山东省肥城市2015-2016学年八年级数学下学期期中教学质量监测试题(扫描版) 青岛版

合集下载

2015-2016学年八年级下册期中数学试卷(含答案)

2015-2016学年八年级下册期中数学试卷(含答案)

2015-2016学年八年级(下)期中数学试卷一、选择题(本大题共8小题,每小题有且只有一个答案正确,每小题3分,共24分)1.下列电视台的台标,是中心对称图形的是()A. B.C.D.2.下列调查中,适合用全面调查方法的是()A.了解一批电视机的使用寿命B.了解我市居民家庭一周内丢弃塑料袋的数量C.了解我市中学生的近视率D.了解我校学生最喜爱的体育项目3.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC4.下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x25.如果分式中的x,y都扩大到原来的3倍,那么分式的值()A.不变 B.扩大到原来的6倍C.扩大到原来的3倍 D.缩小到原来的倍6.若关于x的方程﹣=0有增根,则增根是()A.﹣4 B.1 C.4 D.﹣17.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.148.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.B.2 C.2D.4二、填空题(本大题共10小题,每小题2分,共20分)9.当x≠时,分式有意义.10.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是.11.当x=时,分式的值为0.12.若,则=.13.若矩形的两条对角线的夹角为60°,一条对角线的长为6,则矩形短边的长等于.14.如图,在周长为10cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为.15.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积是.16.已知:a2﹣3a+1=0,则a+﹣2的值为.17.已知关于x的方程的解是正数,则m的取值范围是.18.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.三、解答题(本大题共9小题,共76分,解答要求写出文字说明、证明过程或计算步骤)19.计算:(1)(a2+3a)÷(2)÷(1﹣)20.解下列方程:(1)=(2)﹣=1.21.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.22.先化简,再求值:(﹣)÷,其中x是小于3的非负整数.23.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.24.水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?25.把一张矩形纸片ABCD按如图方式折叠,使顶点B和D重合,折痕为EF.(1)连接BE,求证:四边形BFDE是菱形;(2)若AB=8cm,BC=16cm,求线段DF和EF的长.26.阅读下列材料,并解答问题:材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由父母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式;(2)试说明的最小值为10.27.操作与证明:把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,点E,F分别在正方形的边CB,AB上,易知:AF=CE,AF⊥CE.(如图1)(不要证明)(1)将图1中的直角三角板BEF绕点B顺时针旋转α度(0<α<45),连接AF,CE,(如图2),试证明:AF=CE,AF⊥CE.猜想与发现:(2)将图2中的直角三角板BEF绕点B顺时针继续旋转,使BF落在BC边上,连接AF,CE,(如图3),点M,N分别为AF,CE的中点,连接MB,BN.①MB,BN的数量关系是;②MB,BN的位置关系是.变式与探究:(3)图1中的直角三角板BEF绕点B顺时针旋转180°,点M,N分别为DF,EF的中点,连接MA,MN,(如图4),MA,MN的数量关系、位置关系又如何?为什么?2015-2016学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题有且只有一个答案正确,每小题3分,共24分)1.下列电视台的台标,是中心对称图形的是()A. B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选D.【点评】本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180°后与原图重合是解题的关键.2.下列调查中,适合用全面调查方法的是()A.了解一批电视机的使用寿命B.了解我市居民家庭一周内丢弃塑料袋的数量C.了解我市中学生的近视率D.了解我校学生最喜爱的体育项目【考点】全面调查与抽样调查.【分析】要选择调查方式,需将普查的局限性和抽样调查的必要性结合起来具体分析.【解答】解:A、调查过程带有破坏性,只能采取抽样调查,选项错误;B、数量多,不适合全面调查,适合抽查;C、数量多,不适合全面调查,适合抽查;D、人数不多,容易调查,因而适合全面调查,选项正确.故选D.【点评】本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.3.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形判定定理进行判断.【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.【点评】本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.4.下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x2【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式、、的分母分别是2x2、4(m﹣n)、x,故最简公分母是4(m﹣n)x2.故选:D.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.5.如果分式中的x,y都扩大到原来的3倍,那么分式的值()A.不变 B.扩大到原来的6倍C.扩大到原来的3倍 D.缩小到原来的倍【考点】分式的基本性质.【分析】根据分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式分式的值不变,可得答案.【解答】解:分式中的x,y都扩大到原来的3倍,那么分式的值缩小到原来的,故选:D.【点评】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式分式的值不变.6.若关于x的方程﹣=0有增根,则增根是()A.﹣4 B.1 C.4 D.﹣1【考点】分式方程的增根.【专题】计算题.【分析】由分式方程有增根,得到最简公分母为0,求出x的值即为增根.【解答】解:由分式方程有增根,得到x﹣4=0,即x=4,则增根为4.故选C.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.14【考点】菱形的性质;直角三角形斜边上的中线;三角形中位线定理.【分析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH=AB.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵H为AD边中点,∴OH是△ABD的中位线,∴OH=AB=×7=3.5.故选:A.【点评】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.8.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.B.2 C.2D.4【考点】菱形的判定;翻折变换(折叠问题).【专题】动点型.【分析】首先设Q点运动的时间t秒,则CQ=tcm,BP=xcm,根据菱形的性质可得QP=BP=tcm,∠P′BQ=∠QBP,再根据勾股定理可得(t)2+(t)2=(6﹣t)2,再解方程即可.【解答】解:设Q点运动的时间t秒,则CQ=tcm,BP=xcm,∵四边形QPBP′为菱形,∴QP=BP=tcm,∠P′BQ=∠QBP,∵∠C=90°,AC=BC,∴∠CBP=45°,∴∠P′BP=90°,∴∠QPB=90°,∴(t)2+(t)2=(6﹣t)2,解得:t1=2,t2=﹣6(不合题意舍去),故选:B.【点评】此题主要考查了菱形的性质,以及勾股定理的应用,关键是掌握菱形对角线平分每一组对角.二、填空题(本大题共10小题,每小题2分,共20分)9.当x≠2时,分式有意义.【考点】分式有意义的条件.【专题】计算题.【分析】分式有意义的条件为x﹣2≠0.即可求得x的值.【解答】解:根据条件得:x﹣2≠0.解得:x≠2.故答案为2.【点评】此题主要考查了分式的意义,要求掌握.意义:对于任意一个分式,分母都不能为0,否则分式无意义.解此类问题,只要令分式中分母不等于0,求得x的取值范围即可.10.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是.【考点】概率公式.【分析】让二等品数除以总产品数即为所求的概率.【解答】解:∵现有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,从中任意取1只,可能出现12种结果,是二等品的有3种可能,∴概率==.故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11.当x=1时,分式的值为0.【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x2﹣1=0,且x+1≠0,再解即可.【解答】解:由题意得:x2﹣1=0,且x+1≠0,解得:x=1,故答案为:1.【点评】此题主要考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.若,则=.【考点】比例的性质.【分析】先用b表示出a,然后代入比例式进行计算即可得解.【解答】解:∵=,∴a=,∴=.故答案为:.【点评】本题考查了比例的性质,用b表示出a是解题的关键,也是本题的难点.13.若矩形的两条对角线的夹角为60°,一条对角线的长为6,则矩形短边的长等于3.【考点】矩形的性质.【分析】先由矩形的性质得出OA=OB=3,再由∠AOB=60°,证出△AOB是等边三角形,即可得出AB=OA=3.【解答】解:如图所示:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD=6,∴OA=OB=3,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=3;故答案为:3.【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.14.如图,在周长为10cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为5cm.【考点】平行四边形的性质;线段垂直平分线的性质.【分析】先判断出EO是BD的中垂线,得出BE=ED,从而可得出△ABE的周长=AB+AD,再由平行四边形的周长为10cm,即可得出答案.【解答】解:∵点O是BD中点,EO⊥BD,∴EO是线段BD的中垂线,∴BE=ED,故可得△ABE的周长=AB+AD,又∵平行四边形的周长为10cm,∴AB+AD=50cm.故答案为:5cm.【点评】此题考查了平行四边形的性质及线段的中垂线的性质,属于基础题,解答本题的关键是判断出EO 是线段BD的中垂线,难度一般.15.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积是5.【考点】平行线的性质;正方形的性质.【分析】过D点作直线EF与平行线垂直,与l1交于点E,与l4交于点F.易证△ADE≌△DFC,得CF=1,DF=2.根据勾股定理可求CD2得正方形的面积.【解答】解:作EF⊥l2,交l1于E点,交l4于F点.∵l1∥l2∥l3∥l4,EF⊥l2,∴EF⊥l1,EF⊥l4,即∠AED=∠DFC=90°.∵ABCD为正方形,∴∠ADC=90°.∴∠ADE+∠CDF=90°.又∵∠ADE+∠DAE=90°,∴∠CDF=∠DAE.∵AD=CD,∴△ADE≌△DCF,∴CF=DE=1.∵DF=2,∴CD2=12+22=5,即正方形ABCD的面积为5.故答案为:5.【点评】题考查正方形的性质和面积计算,根据平行线之间的距离构造全等的直角三角形是关键.16.已知:a2﹣3a+1=0,则a+﹣2的值为1.【考点】分式的混合运算.【专题】计算题.【分析】已知等式两边除以a,求出a+的值,代入原式计算即可得到结果.【解答】解:∵a2﹣3a+1=0,∴a+=3,则原式=3﹣2=1,故答案为:1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.17.已知关于x的方程的解是正数,则m的取值范围是m.>﹣6且m≠﹣4【考点】分式方程的解.【分析】首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.【解答】解:解关于x的方程得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.【点评】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x的方程是关键,解关于x 的不等式是本题的一个难点.18.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为6.【考点】轴对称-最短路线问题;正方形的性质.【专题】计算题.【分析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE 的最小值,进而可得出结论.【解答】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.故答案为:6.【点评】本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.三、解答题(本大题共9小题,共76分,解答要求写出文字说明、证明过程或计算步骤)19.计算:(1)(a2+3a)÷(2)÷(1﹣)【考点】分式的混合运算.【分析】(1)先把被除式与分子因式分解,把除法改为乘法,进一步约分得出答案即可;(2)先通分算减法,再进一步把除法改为乘法,进一步约分得出答案即可.【解答】解:(1)原式=a(a+3)×=a;(2)原式=÷=•=.【点评】此题考查分式的混合运算,掌握运算顺序,正确通分约分,因式分解是解决问题的关键.20.解下列方程:(1)=(2)﹣=1.【考点】解分式方程.【专题】计算题.【分析】(1)分式方程两边乘以x(x﹣2)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程两边乘以(x+1)(x﹣1)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4x=x﹣2,解得:x=﹣,经检验x=﹣是分式方程的解;(2)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,原分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【解答】证明:如图,连接BD设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形.【点评】本题考查了平行四边形的判定与性质,利用了平行四边形的对角线互相平分,对角线互相平分的四边形是平行四边形.22.先化简,再求值:(﹣)÷,其中x是小于3的非负整数.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再根据x是小于3的非负整数选取合适的x的值,代入进行计算即可.【解答】解:原式=•=•=•=x+4.∵x是小于3的非负整数,∴x=0,1,2,∵x=0,2,∴x=1,∴原式=1+4=5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.【考点】菱形的性质;矩形的判定与性质.【专题】证明题.【分析】先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED 是矩形,利用勾股定理即可求出BC=OE.【解答】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴∠COD=90°,∴四边形OCED是矩形,∴DE=OC,∵OB=OD,∠BOC=∠ODE=90°,∴BC===OE【点评】本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.24.水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?【考点】分式方程的应用.【分析】设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.【解答】解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,由题意得,×2=,解得:x=120,经检验:x=120是原分式方程的解,且符合题意.答:第一批水果每件进价为120元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.25.把一张矩形纸片ABCD按如图方式折叠,使顶点B和D重合,折痕为EF.(1)连接BE,求证:四边形BFDE是菱形;(2)若AB=8cm,BC=16cm,求线段DF和EF的长.【考点】翻折变换(折叠问题);菱形的判定与性质.【分析】(1)证得DE=DF,得四边形BFDE是平行四边形,根据折叠的性质知:BF=DF,得四边形BFDE 是菱形;=EF•BD,(2)在Rt△DCF中,利用勾股定理可求得DF的长;连接BD,得BD=8cm,利用S菱形BFDE易得EF的长.【解答】解:(1)由折叠的性质可得∠BFE=∠DFE,∵AD∥BC,∴∠BFE=∠DEF,∴∠DFE=∠DEF,∴DE=DF,∴四边形BFDE是平行四边形,由折叠知,BF=DF.∴四边形BFDE是菱形;(3)在Rt△DCF中,设DF=x,则BF=x,CF=16﹣x,由勾股定理得:x2=(16﹣x)2+82,解得x=10,DF=10cm,连接BD.在Rt△BCD中,BD==8,=EF•BD=BF•DC,∵S菱形BFDE∴EF×8=10×8解得EF=4cm.【点评】本题主要考查了勾股定理、平行四边形的判定、菱形的判定和性质,解题的关键是作好辅助线找到相关的三角形.26.阅读下列材料,并解答问题:材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由父母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式;(2)试说明的最小值为10.【考点】分式的混合运算.【专题】阅读型.【分析】(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;(2)原式分子变形后,利用非负数的性质求出最小值即可.【解答】解:(1)设﹣x4﹣8x2+10=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=9,b=1.∴=x2+9+;(2)由=x2+9+知,当x=0时,x2+9和分别有最小值,因此当x=0时,的最小值为10.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.27.操作与证明:把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,点E,F分别在正方形的边CB,AB上,易知:AF=CE,AF⊥CE.(如图1)(不要证明)(1)将图1中的直角三角板BEF绕点B顺时针旋转α度(0<α<45),连接AF,CE,(如图2),试证明:AF=CE,AF⊥CE.猜想与发现:(2)将图2中的直角三角板BEF绕点B顺时针继续旋转,使BF落在BC边上,连接AF,CE,(如图3),点M,N分别为AF,CE的中点,连接MB,BN.①MB,BN的数量关系是相等;②MB,BN的位置关系是垂直.变式与探究:(3)图1中的直角三角板BEF绕点B顺时针旋转180°,点M,N分别为DF,EF的中点,连接MA,MN,(如图4),MA,MN的数量关系、位置关系又如何?为什么?【考点】几何变换综合题.【分析】(1)延长AF交EC于G,交BC于H,利用正方形ABCD的性质和等腰△BEF的性质,证明△ABF≌△CBE,得到AF=CE,∠BAF=∠BCE,根据∠BAF+AHB=90°,∠AHB=∠CHG,所以∠BCE+∠CHG=90°,即可解答.(2)①MB,BN的数量关系是相等;②MB,BN的位置关系是垂直;(3)MA=MN,MA⊥MN,理由:如图4,连接DE,利用正方形ABCD的性质和等腰△BEF的性质,证明△ADF≌△CDE,得到DF=DE,∠1=∠2,利用在Rt△ADF中,点M是DF的中点,得到MA=DF=MD=MF,再利用中位线的性质,得到得到MN=DE,MN∥DE,通过角之间的等量代换和三角形内角和,得到∠6=90°,从而得到∠7=∠6=90°,即可解答.【解答】解:(1)如图2,延长AF交EC于G,交BC于H,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABF+∠FBC=90°,∵△BEF是等腰直角三角形,∴BE=BF,∠EBF=90°,∴∠CBE+∠FBC=90°,∴∠ABF=∠CBE,在△ABF和△CBE中,,∴△ABF≌△CBE,∴AF=CE,∠BAF=∠BCE,∵∠BAF+AHB=90°,∠AHB=∠CHG,∴∠BCE+∠CHG=90°,∴AF⊥CE.(2)①相等;②垂直.故答案为:相等,垂直.(3)MA=MN,MA⊥MN,理由:如图4,连接DE,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°,∵∵△BEF是等腰直角三角形,∴BE=BF,∠EBF=90°,∵点E、F分别在正方形CB、AB的延长线上,∴AB+BF=CB+BE,即AF=CE,∵,∴△ADF≌△CDE,∴DF=DE,∠1=∠2,在Rt△ADF中,∵点M是DF的中点,∴MA=DF=MD=MF,∴∠1=∠3,∵点N是EF的中点,∴MN是△DEF的中位线,∴MN=DE,MN∥DE,∴MA=MN,∠2=∠3,∵∠2+∠4=∠ABC=90°,∠4=∠5,∴∠3+∠5=90°,∴∠6=180°﹣(∠3+∠5)=90°,∴∠7=∠6=90°,MA⊥MN.【点评】本题考查了图形的旋转的性质、全等三角形的性质与判定、等腰三角形的性质,解决本题的关键是证明三角形全等,得到相等的边与角,作辅助线也是解决本题的关键.。

八年级第二学期期中教学质量检测数学试题.doc

八年级第二学期期中教学质量检测数学试题.doc

八年级第二学期期中教学质量检测数学试题温馨提示:1.本试卷满分120分。

考试时间100分钟,请合理利用时间。

2.本试卷分为卷I 选择题和卷Ⅱ综合分析题。

3.请把答案写到相应位置,字迹工整,条理清晰。

第Ⅰ卷 选择题(总分45分)一、选择题(每小题3分,共45分.选出唯一正确答案的代号填在下面的答题栏内)1. 在式子xx y x y x x c b a πxy a 23210987654321、、、、、、+++中,分式的个数是 A .5 B .4 C .3 D .22.下列各式,变形正确的是A .()()122=--a b b aB .b a ba b a +=++122 C .b a b a +=+111 D .22=÷x x 3.下列判断正确的是A .当2=x 时,21-+x x 的值为零 B .无论x 为何值,132+x 的值总为正数 C .无论x 为何值,13+x 不可能得整数值 D .当x ≠3时,x x 3-有意义 4.把分式()0,022≠≠+y x y x x 中的分子分母的y x 、都同时扩大为原来的2倍,那么分式的值将是原分式值的A .2倍B .4倍C .一半D .不变5.下列三角形中是直角三角形的是A .三边之比为5:6:7B .三边满足关系a+b=cC .其中一边等于另一边的一半D .三边之长为9、40、416.如果△ABC 的三边分别为1,2,122+-m m m ,其中m 为大于1的正整数,则A .△ABC 是直角三角形,且斜边为12-mB .△ABC 是直角三角形,且斜边为m 2C .△ABC 是直角三角形,且斜边为12+m 。

D .△ABC 不是直角三角形7.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为A .24B .22C .20D .88.已知函数xk y =的图象经过点(2,3),下列说法正确的是 A .y 随x 的增大而增大B .函数的图象只在第一象限C .当x <0时,必有y <0D .点(-2,-3)不在此函数的图象上9.在函数xk y =()0>k 的图象上有三点()()(),,,,333222111y x A y x A y x A 、、已知3210x x x <<<,则下列各式中,正确的是A .312y y y <<B .123y y y <<C .321y y y <<D .213y y y <<10.如图,函数()()01<=+=k xk y x k y 与在同一坐标系中,图象只能是下图中的11. 下列计算正确的是A .()1001.02=-- B. 10001103=-- C .251512=- D .33212a a =- 12. 计算⎪⎪⎭⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛-⋅24382342y x y x y x 的结果是 A 、-3x B 、3x C 、-l2x D 、12x13.若分式方程424-+=-x a x x 有不符方程的根,则a 的值为 A 、4 B 、2 C 、l D 、014.已知一个Rt △的两边长分别为3和4,则第三边长的平方是A 、25B 、14C 、7D 、7或2515.已知y x 、为正数,且()03|4|222=-+-y x ,如果以y x 、的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为A 、5B 、25C 、7D 、15第Ⅱ卷 综合分析题(共12小题 总分75分)二、填空题(每小题4分,共20分)16.不改变分式的值,使分子、分母的第一项系数都是正数,则yx y x --+-= . 17.如下图,已知OA=OB ,那么数轴上点A 所表示的数是18.已知bab a b ab a b a ---+=-2232,511则的值是 . 19.如果点(2,3)和(-3,a)都在反比例函数xk y =的图象上,则a= . 20.如图所示,设A 为反比例函数x k y =图象上一点,且矩形ABOC 的面积为3,则这个反比例函数解析式为 .三、解答题(共55分)21.(每小题5分,共10分)化简下列各式:(1)⎪⎭⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛-⋅⎪⎪⎭⎫ ⎝⎛-a b a b b a 3222(2)⎪⎪⎭⎫ ⎝⎛+÷-⋅⎪⎪⎭⎫ ⎝⎛---y x y x xy y x y y x x 1122 22.(每小题5分,共10分)解下列方程:(1)311223=-+-xx . (2)482222-=-+-+x x x x x 23.比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议.蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一纸便条后提前2小时独自先行,蚂蚁王按既定时间出发,结果它们同时到达.已知蚂蚁王的速度是蜗牛神的4倍,求它们各自的速度.(6分)24.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达地点B 相距50米,结果他在水中实际游的路程比河的宽度多l0米,求该河的宽度AB 为多少米? (6分)25.某空调厂的装配车间原计划用一定时间组装9000台空调.(6分)(1)请写出平均每天组装的台数m(单位:台/天)与生产的时间t(单位:天)之间有怎样的函数关系?(2)原计划按每天组装l50台完成任务,但由于气温提前升高,厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?26.如图,一个梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端口与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.5米,求梯子顶端A 下落了多少米? (7分)27.如图,正方形OABC 的面积为9,点O 为坐标原点,点B 在函数()0,0>>=x k x k y 的图象上,点P(m 、n)是函数()0,0>>=x k xk y 的图象上任意一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,并设矩形OEPF 和正方形OABC 不重合部分的面积为S .(10分)(1)求B 点坐标和k 的值;(2)当S=29时,求点P 的坐标:(3)写出S 关于m 的函数关系式.。

泰安市肥城市八年级下期中数学试卷及答案-精校

泰安市肥城市八年级下期中数学试卷及答案-精校

2014-2015学年山东省泰安市肥城市八年级(下)期末数学试卷一、选择题:在下列各小题中,均给出四个答案,其中有且只有一个正确答案。

1.的计算结果是()A. 4 B.﹣4 C.±4D. 82.下列二次根式中,最简二次根式是()A.B.C.D.3.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A. AB=CD B. AD=BC C. AB=BC D. AC=BD4.以下运算错误的是()A.B.C.D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.如图,在平面直角坐标系中,将△ABC绕点P旋转180°,得到△A1B1C1,则点A1,B1,C1的坐标分别为()A. A1(﹣4,﹣6),B1(﹣3,﹣3),C1(﹣5,﹣1)B. A1(﹣6,﹣4),B1(﹣3,﹣3),C1(﹣5,﹣1)C. A1(﹣4,﹣6),B1(﹣3,﹣3),C1(﹣1,﹣5)D. A1(﹣6,﹣4),B1(﹣3,﹣3),C1(﹣1,﹣5)7.能使等式=成立的条件是()A.x≥0B.﹣3<x≤0C. x>3 D. x>3或x<08.将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A. x>4 B. x>﹣4 C. x>2 D. x>﹣29.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A. y=2x+3 B. y=x﹣3 C. y=2x﹣3 D. y=﹣x+310.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F 为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A. 2B. 4C. 4 D. 811.直线y=x+1与y=﹣2x+a的交点在第一象限,则a的取值可以是()A.﹣1 B. 0 C. 1 D. 212.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥B.x≤3C.x≤D.x≥313.如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F.若AB=6,BC=4,则FD的长为()A. 2 B. 4 C.D. 214.实数a在数轴上的位置如图所示,则化简后为()A. 7 B.﹣7 C. 2a﹣15 D.无法确定15.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S△FGC=.其中正确的是()A.①②B.①③C.②③D.①②③二、填空题(本大题共5小题,只要求填写最好结果)16.计算:= .17.如果P(﹣2,a)是正比例函数y=﹣2x图象上的一点,那么P点关于y轴对称点的坐标为.18.如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.若AB=8,AD=12,则四边形ENFM的周长为.19.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为米.20.若不等式组有解,则a的取值范围是.三、简单题(本大题共7小题,解答应写出必要的文字说明、证明过程或演算步骤)21.解不等式,并把它的解集在数轴上表示出来.22.已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm) 4.2 …8.2 9.8体温计的读数y(℃) 35.0 …40.0 42.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.23.如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.24.如图所示,x轴所在直线是一条东西走向的河,A(﹣2,3)、B(4,5)两个村庄位于河的北岸,现准备在河上修建一净水站P,并利用管道为两个村庄供水(单位:千米).(1)欲使所修管道最短,应该把净水站P修在什么位置,作出正确图形(用尺规作图),求出P点坐标及PB所在直线解析式;(2)若管道每米费用需要200元,求修管道的最低费用.25.如图,点E、F分别在正方形ABCD的边CD与BC上,∠EAF=45°.(1)求证:EF=DE+BF;(2)作AP⊥EF于点P,若AD=10,求AP的长.2015春•肥城市期末)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):实际花费累计购物130 290 (x)在甲商场127 …在乙商场126 …(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?2015•泰安)如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.2014-2015学年山东省泰安市肥城市八年级(下)期末数学试卷参考答案与试题解析一、选择题:在下列各小题中,均给出四个答案,其中有且只有一个正确答案。

【人教版】2015-2016年八年级下期中数学试卷及答案解析

【人教版】2015-2016年八年级下期中数学试卷及答案解析

【解答】 解:矩形的性质有: ① 矩形的对边相等且平行, ② 矩形的对角相等, 且都是直角,
③ 矩形的对角线互相平分、相等; 平行四边形的性质有: ① 平行四边形的对边分别相等且平行,
② 平行四边形的对角分别相
等, ③ 平行四边形的对角线互相平分;
∴矩形具有而平行四边形不一定具有的性质是对角线相等,
【点评】本题考查了矩形的性质及菱形的判定.注意掌握菱形的判定方法有三种:
① 定义:
一组邻边相等的平行四边形是菱形; ② 四边相等; ③ 对角线互相垂直平分的四边形是菱形.
9.矩形具有而一般的平行四边形不一定具有的特征(

A .对角相等 B.对角线相等
C.对角线互相平分 D .对边相等 【分析】举出矩形和平行四边形的所有性质, 找出矩形具有而平行四边形不具有的性质即可.
八年级(下)期中数学试卷(解析版)
参考答案与试题解析
一、选择题(每小题只有 1 个正确答案,每小题 3 分,共 30 分)
1.下列的式子一定是二次根式的是(

A.
B . C.
D.
【分析】根据二次根式的被开方数是非负数对每个选项做判断即可.
【解答】解: A 、当 x=0 时,﹣ x﹣ 2< 0,
无意义,故本选项错误;
为负数,则无实数根).
2.下列二次根式中属于最简二次根式的是(

A.
B.
C. D.
【分析】 B、 D 选项的被开方数中含有未开尽方的因数或因式; 母;因此这三个选项都不是最简二次根式. 【解答】解:因为: B、 =4 ;
C 选项的被开方数中含有分
C、 =

D、
=2

所以这三项都不是最简二次根式.故选 A .

肥城市2014--2015学年度下学期期末质量检测初二数学试题1

肥城市2014--2015学年度下学期期末质量检测初二数学试题1

肥城市2014--2015学年度下学期期末质量检测初二数学试题一.选择题(共20小题)1.在实数,,0.101001,中,无理数的个数是( ) A . 0个B . 1个C . 2个D . 3个2.如果ab >0,a+b <0,那么下面各式:①=,②•=1,③÷=﹣b ,其中正确的是( ) A . ①② B . ②③ C . ①③ D .①②③3.如图,以平行四边形ABCD 的边CD 为斜边向内作等腰直角△CDE ,使AD=DE=CE ,∠DEC=90°,且点E 在平行四边形内部,连接AE 、BE ,则∠AEB 的度数是( )A . 120°B . 135°C .150° D . 45°4.不等式组的解在数轴上表示为( ) A . B .C .D .5.小亮家与学校相距1500m ,一天放学后他步行回家,最初以某一速度匀速前进,途中遇到熟人小强,说话耽误了几分钟,与小强告别后他就改为匀速慢跑,最后回答了家,设小亮从学校出发后所用的时间为t (min ),与家的距离为s (m ),下列图象中,能表示上述过程的是( )A .B .C .D .6.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有( )A . 1个B . 2个C . 3个D . 4个7.下列计算正确的是( )A .B .C .D .8.已知下列结论:①任何一个无理数都能用数轴上的点表示;②每个实数都对应数轴上一个点;③在数轴上的点只能表示无理数;④有理数有无限个,无理数有有限个;⑤无理数都是无限小数,不带根号的数不是无理数;⑥﹣3是(﹣3)2的算术平方根.其中正确的结论是()A.①②B.①②⑥C.③④⑥D.②④⑤9.下列关于旋转的说法不正确的是()A.旋转中心在旋转过程中保持不动B.旋转中心可以是图形上的一点,也可以是图形外的一点C.旋转由旋转中心、旋转方向和旋转角度所决定D.旋转由旋转中心所决定10.若直线y=mx+2m﹣3经过二、三、四象限,则m的取值范围是()A.m<B.m>0 C.m>D.m<011.如图,在▱ABCD中,∠A=70°,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB 所在的直线上),折痕为MN,则∠AMF等于()A.70°B.40°C.30°D.20°12.若不等式组的解集是x>2,则整数m的最小值是()A.2B.3C.4D.513.如图所示,将△ABC沿着X→Y方向平移一定距离后得到△MNL,则下列结论中正确的有()①AM∥BN;②AM=BN;③BC=NL;④∠ACB=∠NML.A.1个B.2个C.3个D.4个14.下列各式是最简二次根式的是()A.B.C.D.15.给出下列说法:①﹣6是36的平方根;②16的平方根是4;③;④是无理数;⑤一个无理数不是正数就是负数.其中,正确的说法有()A.①③⑤B.②④C.①③D.①16.如图,菱形ABCD中,E是AD的中点,将△CDE沿CE折叠后,点A和点D恰好重合,若菱形ABCD 的面积为4,则菱形ABCD的周长是()A.8B.16C.8D.1617.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()A.﹣1 B.﹣5 C.﹣4 D.﹣318.若不等式组有解,则a的取值范围是()A.a>1 B.a≥1 C.a≤﹣1 D.a<﹣119.如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EG=(BC﹣AD);⑤四边形EFGH是菱形.其中正确的个数是()A.1B.2C.3D.420.如图,△ABC中,∠ACB=90°,∠A=25°,若以点C为旋转中心,将△ABC旋转θ到△DEC的位置,使点B恰好落在边DE上,则θ等于()A.55°B.50°C.65°D.70°二.填空题(共5小题)21.按如图所示,把一张边长超过10的正方形纸片剪成5个部分,则中间小正方形(阴影部分)的周长为.21 22 2322.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.23.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是.24.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为.25.如图,一次函数y=x+3的图象经过点P(a,b)、Q(c,d),则a(c﹣d)﹣b(c﹣d)的值为.25 24三.解答题(共5小题)26.计算:+(﹣)+.27.解不等式组,并判断是否为该不等式组的解.28.如图,△OBD中,OD=BD,△OBD绕点O逆时针旋转一定角度后得到△OAC,此时B,D,C三点正好在一条直线上,且点D是BC的中点.(1)求∠COD度数;(2)求证:四边形ODAC是菱形.29.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B 城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.30.在城镇化建设中,开发商要处理A地大量的建筑垃圾,A地只能容纳1台装卸机作业,装卸机平均每6分钟可以给工程车装满一车建筑垃圾,每辆工程车要将建筑垃圾运送至20千米的B处倾倒,每次倾倒时间约为1分钟,倾倒后立即返回A地等候下一次装运,直到装运完毕;工程车的平均速度为40千米/时.(1)一辆工程车运送一趟建筑垃圾(从装车到返回)需要多少分钟?(2)至少安排多少辆工程车既能保证装卸机不空闲,又能保证工程车最少等候时间?。

期中考试】___2015-2016年八年级下期中数学试卷含答案解析

期中考试】___2015-2016年八年级下期中数学试卷含答案解析

期中考试】___2015-2016年八年级下期中数学试卷含答案解析2015-2016学年___八年级(下)期中数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.要使分式的值为 $-\frac{1}{2}$,则 $x$ 的值为()A。

$x=1$。

B。

$x=2$。

C。

$x=-1$。

D。

$x=-2$2.下列说法正确的是()A。

对角线互相垂直的四边形是菱形B。

对角线相等的四边形是矩形C。

三条边相等的四边形是菱形D。

三个角是直角的四边形是矩形3.运用分式的性质,下列计算正确的是()A。

$\frac{3}{4} \div \frac{6}{5} = \frac{5}{8}$。

B。

$\frac{2}{3} \div \frac{1}{4} = \frac{1}{6}$。

C。

$\frac{5}{6} \times \frac{1}{4} = \frac{5}{24}$。

D。

$\frac{2}{3} + \frac{3}{4} = \frac{17}{12}$。

4.一个凸五边形的内角和为()A。

$360^\circ$。

B。

$540^\circ$。

C。

$720^\circ$。

D。

$900^\circ$5.根据下列表格对应值,判断关于 $x$ 的方程$ax^2+bx+c=0$($a\neq 0$)的一个解 $x$ 的取值范围为()begin{array}{|c|c|}hlinex & ax^2+bx+c \\hline1.1 & -0.59 \\hline1.2 & 0.84 \\hline1.3 &2.29 \\hline1.4 & 3.76 \\hlineend{array}A。

$-0.59<x<0.84$。

B。

$1.1<x<1.2$。

山东省泰安市肥城市2015-2016学年八年级(下)期中数学试卷(解析版)

山东省泰安市肥城市2015-2016学年八年级(下)期中数学试卷(解析版)

2015-2016学年山东省泰安市肥城市八年级(下)期中数学试卷一、选择题:本大题共15小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.1.的算术平方根是()A.3 B.C.±3 D.±2.若不等式(a﹣1)x≤﹣3的解集为x≥,则a的取值范围是()A.a>1 B.a<1 C.a>0 D.a≤13.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠24.下列说法中,不正确的是()A.2是(﹣2)2的算术平方根B.±2是(﹣2)2的平方根C.﹣2是(﹣2)2的算术平方根D.﹣2是(﹣2)3的立方根5.在,,,3.1415926,2+,3.212212221…,这些数中,无理数的个数为()A.2 B.3 C.4 D.56.菱形具有而平行四边形不一定具有的性质是()A.两组对边分别平行 B.两组对角分别相等C.对角线互相平分D.对角线互相垂直7.若a>b,则下列各式不一定成立的是()A.B.C.a+1>b D.﹣2a<﹣2b8.已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5 B.25 C.D.5或9.不等式的解集在数轴上表示正确的是()A.B.C.D.10.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.1411.设a=,a在两个相邻整数之间,则这两个整数是()A.2和3 B.3和4 C.4和5 D.5和612.如图,正方形ABCD和EFGC中,左右两个正方形边长分别为a、b,用代数式表示阴影部分△AEG 的面积为()A.a2﹣b2B.C.D.13.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM 是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误B.乙正确,甲错误C.甲、乙均正确 D.甲、乙均错误14.若不等式组有实数解,则实数m的取值范围是()A.m≤B.m<C.m>D.m≥15.如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则矩形的一边AB的长度为()A.1 B.C.D.2二、填空题:本大题共5小题,只要求填写最后结果.16.计算的结果为.17.如果关于x的不等式组的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有个.18.在1~1000这1000个自然数中,立方根为有理数的个数为.19.在□ABCD中,BC边上的高为4,AB=5,AC=2,则□ABCD的周长等于.20.如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC上(含端点),且AB=6cm,BC=10cm.则折痕EF的最大值是cm.三、解答题:本大题共6小题,解答应写出必要的文字说明、证明过程或演算步骤.21.按要求解下列不等式(组)(1)2(x+1)﹣(2)(3)并把解集在数轴上表示出来.22.如图,一架梯子AB靠墙而立,顶端到地面的垂直高度为8m,若当梯子顶端下滑1m到达P点时,其底端B也恰好右滑1m到达Q点,求梯子的长度AB.23.已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD 是平行四边形吗?请说明理由.24.某市居民用电的电价实行阶梯收费,收费标准如下表:(1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?25.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.26.D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点,O是△ABC内任意一点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.问当OA与BC应满足怎样的数量关系时,四边形DGFE是菱形,并证明之.2015-2016学年山东省泰安市肥城市八年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共15小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.1.的算术平方根是()A.3 B.C.±3 D.±【考点】算术平方根.【分析】首先根据算术平方根的定义求出,然后再求出它的算术平方根即可解决问题.【解答】解:∵ =3,而3的算术平方根即,∴的算术平方根是.故选B.【点评】此题主要考查了算术平方根的定义,特别注意:应首先计算的值,然后再求算术平方根.2.若不等式(a﹣1)x≤﹣3的解集为x≥,则a的取值范围是()A.a>1 B.a<1 C.a>0 D.a≤1【考点】解一元一次不等式.【分析】根据已知解集得到a﹣1为负数,即可确定出a的范围.【解答】解:∵不等式(a﹣1)x≤﹣3的解集为x≥,∴a﹣1<0,解得:a<1.故选B【点评】此题考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.3.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2【考点】全等三角形的判定;平行四边形的性质.【分析】利用平行四边形的性质以及全等三角形的判定分别得出三角形全等,再进行选择即可.【解答】解:A、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选C.【点评】本题考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.4.下列说法中,不正确的是()A.2是(﹣2)2的算术平方根B.±2是(﹣2)2的平方根C.﹣2是(﹣2)2的算术平方根D.﹣2是(﹣2)3的立方根【考点】立方根;平方根;算术平方根.【专题】计算题;实数.【分析】原式利用算术平方根,立方根定义判断即可.【解答】解:A、2是(﹣2)2=4的算术平方根,正确;B、±2是(﹣2)2=4的平方根,正确;C、2是(﹣2)2=4的算术平方根,错误;D、﹣2是(﹣2)3的立方根,正确,故选C【点评】此题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.5.在,,,3.1415926,2+,3.212212221…,这些数中,无理数的个数为()A.2 B.3 C.4 D.5【考点】无理数.【分析】无理数就是无限不循环小数,依据定义即可判断.【解答】解:无理数有:,,2+,3.212212221…共4个.故选C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.6.菱形具有而平行四边形不一定具有的性质是()A.两组对边分别平行 B.两组对角分别相等C.对角线互相平分D.对角线互相垂直【考点】菱形的性质;平行四边形的性质.【分析】根据菱形的特殊性质可知对角线互相垂直.【解答】解:A、不正确,两组对边分别平行;B、不正确,两组对角分别相等,两者均有此性质正确,;C、不正确,对角线互相平分,两者均具有此性质;D、菱形的对角线互相垂直但平行四边形却无此性质.故选D.【点评】此题主要考查了菱形的性质,关键是根据菱形对角线垂直及平行四边形对角线平分的性质的理解.7.若a>b,则下列各式不一定成立的是()A.B.C.a+1>b D.﹣2a<﹣2b【考点】不等式的性质.【分析】依据不等式的基本性质解答即可.【解答】解:A、当a=2,b=﹣3时,不成立,故A错误,与要求相符;B、依据不等式的性质3和性质1可知B正确,与要求不符;C、由a>b可知a+1>b+1>b,故C正确,与要求不符;D、由不等式的性质3可知,D正确,与要求不符.故选:A.【点评】本题主要考查的是不等式的基本性质,掌握不等式的基本性质是解题的关键.8.已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5 B.25 C.D.5或【考点】勾股定理.【专题】分类讨论.【分析】分为两种情况:①斜边是4有一条直角边是3,②3和4都是直角边,根据勾股定理求出即可.【解答】解:分为两种情况:①斜边是4有一条直角边是3,由勾股定理得:第三边长是=;②3和4都是直角边,由勾股定理得:第三边长是=5;即第三边长是5或,故选D.【点评】本题考查了对勾股定理的应用,注意:在直角三角形中的两条直角边a、b的平方和等于斜边c的平方.9.不等式的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】计算题.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x>﹣2,由②得,x≤3,故此不等式组的解集为:﹣2<x≤3.在数轴上表示为:故选B.【点评】本题考查的是在数轴上表示一元一次不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别.10.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.14【考点】菱形的性质;直角三角形斜边上的中线;三角形中位线定理.【分析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH=AB.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵H为AD边中点,∴OH是△ABD的中位线,∴OH=AB=×7=3.5.故选:A.【点评】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.11.设a=,a在两个相邻整数之间,则这两个整数是()A.2和3 B.3和4 C.4和5 D.5和6【考点】估算无理数的大小.【分析】先估算出的取值范围,再由不等式的基本性质即可得出结论.【解答】解:∵36<20<49,∴6<<7,∴6﹣1<﹣1<7﹣1,即5<﹣1<6,故选D.【点评】本题考查的是估算无理数的大小,熟知不等式的基本性质是解答此题的关键.12.如图,正方形ABCD和EFGC中,左右两个正方形边长分别为a、b,用代数式表示阴影部分△AEG 的面积为()A.a2﹣b2B.C.D.【考点】整式的混合运算.【专题】计算题.【分析】先利用S阴影部分=S梯形ABCE+S△CEG﹣S△ABG得到阴影部分△AEG的面积(a+b)•a+b2﹣a•(a+b),然后去括号后合并即可.【解答】解:S阴影部分=S梯形ABCE+S△CEG﹣S△ABG=(a+b)•a+b2﹣a•(a+b)=b2.故选C.【点评】本题考查了整式的混合运算:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.解决本题的关键是利用规则图形的面积表示出阴影部分的面积.13.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM 是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误B.乙正确,甲错误C.甲、乙均正确 D.甲、乙均错误【考点】菱形的判定.【分析】首先证明△AOM≌△CON(ASA),可得MO=NO,再根据对角线互相平分的四边形是平行四边形可判定判定四边形ANCM是平行四边形,再由AC⊥MN,可根据对角线互相垂直的四边形是菱形判定出ANCM是菱形;四边形ABCD是平行四边形,可根据角平分线的定义和平行线的定义,求得AB=AF,所以四边形ABEF是菱形.【解答】解:甲的作法正确;∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACN,∵MN是AC的垂直平分线,∴AO=CO,在△AOM和△CON中,∴△AOM≌△CON(ASA),∴MO=NO,∴四边形ANCM是平行四边形,∵AC⊥MN,∴四边形ANCM是菱形;乙的作法正确;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;故选:C.【点评】此题主要考查了菱形形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).14.若不等式组有实数解,则实数m的取值范围是()A.m≤B.m<C.m>D.m≥【考点】解一元一次不等式组.【专题】压轴题.【分析】解出不等式组的解集,根据不等式组有实数解,可以求出实数m的取值范围.【解答】解:解5﹣3x≥0,得x≤;解x﹣m≥0,得x≥m,∵不等式组有实数解,∴m≤.故选A.【点评】本题是反向考查不等式组的解集,也就是在不等式组有实数解的情况下确定不等式中字母的取值范围,解答本题时,易忽略m=,当m=时,不等式组的解集是x=.15.如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则矩形的一边AB的长度为()A.1 B.C.D.2【考点】勾股定理;线段垂直平分线的性质;矩形的性质.【分析】本题要依靠辅助线的帮助,连接CE,首先利用线段垂直平分线的性质证明BC=EC.求出EC 后根据勾股定理即可求解.【解答】解:如图,连接EC.∵FC垂直平分BE,∴BC=EC(线段垂直平分线的性质)又∵点E是AD的中点,AE=1,AD=BC,故EC=2,利用勾股定理可得AB=CD==.故选:C.【点评】本题考查的是勾股定理、线段垂直平分线的性质以及矩形的性质,本题的关键是要画出辅助线,证明BC=EC后易求解.本题难度中等.二、填空题:本大题共5小题,只要求填写最后结果.16.计算的结果为 2 .【考点】实数的运算.【专题】计算题;实数.【分析】原式利用平方根、立方根定义计算即可得到结果.【解答】解:原式=8﹣4﹣3+1=2.故答案为:2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.如果关于x的不等式组的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有 6 个.【考点】一元一次不等式组的整数解.【专题】压轴题.【分析】首先解不等式组,不等式组的解集即可利用a,b表示,根据不等式组的整数解仅为1,2即可确定a,b的范围,即可确定a,b的整数解,即可求解.【解答】解:,由①得:x≥,由②得:x≤,不等式组的解集为:≤x≤,∵整数解仅有1,2,,∴0<≤1,2≤<3,解得:0<a≤3,4≤b<6,∴a=1,2,3,b=4,5,∴整数a,b组成的有序数对(a,b)共有(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)即6个,故答案为:6.【点评】此题主要考查了不等式组的整数解,根据不等式组整数解的值确定a,b的取值范围是解决问题的关键.18.在1~1000这1000个自然数中,立方根为有理数的个数为10 .【考点】立方根.【专题】计算题;实数.【分析】利用立方根定义判断即可得到结果.【解答】解:1的立方根是1,8的立方根是2,27的立方根是3,64的立方根是4,125的立方根是5,216的立方根是6,343的立方根是7,512的立方根是8,729的立方根是9,1000的立方根是10,则在1~1000这1000个自然数中,立方根为有理数的个数为10,故答案为:10【点评】此题考查了立方根,熟练掌握立方根定义是解本题的关键.19.在□ABCD中,BC边上的高为4,AB=5,AC=2,则□ABCD的周长等于12或20 .【考点】平行四边形的性质.【专题】压轴题;分类讨论.【分析】根据题意分别画出图形,BC边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.【解答】解:如图1所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2,∴EC==2,AB=CD=5,BE==3,∴AD=BC=5,∴▱ABCD的周长等于:20,如图2所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2,∴EC==2,AB=CD=5,BE==3,∴BC=3﹣2=1,∴▱ABCD的周长等于:1+1+5+5=12,则▱ABCD的周长等于12或20.故答案为:12或20.【点评】此题主要考查了平行四边形的性质以及勾股定理等知识,利用分类讨论得出是解题关键.20.如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC上(含端点),且AB=6cm,BC=10cm.则折痕EF的最大值是cm.【考点】翻折变换(折叠问题).【专题】计算题.【分析】只有BF大于等于AB时,B′才会落在AD上,判断出点F与点C重合时,折痕EF最大,根据翻折的性质可得BC=B′C,然后利用勾股定理列式求出B′D,从而求出AB′,设BE=x,根据翻折的性质可得B′E=BE,表示出AE,在Rt△AB′E中,利用勾股定理列方程求出x,再利用勾股定理列式计算即可求出EF.【解答】解:如图,点F与点C重合时,折痕EF最大,由翻折的性质得,BC=B′C=10cm,在Rt△B′DC中,B′D===8cm,∴AB′=AD﹣B′D=10﹣8=2cm,设BE=x,则B′E=BE=x,AE=AB﹣BE=6﹣x,在Rt△AB′E中,AE2+AB′2=B′E2,即(6﹣x)2+22=x2,解得x=,在Rt△BEF中,EF===cm.故答案为:.【点评】本题考查了翻折变换的性质,勾股定理的应用,难点在于判断出折痕EF最大的情况并利用勾股定理列出方程求出BE的长,作出图形更形象直观.三、解答题:本大题共6小题,解答应写出必要的文字说明、证明过程或演算步骤.21.按要求解下列不等式(组)(1)2(x+1)﹣(2)(3)并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集;解一元一次不等式.【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集;(3)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)去分母,得:12(x+1)﹣2(x﹣2)>3(7x﹣2),去括号,得:12x+12﹣2x+4>21x﹣6,移项,得:12x﹣2x﹣21x>﹣6﹣12﹣4,合并同类项,得:﹣11x>﹣22,系数化为1,得:x<2;(2)解不等式2x﹣1<5,得:x<3,解不等式,得:x≥﹣1,故不等式组的解集为:﹣1≤x<3;(3)解不等式,得:x≤1,解不等式2x﹣7≤3(x﹣1),得:x≥﹣4,故不等式组的解集为:﹣4≤x≤1,将不等式组解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.如图,一架梯子AB靠墙而立,顶端到地面的垂直高度为8m,若当梯子顶端下滑1m到达P点时,其底端B也恰好右滑1m到达Q点,求梯子的长度AB.【考点】勾股定理的应用.【分析】根据梯子的长度不变得到OA2+OB2=OP2+OQ2,求出OB的长,进而利用勾股定理求出梯子的长度AB.【解答】解:根据题意可得,OA2+OB2=OP2+OQ2,即82+OB2=(8﹣1)2+(OB+1)2,解得OB=7,故梯子的长AB===m.【点评】本题考查了勾股定理在实际生活中的应用,本题中根据梯子长不会变的等量关系求解是解题的关键.23.已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD 是平行四边形吗?请说明理由.【考点】平行四边形的判定;全等三角形的判定与性质.【专题】压轴题.【分析】首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF=∠BCE,可证出AD∥CB,根据一条对边平行且相等的四边形是平行四边形可证出结论.【解答】解:结论:四边形ABCD是平行四边形,证明:∵DF∥BE,∴∠AFD=∠CEB,又∵AF=CE DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.【点评】此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出△AFD≌△CEB.24.某市居民用电的电价实行阶梯收费,收费标准如下表:(1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)根据题意即可得到方程组:,然后解此方程组即可求得答案;(2)根据题意即可得到不等式:200×0.61+200×0.66+0.92(x﹣400)≤300,解此不等式即可求得答案.【解答】解:(1)根据题意得:,解得:.(2)设李叔家六月份最多可用电x度,根据题意得:200×0.61+200×0.66+0.92(x﹣400)≤300,解得:x≤450.答:李叔家六月份最多可用电450度.【点评】此题考查了一元一次方程组与一元一次不等式的应用.注意根据题意得到等量关系是关键.25.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【考点】矩形的判定;正方形的判定.【专题】压轴题.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【解答】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【点评】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.26.D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点,O是△ABC内任意一点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.问当OA与BC应满足怎样的数量关系时,四边形DGFE是菱形,并证明之.【考点】菱形的判定;三角形中位线定理.【分析】当OA=BC时,四边形DEFG是菱形,选根据三角形中位线定理证明四边形DEFG是平行四边形,再证明EF=FG即可.【解答】解:当OA=BC时,四边形DEFG是菱形.理由:∵D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,同理,GF∥BC,FG=BC,∴DE∥FG,DE=GF,∴四边形DEFG是平行四边形,连接OA,在△AOC中,E、F分别为AC、OC中点,∴EF=OA,同理在△BOC中,GF=BC,∵OA=BC,∴EF=GF,∴OA=BC时,四边形DEFG是菱形.【点评】本题考查菱形的判定、平行四边形的判定和性质、三角形中位线定理等知识,解题的关键是三角形中位线定理的正确运用,属于中考常考题型.。

2016-2017学年山东省泰安市肥城市八年级(下)期中数学试卷

2016-2017学年山东省泰安市肥城市八年级(下)期中数学试卷

2016-2017学年山东省泰安市肥城市八年级(下)期中数学试卷一、选择题(本大题共15小题,在每小题给出的四个选项中,只有一个是正确的,把正确答案序号填涂在答题纸相应的位置)1.(3分)计算的结果是()A.±3 B.3 C.﹣3 D.2.(3分)若=+成立,则非负数x、y应该满足的条件是()A.至少有一个为0 B.x=yC.xy=1 D.不可能存在这样的x、y3.(3分)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形4.(3分)如果我们将二次根式化成最简形式后,被开放数相同的二次根式称为同类二次根式,那么下面与2是同类二次根式的是()A. B.C.D.﹣25.(3分)下列计算正确的是()A.B.C.D.6.(3分)关于x的不等式组,其解集在数轴上表示正确的是()A.B.C.D.7.(3分)若顺次连接某四边形的四边中点恰好得到一个矩形,则这个四边形一定是()A.平行四边形B.菱形C.对角线相等的任意四边形D.对角线垂直的任意四边形8.(3分)实数a在数轴上的位置如图所示,则﹣化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定9.(3分)若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.2﹣x<2﹣y D.<10.(3分)如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA 的延长线于F,则AE+AF的值等于()A.2 B.3 C.4 D.611.(3分)若满足不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,则a+b之值为何?()A.﹣15 B.﹣16 C.﹣17 D.﹣1812.(3分)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE 沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.13.(3分)如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.B.C.D.14.(3分)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2016﹣2017赛季全部32场比赛中最少得到48分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.2x+(32﹣x)≥48 B.2x﹣(32﹣x)≥48 C.2x+(32﹣x)≤48 D.2x ≥4815.(3分)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2 C.D.10﹣5二、填空题(请将答案直接填写在答题纸相应的位置)16.(3分)若=2x﹣1,则x的取值范围是.17.(3分)如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为.18.(3分)若不等式的解集为x>3,则a的取值范围是.19.(3分)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.20.(3分)某货运公司准备用8辆车运送某种物资,要求每辆车运送的货物质量相同,若按每辆车运送的货物比预定数多1吨,则总数会超过100吨;若按每辆车运送的货物比预定数少1吨,则总数不足90吨,那么预定每辆车分配的吨数是.三、解答题(请在答题纸相应位置写出必要的步骤)21.(8分)计算:(1)++3﹣(2)(﹣)×÷.22.(8分)解下列不等式(组)(1)2(x+1)﹣>(2).23.(8分)已知x1=,x2=,求下列代数式的值:(1)x12+x1﹣1;(2)x1+x2+x1x2+1.24.(7分)解不等式组,并在数轴上表示出它的解集解.25.(10分)菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图1,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图2,若∠EAF=60°,求证:△AEF是等边三角形.26.(9分)已知甲、乙两种原料中均含有A元素,其含量及每吨原料的购买单价如表所示:已知用甲原料提取每千克A元素要排放废气1吨,用乙原料提取每千克A元素要排放废气0.5吨,若某厂要提取A元素20千克,并要求废气排放不超过16吨,则乙种原料最少需要多少吨?当乙种原料使用最少时,购买两种原料的费用是多少?27.(10分)如图,△ABC中,D是AB的中点,DF∥BC,过点C且与AB平行的直线与DF相交与点F.(1)求证:四边形ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形ADCF是矩形,并说明理由.2016-2017学年山东省泰安市肥城市八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共15小题,在每小题给出的四个选项中,只有一个是正确的,把正确答案序号填涂在答题纸相应的位置)1.(3分)(2012•河南模拟)计算的结果是()A.±3 B.3 C.﹣3 D.【解答】解:=3.故选B.2.(3分)(2017春•肥城市期中)若=+成立,则非负数x、y应该满足的条件是()A.至少有一个为0 B.x=yC.xy=1 D.不可能存在这样的x、y【解答】解:A、当x=0时,=,+=,成立;当y=0时,=,+=,成立;当x=y=0时,=0,+=0,成立;故本选项符合题意;B、当x=y时,如x取4,y取4,=2,+=2+2=4,不成立;故本选项不符合题意;C、当x=4,y=时,=,+=2,不成立;故本选项不符合题意;D、由选项A可知,存在这样的x、y,故本选项不符合题意;故选A.3.(3分)(2016•内江)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形【解答】解:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B、对角线互相垂直的平行四边形是菱形;故本选项错误;C、对角线互相平分的四边形是平行四边形;故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误;故选C.4.(3分)(2017春•肥城市期中)如果我们将二次根式化成最简形式后,被开放数相同的二次根式称为同类二次根式,那么下面与2是同类二次根式的是()A. B.C.D.﹣2【解答】解:(A)原式=3(B)原式=,(C)原式=,(D)原式=﹣6故选(D)5.(3分)(2012•自贡)下列计算正确的是()A.B.C.D.【解答】解:A、与不能合并,所以A选项不正确;B、×=,所以B选项不正确;C、﹣=2=,所以C选项正确;D、÷=2÷=2,所以D选项不正确.故选C.6.(3分)(2016•淄博)关于x的不等式组,其解集在数轴上表示正确的是()A.B.C.D.【解答】解:,由①得,x>﹣1,由②得,x≤2,故不等式组的解集为:﹣1<x≤2.在数轴上表示为:.故选D.7.(3分)(2017春•肥城市期中)若顺次连接某四边形的四边中点恰好得到一个矩形,则这个四边形一定是()A.平行四边形B.菱形C.对角线相等的任意四边形D.对角线垂直的任意四边形【解答】解:当对角线互相垂直,即:四边形ABCD中,AC⊥BD时,连接各边的中点E,F,G,H,则形成中位线EG∥AC,FH∥AC,EF∥BD,GH∥BD,又因为对角线AC⊥BD,所以GH⊥EG,EG⊥EF,EF⊥FH,FH⊥HG,根据矩形的定义可以判定该四边形为矩形.故选D.8.(3分)(2017春•肥城市期中)实数a在数轴上的位置如图所示,则﹣化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定【解答】解:根据数轴上点的位置得:5<a<10,∴a﹣4>0,a﹣11<0,则原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,故选C9.(3分)(2017春•肥城市期中)若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.2﹣x<2﹣y D.<【解答】解:A、由不等式的性质1可知A选项正确,不符合题意;B、由不等式的性质1和性质2可知B选项正确,不符合题意;C、由不等式的性质1和性质2可知C选项正确,不符合题意;D、由不等式的性质2可知D选项错误,符合题意.故选:D.10.(3分)(2016•泰安)如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD 于E,交BA的延长线于F,则AE+AF的值等于()A.2 B.3 C.4 D.6【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵CF平分∠BCD,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF﹣AB=2,AE=AD﹣DE=2,∴AE+AF=4;故选:C.11.(3分)(2016•台湾)若满足不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,则a+b之值为何?()A.﹣15 B.﹣16 C.﹣17 D.﹣18【解答】解:∵20<5﹣2(2+2x)<50,解得,,∵不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,∴a=﹣5,b=﹣12,∴a+b=(﹣5)+(﹣12)=﹣17,故选C.12.(3分)(2016•威海)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选:D.13.(3分)(2016•台州)如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.B.C.D.【解答】解:如图所示:连接OC,由题意可得:OB=2,BC=1,则OC==,故点M对应的数是:.故选:B.14.(3分)(2017春•肥城市期中)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2016﹣2017赛季全部32场比赛中最少得到48分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.2x+(32﹣x)≥48 B.2x﹣(32﹣x)≥48 C.2x+(32﹣x)≤48 D.2x ≥48【解答】解:这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是:2x+(32﹣x)≥48.故选:A.15.(3分)(2016•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2 C.D.10﹣5【解答】解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),AG2+BG2=AB2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,同理可得HE=2,在RT△GHE中,GH===2,故选:B.二、填空题(请将答案直接填写在答题纸相应的位置)16.(3分)(2017春•肥城市期中)若=2x﹣1,则x的取值范围是x ≥.【解答】解:∵=2x﹣1,∴2x﹣1≥0,∴x≥.故答案为:x≥.17.(3分)(2013•江西)如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为25°.【解答】解:∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=110°,∴∠ADC=120°,∠CDE═∠F=110°,∴∠ADE=360°﹣120°﹣110°=130°,∴∠DAE==25°,故答案为:25°.18.(3分)(2012•黑龙江)若不等式的解集为x>3,则a的取值范围是a≤3.【解答】解:化简不等式组可知∵解集为x>3∴a≤319.(3分)(2013•北京)如图,O是矩形ABCD的对角线AC的中点,M是AD 的中点.若AB=5,AD=12,则四边形ABOM的周长为20.【解答】解:∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴OM=CD=AB=2.5,∵AB=5,AD=12,∴AC==13,∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故答案为:20.20.(3分)(2017春•肥城市期中)某货运公司准备用8辆车运送某种物资,要求每辆车运送的货物质量相同,若按每辆车运送的货物比预定数多1吨,则总数会超过100吨;若按每辆车运送的货物比预定数少1吨,则总数不足90吨,那么预定每辆车分配的吨数是12.【解答】解:设每辆车分配的吨数是x,根据题意得,解得<x<,而x为整数,所以x=12,即每辆车分配的吨数是12吨.故答案是:12.三、解答题(请在答题纸相应位置写出必要的步骤)21.(8分)(2017春•肥城市期中)计算:(1)++3﹣(2)(﹣)×÷.【解答】解:(1)原式=4﹣3+3﹣3=﹣2+3;(2)原式=(4﹣5)××2=﹣4.22.(8分)(2017春•肥城市期中)解下列不等式(组)(1)2(x+1)﹣>(2).【解答】解:(1)去分母得12(x+1)﹣2(x﹣2)>3(7x﹣2).去括号得12x+12﹣2x+4>21x﹣6,移项得,12x﹣2x﹣21x>﹣6﹣12﹣4,合并同类项,系数化为1得x<2.(2),由①得,x>﹣,由②得,x≤1,故不等式组的解集为:﹣<x≤1.23.(8分)(2017春•肥城市期中)已知x1=,x2=,求下列代数式的值:(1)x12+x1﹣1;(2)x1+x2+x1x2+1.【解答】解:(1))x12+x1﹣1=()2+﹣1=+﹣1=+﹣1=0;(2)原式=++×+1=﹣1++1=﹣1.24.(7分)(2017春•肥城市期中)解不等式组,并在数轴上表示出它的解集解.【解答】解:,由①得:x≤,由②得:x>﹣,把不等式的解集在数轴上表示为:∴不等式组的解集是﹣<x≤.25.(10分)(2012•南通)菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图1,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图2,若∠EAF=60°,求证:△AEF是等边三角形.【解答】证明:(1)连接AC,∵在菱形ABCD中,∠B=60°,∴AB=BC=CD,∠C=180°﹣∠B=120°,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC,∵∠AEF=60°,∴∠FEC=90°﹣∠AEF=30°,∴∠CFE=180°﹣∠FEC﹣∠ECF=180°﹣30°﹣120°=30°,∴∠FEC=∠CFE,∴EC=CF,∴BE=DF;(2)∵△ABC是等边三角形,∴AB=AC,∠ACB=60°,∴∠B=∠ACF=60°,∵AD∥BC,∴∠AEB=∠EAD=∠EAF+∠FAD=60°+∠FAD,∠AFC=∠D+∠FAD=60°+∠FAD,∴∠AEB=∠AFC,在△ABE和△ACF中,∴△ABE≌△ACF(AAS),∴AE=AF,∵∠EAF=60°,∴△AEF是等边三角形.26.(9分)(2017春•肥城市期中)已知甲、乙两种原料中均含有A元素,其含量及每吨原料的购买单价如表所示:已知用甲原料提取每千克A元素要排放废气1吨,用乙原料提取每千克A元素要排放废气0.5吨,若某厂要提取A元素20千克,并要求废气排放不超过16吨,则乙种原料最少需要多少吨?当乙种原料使用最少时,购买两种原料的费用是多少?【解答】解:设需要甲原料x吨,乙原料y吨.由题意,得,整理得:,可得:y=,把①代入②,得x≤.设这两种原料的费用为W万元,由题意,得W=2.5x+6y=﹣1.25x+1.5.∵k=﹣1.25<0,∴W随x的增大而减小.=1.2.∴x=,y=0.1时,W最小答:该厂购买这两种原料的费用最少为1.2万元.27.(10分)(2017春•肥城市期中)如图,△ABC中,D是AB的中点,DF∥BC,过点C且与AB平行的直线与DF相交与点F.(1)求证:四边形ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形ADCF是矩形,并说明理由.【解答】(1)证明:如图所示:∵DF∥BC,CF∥BD,∴四边形DBCF是平行四边形,∴CF∥BD,CF=BD,∵D是AB的中点,∴BD=AD,∴CF=AD,∴四边形ADCF是平行四边形;(2)解:当△ABC满足CA=CB时,四边形ADCF是矩形;理由如下:由(1)得:四边形ADCF是平行四边形,∴DF=BC,∵CA=CB,∴CA=DF,∴四边形ADCF是矩形.参与本试卷答题和审题的老师有:算术;zjx111;nhx600;神龙杉;gsls;CJX;sjzx;sks;gbl210;家有儿女;zgm666;HJJ;sd2011;三界无我;wd1899;zhjh;蓝月梦;守拙;zcx(排名不分先后)菁优网2017年5月22日。

2015-2016学年八年级(下)期中数学试卷含答案解析

2015-2016学年八年级(下)期中数学试卷含答案解析

2015-2016学年八年级(下)期中数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.使式子有意义,则x的取值范围是()A.x>5 B.x≠5 C.x≥5 D.x≤52.下列二次根式中,属于最简二次根式的是()A.B.C.D.3.下列运算正确的是()A.()2=4 B. =﹣4 C. =×D.﹣=4.如图,直角三角形的三边长分为a、b、c,下列各式正确的是()A.a2+b2=c2B.b2+c2=a2C.c2+a2=b2D.以上都不对5.一个直角三角形的两边长分别为4cm、3cm,则第三条边长为()A.5cm B.4cm C. cm D.5cm 或cm6.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,157.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm8.菱形具有而矩形不具有的性质是()A.对角线互相平分B.四条边都相等C.对角相等 D.邻角互补9.两条对角线互相垂直平分且相等的四边形是()A.矩形 B.菱形 C.正方形D.都有可能10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.12二、填空题(本题共10小题,每小题4分,共40分)11.如图,△ABC中,D、E分别是AB、AC边的中点,且DE=7cm,则BC= cm.12.写出命题“对顶角相等”的逆命题.13.比较大小:.(填“>、<、或=”)14.如果+(b﹣7)2=0,则的值为.15.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行m.16.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是cm.17.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.18.菱形的两条对角线长分别为6和8,则这个菱形的周长为.19.若两对角线长分别为4cm和6cm的菱形的面积与一个正方形的面积相等,那么该正方形的边长为cm.20.如图,在矩形ABCD中,AD=4,AB=3,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是.三.解答题(共50分)21.计算:(1)(﹣)2﹣+(2)(3﹣)﹣(+)22.已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.23.如图,在四边形ABCD中,∠A=90°,AD=3,AB=4,BC=12,CD=13,试判断△BCD的形状,并说明理由.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.26.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.27.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= 时,四边形MENF是正方形(只写结论,不需证明).2015-2016学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.使式子有意义,则x的取值范围是()A.x>5 B.x≠5 C.x≥5 D.x≤5【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子有意义,∴x﹣5≥0,解得x≥5.故选C.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.2.下列二次根式中,属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的条件进行判断即可.【解答】解: =,被开方数含分母,不是最简二次根式;=,被开方数含分母,不是最简二次根式;=2,被开方数中含能开得尽方的因数,不是最简二次根式;是最简二次根式,故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.3.下列运算正确的是()A.()2=4 B. =﹣4 C. =×D.﹣=【考点】二次根式的混合运算.【分析】分别利用二次根式的性质以及结合二次根式混合运算法则化简求出答案.【解答】解:A、()2=4,正确;B、=4,故此选项错误;C、=×,故此选项错误;D、﹣无法计算,故此选项错误;故选:A.【点评】此题主要考查了二次根式的混合运算以及二次根式的化简,正确掌握二次根式的性质是解题关键.4.如图,直角三角形的三边长分为a、b、c,下列各式正确的是()A.a2+b2=c2B.b2+c2=a2C.c2+a2=b2D.以上都不对【考点】勾股定理.【分析】由勾股定理即可得出结论,注意a是斜边长.【解答】解:∵∠A=90°,∴由勾股定理得:b2+c2=a2.故选:B.【点评】本题考查了勾股定理;熟记勾股定理是解决问题的关键.5.一个直角三角形的两边长分别为4cm、3cm,则第三条边长为()A.5cm B.4cm C. cm D.5cm 或cm【考点】勾股定理.【分析】题中没有指明哪个是直角边哪个是斜边,故应该分情况进行分析.【解答】解:(1)当两边均为直角边时,由勾股定理得,第三边为5cm;(2)当4为斜边时,由勾股定理得,第三边为cm;故直角三角形的第三边应该为5cm或cm.故选:D.【点评】此题主要考查学生对勾股定理的运用,注意分情况进行分析.6.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,15【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【解答】解:A、1.52+22≠32,不符合勾股定理的逆定理,故正确;B、72+242=252,符合勾股定理的逆定理,故错误;C、62+82=102,符合勾股定理的逆定理,故错误;D、92+122=152,符合勾股定理的逆定理,故错误.故选A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm【考点】平行四边形的性质.【专题】几何图形问题.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,所以根据AD、AB的值,求出EC的值.【解答】解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.8.菱形具有而矩形不具有的性质是()A.对角线互相平分B.四条边都相等C.对角相等 D.邻角互补【考点】矩形的性质;菱形的性质.【专题】证明题.【分析】与平行四边形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等.【解答】解:A、对角线互相平分是平行四边形的基本性质,两者都具有,故A不选;B、菱形四条边相等而矩形四条边不一定相等,只有矩形为正方形时才相等,故B符合题意;C、平行四边形对角都相等,故C不选;D、平行四边形邻角互补,故D不选.故选:B.【点评】考查菱形和矩形的基本性质.9.两条对角线互相垂直平分且相等的四边形是()A.矩形 B.菱形 C.正方形D.都有可能【考点】多边形.【分析】如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,理由为:利用对角线互相平分的四边形为平行四边形得到ABCD为平行四边形,再利用对角线互相垂直的平行四边形为菱形,再利用对角线相等的菱形为正方形即可得证.【解答】解:如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,已知:四边形ABCD,AC⊥BD,OA=OC,OB=OD,AC=BD,求证:四边形ABCD为正方形,证明:∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,∵AC⊥BD,∴平行四边形ABCD为菱形,∵AC=BD,∴四边形ABCD为正方形.故选C.【点评】此题考查了正方形的判定,以及角平分线定理,熟练掌握正方形的判定方法是解本题的关键.10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC 的面积为()A.6 B.8 C.10 D.12【考点】翻折变换(折叠问题).【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故选C.【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.二、填空题(本题共10小题,每小题4分,共40分)11.如图,△ABC中,D、E分别是AB、AC边的中点,且DE=7cm,则BC= 14 cm.【考点】三角形中位线定理.【分析】根据三角形中位线定理得出BC=2DE,代入求出即可.【解答】解:∵D、E分别是AB、AC边的中点,且DE=7cm,∴BC=2DE=14cm,故答案为:14.【点评】本题考查了三角形中位线定理的应用,能熟记三角形的中位线定理的内容是解此题的关键,注意:三角形的中位线平行于第三边,并且等于第三边的一半.12.写出命题“对顶角相等”的逆命题如果两个角相等,那么这两个角是对顶角.【考点】命题与定理.【分析】根据逆命题的定义可以写出命题“对顶角相等”的逆命题,本题得以解决.【解答】解:命题“对顶角相等”的逆命题是如果两个角相等,那么这两个角是对顶角,故答案为:如果两个角相等,那么这两个角是对顶角.【点评】本题考查命题与定理,解题的关键是明确逆命题的定义,可以写出一个命题的逆命题.13.比较大小:<.(填“>、<、或=”)【考点】实数大小比较.【分析】先把两个实数平方,然后根据实数的大小比较方法即可求解.【解答】解:∵()2=12,(3)2=18,而12<18,∴2<3.故答案为:<.【点评】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.14.如果+(b﹣7)2=0,则的值为 3 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先利用偶次方的性质以及二次根式的性质进而得出a,b的值,进而求出答案.【解答】解:∵ +(b﹣7)2=0,∴a=2,b=7,则==3.故答案为:3.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.15.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行10 m.【考点】勾股定理的应用.【专题】应用题.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树尖进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:两棵树的高度差为6m,间距为8m,根据勾股定理可得:小鸟至少飞行的距离==10m.【点评】本题主要是将现实问题建立数学模型,运用数学知识进行求解.16.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是15 cm.【考点】平面展开﹣最短路径问题.【专题】推理填空题.【分析】根据题意,可以画出长方体的展开图,根据两点之间线段最短和勾股定理,可以解答本题.【解答】解:如右图所示,点A到B的最短路径是: cm,故答案为:15.【点评】本题考查平面展开﹣最短路径问题,解题的关键是明确两点之间线段最短,能画出图形的平面展开图.17.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.【考点】矩形的性质.【专题】计算题.【分析】根据矩形的性质,画出图形求解.【解答】解:∵ABCD为矩形∴OA=OC=OB=OD∵一个角是60°∴BC=OB=cm∴根据勾股定理==∴面积=BC•CD=4×=cm2.故答案为.【点评】本题考查的知识点有:矩形的性质、勾股定理.18.菱形的两条对角线长分别为6和8,则这个菱形的周长为20 .【考点】菱形的性质;勾股定理.【分析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【解答】解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB===5,∴此菱形的周长为:5×4=20.故答案为:20.【点评】本题主要考查了菱形的性质,利用勾股定理求出菱形的边长是解题的关键,同学们也要熟练掌握菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.19.若两对角线长分别为4cm和6cm的菱形的面积与一个正方形的面积相等,那么该正方形的边长为2cm.【考点】正方形的性质;菱形的性质.【分析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积,进一步开方求得正方形的边长即可.【解答】解:根据对角线的长可以求得菱形的面积,根据S=ab=×4×6=12cm2,∵菱形的面积与正方形的面积相等,∴正方形的边长是=2cm.故答案为:2.【点评】本题考查了菱形的面积和正方形的面积计算的方法,本题中根据菱形对角线求得菱形的面积是解题的关键.20.如图,在矩形ABCD中,AD=4,AB=3,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是 6 .【考点】矩形的性质.【分析】用矩形的面积减去△ADQ和△BCP的面积求解即可.【解答】解:∵四边形ABCD为矩形,∴AD=BC=4.S阴影=S矩形ABCD﹣S△BPC﹣S△ADQ=AB•CB﹣BC•MB AD•AM=4×3﹣4×BM﹣×4×AM=12﹣2MB﹣2AM=12﹣2(MB+AM)=12﹣2×3=6.故答案为:6.【点评】本题主要考查的是矩形的性质、三角形的面积公式,将阴影部分的面积转化为S矩形ABCD﹣S△﹣S△ADQ求解是解题的关键.BPC三.解答题(共50分)21.计算:(1)(﹣)2﹣+(2)(3﹣)﹣(+)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先化简二次根式,再合并同类项即可解答本题;(2)根据去括号的法则去掉括号,然后合并同类项即可解答本题.【解答】解:(1)(﹣)2﹣+=3﹣2+3=4;(2)(3﹣)﹣(+)==.【点评】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.22.已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.【考点】二次根式的化简求值.【分析】(1)利用平方差公式分解因式后再代入计算;(2)利用完全平方差公式分解因式后再代入计算.【解答】解:当a=3+,b=3﹣时,(1)a2﹣b2,=(a+b)(a﹣b),=(3+3﹣)(3+﹣3+),=6×2,=12;(2)a2﹣2ab+b2,=(a﹣b)2,=(3﹣3+)2,=(2)2,=8.【点评】本题是运用简便方法进行二次根式的化简求值,熟练掌握平方差公式和完全平方公式是解题的关键.23.如图,在四边形ABCD中,∠A=90°,AD=3,AB=4,BC=12,CD=13,试判断△BCD的形状,并说明理由.【考点】勾股定理的逆定理;勾股定理.【分析】先根据勾股定理计算BD的长,再利用勾股定理的逆定理证明∠DBC=90°,所以:△BCD是直角三角形.【解答】解:△BCD是直角三角形,理由是:在△ABD中,∠A=90°,∴BD2=AD2+AB2=32+42=25,在△BCD中,BD2+BC2=52+122=169,CD2=132=169,∴BD2+BC2=CD2,∴∠DBC=90°∴△BCD是直角三角形.【点评】本题考查了勾股定理及其逆定理,熟练掌握定理的内容是关键,注意各自的条件和结论.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC 中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.25.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.【考点】平行四边形的判定与性质;全等三角形的性质.【专题】证明题;压轴题.【分析】首先连接BD,交AC于点O,由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA=OC,OB=OD,又由AE=CF,可得OE=OF,然后根据对角线互相相平分的四边形是平行四边形.【解答】证明:连接BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.【点评】此题考查了平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.26.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.【考点】平行四边形的性质.【分析】由四边形ABCD是平行四边形,可求得BC=AD=8,又由AC⊥BC,利用勾股定理即可求得AC 的长,然后由平行四边形的对角线互相平分,求得OA的长,继而求得平行四边形ABCD的面积.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵AB=10,AC⊥BC,∴AC==6,∴OA=AC=3,∴S平行四边形ABCD=BC•AC=8×6=48.【点评】此题考查了平行四边形的性质以及勾股定理.注意平行四边形的对边相等,对角线互相平分.27.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= 2:1 时,四边形MENF是正方形(只写结论,不需证明).【考点】矩形的性质;全等三角形的判定与性质;菱形的判定;正方形的判定.【分析】(1)根据矩形的性质可得AB=CD,∠A=∠D=90°,再根据M是AD的中点,可得AM=DM,然后再利用SAS证明△ABM≌△DCM;(2)四边形MENF是菱形.首先根据中位线的性质可证明NE∥MF,NE=MF,可得四边形MENF是平行四边形,再根据△ABM≌△DCM可得BM=CM进而得ME=MF,从而得到四边形MENF是菱形;(3)当AD:AB=2:1时,四边形MENF是正方形,证明∠EMF=90°根据有一个角为直角的菱形是正方形得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.证明如下:∵E,F,N分别是BM,CM,CB的中点,∴NE∥MF,NE=MF.∴四边形MENF是平行四边形.由(1),得BM=CM,∴ME=MF.∴四边形MENF是菱形.(3)解:当AD:AB=2:1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM.∵AD:AB=2:1,∴AM=AB.∵∠A=90,∴∠ABM=∠AMB=45°.同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°.∵四边形MENF是菱形,∴菱形MENF是正方形.故答案为:2:1.【点评】此题主要考查了矩形的性质,以及菱形的判定和正方形的判定,关键是掌握菱形和正方形的判定方法.。

2015-2016学年八年级第二学期期中教学质量调研测试数学试题(苏科版)及部分答案

2015-2016学年八年级第二学期期中教学质量调研测试数学试题(苏科版)及部分答案

x yx y-+启用前*绝密2015-2016学年八年级第二学期期中教学质量调研测试数学试题(苏科版)时间120分钟满分130分2016.4.24一、选择题(每小题3分,共30分)1.下面四张纸牌中,旋转180°后图案保持不变的是A. B. C. D.2.如果把分式中的x和y都扩大原来的2倍,则分式的值A.扩大4倍B.扩大2倍C.不变D.缩小2倍3.菱形具有而矩形不一定具有的性质是A.中心对称图形B.对角相等C. 对边平行D.对角线互相垂直4.下列各分式的化简正确的是A.633xxx=B.a x ab x b+=+ C.22xx=D.2111aaa-=--5.在▱ABCD中,:::A B C D∠∠∠∠的值可以是A. 1:2 : 3 : 4B. 3 : 4:4:3C. 3:3:4:4D. 3:4:3:46.下列各个运算中,能合并成一个根式的是--++7.已知▱ABCD的两条对角线AC=18,BD=8,则BC的长度可能为A. 5B. 10C. 13D. 268.客车与货车从A 、B 两地同时出发,若相向而行,则客车与货车a 小时后相遇;若同向而行,则客车b 小时后追上货车,那么客车与货车的速度之比为 A. a b a + B. b a b + C.b a a b -+ D. a bb a +-9.如图,四边形ABCD 中,AD//BC, E , F , G , H 分别是各边的中点,分别记四边形ABCD 和EFGH 的面积为1S 和2S ,则下列各个判断中正确的是A. 122S S >B. 122S S <C. 122S S =D.=10.如图,矩形ABCD 中,两条对角线相较于点O, AE 平分BAD ∠交于BC 边上的中点E ,连接OE.下列结论:①30ACB ∠=︒; ②OE BC ⊥; ③14OE BC =; ④18AOE ABCD S S = .其中正确的个数是1 B.2 C.3 D. 4二、填空题(每小题3分,共24分)11.若分式1xx +的值为0,则x 的值是________________.12.在函数1y =x 的取值范围是________.13.分式2215,36x xy 的最简公分母是____________.14.在矩形ABCD 中,AB=1,BG 、DH 分别平分ABC ∠、ADC ∠,交AD 、BC 于点G 、H.要使四边形BHDG 为菱形,则AD 的长为_________.15.是整数的最小正整数a 为__________.16.如图,在菱形ABCD 中,已知DE AB ⊥, AE : AD=3:5,BE=2,则菱形ABCD 的面积是_________.17.若关于x 的方程111mx x x -=--无解,则m 的值是____________. 18.如图,正方形ABCD 中,AB=2,点E 为BC 边上的一个动点,连接AE ,作45EAF ∠=︒,交CD 边于点F ,连接EF. 若设BE=x,则CEF 的周长为__________.三、解答题(共76分,应写出必要的计算过程、推理步骤或文字说明)19.(本题共2小题,每小题4分,满分8分)(1-+ (21÷⨯20.(本题共2小题,每小题5分,满分10分)解下列分式方程:222xx x x -=-+ (2)410541362x x x x +--=--21.(本题满分6分)先化简再求值:22214(1)12x x x x x x ⎛⎫--÷+⋅ ⎪--⎝⎭,其中1x =+.22.(本题满分6分)如图,在ABCD 中,直线EF//BD ,与CD 、CB 的延长线分别交于点E 、F ,交AB 、AD 于G 、H.(1)求证:四边形FBDH 为平行四边形;(2)求证:FG=EH.23.(本题满分6分)如图,四边形ABCD 中,AB=AD ,CB=CD,则称该四边形为“筝形”.连接对角线AC 、BD ,交于点O.(1)写出关于筝形对角线的一个性质___________,并说明理由;(2)给出下列四个条件:①OA=OC, ②AC BD ⊥, ③ABD CBD ∠=∠, ④AB//CD.从中选择一个条件_______(填序号),使该筝形为菱形,并证明之.24.(本题满分6分)如图,在面积为248a 2cm (a>0)的正方形的四角处,分别剪去四个面积均为32cm 的小正方形,制成一个无盖的长方体盒子.(1)用含a 的式子表示这个长方体盒子的底面边长;(2)若该长方体盒子的容积为3cm ,求a 的值.25.(本题满分6分)阅读理解与运用.例 解分式不等式:3221x x +>-. 解:移项,得:32201x x +->-,即401x x +>-.由同号得正、异号得负的原理得,两种情况:①4010x x ⎧+>⎨->⎩;②4010x x ⎧+<⎨-<⎩.解不等式组①得:1x >;解不等式组②得:4x <-.∴原不等式的解集是:4x <-或1x >. 试运用上述方法解分式不等式:2111x x x +<--.26.(本题满分8分)如图,正方形ABCD 中,AB=1,点P 是BC 边上的任意一点(异于端点B 、C ),连接AP ,过B 、D 两点作BE AP ⊥于点E ,DF AP ⊥于点F.(1)求证:EF=DF-BE(2)若ADF 的周长为73,求EF 的长.27.(本题满分10分)我市计划对10002m 的区域进行绿化,由甲、乙两个工程队合作完成.已知甲队每天能完成绿化的面积是乙队的2倍;当两队分别各完成2002m 的绿化时,甲队比乙队少用2天.(1)求甲、乙两工程队每天能完成的绿化的面积;(2)两队合作完成此项工程,若甲队参与施工n 天,试用含n 的代数式表示乙队施工的天数;(3) 若甲队每天施工费用是0.6万元,乙队每天为0.25万元,且要求两队施工的天数之和不超过15天,应如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低费用.28.(本题满分10分)如图,在菱形ABCD 中,AB=4cm,60BAD ∠=︒.动点E 、F 分别从点B 、D 同时出发,以1cm/s 的速度向点A 、C 运动,连接AF 、CE ,取AF 、CE 的中点G 、H ,连接GE 、FH.设运动的时间为t s (04t <<).(1)求证:AF//CE;(2)当t 为何值时,四边形EHFG 为菱形;(3)试探究:是否存在某个时刻t ,使四边形EHFG 为矩形,若存在,求出t 的值,若不存在,请说明理由.部分参考答案一、选择题:二、填空题:11.0;12.x>1;13226x y ;1 ;15.3;16.20;17.1;18.4;三、解答题:略。

【精】泰安市肥城市八年级下期中数学试卷及答案

【精】泰安市肥城市八年级下期中数学试卷及答案

2014-2015学年山东省泰安市肥城市八年级(下)期末数学试卷一、选择题:在下列各小题中,均给出四个答案,其中有且只有一个正确答案。

1.的计算结果是()A. 4 B.﹣4 C.±4D. 82.下列二次根式中,最简二次根式是()A.B.C.D.3.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A. AB=CD B. AD=BC C. AB=BC D. AC=BD4.以下运算错误的是()A.B.C.D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.如图,在平面直角坐标系中,将△ABC绕点P旋转180°,得到△A1B1C1,则点A1,B1,C1的坐标分别为()A. A1(﹣4,﹣6),B1(﹣3,﹣3),C1(﹣5,﹣1)B. A1(﹣6,﹣4),B1(﹣3,﹣3),C1(﹣5,﹣1)C. A1(﹣4,﹣6),B1(﹣3,﹣3),C1(﹣1,﹣5)D. A1(﹣6,﹣4),B1(﹣3,﹣3),C1(﹣1,﹣5)7.能使等式=成立的条件是()A.x≥0B.﹣3<x≤0C. x>3 D. x>3或x<08.将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A. x>4 B. x>﹣4 C. x>2 D. x>﹣29.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A. y=2x+3 B. y=x﹣3 C. y=2x﹣3 D. y=﹣x+310.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A. 2B. 4C. 4 D. 811.直线y=x+1与y=﹣2x+a的交点在第一象限,则a的取值可以是()A.﹣1 B. 0 C. 1 D. 212.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥B.x≤3C.x≤D.x≥313.如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F.若AB=6,BC=4,则FD的长为()A. 2 B. 4 C.D. 214.实数a在数轴上的位置如图所示,则化简后为()A. 7 B.﹣7 C. 2a﹣15 D.无法确定15.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S△FGC=.其中正确的是()A.①②B.①③C.②③D.①②③二、填空题(本大题共5小题,只要求填写最好结果)16.计算:= .17.如果P(﹣2,a)是正比例函数y=﹣2x图象上的一点,那么P点关于y轴对称点的坐标为.18.如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.若AB=8,AD=12,则四边形ENFM的周长为.19.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t (秒)之间的函数关系如图,则这次越野跑的全程为米.20.若不等式组有解,则a的取值范围是.三、简单题(本大题共7小题,解答应写出必要的文字说明、证明过程或演算步骤)21.解不等式,并把它的解集在数轴上表示出来.22.已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm)4.2 …8.2 9.8体温计的读数y(℃)35.0 …40.0 42.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.23.如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.24.如图所示,x轴所在直线是一条东西走向的河,A(﹣2,3)、B(4,5)两个村庄位于河的北岸,现准备在河上修建一净水站P,并利用管道为两个村庄供水(单位:千米).(1)欲使所修管道最短,应该把净水站P修在什么位置,作出正确图形(用尺规作图),求出P点坐标及PB所在直线解析式;(2)若管道每米费用需要200元,求修管道的最低费用.25.如图,点E、F分别在正方形ABCD的边CD与BC上,∠EAF=45°.(1)求证:EF=DE+BF;(2)作AP⊥EF于点P,若AD=10,求AP的长.2015春•肥城市期末)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):实际花费累计购物130 290 (x)在甲商场127 …在乙商场126 …(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?2015•泰安)如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC中点,BD 平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.2014-2015学年山东省泰安市肥城市八年级(下)期末数学试卷参考答案与试题解析一、选择题:在下列各小题中,均给出四个答案,其中有且只有一个正确答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档