.2【分析】首先根据题意画图,可求得直线据两点间距离公式,即可求解.【详解】解:根据题意画图如下:=设直线AB的解析式为y kx【详解】解:如图,过点D 作EC 的垂线段,交EC 于点F ,过点90610BC AB ︒==,,,226810+=,是边AB 的中点,152AD BD AB ===,ADM 沿DM 所在的直线翻折,点A 落在点E 处,5DA DC ==,在Rt ACH 中,45C ∠=︒.∴45HAC C ∠=∠=︒,即AH CH =.在Rt ABH △中,1tan 2AH B BH ==.∴2BH AH =.设AH x =,那么CH x =,2BH x =.∵AH BC ⊥,∴90DGC AHC ∠=∠=︒.∴DG AH ∥,即BD BG AB BH =.由13AD BD =得34BD AB =.∵8BH =,∴34BG BH =,即6BG =.∴6BG CG ==,即DG 是线段BC 的垂直平分线.∴BD CD =,∴BCD B ∠=∠.原抛物线21(2)44y x =--+向右平移132∴1742G ⎛⎫ ⎪⎝⎭,,2502F ⎛⎫ ⎪⎝⎭,,1702P ⎛⎫ ⎪⎝⎭,.4GP PF ==,∴GPF 是等腰直角三角形,GFP ∠在Rt MOF △中,OMF OFM ∠=∠=∴192CM OM OC =-=.∵点D 是弧AB 的中点,AB 是直径,∴OD AB ⊥.∴90CHB DOB ∠=∠=︒,∴OD CH ∥,∴DOC OCH ∠=∠.过点O 作OM BC ⊥,垂足为点M .由垂径定理,在Rt BOM △中,34BM OM OB ==,,在Rt BCH △中,sin CH BC OBC =⋅∠=)HG OC ∥交BD 于点G .,,HGB OEB GHB EOB =∠∠=∠,HGB OEB ∽1855BH BO ==,1825m =.HG OC∥,,CEF HGF ECF FHG =∠∠=∠,CEF HGF ∽CE GH=,51825CF m CF m -=-.6001201257m m-=-.o OE m ==,6001201257c m r CF m -==-,d OC =当两圆内切时,60012051257m m m --=.【点睛】本题属于圆综合题,考查了圆与圆的位置关系,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,需要利用参数解决问题,属于中考压轴题.答案第17页,共17页。
2019-2020学年上海市青浦区九年级第二学期(二模)考试数学试卷(含答案)

青浦区2019学年九年级第二次学业质量调研测试数 学 试 卷(时间100分钟,满分150分) Q2020.05考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂] 1. (0)a a ≠的倒数是( ▲ )(A )a ; (B )a -; (C )1a ; (D )1a-. 2.计算2(2)x -的结果,正确的是( ▲ )(A )22x ; (B )22x -; (C )24x ; (D )24x -. 3.如果反比例函数ky x=的图像分布在第二、四象限,那么k 的取值范围是( ▲ ) (A )0k >; (B )0k <; (C )0k ≥; (D )0k ≤. 4.下列方程中,没有实数根的是( ▲ )(A ); (B );(C );(D ). 5. 为了解某校初三400名学生的体重情况,从中抽取50名学生的体重进行分析.在这项调查220x x -=2210x x --=2210x x -+=2220x x -+=中,下列说法正确的是( ▲ )(A )400名学生中每位学生是个体; (B )400名学生是总体; (C )被抽取的50名学生是总体的一个样本; (D )样本的容量是50. 6.如图1,点G 是ABC ∆的重心,联结AG 并延长交BC 边于点D .设a AB =u u u r r ,b GD =u u u r r ,那么向量BC u u u r 用向量a r 、b r表示为( ▲(A )32BC b a =-u u u rr r; (B )32BC b a =+u u u rr r;(C )62BC b a =-u u u r r r;(D )62BC b a =+u u u rr r.二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案] 7. 计算:3a a ÷= ▲ .8. 在实数范围内因式分解:22m -= ▲ . 9. 函数y 的定义域是 ▲ .10.不等式组1020.x x +≥⎧⎨->⎩,的解集是 ▲ .11.如果将直线3y x =平移,使其经过点(0,-1),那么平移后的直线表达式是 ▲ . 12.从2,3,4,5,6这五个数中任选一个数,选出的这个数是素数的概率是 ▲ . 13.如果点D 、E 分别是ABC ∆的AB 、AC 边的中点,那么ADE ∆与ABC ∆的周长之比是 ▲ .图114.已知点C 在线段AB 上,且012AC AB <<.如果⊙C 经过点A ,那么点B 与⊙C 的位置关系是 ▲ .15.随机选取50粒种子在适宜的温度下做发芽天数的试验,试验的结果如右表所示.估计该作物种子发芽的天数的平均数约为 ▲ 天.16.在ABC ∆中,3AB AC ==,2BC =,将ABC ∆绕着点B 顺时针旋转,如果点A 落在射线BC 上的点A '处.那么=AA ' ▲ .17.在Rt ABC ∆中,90oACB ∠=,3AC =,4BC =.分别以A 、B 为圆心画圆,如果⊙A 经过点C ,⊙B 与⊙A 相交,那么⊙B 的半径r 的取值范围是 ▲ . 18.小明学习完《相似三角形》一章后,发现了一个有趣的结论:在两个不相似的直角三角形中,分别存在经过直角顶点的一条直线,把直角三角形分成两个小三角形后,如果第一个直角三角形分割 出来的一个小三角形与第二个直角三角形分割出来的一个小三角形相似,那么分割出来的另外两个小三角形也相似.他把这样的 两条直线称为这两个直角三角形的相似..分割线.... 如图2、图3,直线CG 、DH 分别是两个不相似的Rt ABC ∆ 和Rt DEF ∆的相似分割线,CG 、DH 分别与斜边AB 、EF 交于 点G 、 H ,如果BCG ∆与DFH ∆相似,3AC =,5AB =,4DE =,8DF =,那么AG = ▲ .三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上]GCA图2HFED图319.(本题满分10分)计算:2121182-⎛⎫- ⎪⎝⎭.20.(本题满分10分)解方程:24211422x x x x -=---+. 21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图4,在Rt ABC ∆中,90ACB ∠=o,4AC BC ==, 点D 在边BC 上,且3BD CD =,DE AB ⊥,垂足为点E ,联结CE .(1)求线段AE 的长; (2)求ACE ∠的余切值.22.(本题满分10分,第(1)小题3分,第(2)小题7分)某湖边健身步道全长1500米,甲、乙两人同时从同一起 点匀速向终点步行.甲先到达终点后立刻返回,在整个步行过 程中,甲、乙两人间的距离y (米)与出发的时间x的关系如图5中OA —AB 折线所示.(1)用文字语言描述点A 的实际意义; (2)求甲、乙两人的速度及两人相遇时x 的值. 23.(本题满分12分,第(1)小题7分,第(2)小题5分)如图6,在平行四边形ABCD 中,BE 、DF 分别是平行四边形的ABCDE 图4GBA图5两个外角的平分线,12EAF BAD ∠=∠,边AE 、AF 分别交两条角平分线于点E 、F .(1)求证:ABE ∆∽FDA ∆;(2)联结BD 、EF ,如果2DF AD AB =⋅,求证:BD EF =.24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图7,在平面直角坐标系xOy 中,二次函数243y a x a x =-+ 的图像与x 轴正半轴交于点A 、B ,与y 轴相交于点C ,顶点为D ,且tan 3∠=CAO .(1)求这个二次函数的解析式;(2)点P 是对称轴右侧抛物线上的点,联结CP ,交对称轴于点F ,当:2:3CDF FDP S S =V V 时,求点P 的坐标;(3)在(2)的条件下,将△PCD 沿直线MN 翻折,当点P 恰好与点O 重合时,折痕MN 交轴于点M ,交轴于点N ,求OM ON的值.x y 图7备用图25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图8,已知AB 是半圆O 的直径,6AB =,点C 在半圆O 上.过点A 作AD ⊥OC ,垂足为点D ,AD 的延长线与弦BC 交于点E ,与半圆O 交于点F (点F 不与点B 重合).(1)当点F 为»BC的中点时,求弦BC 的长; (2)设OD x =,DE AEy =,求与的函数关系式;(3)当△AOD 与△CDE 相似时,求线段OD 的长.y x OABCDE FOABCDE F备用图图8青浦区2019学年九年级第二次学业质量调研测试评分参考 202005一、选择题:1.C ; 2.C ; 3.B ; 4.D ; 5.D ; 6.C .二、填空题:7.2a ; 8.(m m ; 9.3x ≥-;10.12x -≤<; 11.31y x =-; 12.35;13.1:2; 14.点B 在⊙C 外; 15.1.8;16. 17.2<r <8; 18.3.三、解答题:19.解:原式4+. ····················································· (8分)=3. ············································································· (2分)20.解:两边同乘以(2)(2)x x +-,得242(2)4(2)x x x x -+=--- ································································ (4分)2320x x -+=.·················································································· (2分) 解得121,2x x ==. ·············································································· (2分) 经检验,11x =是原方程的根,22x =是原方程的增根,舍去. ······················· (1分)所以,原方程的根是1x =.······································································· (1分) 21.证明:(1)∵4BC =,3BD CD =, ∴3BD =. ······································ (1分)∵AB=BC , ∠ACB =90°∴∠A =∠B =45°.································· (1分)∵DE ⊥AB , ∴在Rt △DEB 中,cos 2BE B BD==.∴BE =·· (2分)在Rt △ACB 中,AB ==AE =·············· (1分)(2)∵过点E 作EH ⊥AC 于点H.∴在Rt △AHE 中,cos AH A AE ==,AH=cos45AE ⋅︒= 52············· (1分) ∴53422CH AC AH =-=-=,∴EH= AH=52···································· (2分) ∴在Rt △CHE 中,cot ∠ECB =35CH EH=,即∠ECB 的余切值是35············· (2分)22.解:(1)20分钟时,甲乙两人相距500米. ··············································· (3分)(2)1500==7520V 米分甲,1000==5020V 米乙分··································· (4分)依题意,可列方程:75(x -20)+50(x -20)=500 ······································· (1分) 解这个方程,得 x =24 ····································································· (1分)答:甲的速度是每分钟75米,乙的速度是每分钟50米,两人相遇时x 的值为24. ·· (1分)23.证明:(1)∵∠EAF=12∠BAD.∴∠DAF+∠BAE=12∠BAD ·························(1分)∵DF平分∠HDC,∴∠HDF=12∠HDC.····································(1分)又∵ABCD是平行四边形,∴AB∥CD.∴∠BAD=∠CDH.∴∠HDF =∠DAF+∠BAE.·······················································(1分)又∵∠HDF =∠DAF+∠F, ·······················································(1分)∴∠BAE=∠F. ······································································(1分)同理:∠DAF=∠E···································································(1分)∴△ABE∽△FDA ····································································(1分)(2)作AP平分∠DAB交CD∴∠DAP=12∠BAD,∵∠HDF=12∠CDH,且∠BAD=∠CDH∴DF∥AP ·······················································································(1分)同理:BE∥AP,∴DF∥BE∵△ABE∽△FDA ∴AD DFBE AB=,即BE DF AD AB⋅=⋅···························(1分)又∵2DF AD AB =⋅∴BE =DF ························································································ (1分) ∴四边形DFEB 是平行四边形 ····························································· (1分) ∴BD =EF ························································································ (1分)24.解:(1)∵二次函数243y ax ax =-+的图像与y 轴交于点C ,∴点C 的坐标为(0,3) ∴OC =3 ·························································· (1分)联结AC ,在Rt △AOC 中,tan ∠CA O=OC OA=3∴OA =1 ·························· (1分) 将点A (1,0)代入243y ax ax =-+,得430a a -+=, ······················· (1分) 解得: 1a =.所以,这个二次函数的解析式为 243y x x =-+. ································· (1分) (2)过点C 作CG ⊥DF ,过点P 作PQ ⊥DF ,垂足分别为点G 、Q .∵抛物线243y x x =-+的对称轴为直线2x =,∴2CG =.····················· (1分)∵23CDF FDP CG PQ S S ∆∆==,∴3PQ =. ························································· (1分) ∴点P 的横坐标为5. ······································································· (1分) ∴把5x =代入 243y x x =-+,得 8y =∴点P 的坐标为(5,8) ········· (1分)(3)过点P 作PH ⊥OM ,垂足分别为点H∵点P 的坐标为(5,8) ∴OH=5,PH=8. ··············································· (1分) ∵将△PCD 沿直线MN 翻折,点P 恰好与点O 重合,∴MN OP ⊥,∴∠ONM +∠NOP=90°. ···················································· (1分) 又∵∠POH +∠NOP=90°,∴∠ONM =∠POH . ········································································ (1分) ∴85tan tan OMPHONM POM ON OH ∠=∠===.············································ (1分) 25.解:(1)联结OF ,交BC 于点H .∵F 是»BC 中点,∴OF ⊥BC ,BC =2BH . ····················································· (1分)∴∠BOF =∠COF .∵OA =OF 且OC ⊥AF ,∴∠AOC=∠COF∴∠AOC =∠COF =∠BOF =60° ·································································· (1分)在Rt BOH ∆中,Sin ∠BOH =BHOB =2························································ (1分)∴BH BC =·········································································· (1分) (2)联结BF .∵AF ⊥OC ,垂足为点=D ,∴AD =DF . ······················································· (1分) 又∵OA = OB ,∴OD ∥BF ,22BF OD x ==. ································································· (1分)∴32DECDxEF BF x -==, ············································································· (1分)∴33DEx DFx -=+ 即33DE x AD x -=+ ·································································· (1分) ∴36DEx AE -=, ····················································································· (1分) ∴36x y -=. ······················································································· (1分) (3)AOD ∆∽CDE ∆,分两种情况:①当DOA DCE ∠=∠时,CB AB //,不符合题意,舍去. (1分) ②当DAO DCE ∠=∠时,联结OF .∵,OA OF OB OC ==,∴,OAF OFA OCB OBC ∠=∠∠=∠.DAO DCE ∠=∠ΘOBC OCB OFA OAF ∠=∠=∠=∠∴. (1分) ∵2AOD OCB OBC OAF ∠=∠+∠=∠, (1分)30OAF ∴∠=︒ ,2321==∴OA OD . (1分) 即,线段OD 的长为32。
初中青浦二模数学试卷答案

一、选择题1. 答案:D解析:由题意可知,x的值应该是2的倍数,而选项中只有D是2的倍数。
2. 答案:A解析:根据勾股定理,a² + b² = c²,代入选项验证,只有A选项符合条件。
3. 答案:C解析:题目中提到,三角形ABC是等腰三角形,所以AB = AC,又因为BC是斜边,所以BC > AB,故选C。
4. 答案:B解析:由题意可知,正方形的对角线相等,所以AC = BD,又因为AB = BC,所以三角形ABC是等边三角形。
5. 答案:D解析:由题意可知,x + y = 5,x - y = 1,解这个方程组,得到x = 3,y = 2。
二、填空题6. 答案:7解析:由题意可知,x² - 6x + 9 = 0,这是一个完全平方公式,所以x = 3。
7. 答案:8解析:由题意可知,a + b = 10,ab = 15,解这个方程组,得到a = 5,b = 5。
8. 答案:-2解析:由题意可知,-2x + 3 = 0,解这个方程,得到x = 3/2,即x = -2。
9. 答案:45°解析:由题意可知,∠ABC = 45°,∠ACB = 90°,所以∠BAC = 45°。
10. 答案:18解析:由题意可知,x² + 2x - 15 = 0,这是一个二次方程,解这个方程,得到x = 3 或 x = -5,所以x + y = 3 + (-5) = -2,即x + y = 18。
三、解答题11. 答案:(1)由题意可知,x² - 5x + 6 = 0,解这个方程,得到x = 2 或 x = 3。
(2)当x = 2时,代入原方程,得到2² - 5×2 + 6 = 0,所以x = 2是方程的解。
(3)当x = 3时,代入原方程,得到3² - 5×3 + 6 = 0,所以x = 3也是方程的解。
2019~2020学年上海市青浦区九年级二模数学试卷及参考答案

2019~2020学年上海市青浦区九年级⼆模数学试卷及参考答案2019~2020学年上海市青浦区九年级⼆模数学试卷(时间:100分钟,满分150分)⼀、选择题(本⼤题共6题,每题4分,满分24分) 1.(0)a a ≠的倒数是()(A )a ;(B )a -;(C )1a;(D )1a -.2. 计算2(2)x -的结果,正确的是()(A )22x ;(B )22x -;(C )24x ;(D )24x -.3. 如果反⽐例函数ky x =的图像分布在第⼆、四象限,那么k 的取值范围是()(A )0k >;(B )0k <;(C )0k ≥;(D )0k ≤.4. 下列⽅程中,没有实数根的是()(A )220x x -=;(B )2210x x --=;(C )2210x x -+=;(D )2220x x -+=.5. 为了了解某校初三400名学⽣的体重情况,从中抽取50名学⽣的体重进⾏分析,在这项调查中,下列说法正确的是()(A )400名学⽣中每位学⽣是个体;(B )400名学⽣是总体;(C )被抽取的50名学⽣是总体的⼀个样本;(D )样本容量是50.6. 如图,点G 是ABC △的重⼼,联结AG 并延长交BC 边于点D .设AB a =u u u r r ,GD b =u u u r r,那么向量BC u u u r ⽤向量a r 、b r表⽰为()(A )32BC b a =-u u u r r r ;(B )32BC b a =+u u u r r r ;(C )62BC b a =-u u u r r r ;(D )62BC b a =+u u u r r r .第6题图⼆、填空题(本⼤题共12题,每题4分,满分48分) 7. 计算:3a a ÷=____________.8. 在实数范围内因式分解:22m -=____________.9. 函数y ____________. 10. 不等式组10;20.x x +≥??->?的解集是____________.11. 如果将直线3y x =平移,使其经过点(0,1)-,那么平移后的直线表达式是__________. 12. 从2、3、4、5、6这五个数中任选⼀个数,选出的这个数是素数的概率是________.13.如果点D、E分别是ABC△边的中点,那么ADE△与ABC△的周长之⽐是_______.14.已知点C在线段AB上,且12AC AB<<.如果⊙C经过点A,那么点B与⊙C的位置关系是____________.15.随机选取50粒种⼦在适宜的温度下做发芽天数的试验,试验的结果如下表所⽰.估计该作物种⼦发芽的天数的平均数约为_________天.16.在ABC△中,3AB AC==,2BC=,将ABC△绕着点B顺时针旋转,如果点A落在射线BC上的点'A处,那么'AA=____________.17.在Rt ABC△中,90ACB∠=?,3AC=,4BC=,分别以A、B为圆⼼画圆,如果⊙A 经过点C,⊙B与⊙A相交,那么⊙B的半径r的取值范围是____________.18.⼩明学习完《相似三⾓形》⼀章后,发现了⼀个有趣的结论:在两个不相似的直⾓三⾓形中,分别存在经过直⾓顶点的⼀条直线,把直⾓三⾓形分成两个⼩三⾓形后,如果第⼀个直⾓三⾓形分割出来的⼀个⼩三⾓形与第⼆个直⾓三⾓形分割出来的⼀个⼩三⾓形相似,那么分割出来的另外两个三⾓形也相似,他把这样的两条直线称为这两个直⾓三⾓形的相似分割线.如图,直线CG、DH分别是两个不相似的Rt ABC△和Rt DEF△的相似分割线,CG、DH分别与斜边AB、EF交于点G、H,如果BCG△与DFH△相似,3AC=,5AB=,4DE=,8DF=,那么AG=____________.第18题图三、解答题(本⼤题共7题,满分78分)19.(本题满分10分)-2121182-- ?.20. (本题满分10分)解⽅程:24211422x x x x -=---+.21. (本题满分10分,每⼩题各5分)如图,在Rt ABC △中,90ACB ∠=?,4AC BC ==,点D 在边BC 上,且3BD CD =,DE AB ⊥,垂⾜为点E ,联结CE .(1)求线段AE 的长;(2)求ACE ∠的余切值.22. (本题满分1哦分,其中第(1)⼩题3分,第(2)⼩题7分)某湖边健⾝步道全长1500⽶,甲、⼄两⼈同时从同⼀起点匀速向终点步⾏.甲先到达终点后⽴刻返回,在整个步⾏过程中,甲、⼄两⼈间的距离y (⽶)与出发时间x (分)之间的关系如图中OA AB -折线所⽰.(1)⽤⽂字语⾔描述点A 的实际意义;(2)求甲、⼄两⼈的速度及两⼈相遇时x 的值.23. (本题满分12分,其中第(1)⼩题7分,第(2)⼩题5分)如图,在平⾏四边形ABCD 中,BE 、DF 分别是平⾏四边形的两个外⾓的平分线,12EAF BAD ∠=∠,边AE 、AF 分别交两条交平分线于点E 、F .(1)求证:ABE △∽FDA △;(2)联结BD 、EF ,如果2DF AD AB =?,求证:BD EF =.24. (本题满分12分,每⼩题各4分)如图,在平⾯直⾓坐标系xOy 中,⼆次函数243y ax ax =-+的图像与x 轴正半轴交于点A 、B ,与y 轴交于点C ,顶点为D ,且tan 3CAO ∠=.(1)求这个⼆次函数的解析式;(2)点P 是对称轴右侧抛物线上的点,联结CP ,交对称轴于点F ,当:2:3CDF FDP S S =△△时,求点P 的坐标.(3)在(2)的条件下,将PCD △沿直线MN 翻折,当点P 恰好与点O 重合时,折痕MN 交x 轴于点M ,交y 轴于点N ,求OMON的值.备⽤图25.(本题满分14分,其中第(1)⼩题4分,第(2)⼩题6分,第(3)⼩题4分)如图,已知AB是半圆O的直径,6AB=,点C在半圆O上,过点A作AD OC⊥,垂⾜为点D,AD的延长线与弦BC交于点E,与半圆O交于点F(点F不与点B重合).(1)当点F为?BC的中点时,求弦BC的长;(2)设OD x=,DEyAE=,求y与x的函数关系式;(3)当AOD△与CDE△相似时,求线段OD的长.备⽤图。
上海市静安区、青浦区2019年中考二模数学试题(解析版)

上海市静安区、青浦区2019年中考二模数学试题一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]....B、﹣5.(4分)(2019•老河口市模拟)如果▱ABCD的对角线相交于点O,那么在下列条件中,能判断▱ABCD6.(4分)(2019•静安区二模)一个图形沿一条直线翻折后再沿这条直线的方向平移,我们把这样的图形运动称为图形的翻移,这条直线称为翻移线.如图△A2B2C2是由△ABC沿直线l翻移后得到的.在下列结论中,图形的翻移所具有的性质是()数学试卷二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.(4分)(2019•静安区二模)计算:=.=故答案为:8.(4分)(2019•静安区二模)不等式组的解集是x>2.解:>.>9.(4分)(2019•静安区二模)如果一个数的倒数等于它本身,则这个数是±1.10.(4分)(2019•静安区二模)如果关于x的方程x2﹣6x+m﹣1=0没有实数根,那么m的取值范围是m >10.11.(4分)(2019•静安区二模)如果点A(﹣1,2)在一个正比例函数y=f(x)的图象上,那么y随着x 的增大而减小(填“增大”或“减小”).12.(4分)(2019•静安区二模)将抛物线y=2x2+1向右平移3个单位,所得抛物线的表达式是y=2(x ﹣3)2+1.数学试卷13.(4分)(2019•静安区二模)某校200名学生一次数学测试的分数均大于75且小于150,分数段的频数分布情况如下:75~90有15人,90~105有42人,105~120有58人,135~150有35人(其中每个分数段可包括最小值,不包括最大值),那么测试分数在120~135分数段的频率是0.25.即可求出测试分数在==14.(4分)(2019•静安区二模)从点数为1、2、3、4、5的五张扑克牌中随机摸出两张牌,摸到的两张牌的点数之和为素数的概率是.∴摸到的两张牌的点数之和为素数的概率是:=故答案为:.15.(4分)(2019•静安区二模)在梯形ABCD中,AD∥BC,BC=3AD,,那么=.,则可表示出、,从而可得出===,又∵=,=﹣=﹣.故答案为:﹣﹣.16.(4分)(2019•静安区二模)如果⊙O1与⊙O2内含,O1O2=4,⊙O1的半径是3,那么⊙O2的半径的取值范围是r>7.17.(4分)(2019•静安区二模)在△ABC中,∠A=40°,△ABC绕点A旋转后点C落在边AB上的点C′,点B落到点B′,如果点C、C′、B′在同一直线上,那么∠B的度数是30°.数学试卷C=((18.(4分)(2019•静安区二模)在正方形ABCD中,点E、F、G、H分别在边AB、BC、CD、AD上,四边形EFGH是矩形,EF=2FG,那么矩形EFGH与正方形ABCD的面积比是.EF=2a的面积比是故答案为:三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上] 19.(10分)(2019•静安区二模)化简:,并求当时的值.+.=20.(10分)(2019•静安区二模)解方程组:.解:原方程组可化为,,,解得原方程组的解是,数学试卷21.(10分)(2019•静安区二模)已知:如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线AC、BD 相交于点E,BD⊥CD,AB=12,cot∠ADB=.求:(1)∠DBC的余弦值;(2)DE的长.ADB=,ADB=,=,BD==20ADB==;DBC==,==,=,DE=BD=20=.22.(10分)(2019•静安区二模)一辆高铁列车与另一辆动车组列车在1320公里的京沪高速铁路上运行时,高铁列车比动车组列车平均速度每小时快99公里,用时少3小时,求这辆高铁列车全程的运行时间和平均速度.时,23.(12分)(2019•静安区二模)已知:如图,在△ABC中,AB=AC,点D、E分别在边AC、AB上,DA=DB,BD与CE相交于点F,∠AFD=∠BEC.求证:(1)AF=CE;(2)BF2=EF•AF.,数学试卷.24.(12分)(2019•静安区二模)已知AB是⊙O的直径,弦CD⊥AB,垂足为H,AH=5,CD=,点E在⊙O上,射线AE与射线CD相交于点F,设AE=x,DF=y.(1)求⊙O的半径;(2)如图,当点E在AD上时,求y与x之间的函数解析式,并写出函数的定义域;(3)如果EF=,求DF的长.DC=2,在2AE=,再在=;x=BE=FH=2;,然后利用DH=DC=4,2,的半径为;AG=AE=x:==y=,;,即x=﹣DF=y===,=BE==:﹣,DF=DH+FH=2+数学试卷25.(14分)(2019•静安区二模)如图,点A(2,6)和点B(点B在点A的右侧)在反比例函数的图象上,点C在y轴上,BC∥x轴,tan∠ACB=2,二次函数的图象经过A、B、C三点.(1)求反比例函数和二次函数的解析式;(2)如果点D在x轴的正半轴上,点E在反比例函数的图象上,四边形ACDE是平行四边形,求边CD 的长.y=,由,6=∴反比例函数的解析式为,解得故二次函数的解析式为;数学试卷CD=。
2024年上海市青浦区中考数学二模试卷+答案解析

2024年上海市青浦区中考数学二模试卷一、选择题:本题共6小题,每小题4分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列二次根式中,与是同类二次根式的是()A.B.C.D.2.下列计算正确的是()A. B.C.D.3.下列函数中,函数值y 随自变量x 的值增大而增大的是()A.B.C.D.4.某兴趣小组有5名成员,身高厘米分别为:161,165,169,163,增加一名身高为165厘米的成员后,现兴趣小组成员的身高与原来相比,下列说法正确的是()A.平均数不变,方差不变 B.平均数不变,方差变小C.平均数不变,方差变大D.平均数变小,方差不变5.已知四边形ABCD 中,AB 与CD 不平行,AC 与BD 相交于点O ,那么下列条件中,能判断这个四边形为等腰梯形的是()A. B.C.,D.,6.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,过O 作AC 的垂线交AD 于点E ,EC 与BD 相交于点F ,且,那么下列结论错误的是()A. B.C.D.二、填空题:本题共12小题,每小题4分,共48分。
7.分解因式:______.8.方程的解是______.9.函数的定义域是______.10.如果关于x的方程有实数根,那么实数c的取值范围是______.11.如果将抛物线向右平移3个单位,那么所得新抛物线的表达式是______.12.甲、乙两位同学分别在A、B、C三个景点中任意选择一个游玩,那么他们选择同一个景点的概率是______.13.某校有2000名学生参加了“安全伴我行”的宣传教育活动.为了解活动效果,随机从中抽取m名学生进行了一次测试,满分为100分,按成绩划分为A,B,C,D四个等级,将收集的数据整理绘制成如下不完整的统计图表.请根据以上信息,估计该校共有______名学生的成绩达到A等级.成绩频数分布表等级成绩x频数A nB117C32D814.如图,热气球的探测器显示,从热气球A处看一栋楼顶部B的仰角为,看这栋楼底部C的俯角为,热气球A处与楼的水平距离为m米,那么这栋楼BC的高度为______米用含、、m的式子表示15.如图,在中,中线AD、BE相交于点F,设,,那么向量用向量、表示为______.16.如图,有一幅不完整的正多边形图案,小明量得图中一边与对角线的夹角,那么这个正多边形的中心角是______度.17.正方形ABCD的边长为1,E为边DC的中点,点F在边AD上,将沿直线EF翻折,使点D落在点G处,如果,那么线段DF的长为______.18.在矩形ABCD中,,,AC与BD相交于点经过点B,如果与有公共点,且与边CD没有公共点,那么的半径长r的取值范围是______.三、解答题:本题共7小题,共78分。
2019~2020学年上海市青浦区九年级二模数学试卷及参考答案

2019~2020学年上海市青浦区九年级二模数学试卷(时间:100分钟,满分150分)一、选择题(本大题共6题,每题4分,满分24分) 1.(0)a a ≠的倒数是( )(A )a ; (B )a -; (C )1a;(D )1a -.2. 计算2(2)x -的结果,正确的是( )(A )22x ;(B )22x -;(C )24x ;(D )24x -.3. 如果反比例函数ky x =的图像分布在第二、四象限,那么k 的取值范围是( ) (A )0k >;(B )0k <; (C )0k ≥; (D )0k ≤.4. 下列方程中,没有实数根的是( )(A )220x x -=;(B )2210x x --=; (C )2210x x -+=;(D )2220x x -+=.5. 为了了解某校初三400名学生的体重情况,从中抽取50名学生的体重进行分析,在这项调查中,下列说法正确的是( ) (A )400名学生中每位学生是个体;(B )400名学生是总体;(C )被抽取的50名学生是总体的一个样本;(D )样本容量是50.6. 如图,点G 是ABC △的重心,联结AG 并延长交BC 边于点D .设AB a =u u u r r ,GD b =u u u r r,那么向量BC u u u r 用向量a r 、b r表示为( )(A )32BC b a =-u u u r r r ; (B )32BC b a =+u u u r r r ;(C )62BC b a =-u u u r r r ; (D )62BC b a =+u u u r r r .第6题图二、填空题(本大题共12题,每题4分,满分48分) 7. 计算:3a a ÷=____________.8. 在实数范围内因式分解:22m -=____________.9. 函数y ____________. 10. 不等式组10;20.x x +≥⎧⎨->⎩的解集是____________.11. 如果将直线3y x =平移,使其经过点(0,1)-,那么平移后的直线表达式是__________. 12. 从2、3、4、5、6这五个数中任选一个数,选出的这个数是素数的概率是________.13.如果点D、E分别是ABC△边的中点,那么ADE△与ABC△的周长之比是_______.14.已知点C在线段AB上,且12AC AB<<.如果⊙C经过点A,那么点B与⊙C的位置关系是____________.15.随机选取50粒种子在适宜的温度下做发芽天数的试验,试验的结果如下表所示.估计该作物种子发芽的天数的平均数约为_________天.16.在ABC△中,3AB AC==,2BC=,将ABC△绕着点B顺时针旋转,如果点A落在射线BC上的点'A处,那么'AA=____________.17.在Rt ABC△中,90ACB∠=︒,3AC=,4BC=,分别以A、B为圆心画圆,如果⊙A 经过点C,⊙B与⊙A相交,那么⊙B的半径r的取值范围是____________.18.小明学习完《相似三角形》一章后,发现了一个有趣的结论:在两个不相似的直角三角形中,分别存在经过直角顶点的一条直线,把直角三角形分成两个小三角形后,如果第一个直角三角形分割出来的一个小三角形与第二个直角三角形分割出来的一个小三角形相似,那么分割出来的另外两个三角形也相似,他把这样的两条直线称为这两个直角三角形的相似分割线.如图,直线CG、DH分别是两个不相似的Rt ABC△和Rt DEF△的相似分割线,CG、DH分别与斜边AB、EF交于点G、H,如果BCG△与DFH△相似,3AC=,5AB=,4DE=,8DF=,那么AG=____________.第18题图三、解答题(本大题共7题,满分78分)19.(本题满分10分)-2121182⎛⎫-- ⎪⎝⎭.20. (本题满分10分)解方程:24211422x x x x -=---+.21. (本题满分10分,每小题各5分)如图,在Rt ABC △中,90ACB ∠=︒,4AC BC ==,点D 在边BC 上,且3BD CD =,DE AB ⊥,垂足为点E ,联结CE .(1)求线段AE 的长;(2)求ACE ∠的余切值.22. (本题满分1哦分,其中第(1)小题3分,第(2)小题7分)某湖边健身步道全长1500米,甲、乙两人同时从同一起点匀速向终点步行.甲先到达终点后立刻返回,在整个步行过程中,甲、乙两人间的距离y (米)与出发时间x (分)之间的关系如图中OA AB -折线所示.(1)用文字语言描述点A 的实际意义; (2)求甲、乙两人的速度及两人相遇时x 的值.23. (本题满分12分,其中第(1)小题7分,第(2)小题5分)如图,在平行四边形ABCD 中,BE 、DF 分别是平行四边形的两个外角的平分线,12EAF BAD ∠=∠,边AE 、AF 分别交两条交平分线于点E 、F .(1)求证:ABE △∽FDA △;(2)联结BD 、EF ,如果2DF AD AB =⋅,求证:BD EF =.24. (本题满分12分,每小题各4分)如图,在平面直角坐标系xOy 中,二次函数243y ax ax =-+的图像与x 轴正半轴交于点A 、B ,与y 轴交于点C ,顶点为D ,且tan 3CAO ∠=.(1)求这个二次函数的解析式;(2)点P 是对称轴右侧抛物线上的点,联结CP ,交对称轴于点F ,当:2:3CDF FDP S S =△△时,求点P 的坐标.(3)在(2)的条件下,将PCD △沿直线MN 翻折,当点P 恰好与点O 重合时,折痕MN 交x 轴于点M ,交y 轴于点N ,求OMON的值.备用图25.(本题满分14分,其中第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,已知AB是半圆O的直径,6AB=,点C在半圆O上,过点A作AD OC⊥,垂足为点D,AD的延长线与弦BC交于点E,与半圆O交于点F(点F不与点B重合).(1)当点F为»BC的中点时,求弦BC的长;(2)设OD x=,DEyAE=,求y与x的函数关系式;(3)当AOD△与CDE△相似时,求线段OD的长.备用图。
2020-2021学年上海市静安区、青浦区中考二模数学试题及答案解析

上海市静安区、青浦区中考二模数 学(满分150分,100分钟完成)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂] 1.当2-<a 时,2)2(+a 等于(A )2+a (B )2-a (C )a -2 (D )2--a 2.如果b a <,那么下列不等式中一定正确的是(A )b b a -<-2 (B )ab a <2 (C ) 2b ab < (D )22b a <3.已知函数2)1(-+-=k x k y (k 为常数),如果y 随着x 的增大而减小,那么k 的取值范围是(A )1>k (B )1<k (C ) 2>k (D )2<k4.某校九年级200名学生在第一学期的期末考试中数学成绩(分数都是整数)分布如下表: 表中每组数据含最小值和最大值,在最低分为75分与最高分为149分之间的每个分数都有学生,那么下列关于这200名学生成绩的说法中一定正确的是(A )中位数在105~119分数段 (B )中位数是119.5分 (C )中位数在120~134分数段 (D )众数在120~134分数段5.如图,将△ABC 沿直线AB 翻折后得到△1ABC ,再将△ABC 绕点A 旋转后得到△22C AB ,对于下列两个结论:①“△1ABC 能绕一点旋转后与△22C AB 重合”; ②“△1ABC 能沿一直线翻折后与△22C AB 重合”的正确性是 (A )结论①、②都正确 (B )结论①、②都错误 (C )结论①正确、②错误 (D )结论①错误、②正确 6.如果四边形ABCD 的对角线相交于点O ,且AO =CO ,那么下列条 件中 不能..判断四边形ABCD 为平行四边形的是 (A )OB =OD (B )AB//CD (C )AB =CD (D )∠ADB =∠DBC 二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案] 7.数25的平方根是 ▲ . 8.分解因式:=--122x x ▲ .9.如果二次根式x 23-有意义,那么x 的取值范围是 ▲ . 10.关于x 的方程0122=++-m mx x 根的情况是 ▲ .11.如果抛物线h x a y +-=2)1(经过点A (0,4)、B (2,m ),那么m 的值是 ▲ . 12.某小组8位学生一次数学测试的分数为121,123,123,124,126,127,128,128,那么这个小组测试分数的标准差是 ▲ .(第5题图)13.从3位男同学和2位女同学中任选2人参加志愿者活动,所选2人中恰好是一位男同学和一位女同学的概率是 ▲ .14.如图,在△ABC 中,点D 在边AC 上,AD=2CD ,如果b BD a A B ==,,那么=BC ▲ .15.在Rt △ABC 中,∠C =90° ,点D 、E 分别是边AC 、AB 的中点,点F 在边BC 上,AF 与DE 相交于点G ,如果∠AFB =110° ,那么∠CGF 的度数是 ▲ .16. 将关于x 的一元二次方程02=++q px x 变形为q px x --=2,就可将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”. 已知012=--x x ,可用“降次法”求得134--x x 的值是 ▲ .17.如果⊙O 1与⊙O 2相交于点A 、B ,⊙O 1的半径是5,点O 1到AB 的距离为3,那么⊙O 2的半径r 的取值范围是 ▲ .18.如图,在等腰梯形ABCD 中,AD//BC ,点E 、F 、G 分别在边AB 、BC 、CD 上,四边形AEFG 是正方形,如果∠B= 60°, AD=1,那么BC 的长是 ▲ .三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上] 19.(本题满分10分)化简:x x x x -++--12121)1)(1(,并求当13+=x 时的值.20.(本题满分10分)(第18题图)(第14题图)解方程:411322=+++x x x x .21.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)已知:如图,在菱形ABCD 中,AE ⊥BC ,垂足为E ,对角线BD= 4,21tan =∠CBD . 求:(1)边AB 的长;(2)∠ABE 的正弦值.22.(本题满分10分)小丽购买了6支水笔和3本练习本,共用21元;小明购买了12支水笔和5本练习本,共用39元.已知水笔与练习本的单价分别相同,求水笔与练习本的单价.23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)已知:如图,在△ABC 中,AB=AC ,点D 、E 分别是边AC 、AB 的中点,DF ⊥AC ,DF 与CE 相交于点F ,AF 的延长线与BD 相交于点G .(1)求证:BD DG AD ⋅=2; (2)联结CG ,求证:∠ECB =∠DCG .(第21题图) ABCED(第23题图)ABCDE GF24.(本题满分12分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分4分)已知⊙O 的半径为3,⊙P 与⊙O 相切于点A ,经过点A 的直线与⊙O 、⊙P 分别交于点B 、C ,31cos =∠BAO ,设⊙P 的半径为x ,线段OC 的长为y .(1)求AB 的长;(2)如图,当⊙P 与⊙O 外切时,求y 与x 之间的函数解析式,并写出函数的定义域; (3)当∠OCA =∠OPC 时,求⊙P25.(本题满分14分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分6分)(第24题图)如图,反比例函数的图像经过点A(–2,5)和点B(–5,p),□ABCD的顶点C、D分别在y 轴的负半轴、x轴的正半轴上,二次函数的图像经过点A、C、D.(1)求直线AB的表达式;(3)如果点E且∠DCE=∠BDO,求点E(第25题图)上海市静安区、青浦区中考二模数学试卷参考答案及评分标准.10一、选择题:(本大题共6题,每题4分,满分24分)1.D ; 2.A ; 3.B ; 4.B ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.5±; 8.)21)(21(--+-x x ; 9.23≤x ; 10.没有实数根; 11.4; 12.6; 13.53; 14.a b 2123-; 15.︒40; 16.1; 17.4≥r ; 18.32+. 三、(本大题共7题, 第19~22题每题10分, 第23、24题每题12分, 第25题14分, 满分78分) 19.解:原式=x xx -+-11……………………………………………………………………(4分)=xxx -=-111……………………………………………………………………(2分) 当13+=x 时,原式=233)13)(13()13(313131-=-+--=+--.…………………(4分) 20.解:设xx y 12+=,…………………………………………………………………………(1分)得:43=+y y,………………………………………………………………………(1分) 0342=+-y y ,…………………………………………………………………(1分).3,121==y y ……………………………………………………………………(2分)当1=y 时,,112=+xx 012=+-x x ,此方程没有数解.…………………(2分)当3=y 时,,312=+x x 0132=+-x x ,253±=x .………………………(2分) 经检验253±=x 都是原方程的根,…………………………………………(1分) 所以原方程的根是253±=x .21.解:(1) 联结AC ,AC 与BD 相交于点O ,………………………………………………(1分)∵四边形ABCD 是菱形,∴AC ⊥BD ,BO =221=BD .……………………(1分) ∵Rt △BOC 中,21tan ==∠OB OC CBD ,………………………………………(1分) ∴OC =1,…………………………………………………………………………(1分) ∴AB =BC =5212222=+=+OC BO .……………………………………(1分)(2)∵AE ⊥BC ,∴AC BD AE BC S ABCD ⋅⋅21==菱形,………………………………(2分)∵AC =2OC =2,∴42215⨯⨯=AE ,…………………………………………(1分)∴54=AE ,………………………………………………………………………(1分)∴54sin ==∠AB AE ABE .…………………………………………………………(1分)22.解:设水笔与练习本的单价分别为x 元、y 元,…………………………………………(1分)∴⎩⎨⎧=+=+,39512,2136y x y x ………………………………………………………………………(4分)解得⎩⎨⎧==.3,2y x ……………………………………………………………………………(4分)答:水笔与练习本的单价分别是2元与3元.…………………………………………(1分)23.证明:(1)∵AB=AC ,AD =,21AC AE =,21AB ∴AD =AE ,…………………………(1分) ∵∠BAD=∠CAE ,∴△BAD ≌△CAE .…………………………………………(1分) ∴∠ABD =∠ACE ,…………………………………………………………………(1分) ∵DF ⊥AC ,AD =CD ,∴AF =CF ,………………………………………………(1分) ∴∠GAD =∠ACE ,∴∠GAD =∠ABD .………………………………………(1分) ∵∠GDA=∠ADB ,∴△GDA ∽△ADB .…………………………………………(1分) ∴ADDGDB AD =,∴BD DG AD ⋅=2.……………………………………………(1分) (2)∵ADDG DB AD =,AD =CD ,∴CD DGDB CD =.………………………………………(1分) ∵∠CDG=∠BDC ,∴△DCG ∽△DBC .…………………………………………(1分) ∴∠DBC=∠DCG .…………………………………………………………………(1分) ∵AB=AC ,∴∠ABC=∠ACB .……………………………………………………(1分) ∵∠ABD =∠ACE ,∴∠ECB =∠DBC=∠DCG .………………………………(1分)24.解:(1)在⊙O 中,作OD ⊥AB ,垂足为D ,……………………………………………(1分)在Rt △OAD 中,31cos ==∠OA AD BAO ,………………………………………(1分)∴AD=31AO=1. ∴AB=2AD=2.………………………………………………(1分) (2)联结OB 、PA 、PC ,∵⊙P 与⊙O 相切于点A ,∴点P 、A 、O 在一直线上.……………………(1分)∵PC=PA ,OA=OB ,∴∠PCA=∠PAC=∠OAB=∠OBA ,∴PC//OB .………(1分) ∴AO PA AB AC =,∴AC 32xAC AB PA =⋅=. ………………………………………(1分) ∵81322222=-=-=AD OA OD ,CD=AD+AC=132+x , ∴OC=8)132(222++=+x CD OD ,………………………………………(1分)∴81124312++=x x y ,定义域为0>x .…………………………………(1分)(3) 当⊙P 与⊙O 外切时,∵∠BOA=∠OCA ,∠CAO=∠POC ,∴△OAC ∽△OCP .∴OPOCOC OA =,∴OP OA OC ⋅=2,……………………(1分) ∴)3(3)81124(912x x x +=++,∴01=x (不符合题意,舍去)4152=x , ∴这时⊙P 的半径为415.………………………………………………………(1分) ∴2932=x ,427=x ,∴这时⊙P 的半径为427.……………………………(1分) ∴⊙P 的半径为415或427.25.解:(1)设反比例函数的解析式为xky =.∵它图像经过点A (–2,5)和点B (–5,p ), ∴5=2-k,∴10-=k ,∴反比例函数的解析式为xy 10-=.……………………(1分)∴2510=--=p ,∴点B 的坐标为(–5,2).……………………………………(1分) 设直线AB 的表达式为n mx y +=,则⎩⎨⎧+-=+-=,52,25n m n m ………………………………(1分) ∴⎩⎨⎧==.7,1n m ∴直线AB 的表达式为7+=x y .………………………………………(1分) (2)由□ABCD 中,AB//CD ,设CD 的表达式为c x y +=,…………………………(1分)∴C (0,c ),D (–c ,0),…………………………………………………………(1分) ∵CD =AB ,∴22AB CD =∴2222)52()25(-++-=+c c ,……………………(1分)∴c =–3,∴点C 、D 的坐标分别是(0,–3)、(3,0).………………………(1分)(3)设二次函数的解析式为32-+=bx ax y ,⎩⎨⎧-+=--=,3390,3245b a b a ………………………(1分) ∴⎩⎨⎧-==.2,1b a ∴二次函数的解析式为322--=x x y .…………………………(1分) 作EF ⊥y 轴,BG ⊥y 轴,垂足分别为F 、G .∵OC =OD ,BG =CG ,∴∠BCG =∠OCD=∠ODC =45 º.∴∠BCD=90º,∵∠DCE =∠BDO ,∴∠ECF=∠BDC .……………………………………………(1分)∴tan ∠ECF=tan ∠BDC=35)30()03()23()50(2222=++-+++=CD BC .…………………………(1分) 设CF =3t ,则EF =5t ,OF =3–3t ,∴点E (5t ,3t –3),………………………(1分) ∴31025332--=-t t t ,2513,(021==t t 舍去).∴点E (513,2536-).………(1分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静安、青浦区2014学年第二学期教学质量调研九年级数学(满分150分,100分钟完成)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂] 1.下列二次根式中,最简二次根式是(A )8 (B )169 (C )42+x (D )x12.某公司三月份的产值为a 万元,比二月份增长了m %,那么二月份的产值(单位:万元)为 (A )%)1(m a + (B )%)1(m a - (C )%1m a + (D )%1m a-3.如果关于x 的方程02=+-m x x 有实数根,那么m 的取值范围是(A )41>m (B )41≥m (C )41<m (D ) 41≤m 4.某餐饮公司为一所学校提供午餐,有10元、12元、15元三种价格的盒饭供师生选择,每人选一份,该校师生某一天购买的这三种价格盒饭数依次占50%、30%、20%,那么这一天该校师生购买盒饭费用的平均数和中位数分别是(A )12元、12元 (B )12元、11元 (C )元、12元 (D )元、11元 5.下列图形中,是轴对称图形,但不是中心对称图形的是(A )正三角形 (B )正六边形 (C )平行四边形 (D )菱形 6.三角形的内心是(A )三边垂直平分线的交点 (B )三条角平分线的交点 (C )三条高所在直线的交点 (D )三条中线的交点 二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.计算:=-1)2( ▲ .8.分解因式:=+-2296y xy x ▲ . 9.方程x x =-23的根是 ▲ . 10.函数21-=x y 的定义域是 ▲ . 11.某工厂对一个小组生产的零件进行调查.在10天中,这个小组出次品的情况如下表所示:那么在这10天中这个小组每天所出次品数的标准差是 ▲ .12.从①AB 2AC b BC a A B ==,=AE 当2=x 时,不论k 取任何实数,函数3)2(+-=x k y 的值为3,所以直线3)2(+-=x k y一定经过定点(2,3);同样,直线2)3(++-=x x k y17. 将矩形ABCD(如图)绕点A 旋转后, 点D 落在对角线AC 上的点D ’,点C 落到C ’,如果AB =3,BC=4,那么CC ’的长为 ▲ .18.如图,⊙O 1的半径为1,⊙O 2的半径为2,O 1O 2=5,⊙O 分别与⊙O 1外切、与⊙O 2内切,那么⊙O 半径r 的取值范围是 ▲ .三、解答题:78分)[] 19.(本题满分10化简:))(111(222x x x x x +---,并求当02133-=x 时的值.20.(本题满分10分)求不等式组⎪⎩⎪⎨⎧+≥++<-12)132(6,34)1(7x x x x 的整数解.21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,在直角坐标系xOy 中,反比例函数图像与直线2-=x y 相交于横坐标为3的点A .(第13题图) (第15题图) B B (第17题图)(第18题图)(1)求反比例函数的解析式;(2)如果点B 在直线2-=x y 上,点CBC x 本题满分12分,第小题满分6分)如图,在梯形ABCD 中,AB //CD ,AD =BC ,E 是CD 中点,BE 交AC 于F ,过点F 作 FG ∥AB ,交AE 于点G .(1) 求证:AG=BF ;(2) 当CF CA AD ⋅=2时,求证:AC AG AD AB ⋅=⋅.24.(本题满分12分,第(1)小题满分8分,第(2)小题满分4分)如图,在直角坐标系xOy 中,抛物线c ax ax y +-=22与x 轴的正半轴相交于点A 、与y 轴的正半轴相交于点B ,它的对称轴与x 轴相交于点C ,且∠OBC =∠OAB ,AC =3.(1) 求此抛物线的表达式;(2) 如果点D 在此抛物线上,DF ⊥OA ,垂足为F ,DF 与线段AB 相交于点G ,且2:3:=∆∆AFG ADG S S ,求点D 25.(本题满分14分,第(1)小题满分4在⊙O 中,OC ⊥弦AB ,垂足为C ,点(1) 如图1,已知OA =5,AB =6(2) 已知OA =5,AB =6(如图2)是等腰三角形,求AF 的长; (3) 如果OD //AB ,CD ⊥OB ,垂足为E ,求sin ∠ODC 的值.一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2.A ; 6.B .二.填空题:7.22; 10.2>x ; 11.2; 12.32;13.︒45; ; 16.(3,5); 17.10; 18.3≥r . (第18题答3>r , 得2分) (第24题图)B(第23题图)(第25题图1)D (第25题图2)B OA C三、(本大题共7题, 第19~22题每题10分, 第23、24题每题12分, 第25题14分, 满分78分)19.解:原式=)1()1)(1(1)1(1+⎥⎦⎤⎢⎣⎡-+--x x x x x x ………………………………………………(3分) =11)1()1)(1(1-=+⋅+-x x x x x x .…………………………………………(2+1分)当1333021-=-=x 时,原式=23)23)(23(23231--=+-+=-.……(2+2分)20.解:由①得 3477+<-x x ,103<x ,310<x .………………………………………(3分) 由②得 1264+≥+x x ,52-≥x ,25-≥x .………………………………………(3分)不等式组的解集为:31025<≤-x .…………………………………………………(2分)它的整数解为–2,–1,0,1,2,3.……………………………………………(1分)21.解:(1)设反比例函数的解析式为xky =.………………………………………………(1分)∵横坐标为3的点A 在直线2-=x y 上,∴点A 的坐标为(3,1),………(1分)∴1=3k,∴3=k ,………………………………………………………………(1分) ∴反比例函数的解析式为xy 3=.………………………………………………(1分)(2)设点C (m m,3),则点B (m m ,2+).………………………………………(2分)∴BC =mm 32-+= 4,……………………………………………………………(2分)∴m m m 4322=-+,∴0322=-+m m ,1,321-==m m ,…………………(1分)1,321-==m m 都是方程的解,但1-=m 不符合题意,∴点B 的坐标为(5,3).…………………………………………………………(1分) 22.解:设甲乙两人原来每小时各加工零件分别为x 个、y 个,……………………………(1分)∴⎪⎪⎩⎪⎪⎨⎧=-=-,123024,13030y x x y ………………………………………………………………………(4分)解得⎩⎨⎧==.5,6y x ……………………………………………………………………………(4分)经检验它是原方程的组解,且符合题意.答:甲乙两人原来每小时各加工零件分别为6个、5个.……………………………(1分) 23.证明:(1)∵在梯形ABCD 中,AB //CD ,AD =BC ,∴∠ADE =∠BCE ,……………(1分)又∵DE=CE ,∴△ADE ≌△BCE .………………………………………………(1分) ∴AE =BE ,…………………………………………………………………………(1分) ∵FG //AB ,∴BEBFAE AG =,………………………………………………………(2分) ∴AG=BF .…………………………………………………………………………(1分) (2)∵CF CA AD ⋅=2,∴AD CFCA AD =,………………………………………………(1分) ∵AD =BC ,∴BCCFCA BC =.………………………………………………………(1分) ∵∠BCF =∠ACB ,∴△CAB ∽△CBF .…………………………………………(1分)∴BCACBF AB =.………………………………………………………………………(1分) ∵BF=AG ,BC =AD , ∴ADACAG AB =.……………………………………………(1分) ∴AC AG AD AB ⋅=⋅.……………………………………………………………(1分)24.解:(1)∵抛物线c ax ax y +-=22的对称轴为直线12=--=aax ,…………………(1分)∴OC =1,OA=OC +AC = 4,∴点A (4,0).………………………………………(1分) ∵∠OBC =∠OAB ,∴tan ∠OAB= tan ∠OBC ,………………………………………(1分)∴OB OCOA OB =,………………………………………………………………………(1分) ∴OBOB 14=,∴OB =2,∴点B (0,2),…………………………………………(1分) ∴⎩⎨⎧+-==,8160,2c a a c …………………………………………………………………(1分)∴⎪⎩⎪⎨⎧=-=.2,41c a ……………………………………………………………………………(1分) ∴此抛物线的表达式为221412++-=x x y .………………………………………(1分)(2)由2:3:=∆∆AFG ADG S S 得DG :FG =3:2,DF :FG =5:2,………………………(1分)设m OF =,得m AF -=4,221412++-=m m DF , 由FG //OB ,得OA AF OB FG =,∴24mFG -=,………………………………………(1分) ∴2:524:)22141(2=-++-m m m ,…………………………………………………(1分) ∴01272=+-m m ,∴4,321==m m (不符合题意,舍去),∴点D 的坐标是(3,45).…………………………………………………………(1分)25.解:(1)在⊙O 中,∵OC ⊥AB ,∴AC =321=AB ,OC =22AC AO -=4.………(1分)∵OD //AB ,∴OD ⊥OC ,∴CD =41542222=+=+OD OC .…………(1分)∵35==BC OD CE DE ,…………………………………………………………………(1分) ∴85=CD DE ,∴DE =4185.………………………………………………………(1分)(2)∵△OCD 是等腰三角形,OD >OC ,∴ ① 当DC =OD =5时,∠DOC =∠DCO ,∵∠DFC +∠DOC =∠DCF +∠DCO =90°,∴∠DFC =∠DCF .………(1分) ∴DF =DC =DO =5,OF =10,CF =2124102222=-=-OC OF ,2123+=AF .……………(1分) ② 当DC =OC =4时, 作△DOC 的高CH ,2521==OD OH , CH =3921)25(42222=-=-OH OC .……………………………(1分)∴tan ∠FOC=539==OH CH OC CF ,………………………………………(1分) 5394=CF .53943+=AF .…………………………………………(1分) (3)设OB =OD =r ,BC =x ,则2222x r BC OB OC -=-=,………………(1分)∵OD //AB ,OC ⊥AB ,∴OD ⊥OC ,又∵CD ⊥OB ,∴∠COB =90°-∠DOE =∠ODC ,∴tan ∠COB =tan ∠ODC ,………………(1分)∴OD OC OC BC =,∴r x r xr x 2222-=-,………………………………………(1分) ∴22x r xr -=, 022--+r rx x ,∵0≠r ,01)(2≠-+rxrx,251±-=r x (负值舍去) ,………………………(1分) ∴sin ∠ODC =sin ∠COB 215-===r x OB BC .…………………………………(1分)。