上海合流二期过江倒虹管泥水平衡顶管施工技术

合集下载

泥水平衡式顶管施工工艺

泥水平衡式顶管施工工艺

泥水平衡式顶管施工工艺1. 简介泥水平衡式顶管施工工艺是一种常用于城市地下管道建设的施工技术。

它通过在地下开挖隧道并且同时进行土壤的融化和排泥,确保隧道施工的顺利进行。

本文将介绍泥水平衡式顶管施工的工艺步骤、关键技术和注意事项。

2. 工艺步骤泥水平衡式顶管施工的工艺步骤主要包括以下几个阶段:2.1 设计与准备在进行泥水平衡式顶管施工前,需要进行详细的设计和准备工作。

这包括确定隧道的位置、长度和线路,进行土质和地质勘察,设计顶管机械和安全措施等。

2.2 地面设备布置在开始施工前,需要在地面上布置各种设备和管线。

这些设备包括顶管机、泥浆管线、电缆线等。

同时需要搭建施工平台和设置安全警示标志,确保施工过程中的安全。

2.3 地下掘进地下掘进是泥水平衡式顶管施工的核心步骤。

通过顶管机械开挖隧道,并且同时进行土壤的融化和排泥。

融化土壤主要通过注入适量的混凝土泥浆,然后通过排泥管将排出的泥浆送至地面。

整个掘进过程需要不断地监测土压力、泥浆流量等参数,以确保施工的平稳进行。

2.4 顶管安装当地下掘进到达设计的终点后,开始进行顶管的安装。

顶管通常由预制混凝土或钢管制成,通过顶管机械将顶管逐节推入地下隧道。

在安装过程中,需要密切关注顶管的位置、倾斜度和连接情况,确保顶管的质量和稳定性。

2.5 断面完工处理顶管安装完成后,需要进行断面的完工处理。

这包括顶管与地下土壤间的灌浆、封堵和密封处理,以保证隧道的牢固和密闭性。

3. 关键技术3.1 融化土壤技术泥水平衡式顶管施工过程中,融化土壤技术是非常关键的一项技术。

正确的融化土壤工艺可以有效地降低土壤阻力,减小隧道掘进的阻力,提高施工效率。

常用的融化土壤技术包括混凝土泥浆注入、泥浆压力调节等。

3.2 土质监测技术泥水平衡式顶管施工过程中,土质的监测是一项重要的技术工作。

通过实时监测土质的参数,可以及时了解施工过程中土压力、土壤水分含量等情况,为施工提供科学依据。

常用的土质监测技术包括地质雷达、土压力计等。

泥水平衡顶管的施工工艺

泥水平衡顶管的施工工艺

泥水平衡顶管的施工工艺摘要:泥水平衡法是一种常见的顶管施工方法,在市政道路排水管道综合管线施工中发挥着很好作用,本文主要介绍泥水平衡的施工工艺及方法。

关键词:泥水平衡;顶管;工艺一、主要特点;1.本工艺主要是利用泥水压力平衡地下水压力,同时它也平衡掘进机所处土层的土压力,适用的土质范围比较广。

2.可有效地保持挖掘面的稳定,对所顶管子周围的土体扰动比较小,与其他类型顶管比较,泥水顶管施工时的总推力比较小,尤其是在粘土层体现的更为突出,较适宜于长距离顶管。

3.工作坑内的作业环境比较好,作业比较安全。

4.由于泥水输送弃土的作业是连续不断地进行的,作业时的进度比较快。

5. 泥水平衡顶管施工具有低噪音、震动小等特点。

二、施工工艺(一)顶管施工工艺流程图(二)施工前的准备工作1、进行施工测量和现场放线工作,做好定位点控制。

2、进行顶管所用设备的加工制作。

3、进行施工技术交底工作。

(三)工作井与接收井施工1、测量放线依据建设单位给定的书面通知文件、测量控制网以及设计施工图纸,测设工作井,接收井及管线位置和高程,确定井开挖区域和管线轴线。

测量操作执行国家规范《城市测量规范》(CJJ/T8-2011)。

2、工作井及接收井施工方法1、施工放样:确定开挖位置及基坑长度与宽度。

2、根据放样及平面布置图安设围挡、确保安全。

3、为避免地表水软化坡肩,有效排泄边坡渗水,在坡顶设一道300*300砖砌排水沟截断地表水,在基坑开挖前要疏干地表已有积水,采取有效措施保证地表水能顺畅排泄,不发生积水,以防基坑塌方。

4、为确保施工安全,土方开挖必须严格遵循分区分层分段,适时兼顾综合平衡的原则。

一般每次开挖80cm左右,即进行护壁,如果遇有流砂等应适当减少开挖深度,一般不超过30cm及时进行护壁。

5、工作坑、接收坑严格按图纸规范要求和施工方案进行施工支护。

6、工作坑、接收坑井口均高出原地面30cm。

(四)顶管工作井内设备安装1、导轨安装:导轨安装前要先复核高程、轴线,确保导轨的高程、轴线位置准确。

泥水平衡顶进施工技术要点

泥水平衡顶进施工技术要点

1、泥水平衡顶管施工工艺一、泥水平衡式顶管微型掘进机被主顶油缸向前推进,掘进机头进入止水圈,穿过土层到达接收井,电动机提供能量,转动切削刀盘,通过切削刀盘进入土层。

挖掘的土质,石块等在转动的切削刀盘内被粉碎,然后进入泥水舱,在那里与泥浆混合,最后通过泥浆系统的排泥管由排泥泵输送至地面上。

在挖掘过程中,采用复杂的泥水平衡装置来维持水土平衡,以至始终处于主动与被动土压之间,达到消除地面的沉降和隆起的效果。

掘进机完全进入土层以后,电缆、泥浆管被拆除,吊下第一节顶进管,它被推到掘进机的尾套处,与掘进头连接管顶进以后,挖掘终止、液压慢慢收回,另一节管道又吊入井内,套在第一节管道后方,连接在一起,重新顶进,这个过程不断重复,直到所有管道被顶入土层完毕,完成一条永久性的地下管道。

掘进机在掘进过程中,采用了激光导向控制系统。

位于工作后方的激光经纬仪发出激光束,调整好所需的标高及方向位置后,对准掘进机内的定位光靶上,激光靶的影像被捕捉到机内摄像机的影像内,并输送到挖掘系统的电脑显示屏内。

操作者可以根据需要开启位于掘进机内置式油缸进行伸缩,为达到纠偏的目的,调整切削部分头部上下左右高度。

在整个掘进过程中,甚至可以获得控制整个管道水平、垂直向5cm内的偏离精度。

当工作井完成以后,经调试完毕的液压系统,顶管掘进机便通过运输至工地,并安装就位至导轨上,微型掘进设备还包括,操纵室和遥控台、液压动力站、后方主顶、泥水循环装置,激光定位装置,减摩剂搅拌注入装置,泥水处理装置;其他辅助装置包括起重机,发电机、卡车、电焊机等。

随后,微型掘进装置上。

泥水平衡式顶管突出的优点:(1)适用的土质范围比较广,如在地下水压力很高,以及变化范围很大的条件下,它都适用。

(2)可有效地保持挖掘面的稳定,对所顶管子周围的土体扰动比较小,因而由顶管引起的地面沉降较小。

(3)与其他类型的顶管比较,泥水顶管施工时的总推力比较小,尤其在粘土层这种表现得更为突出,所以特别适用于长距离顶管。

泥水平衡管顶管施工方案

泥水平衡管顶管施工方案

泥水平衡管顶管施工方案
一、前言
泥水平衡管顶管技术是一种常用的施工方法,广泛应用于城市地铁、地下综合管廊等工程中。

本文将详细介绍泥水平衡管顶管的施工方案。

二、工程准备
2.1 设备准备
在进行泥水平衡管顶管施工之前,需要准备好相应的设备,包括盾构机、推进装置、液压站等设备,并确保这些设备的正常运转。

2.2 施工图纸准备
施工前需要准备好详细的施工图纸,包括隧道线路、管道走向等信息,以便指导实际的施工操作。

三、施工流程
3.1 现场准备
在进行施工之前,需要对施工现场进行准备,包括清理现场、确定施工区域等工作。

3.2 盾构机调试
接下来是对盾构机进行调试,包括检查设备各个部件是否正常,液压系统是否运转良好等。

3.3 泥水平衡管顶管施工
开始进行泥水平衡管顶管施工,按照施工图纸的指示,推进盾构机,同时保证泥浆平衡,管段顶管等操作。

四、质量控制
在施工过程中,需要对工程质量进行控制,包括检查管道连接是否牢固、泥浆循环是否畅通、管内压力是否符合要求等。

五、安全防护
施工现场安全是施工工作的首要任务,需要加强对施工人员的安全教育,确保
施工过程中没有安全事故发生。

六、总结
通过对泥水平衡管顶管施工方案的详细介绍,我们不难看出,合理的施工流程、质量控制和安全防护是保证工程顺利进行的关键。

希望这份施工方案能对相关人员在实际工程中有所帮助。

以上是泥水平衡管顶管施工方案的相关介绍,希望能为您提供参考。

泥水平衡顶管技术

泥水平衡顶管技术

泥水平衡顶管技术泥水平衡顶管技术是一种非常先进的地下施工方法,它主要用于在城市地区的街道和广场等繁忙的区域进行隧道建设。

这种施工方法的特点是通过控制平衡管中的泥浆压力来平衡地面和隧道之间的压力差,从而确保地面安全稳定,同时也可以减少对周围环境的影响。

泥水平衡顶管技术是在20世纪60年代初期发展起来的,它是在传统的盾构隧道施工方法的基础上进行改进和完善的。

在传统的盾构隧道施工方法中,通过盾构机在地下挖掘隧道,然后在周围注入混凝土,最后来达到支撑隧道的目的。

这种方法需要大量的土方开挖和混凝土灌注,而且对周围环境的影响也比较大。

而泥水平衡顶管技术则巧妙地利用了泥浆来代替传统的混凝土,从而减少了对周围环境的影响,同时也能大大降低工程的成本。

泥水平衡顶管技术的工作原理是:先将泥浆注入平衡管,使其充满整个管道,然后开挖顶管。

由于泥浆的密度比土要大,因此可以起到支撑管道的作用。

在开挖过程中,通过控制泥浆的流量,调节泥浆中的压力,从而控制地下隧道和地面之间的压力差。

当隧道开挖到一定深度时,再利用尾部掘进机把泥浆和碎石从管道中排出,然后再注入新的泥浆,继续进行隧道开挖。

如此往复,直到隧道开挖完成。

泥水平衡顶管技术具有很多优点。

它可以保证地面稳定,减少了对周围环境的影响,因此非常适用于建设城市地区的隧道。

由于采用泥浆来支撑管道,因此可以适应各种地层条件,包括软土、沙土、砾石和基岩等。

泥水平衡顶管技术的工作效率非常高,在一定的工期内可以开挖更长的隧道,节约了时间和成本。

虽然泥水平衡顶管技术的优点很多,但是也存在一些缺点。

由于需要泥浆带动尾部掘进机进行清理,因此造成了排水和处理泥浆的问题。

泥水平衡顶管技术需要严格控制泥浆的流量和压力,需要非常精密的设备和技术,从而增加了施工的难度和成本。

由于泥水平衡顶管技术的开挖范围较小,无法适应大范围的工程建设需求。

为了应对泥水平衡顶管技术存在的一些缺陷,相关产业链不断进行创新和完善,以提高施工效率和降低成本。

泥水平衡法顶管施工工艺工法(二)

泥水平衡法顶管施工工艺工法(二)

泥水平衡法顶管施工工艺工法(二)引言概述:本文将介绍泥水平衡法顶管施工工艺工法(二)。

泥水平衡法顶管是一种常用于隧道施工的工艺方法,通过控制泥浆的压力来实现隧道的掘进和支护。

本文将从以下五个大点展开阐述,包括泥浆准备、泥浆注入、顶管机械运转、预制衬砌安装和顶管施工的质量控制。

正文:一、泥浆准备:1. 根据地质条件和施工要求确定适宜的泥浆类型和性能指标。

2. 合理调配泥浆配方,确保泥浆的稳定性和良好的流动性。

3. 使用合适的设备进行泥浆的搅拌和过滤,确保泥浆的均匀性和纯净度。

4. 定期对泥浆进行质量检测,保证泥浆的性能指标符合要求。

5. 按照施工进度和需要,合理调整泥浆的浓度和性能参数。

二、泥浆注入:1. 合理布置泥浆注入点,保证泥浆能够均匀注入到土层中。

2. 控制泥浆的注入速度和压力,避免对土层产生过大的影响。

3. 定期监测注入管道的泥浆流量和压力,及时调整注入参数。

4. 注入过程中注意观察土层的反应和隧道的稳定情况,及时采取措施进行调整。

5. 注入完成后,对注入点进行密封处理,避免泥浆的泄漏和浪费。

三、顶管机械运转:1. 确保顶管机械的各项功能正常运转,对机械进行检查和维护。

2. 严格按照规定的施工工序和速度操作顶管机械。

3. 根据实际情况调整顶管机械的推进速度和转向角度,确保施工的平稳进行。

4. 采取适当的防护措施,避免顶管机械和施工人员受到伤害。

5. 定期对顶管机械进行维护保养和检修,保证机械的长期稳定运行。

四、预制衬砌安装:1. 根据设计要求和施工进度,提前准备好预制衬砌。

2. 使用合适的设备和工艺对预制衬砌进行安装,确保衬砌的准确性和稳定性。

3. 严格按照设计要求进行衬砌的安装顺序和连接方式。

4. 在安装过程中,及时检查和调整衬砌的位置和间距,保证施工的精确度。

5. 安装完成后,对衬砌进行检查和质量验收,确保衬砌的质量符合要求。

五、顶管施工的质量控制:1. 设置合适的监测点和监测仪器,及时监测施工过程中的变形和位移。

泥水平衡顶管施工工法

泥水平衡顶管施工工法

泥水平衡顶管施工工法一、引言泥水平衡顶管施工工法是一种常用的地下工程施工方法,主要用于城市地下管道、隧道和地下通道等工程的建设。

该工法通过控制土层的沉降和进度,保证地面及地下结构的稳定性,同时减少对周围环境的影响。

本文将从施工工法的原理、步骤和应用范围等方面进行详细介绍。

二、泥水平衡顶管施工工法的原理泥水平衡顶管施工工法是指在施工过程中通过控制土层的沉降与推进速度之间的平衡,使地面和地下结构保持稳定。

其主要原理如下:1. 泥水平衡:在施工过程中,通过在管道顶部注入特制的泥浆,形成一个稳定的泥浆溶胶层。

这个泥浆溶胶层与周围土层之间形成水平力的平衡,从而有效控制土层的沉降。

2. 钢管推进:通过机械设备将顶管推进到设计位置,并在管道后方进行扩孔和排水操作。

这样可以保持土体的湿度和稳定性,避免管道施工过程中的净土坍塌。

三、泥水平衡顶管施工工法的步骤泥水平衡顶管施工工法包括以下几个主要步骤:1. 现场准备:施工前需要对施工区域进行调查和勘测,确保顶管轨道的设计和施工区域的稳定性。

同时还需要准备好所需的设备和材料。

2. 泥浆处理:在施工现场建立泥浆处理系统,用于处理需要注入顶管的泥浆。

泥浆需要具备一定的黏性和稳定性,以保证泥浆溶胶层的形成和土层的平衡。

3. 顶管推进:使用推进机械将顶管逐渐推进到设计位置。

在推进过程中需要进行土层的探测和监测,以确保土层的稳定性和管道的安全推进。

4. 泥水平衡控制:在管道顶部注入泥浆,形成泥浆溶胶层。

同时需要控制泥浆注入的压力和速度,以维持泥水平衡,确保土层的平稳沉降。

5. 排水和扩孔:施工完成后,需要进行排水和扩孔操作,以保持管道周围土壤的稳定和湿度。

排水和扩孔操作可以有效减少土层沉降的时间,并避免管道的冲击负荷。

四、泥水平衡顶管施工工法的应用范围泥水平衡顶管施工工法广泛应用于城市地下管道、隧道和地下通道等建设项目中。

具体应用范围包括但不限于:1. 城市排水管道:在城市排水工程中,通过泥水平衡顶管施工工法可以实现快速、高效而不破坏地面交通的施工。

倒虹管施工方案倒虹管施工方法有几种

倒虹管施工方案倒虹管施工方法有几种

倒虹管施工方案倒虹管施工方法有几种嗨,各位小伙伴们,今天我来和大家聊聊倒虹管施工方案以及施工方法。

倒虹管作为一种常见的地下管道结构,其施工方法和方案可是大有讲究。

下面,我就结合我10年的方案写作经验,给大家详细介绍几种倒虹管施工方法。

一、明挖法我们要说的就是明挖法。

这是一种比较传统的施工方法,简单来说,就是将地面挖开,把管道埋进去,然后再把地面填回去。

这个方法的好处在于施工过程简单,容易操作。

具体步骤如下:1.进行现场勘察,确定管道的走向和位置。

2.然后进行土方开挖,挖出管道的埋设位置。

4.进行回填土,把挖出的土重新填回去。

二、顶管法1.进行现场勘察,确定管道的走向和位置。

2.然后进行工作井和接收井的建设。

3.接着利用顶管机进行管道顶进,一节一节地向前推进。

4.进行管道连接和检查,确保管道畅通。

三、盾构法盾构法是近年来比较流行的一种施工方法,它利用盾构机在地下进行隧道开挖,然后将管道铺设在隧道内。

这个方法的好处在于施工速度快,对地面影响小。

具体步骤如下:1.进行现场勘察,确定管道的走向和位置。

2.然后进行盾构机的组装和调试。

3.接着利用盾构机进行隧道开挖,同时进行管道铺设。

4.进行隧道衬砌和管道检查,确保工程质量。

四、浅埋暗挖法1.进行现场勘察,确定管道的走向和位置。

4.进行回填土,把挖出的土重新填回去。

五、沉管法要说的就是沉管法。

这种方法是将管道预制好,然后沉入水中,利用浮力将管道浮起,再进行管道连接。

这个方法适用于跨越河流、湖泊等水域。

具体步骤如下:1.进行现场勘察,确定管道的走向和位置。

2.然后进行管道预制,把管道做好。

3.接着将管道沉入水中,利用浮力将管道浮起。

4.进行管道连接和检查,确保工程质量。

注意事项以及解决办法:1.明挖法施工时,要注意地下管线和设施的保护。

解决办法:在施工前,一定要做好详细的地下管线探测,了解清楚各种管线的位置和深度,避免施工过程中对其造成损坏。

如果遇到管线,要提前与相关部门沟通,采取绕行或保护措施。

泥水平衡顶管技术

泥水平衡顶管技术

泥水平衡顶管技术泥水平衡顶管技术(Slurry Balance Shield Tunneling),是一种用于地下隧道开挖施工的方法。

该技术采用下沉筒(顶管)方式,通过在推力和顶管的配合下,在地下挖掘出隧道,同时将泥浆作为润滑介质,保持土体的稳定性。

泥水平衡顶管技术在大规模城市地下交通建设中广泛应用,为城市发展提供了有效的解决方案。

泥水平衡顶管技术的主要特点和优势如下:1. 地表干扰小:泥水平衡顶管技术通过地下施工,减少了对地表交通、建筑物和地下设施的影响。

相比于传统的开挖方法,该技术的地表干扰更小,有助于减少施工期间的交通堵塞和居民生活的干扰。

2. 适用性广泛:泥水平衡顶管技术适用于不同类型的地质条件,包括泥质、砂质和黏土等土壤。

通过调整泥浆的浓度和配比,可以适应不同地质环境下的隧道施工需求。

3. 安全可靠:泥水平衡顶管技术采用平衡的施工原理,可以保持隧道内土体的稳定性,减少地面沉降和建筑物破坏的风险。

同时,泥水平衡顶管技术通过监测隧道周围土体的变化,及时调整推力和泥浆的使用量,确保施工的安全性和可靠性。

4. 施工效率高:泥水平衡顶管技术具有施工速度快、效率高的优势。

通过在顶管内的混凝土搅拌站生产混凝土,并通过管道输送到施工现场,可以实现连续的隧道开挖和顶管推进。

相较于传统的开挖方法,该技术可大幅度减少施工时间和成本。

由于泥水平衡顶管技术的优势,目前该技术已在全球范围内得到广泛的应用。

例如,中国的北京地铁、上海地铁和广州地铁等大城市地铁项目都采用了该技术。

此外,日本东京地铁、美国纽约地铁和德国柏林地铁等国际城市地铁项目也普遍应用了泥水平衡顶管技术。

总之,泥水平衡顶管技术作为一种高效、安全、适用性广泛的隧道施工方法,已经成为城市地下交通建设中的重要工艺之一。

随着城市发展的不断加速,泥水平衡顶管技术有望在更多的地方得到应用并进一步完善。

顶管专项施工方案泥水平衡法

顶管专项施工方案泥水平衡法

顶管专项施工方案泥水平衡法一、引言顶管技术是一种用于城市地下综合管线施工的无开挖方法,逐渐得到了广泛的应用。

在顶管施工过程中,泥水平衡法是实现顶管浮管转运的一种常用方法。

本文将介绍泥水平衡法的工作原理、操作步骤以及其在顶管施工中的应用。

二、泥水平衡法工作原理泥水平衡法是通过泥水混合物的重力平衡来实现顶管的浮力与重力的平衡,从而保证顶管的稳定移动。

其工作原理可以简述如下:1.通过水平控制部位向顶管注入的辅助控制液体,在顶管的移动过程中形成一个水压平衡的环境;2.顶管与地面之间围绕着管道的泥水间隙,用于提供泥浆与注入液体之间的密封;3.在顶管的前端,通过泥浆的注入来提供推力,并实现顶管的前进。

三、泥水平衡法操作步骤泥水平衡法具体的操作步骤如下:1.准备工作:确定顶管的施工轨迹和设备位置,清理并确保施工现场整洁;2.准备泥浆:配制泥浆,并根据实际情况对其进行调整,以确保其密度和黏度适当;3.准备辅助控制液体:根据需求配制并调整辅助控制液体的密度,并将其加入注入系统中;4.设置注入系统:将注入系统设置好,并保持其运行正常;5.进行泥水平衡:通过注入系统向顶管注入辅助控制液体,形成泥水平衡,保持泥浆与注入液体之间的压力平衡;6.提供推力:通过向顶管前部注入泥浆,提供推力,实现顶管的前进;7.监控和调整:在顶管移动过程中,不断监控泥水平衡状态,根据需要调整辅助控制液体的注入速度和泥浆的注入量;8.完成施工:当顶管到达目标位置后,停止泥浆的注入和推力,完成顶管施工。

四、泥水平衡法在顶管施工中的应用泥水平衡法在顶管施工中有着广泛的应用,主要体现在以下几个方面:1.提高施工效率:通过采用泥水平衡法,可以减少顶管前进的阻力,提高施工效率;2.保护地面和地下设施:泥水平衡法可以减小顶管施工对地表和地下设施的影响,减少地面沉陷和管线破坏的风险;3.适应各种地质条件:泥水平衡法能够适应不同地质条件,包括强夯土、软土和砂质土等,提高顶管的施工适应性;4.减少环境污染:泥水平衡法在顶管施工中可以减少泥浆的溢出和泄漏,达到环保的效果;5.降低施工成本:相比于传统的开挖施工方法,泥水平衡法可以降低施工成本,减少人工和材料的使用。

泥水平衡顶管施工工法

泥水平衡顶管施工工法

泥水平衡顶管施工工法泥水平衡顶管施工工法是一种现代化的非开挖管道施工方法,具有高效率、高质量、低成本等优点。

本文将详细介绍泥水平衡顶管施工工法的原理、施工流程、技术要点以及安全注意事项等方面。

一、概述泥水平衡顶管施工工法是通过控制泥水平衡来维持挖掘面稳定,从而进行管道顶进的施工方法。

该方法适用于各种土质条件下的管道施工,特别是复杂地质条件下的管道穿越工程。

二、施工流程泥水平衡顶管施工工法的施工流程包括以下环节:1、设计阶段:根据工程要求和地质条件,设计顶管的规格、长度、角度等参数,并确定顶管的工作坑和接收坑位置。

2、工作坑施工:在工作坑范围内进行土地开挖、支护和地面处理等工作,为顶管设备的安装提供基础条件。

3、顶管设备安装:根据设计要求,安装顶管设备,包括泥水平衡顶进系统、泥水处理系统、管道系统等。

4、顶进施工:在顶管设备运行正常情况下,开始进行顶进施工。

施工过程中,需要根据地质条件和顶进阻力等因素,不断调整泥水平衡参数,确保顶进顺利进行。

5、管道连接:顶进完成后,进行管道与接收坑之间的连接工作,完成整个管道施工。

6、验收阶段:进行工程验收,确保管道施工质量符合要求。

以某城市给水管道施工为例,该工程采用泥水平衡顶管施工工法,顶管直径为1.2米,顶进长度为500米,角度为30度。

通过控制泥水平衡参数,成功完成了管道顶进施工,提高了施工效率和质量。

三、技术要点泥水平衡顶管施工工法需要掌握以下技术要点:1、泥水平衡测试:在施工前,需要对泥水平衡系统进行测试,确保其正常运行。

测试方法包括泵压测试、泥水浓度测试等。

2、顶管施工控制:在施工过程中,需要对顶管的行进速度、方向、轴线偏差等进行实时监测和控制。

对于不同土质条件,需要采用不同的顶进方式和泥水平衡参数。

3、泥水处理:在施工过程中,需要对泥水进行处理,包括去除杂质、调整泥水浓度等。

处理后的泥水可用于土地回填、道路修建等工程。

4、安全监控:在施工过程中,需要对地面、地下和设备等方面进行安全监控,防止出现塌方、设备故障等风险。

泥水平衡顶管技术

泥水平衡顶管技术

泥水平衡顶管技术泥水平衡顶管技术是一种新型地下管道施工技术,其主要原理是在地下隧道内注入泥浆,并控制泥浆压力与周围土壤压力相平衡,以保证在不破坏地下建筑物和地下管道的情况下推进隧道并安装管道。

本文将介绍泥水平衡顶管技术的原理、施工过程和适用范围。

一、原理泥水平衡顶管技术的原理主要是依靠注入泥浆来控制周围土壤的压力,以便安全地推进地下隧道和安装管道。

具体来说,施工人员先在隧道前方钻探一个或多个钻孔,并注入泥浆,然后通过压力控制系统控制泥浆压力,使其与周围土壤的压力相平衡。

这样,就可以避免土壤塌方的情况出现,同时也保证了地下建筑物和管道的安全。

二、施工过程泥水平衡顶管技术的施工过程主要分为以下几步:1. 钻探钻孔。

在隧道前方钻探一个或多个钻孔,用于注入泥浆。

2. 注入泥浆。

把泥浆注入钻孔,然后通过压力控制系统控制泥浆的压力,使其与周围土壤的压力相平衡。

3. 推进隧道。

在泥浆的作用下,利用推进机械推进地下隧道。

4. 安装管道。

在推进隧道的过程中,安装管道到位。

5. 固化管道。

在管道到位后,进行灌浆、封口等工艺,固化管道。

三、适用范围泥水平衡顶管技术适用于以下情况:1. 要施工深度较大的地下隧道或管道。

2. 隧道或管道周围有复杂的地质情况,如岩石、软土、土层交界等。

3. 需要保证周围地下建筑物或管道的安全性。

4. 管道长度较长,需要快速、高效地施工。

综上所述,泥水平衡顶管技术是一种能够保证地下建筑物和管道安全的新型地下管道施工技术。

在施工难度较大、环境复杂的情况下,其优势得到了充分的发挥。

泥水平衡顶管施工方案

泥水平衡顶管施工方案

泥水平衡顶管施工方案泥水平衡顶管施工方案是用于城市地下管道施工的一种常见的施工方法,它具有施工周期短、对地表影响小等优点。

本方案将详细介绍泥水平衡顶管施工的步骤、施工机械及施工工艺,以确保施工的质量及安全。

一、施工步骤:1. 做好现场勘测,确定地下管道的布置及设计。

2. 准备材料和设备,在施工现场周围设置围栏,确保安全。

3. 根据设计要求,进行地面开挖,确保开挖面稳定,防止塌方。

4. 安装施工机械设备,如泥水平衡顶管机、推进机等。

5. 进行顶管预制,即在施工现场将管道预制好,然后进行顶管。

6. 开始进行泥水平衡顶管施工,通过起重机将顶管机下放至管道入口处,并启动顶管机。

7. 顶管机工作时,将泥浆准备好并注入顶管机,泥浆通过泥头顶起管道,并保持施工现场干燥和清洁。

8. 顶管机推进管道,直至达到设计要求的长度。

9. 将顶管机移动至下一个施工位置,继续进行顶管施工。

10. 顶管完成后,进行管道的检查、测试和保护工作。

11. 完成施工后,进行现场清理和修复。

二、施工机械及设备:1. 泥水平衡顶管机:主要用于顶管工作,能够有效地将泥浆用于顶管,确保施工质量。

2. 推进机:主要用于推进顶管机进行顶管工作。

3. 起重机:用于将顶管机下放至管道入口处。

4. 大型挖掘机:用于地面开挖。

5. 清洁车:用于施工现场的清洁工作。

三、施工工艺:1. 开挖工艺:根据设计要求进行地面开挖,并做好支护工作,确保开挖面稳定,防止塌方。

2. 顶管工艺:通过顶管机进行顶管施工,根据设计要求控制顶管机的推进速度和泥浆的注入速度,确保施工质量。

3. 检查和测试工艺:在顶管完成后,对管道进行检查和测试,确保施工质量。

4. 修复工艺:完成施工后,进行现场清理和修复工作,保持施工现场的整洁。

以上就是泥水平衡顶管施工方案的主要内容,通过详细的施工步骤、施工机械及施工工艺的介绍,可以确保施工的质量及安全。

同时,在施工过程中还应严格按照相关规范进行操作,确保施工的顺利进行。

浅谈泥水平衡式顶管施工工艺及质量控制

浅谈泥水平衡式顶管施工工艺及质量控制

浅谈泥水平衡式顶管施工工艺及质量控制泥水平衡式顶管施工工艺是一种在地下无需开挖地面进行施工的管道施工方法。

它通过在地下钻孔并安装管道,然后以泥浆的形式填充孔隙,在管道与地层之间建立平衡,使得地层不会向管道塌陷。

这种施工方式具有施工速度快、影响小、环境友好等优点,因此被广泛应用于城市地下管道建设中。

泥水平衡式顶管施工工艺的关键是控制施工过程中的水平平衡。

需要根据地质情况和设计要求选择合适的泥浆类型。

泥浆的粘度和密度应根据地层的稳定性和管道的作用进行调整,以确保泥浆能够填充孔隙且能够抵抗地层的压力。

需要对泥浆的供应进行控制,确保泥浆的流速和压力适中,不会对地层产生过大的影响。

还需要控制钻孔机具的挤压力和转速,以确保钻孔的稳定和控制管道的走向。

在泥水平衡式顶管施工过程中,还需要进行质量控制,以确保施工质量。

需要对地层的土质进行勘察,了解地层的稳定性和土壤的含水量。

基于这些信息,可以合理选择泥浆类型,并确定泥浆的配比。

需要对钻孔过程中的泥浆流速、压力和挤压力等参数进行监测和调整,以确保施工的平衡性。

需要对管道的安装进行监测,确保管道的垂直度和水平度满足设计要求。

还需要对施工现场进行检查,确保施工过程符合相关的安全规范和环境保护要求。

在泥水平衡式顶管施工中,还需要注意一些常见的质量问题。

管道的水平度和垂直度是其中的关键指标,应按照设计要求进行严格控制。

需要注意管道的连接方式和密封性,以确保管道的完整性和安全性。

还需要对地层的稳定性进行监测,防止因施工引起地质灾害。

对于泥浆的处理和回收也需要注意,以减少环境的污染和资源的浪费。

泥水平衡式顶管施工是一种有效的地下管道施工方法,通过控制施工过程中的水平平衡来保证施工质量。

在施工过程中,需要选择合适的泥浆类型、控制泥浆的供应和钻孔机具的操作参数,并进行质量控制和问题的监测。

只有做好这些工作,才能确保泥水平衡式顶管施工的质量和安全性。

上海合流污水治理二期工程顶管纠偏技术

上海合流污水治理二期工程顶管纠偏技术
1 地质 条件 及周 边环 境 1 经勘 探 ,B  ̄ 8号 井管线 段 所 经地 域 由上 而下 ) 33
层淤泥质黏土层 内,局部涉及有③。 层灰色淤泥质粉 质黏土或③ 层粉土层 。各土层的特性参数见表 1 。
表 1 各 土 层 的 特 性 参 数
层号 地层厚度
/ m
重度
环境 和 居 民 的影 响 ,经 与业 主 和设 计 院共 同 研究 后 ,
海 龙 华 地 区 。原 设 计 的 B 3~3 8号 井 西240mm钢 0 筋 混凝 土 顶 管段 中 间有 B 、B 1 2两 座井 ,B 井 位 于 1 中 山南 二 路 宛 平南 路 口的南 海 雯 英饭 店 门 口,B 2沉 井 位 于龙 华 西 路 离 6层 居 民楼 1 . i 。 由于 征 地 、 7 n处 拆 迁 的 费 用很 高 ,同 时 为 了最 大 限度 地 减 少 对 周 围
2. 泥 水 系统 4
T l ] 泥 水 系统 中有 l台泥 浆搅 拌 站 ,使 简单 ee e mo
管 ,其管 底距 顶 管 的管 顶 仅 9 m。 由于雨 水 管 年代 9c
已久 ,接 口密 封 性 能 差 ,稍 有 沉 降 ,就 有 可 能 引起 管节 接 口漏 水 ,导 致 路 面塌 方 ,对 交通 的安 全 威 胁
,N・ I m 【
内聚力
,P Ia 【
内摩擦 角 压缩模量
,) ( 。 , a MP
① ②。 ② ③ ③ ④
00 . 6 10 . 8 10 . 0 10 . 4 1 . 0 4 92 . 2 1. 49 5
l. 8 7 1. 9 2 l. 8 4 1. 7 7 l. 8 4 1. 7 0 l. 8 2

黄埔江倒虹管工程泥水平衡顶管施工技术方案

黄埔江倒虹管工程泥水平衡顶管施工技术方案

黄埔江倒虹管工程泥水平衡顶管施工技术方案1、工程概况本工程为上海市污水治理二期1.1标黄浦江倒虹管工程,沿线共设有两座竖井,即一座工作井及一座接收井。

其中工作井位于浦东耀华支路三渣搅拌站内,西*黄浦江,东接耀华支路,接收井位于浦西龙华机场附近,西*丰溪路,东临黄浦江,南北分别与石化公司及电力公司相邻,见图1。

图1 合流二期1.1标倒虹管工程总平面、剖面图隧道部分为两条长度均为610m的平行顶管隧道,隧道坡度均为i=0.162%,两条隧道中心间距为5m,隧道顶最大覆土约24.8m。

顶管机将穿越宽510m的黄浦江,江中段隧道顶最小覆土约7.5m。

圆隧道首次采用隧道股份设计、制造的适用于各种软土地质的φ2660mm泥水平衡式顶管机顶进施工,顶管主顶机械总顶力为10000kN。

圆隧道结构全部采用"F"型预制钢筋混凝土管节,其外径2640mm,内径2200mm,每节长度为3000mm,相邻两管节间由特制接头承插连接,接缝防水采用由氯丁橡胶制成的齿形橡胶圈,衬垫材料为多层胶合板。

本工程范围内的土层及各地层土质物理力学指标,见表1。

地层土质物理力学指标表1层号土层名称层底标高含水量W(%)密度kN/m3孔隙比e凝聚力C(kPa)内摩擦角φ°地基承载力kPa①1填土3.5334.617.61.08①2冲填土-5.4733.817.81.03③灰色粘质粉土-10.0734.17.91.048.02990④1灰色淤泥质粘土-10.6747.717.21.3765④2灰色淤泥质粉质粘土夹砂-13.0735.417.81.0710.02480⑤2灰色砂质粉土-25.8731.717.90.993.028100⑤3灰色粉质粘土-42.6733.317.81.0420.0191002、泥水平衡顶管系统泥水加压平衡顶管工法的特征是在机械掘削式顶管前部的刀盘附近安装隔板,形成泥水压力仓,将加压的泥水送入泥水压力仓,使开挖面稳定,刀盘切削下来的土砂以泥水形式被输送到地面。

顶管工程施工原理及重难点分析和事故案例分析

顶管工程施工原理及重难点分析和事故案例分析

一、事故经过(N08~NY04地表沉陷事故)
N08-NY04区间顶管为DN3500砼顶管(内径3500mm,外径4140mm), 顶进距离39.92米,穿越土层主要为④灰色淤泥质粘土,上部部分穿越③ 灰色淤泥质粉质粘土,覆土深度约7.18米。顶管设备采用泥水平衡顶管机。 本次顶进从2015年3月25日开始,截止至29日上午顶进里程为27.5米, 各监测点变化较小,最大累计沉降点NY04-7为6.5mm,在可控范围内。 29日下午,顶进里程达到30米,管线监测点RQ12、RQ13、RQ14、 SS6、SS11、SS12、SSX11、SSX12、SSX13、TX6、TX16、TX17、 WS8-2、WS8-3、YS8、YS18、YS19、YS20、YS21,地表监测点 NY04-1、NY04-2、NY04-3、NY04-4、NY04-5、NY04-6、NY04-7、 NY04-8日变化量均已达到或超过警值,TX11被破坏,其中单次变化最大 值;-43.7mm(NY04-5),最大累计值:-47.2mm(NY04-6)。地面沉降趋 势稍有减缓,但地面沉降还在继续,造成N08井围档外侧人行道局部塌陷, 并未对管线造成大的影响。
顶管施工技术及重难点 分析
一、顶管施工原理及主要设备和系统
二、顶管施工重难点及常见问题
三、顶管施工案例分析
四、顶管施工安全管理
工程概况
*虹桥商务核心区(二期)区域供能管沟工程包括供能管沟、中继泵房以及 与功能项目一期的联通段等。主线管沟长4462m,接用户段管沟长610m,其 中顶管段长4435m,明挖段长637m;管沟工程设顶管工作井共30个,另设中 继泵站两座。 *18座主线工作井及南片区中继泵房围护结构采用地下连续墙,工作井基坑 平面尺寸以11m*11m为主,最大工作井基坑尺寸为19.2m*11m,基坑开挖深度 最深达21.26m;10座用户井及北片区中继泵房围护结构主要采用SMW工法桩, 用户井基坑平面尺寸7.9m*5.8m,基坑开挖深度达13.5m。 *二期供能管沟主要采用顶管的施工方式,共29段,其中φ4200mm钢顶管 长2751m,共11段;φ4000mm砼顶管1024m,共8段;φ3500mm砼顶管长 343m,共10段;φ3000mm砼顶管长66m。主线顶管埋深3.56~14.24m,用 户井顶管埋深4.63~8.96m。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海合流二期过江倒虹管泥水平衡顶管施工技术周文波吴惠明1 工程概况本工程为上海市污水治理二期1.1标黄浦江倒虹管工程,沿线共设有两座竖井,即一座工作井及一座接收井。

其中工作井位于浦东耀华支路三渣搅拌站内,西靠黄浦江,东接耀华支路,接收井位于浦西龙华机场附近,西靠丰溪路,东临黄浦江,南北分别与石化公司及电力公司相邻,见图1。

图1 合流二期1.1标倒虹管工程总平面、剖面图隧道部分为两条长度均为610m的平行顶管隧道,隧道坡度均为i=0.162%,两条隧道中心间距为5m,隧道顶最大覆土约24.8m。

顶管机将穿越宽510m的黄浦江,江中段隧道顶最小覆土约7.5m。

圆隧道首次采用隧道股份设计、制造的适用于各种软土地质的φ2660mm泥水平衡式顶管机顶进施工,顶管主顶机械总顶力为10000kN。

圆隧道结构全部采用"F"型预制钢筋混凝土管节,其外径2640mm,内径2200mm,每节长度为3000mm,相邻两管节间由特制接头承插连接,接缝防水采用由氯丁橡胶制成的齿形橡胶圈,衬垫材料为多层胶合板。

本工程范围内的土层及各地层土质物理力学指标,见表1。

地层土质物理力学指标表12 泥水平衡顶管系统泥水加压平衡顶管工法的特征是在机械掘削式顶管前部的刀盘附近安装隔板,形成泥水压力仓,将加压的泥水送入泥水压力仓,使开挖面稳定,刀盘切削下来的土砂以泥水形式被输送到地面。

泥水平衡顶管系统主要由顶管机、泥水输送、泥水处理及顶进管理四个系统组成。

(1) 泥水平衡顶管机① 泥水加压平衡顶管机主机²工作原理:工具管在正常作业前,刀盘与壳体外圈接触,刀排与刀盘盘体接触,泥水仓处于密闭状态,以延缓泥水压力泄漏。

同时在泥水旁路切换大循环时,使泥水压力的波动对开挖面的扰动降到最小,待泥水仓中压力稳定后,启动中心轴动力泵站带动中心轴及刀架向前运动,使刀架与刀盘分离,在两者之间形成四条70mm的进土间隙,并由中心轴及刀架的继续伸出带动刀盘盘体的运动,使之与壳体保持一定距离,此时机头即处于待工作状态,启动刀盘驱动电机,通过第一级减速(105k行星齿轮减速机),其输出轴上的小齿轮带动中心轴上的大齿轮(即第二级减速i=131/17)最终带动刀盘及刀架,以1.5rpm转动(可正反转)切削土体,见图2。

图2 顶管机主机示意图²主要技术参数:A.外形尺寸:直径(外径)2660mm,长度4240~4300mm。

B.刀盘:最大扭矩277kNm,转速1.516rpm,驱动电机功率22kW³2,最大移动量40mm。

C.中心轴:最大移动量110mm,油缸最大压力32MPa,最大平衡力2050kN,最大平衡土压范围0-368.9kN/m2。

D.纠偏装置:千斤顶数量8台,最大工作压力32MPa,单台最大推力900kW,纠偏行程60mm,纠偏角度±1.8°。

②顶进装置顶进装置分主顶进装置及中继顶进装置两部分。

主顶进装置的主要功能是完成管节的顶进,其由底座、油缸组、顶进头、V 形顶块、钢后靠及液压动力泵站等组成;中继顶进装置主要是为中继接力顶进所用。

(2) 泥水处理泥水处理系统主要由粘土溶解槽、调整槽、剩余槽、清水槽、泥水分离旋流器和沉砂池等组成,起处理泥水(由盾构开挖面排出)和制造新鲜泥水的作用。

泥水处理采用一次沉淀的方法,沉淀后的泥水送入调整槽,调整粘度、密度后重新利用。

江中设置一台潜水泵引水入清水槽,清水槽内设潜水泵一台,用于向调整槽内加注清水,调整槽内设搅拌装置,调整后泥水通过P1(PH)泵送入顶管机内使用,粘土溶解槽内搅拌浓泥浆,加入调整粘度、密度。

粘度控制在25S左右,密度在1.2g/mm3左右,并且根据实际情况再作调整,见图3。

图3 泥水处理简图(3) 泥水输送泥浆输送系统是由一根6″送泥管、一根6″排泥管、送泥泵和排泥泵等部分组成。

经处理后的泥水由调整槽通过P1-1泵或PH泵由地面送至井下,顶管内排出的高密度泥水,经安装在地面和隧道内的接力泵送回至地面泥浆沉淀池,见图4。

图4 泥水输送系统流程图泥水输送系统启动时,先开启VP阀,启动PI泵,开启V3、V5阀,再逐个启动P2、P3、PE泵。

系统启动数分钟后,当送排泥水压力和流量趋于稳定,送泥水压力和切口压力基本相同时,才可操作到"顶进状态"。

进入"顶进状态"时,开启机头阀,开启V1、V2阀,关闭V3阀。

泥水输送系统可逐渐达到泥水平衡,调整送泥水压和排泥流量,使推进过程中一直保持泥水平衡,若在推进过程中,切口水压值偏高设定值,操作人员应采取措施,使之恢复正常。

若切口水压继续偏差达限值,应立即切换到"旁路状态"。

如果切口水压的偏离原因是泥水管道堵塞引起的,就应操作至"逆洗状态",对堵塞管道进行冲洗。

管道畅通后,应先转换到"旁路状态",最后才转换到"顶进状态"。

顶进结束后,应将"顶进状态"切换到"旁路状态",待泥水平衡后,再切换到"停止状态"。

(4) 顶进管理系统顶进管理系统由顶管机主机及泥水输送两大系统组成。

该系统能在电脑中反映出施工过程中的切口水压、送排泥流量、送排泥密度、主顶速度、主顶行程、刀盘油压和顶管的平面、高程、转角等一系列施工参数。

顶进过程中,中央控制室操作人员通过此管理系统反映的各类施工参数及时作相应调整。

3 泥水平衡顶管主要施工参数的设定与调整(1)切口水压设定泥水平衡顶管顶进时,开挖面不断被刀头切削,此时泥膜被刀头切削并将泥水压力传递给土体,由于刀头的介入使传递给土体的外力增加,因此开挖面处于动态平衡之中。

切口水压的上、下限值设定可根据常用土体力学计算公式计算得到。

实际顶进过程中的切口水压是根据切口水压设计设定值、实时的土砂量和干砂量积算值等重要参数设定。

其中切口水压设计设定值可根据近10~50m掘进过程中较佳的设定值回归所得,见图5。

图5 50~100m设定切口水压与理论计算关系图(2) 顶进速度顶进速度的控制过程中,应注意以下几点:① 主顶启动时,必须检查千斤顶是否靠足,开始顶进和结束顶进之前速度不宜过快。

每节顶进开始时,应逐步提高顶进速度,防止启动速度过大。

② 在利用中继间(一级或多级)作接力顶进时,必须确保后级中继间及主顶所用千斤顶充分均匀受力,避免顶管机后退造成切口水压剧降,从而影响开挖面的稳定。

待前级中继间顺利顶进到位后依次将后级中继间及主顶顶进到位。

③ 一节顶进过程中,顶进速度值应尽量保持恒定,减少波动,保证切口水压稳定和送、排泥管的畅通。

④ 顶进速度的快慢必须满足每节润滑泥浆注浆量的要求,保证润滑泥浆系统始终处于良好工作状态。

根据实际施工经验,正常顶进条件下,顶进速度应设定为2 5~3.5cm/min;如正面遇到障碍物或地基加固土,顶进速度应低于1cm/min。

(3) 泥水质量控制① 密度泥水的密度是一个主要控制指标。

泥水密度比重不宜过高或过低,过高将影响泥水的输送能力,过低将破坏开挖的稳定。

实际施工和室内实验结果表明,适用于本工程的泥水密度范围应在1.12~1.20g/mm3。

下限为1.12g/mm3,而上限需根据顶管机中心轴所能承受的最大扭矩来定。

② 粘度泥水的粘度是另一个主要控制指标。

从土颗粒的悬浮性要求而言,要求泥水的粘度越高越好,根据泥水处理系统的自造浆能力,随着顶进节数的增加,泥浆越来越浓,粘度也呈直线上升,而粘度的增加并非说明泥浆的质量越来越高,因此,泥水粘度的范围应在20~25S,考虑到粘度的调整有一个过程,应在泥浆粘度为22S时(调整槽粘度),即可逐渐添加CMC,添加量的多少视粘度下降的趋势而定。

③析水量析水量是泥水管理中的一项综合指标。

泥水的析水量应小于5%,降低土颗粒和提高泥浆的粘度,是保证析水量合格的主要手段。

本工程采用的指导配比见表2、表3。

单位:kg 指导配比表2单位:kg 指导配比表3泥水监控是一个使用→小调整→使用→大调整→使用的无限循环过程,是一个动态变化过程。

检查配比是否合理的标准是地面沉降量,沉降量得到控制后就要注意泥水指标的变化趋势,使之稳定在某一区域内。

(4) 逆洗时的压力控制逆洗是顶进过程中较为常用的防止和消除排泥管吸口堵塞的方法。

在逆洗过程中,由于土仓或顶管机内的排泥管处于堵塞状态,因此逆洗时应提高排泥流量,但不能降低切口水压,整个逆洗过程必须密切注意开挖面稳定情况。

推进、逆洗和旁路三状态切换时的切口水压控制偏差值为:±0.02MPa。

(5) 开挖面稳定的判断方法开挖面稳定是泥水平衡顶管顶进施工中最重要的管理项目之一,它直接影响着顶管施工质量。

控制每节掘削量是开挖面稳定的必要保证。

① 掘削量的控制根据地质情况进行理论掘削量计算:w=V³(1-n)³rW:理论掘削量(m3/Ring)V:砂性土在顶管机断面内所占的体积(m3)n:砂性土的孔隙度(%)r:砂性土的密度实际掘削量W′:W′:实际掘削量(m3/Ring)rs:土的比重Q1:排泥流量(m3/min)p1:排泥密度(kg/m3)Q0:送泥流量(m3/min)p0:送泥密度(kg/m3)t:掘削时间(min)实际掘削量直接显示在计算机屏幕上,它较真实的反映实际掘削过程中的掘削量。

实际掘削量W′(干砂量)与偏差流量Δq的关系:偏差流量Δq瞬时计算式:Δq=Q1-(A²VS+Q0)Δq:偏差流量(m3/min)A:刀盘面积(m2)VS:顶进速度(m/min)上式变换可得到排泥流量计算式:Q1=(A²VS+Q0)+Δq② 掘削量的判别方法偏差流量为正值时,顶管机处于"超挖"状态,干砂量比标准值大;偏差流量为负值时,顶管机处于"溢水"状态,干砂量比标准值小。

当发现掘削量过大时,应立即检查泥水密度、粘度和切口水压。

在查明原因后应及时调整有关参数,确保开挖面稳定。

4 泥水平衡顶管施工引起的地面沉降规律施工过程中的地面沉降过程分两个阶段。

第5节和第10节顶进结束后的地表沉降变化见图6。

由图6可知,泥水平衡顶管在顶进过程中引起的地面沉降变化可分为两个阶段。

第一阶段是指开挖面达到测点之前的沉降或隆起。

它主要是由于泥水压力引起的,泥水压力过高,使开挖面受挤引起地面隆起;泥水压力过低,使开挖面应力释放引起地面沉降。

第二阶段是指从顶管机切口达到测点至顶管机尾离开测点时间范围内引起的沉降或隆起。

该段的地面变化主要是由顶管机及隧道移动对地层的摩擦和剪切引起的。

此外,平面或高程纠偏引起的单侧土体附加应力也将影响此阶段的地面沉降。

相关文档
最新文档