北师大版初中数学找规律题

合集下载

北师大七年级数学上册找规律专题

北师大七年级数学上册找规律专题

找规律专题一、数字找规律1.观察下列式子:326241⨯==+⨯;4312252⨯==+⨯;5420263⨯==+⨯;6530274⨯==+⨯…… 请你将猜想得到的式子用含正整数n 的式子表示来__________。

2.观察下列顺序排列的等式:9×0+1=1 9×1+2=11 9×2+3=21 9×3+4=31 9×4+5=41……猜想:第n 个等式(n 为正整数)应为 .3.观察下列各式,你会发现什么规律?3×5=15,而15=241-。

5×7=35,而35=261- ……11×13=143,而143=2121-将你猜想到的规律用只含一个字母的式子表示出来: .4..观察下列算式:23451=+⨯ ,24462=+⨯,25473=+⨯,24846⨯+=,请你在察规律之后并用你得到的规律填空:250___________=+⨯, 第n 个式子呢? ___________________5.给出下列算式:1881322⨯==-,28163522⨯==-,38245722⨯==-,48327922⨯==-,…,观察上面的一系列等式,你能发现什么规律?用代数式表示这个规律是 。

6.研究下列算式,你会发现有什么规律?224131==+⨯;239142==+⨯;2416153==+⨯;2525164==+⨯……请将你找出的规律用公式表示出来: 。

8.(2009年龙岩)观察下列一组数:21,43,65,87,…… ,它们是按一定规律排列的. 那么这一组数的第k 个数是 .10. 观察下面一列有规律的数,486,355,244,153,82,31 根据这个规律可知第n 个数是 (n 是正整数) 11. 若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为 12.计算20082007654321-++-+-+- 的结果是( ) A. -2008 B. -1004 C. -1 D. 0 13下列几个算式,找出规律:1+2+1=41+2+3+2+1=91+2+3+4+3+2+1=161+2+3+4+5+4+3+2+1=25利用上面规律,请你迅速算出:①1+2+3+…+99+100+99+…+3+2+1=②据①你会算出1+2+3+…+100是多少吗?③据上你能推导出1+2+3+…+n的计算公式吗?二.图形找规律1.下图中①是一个三角形,分别连接这个三角形三边的中点,得到②;再分别连结②中间的小三角形三边的中点,得到图③,按此方法继续下去,请你根据每个图中三角形个数的规律,完成下列问题。

北师大七年级上-第8讲-找规律

北师大七年级上-第8讲-找规律

找规律1.规律型:数字的变化类探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.(1)探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法.(2)利用方程解决问题.当问题中有多个未知数时,可先设出其中一个为x,再利用它们之间的关系,设出其他未知数,然后列方程.例1.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可以用下列哪个式子来表示()A.C n H2n+2B.C n H2n C.C n H2n﹣2D.C n H n+3【解答】解:设碳原子的数目为n(n为正整数)时,氢原子的数目为a n,观察,发现规律:a1=4=2×1+2,a2=6=2×2+2,a3=8=2×3+2,…,∴a n=2n+2.∴碳原子的数目为n(n为正整数)时,它的化学式为C n H2n+2.故选A.例2.已知a1+a2+…+a30+a31与b1+b2+…+b30+b31均为等差级数,且皆有31项.若a2+b30=29,a30+b2=﹣9,则此两等差级数的和相加的结果为多少?()A.300 B.310 C.600 D.620【解答】解:∵a1+a2+…+a30+a31与b1+b2+…+b30+b31均为等差级数,∵a2+b30=29,a30+b2=﹣9,∴a1+b31+b1+a31=29﹣9,a3+b29+a29+b3=29﹣9,…,∴a1+a2+…+a30+a31+b1+b2+…+b30+b31=(a2+b30+a30+b2)+(a1+b31+b1+a31)+…+(a16+b16)=15×(29﹣9)+=310.故选B.例3.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【解答】解:∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,2+22,…,n+2n,∴y=2n+n.故选B.例4.如图,填在各方格中的三个数之间均具有相同的规律,根据此规律,n的值是()A.48 B.56 C.63 D.74【解答】解:从方格上方的数的数1、3、5、可以推出m=7,第一个方格中:3=1×2+1,第二个方格中:15=3×4+3,第三个方格中:35=5×6+5,∴第四个方格中:n=7×8+7=63.故选:C.例5.如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x的值为370.【解答】解:∵左下角数字为偶数,右上角数字为奇数,∴2n=20,m=2n﹣1,解得:n=10,m=19,∵右下角数字:第一个:1=1×2﹣1,第二个:10=3×4﹣2,第三个:27=5×6﹣3,∴第n个:2n(2n﹣1)﹣n,∴x=19×20﹣10=370.故答案为:370.例6.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为1.【解答】解:把整数1化为,得,,,(),,,…可以发现分子为连续奇数,分母为连续质数,所以,第4个数的分子是7,分母是7,故答案为:1.例7.找出下列各图形中数的规律,依此,a的值为226.【解答】解:根据题意得出规律:14+a=15×16,解得:a=226;故答案为:226.例8.观察下列等式:①=﹣;②=﹣;③=﹣,…按照此规律,解决下列问题:(1)完成第④个等式;(2)写出你猜想的第n个等式(用含n的式子表示),并证明其正确性.【解答】解:(1)观察发现:①1×2×3中,1×3=3,剩个2;②2×3×4中,2×4=8,剩个3;③3×4×5中,3×5=15,剩下个4,∴④应该为:==- .(2)结合(1)故猜想:第n个等式为:=.证明:等式右边=,=,=,==左边,∴等式成立,即猜想正确例9.如图,将正偶数按照图中所示的规律排列下去,若用有序实数对(a,b)表示第a行的第b个数.如(3,2)表示偶数10.(1)图中(8,4)的位置表示的数是62,偶数42对应的有序实数对是(6,6);(2)第n行的最后一个数用含n的代数式表示为n(n+1),并简要说明理由.【解答】解:(1)由题意可知,∵第1行最后一个数2=1×2;第2行最后一个数6=2×3;第3行最后一个数12=3×4;第4行最后一个数20=4×5;…∴第7行最后一个数7×8=56,则第8行第4个数为56+4=60,∵偶数42=6×7,∴偶数42对应的有序实数对(6,7);(2)由(1)中规律可知,第n行的最后一个数为n(n+1);故答案为:(1)60,(6,7);(2)n(n+1).例10.观察下列各式:3×5=15=42﹣15×7=35=62﹣1…11×13=143=122﹣1…(1)写出一个符合以上规律的式子.(2)用字母表示一般规律,并说明该等式一定成立.【解答】解:(1)13×15=195=142﹣1.(2)结论:(2n﹣1)(2n+1)=4n2﹣1=(2n)2﹣1.证明:左边=4n2﹣1,右边=4n2﹣1,∴左边=右边,∴结论成立.真题解析:1.求1+2+22+23+…+22016的值,可设S=1+2+22+23+…+22016,于是2S=2+22+23+…+22017,因此2S﹣S=22017﹣1,所以S=22017﹣1.我们把这种求和方法叫错位相减法.仿照上述的思路方法,计算出1+5+52+53+…+52016的值为()A.52017﹣1 B.52016﹣1 C.D.【解答】解:设S=1+5+52+53+...+52016,则5S=5+52+53+ (52017)∴5S﹣S=52017﹣1,∴S=.故选C.2.为了求1+2+22+23+…+22016的值,可令S=1+2+22+23+…+22016,则2S=2+22+23+24+…+22017,因此2S﹣S=22017﹣1,所以1+2+22+23+…+22016=22017﹣1.仿照以上推理计算出1+3+32+33+…+32016的值是()A.32017﹣1 B.32018﹣1 C.D.【解答】解:令S=1+3+32+33+…+32016,则3S=3+32+33+…+32016+32017,∴S==.故选D.3.下列数据具有一定的排列规律:若整数2016位于第a行,从左数第b个数,则a+b的值是()A.63 B.126 C.2015 D.1002【解答】解:设第n行中最大的数为a n(n为正整数),观察,发现规律:a1=1,a2=1+2=3,a3=1+2+3=6,…,∴a n=1+2+…+n=.令a n≤2016,即≤2016,解得:﹣64≤n≤63.∴1≤n≤63,即整数2016为63行的最后一个数.∴a+b=63+63=126.故选B.4.观察下列数据:﹣2,,﹣,,﹣,…,它们是按一定规律排列的,依照此规律,第11个数据是﹣.【解答】解:∵﹣2=﹣,,﹣,,﹣,…,∴第11个数据是:﹣=﹣.故答案为:﹣.5.观察下列等式:在上述数字宝塔中,从上往下数,2016在第44层.【解答】解:第一层:第一个数为12=1,最后一个数为22﹣1=3,第二层:第一个数为22=4,最后一个数为32﹣1=8,第三层:第一个数为32=9,最后一个数为42﹣1=15,∵442=1936,452=2025,又∵1936<2016<2025,∴在上述数字宝塔中,从上往下数,2016在第44层,故答案为:44.课后作业:1.如图,填在各方格中的三个数之间均具有相同的规律,据此规律,n的值是()A.48 B.56 C.63 D.74【解答】解:∵3=22﹣1,15=42﹣1,35=62﹣1,∴n=82﹣1=63,故选C.2.观察下列各数:1,1,,,,…按你发现的规律计算这列数的第7个数为()A.B.C.D.【解答】解:1,1,,,,…整理为,,,,…可发现这列数的分子为奇数排列用2n﹣1表示,而分母恰是2n﹣1,当n=7时,2n﹣1=13,2n﹣1=127,所以这列数的第7个数为:,故选B.3.小明在做数学题时,发现下面有趣的结果:3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…根据以上规律可知第10行左起第一个数是()A.100 B.121 C.120 D.82【解答】解:根据规律可知第10行的右边是102=100,∵左边有2O个数加减,这20个数是120+119+118+…+111﹣110﹣109﹣108﹣…﹣102﹣101,∴左边第一个数是120.故选C.4.观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2016个式子为(32016﹣2)×32016+1=(32016﹣1)2.【解答】解:观察发现,第n个等式可以表示为:(3n﹣2)×3n+1=(3n﹣1)2,当n=2016时,(32016﹣2)×32016+1=(32016﹣1)2,故答案为:(32016﹣2)×32016+1=(32016﹣1)2.5.观察下列计算:=1 -,=- ,=- ,=- …从计算结果中找规律,利用规律计算=.【解答】解:根据=1 -;=- ;=- ;=- …可得:=,=,∴+=(1﹣)+(﹣)+(﹣)+(﹣)+…+()+(﹣)=1﹣=.6.观察下列一组数:,,,,…,它们是按一定规律排列的,那么这一组数的第k个数是(k为正整数).【解答】解:∵2,4,6,8是连续的偶数,则分子是2k,3,5,7,9是连续的奇数,这一组数的第k个数的分母是:2k+1,∴这一组数的第k个数是:.故答案为:.7.古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律,若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,计算a1+a2,a2+a3,a3+a4,…由此推算a199+a200=40000.【解答】解:∵a1+a2=4=22,a2+a3=9=32,a3+a4=16=42,…由此推算a199+a200=2002=40000,故答案为40000.8.下列数据是按一定规律排列的,则七行的第一个数为22.第一行:1第二行:2 3第三行:4 5 6第四行:7 8 9 10…【解答】解:设第n行第一个数为a n(n为正整数),观察,发现规律:a1=1,a2=2=1+a1,a3=4=2+a2,a4=7=3+a3,…,∴a n=a1+1+2+…+n﹣1=1+.当n=7时,a7=1+=22.故答案为:22.9.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第8个三角形数是36.【解答】解:设第n个三角形数为a n,观察,发现规律:a1=1,a2=3=1+2,a3=6=1+2+3,a4=10=1+2+3+4,…,∴a n=1+2+…+n=.将n=8代入a n,得:a8==36.故答案为:36.10.定义一种新运算:观察下列式:1⊙3=1×4+3=7 3⊙(﹣1)=3×4﹣1=11 5⊙4=5×4+4=24 4⊙(﹣3)=4×4﹣3=13(1)请你想一想:a⊙b=4a+b;(2)若a≠b,那么a⊙b≠b⊙a(填入“=”或“≠”)(3)若a⊙(﹣2b)=4,请计算(a﹣b)⊙(2a+b)的值.【解答】解:(1)∵1⊙3=1×4+3=7,3⊙(﹣1)=3×4﹣1=11,5⊙4=5×4+4=24,4⊙(﹣3)=4×4﹣3=13,∴a⊙b=4a+b;(2)a⊙b=4a+b,b⊙a=4b+a,(4a+b)﹣(4b+a)=3a﹣3b=3(a﹣b),∵a≠b,∴3(a﹣b)≠0,即(4a+b)﹣(4b+a)≠0,∴a⊙b≠b⊙a;(3)∵a⊙(﹣2b)=4a﹣2b=4,∴2a﹣b=2,(a﹣b)⊙(2a+b)=4(a﹣b)+(2a+b)=4a﹣4b+2a+b,=6a﹣3b,=3(2a﹣b)=3×2=6.故答案为:(1)4a+b,(2)≠,(3)6.11.观察下列算式:①1×5+4=32,②2×6+4=42,③3×7+4=52,④4×8+4=62,…请你在察规律解决下列问题(1)填空:2013×2017+4=20152.(2)写出第n个式子(用含n的式子表示),并证明.【解答】解:(1)由以上四个等式可以看出:每一个等式第一个因数等于序号数,第二个因数比第一个大4,等式右边的底数比第一个数大2;所以有:2013×2017+4=20152.答案为:2013,2017;(2)第n个等式为:n(n+4)+4=(n+2)2;∵左边=n2+4n+4=(n+2)2=右边∴n(n+4)+4=(n+2)2成立.。

北师大版中考数学规律专题(分类)

北师大版中考数学规律专题(分类)

规律专题【数字规律】1.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为2.(2015临沂中考)观察下列关于x 的单项式,探索其规律 ,.......11,9,7,5,3,65432x x x x x x按照上述规律,第2015个单项式是( )A.x 20152015B.x 20144029C.x 20154029D.x 201540313.(2017滨州)观察下列式子:22221312;7918;2527126;7981180;.....⨯+=⨯+=⨯+=⨯+=可猜想第2016个式子为4.(2016枣庄中考)一列数123,,....a a a 满足条件:1111,(2)21n n a a n n a -==-≥,且为整数则,2016a =5.(2016山东德州中考)一组数1,1,2,,5,.....x y 满足“从第三个数起,每个数都等于它前面两个数之和”,那么这组数中y 表示的数为( )A.8B.9C.13D.156.观察规律:222211;132;1353,13574.....=+=++=+++=则135....2015++++的值为7.(2017.安徽宿州)观察下列各式: 223324(1)(1)1;(1)(1)1(1)(+21)1.........x x x x x x x x x x x x -+=--++=--++=-(1)请根据以上规律,则65432(1)(1)x x x x x x x -++++++=(2)你能否由此归纳出一般性规律:1(1)(.....1)n n x x x x --++++=(3)根据(2)求出:23435122...22+++++的结果.【图形规律】1.观察下列图形:(1)依照此规律,第20个图形共有几个五角星?(2)摆成第n 个图形需要几个五角星?(3)摆成第2015个图形需要几个五角星?2.如图,用黑白两种颜色的菱形纸片,将黑色纸片数逐渐增加1的规律拼成下列图案,若第n 个图案中有2017个白色纸片,则n 的值为( )A.671B.672C.673D.6743(2016山东青州).如图是一组有规律的图案,它们由边长相同的正方形组成,其中部分小正方形涂有阴影,以此规律,第n 个图案有个涂有阴影的小正方形。

北师大版初中数学找规律题

北师大版初中数学找规律题

归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题. 一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24…按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。

1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )5、有一串数字 3 6 10 15 21 ___ 第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ). 7、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个.二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称).三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n……是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n = ? 观察下面三个特殊的等式将这三个等式的两边相加,可以得到1×2+2×3+3×4=2054331=⨯⨯⨯读完这段材料,请你思考后回答:⑴=⨯++⨯+⨯1011003221 ⑵()()=++++⨯⨯+⨯⨯21432321n n n ⑶()()=++++⨯⨯+⨯⨯21432321n n n 4、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。

专题08 整式中规律性探索的三种考法(解析版)(北师大版)

专题08 整式中规律性探索的三种考法(解析版)(北师大版)

专题08整式中规律探索的三种考法类型一、数字类规律探索问题-,A B.30,D C.29,BA.29【答案】A【分析】观察不难发现,每个峰排列5个数,求出5个峰排列的数的个数,中C位置的数的序数,然后根据排列的奇数为负数,偶数为正数解答;用【答案】4【分析】由题意知,第一次输出的结果是4,第二次输出的结果是1,第四次输出的结果是4,第五次输出的结果是=⨯+,进而可得第2023次输出的结果.202336741【详解】解:由题意知,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,……,∴可知三次为一个循环,=⨯+,∵202336741∴第2023次输出的结果是4,故答案为:4.【点睛】本题考查了程序流程图与有理数计算,规律探究.解题的关键在于根据推导一般性规律.【变式训练1】按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种【答案】C【分析】分三种情况讨论,当输入n经过一次运算即可得到输出的结果为656,当输入n经过两次运算即可得到输出的结果为656,当输入n经过三次运算即可得到输出的结果为656,再列方程,解方程即可得到答案.【详解】解:当输入n经过一次运算即可得到输出的结果为656,51556∴+=,n∴=5655,nn∴=131.当输入n经过两次运算即可得到输出的结果为656,()∴++=5511656,n∴+=26.51131,n∴=n当输入n经过三次运算即可得到输出的结果为656,()∴+++=n555111656,⎡⎤⎣⎦()∴++=5126,n5511131,∴+=5n∴=.n综上:开始输入的n值可能是5或26或131.故选:C.【点睛】本题考查的是程序框图的含义,一元一次方程的解法,分类思想的应用,掌握以上知识是解题的关键.课后训练A.31B.49C.62D 【答案】BA.13-B.2【答案】CA.73B.81C.91D.109【答案】C【分析】根据图形,将每个图形分为上下两部分,分别数出每个图形两部分中菱形的个数,总结出数量变化的一般规律即可.【详解】解:由图可知:第一个图形:上面由3个菱形,下面有0个菱形,第二个图形:上面有6个菱形,下面有1个菱形,A .62B .70【答案】B 【分析】观察图形得到第1个五边形数为1,第为14712++=,第4个五边形数为14710+++A .31B .32C .63D .64【答案】C 【分析】根据图形,可以得到正方形个数的变化特点,从而可以得到图⑤中正方形的个数.【详解】解:由图可得,第①个图形中正方形的个数为:212321+==-,第②个图形中正方形的个数为:23122721++==-,第③个图形中正方形的个数为:23412221521+++==-,…则第⑤个图形中正方形的个数为:62164163-=-=,故选:C .【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现正方形个数的变化特点,求出图⑤中正方形的个数.7.下列图形都是由大小相同的小正方形按一定规律组成的,其中第①个图形中有1个小正方形,第②个图形中有5个小正方形,第③个图形中有11个小正方形,…,按此规律排列下去,第⑦个图形中的小正方形个数为()个A .40B .49C .55D .71【答案】C 【分析】由已知图形中点的分布情况知:横放是图形序号的平方减去1,竖着摆放的数与序号相同,再进行相加即可.【详解】解:根据图形可得第①个图案正方形个数为:21111=-+;第②个图案正方形个数为:2532212=+=-+;第③个图案正方形个数为:21183313=+=-+;第④个图案正方形个数为:219154414=+=-+;所以,第⑦个图形中的小正方形个数为271755-+=(个)故选:C【点睛】本题考查了规律型中的图形变化问题,要求学生首先分析题意,找到规律,并进行推导得出答案.8.如图1,AE 是O 的直径,点B 、C 、D 将半圆分成四等分,把五位同学分别编为序号1、2、3、4、5按顺序站在半圆的五个点上,现把最右边的5号同学调出,站到2号和3号两位同学之间,再把最右边的4号同学调出,站到1号和2号两位同学之间,得到图2,称为“1次换序”.接着按同样的方法,把最右边的3号同学调出,站到4号和2号两位同学之间,再把最右边的5号同学调出,站到1号和4号两位同学之间,得到图3,称为“2次换序”.以此类推……;若从图1开始,经过“n 次换序”后,得到的顺序与图1相同,则n 的值可以是()A .11B .12C .13D .14【答案】B 【分析】先得到前4次换序后的结果,再归纳类推出一般规律,由此即可得.【详解】解:由题意得:1次换序后,得到的顺序为1,4,2,5,3,2次换序后,得到的顺序为1,5,4,3,2,3次换序后,得到的顺序为1,3,5,2,4,4次换序后,得到的顺序为1,2,3,4,5,由此可知,每经过4次换序,得到的顺序与图1相同,即此时4n k =(k 为正整数),观察四个选项可知,只有选项B 符合题意,故选:B .【点睛】本题考查了图形类规律探索,正确归纳类推出一般规律是解题关键.。

北师大版七年级数学上册《探索与表达规律》专项练习(含答案)

北师大版七年级数学上册《探索与表达规律》专项练习(含答案)

试题汇编——找规律1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有__________个小圆圈.(1) (2) (3)2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有 个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为______________.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形1 2 3 n … … 第1个图 第2个图 第3个图…图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.6、 如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子 枚(用含有n 的代数式表示,并写成最简形式).○ ○ ○ ○ ○ ○ ○ ○ ○○ ○ ○ ○ ● ● ○ ○ ● ● ● ○○ ● ○ ○ ● ● ○ ○ ● ● ● ○○ ○ ○ ○ ○ ○ ○ ○ ● ● ● ○○ ○ ○ ○ ○7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形 需 根火柴棒。

8、将正整数按如图5所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是 .9、如图 2 ,用n 表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n 的关系是第一排 第二排 第三排 第四排 6 ┅┅ 10 9 87 32 15 410、观察图4的三角形数阵,则第50行的最后一个数是 ( )1-2 3-4 5 -67 -8 9 -10。

北师大版七年级上册期末找规律专题练习

北师大版七年级上册期末找规律专题练习

找规律专题练习输入 1 2 34 5输出1225310417526请问:当小马输入数据8时,输出的数据是( )3、“ * ”是规定的一种运算法则:a*b=a 2- 2b.那么2*3的值为4、若(_3)*x=7,那么x= __________________请你帮忙算一算结果是____________ 。

5、下面由火柴棒拼出的一列图形中,第n个图形由n个正方形组成,通过观察可以发现:n=1 n=2n=3 n=4(1 )第4个图形中火柴棒的根数是 ________________ ;(2)第n个图形中火柴棒的根数是 __________________ .6、用黑白两种颜色的正六边形地面砖按如下所示的规律拼成若干个图案:(1) (2) (3)则第(4)个图案中有白色地面砖___________ 块;第n个图案中有白色地面砖___________ 块.7、如图所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2010个这样的三角形镶嵌而成的四边形的周长是( )图案1 图案2 图案361 63865D.8672、观察下列数据,按某种规律在横线上填上适当的数:1,16255、小红和小花在玩一种计算的游戏,计算的规则是=ad —bc.现在轮到小红计算1 23 4的值,A. 2009B. 2010C. 2011D. 20128、用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第枚。

21个图案需要棋子________(1)2张桌子拼在一起可坐_____ 人。

3张桌子拼在一起可坐 _____ 人,n张桌子拼在一起可坐________ 人。

(2)—家餐厅有40张这样的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐________ 人。

10、如图所示,将多边形分割成三角形•图(1)中可分割出2个三角形;图(2)中可分割出3个三角形;图(3)中可分割出4个三角形;由此你能猜测出,n边形可以分割出 _________ 个三角形。

平面直角坐标系中的规律问题专项训练(30道)

平面直角坐标系中的规律问题专项训练(30道)

平面直角坐标系中的规律问题专项训练(30道)【北师大版】考卷信息:本套训练卷共30题,题型针对性较高,覆盖面广,选题有深度,涵盖了平面直角坐标系中的规律问题所有类型!1.(2021•张湾区模拟)如图,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如图顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2021个点的坐标为()A.(46,4)B.(46,3)C.(45,4)D.(45,5)2.(2021春•嘉祥县期末)如图,长方形BCDE的各边分别平行于x轴、y轴,物体甲和物体乙由点A(2,0)同时出发,沿长方形BCDE的边做环绕运动,物体甲按逆时针方向以每秒1个单位长度的速度匀速运动,物体乙按顺时针方向以每秒2个单位长度的速度匀速运动,则两个物体运动后的第2021次相遇地点的坐标是()A.(﹣1,﹣1)B.(2,0)C.(1,﹣1)D.(﹣1,1)3.(2021春•德阳期末)如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)…,则点A2021的坐标为()A.(505,﹣504)B.(506,﹣505)C.(505,﹣505)D.(﹣506,506)4.(2021春•乌苏市期末)如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次点A1向右跳到A2(2,1),第三次点A2跳到A3(﹣2,2),第四次点A3向右跳动至点A4,(3,2),…,依此规律跳动下去,则点A2019与点A2020之间的距离是()A.2021B.2020C.2019D.20185.(2021春•西宁期末)如图,在平面直角坐标系中,A1(1,2),A2(2,0),A3(3,﹣2),A4(4,0)…根据这个规律,探究可得点A2021的坐标是()A.(2020,0)B.(2021,2)C.(2020,﹣2)D.(2021,﹣2)6.(2021春•绥中县期末)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2021的坐标为()A.(﹣505,﹣505)B.(﹣505,506)C.(506,506)D.(505,﹣505)7.(2021春•东港区校级期末)在平面直角坐标系中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P的伴随点,已知点A1的伴随点A2,A2的伴随点A3,…,这样依次得到点A1,A2,A3,A4,…A n,…若点A1的坐标为(3,1),则点A2021的坐标为()A.(0,4)B.(﹣3,1)C.(0,﹣2)D.(3,1)8.(2021春•上杭县期末)如图,点A(0,1),点A1(2,0),点A2(3,2),点A3(5,1),…,按照这样的规律下去,点A2021的坐标为()A.(6062,2020)B.(3032,1010)C.(3030,1011)D.(6063,2021)9.(2021春•九龙坡区期中)在平面直角坐标系内原点O (0,0)第一次跳动到点A 1(0,1),第二次从点A 1跳动到点A 2(1,2),第三次从点A 2跳动到点A 3(﹣1,3),第四次从点A 3跳动到点A 4(﹣1,4),…,按此规律下去,则点A 2021的坐标是( )A .(673,2021)B .(674,2021)C .(﹣673,2021)D .(﹣674,2021)10.(2021春•路南区期末)如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…,组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第21秒时,点P 的坐标为( )A .(21,﹣1)B .(21,0)C .(21,1)D .(22,0)11.(2021春•铜梁区校级期末)如图,在平面直角坐标系中,一动点从原点O 出发,按“向上、向右、向下、向下、向右、向上…”的方向依次不断地移动,每次移动1个单位长度,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(1,﹣1),…那么点A 23的坐标是( )A .(7,﹣1)B .(8,1)C .(7,1)D .(8,﹣1)12.(2021春•青龙县期末)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O 运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),…,按这样的运动规律,第2022次运动后,动点P2022的坐标是()A.(2022,1)B.(2022,2)C.(2022,﹣2)D.(2022,0)13.(2021春•抚顺期末)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0);(2,0);(2,1);(3,2)、(3,1),(3,0)、(4,0),…,根据这个规律探索可得,第20个点的坐标为()A.(6,4)B.(6,5)C.(7,3)D.(7,5)14.(2021春•福州期末)如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→…则2021分钟时粒子所在点的横坐标为()A.886B.903C.946D.99015.(2021春•海珠区校级月考)如图,一个点在第一象限及x轴、y轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,且每秒移动一个单位,那么第2021秒时,点所在位置的坐标是()A.(3,44)B.(41,44)C.(44,41)D.(44,3)16.(2021春•凤翔县期末)如图,正方形ABCD的顶点A(1,1),B(3,1),规定把正方形ABCD“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,正方形ABCD的顶点C 的坐标为()A.(﹣2018,3)B.(﹣2018,﹣3)C.(﹣2021,3)D.(﹣2021,﹣3)17.(2021春•武昌区期中)如图,一个蒲公英种子从平面直角坐标系的原点O出发,向正东走3米到达点A1,再向正北方向走6米到达点A2,再向正西方向走9米到达点A3,再向正南方向走12米到达点A4,再向正东方向走15米到达点A5,以此规律走下去,当种子到达点A10时,它在坐标系中坐标为()A.(﹣12,﹣12)B.(15,18)C.(15,﹣12)D.(﹣15,18)18.(2021春•西平县期末)在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,如图,由里向外数第2个正方形开始,分别是由第1个正方形各顶点的横坐标和纵坐标都乘2,3,…得到的,你观察图形,猜想由里向外第2021个正方形四条边上的整点个数共有()A.2021个B.4042个C.6063个D.8084个19.(2021•河南模拟)某同学在平面直角坐标系内设计了一个动点运动的编程.若一个动点从点A1(1,3)出发,沿A2(3,5)→A3(7,9)→…运动,则点A2021的坐标为()A.(22020﹣1,22020+1)B.(22021﹣1,22021+1)C.(22021﹣2,22021+2)D.(22020﹣2021,22020+2021)20.(2021春•蓝山县期末)如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7……,都是斜边在x轴上,斜边长分别为2,4,6,……的等腰直角三角形,若A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2020的坐标为()A.(1010,0)B.(1012,0)C.(2,1012)D.(2,1010)21.(2020•克什克腾旗二模)如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,…,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).观察每次变换前后的三角形的变化,按照变换规律,则点A n的坐标是()A.(2n,3)B.(2n﹣1,3)C.(2n+1,0)D.(2n,0)22.(2021春•潍坊期末)如图,在平面直角坐标系中,将边长为3,4,5的直角△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置…依次进行下去,发现A(3,0),A1(12,3),A2(15,0)…那么点A2021的坐标为.23.(2021春•龙港区期末)如图,两种大小不等的正方形间隔排列在平面直角坐标系中,已知小正方形的边长为1且A1的坐标为(2,2),A2的坐标为(5,2).(1)A3的坐标为;(2)A n的坐标为.(用含n的代数式表示)24.(2021春•新余期末)如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O出发,按图中箭头所示的方向运动,第1次从原点运动到点(1,2),第2次接着运动到点(2,0),第3次接着运动到点(2,﹣2),第4次接着运动到点(4,﹣2),第5次接着运动到点(4,0),第6次接着运动到点(5,2).…按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是.25.(2021•青田县模拟)如图,动点P从(0,3)出发沿所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P第2021次碰到长方形的边时点P的坐标为.26.(2021春•广水市期末)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上.将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2021次后,点P的坐标为.27.(2020春•江汉区期末)如图,在平面直角坐标系中,有若干个横坐标和纵坐标分别为整数的点,其顺序按图中“→”方向排列,第1个点为(1,0),后面依次为(2,0),(1,1),(1,2),(2,1),(3,0)…,根据这个规律,第110个点的坐标为.28.(2020•浙江自主招生)对点(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x﹣y);且规定P n(x,y)=P1(P n﹣1(x,y))(n为大于1的整数).如P1(1,2)=(3,﹣1),P2(1,2)=P1(P1(1,2))=P1(3,﹣1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,﹣2).则P2015(1,﹣1)=.29.(2021•东城区校级模拟)如图,在平面直角坐标系xOy中,B1(0,1),B2(0,3),B3(0,6),B4(0,10),…,以B1B2为对角线作第一个正方形A1B1C1B2,以B2B3为对角线作第二个正方形A2B2C2B3,以B3B4为对角线作第三个正方形A3B3C3B4,…,如果所作正方形的对角线B n B n+1都在y轴上,且B n B n+1的长度依次增加1个单位长度,顶点A n都在第一象限内(n≥1,且n为整数),那么A1的纵坐标为;用n的代数式表示A n的纵坐标:.30.(2021春•西城区校级期中)在直角坐标系中,我们把横,纵坐标都为整数的点叫敝整点,该坐标轴的单位长度为1cm,整点P从原点O出发,速度为1cm/s,且整点p作向上或向右运动(如图1所示).运动时间(s)与整点(个)的关系如下表:整点P运动的时间(秒)可以得到整点P的坐标可以得到整点P的个数1(0,1)(1,0)22(0,2)(1,1)(2,0)343(0,3)(1,2)(2,1)(3,0)………根据上表的运动规律回答下列问题:(1)当整点p从点O出发4s时,可以得到的整点的个数为个;(2)当整点p从点O出发8s时,在直角坐标系中描出可以得到的所有整点,并顺次连接这些整点;(3)当整点P从点O出发时,可以得到整点(16,4)的位置.。

北师大版七年级上找规律试题几道经典题目(含答案)

北师大版七年级上找规律试题几道经典题目(含答案)

智立方教育初一(上)数学试题分类汇编——找规律1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有__________个小圆圈.(1) (2) (3)2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有 个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为______________.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.1 2 3n … … 第1个图第2个图第3个图 …6、 如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子 枚(用含有n 的代数式表示,并写成最简形式).○ ○ ○ ○ ○ ○ ○ ○ ○○ ○ ○ ○ ● ● ○ ○ ● ● ● ○○ ● ○ ○ ● ● ○ ○ ● ● ● ○○ ○ ○ ○ ○ ○ ○ ○ ● ● ● ○○ ○ ○ ○ ○7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需 根火柴棒。

8、将正整数按如图5所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是 .9、如图 2 ,用n 表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n 的关系是10、观察图4的三角形数阵,则第50行的最后一个数是 ( )1-2 3-4 5 -67 -8 9 -10。

北师大版七年级上册数学第三章整式及其加减——图形找规律专项练习60题(含答案)

北师大版七年级上册数学第三章整式及其加减——图形找规律专项练习60题(含答案)

图形找规律专项练习60题(有答案)1.按如下方式摆放餐桌和椅子:填表中缺少可坐人数_________ ;_________ .2.观察表中三角形个数的变化规律:图形0 1 2 …n横截线条数6 ??…?三角形个数若三角形的横截线有0条,则三角形的个数是6;若三角形的横截线有n条,则三角形的个数是_________ (用含n的代数式表示).3.如图,在线段AB上,画1个点,可得3条线段;画2个不同点,可得6条线段;画3个不同点,可得10条线段;…照此规律,画10个不同点,可得线段_________ 条.4.如图是由数字组成的三角形,除最顶端的1以外,以下出现的数字都按一定的规律排列.根据它的规律,则最下排数字中x的值是_________ ,y的值是_________ .5.下列图形都是由相同大小的单位正方形构成,依照图中规律,第六个图形中有_________ 个单位正方形.6.如图,用相同的火柴棒拼三角形,依此拼图规律,第7个图形中共有_________ 根火柴棒.7.图1是一个正方形,分别连接这个正方形的对边中点,得到图2;分别连接图2中右下角的小正方形对边中点,得到图3;再分别连接图3中右下角的小正方形对边中点,得到图4;按此方法继续下去,第n个图的所有正方形个数是_________ 个.8.观察下列图案:它们是按照一定规律排列的,依照此规律,第6个图案中共有_________ 个三角形.9.如图,依次连接一个边长为1的正方形各边的中点,得到第二个正方形,再依次连接第二个正方形各边的中点,得到第三个正方形,按此方法继续下去,则第二个正方形的面积是_________ ;第六个正方形的面积是_________ .10.下列各图形中的小正方形是按照一定规律排列的,根据图形所揭示的规律我们可以发现:第1个图形有1个小正方形,第2个图形有3个小正方形,第3个图形有6个小正方形,第4个图形有10个小正方形…,按照这样的规律,则第10个图形有_________ 个小正方形.11.如图,用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数为_________ .12.为庆祝“六一”儿童节,幼儿园举行用火柴棒摆“金鱼”比赛,如图所示,则摆n条“金鱼”需用火柴棒的根数为_________ .13.如图,两条直线相交只有1个交点,三条直线相交最多有3个交点,四条直线相交最多有6个交点,五条直线相交最多有10个交点,六条直线相交最多有_________ 个交点,二十条直线相交最多有_________ 个交点.14.用火柴棒按如图所示的方式搭图形,按照这样的规律搭下去,填写下表:图形编号(1)(2)(3)…n火柴根数从左到右依次为_________ _________ _________ _________ .15.图(1)是一个黑色的正三角形,顺次连接三边中点,得到如图(2)所示的第2个图形(它的中间为一个白色的正三角形);在图(2)的每个黑色的正三角形中分别重复上述的作法,得到如图(3)所示的第3个图形.如此继续作下去,则在得到的第5个图形中,白色的正三角形的个数是_________ .16.如图,一块圆形烙饼切一刀可以切成2块,若切两刀最多可以切成4块,切三刀最多可以切成7块…通过观察、计算填下表(其中S表示切n刀最多可以切成的块数)后,可探究一圆形烙饼切n刀最多能切成_________ 块(结果用n的代数式表示).n 0 1 2 3 4 5 …n17.如图,是用相同的等腰梯形拼成的等腰梯形图案.第(1)个图案只有1个等腰梯形,其两腰之和为4,上下底之和为3,周长为7;第(2)个图案由3个等腰梯形拼成,其周长为13;…第(n)个图案由(2n﹣1)个等腰梯形拼成,其周长为_________ .(用正整数n表示)18.下列各图均是用有一定规律的点组成的图案,用S表示第n个图案中点的总数,则S= _________ (用含n 的式子表示).19.如图,由若干盆花摆成图案,每个点表示一盆花,几何图形的每条边上(包括两个顶点)都摆有n(n≥3)盆花,每个图案中花盆总数为S,按照图中的规律可以推断S与n(n≥3)的关系是_________ .20.用火柴棍象如图这样搭图形,搭第n个图形需要_________ 根火柴棍.21.现有黑色三角形“”和白色三角形“”共有2011个,按照一定的规律排列如下:则黑色三角形有_________ 个.22.假设有足够多的黑白围棋子,按照一定的规律排成一行:○●●○○●○●●○○●○●●○○●○●●○○●…请问第2011个棋子是黑的还是白的?答:_________ .23.观察下列由等腰梯形组成的图形和所给表中数据的规律后填空:1 2 3 4 5 …梯形的个数图形的周5 8 11 14 17 …长当梯形个数为2007个时,这时图形的周长为_________24.如图,下面是一些小正方形组成的图案,第4个图案有_________ 个小正方形组成;第n个图案有_________个小正方形组成.25.如图所示是由火柴棒按一定规律拼出的一系列图形:依照此规律,第7个图形中火柴棒的根数是_________ .26.图中的每个图形都是由若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有n(n≥2)个棋子,每个图案的棋子总数为s,按图的排列规律推断,s与n之间的关系可用式子_________ 表示.27.观察下列图形,它是按一定规律排列的,那么第_________ 个图形中,十字星与五角星的个数和为27个.28.2条直线最多只有1个交点;3条直线最多只有3个交点;4条直线最多只有6个交点;2000条直线最多只有_________ 个交点.29.以下各图分别由一些边长为1的小正方形组成,请填写图2、图3中的周长,并以此推断出图10的周长为_________ .30.如图所示,第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么设第n个图案中有白色地面砖m块,则m与n的函数关系式是_________ .31.用同样大小的黑色棋子按如图所示的规律摆放:(1)分别写出第6、7两个图形各有多少颗黑色棋子?(2)写出第n个图形黑色棋子的颗数?(3)是否存在某个图形有2012颗黑色棋子?若存在,求出是第几个图形;若不存在,请说明理由.32.如图,给出四个点阵,s表示每个点阵中点的个数,按照图形中的点的个数变化规律,(1)猜想第n个点阵中的点的个数s= _________ .(2)若已知点阵中点的个数为37,问这个点阵是第几个?33.用棋子摆出下列一组图形:(1)填写下表:图形编号 1 2 3 4 5 6图中棋子数 5 8 11 14 17 20(2)照这样的方式摆下去,写出摆第n个图形所需棋子的枚数;(3)其中某一图形可能共有2011枚棋子吗?若不可能,请说明理由;若可能,请你求出是第几个图形.34.观察图中四个顶点的数字规律:(1)数字“30”在_________ 个正方形的_________ ;(2)请你用含有n(n≥1的整数)的式子表示正方形四个顶点的数字规律;(3)数字“2011”应标在什么位置.35.如图,各图表示若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案中花盆的总数为S.问:①当每条边有2盆花时,花盆的总数S是多少?②当每条边有3盆花时,花盆的总数S是多少?③当每条边有4盆花时,花盆的总数S是多少?④当每条边有10盆花时,花盆的总数S是多少?⑤按此规律推断,当每条边有n盆花时,花盆的总数S是多少?36.如下图是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第④、第⑤个“上”字分别需用_________ 和_________ 枚棋子;(2)第n个“上”字需用_________ 枚棋子;(3)七(3)班有50名同学,把每一位同学当做一枚棋子,能否让这50枚“棋子”按照以上规律恰好站成一个“上”字?若能,请计算最下一“横”的学生数;若不能,请说明理由.37.下列表格是一张对同一线段上的个数变化及线段总条数的探究统计.线段上点的个数线段的总条数11+2=31+2+3=6……(1)请你完成探究,并把探究结果填在相应的表格里;(2)若在同一线段上有10个点,则线段的总条数为_________ ;若在同一线段上有n个点,则有_________ 条线段(用含n 的式子表示)(3)若你所在的班级有60名学生,20年后参加同学聚会,见面时每两个同学之间握一次手,共握手_________ 次.38.如图是用棋子摆成的“H”字.(1)摆成第一个“H”字需要_________ 个棋子;摆第x个“H”字需要的棋子数可用含x的代数式表示为_________ ;(2)问第几个“H”字棋子数量正好是2012个棋子?39.我们知道,两条直线相交只有一个交点.请你探究:(1)三条直线两两相交,最多有_________ 个交点;(2)四条直线两两相交,最多有_________ 个交点;(3)n条直线两两相交,最多有_________ 个交点(n为正整数,且n≥2).40.如图所示,小王玩游戏:一张纸片,第一次将其撕成四小片,手中共有4张纸片,以后每次都将其中一片撕成更小的四片.如此进行下去,当小王撕到第n次时,手张共有S张纸片.根据上述情况:(1)用含n的代数式表示S;(2)当小王撕到第几次时,他手中共有70张小纸片?41.如图①是一张长方形餐桌,四周可坐6人,2张这样的桌子按图②方式拼接,四周可坐10人.现将若干张这样的餐桌按图③方式拼接起来:(1)三张餐桌按题中的拼接方式,四周可坐_________ 人;(2)n张餐桌按上面的方式拼接,四周可坐_________ 人(用含n的代数式表示).若用餐人数为26人,则这样的餐桌需要_________ 张.42.用棋子摆出下列一组图形:(1)填写下表:图形编号 1 2 3 4 5 6图形中的棋子(2)照这样的方式摆下去,写出摆第n个图形棋子的枚数;(用含n的代数式表示)(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?43.如图①,图②,图③,图④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,(1)第5个“广”字中的棋子个数是_________ .(2)第n个“广”字需要多少枚棋子?44.如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察图形并解答有关问题:(1)在第n个图中共有_________ 块黑瓷砖,_________ 块白瓷砖;(2)是否存在黑瓷砖与白瓷砖块数相等的情形?你能通过计算说明吗?45.用火柴棒按如图的方式搭三角形.(1)搭4个这样的三角形要用_________ 根火柴棒;13根火柴棒可以搭_________ 个这样的三角形;(2)搭n个这样的三角形要用_________ 根火柴棒(用含n的代数式表示).46.观察图中的棋子:(1)按照这样的规律摆下去,第4个图形中的棋子个数是多少?(2)用含n的代数式表示第n个图形的棋子个数;(3)求第20个图形需棋子多少个?47.如图,用正方体石墩垒石梯,下图分别表示垒到一、二、三阶梯时的情况.那么照这样垒下去,请你观察规律,并完成下列问题.(1)填出下表中未填的两个空格:阶梯级数一级二级三级四级石墩块数 3 9(2)当垒到第n级阶梯时,共用正方体石墩多少块(用含n的代数式表示)?并求当n=100时,共用正方体石墩多少块?48.有一张厚度为0.05毫米的纸,将它对折1次后,厚度为2×0.05毫米.(1)对折3次后,厚度为多少毫米?(2)对折n次后,厚度为多少毫米?(3)对折n次后,可以得到多少条折痕?49.如图所示,用同样规格正方形瓷砖铺设矩形地面,请观察下图:按此规律,第n个图形,每一横行有_________ 块瓷砖,每一竖列有_________ 块瓷砖(用含n的代数式表示)按此规律,铺设了一矩形地面,共用瓷砖506块,请问这一矩形的每一横行有多少块瓷砖,每一竖列有多少瓷砖?50.找规律:观察下面的星阵图和相应的等式,探究其中的规律.(1)在④、⑤和⑥后面的横线上分别写出相应的等式:①1=12②1+3=22③1+3+5=32④_________ ;⑤_________ ;⑥_________ ;(2)通过猜想,写出第n个星阵图相对应的等式.51.将一张正方形纸片剪成四个大小一样的小正方形,然后将其中的一个正方形再剪成四个小正方形,如此循环下去,如图所示:(1)完成下表:所剪次数n 1 2 3 4 5正方形个数Sn 4(2)剪n次共有S n个正方形,请用含n的代数式表示S n= _________ ;(3)若原正方形的边长为1,则第n次所剪得的正方形边长是_________ (用含n的代数式表示).52.如图是用五角星摆成的三角形图案,每条边上有n(n>1)个点(即五角星),每个图案的总点数(即五角星总数)用S表示.(1)观察图案,当n=6时,S= _________ ;(2)分析上面的一些特例,你能得出怎样的规律?(用n表示S)(3)当n=2008时,求S.53.用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点.观察图中每一个正方形(实线)四条边上的格点的个数,请回答下列问题:(1)由里向外第1个正方形(实线)四条边上的格点个数共有_________ 个;由里向外第2个正方形(实线)四条边上的格点个数共有_________ 个;由里向外第3个正方形(实线)四条边上的格点个数共有_________ 个;(2)由里向外第10个正方形(实线)四条边上的格点个数共有_________ 个;(3)由里向外第n个正方形(实线)四条边上的格点个数共有_________ 个.54.下列各图是由若干花盆组成的形如正方形的图案,每条边(包括两个顶点)有n(n>1)个花盆,每个图案花盆总数是S.(1)按要求填表:n 2 3 4 5 …S 4 8 12 …(2)写出当n=10时,S= _________ .(3)写出S与n的关系式:S= _________ .(4)用42个花盆能摆出类似的图案吗?55.如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究并解答下列问题.(1)在第1个图中,共有白色瓷砖_________ 块.(2)在第2个图中,共有白色瓷砖_________ 块.(3)在第3个图中,共有白色瓷砖_________ 块.(4)在第10个图中,共有白色瓷砖_________ 块.(5)在第n个图中,共有白色瓷砖_________ 块.56.淮北市为创建文明城市,各种颜色的菊花摆成如下三角形的图案,每条边(包括两个顶点)上有n(n>1)盆花,每个图案花盆的总数为S,当n=2时,S=3;n=3时,S=6;n=4时,S=10.(1)当n=6时,S= _________ ;n=100时,S= _________ .(2)你能得出怎样的规律?用n表示S.57.下面是按照一定规律画出的一系列“树枝”经观察,图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出4个“树枝”,图(4)比图(3)多出8个“树枝”,按此规律:图(5)比图(4)多出_________ 个树枝;图(6)比图(5)多出_________ 个树枝;图(8)比图(7)多出_________ 个树枝;…图(n+1)比图(n)多出_________ 个树枝.58.如图是用棋子成的“T”字图案.从图案中可以出,第一个“T”字图案需要5枚棋子,第二个“T”字图案需要8枚棋子,第三个“T”图案需要11枚棋子.(1)照此规律,摆成第八个图案需要几枚棋子?(2)摆成第n个图案需要几枚棋子?(3)摆成第2010个图案需要几枚棋子?59.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:(1)当黑砖n=1时,白砖有_________ 块,当黑砖n=2时,白砖有_________ 块,当黑砖n=3时,白砖有_________ 块.(2)第n个图案中,白色地砖共_________ 块.60.下列图案是晋商大院窗格的一部分.其中,“o”代表窗纸上所贴的剪纸.探索并回答下列问题:(1)第6个图案中所贴剪纸“o”的个数是_________ ;(2)第n个图案中所贴剪纸“o”的个数是_________ ;(3)是否存在一个图案,其上所贴剪纸“o”的个数为2012个?若存在,指出是第几个;若不存在,请说明理由.图形找规律60题参考答案:1.结合图形和表格,不难发现:1张桌子座6人,多一张桌子多2人.4张桌子可以座10+2=12.即n张桌子时,共座6+2(n﹣1)=2n+4.2.当横截线有n条时,在6个的基础上多了n个6,即三角形的个数共有6+6n=6(n+1)个.故应填6(n+1)或6n+63.∵画1个点,可得3条线段,2+1=3;画2个点,可得6条线段,3+2+1=6;画3个点,可得10条线段,4+3+2+1=10;…;画n个点,则可得(1+2+3+…+n+n+1)=条线段.所以画10个点,可得=66条线段;4.根据图形可以发现,第七排的第一个数和第二数与第八排的第二个数相等,而第八排的第二个数就是x,所以x=61.另外,由图形可知,x右边的数是2×61=122,y左边的数是2×61+56=178,所以y=178+46=2245.根据题意分析可得:第1个图案中正方形的个数2个,第2个图案中正方形的个数比第1个图案中正方形的个数多4个,第3个图案中正方形的个数比第2个图案中正方形的个数多6个…,依照图中规律,第六个图形中有2+4+6+8+10+12=42个单位正方形6.图形从上到下可以分成几行,第n行中,斜放的火柴有2n根,下面横放的有n根,因而图形中有n排三角形时,火柴的根数是:斜放的是2+4+…+2n=2(1+2+…+n)横放的是:1+2+3+…+n,则每排放n根时总计有火柴数是:3(1+2+…+n)=21)nn3(把n=7代入就可以求出.故第7个图形中共有=84根火柴棒7.图1中,是1个正方形;图2中,是1+4=5个正方形;图3中,是1+4×2=9个正方形;依此类推,第n个图的所有正方形个数是1+4(n﹣1)=4n﹣3.8.∵第1个图案中有2×2+2×1=6个三角形;第2个图案中有2×3+2×2=10个三角形;第3个图案中有2×4+2×3=14个三角形;…∴第6个图案中有2×7+2×6=26个三角形.故答案为269.∵正方形的边长是1,所以它的斜边长是:=,所以第二个正方形的面积是:×=,第三个正方形的面积为=()2,以此类推,第n个正方形的面积为()n﹣1,所以第六个正方形的面积是()6﹣1=;故答案为:,.10.∵第一个有1个小正方形,第二个有1+2个,第三个有1+2+3个,第四个有1+2+3+4,第五个有1+2+3+4+5,∴则第10个图形有1+2+3+4+5+6+7+8+9+10=55个.故答案为:5511.依题意得:(1)摆第1个“小屋子”需要5个点;摆第2个“小屋子”需要11个点;摆第3个“小屋子”需要17个点.当n=n时,需要的点数为(6n﹣1)个.故答案为6n﹣112.由图形可知:第一个金鱼需用火柴棒的根数为:2+6=8;第二个金鱼需用火柴棒的根数为:2+2×6=14;第三个金鱼需用火柴棒的根数为:2+3×6=20;…;第n个金鱼需用火柴棒的根数为:2+n×6=2+6n.故答案为2+6n13.6条直线两两相交,最多有n(n﹣1)=×6×5=15,20条直线两两相交,最多有n(n﹣1)=×20×19=190.故答案为:15,190.14.如表格所示:(1)(2)(3)…n图形编号7 12 17 …5n+2火柴根数15.设白三角形x个,黑三角形y个,则:n=1时,x=0,y=1;n=2时,x=0+1=1,y=3;n=3时,x=3+1=4,y=9;n=4时,x=4+9=13,y=27;当n=5时,x=13+27=40,所以白的正三角形个数为:40,故答案为:4016.n=1时,S=1+1=2,n=2时,S=1+1+2=4,n=3时,S=1+1+2+3=7,n=4时,S=1+1+2+3+4=11,…所以当切n刀时,S=1+1+2+3+4+…+n=1+n(n+1)=n2+n+1.故答案为n2+n+117.根据题意得:第(1)个图案只有1个等腰梯形,周长为3×1+4=7;第(2)个图案由3个等腰梯形拼成,其周长为3×3+4=13;第(3)个图案由5个等腰梯形拼成,其周长为3×5+4=19;…第(n)个图案由(2n﹣1)个等腰梯形拼成,其周长为3(2n﹣1)+4=6n+1;故答案为:6n+118.观察发现:第1个图形有S=9×1+1=10个点,第2个图形有S=9×2+1=19个点,第3个图形有S=9×3+1=28个点,…第n个图形有S=9n+1个点.故答案为:9n+119.n=3时,S=6=3×3﹣3=3,n=4时,S=12=4×4﹣4,n=5时,S=20=5×5﹣5,…,依此类推,边数为n数,S=n•n﹣n=n(n﹣1).故答案为:n(n﹣1).20.结合图形,发现:搭第n个三角形,需要3+2(n﹣1)=2n+1(根).故答案为2n+121.因为2011÷6=335…1.余下的1个根据顺序应是黑色三角形,所以共有1+335×3=1006.故答案为:100622.从所给的图中可以看出,每六个棋子为一个循环,∵2011÷6=335…1,∴第2011个棋子是白的.故答案为:白23.依题意可求出梯形个数与图形周长的关系为3n+2=周长,当梯形个数为2007个时,这时图形的周长为3×2007+2=6023.故答案为:6023.24.观察图形知:第一个图形有1=12个小正方形;第二个图形有1+3=4=22个小正方形;第三个图形有1+3+5=9=32个小正方形;…第n个图形共有1+2+3+…+(2n﹣1)=n2个小正方形,当n=4时,有n2=42=16个小正方形.故答案为:16,n225.根据已知图形可以发现:第2个图形中,火柴棒的根数是7;第3个图形中,火柴棒的根数是10;第4个图形中,火柴棒的根数是13;∵每增加一个正方形火柴棒数增加3,∴第n个图形中应有的火柴棒数为:4+3(n﹣1)=3n+1.当n=7时,4+3(n﹣1)=4+3×6=22,故答案为:2226.观察图形发现:当n=2时,s=4,当n=3时,s=9,当n=4时,s=16,当n=5时,s=25,…当n=n时,s=n2,故答案为:s=n227.∵第1个图形中,十字星与五角星的个数和为3×2=6,第2个图形中,十字星与五角星的个数和为3×3=9,第3个图形中,十字星与五角星的个数和为3×4=12,…而27=3×9,∴第8个图形中,十字星与五角星的个数和=3×9=27.故答案为:828.2条直线最多的交点个数为1,3条直线最多的交点个数为1+2=3,4条直线最多的交点个数为1+2+3=6,5条直线最多的交点个数为1+2+3+4=10,…所以2000条直线最多的交点个数为1+2+3+4+…+1999==1999000.故答案为199900029.∵小正方形的边长是1,∴图1的周长是:1×4=4,图2的周长是:2×4=8,图3的周长是3×4=12,…第n个图的周长是4n,∴图10的周长是10×4=40;故答案为:8,12,4030.首先发现:第一个图案中,有白色的是6个,后边是依次多4个.所以第n个图案中,是6+4(n﹣1)=4n+2.∴m与n的函数关系式是m=4n+2.故答案为:4n+2.31.第一个图需棋子6,第二个图需棋子9,第三个图需棋子12,第四个图需棋子15,第五个图需棋子18,…第n个图需棋子3(n+1)枚.(1)当n=6时,3×(6+1)=21;当n=7时,3×(7+1)=24;(2)第n个图需棋子3(n+1)枚.(3)设第n个图形有2012颗黑色棋子,根据(1)得3(n+1)=2012解得n=,所以不存在某个图形有2012颗黑色棋子32.(1)由点阵图形可得它们的点的个数分别为:1,5,9,13,…,并得出以下规律:第一个点数:1=1+4×(1﹣1)第二个点数:5=1+4×(2﹣1)第三个点数:9=1+4×(3﹣1)第四个点数:13=1+4×(4﹣1)…因此可得:第n个点数:1+4×(n﹣1)=4n﹣3.故答案为:4n﹣3;(2)设这个点阵是x个,根据(1)得:1+4×(x﹣1)=37解得:x=10.答:这个点阵是10个33.(1)观察图形,得出枚数分别是,5,8,11,…,每个比前一个多3个,所以图形编号为5,6的棋字子数分别为17,20.故答案为:17和20.(2)由(1)得,图中棋子数是首项为5,公差为3的等差数列,所以摆第n个图形所需棋子的枚数为:5+3(n﹣1)=3n+2.(3)不可能由3n+2=2010,解得:n=669,∵n为整数,∴n=669不合题意故其中某一图形不可能共有2011枚棋子34.(1)由图可知,每个正方形标4个数字,∵30÷4=7…2,∴数字30在第8个正方形的第2个位置,即右上角;故答案为:8,右上角;(2)左下角是4的倍数,按照逆时针顺序依次减1,即正方形左下角顶点数字:4n,正方形左上角顶点数字:4n﹣1,正方形右上角顶点数字:4n﹣2,正方形右下角顶点数字:4n﹣3;(3)2011÷4=502…3,所以,数字“2011”应标第503个正方形的左上角顶点处35.依题意得:①n=2,S=3=3×2﹣3.②n=3,S=6=3×3﹣3.③n=4,S=9=3×4﹣3④n=10,S=27=3×10﹣3.…⑤按此规律推断,当每条边有n盆花时,S=3n﹣336.(1)第①个图形中有6个棋子;第②个图形中有6+4=10个棋子;第③个图形中有6+2×4=14个棋子;∴第⑤个图形中有6+3×4=18个棋子;第⑥个图形中有6+4×4=22个棋子.故答案为18、22;(3分)(2)第n个图形中有6+(n﹣1)×4=4n+2.故答案为4n+2.(3分)(3)4n+2=50,解得n=12.最下一横人数为2n+1=25.(4分)37.(1)5个点时,线段的条数:1+2+3+4=10,6个点时,线段的条数:1+2+3+4+5=15;(2)10个点时,线段的条数:1+2+3+4+5+6+7+8+9=45,n个点时,线段的条数:1+2+3+…+(n﹣1)=;(3)60人握手次数==1770.故答案为:(2)45,;(3)1770.38.(1)摆成第一个“H”字需要7个棋子,第二个“H”字需要棋子12个;第三个“H”字需要棋子17个;…第x个图中,有7+5(x﹣1)=5x+2(个).(2)当5x+2=2012时,解得:x=402,故第402个“H”字棋子数量正好是2012个棋子39.(1)如图(1),可得三条直线两两相交,最多有3个交点;(2)如图(2),可得三条直线两两相交,最多有6个交点;(3)由(1)得,=3,由(2)得,=6;∴可得,n 条直线两两相交,最多有个交点(n为正整数,且n≥2).故答案为3;6;.40.(1)由题目中的“每次都将其中﹣片撕成更小的四片”,可知:小王每撕一次,比上一次多增加3张小纸片.∴s=4+3(n﹣1)=3n+1;(2)当s=70时,有3n+1=70,n=23.即小王撕纸23次41.(1)结合图形,发现:每个图中,两端都是坐2人,剩下的两边则是每一张桌子是4人.则三张餐桌按题中的拼接方式,四周可坐3×4+2=14(人);(2)n张餐桌按上面的方式拼接,四周可坐(4n+2)人;若用餐人数为26人,则4n+2=26,解得n=6.故答案为:14;(4n+2),642.(1)如图所示:图形编号1 2 3 4 5 6图形中的棋子6 912 15 18 21(2)依题意可得当摆到第n个图形时棋子的枚数应为:6+3(n﹣1)=6+3n﹣3=3n+3;(3)由上题可知此时3n+3=99,∴n=32.答:第32个图形共有99枚棋子13.由题目得:第1个“广”字中的棋子个数是7;第2个“广”字中的棋子个数是7+(2﹣1)×2=9;第3个“广”字中的棋子个数是7+(3﹣1)×2=11;第4个“广”字中的棋子个数是7+(4﹣1)×2=13;发现第5个“广”字中的棋子个数是7+(5﹣1)×2=15…进一步发现规律:第n个“广”字中的棋子个数是7+(n﹣1)×2=2n+5.故答案为:1544.(1)在第n个图形中,需用黑瓷砖4n+6块,白瓷砖n(n+1)块;(2)根据题意得n(n+1)=4n+6,n2﹣3n﹣6=0,此时没有整数解,所以不存在.故答案为:4n+6;n(n+1)45.(1)结合图形,发现:后边每多一个三角形,则需要多2根火柴.则搭4个这样的三角形要用3+2×3=9根火柴棒;13根火柴棒可以搭(13﹣3)÷2+1=6个这样的三角形;(2)根据(1)中的规律,得搭n个这样的三角形要用3+2(n﹣1)=2n+1根火柴棒.故答案为9;6;2n+146.(1)第4个图形中的棋子个数是13;(2)第n个图形的棋子个数是3n+1;(3)当n=20时,3n+1=3×20+1=61∴第20个图形需棋子61个47.(1)第一级台阶中正方体石墩的块数为:=3;第一级台阶中正方体石墩的块数为:=9;第一级台阶中正方体石墩的块数为:;…依此类推,可以发现:第几级台阶中正方体石墩的块数为:3与几的乘积乘以几加1,然后除以2.阶梯级一级二级三级四级数3 9 18 30石墩块数(2)按照(1)中总结的规律可得:当垒到第n级阶梯时,共用正方体石墩块;当n=100时,∴当n=100时,共用正方体石墩15150块.答:当垒到第n级阶梯时,共用正方体石墩块;当n=100时,共用正方体石墩15150块48.由题意可知:第一次对折后,纸的厚度为2×0.05;可以得到折痕为1条;第二次对折后,纸的厚度为2×2×0.05=22×0.05;可以得到折痕为3=22﹣1条;第三次对折后,纸的厚度为2×2×2×0.05=23×0.05;可以得到折痕为7=23﹣1条;…;第n次对折后,纸的厚度为2×2×2×2×…×2×0.05=2n×0.05.可以得到折痕为2n﹣1条.故:(1)对折3次后,厚度为0.4毫米;(2)对折n次后,厚度为2n×0.05毫米;(3)对折n次后,可以得到2n﹣1条折痕49.由图形我们不难看出横行砖数量为n+3,竖行砖数量为n+2,总数量为n2+5n+6;若用瓷砖506块,可以求n2+5n+6=506;所以答案为:(1)n+3,n+2;(2)每一行有23块,每一列有22块50.等号左边是从1开始,连续奇数相加,等号右边是奇数个数也就是n的平方.(1)①1+3+5+7=42;②1+3+5+7+9=52;③1+3+5+7+9+11=62.(2)1+3+5+…+(2n﹣1)=n2(n≥1的正整数)51.(1)依题意得:所剪次数n 1 2 3 4 54 7 10 13 16正方形个数Sn(2)可知剪n次时,S n=3n+1.(3)n=1时,边长=;n=2时,边长=;n=3时,边长=;…;剪n次时,边长=.52.(1)S=15(2)∵n=2时,S=3×(2﹣1)=3;n=3时,S=3×(3﹣1)=6;n=4时,S=3×(4﹣1)=9;…∴S=3×(n﹣1)=3n﹣3.(3)当n=2008时,S=3×2008﹣3=6021.53.第1个正方形四条边上的格点共有4个第2个正方形四条边上的格点个数共有(4+4×1)个第3个正方形四条边上的格点个数共有(4+4×2)个…第10个正方形四条边上的格点个数共有(4+4×9)=40个第n个正方形四条边上的格点个数共有[4+4×(n﹣1)]=4n个54.由图可知,每个图形为边长是n的正方形,因此四条边的花盆数为4n,再减去重复的四个角的花盆数,即S=4n﹣4;(1)将n=5代入S=4n﹣4,得S=16;(2)将n=10入S=4n﹣4,得S=36;(3)S=4n﹣4;(4)将S=42代入S=4n﹣4得,4n﹣4=42解得n=11.5所以用42个花盆不能摆出类似的图案。

北师大版七年级数学上册第三章3.5.1探索规律同步测试题

北师大版七年级数学上册第三章3.5.1探索规律同步测试题

北师大版七年级数学上册第三章3.5.1探索规律同步测试题北师大版七年级数学上册第三章 3.5.1探索规律同步测试题一、选择题1.观察一串数:0,2,4,6,…,则第n个数是( )A.2(n-1) B.2n-1 C.2(n+1) D.2n+1 2.已知a1=3+1,a2=32+2,a3=33+3,a4=34+4,…,则a n的值为( ) A.3n+n B.3n C.3n+3 D.3+3n 3.观察以下一列数的特点:0,1,-4,9,-16,25,…,则第11个数是( )A.-121 B.-100 C.100 D.121 4.按一定规律排列的单项式:x3,-x5,x7,-x9,x11,…,第n个单项式是( )A.(-1)n-1x2n-1B.(-1)n x2n-1 C.(-1)n-1x2n+1D.(-1)n x2n+1 5.在某月的月历上用长方形圈出a,b,c,d四个数(如图),如果d=20,那么a+b+c=( )A.38 B.44 C.48 D.586.如图所示,下列图形都是由相同的五角星按照一定的规律摆成的,按此规律摆下去,第6个图形中共有五角星的个数是( )A .23B .24C .25D .267.如图所示的图形都由同样大小的小圆圈按一定规律所组成的,若按此规律排列下去,则第7个图形中小圆圈的个数为( )A .46B .52C .56D .608.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数…,依此类推,a 2 019的值是( )A .5B .-14C.43D.459.已知一列数:1,-2,3,-4,5,-6,…,将这列数排成下列形式:按照上述规律排列下去,第10行数的第1个数是( ) A .-46B .-36C .37D .4510.观察下列等式:70=1,71=7,72=49,73=343,74=2 401,75=16 807,…,根据其中的规律可得70+71+72+…+72 019的结果的个位数字是( )A.0 B.1 C.7 D.82.假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y=( )A.2 B.3 C.6 D.x+3二、填空题11.如图所示,图1表示1张餐桌和6把椅子(三角形表示餐桌,每个小圆表示一把椅子),图2表示2张餐桌和8把椅子,图3表示3张餐桌和10把椅子,….若按这种方式摆放25张桌子,需要_____把椅子.…图1 图2 图312.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为_____ 13.已知一列数:a,b,a+b,a+2b,2a+3b,3a+5b,…,按照这个规律写下去,第9个数是_____14.假设有足够多的黑白棋子,按照一定的规律排列成一行:请问第2 020个棋子是_____.(填“黑棋”或“白棋”)15.有一列数:1,2,3,4,5,6,…,当按顺序从第二个数数到第n个数时,共数了(n -1)个数;当按顺序从第m个数数到第n个数(n>m)时,共数了_____个数.16.如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有_____根小棒.17.用火柴棍按如图所示的方式摆大小不同的“F”,第1个“F”需要4根,第2个需要7根,第3个需要10根,依此规律,第6个需要19根,第n个需要_____根(用含n的代数式表示).三、解答题18.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2 019,2 020个单项式.19.如图所示是一个数表,现用一个长方形在数表中任意框出4个数.(1)写出a,c的关系式;(2)当a+b+c+d=32时,求a的值.20.如图,用长度相等的小木棒搭成的三角形网格,根据图示填写下列表格:…21.将连续偶数2,4,6,…排成如下形式,用十字框框出5个数,问:…(1)十字框框出的5个数分别与框中间的数32有什么关系?(2)5个数的和与32有什么关系?(3)如果将十字框上下左右移动,仍框住5个数,这5个数还有这种规律吗?(4)设中间的数为a,用代数式表示十字框框住的5个数的和.参考答案一、选择题1.观察一串数:0,2,4,6,…,则第n个数是(A)A.2(n-1) B.2n-1 C.2(n+1) D.2n+1 2.已知a1=3+1,a2=32+2,a3=33+3,a4=34+4,…,则a n的值为(A) A.3n+n B.3n C.3n+3 D.3+3n 3.观察以下一列数的特点:0,1,-4,9,-16,25,…,则第11个数是(B)A.-121 B.-100 C.100 D.121 4.按一定规律排列的单项式:x3,-x5,x7,-x9,x11,…,第n个单项式是(C)A.(-1)n-1x2n-1B.(-1)n x2n-1 C.(-1)n-1x2n+1D.(-1)n x2n+1 5.在某月的月历上用长方形圈出a,b,c,d四个数(如图),如果d=20,那么a+b+c=(B)A.38 B.44 C.48 D.586.如图所示,下列图形都是由相同的五角星按照一定的规律摆成的,按此规律摆下去,第6个图形中共有五角星的个数是(B)A.23 B.24 C.25 D.267.如图所示的图形都由同样大小的小圆圈按一定规律所组成的,若按此规律排列下去,则第7个图形中小圆圈的个数为(D)A.46 B.52 C.56 D.608.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数…,依此类推,a 2 019的值是(D)A .5B .-14C.43D.459.已知一列数:1,-2,3,-4,5,-6,…,将这列数排成下列形式:按照上述规律排列下去,第10行数的第1个数是(A) A .-46B .-36C .37D .4510.观察下列等式:70=1,71=7,72=49,73=343,74=2 401,75=16 807,…,根据其中的规律可得70+71+72+…+72 019的结果的个位数字是(A) A .0B .1C .7D .82.假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y =(B)A .2B .3C .6D .x +311.如图所示,图1表示1张餐桌和6把椅子(三角形表示餐桌,每个小圆表示一把椅子),图2表示2张餐桌和8把椅子,图3表示3张餐桌和10把椅子,….若按这种方式摆放25张桌子,需要54把椅子.…图1 图2 图3二、填空题12.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为(n+1)2-1=n(n+2).13.已知一列数:a,b,a+b,a+2b,2a+3b,3a+5b,…,按照这个规律写下去,第9个数是13a+21b.14.假设有足够多的黑白棋子,按照一定的规律排列成一行:请问第2 020个棋子是黑棋.(填“黑棋”或“白棋”)15.有一列数:1,2,3,4,5,6,…,当按顺序从第二个数数到第n个数时,共数了(n -1)个数;当按顺序从第m个数数到第n个数(n>m)时,共数了(n-m+1)个数.16.如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有(5n+1)根小棒.17.用火柴棍按如图所示的方式摆大小不同的“F”,第1个“F”需要4根,第2个需要7根,第3个需要10根,依此规律,第6个需要19根,第n个需要(3n+1)根(用含n的代数式表示).三、解答题18.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2 019,2 020个单项式.解:(1)这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n个单项式是(-1)n(2n-1)x n.(4)第2 019个单项式是-4 037x2 019,第2 020个单项式是4 039x2 020.19.如图所示是一个数表,现用一个长方形在数表中任意框出4个数.(1)写出a,c的关系式;(2)当a+b+c+d=32时,求a的值.解:(1)a,c的关系式是:a=c-5.(2)因为a+b+c+d=32,所以a+a+1+a+5+a+6=32.所以a=5.20.如图,用长度相等的小木棒搭成的三角形网格,根据图示填写下列表格:…21.将连续偶数2,4,6,…排成如下形式,用十字框框出5个数,问:…(1)十字框框出的5个数分别与框中间的数32有什么关系?(2)5个数的和与32有什么关系?(3)如果将十字框上下左右移动,仍框住5个数,这5个数还有这种规律吗?(4)设中间的数为a,用代数式表示十字框框住的5个数的和.解:(1)十字框框出的5个数,上面的数比中间的数小12,下面的数比中间的数大12,左面的数比中间的数小2,右面的数比中间的数大2.(2)因为5个数的和为20+30+32+34+44=160,160=32×5,所以5个数的和是32的5倍.(3)仍有这种规律.(4)十字框框住的5个数的和为(a-12)+(a-2)+a+(a+2)+(a+12)=5a.。

北师大版七年级上找规律试题几道经典题目(含答案)

北师大版七年级上找规律试题几道经典题目(含答案)

数学试题分类汇编——找规律1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有__________个小圆圈.(1) (2) (3)2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有 个菱形. 3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为______________.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.1 2 3n … … 第1个图 第2个图 第3个图 …6、 如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子 枚(用含有n 的代数式表示,并写成最简形式).○ ○ ○ ○ ○ ○ ○ ○ ○○ ○ ○ ○ ● ● ○ ○ ● ● ● ○○ ● ○ ○ ● ● ○ ○ ● ● ● ○○ ○ ○ ○ ○ ○ ○ ○ ● ● ● ○○ ○ ○ ○ ○7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需 根火柴棒。

8、将正整数按如图5所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是 .9、如图 2 ,用n 表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n 的关系是10、观察图4的三角形数阵,则第50行的最后一个数是 ( )1-2 3-4 5 -67 -8 9 -10。

北师大版找规律练习题

北师大版找规律练习题

精准找规律练习题 姓名 1、观察下列数据,按某种规律在横线上填上适当的数: 1, 43-,95,167-,259, ,…… 2、“*”是规定的一种运算法则:a *b=a 2-2b.那么2*3的值为 .若(-3)*x=7,那么x= 。

3、小红和小花在玩一种计算的游戏,计算的规则是 d c b a =ad -bc.现在轮到小红计算 4321 的值,请你帮忙算一算结果是__________ 。

4、下面由火柴棒拼出的一列图形中,第n 个图形由n 个正方形组成,通过观察可以发现:(1)第4个图形中火柴棒的根数是 ;(2)第n 个图形中火柴棒的根数是 .5、用黑白两种颜色的正六边形地面砖按如下所示的规律拼成若干个图案:(1) (2) (3)则第(4)个图案中有白色地面砖________块;第n 个图案中有白色地面砖_________块.6、如图所示,已知等边三角形A BC的边长为1,按图中所示的规律,用2010个这样的三角形镶嵌而成的四边形的周长是( )7、用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第21个图案需要棋子 枚。

8、(7分)一张长方形桌子可坐6人,按下图方式讲桌子拼在一起。

n =1 n =2 n =3 n =4(1)2张桌子拼在一起可坐______人。

3张桌子拼在一起可坐____人,n 张桌子拼在一起可坐______人。

(2)一家餐厅有40张这样的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐______人。

10、如图所示,将多边形分割成三角形.图(1)中可分割出2个三角形;图(2)中可分割出3个三角形;图(3)中可分割出4个三角形;由此你能猜测出,n 边形可以分割出_________个三角形。

9、一个多边形,从它的某一个顶点出发,分别与其余各顶点连接,分割成18个三角形,那么这个多边形是 边形。

10、某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置: 排数 1 2 3 4 座位数 50 53 56 59按这种方式排下去,⑴第5、6排各有多少个座位?(4分)⑵第n 排有多少个座位? (6分)11、树的高度与树生长的年数有关,测得某棵树的有关数据如下表:(树苗原高100厘米)(1)填出第4年树苗可能达到的高度;(2) 请用含a的代数式表示高度h :_______(3) 用你得到的代数式求生长了10年后的树苗可能达到的高度。

备战中考数学基础必练(北师大版)探索与表达规律(含解析)

备战中考数学基础必练(北师大版)探索与表达规律(含解析)

备战中考数学基础必练(北师大版)探索与表达规律(含解析)21 23 25 27 29… … … … … …根据以上排列规律,数阵中第25行的第20个数是()A.639B.637C.635D.6333.七年级三班的宣传委员在办黑板报时.采用了下面的图案作为边框,其中每个黑色六边形与6个白色六边形相邻.若一段边框上有40个黑色六边形,那么这段边框共有白色六边形()A. 160个B. 162个C. 240个D. 242个4.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为()(用含n的代数式表示).A. 2n+1B. 3n+2C. 4n+2D. 4n﹣25.如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6,…,则顶点A20的坐标为( )A. (5,5)B.(5,-5)C. (-5,5)D. (-5,-5)6.九年级(2)班同学在一起玩报数游戏,第一位同学从1开始报数,当报到5的倍数的数时,则必须跳过该数报下一个数.如:依此类推,第25位置上的小强应报出的数是()位置一二三四五六七八九十…报出的数1 2 3 4 6 7 8 9 1112A. 25B. 27C. 31D. 33二、填空题7.瑞士的一位中学教师巴尔末从光谱数据中,成功地发现了其规律,从而得到了巴尔末公式,继而打开了光谱奥妙的大门.请你根据这个规律写出第6个数为 ________ 8.有一组算式按如下规律排列,则第6个算式的结果为________ ;第n个算式的结果为________ (用含n的代数式表示,其中n是正整数).9.按一定的规律排列的两行数:n(n是奇数,且n≥3)3 5 7 9 …m(m是偶数,且m≥4)4 12 24 40 …猜想并用关于n的代数式表示m=________.10.如图所示,用长度相等的小棒按一定规律摆成一组图案,第一个图案需要6根小棒,第2 个图案需要11根小棒,第3个图案需要16根小棒…,则第n个图案需要________根小棒.11.如图为手的示意图,大拇指、食指、无名指、小指分别标记为字母A,B,C,D,E,请按A→B→C→D→E→D→C→B→A→B→C→…的规律,从A开始数连续的正整数1,2,3,4,…,当数2019时,对应的手指字母为________.12.观察下列数据:﹣2,,,,﹣,…,它们是按一定规律排列的,依照此规律,第11个数据是________.13.一列数a1, a2, a3,…满足条件:a1= ,an= (n≥2,且n为整数),则a1+a2+a3+…+a2019=________.14.将边长为1的正方形纸片按图1所示方法进行对折,记第1次对折后得到的图形面积为S1,第2次对折后得到的图形面积为S2,…,第n次对折后得到的图形面积为Sn,请根据图2化简,S1+S2+S3+…+S2019=________三、计算题15.观察下列等式:,,,……(1)按此规律写出第5个等式;(2)猜想第n个等式,并说明等式成立的理由.16.某校大礼堂第一排有a个座位,后面每一排都比前一排多两个座位,求第n排的座位数,若该礼堂一共有20排座位,且第一排座位数也是20,请你计算一下该礼堂Q能容纳多少人?四、解答题17.观察下列关于自然数的等式:32﹣4×1=4+1①52﹣4×2=16+1②72﹣4×3=36+1③…根据上述规律解决下列问题:(1)完成第四个等式;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.18.观察下列等式:12﹣02①,22﹣12②,32﹣22③,42﹣32④,…(1)按此规律猜想写出第⑥和第⑩个算式;(2)请用含自然数n的等式表示这种规律.19.观察下列等式:①﹣;②=﹣;③=﹣,…按照此规律,解决下列问题:(1)完成第④个等式;(2)写出你猜想的第n个等式(用含n的式子表示),并证明其正确性.五、综合题20.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)并按此规律计算:(a)2+4+6+…+300的值;(b)162+164+166+…+400的值.21.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?(1)我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是________、________.(2)请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:①第5个点阵中有________个圆圈;第n个点阵中有________个圆圈.②小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.________22.观察下列各个等式的规律:第一个等式:=1,第二个等式:=2,第三个等式:=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.答案解析部分一、单选题1.【答案】C【考点】探索数与式的规律【解析】【解答】设下面中间的数为x,如图所示:p+6+8=7+6+5,解得P=4.故答案为:C.【分析】已知方格内每一行.每一列以及每一条对角线上的三个数字之和均相等,所以可设最末一行中间的数为x,则可列方程p+6+8=7+6+5,解得P=4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题. 一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24…按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __3、请填出下面横线上的数字。

1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( ) 5、有一串数字 3 6 10 15 21 ___ 第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ).7、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球○○●○○●●○○○○○●……从第1个球起到第2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆)□┅┅,若第一个图形是正方形,则第2008个图形是三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ; 由此规律知,第⑤个等式是 . 2、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n = ?观察下面三个特殊的等式()2103213121⨯⨯-⨯⨯=⨯ ()3214323132⨯⨯-⨯⨯=⨯ ()4325433143⨯⨯-⨯⨯=⨯将这三个等式的两边相加,可以得到1×2+2×3+3×4=2054331=⨯⨯⨯读完这段材料,请你思考后回答:⑴=⨯++⨯+⨯1011003221 ⑵()()=++++⨯⨯+⨯⨯21432321n n n……⑶()()=++++⨯⨯+⨯⨯21432321n n n 4、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+=+⨯=+b a a ba b 则符合前面式子的规律,,若 (21010)规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。

2.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。

”如图,在一个边长为1的正方形纸版上,依次贴上面积为21,41,81,…,n 21的矩形彩色纸片(n 为大于1的整数)。

请你用“数形结合”的思想,依数形变化的规律,计算n 21814121++++ = 。

3.有一列数:第一个数为x 1=1,第二个数为x 2=3,第三个数开始依次记为x 3,x 4,…,x n ;从第二个数开始,每个数是它相邻两个数和的一半。

(如:x 2=231x x +) (1)求第三、第四、第五个数,并写出计算过程; (2)根据(1)的结果,推测x 8= ; (3)探索这一列数的规律,猜想第k 个数x k = .(k 是大于2的整数)4.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线). 继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到_ 条折痕 .如果对折n 次,可以得到 条折痕 .5. 观察下面一列有规律的数 ,486,355,244,153,82,31, 根据这个规律可知第n 个数是 (n 是正整数) 6.古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 。

7. 按照一定顺序排列的一列数叫数列,一般用a 1,a 2,a 3,…,a n 表示一个数列,可简记为{a n }.现有数列{a n }满足一个关系式:a n +1=2n a -na n +1,(n =1,2,3,…,n ),且a 1=2.根据已知条件计算a 2,a 3,a 4的值,然后进行归纳猜想a n =_________.(用含n 的代数式表示)第3题8.观察下面一列数:-1,2,-3,4,-5,6,-7,...,将这列数排成下列形式按照上述规律排下去,那么第10行从左边第9个数是 .9.观察下列等式9-1=8 16-4=12 25-9=16 36-16=20 …………这些等式反映自然数间的某种规律,设n(n ≥1)表示自然数,用关于n 的等式表示这个规律为. 10.如图是阳光广告公司为某种商品设计的商标图案, 图中阴影部分为红色。

若每个小长方形的面积都1, 则红色的面积是 。

11.如下图,从A 地到C 地,可供选择的方案是 走水路、走陆路、走空中.从A 地到B 地有2条水路、2条陆路,从B 地到C 地有3条陆路可供选择,走空中从A 地不经B 地直接到C 地.则从A 地到C 地可供选择的方案有( )A .20种B .8种C . 5种D .13种12.某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a 个座位。

(1)请你在下表的空格里填写一个适当的代数式: 第1排的座位数 第2排的座位数 第3排的座位数 第4排的座位数 … 第n 排的座位数 1212+a…(2)已知第15排座位数是第5排座位数的2倍,求a 的值,并计算第21排有多少座位?13.探索:⑴一条直线可以把平面分成两部分,两条直线最多可以把平面分成4部分,三条直线最多可以把平面分成 部分,四条直线最多可以把平面分成 部分,试画图说明;⑵n 条直线最多可以把平面分成几部分?14.先观察321211⨯+⨯=)3121()2111(-+-=1-31=32 431321211⨯+⨯+⨯=)4131()3121()2111(-+-+-=1-41=43 再计算)1(1431321211+++⨯+⨯+⨯n n 的值. 15..观察下列顺序排列的等式:9×0+1=1 9×1+2=11 9×2+3=21 9×4+5=41…,猜想:第21个等式应为: 16.我们把分子为1的分数叫做单位分数. 如21,31,41…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如21=6131+,31=12141+,41=20151+,… (1)根据对上述式子的观察,你会发现51=11+. 请写出□,○所表示的数;(2)进一步思考,单位分数n1(n 是不小于2的正整数)=11+,请写出△,☆所表示的式。

£¨µÚ9 Ìâͼ£©......16-1514-1312-1110-9-76-54-32-1第8题 第17题○ □△☆111091287654321OF EDCBA11235...17.你到过县城的拉面馆吗?拉面馆的师傅,能把一根很粗的面条,先两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多根细面条,如下面草图所示。

请问这样第__________次可拉出256根面条。

18.我国古代的“河图”是由3×3的方格构成,每个格内均有数目不等 的点图,每一行、每一列以及每条对角线上的三个点图的点数之和 均相等.如图,给出了“河图”的部分点图,请你推算出M 处所对应 的点图 A .· B .·· C . D .19.计算20082007654321-++-+-+- 的结果是( )A. -2008B. -1004C. -1D. 020.观察右图并寻找规律,x 处填上的数字是A .-136B .-150C .-158D .-162 21.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6, 4!=4×3×2×1,…,则100!98!的值为 22.如图,平面内有公共端点的六条射线OA 、OB 、OC 、OD 、OE 、OF ,从射线OA 开始按逆时针依次在射线上写出数字1、2、3、4、5、6、7…,则数字“2008”在( ) A .射线OA 上 B .射线OB 上C .射线OD 上 D .射线OF 上23.(1)左下图是有几个大小完全一样的小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,请你画出该几何体的主视图和左视图.(2) 意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的边长值构造如下正方形:-26 -48 -14-88 -8 -4 -2-2x再分别依次从左到右取2个、3个、4个、5个…正方形拼成如下长方形并记为①、②、③、④、 …相应长方形的周长如下表所示:仔细观察图形,上表中的=x ,=y . 若按此规律继续作长方形,则序号为⑧的长方形周长是 . 24.(本题满分10分)如图,将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中的一个正方形剪成四个小正方形,如此继续下去,………,请你根据以上操作方法得到的正方形的个数的规律完成各题. (1)将下表填写完整;(2) n a =(用含n 的代数式表示).(3)按照上述方法,能否得到2009个正方形?如果能,请求出n ;如果不能,请简述理由.25.观察下列图形的构成规律,根据此规律,第8个图形中有 个圆.26.观察下面图形,按规律在两个..箭头所指的“田”字格内分别 画上适当图形27、观察下面一列数,按某种规律在横线上填上适当的数:1,43,95,167……则第n 个数为 ;序号 ① ② ③ ④… 周长610xy…11231511211321④③②①…第26题图35791※※※※※※※※※※※※※※※※※※※※※※※※※阅读规律题专题测试卷一填空1、.观察下列各数,按规律在横线上填上适当的数.(1)1,1,2,3,5,_____,13,21,34,_____,_____.(2)1,-2,4,-8,16,_____,_____.(3).观察下列数据,按某种规律在横线上填上适当的数:1,43-,95,167-, ,…(4)、有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .(5).观察下列各数之间的关系,在空中填上适当的数:1,1,2,3,5,8,______.2、为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .26n + B .86n + C .44n + D .8n3,广西河3、(2007池非课改)填在下面三个田字格内的数有相同的规律,根据此规律,C = . 4、观察下列等式,并回答问题:23)31(6321⨯+==++ 24)41(104321⨯+==+++25)51(1554321⨯+==++++ ……=++++n 321 。

相关文档
最新文档