黑龙江省哈尔滨市平房区2016届中考调研数学试题(一)含答案
【中考真题】2016年黑龙江省哈尔滨市中考数学试题(含答案解析)
2016年黑龙江省哈尔滨市中考数学真题一、选择题(每小题3分,共计30分)1.(3分)﹣6的绝对值是()A.﹣6 B.6 C.D.﹣2.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+13.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)5.(3分)五个大小相同的正方体搭成的几何体如图所示,其主视图是()A. B.C.D.6.(3分)不等式组的解集是()A.x≥2B.﹣1<x≤2C.x≤2D.﹣1<x≤17.(3分)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x8.(3分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.10.(3分)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2二、填空题(每小题3分,共计30分)11.(3分)将5700 000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)计算2﹣的结果是.14.(3分)把多项式ax2+2a2x+a3分解因式的结果是.15.(3分)一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为cm.16.(3分)二次函数y=2(x﹣3)2﹣4的最小值为.17.(3分)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为.18.(3分)如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为.19.(3分)一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.20.(3分)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF 与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(﹣)÷的值,其中a=2sin 60°+tan 45°.22.(7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、P A,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.23.(8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?24.(8分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.25.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?26.(10分)已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.27.(10分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH 的中点,当直线PG经过AC的中点Q时,求点F的坐标.参考答案解析一、选择题(每小题3分,共计30分)1.B【解析】﹣6的绝对值是6.故选B.2.C【解析】A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选C.3.D【解析】A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选D.4.D【解析】∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选D.5.C【解析】从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选C.6.A【解析】解不等式x+3>2,得:x>﹣1,解不等式1﹣2x≤﹣3,得:x≥2,∴不等式组的解集为:x≥2,故选A.7.C【解析】设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选C.8.D【解析】由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP==30(海里)故选D.9.A【解析】A、∵DE∥BC,∴,故正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;C、∵DE∥BC,∴,故错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;故选A.10.B【解析】如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.二、填空题(每小题3分,共计30分)11.5.7×106【解析】5700 000=5.7×106.故答案为:5.7×106.12.x≠【解析】由题意,得2x﹣1≠0,解得x≠,故答案为:x≠.13.﹣2【解析】原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.14.a(x+a)2【解析】ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)215.6【解析】设该扇形的半径为R,则=12π,解得R=6.即该扇形的半径为6cm.故答案是:6.16.﹣4【解析】二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.故答案为:﹣4.17.或【解析】①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.18.4【解析】OC交BE于F,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥l,∴BE∥CD,∵CD为切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF ,在Rt△ABE中,BE===8,∵OF⊥BE,∴BF=EF=4,∴CD=4.故答案为4.19.【解析】列表得,黑1 黑2 白1 白2黑1 黑1黑1 黑1黑2 黑1白1 黑1白2黑2 黑2黑1 黑2黑2 黑2白1 黑2白2白1 白1黑1 白1黑2 白1白1 白1白2白2 白2黑1 白2黑2 白2白1 白2白2∵由表格可知,不放回的摸取2次共有16种等可能结果,其中两次摸出的小球都是白球有4种结果,∴两次摸出的小球都是白球的概率为:=,故答案为:.20.3【解析】∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,∴2•S△ABC=BC•FG,∴2××(6)2=6•FG,∴FG=3.故答案为3.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.解:原式=[﹣]•(a+1)=•(a+1)=•(a+1)=•(a+1)=,当a=2sin 60°+tan 45°=2×+1=+1时,原式==.22.解:(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;(2)如图2所示:四边形ABCD即为所求.23.解:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.24.解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DP A=90°∴△AQB≌△DP A(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ25.解:(1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)设小明家与图书馆之间的路程是y米,根据题意可得:,解得:y≤600,答:小明家与图书馆之间的路程最多是600米.26.解:(1)∵OD⊥BC,∴由垂径定理可知:点H是BC的中点,∵点O是AB的中点,∴OH是△ABC的中位线,∴AC=2OH;(2)∵OD⊥BC,∴由垂径定理可知:,∴∠BAD=∠CAD,∵,∴∠ABC=∠ADC,∴180°﹣∠BAD﹣∠ABC=180°﹣∠CAD﹣∠ADC,∴∠ACD=∠APB,(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴∠ABD+∠BDN=180°﹣∠AND,∴∠AND=180°﹣∠AND,∴∠AND=90°,∵tan∠ABC=,BN=3,∴NQ=,∴由勾股定理可求得:BQ=,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵AI是⊙O直径,∴∠ACI=90°,∵tan∠AIC=tan∠ABC=,∴=,∴IC=10,∴由勾股定理可求得:AI=25,连接OB,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=﹣2x,BH=BQ+QH=+x,由勾股定理可得:OB2=BH2+OH2,∴()2=(+x)2+(﹣2x)2,解得:x=或x=,当QH=时,∴QD=QH=,∴ND=QD+NQ=6,∴MN=3,MD=15∵MD>,∴QH=不符合题意,舍去,当QH=时,∴QD=QH=∴ND=NQ+QD=4,由垂径定理可求得:ED=10,∴GD=GN+ND=∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴BR=RG+BG=12∴由垂径定理可知:BF=2BR=24.27.解:(1)把A(﹣4,0),B(0,4)代入y=ax2+2xa+c得,解得,所以抛物线解析式为y=﹣x2﹣x+4;(2)如图1,分别过P、F向y轴作垂线,垂足分别为A′、B′,过P作PN⊥x轴,垂足为N,由直线DE的解析式为:y=x+5,则E(0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EP A′=90°,∴∠EP A′=∠OEF,∵PE=EF,∠EA′P=∠EB′F=90°,∴△PEA′≌△EFB′,∴P A′=EB′=﹣t,则d=FM=OB′=OE﹣EB′=5﹣(﹣t)=5+t;(3)如图2,由直线DE的解析式为:y=x+5,∵EH⊥ED,∴直线EH的解析式为:y=﹣x+5,∴FB′=A′E=5﹣(﹣t2﹣t+4)=t2+t+1,∴F(t2+t+1,5+t),∴点H的横坐标为:t2+t+1,y=﹣t2﹣t﹣1+5=﹣t2﹣t+4,∴H(t2+t+1,﹣t2﹣t+4),连接PH交y轴于A′,∴P与H的纵坐标相等,∴PH∥x轴,∴∠HPQ=∠PQD,∠PGH=∠QGD,∵DG=GH,∴△PGH≌△QGD,∴PH=DQ,∵A(﹣4,0),C(2,0),∴Q(﹣1,0),∵D(﹣5,0),∴DQ=PH=4,∴﹣t+t2+t+1=4,t=±,∵P在第二象限,∴t<0,∴t=﹣,∴F(4﹣,5﹣).。
2016年黑龙江省哈尔滨市中考数学试卷及答案解析
2016年黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣2.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+13.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)5.(3分)五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.6.(3分)不等式组的解集是()A.x≥2B.﹣1<x≤2C.x≤2D.﹣1<x≤1 7.(3分)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x8.(3分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.10.(3分)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2二、填空题(每小题3分,共计30分)11.(3分)将5700000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)计算2﹣的结果是.14.(3分)把多项式ax2+2a2x+a3分解因式的结果是.15.(3分)一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为cm.16.(3分)二次函数y=2(x﹣3)2﹣4的最小值为.17.(3分)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为.18.(3分)如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为.19.(3分)一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.20.(3分)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF 与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.22.(7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.23.(8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?24.(8分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ 于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.25.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?26.(10分)已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD =2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.27.(10分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.2016年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣6的绝对值是6.故选:B.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+1【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.【点评】此题主要考查了幂的乘方运算以及合并同类项以及完全平方公式、同底数幂的乘法运算、积的乘方运算等知识,正确掌握相关运算法则是解题关键.3.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【分析】由点(2,﹣4)在反比例函数图象上结合反比例函数图象上点的坐标特征,即可求出k值,再去验证四个选项中横纵坐标之积是否为k值,由此即可得出结论.【解答】解:∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,解题的关键是求出反比例系数k.本题属于基础题,难度不大,解决该题型题目时,结合点的坐标利用反比例函数图象上点的坐标特征求出k值是关键.5.(3分)五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.6.(3分)不等式组的解集是()A.x≥2B.﹣1<x≤2C.x≤2D.﹣1<x≤1【分析】分别求出每一个不等式的解集,根据口诀:同大取大确定不等式组的解集.【解答】解:解不等式x+3>2,得:x>﹣1,解不等式1﹣2x≤﹣3,得:x≥2,∴不等式组的解集为:x≥2,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(3分)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选:C.【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.8.(3分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里【分析】根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.【解答】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP==30(海里)故选:D.【点评】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.【分析】根据平行线分线段成比例定理与相似三角形的对应边成比例,即可求得答案.【解答】解;A、∵DE∥BC,∴,故正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;C、∵DE∥BC,∴,故错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;故选:A.【点评】此题考查了相似三角形的判定与性质以及平行线分线段成比例定理.注意掌握各线段的对应关系是解此题的关键.10.(3分)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2【分析】根据待定系数法可求直线AB的解析式,再根据函数上点的坐标特征得出当x=2时,y的值,再根据工作效率=工作总量÷工作时间,列出算式求出该绿化组提高工作效率前每小时完成的绿化面积.【解答】解:如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.故选:B.【点评】考查了一次函数的应用和函数的图象,关键是根据待定系数法求出该绿化组提高工作效率后的函数解析式,同时考查了工作效率=工作总量÷工作时间的知识点.二、填空题(每小题3分,共计30分)11.(3分)将5700000用科学记数法表示为 5.7×106.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5700000=5.7×106.故答案为:5.7×106.【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.12.(3分)函数y=中,自变量x的取值范围是x≠.【分析】根据分母不为零是分式有意义的条件,可得答案.【解答】解:由题意,得2x﹣1≠0,解得x≠,故答案为:x≠.【点评】本题考查了函数自变量的取值范围,利用分母不为零得出不等式是解题关键.13.(3分)计算2﹣的结果是﹣2.【分析】先将各个二次根式化成最简二次根式,再把同类二次根式进行合并求解即可.【解答】解:原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.【点评】本题考查了二次根式的加减法,解答本题的关键在于掌握二次根式的化简与同类二次根式合并.14.(3分)把多项式ax2+2a2x+a3分解因式的结果是a(x+a)2.【分析】首先提取公因式a,然后将二次三项式利用完全平方公式进行分解即可.【解答】解:ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)2【点评】本题考查了因式分解的知识,解题的关键是能够首先确定多项式的公因式,难度不大.15.(3分)一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为6cm.【分析】根据扇形的面积公式S=即可求得半径.【解答】解:设该扇形的半径为R,则=12π,解得R=6.即该扇形的半径为6cm.故答案是:6.【点评】本题考查了扇形面积的计算.正确理解公式是关键.16.(3分)二次函数y=2(x﹣3)2﹣4的最小值为﹣4.【分析】题中所给的解析式为顶点式,可直接得到顶点坐标,从而得出解答.【解答】解:二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.故答案为:﹣4.【点评】本题考查二次函数的基本性质,解题的关键是正确掌握二次函数的顶点式,若题目给出是一般式则需进行配方化为顶点式或者直接运用顶点公式.17.(3分)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为或.【分析】①如图1根据已知条件得到PB=BC=1,根据勾股定理即可得到结论;②如图2,根据已知条件得到PC=BC=1,根据勾股定理即可得到结论.【解答】解:①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.【点评】本题考查了等腰直角三角形的性质,勾股定理,熟练掌握等腰直角三角形的性质是解题的关键.18.(3分)如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为4.【分析】OC交BE于F,如图,有圆周角定理得到∠AEB=90°,加上AD⊥l,则可判断BE∥CD,再利用切线的性质得OC⊥CD,则OC⊥BE,原式可判断四边形CDEF为矩形,所以CD=EF,接着利用勾股定理计算出BE,然后利用垂径定理得到EF的长,从而得到CD的长.【解答】解:OC交BE于F,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥l,∴BE∥CD,∵CD为切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF,在Rt△ABE中,BE===8,∵OF⊥BE,∴BF=EF=4,∴CD=4.故答案为4.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.解决本题的关键是证明四边形CDEF为矩形.19.(3分)一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:列表得,黑1黑2白1白2黑1黑1黑1黑1黑2黑1白1黑1白2黑2黑2黑1黑2黑2黑2白1黑2白2白1白1黑1白1黑2白1白1白1白2白2白2黑1白2黑2白2白1白2白2∵由表格可知,不放回的摸取2次共有16种等可能结果,其中两次摸出的小球都是白球有4种结果,∴两次摸出的小球都是白球的概率为:=,故答案为:.【点评】本题考查概率的概念和求法,用树状图或表格表达事件出现的可能性是求解概率的常用方法.用到的知识点为:概率=所求情况数与总情况数之比.20.(3分)如图,在菱形ABCD 中,∠BAD =120°,点E 、F 分别在边AB 、BC 上,△BEF 与△GEF 关于直线EF 对称,点B 的对称点是点G ,且点G 在边AD 上.若EG ⊥AC ,AB =6,则FG 的长为3.【分析】首先证明△ABC ,△ADC 都是等边三角形,再证明FG 是菱形的高,根据2•S △ABC =BC •FG即可解决问题.【解答】解:∵四边形ABCD 是菱形,∠BAD =120°,∴AB =BC =CD =AD ,∠CAB =∠CAD =60°,∴△ABC ,△ACD 是等边三角形,∵EG ⊥AC ,∴∠AEG =∠AGE =30°,∵∠B =∠EGF =60°,∴∠AGF =90°,∴FG⊥BC,=BC•FG,∴2•S△ABC∴2××(6)2=6•FG,∴FG=3.故答案为3.【点评】本题考查菱形的性质、等边三角形的判定和性质、翻折变换、菱形的面积等知识,记住菱形的面积=底×高=对角线乘积的一半,属于中考常考题型.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.【分析】先算括号里面的,再算除法,最后把a的值代入进行计算即可.【解答】解:原式=[﹣]•(a+1)=•(a+1)=•(a+1)=•(a+1)=,当a=2sin60°+tan45°=2×+1=+1时,原式==.【点评】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.22.(7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.【分析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合矩形的性质以及勾股定理得出答案.【解答】解:(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;(2)如图2所示:四边形ABCD即为所求.【点评】此题主要考查了轴对称变换以及矩形的性质、勾股定理等知识,正确应用勾股定理是解题关键.23.(8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?【分析】(1)用条形图中演员的数量结合扇形图中演员的百分比可以求出总调查学生数;(2)用总调查数减去其他几个职业类别就可以得到最喜爱教师职业的人数;(3)利用调查学生中最喜爱律师职业的学生百分比可求出该中学中的相应人数.【解答】解:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.【点评】本题考查的是扇形统计图和条形统计图,解题的关键是读懂统计图,从统计图中得到必要的信息.24.(8分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ 于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【分析】(1)根据正方形的性质得出AD=BA,∠BAQ=∠ADP,再根据已知条件得到∠AQB=∠DPA,判定△AQB≌△DPA并得出结论;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等进行判断分析.【解答】解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ【点评】本题主要考查了正方形以及全等三角形,解决问题的关键是掌握:正方形的四条边相等,四个角都是直角.解题时需要运用:有两角和其中一角的对边对应相等的两个三角形全等,以及全等三角形的对应边相等.25.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【分析】(1)设小明步行的速度是x米/分,根据题意可得等量关系:小明步行回家的时间=骑车返回时间+10分钟,根据等量关系列出方程即可;(2)根据(1)中计算的速度列出不等式解答即可.【解答】解:(1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)设小明家与图书馆之间的路程是y米,根据题意可得:,解得:y≤600,答:小明家与图书馆之间的路程最多是600米.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.26.(10分)已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD =2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.【分析】(1)OD⊥BC可知点H是BC的中点,又中位线的性质可得AC=2OH;(2)由垂径定理可知:,所以∠BAD=∠CAD,由因为∠ABC=∠ADC,所以∠ACD=∠APB;(3)由∠ACD﹣∠ABD=2∠BDN可知∠AND=90°,由tan∠ABC=可知NQ和BQ 的长度,再由BF⊥OE和OD⊥BC可知∠GBN=∠ABC,所以BG=BQ,连接AO并延长交⊙O于点I,连接IC后利用圆周角定理可求得IC和AI的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED =即可求得RG的长度,最后由垂径定理可求得BF的长度.【解答】解:(1)∵OD⊥BC,∴由垂径定理可知:点H是BC的中点,∵点O是AB的中点,∴OH是△ABC的中位线,∴AC=2OH;(2)∵OD⊥BC,∴由垂径定理可知:,∴∠BAD=∠CAD,∵,∴∠ABC=∠ADC,∴180°﹣∠BAD﹣∠ABC=180°﹣∠CAD﹣∠ADC,∴∠ACD=∠APB,(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴∠ABD+∠BDN=180°﹣∠AND,∴∠AND=180°﹣∠AND,∴∠AND=90°,∵tan∠ABC=,BN=3,∴NQ=,∴由勾股定理可求得:BQ=,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵AI是⊙O直径,∴∠ACI=90°,∵tan∠AIC=tan∠ABC=,∴=,∴IC=10,∴由勾股定理可求得:AI=25,连接OB,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=﹣2x,BH=BQ+QH=+x,由勾股定理可得:OB2=BH2+OH2,∴()2=(+x)2+(﹣2x)2,解得:x=或x=,当QH=时,∴QD=QH=,∴ND=QD+NQ=6,∴MN=3,MD=15∵MD>,∴QH=不符合题意,舍去,当QH=时,∴QD=QH=∴ND=NQ+QD=4,由垂径定理可求得:ED=10,∴GD=GN+ND=∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴BR=RG+BG=12∴由垂径定理可知:BF=2BR=24.【点评】本题考查圆的综合问题,涉及圆周角定理,中位线的性质,锐角三角函数,勾股定理等知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.27.(10分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.【分析】(1)利用待定系数法求二次函数的解析式;(2)如图1,作辅助线构建两个直角三角形,利用斜边PE=EF和两角相等证两直角三角形全等,得PA′=EB′,则d=FM=OE﹣EB′代入列式可得结论,但要注意PA′=﹣t;(3)如图2,根据直线EH的解析式表示出点F的坐标和H的坐标,发现点P和点H 的纵坐标相等,则PH与x轴平行,证明△PGH≌△QGD,得PH=DQ=4,列式可得t 的值,求出t的值并取舍,计算出点F的坐标.也可以利用线段中点公式求出结论.【解答】解:(1)把A(﹣4,0),B(0,4)代入y=ax2+2xa+c得,解得,所以抛物线解析式为y=﹣x2﹣x+4;(2)如图1,分别过P、F向y轴作垂线,垂足分别为A′、B′,过P作PN⊥x轴,垂足为N,由直线DE的解析式为:y=x+5,则E(0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EPA′=90°,∴∠EPA′=∠OEF,∵PE=EF,∠EA′P=∠EB′F=90°,∴△PEA′≌△EFB′,∴PA′=EB′=﹣t,则d=FM=OB′=OE﹣EB′=5﹣(﹣t)=5+t;(3)如图2,由直线DE的解析式为:y=x+5,∵EH⊥ED,∴直线EH的解析式为:y=﹣x+5,∴FB′=A′E=5﹣(﹣t2﹣t+4)=t2+t+1,∴F(t2+t+1,5+t),∴点H的横坐标为:t2+t+1,y=﹣t2﹣t﹣1+5=﹣t2﹣t+4,∴H(t2+t+1,﹣t2﹣t+4),连接PH交y轴于A′,。
哈尔滨市平房区2016届中考调研数学试题(一)含答案
2016年平房区中考调研测试(一)数学试卷考生须知:1.本试卷满分为120分,考试时间为120分钟。
2.答题前,考生先将自己的“姓名”、“考场”、“座位号”在答题卡上填写清楚,将“条形码” 准确粘贴在条形码区域内。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸上、试题纸上答题无效。
4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、字迹清楚。
5.保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀。
第Ⅰ卷 选择题(共30分)(涂卡)一、选择题(每小题3分,共30分) 1.-2的相反数是( ) A.-21 B.–2 C.21D.22.下列运算中,正确的是( )A.532x x x =⋅B.523)(x x =C.3322=-x x D.222)(2x x =3.下列图形中,既是轴对称图形又是中心对称图形的有( )个A.1B.2C.3D.4 4.函数xy 6-=的图象经过点A ),(11y x ,B ),(22y x 若021<<x x ,则1y 、2y 、0三者的大小关系是( )A. 021<<y yB. 012<<y yC. 021>>y yD. 012>>y y5.如图所示的几何体是由五个大小相同的正方体搭建而成的,它的左视图是( )6.如图,要焊接一个等腰三角形钢架,钢架的底角为35°,高CD 长为3米,则斜梁AC 的长 为( )米.A. 35cos 3B. 35tan 3C.35sin 3 D.35sin 3 7.如图,在△ABC 中,D 为AB 上的一点,过点D 作DE ∥BC 交AC 于点E,过点D 作DF ∥AC 交BC 于点F,则下列结论错误的是( )A.BF DE DB AD =B.ACAE BC DE = C.CF BF CE AE = D.BC BF AC CE =8.某班科技兴趣小组的学生,将自己的作品向本组其他成员各赠送一件,全组共相互赠送作品56件,若全组有x 名同学,则根据题意列出方程是( )A.()2561⨯=-x xB.()5612=+x xC.()561=+x xD.()561=-x x9.如图,折叠矩形纸片ABCD 的一边AD,使点D 落在BC 边上的点F 处,若AB=8,BC=10,则 △CEF 的周长为( )A.12B.16C.18D.2410.小红从劳动基地出发,步行返回学校,小军骑车从学校出发去劳动基地,在基地停留10分钟后,沿原路以原速返回,结果比小红早7分钟回到学校.若两人都是沿着同一路线行进,且两人与学校的距离s(米)和小红从劳动基地出发所用时间t(分)之间的函数关系如图所示,则下列说法中正确的结论有( )个①学校到劳动基地距离是2400米; ②小军出发53分钟后回到学校; ③小红的速度是40米/分;④两人第一次相遇时距离学校1610米.A .1 B.2 C.3 D.4 二、填空题(每小题3分,共30分)11.2310000用科学计数法表示为 . 12.在函数xx y --=21中,自变量x 的取值范围是 . 13.计算:48313- = . 14.把多项式9m 6mn -mn 2+分解因式的结果是 . 15.一个扇形的圆心角为120°,它所对的弧长为6πcm,则这个扇形的面积为 cm 2(结果保留π) 16.不等式组⎩⎨⎧>-+03132-x x 的解集是 .17.一个不透明的袋子内装有2个红球、2个黄球(这些球除颜色外完全相同),从中同时摸出两个球,都是红球的概率是___________. 18.分式方程xx 332=-的解是=x . ≥519.矩形ABCD 中,AD=5,CD=3,在直线BC 上取一点E,使△ADE 是以DE 为底的等腰三角形,过点D 作直线AE 的垂线,垂足为点F,则EF=_____________.20.已知等边△ABC,点E 是AB 上一点,AE=3,点D 在AC 的延长线上,∠ABD+∠BCE=120°,tan ∠D=23,则CD=______________.三、解答题 (其中21 、22题各7分,23、24题各8分,25~27题各10分,共60分) 21.(本题7分)先化简,再求代数式⎪⎭⎫ ⎝⎛--+÷-+a a a a 23221的值,其中602sin tan45+=a22.(本题7分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB 和线段CD,点A 、B 、C 、D 均在小正方形的顶点上.(1)在方格纸中画以AB 为一边的菱形ABEF,点E 、F 在小正方形的顶点上,且菱形ABEF 的面积为3;(2)在方格纸中画以CD 为一边的等腰△CDG,点G 在小正方形的顶点上,连接EG,使∠BEG=90°,并直接写出线段EG 的长.23.(本题8分)某校对九年级的部分同学做一次内容为“最适合自己的考前减压方式”的抽样调查活动,学校将减压方式分为五类,每人必选且只选其中一类.学校收集整理数据后,绘制了如下的统计图.请你结合图中所提供的信息,解答下列问题:(1)一共抽查了多少名学生?(2)请把条形统计图补充完整;(3)若该校九年级共有350名学生,请估计该年级学生选择“听音乐”来缓解压力的人数.24.(本题8分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,过点C作CF∥BE交DE的延长线于F,连接CD.(1)求证:四边形BCFE是菱形;(2)在不添加任何辅助线和字母的情况下,请直接写出图中与△BEC面积相等的所有三角形(不包括△BEC).25.(本题10分)某班同学组织春游活动,到超市选购A、B两种饮料,若购买6瓶A种饮料和4瓶B 种饮料需花费39元,购买20瓶A种饮料和30瓶B种饮料需花费180元.(1)购买A、B两种饮料每瓶各多少元?(2)实际购买时,恰好超市进行促销活动,如果一次性购买A种饮料的数量超过20瓶,则超出部分的价格享受八折优惠,B种饮料价格保持不变.若购买B种饮料的数量是A种饮料数量的2倍还多10瓶,且总费用不超过320元,则最多可购买A种饮料多少瓶?26.(本题10分)已知:AB为⊙O的直径,弦C D⊥AB于点E,F为⊙O上一点,且FB=FD.(1)如图1,点F在弧AC上时,求证:∠BDC=∠DFB;(2)如图2,点F在弧BC上时,过点F作FH∥CD分别交AB、BD于点G、H,求证:BD=2FG;(3)如图3,在(2)的条件下,连接AD、AF,DH:HG=3:5,OG=5,求△ADF的面积.27.(本题10分)已知直线m 21y +=x 与x 轴交于点A,与y 轴交于点C,抛物线3b 21y 2++-=x x 过A 、C 两点,交x 轴另一点B.(1)如图1,求抛物线的解析式; (2)如图2,P 、Q 两点在第二象限的抛物线上,且关于对称轴对称,点F 为线段AP 上一点,2∠PQF+∠PFQ=90°,射线QF 与过点A 且垂直x 轴的直线交于点E,AP=QE,求PQ 长;(3)如图3,在(2)的条件下,点D 在QP 的延长线上,DP:DQ=1:4,点K 为射线AE 上一点连接QK,过点D 作DM ⊥QK 垂足为M,延长DM 交AB 于点N,连接AM,当∠AMN=45°时,过点A 作AR ⊥DN 交抛物线于点R,求R 点坐标.2016年平房区中考调研测试(一)数学答案一、选择题:1—5 DABDC 6---10 DCDAB 二、填空题11. 61031.2⨯ 12. 13. 33- 14.15.27π16.3<x ≤4 17. 61 18. 9 19.1或9 20.29 三、解答题21.解:原式=a -2a -12-a 1a 2÷+=1)-1)(a (a 2-a 2-a 1a +⋅+=1-a 1………………….3分 将602sin tan45a +==312321+=⨯+…………2分 代入原式=331-311=+…………2分 22.每图3分, EG=1分23.(1)40(2分)(2)8人(2分)补图(1分)(3)105(3分)24.(1)证BC=2DE(1分) 证平行四边形(2分) 证邻边相等(1分) (2) △FEC, △AEB,△ADC,△BDC (4分)25.(1)解:设购进A 种饮料每瓶元,购进B 种饮料每瓶元.⎩⎨⎧=+=+18030203946y x y x …………………………3分 解得:⎩⎨⎧==35.4y x ………………………………1分答:购进A 种饮料每瓶元,购进B 种饮料每瓶元. …………………………….1分A(2)解:设购进A 种饮料a 瓶,购进B 种饮料瓶)102(380%20-5.44.520++⨯+⨯a a )(≤320 ………… 3分解得: a ≤3128…………………………….1分 ∵a 取正整数,∴a 最大为28答:最多可购进A 种饮料28瓶. …………………………….1分 26、证明: (1)∵AB 为⊙O 的直径,AB ⊥CD ∴BC⌒ =BD ⌒ ……………………… 1分 ∴∠CDB=∠DFB ………………………1分 (2)连接OF 并延长交BD 于M,连接OD 在△FOD 和△FOB 中 BF=DF,FO=FO,OD=OB ∴△FOD ≌△FOB(SSS)∴∠DFO=∠B FO………………………1分 ∵FD=FB ∴FM ⊥BD∴BM=DM=21BD ………………………1分∵OF=OB ∴∠OFB=∠OBF∵FH ∥CD ∴∠CEG=∠FGB=90°在△FGB 和△FBM 中 ∠FMB=∠BGF, ∠KFB=∠GBF,FB=FB △FGB ≌△FBM(AAS)∴FG=BM∴BD=2FG ………………………1分 (3)∵DH:HG=3:5∴设DH=3m ,GH=5m ∵△FGB ≌△FBM ∴FM=BG在△FHM 和△BHG 中 ∠FHB=∠BHG ,∠BGH=∠FMH,FM=BG △FHM ≌△BHG(AAS)∴HM=GH=5m ,DM=8m,BD=16m,BH=13m …………1分 在Rt △BGH 中,HB=13m ,GH=5m根据勾股定理得:GB=12m 在Rt △FGO 中, FG=8m,OG=5,OF=OB=12m-5 根据勾股定理得:()()22258512m +=-m …………1分解得:01=m (舍),232=m ………………1分 DB=24,DM=12,OF=OB=12m-5=13,AB=26∵AB 为⊙O 的直径,∠ADB=90°在Rt △ADB 中, 由勾股定理得:AD=10……………1分AB∴60DM AD 21=⨯⨯=∆ADF S ……………1分 27、解:∵ 当x =0时,3b 21-y2++=x x y=3 ∴C(0,3) 将点C 代入m 21y +=x 得m=3,当y=0时,x =-6 ∴点A (-6,0)……1分∴将点A (-6,0)代入3b 21-y 2++=x x 可得b=25- ∴抛物线的解析式为325-21-y2+=x x ……………1分(2)延长QP 、AE 交于点H ∵点P 、Q 关于对称轴对称∴QP ∥x 轴AE ⊥x 轴 ∴∠H=90° ∵ 2∠PQF+∠PFQ=90° ∴∠PQF+∠PFQ=90°-∠PQF=∠HEQ =∠HAP+∠EFA ∴∠PQF=∠HAP ……………1分∵QE=AP ∴△HAP ≌△QEH ∴QH=AH 过点Q 作QK ⊥AB 于点G ∴四边形AGQH 是正方形 设点Q 3)t 25-t 21(t,-2+∴QH=t+6 QG=3t 25-t 21-2+t+6=3t 25-t 21-2+解得舍)-6(t -1,t 21== ∴点Q (-1,5)……………1分 ∵点P 、Q 关于x =25-对称∴点P (-4,5) ∴PQ=3…1分 (3) ∵DP:DQ=1:4, ∴DP=1,点D (-5,5)………………1分 HD=1∵DN ⊥QK ∠AMN=45°过点A 作AG ⊥AM 交DN 延长线于点G ,∴AM=AG ∵∠KMN+∠KAN=180° ∴∠MKA+∠MNA=180° ∠ANG+∠MNA=180° ∴∠MKA=∠ANG ∵∠KAN=∠MAG= 90° ∴∠MAK=∠NAG ∴△AKM ≌△ANG ∴AK=AN ………………1分过点D 作DL ⊥AB 于点L ,四边形HALD 是矩形 ∴ HD=AL=1, AH=DL=QH ∠HKQ=∠DNL ∴△HKQ ≌△LND ∴HK=LN 设HK=LN =m则AN=AK=m+1 ∴AH=m+1+m=5 m=2………………1分 ∵∠HQK=∠OAR ∴tan ∠HQK= tan ∠OAR= 52HQHK =………1分设R 3)m 25-m 21(m,-2+ 过点R 作RS ⊥AB 于点S ∴526m 3m 25-m 21-2=++ -6m ,51m 21==(舍)∴R ),(256251………………1分(此处还可写成(0.2,2.48))。
2016年黑龙江省哈尔滨市中考数学(有解析)
2016年黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.﹣6的绝对值是()A.﹣6 B.6 C.D.﹣【解析】﹣6的绝对值是6.故选:B.2.下列运算正确的是()A.a2•a3=a6 B.(a2)3=a5 C.(﹣2a2b)3=﹣8a6b3 D.(2a+1)2=4a2+2a+1【解析】A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】A、是轴对称图形,但不是中心对称图形,故A错误;B、是轴对称图形,也是中心对称图形,故B正确;C、是中心对称图形,但不是轴对称图形,故C错误;D、是轴对称图形,但不是中心对称图形,故D错误.故选:B.4.点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【解析】∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选D.5.五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【解析】从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选:C.6.不等式组的解集是()A.x≥2 B.﹣1<x≤2 C.x≤2 D.﹣1<x≤1【解析】解不等式x+3>2,得:x>﹣1,解不等式1﹣2x≤﹣3,得:x≥2,∴不等式组的解集为:x≥2,故选:A.7.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选C8.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里【解析】由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP==30(海里).故选:D.9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.【解答】解;A、∵DE∥BC,∴,故正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;C、∵DE∥BC,∴,故错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;故选:A.10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2 B.150m2 C.330m2 D.450m2【解析】如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.二、填空题(每小题3分,共计30分)11.将5700 000用科学记数法表示为 5.7×106.【解析】5700 000=5.7×106.故答案为:5.7×106.12.函数y=中,自变量x的取值范围是x≠.【解析】由题意,得2x﹣1≠0,解得x≠,故答案为:x≠.13.计算2﹣的结果是﹣2.【解析】原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.14.把多项式ax2+2a2x+a3分解因式的结果是a(x+a)2.【解析】ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)215.一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为6cm.【解析】设该扇形的半径为R,则=12π,解得R=6.即该扇形的半径为6cm.故答案是:6.16.二次函数y=2(x﹣3)2﹣4的最小值为﹣4.【解析】二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.故答案为:﹣4.17.在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为或.【解析】①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.18.如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为4.【解析】OC交BE于F,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥l,∴BE∥CD,∵CD为切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF,在Rt△ABE中,BE===8,∵OF⊥BE,∴BF=EF=4,∴CD=4.故答案为4.19.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.【解析】列表得,黑1 黑2 白1 白2黑1 黑1黑1 黑1黑2 黑1白1 黑1白2黑2 黑2黑1 黑2黑2 黑2白1 黑2白2白1 白1黑1 白1黑2 白1白1 白1白2白2 白2黑1 白2黑2 白2白1 白2白2∵由表格可知,不放回的摸取2次共有16种等可能结果,其中两次摸出的小球都是白球有4种结果,∴两次摸出的小球都是白球的概率为:=,故答案为:.20.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF 对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为3.【解析】∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,∴2•S△ABC=BC•FG,∴2××(6)2=6•FG,∴FG=3.故答案为3.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.【解】原式=[﹣]•(a+1)=•(a+1)=•(a+1)=•(a+1)=,当a=2sin60°+tan45°=2×+1=+1时,原式==.22.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形A QCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.【解】(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;(2)如图2所示:四边形ABCD即为所求.23.海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?【解】(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.24.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【解】(1)证明:∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)解:①AQ﹣AP=PQ ②AQ﹣BQ=PQ ③DP﹣AP=PQ ④DP﹣BQ=PQ 25.早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【解】(1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)小明家与图书馆之间的路程最多是y米,根据题意可得:,解得:y≤240,答:小明家与图书馆之间的路程最多是240米.26.已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.【解】(1)∵OD⊥BC,∴由垂径定理可知:点H是BC的中点,∵点O是AB的中点,∴OH是△ABC的中位线,∴AC=2OH;(2)∵OD⊥BC,∴由垂径定理可知:,∴∠BAD=∠CAD,∵,∴∠ABC=∠ADC,∴180°﹣∠BA D﹣∠ABC=180°﹣∠CAD﹣∠ADC,∴∠ACD=∠APB,(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴∠ABD+∠BDN=180°﹣∠AND,∴∠AND=180°﹣∠AND,∴∠AND=90°,∵tan∠ABC=,BN=3,∴NQ=,∴由勾股定理可求得:BQ=,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵AI是⊙O直径,∴∠ACI=90°,∵tan∠AIC=tan∠ABC=,∴=,∴IC=10,∴由勾股定理可求得:AI=25,连接OB,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=﹣2x,BH=BQ+QH=+x,由勾股定理可得:OB2=BH2+OH2,∴()2=(+x)2+(﹣2x)2,解得:x=或x=,当QH=时,∴QD=QH=,∴ND=QD+NQ=6,∴MN=3,MD=15∵MD,∴QH=不符合题意,舍去,当QH=时,∴QD=QH=∴ND=NQ+QD=4,由垂径定理可求得:ED=10,∴GD=GN+ND=∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴BR=RG+BG=12∴由垂径定理可知:BF=2BR=24.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.【解】(1)把A(﹣4,0),B(0,4)代入y=ax2+2xa+c得,解得,所以抛物线解析式为y=﹣x2﹣x+4;(2)如图1,分别过P、F向y轴作垂线,垂足分别为A′、B′,过P作PN⊥x轴,垂足为N,由直线DE的解析式为:y=x+5,则E(0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EPA′=90°,∴∠EPA′=∠OEF,∵PE=EF,∠EA′P=∠EB′F=90°,∴△PEA′≌△EFB′,∴PA′=EB′=﹣t,则d=FM=OB′=OE﹣EB′=5﹣(﹣t)=5+;(3)如图2,由直线DE的解析式为:y=x+5,∵EH⊥ED,∴直线EH的解析式为:y=﹣x+5,∴FB′=A′E=5﹣(﹣t2﹣t+4)=t2+t+1,∴F(t2+t+1,5+t),∴点H的横坐标为:t2+t+1,y=﹣t2﹣t﹣1+5=﹣t2﹣t+4,∴H(t2+t+1,﹣t2﹣t+4),∵G是DH的中点,∴G(,),∴G(t2+t﹣2,﹣t2﹣t+2),∴PH∥x轴,∵DG=GH,∴PG=GQ,∴=t2+t﹣2,t=,∵P在第二象限,∴t<0,∴t=﹣,∴F(4﹣,5﹣).。
黑龙江省哈尔滨市平房区九年级中考调研测试(一)数学试卷(内含答案详析)
数 学 试 卷(考试时间共100分钟,满分120分)准考证号:__________ 姓名:________ 座位号:___________{请同学们保持良好的心态,认真审真,认真答题,切不可马虎应付}一、选择题(每小题3分,共30分)1.如果冰箱冷藏室的温度是5℃,冷冻室的温度是-3℃,则冷藏室比冷冻室高( )A.8℃ B.-8℃ C.-2℃ D.2℃2.下列图形中,不是轴对称图形的是( )3.下列运算中,正确的是( )A.2a 6a 2a 3=• B.()532a a = C.426a a -a =D.ab 8b 5a 3=+ 4.如图,是由几个相同的小正方体搭成的一个几何体,它的左视图是( )A B C D5.反比例函数x k -y 2=(k 为常数,k ≠0)的图象位于( )A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限6.如图,飞机在空中B 处探测到它的正下方地面上目标C,此时飞行高度BC=1200米,从飞机上看地面指挥台A 的俯角α的正切值为43则飞机与指挥台之间AB 的距离为( )米A.1200B.1600C.1800D.2000 7.将抛物线y=x 2向左平移2个单位,再向下平移3个单位,得到的抛物线解析式是( )A.()3-2-x y 2=B.()32-x y 2+=C.()3-2x y 2+=D.()32x y 2++=8.如图,在菱形ABCB 中,点E 在AD 边上,EF ∥CD,交对角线BD 于点F,则下列结论中错误的是( )第8题 第9题 第10题A.BF DF AE DE = B.DB DF AD EF = C.BF DF AD EF = D.DB DF CD EF =9.如图,△ABC 为等边三角形,将△ABC 绕点A 逆时针旋转75°,得到△AED,过点E 作EF ⊥AC,垂足为点F,若AC=8,则AF 的长为( )A.4 B.3C.64D.2410.在一次越野赛中,甲选手匀速跑完全程,乙选手1.5小时后速度为每小时10千米,两选手的行程y(千米)随时间x(小时)变化的图像(全程)如图所示,则乙比甲晚到( )小时。
2016年黑龙江省哈尔滨市中考数学试卷-答案
黑龙江省哈尔滨市2016年初中升学考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】根据负数的绝对值是它的相反数,6-的绝对值是6。
【提示】本题主要运用绝对值的定义。
规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
【考点】绝对值2.【答案】C【解析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案。
因为235a a a =,故选项A 错误;236(a )a =,故选项B 错误;22(2a 1)4a 4a 1+=++,故选项D 错误。
【提示】此题主要运用了幂的乘方运算以及合并同类项以及完全平方公式、同底数幂的乘法运算、积的乘方运算等知识,正确掌握相关运算法则是解题关键。
【考点】幂的乘方与积的乘方,同底数幂的乘法,完全平方公式3.【答案】B【解析】依据轴对称图形的定义和中心对称图形的定义回答即可。
选项A 中的图形是轴对称图形,但不是中心对称图形,故A 错误。
选项B 中的图形是轴对称图形,也是中心对称图形,故B 正确。
选项C 中的图形是中心对称图形,但不是轴对称图形,故C 错误。
选项D 中的图形是轴对称图形,但不是中心对称图形,故D 错误。
【提示】本题掌握轴对称图形和中心对称图形的特点是关键。
【考点】中心对称图形,轴对称图形4.【答案】D【解析】由点(2,4)-在反比例函数图象上结合反比例函数图象上点的坐标特征,即可求出k 值,再去验证四个选项中横纵坐标之积是否为k 值。
因为点(2,4)-在反比例函数k y x=的图象上,所以有k 2(4)8=⨯-=-。
选项A 中248⨯=,选项B 中1(8)8-⨯-=,选项C 中2(4)8-⨯-=,选项D 中4(2)8⨯-=-。
所以点(4,2)-在反比例函数k y x =的图象上。
故选D 。
【提示】本题运用了反比例函数图象上点的坐标特征,解题的关键是求出反比例系数k 。
2016年黑龙江省哈尔滨市中考数学试题及参考答案(word解析版)
2016年黑龙江省哈尔滨市中考数学试题及参考答案一、选择题(本大题共10小题,每小题3分,共计30分)1.﹣6的绝对值是()A.﹣6 B.6 C.16D.16-2.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+1 3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.点(2,﹣4)在反比例函数kyx=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)5.五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.6.不等式组32123xx+⎧⎨--⎩>≤的解集是()A.x≥2B.﹣1<x≤2C.x≤2D.﹣1<x≤17.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x8.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A .60海里B .45海里C .D .9.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,BE 与CD 相交于点F ,则下列结论一定正确的是( )A .AD AE AB AC = B .DF AE FC EC = C .AD DE DB BC = D .DF EF BF FC= 10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )A .300m 2B .150m 2C .330m 2D .450m 2二、填空题(本大题共10小题,每小题3分,共计30分)11.将5700 000用科学记数法表示为 .12.函数21x y x =-中,自变量x 的取值范围是 .13.计算的结果是 . 14.把多项式ax 2+2a 2x+a 3分解因式的结果是 .15.一个扇形的圆心角为120°,面积为12πcm 2,则此扇形的半径为 cm .16.二次函数y=2(x ﹣3)2﹣4的最小值为 .17.在等腰直角三角形ABC 中,∠ACB=90°,AC=3,点P 为边BC 的三等分点,连接AP ,则AP 的长为 .18.如图,AB 为⊙O 的直径,直线l 与⊙O 相切于点C ,AD ⊥l ,垂足为D ,AD 交⊙O 于点E ,连接OC 、BE .若AE=6,OA=5,则线段DC 的长为 .19.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为 .20.如图,在菱形ABCD 中,∠BAD=120°,点E 、F 分别在边AB 、BC 上,△BEF 与△GEF 关于直线EF 对称,点B 的对称点是点G ,且点G 在边AD 上.若EG ⊥AC ,AB=,则FG 的长为 .三、解答题(本大题共7小题,共计60分)21.(7分)先化简,再求代数式22231111a a a a -⎛⎫-÷ ⎪+-+⎝⎭的值,其中a=2sin60°+tan45°. 22.(7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上.(1)如图1,点P 在小正方形的顶点上,在图1中作出点P 关于直线AC 的对称点Q ,连接AQ 、QC 、CP 、PA ,并直接写出四边形AQCP 的周长;(2)在图2中画出一个以线段AC 为对角线、面积为6的矩形ABCD ,且点B 和点D 均在小正方形的顶点上.23.(8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?24.(8分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.25.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?26.(10分)已知:△ABC内接于⊙O,D是BC上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=BN=tan∠ABC=12,求BF的长.27.(10分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.参考答案与解析一、选择题(本大题共10小题,每小题3分,共计30分)1.﹣6的绝对值是()A.﹣6 B.6 C.16D.16【知识考点】绝对值.【思路分析】根据负数的绝对值是它的相反数,可得答案.【解答过程】解:﹣6的绝对值是6.故选:B.【总结归纳】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+1【知识考点】幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.【思路分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答过程】解:A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.。
2016年平房区中考调研测试答案(数学)
2016年平房区中考调研测试(一)数学答案一、选择题:1—5 DABDC 6---10 DCDAB 二、填空题11. 61031.2⨯ 12. 13. 33- 14.15.27π16.3<x ≤4 17. 61 18. 9 19.1或9 20.29 三、解答题21.解:原式=a -2a -12-a 1a 2÷+=1)-1)(a (a 2-a 2-a 1a +⋅+=1-a 1………………….3分 将602sin tan45a +==312321+=⨯+…………2分 代入原式=331-311=+…………2分 22.每图3分,EG= 1分23.(1)40(2分)(2)8人(2分)补图(1分)(3)105(3分)24.(1)证BC=2DE(1分) 证平行四边形(2分) 证邻边相等(1分) (2) △FEC, △AEB,△ADC,△BDC (4分)25.(1)解:设购进A 种饮料每瓶元,购进B 种饮料每瓶元.⎩⎨⎧=+=+18030203946y x y x …………………………3分 GDEFBA解得:⎩⎨⎧==35.4y x ………………………………1分答:购进A 种饮料每瓶元,购进B 种饮料每瓶元. …………………………….1分(2)解:设购进A 种饮料a 瓶,购进B 种饮料瓶)102(380%20-5.44.520++⨯+⨯a a )(≤320 ………… 3分解得: a ≤3128…………………………….1分∵a 取正整数,∴a 最大为28答:最多可购进A 种饮料28瓶. …………………………….1分 26、证明: (1)∵AB 为⊙O 的直径,AB ⊥CD ∴BC⌒ =BD ⌒ ……………………… 1分 ∴∠CDB=∠DFB ………………………1分 (2)连接OF 并延长交BD 于M,连接OD 在△FOD 和△FOB 中 BF=DF,FO=FO,OD=OB ∴△FOD ≌△FOB(SSS)∴∠DFO=∠B FO………………………1分 ∵FD=FB ∴FM ⊥BD∴BM=DM=21BD ………………………1分∵OF=OB ∴∠OFB=∠OBF∵FH ∥CD ∴∠CEG=∠FGB=90° 在△FGB 和△FBM 中∠FMB=∠BGF, ∠KFB=∠GBF,FB=FB △FGB ≌△FBM(AAS) ∴FG=BM∴BD=2FG ………………………1分 (3)∵DH:HG=3:5 ∴设DH=3m ,GH=5m∵△FGB ≌△FBM ∴FM=BG 在△FHM 和△BHG 中∠FHB=∠BHG ,∠BGH=∠FMH,FM=BG △FHM ≌△BHG(AAS)HG MF DC BO E F DCBOEMGHF CE O AD∴HM=GH=5m ,DM=8m,BD=16m,BH=13m …………1分 在Rt △BGH 中,HB=13m ,GH=5m根据勾股定理得:GB=12m 在Rt △FGO 中, FG=8m,OG=5,OF=OB=12m-5根据勾股定理得:()()22258512m +=-m …………1分解得:01=m (舍),232=m ………………1分 DB=24,DM=12,OF=OB=12m-5=13,AB=26∵AB 为⊙O 的直径,∠ADB=90°在Rt △ADB 中, 由勾股定理得:AD=10……………1分 ∴60DM AD 21=⨯⨯=∆ADF S ……………1分 27、解:∵ 当x =0时,3b 21-y 2++=x x y=3 ∴C(0,3) 将点C 代入m 21y +=x 得m=3, 当y=0时,x =-6 ∴点A (-6,0)……1分∴将点A (-6,0)代入3b 21-y 2++=x x 可得b=25- ∴抛物线的解析式为325-21-y 2+=x x ……………1分 (2)延长QP 、AE 交于点H ∵点P 、Q 关于对称轴对称∴QP ∥x 轴AE ⊥x 轴 ∴∠H=90° ∵ 2∠PQF+∠PFQ=90° ∴∠PQF+∠PFQ=90°-∠PQF=∠HEQ =∠HAP+∠EFA ∴∠PQF=∠HAP ……………1分∵QE=AP ∴△HAP ≌△QEH ∴QH=AH 过点Q 作QK ⊥AB 于点G ∴四边形AGQH 是正方形 设点Q 3)t 25-t 21(t,-2+∴QH=t+6 QG=3t 25-t 21-2+t+6=3t 25-t 21-2+解得舍)-6(t -1,t 21== ∴点Q (-1,5)……………1分 ∵点P 、Q 关于x =25-对称∴点P (-4,5) ∴PQ=3…1分 (3) ∵DP:DQ=1:4, ∴DP=1,点D (-5,5)………………1分 HD=1∵DN ⊥QK ∠AMN=45°过点A 作AG ⊥AM 交DN 延长线于点G ,∴AM=AG ∵∠KMN+∠KAN=180° ∴∠MKA+∠MNA=180° ∠ANG+∠MNA=180°∴∠MKA=∠ANG ∵∠KAN=∠MAG= 90° ∴∠MAK=∠NAG ∴△AKM ≌△ANG ∴AK=AN ………………1分过点D 作DL ⊥AB 于点L ,四边形HALD 是矩形 ∴ HD=AL=1, AH=DL=QH ∠HKQ=∠DNL ∴△HKQ ≌△LND ∴HK=LN 设HK=LN =m则AN=AK=m+1 ∴AH=m+1+m=5 m=2………………1分 ∵∠HQK=∠OAR ∴tan ∠HQK= tan ∠OAR= 52HQHK =………1分设R 3)m 25-m 21(m,-2+ 过点R 作RS ⊥AB 于点S∴526m 3m 25-m 21-2=++ -6m ,51m 21==(舍) ∴R ),(256251………………1分(此处还可写成(0.2,2.48))。
黑龙江省哈尔滨市平房区2016届中考下学期调研测试综合试题(一)
黑龙江省哈尔滨市平房区2016届九年级下学期中考调研测试(一)综合试题可能用到的相对原子质量:H -1 C -12 O -16 Na -23 Mg -24 Cl -35.5 Ca -40一、选择题(1—27题,每题2分,共54分,每题只有一个正确选项)1. 哈尔滨市被确定为国家地下综合管廊建设试点城市,哈南新区全力组织地下综合管廊建设,下列有关叙述错误的是……………………………………………………( )A .地下综合管廊避免了城市道路出现“拉链式修补”的弊端B .管廊内设置溢水沟,坑壁采用的钢筋混凝土是复合材料C .管廊工程内各类管线均以耐腐蚀的纯铁制成D .建造管廊时对废旧金属进行回收可减少对环境的污染2.下列过程中发生化学变化的是……………………………………………………( )3.下列叙述正确的是…………………………………………………………………( )A .农业和园林浇灌最好采用喷灌和漫灌B .生活中常用蒸馏的方法来降低水的硬度C .贵重设备、精密仪器失火可用水基型灭火器灭火D .发现家中燃气泄漏不能立即打开吸油烟机4.下列实验操作错误的是……………………………………………………………( )5.下列物质的用途正确的是…………………………………………………………( )6.下列实验现象描述正确的是………………………………………………………( )A .检验电解水实验负极产生的气体:产生蓝紫色火焰,放热B .氧化铁与足量稀硫酸反应:红棕色固体逐渐减少至消失,溶液由无色变成黄色 A .用铁合金制造人造骨 B .氧气用于医疗急救C .炉具清洁剂除餐具油污D .石墨净水A .稀释浓硫酸B .液体的量取C .给液体加热D .往试管里送入固体粉末C .加热氢氧化钠溶液与硫酸铜溶液反应后的物质:蓝色固体变成黑色的氧化铜D .向氢氧化镁中加入无色酚酞溶液:无色酚酞溶液变成红色7.下列叙述、对应的化学方程式、所属基本反应类型都正确的是…………………( )A .用磁铁矿炼铁的反应: Fe 2O 3+ 3CO 高温3CO 2 + 2Fe 还原反应B .实验室用高锰酸钾制氧气: 2KMnO 4 △ K 2MnO 2+MnO 2 +O 2↑ 分解反应C .用氢氧化钠溶液吸收三氧化硫: 2NaOH+SO 3 Na 2SO 4 +H 2O 复分解反应D .探究铜和银的活动性: Cu+2AgNO 3 2Ag+ Cu(NO 3)2 置换反应8.人体健康与化学关系密切,下列叙述正确的是…………………………………( )A .玉米霉变产生黄曲霉毒素对人体有害,但蒸煮后可以食用B .用pH 试纸测得血浆的pH 为7.4,此人一定健康C .长期食用添加过量亚硝酸钠的食品有害人体健康D .铁、锌、钙是对人体有益的微量元素9. 维生素C (化学式为C 6H 8O 6)是人体必须的营养物质,能提高免疫力,预防癌症,保护牙龈等。
黑龙江省哈尔滨市中考数学全新体验试卷(一)(含解析)
2016年黑龙江省哈尔滨市中考全新体验数学试卷(一)一、选择题(每题3分,共30分)1.下列各数中是有理数的是()A.πB.C.D.22.下列运算正确的是()A.(a+b)2=a2+b2B.(a﹣b)2=a2﹣b2C.(a2)3=a6D.a3•a3=a93.下列图案中,既是轴对称图形又是中心对称图形的个数为()A.1个B.2个C.3个D.4个4.国家体育场“鸟巢”建筑面积258000平方米,将258000用科学记数法表示应为()A.258×103B.2.58×104C.2.58×105D.0.258×1065.如图,飞机飞行高度为2000m,飞行员看地平面指挥台A的俯角为α,则飞机与指挥台A的距离为(单位:m)()A.B.2000sinαC.2000cosαD.6.若双曲线y=上有一点A的坐标为(﹣2,3),则k的值为()A.﹣3 B.6 C.3 D.﹣67.如图所示的几何体是由5个大小相同的小正方体紧密摆放而成的,其三视图中面积最小的是()A.主视图B.左视图C.俯视图D.左视图和俯视图8.有一篮苹果平均分给几个人,若每人分2个,则还余下2个苹果,若每人分3个,则还少7个苹果,设有x个人分苹果,则可列方程为()A.3x+2=2x+7 B.2x+2=3x+7 C.3x﹣2=2x﹣7 D.2x+2=3x﹣79.如图,在矩形ABCD中,E是AD边的中点,CF⊥BE,垂足为点F,若BF=EF,AE=1,则AB 边的长为()A.1 B.C.D.210.从甲地乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回,途中休息一段时间,小明骑车在平路、上坡、下坡时分别保持匀速前进,上坡的速度比平路上每小时少5km.下坡路的速度比在平路上每小时多5km,设小明出发x(h)后,离开甲地的路面距离为y(km),图中折线OABCDE表示y与x之间的函数关系,则下列说法中正确的个数为()①甲乙两地的路面距离为6.5km;②小明从甲地到乙地共用了0.5h;③小明下坡的速度为20km/h;④小明中途休息了0.175h.A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.函数:中,自变量x的取值范围是______.12.计算: =______.13.分解因式:18﹣2x2=______.14.不等式组的解集是______.15.不透明的袋子中装有2个白球,3个黑球和m个红球,他们除颜色外都相同,若随机从中摸出一个球是黑球的概率为,则m的值为______.16.如图,l1∥l2∥l3,直线a分别交l1、l2、l3于点A、B、C,直线b分别交l1、l2、l3于点D、E、F.若AB:BC=3:2,DF=20,则EF=______.17.已知某扇形的半径为4cm,弧长为πcm,则该扇形的面积为______cm2.18.某商品原来的售价为每件800元,经过连续两次降价后,售价为648元,则平均每次降价的百分率为______.19.在菱形ABCD中,AE为BC边上的高,若AB=5,AE=4,则线段CE的长为______.20.如图,△ABC为等腰三角形,AB=AC,点D为BC边延长线上的一点,E为BC边的中点,EF⊥AD于点F,交AC边于点G,若∠DEF=2∠CAD,FG=3,EG=5,则线段BD的长为______.三、解答题21.先化简,再求代数式:﹣÷的值,其中a=2cos30°﹣3tan45°.22.如图是一个16×6的正方形的网格图,图中已画出了线段AB和线段EG,其端点A、B、E、G均在小正方形的顶点上,请按要求画出图形并计算:(1)画以AB为边的正方形ABCD;(2)画一个以EG为一条对角线的菱形EFGH(点F在点G的左侧),且面积与(1)中正方形的面积相等;(3)在(1)和(2)的条件下,连接CF、DF,请直接写出△CDF的面积.23.为了解2016年初中毕业生毕业后的去向,某县教育局对部分初三学生进行了抽样调查,就初三学生的四种去向(A,读普通高中;B,读职业高中; C,直接进入社会就业; D,其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).请根据图中信息解答下列问题:(1)该县共调查了多少名初中毕业生?(2)通过计算,将两幅统计图中不完整的部分补充完整;(3)若该县2016年初三毕业生共有4500人,请估计该县今年的初三毕业生中准备读普通高中的学生人数.24.在△ABC中,∠ACB=90°,CB边的垂直平分线交BC边于点D,交AB边于点E,点F在DE的延长线上.连接AF、CE.且AF=BE(1)如图1,求证:四边形ACEF是平行四边形;(2)如图2,连接BF,若∠ABC=30°,四边形ACEF的面积为2.求线段BF的长.25.某商厦预测一种应季衬衫能畅销市场,于是用8000元购进了这种衬衫,衬衫面市后,果然供不应求,商厦又用17600元购进了第二批这种衬衫,第二批所购数量是第一批购进数量的2倍,但单价贵了4元.(1)求这两批衬衫的进价分别是多少元?(2)商厦销售这两批衬衫时都是统一售价,这两批衬衫全部售出后,商店获利不少22400元,求售价至少每件多少元?26.如图,在△ABC中,以BC为直径作⊙O,分别交AB、AC边于点D、E,且=.(1)如图1,求证:∠ACB=45°;(2)如图2,过点A作AF⊥BC于点F,交CD弦于点G,求证:AG=2OF;(3)如图3,在(2)的条件下,连接GE、GO、DE,若GE⊥GO,⊙O的半径为,求弦DE 的长.27.如图,在平面直角坐标系中,O为坐标原点,直线y=﹣x+b与x轴交于点B,与y轴交于点C,抛物线y=ax2﹣5ax﹣6a(a<0)经过B、C两点,与x轴交于另一点A.(1)求a,b的值;(2)点P在线段AB上,点Q在线段PC的延长线上,过点Q作y轴的平行线,交直线BC于点F,过点Q作y轴的垂线,垂足为点E,交对称轴左侧的抛物线于点D,设点P的横坐标为t,线段QF的长为d,当d与t之间的函数关系式d=﹣t+4时,求D的坐标.(3)在(2)的条件下,连接CD,将△CQD沿直线CD翻折,得到△CQ′D,求t为何值时,点Q′恰好落在抛物线上,并求出此时点Q′的坐标以及tan∠DCQ的值.2016年黑龙江省哈尔滨市中考全新体验数学试卷(一)参考答案与试题解析一、选择题(每题3分,共30分)1.下列各数中是有理数的是()A.πB.C.D.2【考点】实数.【分析】根据有理数与无理数的定义判断即可.【解答】解:A、π是无理数,此选项错误;B、是无理数,此选项错误;C、是无理数,此选项错误;D、2是正整数,属于有理数,此选项正确;故选:D.2.下列运算正确的是()A.(a+b)2=a2+b2B.(a﹣b)2=a2﹣b2C.(a2)3=a6D.a3•a3=a9【考点】幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.【分析】A:完全平方公式:(a±b)2=a2±2ab+b2,据此判断即可.B:完全平方公式:(a±b)2=a2±2ab+b2,据此判断即可.C:幂的乘方,底数不变,指数相乘.D:同底数幂相乘,底数不变指数相加.【解答】解:∵(a+b)2=a2+2ab+b2,∴选项A不正确;∵(a﹣b)2=a2﹣2ab+b2,∴选项B不正确;∵(a2)3=a6,∴选项C正确;∵a3•a3=a6,∴选项D不正确.故选:C.3.下列图案中,既是轴对称图形又是中心对称图形的个数为()A.1个B.2个C.3个D.4个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形是轴对称图形,也是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形是轴对称图形,也是中心对称图形;第四个图形是轴对称图形,不是中心对称图形.故选B.4.国家体育场“鸟巢”建筑面积258000平方米,将258000用科学记数法表示应为()A.258×103B.2.58×104C.2.58×105D.0.258×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将258000用科学记数法表示为2.58×105.故选C.5.如图,飞机飞行高度为2000m,飞行员看地平面指挥台A的俯角为α,则飞机与指挥台A的距离为(单位:m)()A.B.2000sinαC.2000cosαD.【考点】解直角三角形的应用-仰角俯角问题.【分析】在RT△根据∠A 是正弦函数的定义即可解决问题.【解答】解:由题意,在RT△ABC中,∵∠C=90°,∠A=α,BC=2000m,∴sinα=,∴AB==.故选A.6.若双曲线y=上有一点A的坐标为(﹣2,3),则k的值为()A.﹣3 B.6 C.3 D.﹣6【考点】反比例函数图象上点的坐标特征.【分析】将点A的坐标(﹣2,3)代入双曲线y=,进行计算即可.【解答】解:∵双曲线y=上有一点A的坐标为(﹣2,3),∴k=﹣2×3=﹣6.7.如图所示的几何体是由5个大小相同的小正方体紧密摆放而成的,其三视图中面积最小的是()A.主视图B.左视图C.俯视图D.左视图和俯视图【考点】简单组合体的三视图.【分析】如图可知该几何体的主视图由4个小正方形组成,左视图是由3个小正方形组成,俯视图是由4个小正方形组成,易得解.【解答】解:如图,该几何体主视图是由4个小正方形组成,左视图是由3个小正方形组成,俯视图是由4个小正方形组成,故三种视图面积最小的是左视图.故选B.8.有一篮苹果平均分给几个人,若每人分2个,则还余下2个苹果,若每人分3个,则还少7个苹果,设有x个人分苹果,则可列方程为()A.3x+2=2x+7 B.2x+2=3x+7 C.3x﹣2=2x﹣7 D.2x+2=3x﹣7【考点】由实际问题抽象出一元一次方程.【分析】根据题意,可以列出相应的一元一次方程,从而可以解答本题.【解答】解:由题意可得,2x+2=3x﹣7,故选D.9.如图,在矩形ABCD中,E是AD边的中点,CF⊥BE,垂足为点F,若BF=EF,AE=1,则AB 边的长为()A.1 B.C.D.2【考点】矩形的性质.【分析】直接利用线段垂直平分线的性质得出EC=BC,再利用矩形的性质结合勾股定理得出AB的长.【解答】解:连接EC,∵CF⊥BE,垂足为点F,BF=EF,∴BC=EC,∵E是AD边的中点,AE=1,∴BC=AD=2,∴AB=DC==.故选:C.10.从甲地乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回,途中休息一段时间,小明骑车在平路、上坡、下坡时分别保持匀速前进,上坡的速度比平路上每小时少5km.下坡路的速度比在平路上每小时多5km,设小明出发x(h)后,离开甲地的路面距离为y(km),图中折线OABCDE表示y与x之间的函数关系,则下列说法中正确的个数为()①甲乙两地的路面距离为6.5km;②小明从甲地到乙地共用了0.5h;③小明下坡的速度为20km/h;④小明中途休息了0.175h.A.1个B.2个C.3个D.4个【考点】函数的图象.【分析】.由点B纵坐标可判断①;由平路的路程与时间可得平路的速度,继而可得上坡路的速度,从而求得上坡路的时间,即可判断②;由平路上的速度可得下坡路的速度,可判断③,求得返回时下坡路与平路的时间,用总时间减去往返路上所用时间即可求得休息时间,判断④.【解答】解:由图象可知,从甲地到乙地的路面距离为6.5km,其中平路4.5km、上坡路2km,故①正确;∵小明骑车在平路上的速度为:4.5÷0.3=15(km/h),∴小明骑车在上坡路的速度为:15﹣5=10(km/h),∴小明在AB段上坡的时间为:(6.5﹣4.5)÷10=0.2(h),∴小明从甲地到乙地共用了0.3+0.2=0.5(h),故②正确;∵小明骑车在平路上的速度为15km/h,∴小明骑车在下坡路的速度为:15+5=20(km/h),故③正确;∵BC段下坡的时间为:(6.5﹣4.5)÷20=0.1(h),DE段平路的时间和OA段平路的时间相等为0.3h,∴小明途中休息的时间为:1﹣0.3﹣0.2﹣0.1﹣0.3=0.1(h),故④错误;故选:C.二、填空题(每题3分,共30分)11.函数:中,自变量x的取值范围是x≠﹣1 .【考点】函数自变量的取值范围.【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x+1≠0,解可得答案.【解答】解:根据题意可得x+1≠0;解可得x≠﹣1;故答案为x≠﹣1.12.计算: = .【考点】二次根式的混合运算.【分析】原式第一项利用二次根式的乘法法则化简,将两项化为最简二次公式后,合并同类二次根式即可得到结果.【解答】解:原式=﹣=﹣=×﹣×=3﹣2=.故答案为:.13.分解因式:18﹣2x2= 2(x+3)(3﹣x).【考点】提公因式法与公式法的综合运用.【分析】原式提取2,再利用平方差公式分解即可.【解答】解:原式=2(9﹣x2)=2(x+3)(3﹣x),故答案为:2(x+3)(3﹣x)14.不等式组的解集是2<x≤3 .【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀“大小小大中间找“确定不等式组的解集.【解答】解:解不等式x﹣2≤1,得:x≤3,解不等式1﹣x<﹣1,得:x>2,∴不等式组的解集为:2<x≤3,故答案为:2<x≤3.15.不透明的袋子中装有2个白球,3个黑球和m个红球,他们除颜色外都相同,若随机从中摸出一个球是黑球的概率为,则m的值为 4 .【考点】概率公式.【分析】利用概率公式得到=,然后利用比例性质求出m即可.【解答】解:根据题意得=,解得m=4.故答案为4.16.如图,l1∥l2∥l3,直线a分别交l1、l2、l3于点A、B、C,直线b分别交l1、l2、l3于点D、E、F.若AB:BC=3:2,DF=20,则EF= 8 .【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理列出比例式,代入已知数据计算即可.【解答】解:∵l1∥l2∥l3,∴=,即=,解得,EF=8,故答案为:8.17.已知某扇形的半径为4cm,弧长为πcm,则该扇形的面积为2πcm2.【考点】扇形面积的计算;弧长的计算.【分析】根据扇形的面积=lr进行计算即可.【解答】解:S扇形=lr=×4×π=2πcm2,故答案为:2π.18.某商品原来的售价为每件800元,经过连续两次降价后,售价为648元,则平均每次降价的百分率为10% .【考点】一元二次方程的应用.【分析】设平均每次降价的百分率为x,那么第一次降价后为800(1﹣x),第二次降价后为800(1﹣x)(1﹣x),然后根据每件的价格由原来的800元降为现在的648元即可列出方程,解方程即可.【解答】解:设平均每次降价的百分率为x,依题意得800(1﹣x)2=648,∴(1﹣x)2=,∴1﹣x=±0.9,解得x1=0.1=10%,x2=1.9(舍去).即:平均每次降价的百分率为10%.故答案是:10%.19.在菱形ABCD中,AE为BC边上的高,若AB=5,AE=4,则线段CE的长为2或8 .【考点】菱形的性质.【分析】根据点E在BC边上或在CB的延长线上两种情况考虑,根据勾股定理可算出BE的长度,再根据线段间的关系即可得出CE的长.【解答】解:当点E在CB的延长线上时,如图1所示.∵AB=5,AE=4,∴BE=3,CE=BC+BE=8;当点E在BC边上时,如图2所示.∵AB=5,AE=4,∴BE=3,CE=BC﹣BE=2.综上可知:CE的长是2或8.故答案为:2或8.20.如图,△ABC为等腰三角形,AB=AC,点D为BC边延长线上的一点,E为BC边的中点,EF⊥AD于点F,交AC边于点G,若∠DEF=2∠CAD,FG=3,EG=5,则线段BD的长为.【考点】等腰三角形的性质.【分析】连接AE,由等腰三角形的性质得出AE⊥BC,由已知条件得出∠DEF=∠EAF,∠EAC=∠CAD,由角平分线得出=,设AE=5x,则AF=3x,由射影定理得出AD=x,由勾股定理得出方程,解方程得出x=2,AE=10,AD=,AF=6,由勾股定理得出DE=,由角平分线得出=,求出BE=CE=DE=5,即可求出BD的长.【解答】解:连接AE,如图所示:∵AB=AC,E为BC边的中点,∴AE⊥BC,∵EF⊥AD,∴∠DEF=∠EAF,∵∠DEF=2∠CAD,∴∠EAC=∠CAD,∴=,设AE=5x,则AF=3x,由射影定理得:AE2=AF•AD,∴AD=x,由勾股定理得:EF2=AE2﹣AF2,即(5x)2﹣(3x)2=(5+3)2,解得:x=2,∴AE=10,AD=,AF=6,∴DE==,∵∠EAC=∠CAD,∴==,∴BE=CE=DE=×=5,∴BD=BE+DE=5+=;故答案为:.三、解答题21.先化简,再求代数式:﹣÷的值,其中a=2cos30°﹣3tan45°.【考点】分式的化简求值;特殊角的三角函数值.【分析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,利用特殊角的三角函数值求出a的值,代入计算即可求出值.【解答】解:原式=﹣•=﹣=,当a=2×﹣3=﹣3时,原式=.22.如图是一个16×6的正方形的网格图,图中已画出了线段AB和线段EG,其端点A、B、E、G均在小正方形的顶点上,请按要求画出图形并计算:(1)画以AB为边的正方形ABCD;(2)画一个以EG为一条对角线的菱形EFGH(点F在点G的左侧),且面积与(1)中正方形的面积相等;(3)在(1)和(2)的条件下,连接CF、DF,请直接写出△CDF的面积.【考点】作图—应用与设计作图;菱形的判定与性质.【分析】(1)直接利用正方形的性质得出符合题意的图形;(2)直接利用菱形的性质结合正方形面积得出符合题意的图形;(3)直接利用三角形面积求法得出答案.【解答】解:(1)如图所示:正方形ABCD即为所求;(2)如图所示:菱形EFGH即为所求;(3)△CDF的面积为:×2×2=2.23.为了解2016年初中毕业生毕业后的去向,某县教育局对部分初三学生进行了抽样调查,就初三学生的四种去向(A,读普通高中;B,读职业高中; C,直接进入社会就业; D,其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).请根据图中信息解答下列问题:(1)该县共调查了多少名初中毕业生?(2)通过计算,将两幅统计图中不完整的部分补充完整;(3)若该县2016年初三毕业生共有4500人,请估计该县今年的初三毕业生中准备读普通高中的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据A的人数与所占的百分比列式进行计算即可得解;(2)求出B的人数,再求出C所占的百分比,然后补全统计图即可;(3)用总人数乘以A所占的百分比40%,计算即可得解.【解答】解:(1)40÷40%=100名,则该县共调查了100名初中毕业生;(2)B的人数:100×30%=30名,C所占的百分比为:×100%=25%,补全统计图如图;(3)根据题意得:4500×40%=1800名,答:今年的初三毕业生中准备读普通高中的学生人数是1800.24.在△ABC中,∠ACB=90°,CB边的垂直平分线交BC边于点D,交AB边于点E,点F在DE的延长线上.连接AF、CE.且AF=BE(1)如图1,求证:四边形ACEF是平行四边形;(2)如图2,连接BF,若∠ABC=30°,四边形ACEF的面积为2.求线段BF的长.【考点】平行四边形的判定.【分析】(1)已知AF=EC,只需证明AF∥EC即可.DE垂直平分BC,易知DE是△ABC的中位线,则FE∥AC,BE=EA=CE=AF;因此△AFE、△AEC都是等腰三角形,可得∠F=∠5=∠1=∠2,即∠FAE=∠AEC,由此可证得AF∥EC;(2)利用菱形的判定与性质得出FD,BD的长,进而利用勾股定理求出答案.【解答】(1)证明:如图1,∵DE垂直平分BC,∴D为BC的中点,ED⊥BC,又∵AC⊥BC,∴ED∥AC,∴E为AB中点,∴ED是△ABC的中位线.∴BE=AE,FD∥AC,∴BD=CD,∴Rt△ABC中,CE是斜边AB的中线,∴CE=AE=AF,∴∠F=∠5=∠1=∠2,∴∠FAE=∠AEC,∴AF∥EC,又∵AF=EC,∴四边形ACEF是平行四边形;(2)解:如图2,E作EG⊥AC于点G,∵∠ABC=30°,∠ACB=90°,∴∠BAC=60°,∠ECB=30°,∴∠ACE=60°,∴△AEC是等边三角形,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形,∵四边形ACEF的面积为2,∴△AEC的面积是,设AC=2x,则GC=x,EG=x,故×x×2x=,解得:x=1,故DC=EG=,ED=GC=1,则BD=,故EF+ED=FD=3,BD=,则BF==2.25.某商厦预测一种应季衬衫能畅销市场,于是用8000元购进了这种衬衫,衬衫面市后,果然供不应求,商厦又用17600元购进了第二批这种衬衫,第二批所购数量是第一批购进数量的2倍,但单价贵了4元.(1)求这两批衬衫的进价分别是多少元?(2)商厦销售这两批衬衫时都是统一售价,这两批衬衫全部售出后,商店获利不少22400元,求售价至少每件多少元?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)可设该商家购进的第一批衬衫是x元,则购进第二批这种衬衫是(x+4)元,根据第二批所购数量是第一批购进数量的2倍,列出方程求解即可;(2)设每件衬衫的标价a元,求出利润表达式,然后列不等式解答.【解答】解:(1)设该商家购进的第一批衬衫是x元,则购进第二批这种衬衫是(x+4)元,依题意有,解得x=40,经检验,x=40是原方程的解,且符合题意,40+4=44.答:这两批衬衫的进价分别是40,44元.(2)设每件衬衫的售价a元,依题意有8000÷40=200,200×2=400,200(a﹣40)+400(a﹣44)≥22400解得a≥80.答:每件衬衫的售价至少是80元.26.如图,在△ABC中,以BC为直径作⊙O,分别交AB、AC边于点D、E,且=.(1)如图1,求证:∠ACB=45°;(2)如图2,过点A作AF⊥BC于点F,交CD弦于点G,求证:AG=2OF;(3)如图3,在(2)的条件下,连接GE、GO、DE,若GE⊥GO,⊙O的半径为,求弦DE 的长.【考点】圆的综合题.【分析】(1)如图1中,连接BE,只要证明△BEC是等腰直角三角形即可.(2)如图2中,只要证明△FBA≌△FGC,得FG=BF,根据AG=AF﹣FG=CF﹣BF=OC+OF﹣BF=OB+OF ﹣BF=OF+OF=2OF即可解决问题.(3)如图3中,作EH⊥AF于H,EM⊥CD于M,连接OE,首先证明∠AEG=90°,△EGO、△DEM是等腰直角三角形、求出EM即可解决问题、【解答】(1)证明:如图1中,连接BE.∵BC 是直径,∴∠BEC=90°,∵=,∴∠EBC=∠ECB,∴∠ACB==45°.(2)证明:如图2中,∵∠ACB=45°,AF⊥BC,∴∠AFB=∠AFC=90°,∴∠CAF=45°=∠ACB,∴AF=CF,∵BC为直径,∴∠BDC=90°,∵∠FGC+∠BCD=90°,∴∠B=∠FGC,在△FBA和△FGC中,,∴△FBA≌△FGC,∴FG=BF,∴AG=AF﹣FG=CF﹣BF=OC+OF﹣BF=OB+OF﹣BF=OF+OF=2OF.(3)如图3中,作EH⊥AF于H,EM⊥CD于M,连接OE.∴∠EHA=∠EHG=90°,∵∠BOE=2∠ACB=90°,∠A FC=90°,∴四边形EHFO是矩形,∴EH∥BC,EH=OF,∴∠AEH=∠ACF=45°,∴AH=EH=OF,∵AG=2OF,∴HG=AH=EH,∴∠AEH=∠HEG=45°,∴∠AEG=90°,∵GE⊥GO,∴∠OGE=90°,∴∠FGO=180°﹣45°﹣90°=45°,∴OF=FG=BF,∵⊙O半径为,∴OE=OC=,∴CE=,OG=GE=,∴tan∠DCE=,∴CM=2EM,∴EM=,∵∠EDM=∠EOC=45°,∴DE=EM=2.27.如图,在平面直角坐标系中,O为坐标原点,直线y=﹣x+b与x轴交于点B,与y轴交于点C,抛物线y=ax2﹣5ax﹣6a(a<0)经过B、C两点,与x轴交于另一点A.(1)求a,b的值;(2)点P在线段AB上,点Q在线段PC的延长线上,过点Q作y轴的平行线,交直线BC于点F,过点Q作y轴的垂线,垂足为点E,交对称轴左侧的抛物线于点D,设点P的横坐标为t,线段QF的长为d,当d与t之间的函数关系式d=﹣t+4时,求D的坐标.(3)在(2)的条件下,连接CD,将△CQD沿直线CD翻折,得到△CQ′D,求t为何值时,点Q′恰好落在抛物线上,并求出此时点Q′的坐标以及tan∠DCQ的值.【考点】二次函数综合题.【分析】(1)先求出抛物线与x轴的交点坐标,将点B的坐标代入y=﹣x+b,求出b,从而求出点C的坐标,又将点C坐标代入抛物线解析式中求出a,(2)先确定出直线PC解析式为y=﹣x+4,设点Q(m,﹣+4),得到F(m,﹣m+4),而QF=m﹣=d,进而确定出m=﹣t,得到Q(﹣t,8),D的纵坐标为8,代入抛物线解析式,求出横坐标,即可;(3)依次确定出直线CD解析式为y=2x+4,QQ'的解析式为y=﹣x+8﹣t,设出点Q'的坐标,表示出QQ'的中点坐标代入直线CD解析式中,将Q'的坐标代入抛物线中,联立方程组却出n,t,构造直角三角形求出tan∠HCP即可.【解答】解:(1)∵抛物线y=ax2﹣5ax﹣6a=a(x2﹣5x﹣6)=a(x+1)(x﹣6),∴x1=﹣1,x2=6,对称轴x=,∴A(﹣1,0),B(6,0),∵直线y=﹣x+b与x轴交于点B,∴0=﹣×6+b,∴b=4,∴直线y=﹣x+4,∴C(0,4),∴a×(﹣1)×6=4,∴a=﹣,(2)由(1)有a=﹣,∴抛物线解析式为y=﹣(x+1)(x﹣6),∵B(6,0),C(0,4),∴直线BC解析式为y=﹣x+4,设P(t,0),∵C(0,4),∴直线PC解析式为y=﹣x+4,设点Q(m,﹣+4),∵QF∥y轴.且在直线BC上,∴F(m,﹣m+4),∴d=﹣+4﹣(﹣m+4)=m﹣=﹣t+4,∴m=﹣t,∴Q(﹣t,8),∵DQ⊥y轴,且点D在抛物线上,∴﹣(x+1)(x﹣6)=8,∴x1=2,x2=3>(舍),∴D(2,8),(3)延长DC交x轴于H,过点P作PG⊥AC,由(2)有C(0,4),D(2,8),∴直线CD解析式为y=2x+4,∵△CQD沿直线CD翻折,得到△CQ′D,∴设QQ'的解析式为y=﹣x+b,∵(﹣t,8),∴8=t+b,∴b=8﹣t,∴QQ'的解析式为y=﹣x+8﹣t设点Q'(n,﹣n+8﹣t),∵点Q′恰好落在抛物线上,∴﹣(n+1)(n﹣6)=﹣n+8﹣t①,∵Q'(n,﹣n+8﹣t),Q(﹣t,8),∴QQ'的中点坐标为(,﹣n﹣t+8)∵QQ'的中点坐标在直线直线CD上,∴2×+4=﹣n﹣t+8①联立①②解得,(∵点Q(2,8)和点D重合∴舍)或,∴P(3,0),Q'(5,4),∵直线CD解析式为y=2x+4,∴直线CD与x轴的交点H(﹣2,0),∵C(0,4),∴PH=PC=5,CH==2,∵PG⊥AC,∴CG=CH=,根据勾股定理得,PG===2,∴tan∠DCQ=tan∠HCP===2,。
黑龙江哈尔滨2016中考试题数学卷(解析版)
一、选择题(共8小题,每小题3分,满分24分)1.﹣6的绝对值是( )A .﹣6B .6C .61D .61- 【答案】B.【解析】试题分析:负数的绝对值是它相反数,-6的绝对值是6.故选B.考点:绝对值.2.下列运算正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 5C .(﹣2a 2b )3=﹣8a 6b 3D .(2a+1)2=4a 2+2a+1【答案】C.考点:1幂的运算;2完全平方公式.3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】B【解析】试题分析:根据轴对称图形和中心对称图形的定义可发现只有B 符合要求,故选B. 考点:1中心对称图形;2轴对称图形.4.点(2,﹣4)在反比例函数xk y =的图象上,则下列各点在此函数图象上的是( ) A .(2,4) B .(﹣1,﹣8) C .(﹣2,﹣4) D .(4,﹣2)【答案】D.【解析】试题分析:同一反比例函数图像上点的坐标满足:横纵坐标乘积相等.只有D :4×(-2)=2×(-4).故选D.考点:反比例函数.5.五个大小相同的正方体搭成的几何体如图所示,其主视图是( )A .B .C .D .【答案】C.【解析】试题分析:主视图是从正面看到的图形.故选C.考点:三视图.6.不等式组⎩⎨⎧-≤->+32123x x 的解集是( ) A .x≥2 B .﹣1<x≤2 C .x≤2 D .﹣1<x≤1【答案】A.考点:一元一次不等式组.7.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x【答案】C.【解析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可.故选C. 考点:一元一次方程.8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 处与灯塔P 之间的距离为( )A .60海里B .45海里C .320海里D .330海里【答案】D.考点:1方位角;2直角三角形.9.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE∥BC,BE 与CD 相交于点F ,则下列结论一定正确的是( )A .AC AE AB AD = B .EC AE FC DF = C .BC DE DB AD = D .FCEF BF DF = 【答案】A.【解析】试题分析: ∵DE ∥BC ,∴ACAE AB AD =(平行线分线段成比例).故选A. 考点:平行线分线段成比例.10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )A .300m 2B .150m 2C .330m 2D .450m 2【答案】B.【解析】考点:一次函数.二、填空题(每小题3分,共计30分)11.将5700 000用科学记数法表示为 .【答案】5.7×106.【解析】试题分析:科学记数法的表示形式为a ×10n 的形式.其中1≤|a|<10,n 为整数,∴5700000=5.7×106.考点:科学计数法.12.函数122-=x y 中,自变量x 的取值范围是 . 【答案】21≠x 【解析】 试题分析:122-x 有意义只需满足2x-1≠0,即21≠x . 考点:函数自变量取值范围.13.计算18212-的结果是 . 【答案】22-.【解析】试题分析:2223221218212-=-⨯=- 考点:二次根式化简.14.把多项式ax 2+2a 2x+a 3分解因式的结果是 .【答案】a (x+a )2.考点:因式分解.15.一个扇形的圆心角为120°,面积为12πcm 2,则此扇形的半径为 cm .【答案】6.【解析】 试题分析: 设此扇形的半径为r ,则ππ123601202=⨯r ,解得r=6. 考点:扇形有关计算.16.二次函数y=2(x ﹣3)2﹣4的最小值为 .【答案】-4.【解析】试题分析:二次函数y=2(x ﹣3)2﹣4为顶点式,因此最小值为-4.考点:二次函数极值.17.在等腰直角三角形ABC 中,∠ACB=90°,AC=3,点P 为边BC 的三等分点,连接AP ,则AP 的长为 . 【答案】13或10.【解析】试题分析:①如图1,∵∠ACB=90°,AC=BC=3,∵PB=31BC=1,∴CP=2,∴1322=+=PC AC AP ,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=31BC=1,∴1022=+=PC AC AP ,AP 的长为13或10.考点:1分类思想;2等腰直角三角形.18.如图,AB 为⊙O 的直径,直线l 与⊙O 相切于点C ,AD⊥l,垂足为D ,AD 交⊙O 于点E ,连接OC 、BE .若AE=6,OA=5,则线段DC 的长为 .【答案】4.【解析】考点:1切线;2矩形的性质;3勾股定理.19.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为 . 【答案】41. 【解析】试题分析:列表得:∴P (两次摸出是白球)=41164=. 考点:概率.20.如图,在菱形ABCD 中,∠BAD=120°,点E 、F 分别在边AB 、BC 上,△BEF 与△GEF 关于直线EF 对称,点B 的对称点是点G ,且点G 在边AD 上.若EG⊥AC,AB=26,则FG 的长为 .【答案】63.【解析】考点:1菱形;2等边三角形.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求代数式11132122+÷⎪⎭⎫ ⎝⎛---+a a a a 的值,其中a=2sin60°+tan45°. 【答案】11-a .33. 【解析】试题分析:先化简,再根据特殊角三角函数值求出a 得值,代入求值即可.试题解析:()()()()1113222111321211132122-=-+--=+⋅-++--=+÷⎪⎭⎫ ⎝⎛---+a a a a a a a a a a a a a .当a=2sin60°+tan45°=131232+=+⨯时,原式=331131=-+. 考点:1分式化简求值;2特殊角三角函数.22.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上.(1)如图1,点P 在小正方形的顶点上,在图1中作出点P 关于直线AC 的对称点Q ,连接AQ 、QC 、CP 、PA ,并直接写出四边形AQCP 的周长;(2)在图2中画出一个以线段AC 为对角线、面积为6的矩形ABCD ,且点B 和点D 均在小正方形的顶点上.【答案】(1)作图见解析;104;(2)作图见解析.【解析】考点:1轴对称;2勾股定理.23.23.海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?【答案】(1)60;(2)9,图形见解析;(3)150.【解析】试题解析:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)1501500606=⨯(名)答:该中学最喜爱律师职业的学生有150名. 考点:1条形统计图;2扇形统计图;3样本估计总体.24.已知:如图,在正方形ABCD 中,点E 在边CD 上,AQ⊥BE 于点Q ,DP⊥AQ 于点P .(1)求证:AP=BQ ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.【答案】(1)证明见解析;(2)①AQ ﹣AP=PQ ,②AQ ﹣BQ=PQ ,③DP ﹣AP=PQ ,④DP ﹣BQ=PQ.【解析】考点:(1)正方形;(2)全等三角形的判定与性质.25.. 25.早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【答案】(1)60;(2)240.【解析】试题分析:(1)此题等量关系为:小明步行回家的时间=骑车返回时间+10分钟,根据等量关系列出方程求解即可;(2)此题等量关系为:小明步行时间=自行车时间×2,根据等量关系列出方程求解即可.试题解析:(1)设小明步行的速度是x 米/分,由题意得:103900900+=xx ,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)小明家与图书馆之间的路程最多是y 米,根据题意可得:218090060⨯=y ,解得:y=240,答:小明家与图书馆之间的路程最多是240米.考点:1分式方程的应用;2一元一次方程的应用.26.26.已知:△ABC 内接于⊙O,D 是弧BC 上一点,OD⊥BC,垂足为H .(1)如图1,当圆心O 在AB 边上时,求证:AC=2OH ;(2)如图2,当圆心O 在△ABC 外部时,连接AD 、CD ,AD 与BC 交于点P ,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD ,E 为⊙O 上一点,连接DE 交BC 于点Q 、交AB 于点N ,连接OE ,BF 为⊙O 的弦,BF⊥OE 于点R 交DE 于点G ,若∠ACD﹣∠ABD=2∠BDN,AC=55,BN=53,tan∠ABC=21,求BF 的长.【答案】(1)证明见解析;(2)证明见解析;(3)24.【解析】试题解析:(1)在⊙O 中,∵OD ⊥BC ,∴BH=HC ,∵点O 是AB 的中点,∴AC=2OH ;(2)在⊙O 中,∵OD ⊥BC ,∴弧BD=弧CD ,∴∠PAC=∠BCD ,∵∠APB=∠PAC+∠ACP ,∠ACD=∠ACB+∠BCD ,∴∠ACD=∠APB ;(3)连接AO 延长交于⊙O 于点I ,连接IC ,AB 与OD 相交于点M ,连接OB ,∵∠ACD ﹣∠ABD=2∠BDN ,∴∠ACD ﹣∠BDN=∠ABD+∠BDN ,∵∠ABD+∠BDN=∠AND ,∴∠ACD ﹣∠BDN=∠AND ,∵∠ACD+∠ABD=180°,∴2∠AND=180°,∴∠AND=90°,∵tan ∠ABC=21,∴21=BN NQ ,∴253=NQ ,考点:1圆;2相似三角形;3三角函数;4直角三角形.27.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.【答案】(1)4212+--=x x y ;(2)d=5+t ;(3)F ()65,64--. 【解析】试题解析:(1)由题意得⎩⎨⎧==+-40816c c a a ,解得⎪⎩⎪⎨⎧=-=421c a ,∴抛物线解析式为4212+--=x x y ;(2)分别过P 、F 向y 轴作垂线,垂足分别为A ′、B ′,过P 作PN ⊥x 轴,垂足为N ,当x=0时,y=5,∴E (0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EPA ′=90°,∴∠EPA ′=∠OEF ,∵PE=EF ,∠EA ′P=∠EB ′F=90°,∴△PEA ′≌△EFB ′,∴PA ′=EB ′=﹣t ,∴d=FM=OB ′=OE ﹣EB ′=5﹣(﹣t )=5+t ;(3)如图,由直线DE 的解析式为:y=x+5,∵EH ⊥ED ,∴直线EH 的解析式为:y=﹣x+5, ∴FB ′=A ′E=5﹣(﹣21t 2﹣t+4)=21t 2+t+1,∴F (21t 2+t+1,5+t ),∴点H的横坐标为:21t 2+t+1, y=﹣21t 2﹣t ﹣1+5=﹣21t 2﹣t+4,∴H (21t 2+t+1,﹣21t 2﹣t+4),∵G 是DH 的中点,∴G (2421,2121522+--+++-t t t t ),即G (41t 2+21t ﹣2,﹣41t 2﹣21t+2),∴PH ∥x 轴,∵DG=GH ,∴PG=GQ , ∴22141212-+=+-t t t ,解得t=6±,∵P 在第二象限,∴t <0,∴t=6-,∴F (()65,64--).考点:二次函数综合应用.。
2016哈尔滨中考数学试卷含答案
14.分解因式:a +ab -2a b=.
15.不等式组 的解集是.
16.如图所示,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为米.
17.一个扇形的圆心角为60°,它所对的弧长为2 cm,则这个扇形的半径为cm.
(1)如图1,求证:CF=2EO;
(2)如图2,连接CE,在不添加其它线的条件下,直接写出图中的等腰三角形(等腰直角三角形除外)
25.(本题10分)
电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元、40元.商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.
(1)在图1中,画直角三角形ABC,点C在小正方形的顶点上,且△ABC的面积为5;
(2)在图2中,画△ABE,点E在小正方形的顶点上,△ABE有一个内角为45°,且面积为3.
23.(本题8分)
某学校为了解学生的课外阅读情况,王老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示但不完整的统计图.已知抽查的学生在暑假期间阅读量为2本的人数占抽查总人数的20%,根据所给出信息,解答下列问题:
(3)在(2)的条件下,过B′作B′H⊥PF于H,点Q在OD下方的抛物线上,连接AQ与B′H交于点M,点G在线段AM上,使∠HPN+∠DAQ =135°,延长PG交AD于N.若AN+ B′M= ,求点Q的坐标.
答案
1、D 2、A 3、B 4、D 5、B 6、B 7、C 8、C 9、C 10、C
11、1.25× 12、X≠—413、 14、 15、-1≤X<316、
黑龙江省哈尔滨市 2016年中考数学真题试卷附解析
2016年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(2016·黑龙江哈尔滨)﹣6的绝对值是()A.﹣6 B.6 C.D.﹣【考点】绝对值.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣6的绝对值是6.故选:B.2.(2016·黑龙江哈尔滨)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+1【考点】幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.3.(2016·黑龙江哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是轴对称图形,也是中心对称图形,故B正确;C、是中心对称图形,但不是轴对称图形,故C错误;D、是轴对称图形,但不是中心对称图形,故D错误.故选:B.4.(2016·黑龙江哈尔滨)点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【考点】反比例函数图象上点的坐标特征.【分析】由点(2,﹣4)在反比例函数图象上结合反比例函数图象上点的坐标特征,即可求出k值,再去验证四个选项中横纵坐标之积是否为k值,由此即可得出结论.【解答】解:∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选D.5.(2016·黑龙江哈尔滨)五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选:C.6.(2016·黑龙江哈尔滨)不等式组的解集是()A.x≥2 B.﹣1<x≤2 C.x≤2 D.﹣1<x≤1【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大确定不等式组的解集.【解答】解:解不等式x+3>2,得:x>﹣1,解不等式1﹣2x≤﹣3,得:x≥2,∴不等式组的解集为:x≥2,故选:A.7.(2016·黑龙江哈尔滨)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【考点】由实际问题抽象出一元一次方程.【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选C8.(2016·黑龙江哈尔滨)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里【考点】勾股定理的应用;方向角.【分析】根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.【解答】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP==30(海里)故选:D.9.(2016·黑龙江哈尔滨)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.【考点】相似三角形的判定与性质.【分析】根据平行线分线段成比例定理与相似三角形的对应边成比例,即可求得答案.【解答】解;A、∵DE∥BC,∴,故正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;C、∵DE∥BC,∴,故错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;故选:A.10.(2016·黑龙江哈尔滨)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2【考点】一次函数的应用.【分析】根据待定系数法可求直线AB的解析式,再根据函数上点的坐标特征得出当x=2时,y的值,再根据工作效率=工作总量÷工作时间,列出算式求出该绿化组提高工作效率前每小时完成的绿化面积.【解答】解:如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.二、填空题(每小题3分,共计30分)11.(2016·黑龙江哈尔滨)将5700 000用科学记数法表示为 5.7×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5700 000=5.7×106.故答案为:5.7×106.12.(2016·黑龙江哈尔滨)函数y=中,自变量x的取值范围是x≠.【考点】函数自变量的取值范围.【分析】根据分母不为零是分式有意义的条件,可得答案.【解答】解:由题意,得2x﹣1≠0,解得x≠,故答案为:x≠.13.(2016·黑龙江哈尔滨)计算2﹣的结果是﹣2.【考点】二次根式的加减法.【分析】先将各个二次根式化成最简二次根式,再把同类二次根式进行合并求解即可.【解答】解:原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.14.(2016·黑龙江哈尔滨)把多项式ax2+2a2x+a3分解因式的结果是a(x+a)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式a,然后将二次三项式利用完全平方公式进行分解即可.【解答】解:ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)215.(2016·黑龙江哈尔滨)一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为6cm.【考点】扇形面积的计算.【分析】根据扇形的面积公式S=即可求得半径.【解答】解:设该扇形的半径为R,则=12π,解得R=6.即该扇形的半径为6cm.故答案是:6.16.(2016·黑龙江哈尔滨)二次函数y=2(x﹣3)2﹣4的最小值为﹣4.【考点】二次函数的最值.【分析】题中所给的解析式为顶点式,可直接得到顶点坐标,从而得出解答.【解答】解:二次函数y=2(x ﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.故答案为:﹣4.17.(2016·黑龙江哈尔滨)在等腰直角三角形ABC 中,∠ACB=90°,AC=3,点P 为边BC 的三等分点,连接AP ,则AP 的长为 或 . 【考点】等腰直角三角形.【分析】①如图1根据已知条件得到PB=BC=1,根据勾股定理即可得到结论;②如图2,根据已知条件得到PC=BC=1,根据勾股定理即可得到结论.【解答】解:①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP 的长为或,故答案为:或.18.(2016·黑龙江哈尔滨)如图,AB 为⊙O 的直径,直线l 与⊙O 相切于点C ,AD ⊥l ,垂足为D ,AD 交⊙O 于点E ,连接OC 、BE .若AE=6,OA=5,则线段DC 的长为 4 .【考点】切线的性质.【分析】OC交BE于F,如图,有圆周角定理得到∠AEB=90°,加上AD⊥l,则可判断BE∥CD,再利用切线的性质得OC⊥CD,则OC⊥BE,原式可判断四边形CDEF为矩形,所以CD=EF,接着利用勾股定理计算出BE,然后利用垂径定理得到EF的长,从而得到CD的长.【解答】解:OC交BE于F,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥l,∴BE∥CD,∵CD为切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF,在Rt△ABE中,BE===8,∵OF⊥BE,∴BF=EF=4,∴CD=4.故答案为4.19.(2016·黑龙江哈尔滨)一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.14种结果,∴两次摸出的小球都是白球的概率为:=,故答案为:.20.(2016·黑龙江哈尔滨)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF 与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为3.【考点】菱形的性质.【分析】首先证明△ABC,△ADC都是等边三角形,再证明FG是菱形的高,根据2•S△ABC=BC•FG即可解决问题.【解答】解:∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,∴2•S△ABC=BC•FG,∴2××(6)2=6•FG,∴FG=3.故答案为3.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(2016·黑龙江哈尔滨)先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.【考点】分式的化简求值;特殊角的三角函数值.【分析】先算括号里面的,再算除法,最后把a的值代入进行计算即可.【解答】解:原式=[﹣]•(a+1)=•(a+1)=•(a+1)=•(a+1)=,当a=2sin60°+tan45°=2×+1=+1时,原式==.22.(2016·黑龙江哈尔滨)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形A QCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.【考点】作图-轴对称变换.【分析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合矩形的性质以及勾股定理得出答案.【解答】解:(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;(2)如图2所示:四边形ABCD即为所求.23.(2016·黑龙江哈尔滨)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用条形图中演员的数量结合扇形图中演员的百分比可以求出总调查学生数;(2)用总调查数减去其他几个职业类别就可以得到最喜爱教师职业的人数;(3)利用调查学生中最喜爱律师职业的学生百分比可求出该中学中的相应人数.【解答】解:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.24.(2016·黑龙江哈尔滨)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ 于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)根据正方形的性质得出AD=B A,∠BAQ=∠ADP,再根据已知条件得到∠AQB=∠DPA,判定△AQB≌△DPA并得出结论;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等进行判断分析.【解答】解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ25.(2016·黑龙江哈尔滨)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设小明步行的速度是x米/分,根据题意可得等量关系:小明步行回家的时间=骑车返回时间+10分钟,根据等量关系列出方程即可;(2)根据(1)中计算的速度列出不等式解答即可.【解答】解:(1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)小明家与图书馆之间的路程最多是y米,根据题意可得:,解得:y≤240,答:小明家与图书馆之间的路程最多是240米.26.(2016·黑龙江哈尔滨)已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.【考点】圆的综合题.【分析】(1)OD⊥BC可知点H是BC的中点,又中位线的性质可得AC=2OH;(2)由垂径定理可知:,所以∠BAD=∠CAD,由因为∠ABC=∠ADC,所以∠ACD=∠APB;(3)由∠ACD﹣∠ABD=2∠BDN可知∠AND=90°,由tan∠ABC=可知NQ和BQ的长度,再由BF⊥OE和OD⊥BC可知∠GBN=∠ABC,所以BG=BQ,连接AO并延长交⊙O于点I,连接IC后利用圆周角定理可求得IC和AI的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED=即可求得RG的长度,最后由垂径定理可求得BF的长度.【解答】解:(1)∵OD⊥BC,∴由垂径定理可知:点H是BC的中点,∵点O是AB的中点,∴OH是△ABC的中位线,∴AC=2OH;(2)∵OD⊥BC,∴由垂径定理可知:,∴∠BAD=∠CAD,∵,∴∠ABC=∠ADC,∴180°﹣∠BA D﹣∠ABC=180°﹣∠CAD﹣∠ADC,∴∠ACD=∠APB,(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴∠ABD+∠BDN=180°﹣∠AND,∴∠AND=180°﹣∠AND,∴∠AND=90°,∵tan∠ABC=,BN=3,∴NQ=,∴由勾股定理可求得:BQ=,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵AI是⊙O直径,∴∠ACI=90°,∵tan∠AIC=tan∠ABC=,∴=,∴IC=10,∴由勾股定理可求得:AI=25,连接OB,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=﹣2x,BH=BQ+QH=+x,由勾股定理可得:OB2=BH2+OH2,∴()2=(+x)2+(﹣2x)2,解得:x=或x=,当QH=时,∴QD=QH=,∴ND=QD+NQ=6,∴MN=3,MD=15∵MD,∴QH=不符合题意,舍去,当QH=时,∴QD=QH=∴ND=NQ+QD=4,由垂径定理可求得:ED=10,∴GD=GN+ND=∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴BR=RG+BG=12∴由垂径定理可知:BF=2BR=24.27.(2016·黑龙江哈尔滨)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.【考点】二次函数综合题.【分析】(1)利用待定系数法求二次函数的解析式;(2)如图1,作辅助线构建两个直角三角形,利用斜边PE=EF和两角相等证两直角三角形全等,得PA′=EB′,则d=FM=OE﹣EB′代入列式可得结论,但要注意PA′=﹣t;(3)如图2,根据直线EH的解析式表示出点F的坐标和H的坐标,发现点P和点H的纵坐标相等,则PH与x轴平行,根据平行线截线段成比例定理可得G也是PQ的中点,由此表示出点G的坐标并列式,求出t的值并取舍,计算出点F的坐标.【解答】解:(1)把A(﹣4,0),B(0,4)代入y=ax2+2xa+c得,解得,所以抛物线解析式为y=﹣x2﹣x+4;(2)如图1,分别过P、F向y轴作垂线,垂足分别为A′、B′,过P作PN⊥x轴,垂足为N,由直线DE的解析式为:y=x+5,则E(0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EPA′=90°,∴∠EPA′=∠OEF,∵PE=EF,∠EA′P=∠EB′F=90°,∴△PEA′≌△EFB′,∴PA′=EB′=﹣t,则d=FM=OB′=OE﹣EB′=5﹣(﹣t)=5+;(3)如图2,由直线DE的解析式为:y=x+5,∵EH⊥ED,∴直线EH的解析式为:y=﹣x+5,∴FB′=A′E=5﹣(﹣t2﹣t+4)=t2+t+1,∴F(t2+t+1,5+t),∴点H的横坐标为:t2+t+1,y=﹣t2﹣t﹣1+5=﹣t2﹣t+4,∴H(t2+t+1,﹣t2﹣t+4),∵G是DH的中点,∴G(,),∴G(t2+t﹣2,﹣t2﹣t+2),∴PH∥x轴,∵DG=GH,∴PG=GQ,∴=t2+t﹣2,t=,∵P在第二象限,∴t<0,∴t=﹣,∴F(4﹣,5﹣).2016年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(2016·广西南宁)﹣2的相反数是()A.﹣2 B.0 C.2 D.4【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(2016·广西南宁)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.(2016·广西南宁)据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将332000用科学记数法表示为:3.32×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2016·广西南宁)已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.B.3 C.﹣D.﹣3【考点】一次函数图象上点的坐标特征.【分析】本题较为简单,把坐标代入解析式即可求出m的值.【解答】解:把点(1,m)代入y=3x,可得:m=3,故选B【点评】此题考查一次函数的问题,利用待定系数法直接代入求出未知系数m,比较简单.5.(2016·广西南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【考点】加权平均数.【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.6.(2016·广西南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD (D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD 的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.7.(2016·广西南宁)下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.故选C.【点评】本题考查了幂的乘方与积的乘方、合并同类项、同底数幂的乘法的知识,解答本题的关键在于掌握各知识点的运算法则.8.(2016·广西南宁)下列各曲线中表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.9.(2016·广西南宁)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.(2016·广西南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【考点】由实际问题抽象出一元一次方程.【分析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.11.(2016·广西南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【考点】正方形的性质.【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S,正方形ABCD∴S1=x2,∵=,∴=,∴S2=S,正方形ABCD∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.12.(2016·广西南宁)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0.故选C.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(2016·广西南宁)若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.14.(2016·广西南宁)如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=50°.【考点】平行线的性质.【分析】根据两直线平行,同位角相等可得∠1=∠A.【解答】解:∵AB∥CD,∴∠A=∠1,∵∠1=50°,∴∠A=50°,故答案为50°.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.15.(2016·广西南宁)分解因式:a2﹣9=(a+3)(a﹣3).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.16.(2016·广西南宁)如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为2.【考点】反比例函数系数k的几何意义.【分析】过D作DE⊥OA于E,设D(m,),于是得到OA=2m,OC=,根据矩形的面积列方程即可得到结论.【解答】解:过D作DE⊥OA于E,设D(m,),∴OE=m.DE=,∵点D是矩形OABC的对角线AC的中点,∴OA=2m,OC=,∵矩形OABC的面积为8,∴OA•OC=2m•=8,∴k=2,故答案为:2.【点评】本题考查了反比例函数系数k的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.18.(2016·广西南宁)观察下列等式:在上述数字宝塔中,从上往下数,2016在第44层.【考点】规律型:数字的变化类.【分析】先按图示规律计算出每一层的第一个数和最后一个数;发现第一个数分别是每一层层数的平方,那么只要知道2016介于哪两个数的平方即可,通过计算可知:442<2016<452,则2016在第44层.【解答】解:第一层:第一个数为12=1,最后一个数为22﹣1=3,第二层:第一个数为22=4,最后一个数为23﹣1=8,第三层:第一个数为32=9,最后一个数为24﹣1=15,∵442=1936,452=2025,又∵1936<2016<2025,∴在上述数字宝塔中,从上往下数,2016在第44层,故答案为:44【点评】本题考查了数学变化类的规律题,这类题的解题思路是:①从第一个数起,认真观察、仔细思考,能不能用平方或奇偶或加、减、乘、除等规律来表示;②利用方程来解决问题,先设一个未知数,找到符合条件的方程即可;本题以每一行的第一个数为突破口,找出其规律,得出结论.三、解答题(本大题共8小题,共66分)19.(2016·广西南宁)计算:|﹣2|+4cos30°﹣()﹣3+.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质、二次根式的性质化简,进而求出答案.【解答】解:原式=2+4×﹣8+2=4﹣6.【点评】此题主要考查了实数运算,正确利用负整数指数幂的性质化简是解题关键.。
2016年黑龙江省哈尔滨市中考数学试卷有答案
数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前黑龙江省哈尔滨市2016年初中升学考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.6-的绝对值是( )A .6-B .6C .16D .16- 2.下列运算正确的是( )A .236•a a a =B .235()a a =C .2363(2)8a b a b=--D .22(21)421a a a +=++3.下列图形中既是轴对称图形又是中心对称图形的是( )ABCD4.点(2,4)-在反比例函数ky x=的图象上,则下列各点在此函数图象上的是 ( )A .(2,4)B .(1,8)--C .(2,4)--D .(4,2)-5.五个大小相同的正方体搭成的几何体如图所示,其主视图是( )ABCD 6.不等式组32,123x x +⎧⎨--⎩>≤的解集是( )A .2x ≥B .12x -<≤C .2x ≤D .11x -<≤7.某车间有26名工人,每人每天可以生产800个螺钉或1 000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,设安排x 名工人生产螺钉,则下面所列方程正确的是( ) A .21000(26)800x x ⨯-= B .1000(13)800x x -= C .1000(26)2800x x -=⨯D .1000(26)800x x -=8.如图,一艘轮船位于灯塔P 的北偏东60方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30方向上的B 处,则此时轮船所在位置B 处与灯塔P 之间的距离为 ( ) A .60海里 B .45海里 C.D.9.如图,在ABC △中,D ,E 分别为AB ,AC 边上的点,DE BC ∥,BE 与CD 相交于点F ,则下列结论一定正确的是( ) A .AD AE AB AC = B .DF AE FC EC =C .AD DE DB BC = D .DF EF BF FC = 10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:2m )与工作时间t (单位:h )之间的函数关系如图示.则该绿化组提高工作效率前每小时完成的绿化面积是 ( )A .2300mB .2150mC .2330mD .2450m第Ⅱ卷(非选择题 共90分)二、填空题(本大题共10小题,每小题3分,共30分.请把答案填在题中的横线上) 11.将5 700 000用科学记数法表示为 .12.函数1xyx =-中,自变量x 的取值范围是 . 13.计算的结果是 .14.把多项式2232ax a x a ++分解因式的结果是 .15.一个扇形的圆心角为120,面积为212πcm ,则此扇形的半径为cm .16.二次函数22(3)4y x =--的最小值为 .17.在等腰直角三角形ABC 中,90ACB ∠=,3AC=,点P 为边BC 的三等分点,连接AP ,则AP 的长为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)18.如图,AB 为O 的直径,直线l 与O 相切于点C ,AD l ⊥,垂足为D ,AD 交O 于点E ,连接OC ,BE .若6AE =,5OA =,则线段DC 的长为 .19.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为 .20.如图,在菱形ABCD 中,120BAD ∠=,点E ,F 分别在边AB ,BC 上,BEF △与GEF △关于直线EF 对称,点B 的对称点是点G ,且点G 在边AD 上.若EG AC ⊥,AB =,则FG 的长为 .三、解答题(本大题共7小题,共60分.解答应写出必要的文字说明、证明过程或演算步骤)21.(本小题满分7分)先化简,再求代数式22231()111a a a a --÷+-+的值,其中2sin60tan 45a =+.22.(本小题满分7分)图1,图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上.(1)如图1,点P 在小正方形的顶点上,在图1中作出点P 关于直线AC 的对称点Q ,连接AQ ,QC ,CP ,PA ,并直接写出四边形AQCP 的周长;(2)在图2中画出一个以线段AC 为对角线、面积为6的矩形ABCD ,且点B 和点D 均在小正方形的顶点上.23.(本小题满分8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图.请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有 1 500名学生,请你估计该中学最喜爱律师职业的学生有多少名?24.(本小题满分8分)已知:如图,在正方形ABCD 中,点E 在边CD 上,AQ BE ⊥于点Q ,DP AQ ⊥于点P .(1)求证:AP BQ =;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.数学试卷 第5页(共20页) 数学试卷 第6页(共20页)25.(本小题满分10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?26.(本小题满分10分)已知:ABC △内接于O ,D 是BC 上一点,OD BC ⊥,垂足为H .(1)如图1,当圆心O 在AB 边上时,求证:2AC OH =;(2)如图2,当圆心O 在ABC △外部时,连接AD ,CD ,AD 与BC 交于点P .求证:ACD APB ∠=∠;(3)在(2)的条件下,如图3,连接BD ,E 为O 上一点,连接DE 交BC 于点Q 、交AB 于点N ,连接OE ,BF 为O 的弦,BF OE ⊥于点R 交DE 于点G ,若2ACD ABD BDN ∠-∠=∠,AC =,BN =,1an 2t ABC ∠=,求BF 的长.27.(本小题满分10分)如图,在平面直角坐标系中,O 为坐标原点,抛物线22y ax xa c =++经过0()4,A -,()0,4B 两点,与x 轴交于另一点C ,直线5y x =+与x 轴交于点D ,与y 轴交于点E .(1)求抛物线的解析式;(2)点P 是第二象限抛物线上的一个动点,连接EP ,过点E 作EP 的垂线l ,在l 上截取线段EF ,使EF EP =,且点F 在第一象限,过点F 作FM x ⊥轴于点M ,设点P 的横坐标为t ,线段FM 的长度为d ,求d 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点E 作EH ED ⊥交MF 的延长线于点H ,连接DH ,点G 为DH 的中点,当直线PG 经过AC 的中点Q 时,求点F 的坐标.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共20页) 数学试卷 第8页(共20页)黑龙江省哈尔滨市2016年初中升学考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】根据负数的绝对值是它的相反数,6-的绝对值是6。
2016年黑龙江省哈尔滨市中考数学试卷含答案
2016年黑龙江省哈尔滨市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.-6的绝对值是( )A .-6B .6C .61D .-61 2.下列运算正确的是( )A .a 2 • a 3=a 6B .(a 2)3=a 5C .(-2a 2b )3 = -8a 6b 3D .(2a +1)2=4a 2+2a +13.下列图形既是轴对称图形,又是中心对称图形的是( )A B C D4.若点(2,-4)在反比例函数y =xk 的图像上,则下列各点在此函数图像上的是( ) A .(2,4) B .(-1,-8) C .(-2,-4) D .(4,-2)5.五个大小相同的正方体搭成的几何体如图,其主视图是( )(第5题图)A B C D6.不等式组⎩⎨⎧-≤->+32123x x ,的解集是( ) A .x ≥2 B .-1<x ≤2 C .x ≤2 D .-1<x ≤17.某车间有26名工人,每人每天可以生产800个螺钉或1 000个螺母,1个螺钉需要配 2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1 000(26-x )=800xB .1 000(13-x )=800xC .1 000(26-x )=2×800xD .1 000(26-x )=800x8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 处与灯塔P 之间的距离为( )(第8题图)A .60海里B .45海里C .203海里D .303海里9.如图,在△ABC 中,D ,E 分别为AB ,AC 边上的点,DE ∥BC ,BE 与CD 相交于点F ,则下列结论一定正确的是( )(第9题图)A .AB AD =AC AE B .FC DF =EC AE C .DB AD =BC DE D .BF DF =FCEF 10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图,则该绿化组提高工作效率前每小时完成的绿化面积是( )(第10题图)A .300 m 2B .150 m 2C .330 m 2D .450 m 2二、填空题(本题共10小题,每小题3分,共30分)11.将5 700 000用科学记数法表示为 .12.在函数y =12 x x 中,自变量x 的取值范围是 . 13.计算221-18的结果是 . 14.把多项式ax 2+2a 2x +a 3分解因式的结果是 .15.若一个扇形的圆心角为120°,面积为12π cm 2,则此扇形的半径为 cm .16.二次函数y =2(x -3)2-4的最小值为 .17.在等腰直角三角形ABC 中,∠ACB =90°,AC =3,点P 为边BC 的三等分点,连接AP ,则AP 的长为 .18.如图,AB 为⊙O 的直径,直线l 与⊙O 相切于点C ,AD ⊥l ,垂足为D ,AD 交⊙O 于点E ,连接OC ,BE .若AE =6,OA =5,则线段DC 的长为 .(第18题图) 19.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为 .20.如图,在菱形ABCD 中,∠BAD =120°,点E ,F 分别在边AB ,BC 上,△BEF 与△GEF 关于直线EF 对称,点B 的对称点是点G ,且点G 在边AD 上.若EG ⊥AC ,AB =62,则FG 的长为 .(第20题图)三、解答题(本题共7小题,共60分)21.(7分)先化简,再求代数式(12+a -1322--a a )÷11+a 的值,其中a =2sin 60°+tan 45°. 22.(7分)图①、图②是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上.(1)如图①,点P 在小正方形的顶点上,在图①中作出点P 关于直线AC 的对称点Q ,连接AQ ,QC ,CP ,P A ,并直接写出四边形AQCP 的周长;(2)在图②中画出一个以线段AC 为对角线、面积为6的矩形ABCD ,且点B 和点D 均在小正方形的顶点上.① ②(第22题图) 23.(8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图.(3)若海静中学共有1 500名学生,请你估计该中学最喜爱律师职业的学生有多少名.(第23题图)24.(8分)如图,在正方形ABCD 中,点E 在边CD 上,AQ ⊥BE 于点Q ,DP ⊥AQ 于点P .(1)求证:AP =BQ .(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.(第24题图) 25.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行的速度(单位:米/分)是多少.(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?26.(10分)已知:△ABC 内接于⊙O ,D 是BC 上一点,OD ⊥BC ,垂足为H .(1)如图①,当圆心O 在AB 边上时,求证:AC =2OH .(2)如图②,当圆心O 在△ABC 外部时,连接AD ,CD ,AD 与BC 交于点P ,求证:∠ACD =∠APB .(3)在(2)的条件下,如图③,连接BD ,E 为⊙O 上一点,连接DE 交BC 于点Q 交AB 于点N ,连接OE ,BF 为⊙O 的弦,BF ⊥OE 于点R 交DE 于点G ,若∠ACD - ∠ABD =2∠BDN ,AC =55,BN =35,tan ∠ABC =21,求BF 的长.①②③(第26题图)27.(10分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(-4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的表达式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH 的中点,当直线PG经过AC的中点Q时,求点F的坐标.(第27题图)参考答案一、1.B 【分析】-6的绝对值是6.故选B.2.C 【分析】A.a2 •a3=a5,故错误;B.(a2)3 = a6,故错误;C.(-2a2b)3 = -8a6b3,故正确;D.(2a+1)2=4a2+4a+1,故错误.故选C.3.D 【分析】A.是轴对称图形,但不是中心对称图形,故不符合题意;B.是中心对称图形,不是轴对称图形,故不符合题意;C.是轴对称图形,不是中心对称图形,故不符合题意;D .既是轴对称图形,又是中心对称图形,故符合题意.故选D .4.D 【分析】∵点(2,-4)在反比例函数y =xk 的图像上,∴k =2×(-4)=-8.∵2×4=8,-1×(-8)=8,-2×(-4)=8,4×(-2)=-8,∴点(4,-2)在反比例函数y =x k 的图像上.故选D .5.C 【分析】从正面看第一层是三个小正方形,第二层左边是两个小正方形.故选C .6.A 【分析】解不等式x +3>2,得x >-1.解不等式1-2x ≤-3,得x ≥2.∴不等式组的解集是x ≥2.故选A .7.C 【分析】设安排x 名工人生产螺钉,则(26-x )名工人生产螺母.由题意,得1 000(26-x )=2×800x .故选C .8.D 【分析】由题意,得∠B =30°,AP =30海里,∠APB =90°,故AB =2AP =60(海里). 则此时轮船所在位置B 处与灯塔P 之间的距离为BP =AP AB -22=303(海里).故选D .9.A 【分析】A .∵DE ∥BC ,∴AB AD =AC AE ,故正确;B .∵DE ∥BC ,∴△DEF ∽△CBF ,∴FC DF =FB EF ,故错误;C .∵DE ∥BC ,∴AB AD =BCDE ,故错误;D .∵DE ∥BC ,∴△DEF ∽ △CBF ,∴FC DF =BFEF ,故错误.故选A . 10.B 【分析】设直线AB 的表达式为y =kx +b ,则⎩⎨⎧=+=+,,1650512004b k b k 解得⎩⎨⎧-==.600450b k ,故直线AB 的表达式为y =450x -600.当x =2时,y =450×2-600=300,300÷2=150(m 2).故该绿化组提高工作效率前每小时完成的绿化面积是150 m 2.故选B .二、11. 5.7×10612.x ≠21 【分析】由题意,得2x -1≠0,解得x ≠21. 13.-22 【分析】原式=2×22-32=2-32= -22. 14.a (x +a )2 【分析】ax 2+2a 2x +a 3=a (x 2+2ax +a 2)=a (x +a )2.15. 6 【分析】设该扇形的半径为R ,则360π1202R ⨯=12π,解得R =6.即此扇形的半径为 6 cm .16.-4 【分析】二次函数y =2(x -3)2-4的开口向上,顶点坐标为(3,-4),所以最小值为-4.17.13或10 【分析】如答图①,由题意知,∠ACB =90°,AC =BC =3.∵PB =31BC =1,∴CP =2,∴AP =PC AC +22=13.如答图②,由题意知,∠ACB =90°,AC =BC =3.∵PC = 31BC =1,∴AP =PC AC +22=10.① ②(第17题答图) 18. 4 【分析】如答图,OC 交BE 于点F .∵AB 为⊙O 的直径,∴∠AEB =90°.∵AD ⊥l , ∴BE ∥CD .∵CD 为⊙O 的切线,∴OC ⊥CD ,∴OC ⊥BE ,∴四边形CDEF 为矩形,∴CD =EF . 在Rt △ABE 中,BE =AE AB -22=61022-=8.∵OF ⊥BE ,∴BF =EF =4,∴CD =4.(第18题答图)19.41 【分析】列表如下:黑1 黑2白1 白2 黑1 黑1黑1 黑1黑2黑1白1 黑1白2 黑2 黑2黑1 黑2黑2黑2白1 黑2白2 白1 白1黑1 白1黑2白1白1 白1白2 白2 白2黑1 白2黑2 白2白1白2白2 ∵由表格可知,放回地摸取两次共有16种等可能的结果,其中两次摸出的小球都是白球的结果有4种,∴两次摸出的小球都是白球的概率为164=41. 20.36 【分析】∵四边形ABCD 是菱形,∠BAD =120°,∴AB =BC =CD =AD ,∠CAB =∠CAD =60°,∴△ABC ,△ACD 是等边三角形.∵EG ⊥AC ,∴∠AEG =∠AGE =30°. ∵∠B =∠EGF =60°,∴∠AGF =90°,∴FG ⊥BC ,∴2S △ABC =BC • FG ,即2×43×(62)2=62FG ,解得FG =36.三、21.解:原式=[12+a -)1)(1(32-+-a a a ] •(a +1)=)1)(1(32)1(2-++--a a a a •(a +1)=)1)(1(3222-++--a a a a •(a +1)=)1)(1(1-+a a •(a +1)=11-a . 当a =2sin 60°+tan 45°=2×23+1=3+1时,原式=1131-+=33. 22.解:(1)如答图①,四边形AQCP 即为所求,它的周长为4×10=410.(2)如答图②,四边形ABCD 即为所求.① ②(第22题答图) 23.解:(1)共调查了12÷20%=60(名)学生.(2)最喜爱教师职业的人数为60-12-9-6-24=9.补全条形统计图如答图.(第23题答图)(3)606×1 500=150(名). 答:估计该中学最喜爱律师职业的学生有150名.24.(1)证明:∵四边形ABCD 是正方形,∴AD =BA ,∠BAD =90°,即∠BAQ +∠DAP =90°.∵DP ⊥AQ ,∴∠ADP +∠DAP =90°,∴∠BAQ =∠ADP .∵AQ ⊥BE 于点Q ,DP ⊥AQ 于点P ,∴∠AQB =∠DP A =90°,∴△AQB ≌△DP A (AAS ),∴AP =BQ .(2)解:①AQ -AP =PQ ,②AQ -BQ =PQ ,③DP -AP =PQ ,④DP -BQ =PQ .25.解:(1)设小明步行的速度是x 米/分. 由题意,得103900900+=xx , 解得x =60.经检验,x =60是原分式方程的解.答:小明步行的速度是60米/分.(2)设小明家与图书馆之间的路程是y 米. 根据题意,得900260180y ≤⨯, 解得y ≤600.答:小明家与图书馆之间的路程最多是600米.26.(1)证明:∵OD ⊥BC ,∴由垂径定理可知,点H 是BC 的中点.∵点O 是AB 的中点,∴OH 是△ABC 的中位线,∴AC =2OH .(2)证明:∵OD ⊥BC ,∴由垂径定理可知,BD CD =.∴∠BAD =∠CAD .∵AC AC =,∴∠ABC =∠ADC ,∴180°-∠BAD -∠ABC =180°-∠CAD -∠ADC ,即∠ACD =∠APB .(3)解:如答图,连接AO 延长交⊙O 于点I ,连接IC ,AB 与OD 相交于点M . ∵∠ACD -∠ABD =2∠BDN ,∴∠ACD -∠BDN =∠ABD +∠BDN .∵∠ABD +∠BDN =∠AND ,∴∠ACD -∠BDN =∠AND .∵∠ACD +∠ABD =180°,∴∠ABD +∠BDN =180° -∠AND ,∴∠AND =180° -∠AND ,∴∠AND =90°.∵tan ∠ABC =21,BN =35,∴NQ =253. ∴由勾股定理,得BQ =215. ∵∠BNQ =∠QHD =90°,∴∠ABC =∠QDH .∵OE =OD ,∴∠OED =∠QDH .∵∠ERG =90°,∴∠OED =∠GBN ,∴∠GBN =∠ABC .∵AB ⊥ED ,∴BG =BQ =215,GN =NQ =253. ∵AI 是⊙O 的直径,∴∠ACI =90°.∵tan ∠AIC =tan ∠ABC =21, ∴IC AC =21,∴IC =105. 由勾股定理,得AI =25.连接OB ,设QH =x .∵tan ∠ABC =tan ∠ODE =21, ∴HD QH =21,∴HD =2x , ∴OH =OD -HD =225-2x ,BH =BQ +QH =215+x . 由勾股定理,得OB 2 =BH 2+OH 2, 即(225)2=(215+x )2+(225-2x )2, 解得x =29或x =25. 当QH =29时,QD =5QH =259, ∴ND =QD +NQ =65,∴MN =35,MD =15.∵MD >225,∴QH =29不符合题意,舍去.当QH =25时,QD =5QH =255, ∴ND =NQ +QD =45.由垂径定理,得ED =105,∴GD =GN +ND =2511,∴EG =ED -GD =259. ∵tan ∠OED =21,∴ER RG =21, ∴EG =5RG ,∴RG =29, ∴BR =RG +BG =12,∴由垂径定理可知,BF =2BR =24.(第26题答图) 27.解:(1)把点A (-4,0),B (0,4)的坐标分别代入y =ax 2+2xa +c ,得⎩⎨⎧==+-,,40816c c a a ,解得⎪⎩⎪⎨⎧=-=.421c a , 所以抛物线的表达式为y =-21x 2-x +4. (2)如答图①,分别过点P ,F 向y 轴作垂线,垂足分别为A′,B′,过点P 作PN ⊥x 轴,垂足为N .由直线DE 的表达式为y =x +5,得E (0,5),∴OE =5.∵∠PEO +∠OEF =90°,∠PEO +∠EP A′=90°,∴∠EP A′=∠OEF .又∵PE =EF ,∠EA′P =∠EB′F =90°,∴△PEA′ ≌△EFB′,∴P A′ =EB′ =-t .∴d =FM =OB′ =OE -EB′ =5-(-t )=5+t .(3)∵EH ⊥ED ,∴直线EH 的表达式为y =-x +5,∴FB′ =A′E =5-(-21t 2-t +4)=21t 2+t +1, ∴F (21t 2+t +1,5+t ), ∴点H 的横坐标为21t 2+t +1,纵坐标为-21t 2-t -1+5=-21t 2-t +4, ∴H (21t 2+t +1,-21t 2-t +4). 如答图②,连接PH 交y 轴于点A′,则点P 与H 的纵坐标相等, ∴PH ∥x 轴,∴∠HPQ =∠PQD ,∠PGH =∠QGD .∵DG =GH ,∴△PGH ≌△QGD ,∴PH =DQ .∵A (-4,0),C (2,0),∴Q (-1,0).∵D (-5,0),∴DQ =PH =4,即-t +21t 2+t +1=4,解得t =±6. ∵点P 在第二象限,∴t <0,∴t =-6.∴F (4-6,5-6).① ②(第27题答图)。