最新版初三中考数学模拟试卷易错题及答案3871277

合集下载

2024年中考数学模拟试卷及答案

2024年中考数学模拟试卷及答案

20
21
22
23
-6-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
x+3≥-2,
5.在数轴上表示不等式组ቊ
的解集,正确的
7-x>5
是( C )
【解析】解不等式x+3≥-2,得x≥-5,解不等式7-
x>5,得x<2,∴-5≤x<2,只有C项符合题意.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
4
5
6
7
8
9
10
C.80°
11
12
13
14
15
16
D.85°
17
18
19
20
21
22
23
-8-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
【解析】∵AC∥DF,∠A=45°,∴∠FGB=∠A=
45°.∵∠DEF=90°,∠D=60°,∴∠F=180°-
∠DEF-∠D=180°-90°-60°=30°(依据:三角
知某电阻式粮食水分测量仪的内部电路如图1所示,将粮食放在湿
敏电阻R1上,使R1的阻值发生变化,其阻值随粮食水分含量的变化
关系如图2所示.观察图象,下列说法不正确的是(
D)
A.当没有粮食放置时,R1的阻值为40 Ω
B.R1的阻值随着粮食水分含量的增大而减小
C.该装置能检测的粮食水分含量的最大值是12.5%
16
17
18
19
20
21
22
23
-14-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)

最新版初三中考数学模拟试卷易错题及答案1589305

最新版初三中考数学模拟试卷易错题及答案1589305

中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.如图,OAB △绕点O 逆时针旋转80到OCD △的位置,已知45AOB ∠=,则AOD ∠等于( ) A .55B .45C .40D .352.如图所示的图形都是轴对称图形,其中对称轴条数最少的是( )3.如图所示的虚线中,是对称轴的是( ) A .①②③④B .①②③C .①③D .②4.222(3)()(6)3a ab b -⋅⋅的计算结果为( ) A . 2472a b -B . 2412a b -C . 2412a bD . 2434a b5.计算23(2)a -的结果是( ) A .56a -B .66a -C .58a -D .68a -6. 计算32()x 的结果是( ) A .5xB .6xC .8xD .9x7.王老师的一块三角形教学用玻璃不小心打破了(如图),他想再到玻璃店划一块,为了方便他只要带哪一块就可以了( ) A .①B .②C .③D .④8.下列计算中,正确的是( ) A .2a+3b=5abB .a ·a 3=a 3C .a 6÷a 2=a 3D .(-ab )2=a 2b 29.2222)(4)(12)(9b a b a b a ++-+-因式分解的结果是( ) A .2)5(b a -B .2)5(b a +C .)23)(23(b a b a +-D .2)25(b a -10.下列多项式中,含有因式)1(+y 的多项式是( ) A .2232x xy y -- B .22)1()1(--+y y C .)1()1(22--+y yD .1)1(2)1(2++++y y11.如图,∠AOP=∠BOP ,PD ⊥OB ,PC ⊥OA ,则下列结论正确的是( ) A .PD=PC B .PD ≠PCC .PD 、PC 有时相等,有时不等 D .PD >PC12.从甲、乙两班分别任抽10名学生进行英语口语测验,其测试成绩的方差是213.2S =甲,226.36S =乙,则 ( ) A .甲班l0名学生的成绩比乙班10名学生的成绩整齐 B .乙班l0名学生的成绩比甲班10名学生的成绩整齐 C .甲、乙两班10名学生的成绩一样整齐 D .不能比较甲、乙两班学生成绩的整齐程度13.如图,AD 、AE 分别是△ABC 的高和角平分线,∠DAE=20°,∠B=65°,则∠C 等于( ) A .25°B .30°C .35°D .40°14. 一架飞机在无风的情况下每小时飞行 1200千米,若逆风飞完长为x 千米的航线用 3小时,而顺风飞完这条航线只需 2小时. 根据题意列方程,得1200120032x x-=-.这个方程所表示的意义是( ) A .飞机往返一次的总时间不变B .顺风与逆风飞行,飞机自身的速度不变C .飞机往返一次的总路程不变D .顺风与逆风的风速相等 15.下列运算正确的是( ) A .0(3)1-=-B .236-=- C .9)3(2-=-D .932-=-16.在一副完整的扑克牌中摸牌,第一张是红桃3,第二张黑桃7,第三张方片4,第四张是小王,那么第五张出现可能性最大的是( ) A .红桃B .黑桃C .方片D .梅花17.计算2483(21)(21)(21)⨯+++的结果为( ) A .841- B .6421-C .1621-D .3221-18.已知2x y m =⎧⎨=⎩是二元一次方程531x y +=的一组解,则m 的值是( ) A . 3B . -3C .113D .113-19.如图所示,下列判断正确的是( ) A .若∠1 =∠2,则1l ∥2l B .若∠1 =∠4,则3l ∥4l C .若∠2=∠3,则1l ∥2l D .若∠2=∠4,则1l ∥2l20.下列四个图形中,轴对称图形的个数是( )①等腰三角形, ②等边三角形, ③直角三角形, ④等腰直角三角形 A . 1个B .2个C .3个D .4个21.一个三角形的两条边分别为1和2,若要使这个三角形成为直角三角形,则应满足下列各个条件中的( ) A .第三边长为3B .第三边的平方为3C .第三边的平方为5D .第三边的平方为3或522.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A .B .4cmC D .3cm23.如图,8×8方格纸的两条对称轴EF ,MN 相交于点0,对图a 分别作下列变换:①先以直线MN 为对称轴作轴对称图形,再向上平移4格;②先以点0为中心旋转180°,再向右平移1格;③先以直线EF 为对称轴作轴对称图形,再向右平移4格,其中能将图a变换成图b的是()A.①②B.①③C.②③D.③24.如图所示,是由一些相同的小立方体构成的几何体的三视图,这些相同小立方体的个数是()A.3个B.4个C.5个D.6个25.如图,⊙O的直径 AB 与弦 AC 的夹角为35°,过C点的切线 PC 与 AB 的延长线交于点 P,那么∠P 等于()A.15°B.20°C.25°D.30°26.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A.∠B=∠E,BC=EF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠E D.∠A=∠D,BC=EF27.一个五次多项式,它的任何一项的次数()A.都小于5 B.都等于5 C.都不大于5 D.都不小于528.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()A.①和②B.②和③C.①和③D.①②③29.下列各组量中具有相反意义的量是()A.向东行 4km 与向南行4 kmB.队伍前进与队伍后退C .6 个小人与 5 个大人D .增长3%与减少2%30. 在数①-32;②5. 8;③3178;④-0. 31;⑤0;⑥ 48;⑦2;⑧35-中,负分数的个数有( ) A .0 个B .1 个C .2 个D .3 个31.下列运算中,结果为负数的是( ) A .(-5)×(-3) B .(-8)×O ×(-6)C . (-6)+(-8)D . (-6)-(-8)32.+8 比 -5 大( ) A .13B .-13C .8D .5.33.若0b <,则a ,a b -,a b +中,最大的是( ) A .aB .a b -C .a b +D .不能确定34.五个有理数的积是负数,这五个数中负因数个数是( ) A .1 个 B .3 个 C .5 个D .以上选项都有可能35.若3-=b a ,则a b -的值是( ) A .3B .3-C .0D .636.已知3x =,2y =,0x y ⋅<,则x y +的值为( ) A .5或-5B .1或-1C .5或1D .-5或-137.如图.在△ABC 中,AB AC ,AB 的中垂线DE 交AC 于点D ,交AB 于点E ,如果BC=10,△BDC 的周长为22,那么△ABC 的周长是( ) A .24B .30C .32D .3438.已知a 、b 、c 是三角形的三条边,那么代数式2222a ab b c -+-的值是( ) A .小于0B . 等于0C .大于0D .不能确定39.三角形一边上的中线把原三角形分成两个( ) A .形状相同的三角形 B .面积相等的三角形 C .直角三角形 D .周长相等的三角形40.若x 表示一个两位数,y 也表示一个两位数,小明想用 x 、 y 来组成一个四位数,且把 x 放在 y 的右边..,你认为下列表达式中哪一个是正确的( ) A .yx B .x+y C .100x+y D .100y+x41.某商场为促销将一种商品 A 按标价的九析出售,仍可获利润 10%. 若商品A 的标价是33元,那么该商品的进价为( ) A .31元B .30.2元C .29.7元D .27元42.如果关于m 的方程 2m+b=m-1 的解是-4,那么b 的值是( ) A .3 B .5C . -3D .-543.方程11012xx -+=-去分母后,得( ) A .1-x+10=-x B .1-x+10=-12x C .1+x+10=-12x D .1-x+120=-l2x44.要锻造直径为200 mm ,厚为18 mm 的钢圆盘,现有直径为40 mm 的圆钢,不计损耗,则应截取的圆钢长为 ( ) A .350 mmB .400 mmC .450 mmD .500 mm45.若1x =是方程20x a -=的根,则a =( ) A .1B .1-C .2D .2-46.如图,P 是线段MN 的中点,Q 是MN 上的点,判断下列说法中:①PQ=12PN ;②PQ=MP-QN ;③PQ=MQ-PN ;④PQ=12MN-QN ,其中正确的有( )A .1个B .2个C .3个D .4个47.把图中的角表示成下列形式:①∠AP0;②∠P ;③∠0PC ;④∠0;⑤∠CP0;⑥∠AOP . 其中正确的有 ( ) A .6个B .5个C .4个D .3个48.如图,将长方形ABCD 沿AE 折叠,使点D 落在BC 边上的点F .若∠BAF=60°,则∠DAE= ( ) A .150B .30°C . 45°D .60°49.如图,∠1=15°,∠AOC=90°,B 、O 、D 三点在一直线上,则∠l 的余角的补角是( ) A .15°B .75°C .105°D .165°50.以下是甲、乙、丙三人看地图时对四个地标的描述: 甲:从学校向北直走500米,再向东直走 100米可到图书馆; 乙:从学校向西直走300米,再向北直走200米可到邮局; 丙:邮局在火车站正西方向200米处.根据三人的描述,若从图书馆出发,下列走法中,终点是火车站的是( ) A .向南直走300米,再向西直走200米 B .向南直走300米,再向西直走600米 C .向南直走700米,再向西直走200米, D .向南直走700米,再向西直走600米 51.下列判断正确的是 ( )①在数轴上,原点两旁的两个点所表示的数都是互为相反数; ②任何正数必定大于它的倒数;③5ab ,12x ,4a 都是整式;④x 2-xy+y 2是二次多项式 A .①②B .②③C .③④D .①④52.为了考查某城市老年人参加体育锻炼的情况,调查了其中100名老年人每天参加体育锻炼的时间,其中100是这个问题的( ) A .一个样本B .样本容量C .总体D .个体53.如图,阴影部分的面积是( ) A .112xy B .132xy C .6xyD .3xy54.两个相似菱形的边长比是 1:4,那么它们的面积比是( )D A .1:2B .1:4C .1:8D .1:1655.如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN ⊥AC 于点N ,则MN 等于( ) A .65B .95C .125D .16556.下列各图中,是轴对称图案的是( )AN57.如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD BC ,于E F ,点,连结CE ,则CDE △的周长为( )A .5cmB .8cmC .9cmD .10cm58.菱形的两条对角线的长分别是6和8 ,则这个菱形的周长是( ) A .24B .20C .10D .559.如图,函数1y x=-图象大致是( )A .B .C .D .60.如果点 P 是反比例函数6y x=图象上的点,PQ ⊥x 轴,垂足为 Q ,那么△POQ 的面积是( ) A . 12B .6C .3D . 261.桌子上放了一个lO0 N 的物体,则桌面受到的压强 P (Pa )与物体和桌子的接触面的面积 S (m 2)的函数图象大致是( )A .B .C .D .62.抛物线222y x x =-+的顶点坐标是( ) A .(1,1)B .R (一1,1)C .(一 1,一1)D .(1,一1)63.下列四个函数:①2y x =+;②6y x=;③23y x =;④2(26)y x x =--≤≤,四个函数图 象中是中心对称图形,且对称中心是原点的共有( ) A .1 个B .2 个C .3 个D .4 个64.如图,OA 、OB 、OC 都是⊙O 的半径,∠ACB =∠CAB ,则下列结论错误的是( )A .∠AOB=∠BOCB .AB=BCC .AM=MCD .OM=MB65.一个扇形的半径等于一个圆的半径的 2倍,且面积相等,则这个扇形的圆心角是( ) A .45°B .60°C .90°D .180°66.直角梯形的一腰长为l0 cm ,这条腰与底所成的角为30°,则它的另一腰长为 ( ) A .2.5 cmB .5 cmC .10 cmD .15 cm67.如图,D 、E 、F 分别在△ABC 的三边上,DE ∥BC ,DF ∥AC ,下列比例式中一定成立的是( ) A .AD DBBC DF=B .AE BFEC FC=C .DF DEAC BC=D .EC BFAE BC=68.已知直角三角形的面积为30,斜边上的中线是6.5,则两直角边的和是( ) A .19B .17C .16D .15.569.如图,P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过P 点作直线截△ABC ,使截得的三角形与△ABC 相似,满足这样条件的直线共有( ) A .1条B .2条C .3条D .4条70.(针孔成像问题)根据图中尺寸(AB ∥AB'),那么物像长y (A'B'的长)与物长x (AB 的长)之间函数关系的图象大致是( )71.已知外婆家在小明家的正东方,学校在外婆家的北偏西40°,外婆家到学校与小明家到学校的距离相等,则学校在小明家的( ) A .南偏东50°B .南偏东40°C .北偏东50°D .北偏东40°72.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ) A .118 B .112 C .19 D .1673.与 cos70°值相等的是( ) A .sin70°B .cos20°C .sin20°D .tan70°74.在Rt △ABC 中,∠C=90°,下列式子不一定成立的是( )A .sinA=cosB B .sinB=cosAC .tanA=tanBD .sin 2A+sin 2B=175.布袋中装有 3个红球和 2个白球,从中任抽两球,恰好有 1 个红球、 1 个白球的概率是( ) A .35B .30l C .12D .1476.生活处处皆学问.如图,眼镜镜片所在的两圆的位置关系是( ) A .外离B .外切C .内含D .内切77.在ABC △中,90C AC BC ∠=,,的长分别是方程27120x x -+=的两个根,ABC △内一点P 到三边的距离都相等.则PC 为( )A .1BC .2D .78.直线l 与半径为r 的⊙O 相交,且点0到直线l 的距离为 5,则r 的取值是( ) A . r>5B .r=5C . r<5D . r ≤ 579.2008年8月8日,五环会旗将在“鸟巢”高高飘扬,会旗上的五环(如图)间的位置关系有( ) A .相交或相切B .相交或内含C .相交或相离D .相切或相离80.下列命题中为真命题的是( ) A .三点确定一个圆 B .度数相等的弧相等C .圆周角是直角的角所对的弦是直径D .相等的圆心角所对的弧相等,所对的弦也相等81.如图所示,AB ∥CD ,CE 平分∠ACD ,∠A=110°,则∠ECD 的度数等于( ) A .110°B .70°C .55°D .35°82.一次函数34y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限83.如图,直线a ∥b ,∠2=95°,则∠1等于( ) A .100°B . 95°C . 99°D .85°84.下列立体图形中,是多面体的是( )85.如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD ,BC 于E ,F 点,连结CE ,则△CDE 的周长为( ) A .5cmB .8cmC .9cmD .10cm86.已知函数y =x -5,令x =21、1、23、2、25、3、27、4、29、5,可得函数图象上的十个点.在这十个点中随机取两个点P (x 1,y 1)、Q (x 2,y 2),则P 、Q 两点在同一反比例函数图象上的概率是( ) A .91B .454 C .457 D .5287.下列函数中,是二次函数的是( ) A .1y x=-B .y x =-C .1y x =-+D .21y x =-+88.已知22222()3()40a b a b +-+-=,则22a b +=( ) A .-l B .4C .4或-lD .任意实数89.有意义的x 的取值范围是( ) A .2x ≠-B . 12x ≤且2x ≠- C .12x <且2x ≠- D . 12x ≥且2x ≠- 90.不等式组2130x x ≤⎧⎨+>⎩的解在数轴上可表示为( )A .B .C .D .91.关于x 的一元二次方程21(1)420m m x x ++++=的解为( ) A .11x =,21x =-B .121x x ==C .121x x ==-D .无解92.某服装销售商在进行市场占有情况的调查时,他应该最关注已售出服装型号的( ) A .平均数B .众数C .中位数D .最小数93.已知AABC 的三个内角度数比为2:3:4,则这个三角形是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形94.下列各不等式中,变形正确的是( ) A .36102x x +>+变形得54x > B .121163x x -+<,变形得612(21)x x --<+ C .3214x x -<+变形得3x <- D .733x x +>-,变形得5x <95.当代数式235x x ++的值为 7时,代数式2392x x +-的值是( ) A .4B .0C .-2D .-4 96.将100个数据分成8个组,如下表:则第六组的频数为( ) A .12B .13C .14D .1597.从500个数据中用适当的方法抽取50个作为样本进行统计,126.5~130.5之间数据的频率在频数分布表是0.12,那么估计总体数据落在126.5~130.5之间个数为( ) A .60B .120C .12D .698.下列图形中,中心对称图形的是( ) A .B .C .D .99.在□ABCD 中,若∠A=60°,则∠C 的度数为( ) A .30°B .60°C .90°D .120°100.顺次连结一个四边形的四边中点所组成的四边形是矩形,则原四边形一定是( ) A .矩形 B 对角线相等的四边形C .对角线垂直的四边形D .平行四边形101.某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x 名学生,根据题意,列出方程为( ) A .x (x+1)=2550B .x (x-1)=2550C .2x (x+1)=2550D .x (x-1)=2550×2102.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( ) A .13B .12C .23D .34103.袋中有4个除颜色外其余都相同的小球,其中1个红色,1个黑色,2个白色. 现随机从袋中摸取一球,则摸出的球为白色的概率为( ) A .1B .21 C .31D .41104.从1~9这9个自然数中任取一个,是2的倍数或3的倍数的概率为( ) A .79B .29C . 23D . 59105.校七年级有 13名同学参加百米竞赛,预赛成绩各不相同,要取前 6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( ) A . 中位数B .众数C .平均数D .方差106. 如果a<b<0,下列不等式中错误..的是( ) A . ab >0B . a+b<0C .ba<1 D . a-b<0【参考答案】***试卷处理标记,请不要删除一、选择题1.D2.B 3.D4.A5.D6.B7.A8.D9.A 10.C 11.A 12.A 13.A 14.D 15.D16.D 17.C 18.B 19.C 20.C 21.D 22.A 23.D 24.B 25.B 26.D 27.C28.C29.D 30.C 31.CA . 圆锥B . 圆柱C . 球D .空心圆柱108.己如,已知1l ∥2l ,AB ∥CD ,CE ⊥2l 于点E ,FG ⊥2l 于点 G ,下列说法中不正确的是( ) A .∠B .C .A 、AB 的长度 D .1l 与2l 之间的距离就是线段CD 的长度109.判断四边形是菱形应满足的条件是( )A .对角线相等B .对角线互相垂直C .对角线互相平分D .对角线互相垂直平分110.如图,P 为⊙O 外一点,PA 切⊙O 于点A ,且OP=5,PA=4,则sin ∠APO 等于( )A .54B .53C .34D .43解析:答案A79.C 80.C 81.D 82.B 83.D 解析:答案: D84.B 85.D 86.B 87.D 88.B 89.B 90.A 91.C 92.B 93.A 94.D95.A 96.D 97.A 98.B 99.B 100.C 101.B 102.C 103.B 104.C 105.A 106.C 107.C 108.D 109.D 110.B。

九年级数学中考模拟试卷附答案

九年级数学中考模拟试卷附答案

九年级数学中考模拟试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中, 只有一项是符合题目要求,请将正确选项前的字母代号填写在答题卡相应位置.......上) 1.-32的相反数为 ( )A .9B .-9C .-6D .62.下列各图是选自历届世博会会徽中的图案,其中是中心对称图形的是 ( )3.下列运算正确的是 ()A .x 2+x 4=x 6B .x 2·x 3=x 6C .(x 3) 3=x 6D .25+35=5 5 4.下列说法不正确的是 ( )A .一组邻边相等的矩形是正方形B .对角线相等的菱形是正方形C .对角线互相垂直的矩形是正方形D .有一个角是直角的平行四边形是正方形 5.如图是一个三视图,则此三视图所对应的直观图是 ()6.将一副三角板按图中的方式叠放,则角 等于 ( ) A .75 B .60 C .45 D .307. 如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,点P 是直径MN 上一个动点,则PA+PB 的最小值为 ( )A .22B .2C .1D .2A .B .C .D . A .B .C .D .第6题NMBA第10题图P O8. 定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m ] 的函数的一些结论: ( ) ① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23; ③ 当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有A. ①④B. ①③④C. ①②④D. ①②③④二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 因式分解:x 3y -xy 3= .10. 中国旅游研究院发布的2011年“五一”小长假旅游人气排行报告显示,江苏接待游客总人数约为1817.1万人次,1817.1万人次用科学计数法表示为 人次. 11. 函数y =3-x x 中自变量x 的取值范围是__________.12. 函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是__________. 13.已知一个圆锥的底面直径是6cm 、母线长8cm ,求得它的表面积为 cm 2.14. 如果两个相似三角形的一组对应边分别为3cm 和5cm ,且较小三角形的周长为15cm ,则较大三角形的周长为__________cm . 15. 有一组数据如下: 3, a, 4, 6, 7. 它们的平均数是5,那么这组数据的方差_________. 16. 直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有 个点.17.如图,ABC ∆内接于⊙O ,90,B AB BC ∠==,D 是⊙O 上与点B 关于圆心O 成中心对称的点,P 是BC 边上一点,连结AD DC AP 、、.已知4=AB ,1=CP ,Q 是线第7题第17题段AP 上一动点,连结BQ 并延长交四边形ABCD 的一边于点R ,且满足AP BR =,则BQQR的值为_______________.18. 如图,在△ABC 中,AB =AC ,点E 、F 分别在AB 和AC 上,CE 与BF 相交于点D ,若AE =CF ,D 为BF 的中点,则AE ∶AF 的值为 .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(6分)先化简,再求值: x x x x x 2444222+-÷⎪⎪⎭⎫ ⎝⎛-+,其中1-=x .20. (8分)在如图所示的方格图中,每个小正方形的顶点称为“格点”,且每个小正方形的边长均为1个长度单位,以格点为顶点的图形叫做“格点图形”,根据图形解决下列问题: (1) 图中格点A B C '''△是由格点ABC △通过怎样变换得到的?(2) 如果建立直角坐标系后,点A 的坐标为(5-,2),点B 的坐标为(50)-,,请求出过A 点的正比例函数的解析式,并写出图中格点DEF △各顶点的坐标.各班种树情况70405010203040506070801234班级种树棵数21. (8分)如图,一个被等分成了3个相同扇形的圆形转盘,3个扇形分别标有数字1、3、6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停止在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).(1)请用画树形图或列表的方法(只选其中一种),表示出分别转动转盘两次转盘自由停止后,指针所指扇形数字的所有结果;(2)求分别转动转盘两次转盘自由停止后,指针所指扇形的数字之和的算术平方根为无理数的概率.22. (10分)红星中学开展了“绿化家乡,植树造林 ”活动,并对该校的甲、乙、丙、丁四个班级种树情况进行了考察,并将收集的数据绘制了图①和图②两幅尚不完整的统计图. 请根据图中提供的信息,完成下列问题:(1)这四个班共种树__________棵树. (2)请你补全两幅统计图.(3)若四个班种树的平均成活率是90%,全校共种树2000棵,请你估计这些树中,成活的树约有多少棵?甲 乙 丙 丁各班种树棵树的百分比 甲 35% 丁 丙乙 20%A BDO C H 23. (10分)如图,AB 为O 的直径,CD 为弦,且CD AB ⊥,垂足为H . (1)如果O 的半径为4,143CD =,求BAC ∠的度数;(2)在(1)的条件下,圆周上到直线AC 距离为3的点有多少个?并说明理由.24. (10分)某住宅小区的物业管理部门为解决住户停车困难,将一条道路辟为停车场,停车位置如图所示.已知矩形ABCD 是供一辆机动车停放的车位,其中AB=5.4米,BC=2.2米, ∠DCF=40°.请计算停车位所占道路的宽度EF (结果精确到0.1米). 参考数据:sin40°≈0.64 cos40°≈0.77 tan40°≈0.84.25. (10分)某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B 地,乙车从B地直达A地,下图是甲、乙两车间的距离y(千米)与乙车出发x(时)的函数的部分图像(1)A、B两地的距离是千米,甲车出发小时到达C地;(2)求乙车出发2小时后直至到达A地的过程中,y与x的函数关系式及x的取值范围,并在图中补全函数图像;(3)乙车出发多长时间,两车相距150千米?26. (10分)如图,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG 于点F.(1) 求证:DE-BF = EF.(2) 当点G为BC边中点时, 试探究线段EF与GF之间的数量关系,并说明理由.(3) 若点G为CB延长线上一点,其余条件不变.请画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).27. (12分)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4 cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐.(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,求出AD的长度;如果不存在,请说明理由.请你分别完成上述三个问题的解答过程.28.(12分)如图,直角梯形OABC中,AB∥OC,O为坐标原点,点A在y轴正半轴上,2),∠BCO=60°,OH⊥BC于点H.动点P从点C在x轴正半轴上,点B坐标为(2,3点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t秒.(1)求OH的长;(2)若△OPQ的面积为S(平方单位).求S与t之间的函数关系式.并求t为何值时,△OPQ的面积最大,最大值是多少;(3)设PQ与OB交于点M.①当△OPM为等腰三角形时,求(2)中S的值.②探究线段OM长度的最大值是多少,直接写出结论.答案选择题:1A 2. C 3.D 4. D 5B 6. A 7.B 8. C 填空题 9 xy(x+y)(x-y) 10 1.8171710⨯ 11 x>3 12 k>1 13 33π 14 25 15 2 16 16073 17 1或1312 185+12解答题:19. 解:原式)2()2)(2(442+-+÷-+=x x x x x x x )2)(2()2()2(2-++⋅-=x x x x x x 2-=x …………………4分 当1-=x 时,321-=--=原式.…………………6分20. 1)格点△A ′B ′C ′是由格点△ABC 先绕B 点逆时针旋转90,然后向右平移13个长度单位(或格)得到的.(先平移后旋转也行)…………………3分(2)设过A 点的正比例函数解析式为y =kx , 将A (-5,2)代入上式得 2=-5k , k =-52. ∴过A 点的正比例函数的解析式为:x y 52-= …………………5分 △DEF 各顶点的坐标为:D (2,-4),E (0,-8),F (7,-7). …………………8分21.(1)ABOCH列表如下:树状图………………… 4分(2)数字之和分别为:2,4,7,4,6,9,7,9,12.算术平方根分别是:2,2,7,2,6,3,7,3,23 设两数字之和的算术平方根为无理数是事件A ∴5()9P A……………………………8分22. (1)200 ………………………………2分(2)如图 ………………………………8分(3)90%×2000=1800(棵) 答:成活1800棵树. ………………10分 23. 解:解:(1)∵ AB 为⊙O 的直径,CD ⊥AB ∴ CH =21CD =23 在Rt △COH 中,sin ∠COH =OC CH =23∴ ∠COH =60° ∵ OA =OC ∴∠BAC =21∠COH =30° …………………5分 (2)圆周上到直线AC 的距离为3的点有2个.各班种树棵树的百分比甲35%丁25%丙20%乙20%种树苗棵数70404050010203040506070801234班级甲 乙 丙 丁因为劣弧AC 上的点到直线AC 的最大距离为2, ADC 上的点到直线AC 的最大距离为6,236<<,根据圆的轴对称性,A D C 到直线AC 距离为3的点有2个. …………………10分24. 解:在Rt △CDF 中,DC=5.4m∴DF=CD •sin40°≈5.4×0.64≈3.46 …………………3分 在Rt △ADE 中,AD=2.2,∠ADE=∠DCF=40°∴DE=AD •cos40°≈2.2×0.77≈1.69 …………………6分 ∴EF=DF+DE ≈5.15≈5.2(m )即车位所占街道的宽度为5.2m …………………10分 25(1)300,1.5; …………………2分 (2)由题知道:乙的速度为30602 1.5=-(千米/小时),甲乙速度和为300301801.5-=(千米/小时),所以甲速度为120千米/小时. 2小时这一时刻,甲乙相遇,在2到2.5小时,甲停乙动;2.5到3.5小时,甲乙都运动,3.5到5小时甲走完全程,乙在运动, 则D (2.5,30),E(3.5,210),F(5,300). 设CD 解析式为y kx b =+,则有202.530k b k b +=⎧⎨+=⎩,解得60120k b =⎧⎨=-⎩,60120y x ∴=-;同理可以求得:DE 解析式为180420y x =-;EF 解析式为60y x =.综上60120,(2 2.5)180420,(2.5 3.5)60,(3.55)x x y x x x x -<≤⎧⎪=-<≤⎨⎪<≤⎩. …………………6分图象如下.…………………7分(3)当0 1.5x <<时,可以求得AB 解析式为180300y x =-+, 当y=150时,得56x =小时,当2.5 3.5x <<时,代入180420y x =-得196x =小时. …………………10分26. (1) 证明:∵ 四边形ABCD 是正方形, BF ⊥AG , DE ⊥AG∴ DA =AB , ∠BAF + ∠DAE = ∠DAE + ∠ADE = 90°∴ ∠BAF = ∠ADE ∴ △ABF ≌ △DAE∴ BF = AE , AF = DE∴ DE -BF = AF -AE = EF …………………3分(2)EF = 2FG 理由如下:∵ AB ⊥BC , BF ⊥AG , AB =2 BG∴ △AFB ∽△BFG ∽△ABG∴2===FGBF BF AF BF AB ∴ AF = 2BF , BF = 2 FG 由(1)知, AE = BF ,∴ EF = BF = 2 FG …………………8分(3) DE + BF = EF …………………10分27.(1 )变小 ………………1分(2)问题一:AD=(3412-)cm问题二:设AD=x当FC 为斜边时,631=x 当AD 为斜边时,8649>=x 不合题意 当BC 为斜边 ,无解综上所述:当AD 的长是631时,以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形 …………………9分问题三:假设∠FCD=15° 作∠CFE 角平分线可求得CD=12348>+不存在这样的位置,使得∠FCD=15°…………………12分28解:(1)∵AB ∥OC∴∠OAB=∠AOC=90°在Rt △OAB 中,AB=2,AO=23∴OB=4,∠ABO=60°∴∠BOC=60°而∠BCO=60°∴△BOC 为等边三角形∴OH=OBcos30°=4×23=23; …………………2分(2)∵OP=OH-PH=2 3-t∴Xp=OPcos30°=3- 23t Yp=OPsin30°= 3-∴S= 21•OQ•Xp= •t•(3-23 t ) =t t 23432+-(o <t <23)当t=3时,S 最大=; ………………5分(3)①若△OPM 为等腰三角形,则:(i )若OM=PM ,∠MPO=∠MOP=∠POC∴PQ ∥OC∴OQ=yp 即t=3- 解得:t=332 此时S=332 (ii )若OP=OM ,∠OPM=∠OMP=75°∴∠OQP=45° 过P 点作PE ⊥OA ,垂足为E ,则有:EQ=EP即t-(3 - t )=3-23t 解得:t=2此时S=33-(iii )若OP=PM ,∠POM=∠PMO=∠AOB ∴PQ ∥OA此时Q 在AB 上,不满足题意. …………………10分②线段PM 长的最大值为 . …………………12分。

初三考试数学模拟试题精选含详细答案

初三考试数学模拟试题精选含详细答案

初三考试数学模拟试题精选含详细答案一、压轴题1.(概念认识)如图①,在∠ABC中,若∠ABD=∠DBE=∠EBC,则BD,BE叫做∠ABC的“三分线”.其中,BD是“邻AB三分线”,BE是“邻BC三分线”.(问题解决)(1)如图②,在△ABC中,∠A=70°,∠B=45°,若∠B的三分线BD交AC于点D,则∠BDC= °;(2)如图③,在△ABC中,BP、CP分别是∠ABC邻AB三分线和∠ACB邻AC三分线,且BP⊥CP,求∠A的度数;(延伸推广)(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分线所在的直线与∠ACD的三分线所在的直线交于点P.若∠A=m°,∠B=n°,直接写出∠BPC的度数.(用含 m、n的代数式表示)2.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC 的度数;(2)在图1中探究线段EF 、AF 、DF 之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF 、AF 、DF 之间的数量关系,并证明.3.如图,若要判定纸带两条边线a ,b 是否互相平行,我们可以采用将纸条沿AB 折叠的方式来进行探究.(1)如图1,展开后,测得12∠=∠,则可判定a//b ,请写出判定的依据_________; (2)如图2,若要使a//b ,则1∠与2∠应该满足的关系是_________;(3)如图3,纸带两条边线a ,b 互相平行,折叠后的边线b 与a 交于点C ,若将纸带沿11A B (1A ,1B 分别在边线a ,b 上)再次折叠,折叠后的边线b 与a 交于点1C ,AB//11A B ,137BB AC ==,,求出1AC 的长.4.探究:如图①,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,若∠B =30°,则∠ACD 的度数是 度;拓展:如图②,∠MCN =90°,射线CP 在∠MCN 的内部,点A 、B 分别在CM 、CN 上,分别过点A 、B 作AD ⊥CP 、BE ⊥CP ,垂足分别为D 、E ,若∠CBE =70°,求∠CAD 的度数;应用:如图③,点A 、B 分别在∠MCN 的边CM 、CN 上,射线CP 在∠MCN 的内部,点D 、E 在射线CP 上,连接AD 、BE ,若∠ADP =∠BEP =60°,则∠CAD +∠CBE +∠ACB = 度.5.在△ABC 中,已知∠A =α.(1)如图1,∠ABC 、∠ACB 的平分线相交于点D .①当α=70°时,∠BDC 度数= 度(直接写出结果);②∠BDC 的度数为 (用含α的代数式表示);(2)如图2,若∠ABC 的平分线与∠ACE 角平分线交于点F ,求∠BFC 的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC 以直线BC 为对称轴翻折得到△GBC ,∠GBC 的角平分线与∠GCB 的角平分线交于点M (如图3),求∠BMC 的度数(用含α的代数式表示).6.阅读并填空:如图,ABC 是等腰三角形,AB AC =,D 是边AC 延长线上的一点,E 在边AB 上且联接DE 交BC 于O ,如果OE OD ,那么CD BE =,为什么?解:过点E 作EF AC 交BC 于F所以ACB EFB ∠=∠(两直线平行,同位角相等)D OEF ∠=∠(________)在OCD 与OFE △中()________COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩所以OCD OFE △≌△,(________)所以CD FE =(________)因为AB AC =(已知)所以ACB B =∠∠(________)所以EFB B ∠=∠(等量代换)所以BE FE =(________)所以CD BE =7.如图,在等边ABC ∆中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE ∆,连结BE .(1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:ADC BEC ∆≅∆;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.8.请按照研究问题的步骤依次完成任务.(问题背景)(1)如图1的图形我们把它称为“8字形”, 请说理证明∠A+∠B=∠C+∠D .(简单应用)(2)如图2,AP 、CP 分别平分∠BAD 、∠BCD ,若∠ABC=20°,∠ADC=26°,求∠P 的度数(可直接使用问题(1)中的结论)(问题探究)(3)如图3,直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE , 若∠ABC=36°,∠ADC=16°,猜想∠P 的度数为 ;(拓展延伸)(4)在图4中,若设∠C=x ,∠B=y ,∠CAP=13∠CAB ,∠CDP=13∠CDB ,试问∠P 与∠C 、∠B 之间的数量关系为 (用x 、y 表示∠P ) ;(5)在图5中,AP 平分∠BAD ,CP 平分∠BCD 的外角∠BCE ,猜想∠P 与∠B 、D 的关系,直接写出结论 .9.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于点E .(1)如图1,连接EC ,求证:EBC 是等边三角形;(2)如图2,点M 是线段CD 上的一点(不与点,C D 重合),以BM 为一边,在BM 下方作60BMG ∠=︒,MG 交DE 延长线于点G .求证:AD DG MD =+;(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.10.如图1,在平面直角坐标系中,点A 的坐为()2,0,点D 的坐标为()0,2-,在ABC ∆中45ABC ACB ∠=∠=,//BC x 轴交y 轴于点M .(1)求OAD ∠和ODA ∠的度数;(2)如图2,在图1的基础上,以点B 为一锐角顶点作Rt BOE ∆,90BOE =∠,OE 交AC 于点P ,求证:OB OP =;(3)在第(2)问的条件下,若点B 的标为()2,4--,求四边形BOPC 的面积.11.对x y 、定义一种新运算T ,规定:()()(),2T x y mx ny x y =++(其中mn 、均为非零常数).例如:()1,133T m n =+.(1)已知()()1,10,0,28T T -==.①求mn 、的值; ②若关于p 的不等式组()()2,244,32T p p T p p a⎧->⎪⎨-≤⎪⎩恰好有3个整数解,求a 的取值范围; (2)当22x y ≠时,()(),,T x y T y x =对任意有理数,x y 都成立,请直接写出mn 、满足的关系式.学习参考:①()a b c ab ac +=+,即单项式乘以多项式就是用单项式去乘多项式的每一项,再把所得的结果相加;②()()a b m n am an bm bn ++=+++,即多项式乘以多项式就是用一个多项式的每一项去乘另一个多项式的每一项,再把所得的结果相加. 12.Rt △ABC 中,∠C =90°,点D 、E 分别是△ABC 边AC 、BC 上的点,点P 是一动点.令∠PDA =∠1,∠PEB =∠2,∠DPE =∠α.(1)若点P 在线段AB 上,如图(1)所示,且∠α=60°,则∠1+∠2= ; (2)若点P 在线段AB 上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为 ; (3)若点P 运动到边AB 的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(4)若点P 运动到△ABC 形外,如图(4)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.13.如图1.在△ABC 中,∠ACB =90°,AC =BC =10,直线DE 经过点C ,过点A ,B 分别作AD ⊥DE ,BE ⊥DE ,垂足分别为点D 和E ,AD =8,BE =6.(1)①求证:△ADC ≌△CEB ;②求DE 的长;(2)如图2,点M 以3个单位长度/秒的速度从点C 出发沿着边CA 运动,到终点A ,点N 以8个单位长度/秒的速度从点B 出发沿着线BC —CA 运动,到终点A .M ,N 两点同时出发,运动时间为t 秒(t >0),当点N 到达终点时,两点同时停止运动,过点M 作PM ⊥DE 于点P ,过点N 作QN ⊥DE 于点Q ;①当点N 在线段CA 上时,用含有t 的代数式表示线段CN 的长度;②当t 为何值时,点M 与点N 重合;③当△PCM 与△QCN 全等时,则t = .14.已知:如图1,直线//AB CD ,EF 分别交AB ,CD 于E ,F 两点,BEF ∠,DFE ∠的平分线相交于点K .(1)求K ∠的度数;(2)如图2,BEK ∠,DFK ∠的平分线相交于点1K ,问1K ∠与K ∠的度数是否存在某种特定的等量关系?写出结论并证明;(3)在图2中作1BEK ∠,1DFK ∠的平分线相交于点2K ,作2BEK ∠,2DFK ∠的平分线相交于点3K ,依此类推,作n BEK ∠,n DFK ∠的平分线相交于点1n K +,请用含的n 式子表示1n K ∠+的度数.(直接写出答案,不必写解答过程)15.现给出一个结论:直角三角形斜边的中线等于斜边的一半;该结论是正确的,用图形语言可以表示为:如图1在ABC ∆中,90︒∠=C ,若点D 为AB 的中点,则12CD AB =. 请结合上述结论解决如下问题:已知,点P 是射线BA 上一动点(不与A,B 重合)分别过点A,B 向直线CP 作垂线,垂足分别为E,F,其中Q 为AB 的中点(1)如图2,当点P 与点Q 重合时,AE 与BF 的位置关系____________;QE 与QF 的数量关系是__________(2)如图3,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明.(3)如图4,当点P 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.16.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=40°,则∠ACE=,∠DCE=,BC、DC、CE之间的数量关系为;(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.(3)当CE∥AB时,若△ABD中最小角为15°,试探究∠ACB的度数(直接写出结果,无需写出求解过程).17.在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的.例:已知:21 14 xx=+,求代数式x2+21x的值.解:∵21 14 xx=+,∴21xx+=4即21xx x+=4∴x+1x=4∴x2+21x=(x+1x)2﹣2=16﹣2=14材料二:在解决某些连等式问题时,通常可以引入参数“k”,将连等式变成几个值为k的等式,这样就可以通过适当变形解决问题.例:若2x=3y=4z,且xyz≠0,求xy z+的值.解:令2x=3y=4z=k(k≠0)则11k k k k x 622,,,117234y z 7k k 3412x y z ===∴===++ 根据材料回答问题:(1)已知2114x x x =-+,求x +1x的值. (2)已知523a b c ==,(abc ≠0),求342b c a+的值. (3)若222222yz zx xy x y z bz cy cx az ay bx a b c++===+++++,x ≠0,y ≠0,z ≠0,且abc =7,求xyz 的值.18.(1)发现:如图1,ABC ∆的内角ABC ∠的平分线和外角ACD ∠的平分线相交于点O 。

最新初三中考数学模拟试卷及答案(4套)

最新初三中考数学模拟试卷及答案(4套)
请你借助数学知识帮助同学们分析老师画的这两个图,通过计算验证说明图1到图2的拼接是否可行,若不行请说明理由,并画出正确的拼接图
25.(本题满分10分)
如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A,AD与BC交于点E,F在DA的延长线上,且AF=AE.
(1)求证:BF是⊙O的切线;
23.(本题满分10分)
已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF.
(1)求证:D是BC的中点;
(2)如果AB=AC,试判断四边形ADCF的 形状,并证明你的结论.
24.(本题满分10分)
数学课上,老师用多媒体给同学们放了2010年春节联欢晚会由魔术界当红艺人刘谦表演的的神奇的障眼法“硬币穿玻璃”魔术,敏捷的身手、幽默的语言把同学们逗得乐不可支。看完后老师说:“今天我也来当一回魔术师给你们现场表演一个数学魔术。”说完便在黑板上画出下面两个图:
(1)甲、乙、丙三辆车中,谁是进货车?
(2)甲车和丙车每小时各运输多少吨?
(3)由于仓库接到临时通知,要求三车在8小时后同时开始工作,但
丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两
车又工作了几小时,使仓库的库存量为6吨?
28.(本题满分12分)
在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.
A.7 B.9 C.9或12 D.12
7.由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是()
A.正视图的面积最大B.俯视图的面积最大

九年级中考数学模拟考试卷(附答案)

九年级中考数学模拟考试卷(附答案)

九年级中考数学模拟考试卷(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题(每小题3分,共30分)1.的相反数的倒数是()A.B.﹣3C.3D.2.若一个正多边形的一个外角是60°,则这个正多边形的边数是()A.10B.9C.8D.63.总投资54亿元的万家丽高架快速路建成,不仅疏解了中心城区的交通,还形成了我市的快速路网,54亿用科学记数法表示为()A.0.54×109B.5.4×109C.54×108D.5.4×1084.在平面直角坐标系中,以点(﹣3,4)为圆心,以3个单位长度为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相切C.与x轴相离,与y轴相交D.与x轴相切,与y轴相离5.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,那么两者的方差的大小关系是()A.<B.>C.=D.不能确定7.如图,是由一个圆柱体和一个长方体组成的几何体,其俯视图是()A.B.C.D.8.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为()A.40B.47C.96D.1909.如图,△ABC内接于⊙O,∠ACB=90°,BD=5,则BC的长为()A.12B.8C.10D.10.周末晚会上,师生共有20人参加跳舞,其中方老师和7个学生跳舞,一直到何老师,他和参加跳舞的所有学生跳过舞()A.15B.14C.13D.12二、填空题(每小题3分,共18分)11.分解因式:3x3﹣3x=.12.若式子在实数范围内有意义,则x的取值范围为.13.如图,△ABC与△A1B1C1为位似图形,点O是它们的位似中心,位似比是1:3,那么△A1B1C1的面积是.14.圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为.15.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,EF∥AB,且AD:DB=3:5.16.如图,点A在反比例(x>0)图象上,交x轴于点C、D.若点B的坐标为(0,2)则图中阴影部分面积为.三、解答题(第17、18、19题6分,第20、21题8分,第22、23题9分,第24、25题10分,共72分)17.计算:.18.先化简,再求值:,其中a满足a2+2a﹣3=0.19.“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OBA=45°,CD =20km.若汽车行驶的速度为50km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).20.历下区某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有人,扇形统计图中m=,n=,并把条形统计图补充完整.(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图求出恰好1男1女参加比赛的概率。

中考数学模拟试卷(附带答案)

中考数学模拟试卷(附带答案)

中考数学模拟试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一选择题(本题共10小题每小题3分共30分在每小题给出的四个选项中只有1个选项正确)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣2.(3分)如图所示的几何体中主视图是()A.B.C.D.3.(3分)如图直线AB∥CD∠ABE=45°∠D=20°则∠E的度数为()A.20°B.25°C.30°D.35°4.(3分)某种离心机的最大离心力为17000g.数据17000g用科学记数法表示为()A.0.17×104B.1.7×105C.1.7×104D.17×1035.(3分)下列计算正确的是()A.=B.2+3=5C.=4D.(2﹣2)=6﹣26.(3分)将方程+3=去分母两边同乘(x﹣1)后的式子为()A.1+3=3x(1﹣x)B.1+3(x﹣1)=﹣3xC.x﹣1+3=﹣3x D.1+3(x﹣1)=3x7.(3分)已知蓄电池两端电压U为定值电流I与R成反比例函数关系.当I=4A时R =10Ω则当I=5A时R的值为()A.6ΩB.8ΩC.10ΩD.12Ω8.(3分)圆心角为90°半径为3的扇形弧长为()A.2πB.3πC.πD.π9.(3分)已知抛物线y=x2﹣2x﹣1 则当0≤x≤3时函数的最大值为()A.﹣2B.﹣1C.0D.210.(3分)某小学开展课后服务其中在体育类活动中开设了四种运动项目:乒乓球排球篮球足球.为了解学生最喜欢哪种运动项目随机选取100名学生进行问卷调查(每位学生仅选一种)并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10°二填空题(本题共6小题每小题3分共18分)11.(3分)9>﹣3x的解集为.12.(3分)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球记下标号后放回并再次摸出一个球记下标号后放回.则两次标号之和为3的概率为.13.(3分)如图在菱形ABCD中AC BD为菱形的对角线∠DBC=60°BD=10 点F为BC中点则EF的长为.14.(3分)如图在数轴上OB=1 过O作直线l⊥OB于点O在直线l上截取OA=2 且A在OC上方.连接AB以点B为圆心AB为半径作弧交直线OB于点C则C点的横坐标为.15.(3分)我国的《九章算术》中记载道:“今有共买物人出八盈三人出七不足四.问有几人.”大意是:今有人合伙购物每人出8元钱会多3钱每人出7元钱又差4钱问人数有多少.设有x人则可列方程为:.16.(3分)如图在正方形ABCD中AB=3 延长BC至E使CE=2 连接AE.CF平分∠DCE交AE于F连接DF则DF的长为.三解答题(本题共4小题其中17题9分18 19 20题各10分共39分)17.(9分)计算:(+)÷.18.(10分)某服装店的某件衣服最近销售火爆.现有A B两家供应商到服装店推销服装两家服装价格相同品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料通过特殊操作检验出其纯度(单位:%)并对数据进行整理描述和分析.部分信息如下:Ⅰ.A供应商供应材料的纯度(单位:%)如下:A72737475767879频数1153311Ⅱ.B供应商供应材料的纯度(单位:%)如下:72ㅤ75ㅤ72ㅤ75ㅤ78ㅤ77ㅤ73ㅤ75ㅤ76ㅤ77ㅤ71ㅤ78ㅤ79ㅤ72ㅤ75Ⅲ.A B两供应商供应材料纯度的平均数中位数众数和方差如下:平均数中位数众数方差A757574 3.07B a75b c根据以上信息回答下列问题:(1)表格中的a=b=c=(2)你认为服装店应选择哪个供应商供应服装?为什么?19.(10分)如图在△ABC和△ADE中延长BC交DE于F.BC=DE AC=AE∠ACF+∠AED=180°.求证:AB=AD.20.(10分)为了让学生养成热爱图书的习惯某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元2022年用于购买图书的费用是7200元求2020﹣2022年买书资金的平均增长率.四解答题(本题共3小题其中21题9分22 23题各10分共29分)21.(9分)如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE BC⊥BE CD∥BE AC=10.4m BC=1.26m点A关于点C的仰角为70°则楼AE的高度为多少m?(结果保留整数.参考数据:sin70°≈0.94 cos70°≈0.34 tan70°≈2.75)22.(10分)为了增强学生身体素质学校要求男女同学练习跑步.开始时男生跑了50m女生跑了80m然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s当到达终点时男女均停止跑步女生从开始匀速跑步到停止跑步共用时120s.已知x轴表示从开始匀速跑步到停止跑步的时间y轴代表跑过的路程则:(1)男女跑步的总路程为(2)当男女相遇时求此时男女同学距离终点的距离.23.(10分)如图1 在⊙O中AB为⊙O的直径点C为⊙O上一点AD为∠CAB的平分线交⊙O于点D连接OD交BC于点E.(1)求∠BED的度数(2)如图2 过点A作⊙O的切线交BC延长线于点F过点D作DG∥AF交AB于点G.若AD=2DE=4 求DG的长.五解答题(本题共3小题其中24 25题各11分26题12分共34分)24.(11分)如图1 在平面直角坐标系xOy中直线y=x与直线BC相交于点A.P(t0)为线段OB上一动点(不与点B重合)过点P作PD⊥x轴交直线BC于点D△OAB 与△DPB的重叠面积为S S关于t的函数图象如图2所示.(1)OB的长为△OAB的面积为(2)求S关于t的函数解析式并直接写出自变量t的取值范围.25.(11分)综合与实践问题情境:数学活动课上王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC∠A>90°点E为AC上一动点将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时∠EDC=2∠ACB.”小红:“若点E为AC中点给出AC与DC的长就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1 请你回答:问题1:在等腰△ABC中AB=AC∠A>90°△BDE由△ABE翻折得到.(1)如图1 当点D落在BC上时求证:∠EDC=2∠ACB(2)如图2 若点E为AC中点AC=4 CD=3 求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形可以将问题进一步拓展.问题2:如图3 在等腰△ABC中∠A<90°AB=AC=BD=4 2∠D=∠ABD.若CD=1 则求BC的长.26.(12分)如图在平面直角坐标系中抛物线C1:y=x2上有两点A B其中点A的横坐标为﹣2 点B的横坐标为1 抛物线C2:y=﹣x2+bx+c过点A B.过A作AC∥x 轴交抛物线C1另一点为点C.以AC AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式(2)将矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式并直接写出自变量m的取值范围②直线A′E′交抛物线C1于点P交抛物线C2于点Q.当点E′为线段PQ的中点时求m的值③抛物线C2与边E′D′A′C′分别相交于点M N点M N在抛物线C2的对称轴同侧当MN=时求点C′的坐标.参考答案与试题解析一选择题(本题共10小题每小题3分共30分在每小题给出的四个选项中只有1个选项正确)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣【分析】根据绝对值的定义求解.【解答】解:|﹣6|=6.故选:B.【点评】本题考查了绝对值的定义掌握一个正数的绝对值是它本身一个负数的绝对值是它的相反数0的绝对值是0是解题的关键.2.(3分)如图所示的几何体中主视图是()A.B.C.D.【分析】找到从正面看所得到的图形得出主视图即可.【解答】解:如图所示的几何体中主视图是B选项故选:B.【点评】此题主要考查了几何体的三视图关键是掌握主视图和左视图所看的位置.3.(3分)如图直线AB∥CD∠ABE=45°∠D=20°则∠E的度数为()A.20°B.25°C.30°D.35°【分析】由平行线的性质可得∠ABE=∠BCD从而求出∠DCE再根据三角形的内角和即可求解.【解答】解:∵AB∥CD∴∠ABE=∠BCD=45°∴∠DCE=135°由三角形的内角和可得∠E=180°﹣135°﹣20°=25°.故选:B.【点评】本题考查平行线的性质和三角形的内角和定理熟练掌握性质是解题关键.4.(3分)某种离心机的最大离心力为17000g.数据17000g用科学记数法表示为()A.0.17×104B.1.7×105C.1.7×104D.17×103【分析】用科学记数法表示较大的数时一般形式为a×10n其中1≤|a|<10 n为整数且n比原来的整数位数少1 据此判断即可.【解答】解:17000=1.7×104.故选:C.【点评】此题主要考查了科学记数法﹣表示较大的数一般形式为a×10n其中1≤|a|<10 确定a与n的值是解题的关键.5.(3分)下列计算正确的是()A.=B.2+3=5C.=4D.(2﹣2)=6﹣2【分析】先根据零指数幂二次根式的加法法则二次根式的性质二次根式的乘法法则进行计算再得出选项即可.【解答】解:A.()0=1 故本选项不符合题意B.2+3=5故本选项不符合题意C.=2故本选项不符合题意D.(2﹣2)=﹣2=6﹣2故本选项符合题意故选:D.【点评】本题考查了二次根式的混合运算和零指数幂能灵活运用二次根式的运算法则进行计算是解此题的关键.6.(3分)将方程+3=去分母两边同乘(x﹣1)后的式子为()A.1+3=3x(1﹣x)B.1+3(x﹣1)=﹣3xC.x﹣1+3=﹣3x D.1+3(x﹣1)=3x【分析】分式方程变形后去分母得到结果即可做出判断.【解答】解:分式方程去分母得:1+3(x﹣1)=﹣3x.故选:B.【点评】此题考查了解分式方程解分式方程的基本思想是“转化思想”把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(3分)已知蓄电池两端电压U为定值电流I与R成反比例函数关系.当I=4A时R =10Ω则当I=5A时R的值为()A.6ΩB.8ΩC.10ΩD.12Ω【分析】设I=则U=IR=40 得出R=计算即可.【解答】解:设I=则U=IR=40∴R===8故选:B.【点评】本题考查反比例函数的应用解题的关键是掌握欧姆定律.8.(3分)圆心角为90°半径为3的扇形弧长为()A.2πB.3πC.πD.π【分析】根据弧长公式计算即可.【解答】解:l==π∴该扇形的弧长为π.故选:C.【点评】本题考查弧长的计算关键是掌握弧长的计算公式.9.(3分)已知抛物线y=x2﹣2x﹣1 则当0≤x≤3时函数的最大值为()A.﹣2B.﹣1C.0D.2【分析】根据抛物线的解析式求得对称轴为直线x=1 根据二次函数的性质即可得到结论.【解答】解:∵y=x2﹣2x﹣1=(x﹣1)2﹣2∴对称轴为直线x=1∵a=1>0∴抛物线的开口向上∴当0≤x<1时y随x的增大而减小∴当x=0时y=﹣1当1≤x≤3时y随x的增大而增大∴当x=3时y=9﹣6﹣1=2∴当0≤x≤3时函数的最大值为2故选:D.【点评】本题考查了二次函数的性质二次函数的最值熟练掌握二次函数的性质是解题的关键.10.(3分)某小学开展课后服务其中在体育类活动中开设了四种运动项目:乒乓球排球篮球足球.为了解学生最喜欢哪种运动项目随机选取100名学生进行问卷调查(每位学生仅选一种)并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10°【分析】利用扇形图可得喜欢排球的占10% 喜欢篮球的人数占被调查人数的30% 最喜欢足球的学生为100×40%=40人用360°×喜欢排球的所占百分比可得圆心角.【解答】解:A本次调查的样本容量为100 故此选项不合题意B最喜欢篮球的人数占被调查人数的30% 故此选项不合题意C最喜欢足球的学生为100×40%=40(人)故此选项不合题意D根据扇形图可得喜欢排球的占10% “排球”对应扇形的圆心角为360°×10%=36°故此选项符合题意故选:D.【点评】本题考查的是扇形统计图读懂统计图从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.二填空题(本题共6小题每小题3分共18分)11.(3分)9>﹣3x的解集为x>﹣3.【分析】按照解一元一次不等式的步骤进行计算即可解答.【解答】解:9>﹣3x3x>﹣9x>﹣3故答案为:x>﹣3.【点评】本题考查了解一元一次不等式熟练掌握解一元一次不等式的步骤是解题的关键.12.(3分)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球记下标号后放回并再次摸出一个球记下标号后放回.则两次标号之和为3的概率为.【分析】根据题意画出相应的树状图然后即可求得两次标号之和为3的概率.【解答】解:树状图如图所示由上可得一共存在4种等可能性其中两次标号之和为3的可能性有2种∴两次标号之和为3的概率为=故答案为:.【点评】本题考查列表法与树状图法解答本题的关键是明确题意画出相应的树状图求出相应的概率.13.(3分)如图在菱形ABCD中AC BD为菱形的对角线∠DBC=60°BD=10 点F为BC中点则EF的长为5.【分析】由四边形ABCD是菱形可得BC=DC AC⊥BD∠BEC=90°又∠DBC=60°知△BDC是等边三角形BC=BD=10 而点F为BC中点故EF=BC=5.【解答】解:∵四边形ABCD是菱形∴BC=DC AC⊥BD∴∠BEC=90°∵∠DBC=60°∴△BDC是等边三角形∴BC=BD=10∵点F为BC中点∴EF=BC=5故答案为:5.【点评】本题考查菱形的性质及应用涉及等边三角形的判定与性质解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.14.(3分)如图在数轴上OB=1 过O作直线l⊥OB于点O在直线l上截取OA=2 且A在OC上方.连接AB以点B为圆心AB为半径作弧交直线OB于点C则C点的横坐标为1+.【分析】在Rt△AOB中利用勾股定理求出AB=则AB=BC=进而求得OC =1+据此即可求解.【解答】解:∵OA⊥OB∴∠AOB=90°在Rt△AOB中AB===∵以点B为圆心AB为半径作弧交直线OB于点C∴AB=BC=∴OC=OB+BC=1+∴点C的横坐标为1+.故答案为:1+【点评】本题主要考查勾股定理实数与数轴利用勾股定理正确求出AB的长是解题关键.15.(3分)我国的《九章算术》中记载道:“今有共买物人出八盈三人出七不足四.问有几人.”大意是:今有人合伙购物每人出8元钱会多3钱每人出7元钱又差4钱问人数有多少.设有x人则可列方程为:8x﹣3=7x+4.【分析】根据货物的价格不变即可得出关于x的一元一次方程此题得解.【解答】解:依题意得:8x﹣3=7x+4.故答案为:8x﹣3=7x+4.【点评】本题考查了由实际问题抽象出一元一次方程找准等量关系正确列出一元一次方程是解题的关键.16.(3分)如图在正方形ABCD中AB=3 延长BC至E使CE=2 连接AE.CF平分∠DCE交AE于F连接DF则DF的长为.【分析】过点F作FM⊥CE于M作FN⊥CD于点N首先证四边形CMFN为正方形再设CM=a则FM=FN=CM=CN=a BE=5 EM=2﹣a然后证△EFM和△EAB相似由相似三角形的性质求出a进而在Rt△AFN中由勾股定理即可求出DF.【解答】解:过点F作FM⊥CE于M作FN⊥CD于点N∵四边形ABCD为正方形AB=3∴∠ACB=90°BC=AB=CD=3∵FM⊥CE FN⊥CD∠ACB=∠B=90°∴四边形CMFN为矩形又∵CF平分∠DCE FM⊥CE FN⊥CD∴FM=FN∴四边形CMFN为正方形∴FM=FN=CM=CN设CM=a则FM=FN=CM=CN=a∵CE=2∴BE=BC+CE=5 EM=CE﹣CM=2﹣a∵∠B=90°FM⊥CE∴FM∥AB∴△EFM∽△EAB∴FM:AB=EM:BE即:a:3=(2﹣a):5解得:∴∴在Rt△AFN中由勾股定理得:.故答案为:.【点评】此题主要考查了正方形的判定及性质相似三角形的判定和性质勾股定理等解答此题的关键是熟练掌握相似三角形的判定方法理解相似三角形的对应边成比例.三解答题(本题共4小题其中17题9分18 19 20题各10分共39分)17.(9分)计算:(+)÷.【分析】先利用异分母分式加减法法则计算括号里再算括号外然后进行计算即可解答.【解答】解:原式=[+]•=•=.【点评】本题考查了分式的混合运算准确熟练地进行计算是解题的关键.18.(10分)某服装店的某件衣服最近销售火爆.现有A B两家供应商到服装店推销服装两家服装价格相同品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料通过特殊操作检验出其纯度(单位:%)并对数据进行整理描述和分析.部分信息如下:Ⅰ.A供应商供应材料的纯度(单位:%)如下:A72737475767879频数1153311Ⅱ.B供应商供应材料的纯度(单位:%)如下:72ㅤ75ㅤ72ㅤ75ㅤ78ㅤ77ㅤ73ㅤ75ㅤ76ㅤ77ㅤ71ㅤ78ㅤ79ㅤ72ㅤ75Ⅲ.A B两供应商供应材料纯度的平均数中位数众数和方差如下:平均数中位数众数方差A757574 3.07B a75b c根据以上信息回答下列问题:(1)表格中的a=75b=75c=6(2)你认为服装店应选择哪个供应商供应服装?为什么?【分析】(1)根据平均数众数和方差的计算公式分别进行解答即可(2)根据方差的定义方差越小数据越稳定即可得出答案.【解答】解:(1)B供应商供应材料纯度的平均数为a=×(72+75+72+75+78+77+73+75+76+77+71+78+79+72+75)=7575出现的次数最多故众数b=75方差c=×[3×(72﹣75)2+4×(75﹣75)2+2×(78﹣75)2+2×(77﹣75)2+(73﹣75)2+(76﹣75)2+(71﹣75)2+(79﹣75)2]=6故答案为:75 75 6(2)选A供应商供应服装理由如下:∵A B平均值一样B的方差比A的大A更稳定∴选A供应商供应服装.【点评】本题考查了方差平均数中位数众数熟悉相关统计量的计算公式和意义是解题的关键.19.(10分)如图在△ABC和△ADE中延长BC交DE于F.BC=DE AC=AE∠ACF+∠AED=180°.求证:AB=AD.【分析】由“SAS”可证△ABC≌△ADE可得结论.【解答】证明:∵∠ACB+∠ACF=∠ACF+∠AED=180°∴∠ACB=∠AED在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴AB=AD.【点评】本题考查了全等三角形的判定和性质证明三角形全等是解题的关键.20.(10分)为了让学生养成热爱图书的习惯某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元2022年用于购买图书的费用是7200元求2020﹣2022年买书资金的平均增长率.【分析】设2020﹣2022年买书资金的平均增长率为x利用2022年用于购买图书的费用=2020年用于购买图书的费用×(1+2020﹣2022年买书资金的平均增长率)2可列出关于x的一元二次方程解之取其符合题意的值即可得出结论.【解答】解:设2020﹣2022年买书资金的平均增长率为x根据题意得:5000(1+x)2=7200解得:x1=0.2=20% x2=﹣2.2(不符合题意舍去).答:2020﹣2022年买书资金的平均增长率为20%.【点评】本题考查了一元二次方程的应用找准等量关系正确列出一元二次方程是解题的关键.四解答题(本题共3小题其中21题9分22 23题各10分共29分)21.(9分)如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE BC⊥BE CD∥BEAC=10.4m BC=1.26m点A关于点C的仰角为70°则楼AE的高度为多少m?(结果保留整数.参考数据:sin70°≈0.94 cos70°≈0.34 tan70°≈2.75)【分析】延长CD交AE于H于是得到CH=BE EH=BC=1.26m解直角三角形即可得到结论.【解答】解:延长CD交AE于H则CH=BE EH=BC=1.26m在Rt△ACH中AC=10.4m∠ACH=70°∴AH=AC•sin70°=10.4×0.94≈9.78(m)∴AE=AH+CH=9.78+1.26≈11(m)答:楼AE的高度约为11m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题正确地作出辅助线是解题的关键.22.(10分)为了增强学生身体素质学校要求男女同学练习跑步.开始时男生跑了50m女生跑了80m然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s当到达终点时男女均停止跑步女生从开始匀速跑步到停止跑步共用时120s.已知x轴表示从开始匀速跑步到停止跑步的时间y轴代表跑过的路程则:(1)男女跑步的总路程为1000m(2)当男女相遇时求此时男女同学距离终点的距离.【分析】(1)根据男女同学跑步的路程相等即可求解(2)求出女生跑步的速度列方程求解即可.【解答】解:(1)男生匀速跑步的路程为4.5×100=450(m)450+50=500(m)则男女跑步的总路程为500×2=1000(m)故答案为:1000m(2)设从开始匀速跑步到男女相遇时的时间为xs女生跑步的速度为(500﹣80)÷120=3.5(m/s)根据题意得:80+3.5x=50+4.5x解得x=30∴此时男女同学距离终点的距离为4.5×(100﹣30)=315(m)答:此时男女同学距离终点的距离为315m.【点评】此题主要考查了一元一次方程的应用关键是正确理解题意找出题目中的等量关系然后设出未知数列出方程.23.(10分)如图1 在⊙O中AB为⊙O的直径点C为⊙O上一点AD为∠CAB的平分线交⊙O于点D连接OD交BC于点E.(1)求∠BED的度数(2)如图2 过点A作⊙O的切线交BC延长线于点F过点D作DG∥AF交AB于点G.若AD=2DE=4 求DG的长.【分析】(1)根据圆周角定理证得两直线平行再根据平行线的性质即可得到结论(2)由勾股定理得到边的关系求出线段的长再利用等面积法求解即可.【解答】解:(1)∵AB为⊙O的直径∴∠ACB=90°∵AD为∠CAB的平分线∴∠BAC=2∠BAD∵OA=OD∴∠BAD=∠ODA∴∠BOD=∠BAD+∠ODA=2∠BAD∴∠BOD=∠BAC∴OD∥AC∴∠OEB=∠ACB=90°∴∠BED=90°(2)连接BD设OA=OB=OD=r则OE=r﹣4 AC=2OE=2r﹣8 AB=2r∵AB为⊙O的直径∴∠ADB=90°在Rt△ADB中BD2=AB2﹣AD2由(1)得∠BED=90°∴∠BED=∠BEO=90°∴BE2=OB2﹣OE2BE2=BD2﹣DE2∴BD2=AB2﹣AD2=BE2+DE2=OB2﹣OE2+DE2∴=r2﹣(r﹣4)2+42解得r=7或r=﹣5(不合题意舍去)∴AB=2r=14∴∵AF是⊙O的切线∴AF⊥AB∵DG⊥AF∴DG⊥AB∴∴.【点评】本题考查了圆周角定理勾股定理切线的性质解一元二次方程熟练掌握圆周角定理和勾股定理是解题的关键.五解答题(本题共3小题其中24 25题各11分26题12分共34分)24.(11分)如图1 在平面直角坐标系xOy中直线y=x与直线BC相交于点A.P(t0)为线段OB上一动点(不与点B重合)过点P作PD⊥x轴交直线BC于点D△OAB 与△DPB的重叠面积为S S关于t的函数图象如图2所示.(1)OB的长为4△OAB的面积为(2)求S关于t的函数解析式并直接写出自变量t的取值范围.【分析】(1)由t=0时P与O重合得S=t=4时P与B重合得OB=4 (2)设A(a a)由×4a=得a=A()分两种情况:当0≤t≤时设OA交PD于E可得PE=PO=t S△POE=t2故S=﹣S△POE=﹣t2当<t<4时求出直线AB解析式为y=﹣x+2 可得C(0 2)由tan∠CBO====得DP=PB=(4﹣t)=2﹣t故S=S△DPB=DP•PB=(2﹣t)×(4﹣t)=t2﹣2t+4.【解答】解:(1)t=0时P与O重合此时S=S△ABO=t=4时S=0 P与B重合∴OB=4 B(4 0)故答案为:4(2)∵A在直线y=x上∴∠AOB=45°设A(a a)∴S△ABO=OB•a即×4a=∴a=∴A()当0≤t≤时设OA交PD于E如图:∵∠AOB=45°PD⊥OB∴△PEO是等腰直角三角形∴PE=PO=t∴S△POE=t2∴S=﹣S△POE=﹣t2当<t<4时如图:由A()B(4 0)得直线AB解析式为y=﹣x+2 当x=0时y=2∴C(0 2)∴OC=2∵tan∠CBO====∴DP=PB=(4﹣t)=2﹣t∴S=S△DPB=DP•PB=(2﹣t)×(4﹣t)=(4﹣t)2=t2﹣2t+4综上所述S=.【点评】本题考查动点问题的函数图象涉及锐角三角函数待定系数法等腰直角三角形等知识解题的关键是从函数图象中获取有用的信息.25.(11分)综合与实践问题情境:数学活动课上王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC∠A>90°点E为AC上一动点将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时∠EDC=2∠ACB.”小红:“若点E为AC中点给出AC与DC的长就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1 请你回答:问题1:在等腰△ABC中AB=AC∠A>90°△BDE由△ABE翻折得到.(1)如图1 当点D落在BC上时求证:∠EDC=2∠ACB(2)如图2 若点E为AC中点AC=4 CD=3 求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形可以将问题进一步拓展.问题2:如图3 在等腰△ABC中∠A<90°AB=AC=BD=4 2∠D=∠ABD.若CD=1 则求BC的长.【分析】问题1:(1)由等腰三角形的性质可得∠ABC=∠ACB由折叠的性质和三角形内角和定理可得∠A=∠BDE=180°﹣2∠C由邻补角的性质可得结论(2)由三角形中位线定理可得CD=2EF由勾股定理可求AF BF即可求解问题2:先证四边形CGMD是矩形由勾股定理可求AD由等腰三角形的性质可求MD CG即可求解.【解答】问题1:(1)证明:∵AB=AC∴∠ABC=∠ACB∵△BDE由△ABE翻折得到∴∠A=∠BDE=180°﹣2∠C∵∠EDC+∠BDE=180°∴∠EDC=2∠ACB(2)解:如图连接AD交BE于点F∵△BDE由△ABE翻折得到∴AE=DE AF=DF∴CD=2EF=3∴EF=∵点E是AC的中点∴AE=EC=AC=2在Rt△AEF中AF===在Rt△ABF中BF===∴BE=BF+EF=问题2:解:连接AD过点B作BM⊥AD于M过点C作CG⊥BM于G∵AB=BD BM⊥AD∴AM=DM∠ABM=∠DBM=∠ABD∵2∠BDC=∠ABD∴∠BDC=∠DBM∴BM∥CD∴CD⊥AD又∵CG⊥BM∴四边形CGMD是矩形∴CD=GM在Rt△ACD中CD=1 AD=4 AD===∴AM=MD=CG=MD=在Rt△BDM中BM===∴BG=BM﹣GM=BM﹣CD==在Rt△BCG中BC===.【点评】本题是几何变换综合题考查了等腰三角形的性质折叠的性质勾股定理矩形的性质和判定灵活运用这些性质解决问题是解题的关键.26.(12分)如图在平面直角坐标系中抛物线C1:y=x2上有两点A B其中点A的横坐标为﹣2 点B的横坐标为1 抛物线C2:y=﹣x2+bx+c过点A B.过A作AC∥x 轴交抛物线C1另一点为点C.以AC AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式(2)将矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式并直接写出自变量m的取值范围②直线A′E′交抛物线C1于点P交抛物线C2于点Q.当点E′为线段PQ的中点时求m的值③抛物线C2与边E′D′A′C′分别相交于点M N点M N在抛物线C2的对称轴同侧当MN=时求点C′的坐标.【分析】(1)根据题意得出点A(﹣2 4)B(1 1)利用待定系数法求解析式即可求解.(2)①根据平移的性质得出C′(2﹣m4﹣n)根据点C的对应点C′落在抛物线C1上可得(2﹣m)2=4﹣n即可求解.②根据题意得出P(﹣2﹣m m2+4m+4)Q(﹣2﹣m﹣m2﹣2m+4)求得中点坐标根据题意即可求解.③作辅助线利用勾股定理求得MG=设出N点M点坐标将M点代入y=﹣x2﹣2x+4 求得N点坐标进而根据点C的对应点C′落在抛物线C1上即可求解.【解答】(1)根据题意点A的横坐标为﹣2 点B的横坐标为1 代入抛物线C1:y=x2∴当x=﹣2时y=(﹣2)2=4 则A(﹣2 4)当x=1时y=1 则B(1 1)将点A(﹣2 4)B(1 1)代入抛物线C2:y=﹣x2+bx+c∴解得∴抛物线C2的解析式为y=﹣x2﹣2x+4.(2)①∵AC∥x轴交抛物线另一点为C当y=4时x=±2∴C(2 4)∵矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.∴C′(2﹣m4﹣n)(2﹣m)2=4﹣n整理得n=﹣m2+4m∵m>0 n>0∴0<m<4∴n=﹣m2+4m(0<m<4)②如图∵A(﹣2 4)C(2 4)∴AC=4∵∴E(﹣2 6)由①可得A′(﹣2﹣m m2﹣4m+4)E′(﹣2﹣m m2﹣4m+6)∴P Q的横坐标为﹣2﹣m分别代入C1C2∴P(﹣2﹣m m2+4m+4)Q(﹣2﹣m﹣m2﹣2m+4)∴∴PQ的中点坐标为(﹣2﹣m m+4)∵点E′为线段PQ的中点∴m2﹣4m+6=m+4解得m=或m=(大于4 舍去).③如图连接MN过点N作NG⊥E′D′于点G则NG=2∵∴设N(a﹣a2﹣2a+4)则M(a﹣﹣a2﹣2a+6)将M点代入y=﹣x2﹣2x+4得解得a=当a=∴将y =代入y=x2解得∴或.【点评】本题考查了二次函数的综合应用解题的关键是作辅助线掌握二次函数的性质.第31 页共31 页。

初中九年级中考数学模拟试题数学试卷(含答案)

初中九年级中考数学模拟试题数学试卷(含答案)

初中九年级中考数学模拟试题数学试卷(含答案)初中九年级中考数学模拟试题数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上).......1.计算1+(-2)的结果是()A.-1B.1C.3D.-32.已知点A(1,2)与点A′(a,b)关于坐标原点对称,则实数a、b的值是() A. a=1,b=2B.a=-1,b=2C.a=1,b=-2 D.a=-1,b=-2??2_>_-1,3.一元一次不等式组?1的解集是()_≤1?2?A. _>-1B._≤2C.-1<_≤2D._>-1或_≤24.如图,AB是⊙O的直径,CD是⊙O的弦,连结AC、AD、BD,若∠BAC=35°,则∠ADC的度数为() A.35° C.65°B.55° D.70°A O D (第4题)C B5.在数轴上,与表示6的点距离最近的整数点所表示的数是()A.1B.2y C.3 D.46.如图,二次函数y=a_2+b_+c(a≠0)的图像如图所示,给定下列结论:①ac <0,②b>0,③a-b+c>0,其中正确的是() A.①② C.①③ B.②③ D.①②③_ -1 O 1 (第6题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上).......7.计算:9=.8.据调查,截止____年2月末,全国4G用户总数达到1 030 000 000户,把1 030 000 000用科学记数法表示为.9.若一个棱柱有7个面,则它是棱柱.110.若式子+1在实数范围内有意义,则_的取值范围是._-111.计算:5-21=. 212.已知一元二次方程_2+_+m=0的一个根为2,则它的另一个根为. 13.同一个正方形的内接圆与外切圆的面积比为.14.如图,某小区有一块长为36m,宽为24m的矩形空地,计划在其中间修建两块形状相同的矩形绿地,它们的面积之和为600m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为 m.(第14题)y C 3624O B A _ (第16题)15.在数据1,2, 4,5中加入一个正整数..._,使得到的新一组数据的平均数与中位数相等,则_的值为.3k16.已知一次函数y=_-3的图像与_、y轴分别交于点A、B,与反比例函数y =(_>0)的图像交2_于点C,且AB=AC,则k的值为.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、.......证明过程或演算步骤)1-1317.(1)(5分)计算:8+2cos45°+∣-2∣_(-);2(2)(4分)解方程(_-3)( _-1)=-1.18.(7分)(1)计算:(2)方程411-=的解是▲ . _-4_-22241-; _-4_-2219.(7分)某校为了解“阳光体育”活动的开展情况,从全校1000名学生中,随机抽取部分学生进行问卷调查(每名学生只能从A、B、C、D中选择一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.学生选择的活动项目条形统计图人数 25 20 215 15 10 10 5A C D 学生选择的活动项目扇形统计图 D A B 30% C A:踢毽子 B:乒乓球 C:篮球 D:跳绳B 项目根据以上信息,解答下列问题:(1)被调查的学生共有▲ 人,并补全条形统计图;(2)在扇形统计图中,求表示区域D的扇形圆心角的度数;(3)全校学生中喜欢篮球的人数大约是多少人?20.(7分)在课外活动时间,甲、乙、丙做“互相踢毽子”游戏,毽子从一人传给另一人就记为一次踢毽.(1)若从甲开始,经过三次踢毽后,毽子踢到乙处的概率是多少?请说明理由;(2)若经过三次踢毽后,毽子踢到乙处的可能性最小,则应从▲ 开始踢. 21.(8分)如图,在□ABCD中,点M、N分别为边AD、BC的中点,AE、CF分别是∠BAD、∠BCD的平分线.(1)求证:AE∥CF;(2)若AD=2AB,求证:四边形PQRS是矩形.B A F P NQ M S R Q ECD N (第21题) 22.(7分)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在直线相交于点O,且OB=OD,支架CD与水平线AE垂直,∠BAC=37°,∠E=45°,DE=902cm,AC=160cm.求真空热水管AB的长.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.(7分)如图,已知△AB C.(1)作图:作∠B的角平分线BD交AC于点D;在BC、AB上作点E、F,使得四边形BEDF为菱形.(要求:用尺规作图,不写做法,保留作图痕迹)(2)若AB=3,BC =2,则菱形BEDF的边长为▲ .24.(8分)已知二次函数y=(_-m)2-2(_-m)(m为常数).(1)求该二次函数图像与_轴的交点坐标;(2)求该二次函数图像的顶点P的坐标;(3)如将该函数的图像向左平移3个单位,再向上平移1个单位,得到函数y =_2的图像,直接写出m的值.B (第23题) O B D AC (第22题) E A C 25.(8分)如图,在△ABC中,AB=AC,以AB为直径作⊙O,⊙O交BC于点D,交CA的延长线于点E.过点D作DF⊥AC,垂足为F.(1)求证:DF为⊙O的切线;⌒(2)若AB=4,∠C=30°,求劣弧BE的长.26.(9分)某公司招聘外卖送餐员,送餐员的月工资由底薪1000元加上外卖送单补贴(送一次外卖称为一单)构成,外卖送单补贴的具体方案如下:外卖送单数量每月不超过500单超过500单但不超过m单的部分(700≤m≤900)超过m单的部分补贴(元/单) 6 8 10 (第25题)E O B D C AF (1)若某“外卖小哥”4月份送餐400单,则他这个月的工资总额为多少元?(2)设5月份某“外卖小哥”送餐_单(_>500),所得工资为y元,求y与_的函数关系式;(3)若某“外卖小哥”5月份送餐800单,所得工资为6500元,求m的值. 27.(11分)如图,在△ABC中,∠A=90°,AB=4,AC=2,M是AB上的动点(不与A、B重合),过点M作MN∥BC交AC于点N,以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.设AM=_.(1)△MNP的面积S=▲ ,MN=▲ ;(用含_的代数式表示)(2)在动点M的运动过程中,设△MNP与四边形MNCB重合部分的面积为y.试求y关于_的函数表达式,并求出_为何值时,y的值最大,最大值为多少?B (备用图) A M P B (第27题) O NC A B (备用图) C A C 参考答案一、选择题1 A 二、填空题7.3 8.1.03_109 9.五 10._≠1 11.22 12.-3 13.1:2 14.2 15.3或8 16.12 三、解答题1-1317.(1)8+2cos45°+∣-2∣_(-)22=2+2_+2_(-2) ………………4分2=2-2;………………5分(2)解: _2-4_+3=-1,_2-4_+4=0,………………2分 (_-2) 2=0,………………3分∴_1=_2=2.………………4分_+241418.(1)2-=-………………2分_-4_-2(_+2)( _-2)(_+2)( _-2)2-_=………………4分 (_+2)( _-2)1=-;………………5分_+2(2)-4.………………7分 19.(1)50,画图正确;………………3分 10(2)_360°=72°;………………5分5020(3)_1000=400(人).50答:估计全校学生中喜欢篮球的人数有400人.…………7分20.(1)从甲开始,经过三次踢毽后所有可能结果为:(乙,甲,乙)、(乙,甲,丙)、(乙,丙,甲)、(乙,丙,乙)、(丙,甲,乙)、(丙,甲,丙)、(丙,乙,甲)、(丙,乙,丙),共有8种结果,且是等可能的,其中毽子踢到乙处的结果有3种.…………4分 3因此,从甲开始,经过三次踢毽后,毽子踢到乙处的概率P=.…………5分8(2)乙.…………7分2 D3 C4 B5 B6 C 21.(1)∵四边形ABCD是平行四边形,∴AD∥BC,∠BAD =∠BCD.…………1分∵AE、CF分别是∠BAD、∠BCD的平分线,11∴∠DAE=∠BAD,∠BCF=∠BCD,∴∠DAE=∠BCF, (2)分22∵AD∥BC,∴∠DAE=∠BEA,…………3分∴∠BEA=∠BCF,∴AE∥CF.…………4分(2)∵四边形ABCD为平行四边形,M、N为AD、BC的中点,∴MD∥BN,且MD=BN,∴四边形BMDN为平行四边形,∴BM∥DN.又由(1)AE∥CF,∴四边形PQRS为平行四边形,∵AD=2AB,点M为边AD的中点,∴AM=AB,∵AE平分∠BAD,∴AE⊥BM,∴∠APB=∠SPQ=90°,∴四边形PQRS是矩形. 22.解:在Rt△DCE中,∵sin∠E=DC222DE=2,∴DC=2DE=902_2=90.在Rt△AOC中,∵cos∠A=ACOA=0.8,∴OA =AC÷0.8=160_54=200.∵tan∠A=OCAC=0.75,∴OC=AC_0.75=160_0.75=120,∴OD=OC-DC=120-90=30, A ∴AB =OA-OB=OA-OD=200-30=170.答:真空热水管AB的长为170cm. 23.(1)作图正确;…………4分F D (2)65.…………7分 B E C 24.(1)令y=0,得(_-m)2-2 (_-m)=0 ,即(_-m) (_-m-2)=0,解得_1=m,_2=m+2.∴该函数图像与_轴的交点坐标为(m,0),(m+2,0).(2)y=(_-m)2-2(_-m)=(_-m)2-2(_-m) +1-1=(_-m-1)2-1,∴该函数图像的顶点P的坐标为(m+1,-1);(3)m=2. 25.(1)连接AD、OD.∵AB是直径,∴∠ADB=90°.∵AB=AC,∴BD=CD,又∵OA =OB,∴OD是△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,……3分即∠ODF=90°.∴DF为⊙O的切线;(2)连接OE.∵AB=AC,∴∠B=∠C=30°,∴∠BAE=60°,∵∠BOE =2∠BAE,∴∠BOE=120°, (6)分…………7分…………8分…………2分…………3分…………5分…………6分…………7分.........2分.........3分.........5分.........6分 (8)分………1分………2分………4分………5分………6分4⌒120∴BE=·4π=π. (8)3603分26.(1)1000+400_6=3400(元).答:他这个月的工资总额为3400元.………2分(2)当500<_≤m时,y=1000+500_6+8(_-500) =8_;………4分当_>m时,y=1000+500_6+8(m-500) +10 (_-m) =10_-2m;………6分(3)当m≥800时,y=8_=8_800=6400≠6500,不合题意;………7分当700≤m<800时,y=10_-2m=10_800-2m=8000-2m=6500,解得m=750.所以m的值为750.………9分1527.(1)_2,_;………3分 42(2)随着点M的运动,当点P落在BC上,连接AP,则O为AP的中点.AMAO11∵MN∥BC,∴△AMO∽△ABP. ∴==,∴AM=MB=AB=2.………4分ABAP221①当0<_≤2时,y=S△PMN=_2,∴当_=2时,y取最大值为1;………6分4②当2<_<4时,设PM、PN与BC交于点E、F.∵四边形AMPN为矩形,∴PN∥AM,PN=AM=_,又∵MN∥BC,∴四边形MBFN为平行四边形,∴FN=BM=4-_,△PEF∽△ACB,∴PF=PN-FN=2_-4.S△PEFPF22_-421∵=(),∴S△PEF=()__4_2=(_-2)2,42S△ACBAB13∴y=S△PMN -S△PEF=_2-(_-2)2=-_2+4_-4,………9分44384∴y=-(_-)2+(2<_<4),43384∴当_=时,满足2<_<4,y取最大值为. (10)分3384综上所述,当_=时,y取最大值,最大值为.………11分33。

(完整)初三数学易错题集锦及答案

(完整)初三数学易错题集锦及答案

初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( C )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( A ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( B ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定4、方程2x+3y=20的正整数解有( B )A 、1个B 、3个C 、4个D 、无数个 5、下列说法错误的是( C )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( C ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( B ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( D )A B C D 9、有理数中,绝对值最小的数是( C ) A 、-1 B 、1 C 、0 D 、不存在 10、21的倒数的相反数是( A )A 、-2B 、2C 、-21 D 、2111、若|x|=x ,则-x 一定是( B )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( C ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为0 13、长方形的周长为x ,宽为2,则这个长方形的面积为( C ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( C ) A 、-x-3 B 、-(x+3) C 、3-x D 、x+3 15、如果0<a<1,那么下列说法正确的是( B ) A 、a 2比a 大 B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( B )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( A )A 、12cmB 、10cmC 、8cmD 、4cm 18、21-的相反数是( B ) A 、21+B 、12- C 、21-- D 、12+-19、方程x(x-1)(x-2)=x 的根是( D )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+, x 3=253-20、解方程04)1(5)1(322=-+++xx x x 时,若设yx x =+1,则原方程可化为( B )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=021、方程x 2+1=2|x|有( B )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( C ) A 、-4 B 、4 C 、-8 D 、823、解关于x 的不等式⎩⎨⎧-<>a x ax ,正确的结论是( C )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( C ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( C ) A 、0.2 B 、±0.2 C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( D )A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n的平均数与方差分别是( A )A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( B ) A 、a ≠1 B 、a ≠-1 C 、a ≠2 D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( A )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形30、已知dcb a =,下列各式中不成立的是( C ) A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( D ) A 、300 B 、450 C 、550 D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( C )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心 33、下列三角形中是直角三角形的个数有( B )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个 34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( A )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( D )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( A )A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( A ) A 、矩形 B 、梯形 C、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形 38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是(C )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( D ) A 、300 B 、600 C 、1500 D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( C )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( C )A 、∠B=300B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E 直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( D ) A 、0 B 、1 C 、2 D 、343、不等式6322+>+x x 的解是( C )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( B ) A 、m ≤1 B 、m ≥31且m ≠1 C 、m ≥1 D 、-1<m ≤1 AB45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( B ) A B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( B )A 、1个B 、2个C 、3个D 、无数个 47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( D )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( B ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( D )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( B )A 、aB 、a- C 、-aD 、-a-51、若a+|a|=0,则22)2(a a +-等于( A ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( C ) A 、1 B 、±21 C 、21D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( C )A 、18B 、6C 、23D 、±2354、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A 、2个B 、3个C 、4个D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_____非正数____。

初三数学中考模拟试卷,附详细答案【解析版】

初三数学中考模拟试卷,附详细答案【解析版】

精选文档初三数学中考模拟试卷(附详尽答案)一、选择题(共 16 小题, 1-6 小题,每题 2 分, 7-16 小题,每题 2 分,满分42 分,每小题只有一个选项切合题意)1.实数 a 在数轴上的地点以下图,则以下说法正确的选项是()A . a 的相反数是 2 B. a 的绝对值是 2C. a 的倒数等于 2 D . a 的绝对值大于 22.以下图形既可当作轴对称图形又可当作中心对称图形的是()A.B.C.3.以下式子化简后的结果为x6的是(3 3 3 3 3)3A . x +x B. x ?x C.( x D.D .)x12÷x24.如图,边长为(m+3)的正方形纸片,剪出一个边长为m 的正方形以后,节余部分可剪拼成一个矩形(不重叠无空隙),若拼成的矩形一边长为3,则另一边长是()A . m+3B . m+6C . 2m+3D . 2m+65.对一组数据:1,﹣ 2, 4,2, 5 的描绘正确的选项是()A .中位数是 4 B.众数是 2 C.均匀数是 2 D.方差是 76.若对于 x 的一元二次方程kx 2﹣4x+2=0 有两个不相等的实数根,则k的取值范围是()A . k< 2 B. k≠0 C. k< 2 且 k≠0 D . k> 27.以下图,E, F, G,H 分别是 OA ,OB , OC,OD 的中点,已知四边形EFGH 的面积是 3,则四边形ABCD 的面积是()A. 6B. 9C. 12D. 188.如图,将△ ABC 绕点 A 按顺时针方向旋转某个角度获得△ APQ,使AP平行于CB,CB,AQ 的延伸线订交于点 D .假如∠ D=40 °,则∠ BAC 的度数为()A . 30°B. 40°C. 50°D. 60°9.一个立方体玩具的睁开图以下图.随意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.10.如图,在△ABC 中,∠C=90 °,∠ B=32 °,以 A 为圆心,随意长为半径画弧分别交AB ,AC 于点 M 和 N,再分别以M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P,连接 AP 并延伸交BC 于点 D,则以下说法:①AD 是∠ BAC 的均分线;② CD 是△ADC 的高;③点 D 在 AB 的垂直均分线上;④ ∠ADC=61 °.此中正确的有()A. 1个 B. 2个 C. 3个 D. 4个11.如图,正三角形 ABC (图 1)和正五边形 DEFGH (图 2)的边长同样.点 O 为△ABC 的中心,用 5 个同样的△ BOC 拼入正五边形 DEFGH 中,获得图 3,则图 3 中的五角星的五个锐角均为()A . 36°B . 42°C . 45°D . 48°12.如图, Rt △ OAB 的直角边 OB 在 x 轴上,反比率函数 y= 在第一象限的图象经过其顶点 A ,点 D 为斜边 OA 的中点,另一个反比率函数y 1= 在第一象限的图象经过点 D ,则 k的值为()A . 1B . 2C .D . 没法确立13.如图,已知平行四边形ABCD 中, AB=5 ,BC=8 , cosB= ,点 E 是 BC 边上的动点,当以 CE 为半径的圆 C 与边 AD 不订交时,半径CE 的取值范围是()A . 0< CE ≤8B . 0<CE ≤5C . 0< CE < 3 或 5< CE ≤8D . 3<CE ≤514.如图,已知在平面直角坐标系 xOy 中,抛物线 m :y=﹣ 2x 2﹣ 2x 的极点为 C ,与 x 轴两 个交点为 P , Q .现将抛物线 m 先向下平移再向右平移,使点 C 的对应点 C ′落在 x 轴上,点 P 的对应点 P ′落在轴 y 上,则以下各点的坐标不正确的选项是()A . C (﹣ , )B .C ′(1,0) C . P (﹣ 1,0)D . P ′(0,﹣ )15.随意实数 a ,可用 [a] 表示不超出 a 的最大整数,如 [4]=4, [ ] =1,现对 72 进行以下操作: 72→[ ]=8→[ ] =2→[ ]=1,这样对 72 只需进行 3 次操作后变成 1.近似地:对 数字 900 进行了 n 次操作后变成1,那么 n 的值为()A . 3B . 4C . 5D . 616.如图,在平面直角坐标系中, A 点为直线 y=x 上一点,过 A 点作 AB ⊥x 轴于 B 点,若OB=4 ,E 是 OB 边上的一点,且 OE=3,点 P 为线段 AO 上的动点,则 △BEP 周长的最小值 为()A . 4+2B . 4+C . 6D . 4二、填空题(共 4 小题,每题3 分,满分 12 分)17.计算: =.18.若 x=1 是对于 x 的方程 ax 2+bx ﹣ 1=0( a ≠0)的一个解,则代数式 1﹣ a ﹣ b 的值为.19.如图, A ,B ,C 是 ⊙O 上三点,已知 ∠ ACB= α,则 ∠ AOB= .(用含 α的式子表示)20.在 △ABC 中, AH ⊥ BC 于点 H ,点 P 从 B 点开始出发向C 点运动,在运动过程中,设线段 AP 的长为 y ,线段 BP 的长为 x (如图 1),而 y 对于 x 的函数图象如图2 所示. Q ( 1, )是函数图象上的最低点.小明认真察看图1,图 2 两图,作出以下结论:① AB=2 ;② AH= ;③ AC=2 ; ④ x=2 时, △ ABP 是等腰三角形; ⑤ 若 △ABP 为钝角三角形, 则 0< x < 1;此中正确的选项是 (填写序号).三、解答题(共 5 小题,满分58 分)22.( 10 分)(2015?邢台一模)如图,某城市中心的两条公路OM 和 ON,此中 OM 为东西走向, ON 为南北走向, A、 B 是两条公路所围地区内的两个标记性建筑.已知 A 、 B 对于∠MON 的均分线OQ 对称. OA=1000 米,测得建筑物 A 在公路交错口O 的北偏东53.5°方向上.求:建筑物 B 到公路 ON 的距离.(参照数据: sin53.5 °=0.8, cos53.5°=0.6, tan53.5°≈1.35)23.( 11 分)(2015?南宁校级一模)( 2015?邢台一模)中国是世界上13 个贫水国家之一.某校有 800 名在校学生,学校为鼓舞学生节俭用水,睁开“珍惜水资源,节俭每一滴水”系列教育活动.为响应学校呼吁,数学小组做了以下检查:小亮为认识一个拧不紧的水龙头的滴水状况,记录了滴水时间和烧杯中的水面高度,如图 1.小明设计了检盘问卷,在学校随机抽取一部分学生进行了问卷检查,并制作出统计图.如图 2 和图 3.经联合图 2 和图 3 回答以下问题:(1)参加问卷检查的学生人数为人,此中选 C 的人数占检查人数的百分比为.(2)在这所学校中选“比较注意,有时水龙头滴水”的大体有人.若在该校随机抽取一名学生,这名学生选 B 的概率为.请联合图 1 解答以下问题(3)在“水龙头滴水状况”图中,水龙头滴水量(毫升)与时间(分)能够用我们学过的哪一种函数表示?恳求出函数关系式.(4)为了保持生命,每人每日需要约2400 毫升水,该校选 C 的学生因没有拧紧水龙头, 2 小时浪费的水可保持多少人一天的生命需要?24.( 10 分)( 2015?邢台一模)如图,直线y=kx ﹣ 4 与 x 轴, y 轴分别交于B、 C 两点.且∠OBC=.(1)求点 B 的坐标及k 的值;(2)若点 A 时第一象限内直线y=kx ﹣ 4 上一动点.则当△ AOB的面积为6时,求点A的坐标;(3)在( 2)建立的条件下.在座标轴上找一点P,使得∠APC=90 °,直接写出P 点坐标.25.( 13 分)(2015?邢台一模)如图,足球上守门员在O 处开出一高球.球从离地面 1 米的A 处飞出( A 在 y 轴上),把球当作点.其运转的高度y(单位: m)与运转的水平距离x(单位: m)知足关系式 y=a( x﹣ 6)2+h .(1)①当此球开出后.飞翔的最高点距离地面 4 米时.求 y 与 x 知足的关系式.② 在① 的状况下,足球落地址 C 距守门员多少米?(取 4 ≈7)③ 以下图,若在① 的状况下,求落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与本来的抛物线形状同样,最大高度减少到本来最大高度的一半.求:站在距O 带你 6 米的 B 处的球员甲要抢到第二个落点 D 处的求.他应再向前跑多少米?(取 2 =5)(2)球员乙高升为 1.75 米.在距 O 点 11 米的 H 处.试图原地跃起用头拦截.守门员调整开球高度.若保证足球着落至H 正上方时低于球员乙的身高.同时落地址在距 O 点 15 米之内.求 h 的取值范围.26.( 14 分)( 2015?南宁校级一模)已知矩形ABCD 中, AB=10cm ,AD=4cm ,作以下折叠操作.如图 1 和图 2 所示,在边 AB 上取点 M ,在边 AD 或边 DC 上取点 P.连结 MP.将△AMP 或四边形 AMPD 沿着直线 MP 折叠获得△A ′MP 或四边形 A ′MPD ′,点 A 的落点为点 A ′,点 D 的落点为点D′.研究:(1)如图 1,若 AM=8cm ,点 P 在 AD 上,点 A ′落在 DC 上,则∠ MA ′C 的度数为;(2)如图 2,若 AM=5cm ,点 P 在 DC 上,点 A ′落在 DC 上,①求证:△ MA ′P 是等腰三角形;②直接写出线段DP 的长.(3)若点 M 固定为 AB 中点,点 P 由 A 开始,沿 A﹣D﹣C 方向.在 AD ,DC 边上运动.设点 P 的运动速度为 1cm/s,运动时间为 ts,按操作要求折叠.①求:当 MA ′与线段 DC 有交点时, t 的取值范围;②直接写出当点 A ′到边 AB 的距离最大时,t 的值;发现:若点 M 在线段 AB 上挪动,点 P 仍为线段 AD 或 DC 上的随意点.跟着点 M 地点的不一样.按操作要求折叠后.点 A 的落点 A ′的地点会出现以下三种不一样的状况:不会落在线段DC 上,只有一次落在线段DC 上,会有两次落在线段DC 上.请直接写出点 A ′由两次落在线段 DC 上时, AM 的取值范围是.初三数学中考模拟试卷参照答案与试题分析一、选择题(共 16 小题, 1-6 小题,每题 2 分, 7-16 小题,每题 2 分,满分42 分,每小题只有一个选项切合题意)1.实数 a 在数轴上的地点以下图,则以下说法正确的选项是()A . a 的相反数是 2 B. a 的绝对值是 2C. a 的倒数等于 2 D . a 的绝对值大于 2考点:实数与数轴;实数的性质.剖析:依据数轴确立 a 的取值范围,选择正确的选项.解答:解:由数轴可知, a<﹣ 2,a 的相反数> 2,所以 A 不正确,a 的绝对值> 2,所以 B 不正确,a 的倒数不等于 2,所以 C 不正确,D 正确.应选: D .评论: 本题考察的是数轴和实数的性质,属于基础题,灵巧运用数形联合思想是解题的重点.2.以下图形既可当作轴对称图形又可当作中心对称图形的是( )A .B .C .D .考点 : 中心对称图形;轴对称图形.剖析: 依据轴对称图形与中心对称图形的观点求解.解答: 解: A 、是轴对称图形,也是中心对称图形,故此选项正确;B 、不是轴对称图形,也不是中心对称图形,故此选项错误;C 、不是轴对称图形,也不是中心对称图形,故此选项错误; D 、是轴对称图形,不是中心对称图形,故此选项错误. 应选: A .评论: 本题主要考察了中心对称图形与轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合, 中心对称图形是要找寻对称中心, 旋转 180 度后与原图重合.3.以下式子化简后的结果为 x 6 的是( )A . x 3+x 3B . x 3?x 3C . ( x 3) 3D . x 12÷x2考点 : 同底数幂的除法;归并同类项;同底数幂的乘法;幂的乘方与积的乘方. 剖析: 依据同底数幂的运算法例进行计算即可.解答: 解: A 、原式 =2x 3,故本选项错误;6C 、原式 =x 9,故本选项错误;12﹣210D 、原式 =x =x ,故本选项错误.评论: 本题考察的是同底数幂的除法,熟知同底数幂的除法及乘方法例、归并同类项的法例、幂的乘方与积的乘方法例是解答本题的重点.4.如图,边长为( m+3)的正方形纸片,剪出一个边长为 m 的正方形以后,节余部分可剪 拼成一个矩形(不重叠无空隙) ,若拼成的矩形一边长为3,则另一边长是()A . m+3B . m+6C . 2m+3D . 2m+6 考点 : 平方差公式的几何背景.剖析: 因为边长为( m+3)的正方形纸片剪出一个边长为m 的正方形以后,节余部分又剪拼成一个矩形(不重叠无空隙) ,那么依据正方形的面积公式,能够求出节余部分的面积,而矩形一边长为 3,利用矩形的面积公式即可求出另一边长.解答: 解:依题意得节余部分为( m +3 ) 2﹣ m 2=( m+3+m )( m+3﹣m )=3( 2m+3 ) =6m+9 ,而拼成的矩形一边长为 3, ∴另一边长是=2m+3 .应选: C .评论: 本题主要考察了多项式除以单项式,解题重点是熟习除法法例.5.对一组数据: 1,﹣ 2, 4,2, 5 的描绘正确的选项是( )A . 中位数是 4B . 众数是 2C . 均匀数是 2D . 方差是 7考点 : 方差;算术均匀数;中位数;众数.剖析: 分别求出这组数据的均匀数、众数、中位数、方差,再对每一项剖析即可.解答: 解: A 、把 1,﹣ 2, 4,2,5 从小到大摆列为:﹣ 2,1,2,4, 5,最中间的数是 2,则中位数是 2,故本选项错误;B 、 1,﹣ 2, 4, 2, 5 都各出现了 1 次,则众数是 1,﹣ 2, 4, 2,5,故本选项错误;C 、均匀数 = ×( 1﹣ 2+4+2+5 ) =2,故本选项正确;D 、方差 S 2= [( 1﹣ 2)2+(﹣ 2﹣2) 2+( 4﹣ 2) 2+( 2﹣ 2) 2+(5﹣ 2) 2]=8,故本选项错误; 应选 C .评论: 本题考察了均匀数, 中位数,方差的意义. 均匀数均匀数表示一组数据的均匀程度. 中位数是将一组数据从小到大(或从大到小)从头摆列后, 最中间的那个数(或最中间两个数的均匀数);方差是用来权衡一组数据颠簸大小的量.6.若对于 x 的一元二次方程 kx 2﹣4x+2=0 有两个不相等的实数根, 则 k 的取值范围是 ()A . k < 2B . k ≠0C . k < 2 且 k ≠0D . k > 2考点 : 根的鉴别式;一元二次方程的定义.剖析: 依据一元二次方程的定义和根的鉴别式2△ 的意义获得 k ≠0 且 △ > 0,即(﹣ 4)﹣4×k ×2 >0,而后解不等式即可获得 k 的取值范围.解答: 解: ∵ 对于 x 的一元二次方程 kx 2﹣ 4x+2=0 有两个不相等的实数根,∴ k ≠0 且 △> 0,即(﹣ 4) 2﹣ 4×k ×2>0,解得 k < 2 且 k ≠0.∴ k 的取值范围为 k < 2 且 k ≠0. 应选 C .评论: 本题考察了一元二次方程 ax 2+bx+c=0 ( a ≠0)的根的鉴别式 △ =b 2﹣ 4ac :当 △> 0,方程有两个不相等的实数根;当 △ =0,方程有两个相等的实数根;当 △ < 0,方程没有实数根.也考察了一元二次方程的定义.7.以下图,E, F, G,H 分别是 OA ,OB , OC,OD 的中点,已知四边形EFGH 的面积是 3,则四边形ABCD 的面积是()A. 6B. 9C. 12D. 18考点:位似变换.剖析:利用位似图形的定义得出四边形 EFGH 与四边形 ABCD 是位似图形,再利用位似图形的性质得出答案.解答:解:∵ E,F,G,H分别是OA,OB,OC,OD的中点,∴四边形 EFGH 与四边形 ABCD 是位似图形,且位似比为:1: 2,∴四边形 EFGH 与四边形 ABCD 的面积比为:1:4,∵四边形 EFGH 的面积是 3,∴四边形 ABCD 的面积是12.应选: C.评论:本题主要考察了位似变换,依据题意得出位似比是解题重点.8.如图,将△ ABC 绕点 A 按顺时针方向旋转某个角度获得△ APQ,使AP平行于CB,CB,AQ 的延伸线订交于点 D .假如∠ D=40 °,则∠ BAC 的度数为()A . 30°B. 40°C. 50°D. 60°考点:旋转的性质.剖析:如图,第一由旋转变换的性质获得∠ PAQ=∠BAC;由平行线的性质获得∠PAQ= ∠ D=40 °,即可解决问题.解答:解:如图,由旋转变换的性质得:∠PAQ= ∠ BAC ;∵AP ∥BD ,∴∠ PAQ=∠ D=40 °,∴∠ BAC=40 °.应选 B.评论:该题主要考察了旋转变换的性质、平行线的性质等几何知识点及其应用问题,灵巧运用旋转变换的性质来剖析、判断、推理或解答是解题的重点.9.一个立方体玩具的睁开图以下图.随意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.考点:列表法与树状图法;专题:正方体相对两个面上的文字.剖析:由数字 3 与 4 相对,数字 1 与 5 相对,数字 2 与 6 相对,直接利用概率公式求解即可求得答案.解答:解:∵数字3与4相对,数字1 与 5 相对,数字 2 与 6 相对,∴随意掷这个玩具,上表面与底面之和为偶数的概率为:.应选 D.评论:本题考察了概率公式的应用.用到的知识点为:概率=所讨状况数与总状况数之比.10.如图,在△ABC 中,∠C=90 °,∠ B=32 °,以 A 为圆心,随意长为半径画弧分别交AB ,AC 于点 M 和 N,再分别以M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P,连接 AP 并延伸交BC 于点 D,则以下说法:①AD 是∠ BAC 的均分线;② CD 是△ADC 的高;③点 D 在 AB 的垂直均分线上;④ ∠ADC=61 °.此中正确的有()A. 1个 B. 2个 C. 3个 D. 4个考点:作图—基本作图.剖析:依据角均分线的做法可得① 正确,再依据直角三角形的高的定义可得② 正确,然后计算出∠CAD= ∠ DAB=29 °,可得 AD ≠BD ,依据到线段两头点距离相等的点在线段的垂直均分线上,所以③ 错误,依据三角形内角和可得④ 正确.解答:解:依据作法可得AD 是∠ BAC 的均分线,故① 正确;∵∠ C=90°,∴CD 是△ ADC 的高,故②正确;∵∠ C=90°,∠ B=32 °,∴∠ CAB=58 °,∵AD 是∠ BAC 的均分线,∴∠ CAD= ∠ DAB=29 °,∴AD ≠BD ,∴点 D 不在 AB 的垂直均分线上,故③ 错误;∵∠ CAD=29 °,∠ C=90°,∴∠ CDA=61 °,故④正确;共有 3 个正确,应选: C.评论:本题主要考察了基本作图,重点是掌握角均分线的做法和线段垂直均分线的判断定理.11.如图,正三角形 ABC (图 1)和正五边形 DEFGH (图 2)的边长同样.点 O 为△ABC 的中心,用 5 个同样的△ BOC 拼入正五边形 DEFGH 中,获得图 3,则图 3 中的五角星的五个锐角均为()A . 36°B. 42°C. 45°D. 48°考点:多边形内角与外角;等边三角形的性质.剖析:依据图 1 先求出正三角形 ABC 内大钝角的度数是 120°,则两锐角的和等于 60°,正五边形的内角和是 540°,求出每一个内角的度数,而后解答即可.解答:解:如图,图 1 先求出正三角形ABC 内大钝角的度数是180°﹣ 30°×2=120°,180°﹣ 120°=60°,60°÷2=30°,正五边形的每一个内角=( 5﹣2) ?180°÷5=108°,∴图 3 中的五角星的五个锐角均为:108°﹣ 60°=48 °.应选: D.评论:本题主要考察了多边形的内角与外角的性质,认真察看图形是解题的重点,难度中等.12.如图, Rt△ OAB 的直角边OB 在 x 轴上,反比率函数y=在第一象限的图象经过其顶点 A ,点 D 为斜边 OA 的中点,另一个反比率函数y1=在第一象限的图象经过点D,则 k的值为()A. 1B. 2C.D.没法确立考点:反比率函数图象上点的坐标特色.剖析:过点D作DE⊥ x轴于点E,由点D为斜边OA的中点可知DE 是△AOB 的中位线,设 A ( x,),则 D (,),再求出 k 的值即可.解答:解:过点 D 作 DE⊥x 轴于点 E,∵点 D 为斜边 OA 的中点,点 A 在反比率函数y= 上,∴DE 是△ AOB 的中位线,设 A ( x,),则 D(,),∴k= ? =1 .应选 A.评论:本题考察的是反比率函数图象上点的坐标特色,熟知反比率函数图象上各点的坐标必定合适此函数的分析式是解答本题的重点.13.如图,已知平行四边形ABCD 中, AB=5 ,BC=8 , cosB=,点E是BC边上的动点,当以 CE 为半径的圆 C 与边 AD 不订交时,半径CE 的取值范围是()A . 0< CE ≤8B . 0<CE ≤5C . 0< CE < 3 或 5< CE ≤8D . 3<CE ≤5 考点 : 直线与圆的地点关系;平行四边形的性质.剖析: 过 A 作 AM ⊥ BC 于 N ,CN ⊥ AD 于 N ,依据平行四边形的性质求出 AD ∥ BC , AB=CD=5 ,求出 AM 、CN 、 AC 、 CD 的长,即可得出切合条件的两种状况.解答: 解:过 A 作 AM ⊥BC 于 N ,CN ⊥AD 于 N ,∵四边形 ABCD 是平行四边形,∴AD ∥ BC , AB=CD=5 , ∴AM=CN ,∵AB=5 , cosB= =,∴BM=4 , ∵BC=8 , ∴CM=4=BC , ∵AM ⊥BC , ∴AC=AB=5 ,由勾股定理得: AM=CN==3,∴当以 CE 为半径的圆 C 与边 AD 不订交时,半径 CE 的取值范围是 0< CE < 3 或 5< CE ≤8,应选 C .评论: 本题考察了直线和圆的地点关系,勾股定理,平行四边形的性质的应用,能求出切合条件的全部状况是解本题的重点,本题综合性比较强,有必定的难度.14.如图,已知在平面直角坐标系xOy 中,抛物线 m :y=﹣ 2x 2﹣ 2x 的极点为 C ,与 x 轴两个交点为 P , Q .现将抛物线 m 先向下平移再向右平移,使点C 的对应点 C ′落在 x 轴上,点 P 的对应点 P ′落在轴 y 上,则以下各点的坐标不正确的选项是()A . C (﹣ , )B .C ′(1,0) C . P (﹣ 1,0)D . P ′(0,﹣ )考点 : 二次函数图象与几何变换.剖析: 依据抛物线 m 的分析式求得点 P 、 C 的坐标,而后由点P ′在 y 轴上,点 C ′在 x 轴上获得平移规律,由此能够确立点P ′、 C ′的坐标.解答: 解: ∵ y= ﹣ 2x 2﹣ 2x= ﹣ 2x ( x+1 )或 y= ﹣ 2( x+ 2 , ) + ∴P (﹣ 1, 0), O ( 0, 0), C (﹣ , ).又∵ 将抛物线 m 先向下平移再向右平移,使点 C 的对应点 C ′落在 x 轴上,点 P 的对应点 P ′落在 y 轴上,∴该抛物线向下平移了 个单位,向右平移了 1 个单位,∴C ′( , 0),P ′(0,﹣ ).综上所述,选项 B 切合题意. 应选: B .评论: 主要考察了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求娴熟掌握平移的规律: 左加右减,上加下减.并用规律求函数分析式.会利用方程求抛物线与坐标轴的交点.15.随意实数 a ,可用 [a] 表示不超出 a 的最大整数,如 [4]=4, [ ] =1,现对 72 进行以下操作: 72→[]=8→[] =2→[]=1,这样对 72 只需进行 3 次操作后变成 1.近似地:对数字 900 进行了 n 次操作后变成1,那么 n 的值为()A . 3B . 4C . 5D . 6 考点 : 估量无理数的大小. 专题 : 新定义.剖析: 依据 [a]表示不超出 a 的最大整数计算,可得答案. 解答: 解: 900→第一次 [ ] =30→第二次 []=5→第三次 []=2→第四次 [ ]=1,即对数字 900 进行了 4 次操作后变成 1.应选: B .评论: 本题考察了估量无理数的大小的应用,主要考察学生的阅读能力和逆推思想能力.16.如图,在平面直角坐标系中, A 点为直线 y=x 上一点,过 A 点作 AB ⊥x 轴于 B 点,若OB=4 ,E 是 OB 边上的一点,且 OE=3,点 P 为线段 AO 上的动点,则 △BEP 周长的最小值 为()A. 4+2B. 4+C. 6D. 4考点:轴对称 -最短路线问题;一次函数图象上点的坐标特色.剖析:在y轴的正半轴上截取OF=OE=3 ,连结 EF,证得 F 是 E 对于直线y=x 的对称点,连结 BF 交 OA 于 P,此时△ BEP 周长最小,最小值为BF+EB ,依据勾股定理求得BF,因为 BE=1 ,所以△ BEP 周长最小值为 BF+EB=5+1=6 .解答:解:在 y 轴的正半轴上截取 OF=OE=3 ,连结 EF,∵A点为直线 y=x 上一点,∴OA 垂直均分EF,∴E、 F 是直线 y=x 的对称点,连结 BF 交 OA 于 P,依据两点之间线段最短可知此时△BEP周长最小,最小值为BF+EB ;∵OF=3 , OB=4 ,∴BF==5,∵E B=4 ﹣ 3=1 ,△BEP 周长最小值为BF+EB=5+1=6 .应选 C.评论:本题考察了轴对称的判断和性质,轴对称﹣最短路线问题,勾股定理的应用等,作出 P 点是解题的重点.二、填空题(共 4 小题,每题 3 分,满分 12 分)17.计算:=.考点:二次根式的加减法.剖析:先将二次根式化为最简,而后归并同类二次根式即可得出答案.解答:解:=3﹣=2.故答案为: 2 .评论: 本题考察二次根式的减法运算,难度不大,注意先将二次根式化为最简是重点.21﹣ a ﹣b 的值为 0 .18.若 x=1 是对于 x 的方程 ax +bx ﹣1=0( a ≠0)的一个解, 则代数式 考点 : 一元二次方程的解.剖析: 把 x=1 代入已知方程,可得: a+b ﹣ 1=0 ,而后合适整理变形即可.解答: 解: ∵ x=1 是对于 x 的方程 ax 2+bx ﹣ 1=0( a ≠0)的一个解,∴ a +b ﹣ 1=0, ∴ a +b=1,∴ 1﹣ a ﹣ b=1﹣( a+b )=1﹣ 1=0 . 故答案是: 0.评论: 本题考察了一元二次方程的解的定义.把根代入方程获得的代数式奇妙变形来解题是一种不错的解题方法.19.如图, A ,B ,C 是⊙ O 上三点,已知 ∠ ACB= α,则 ∠ AOB= 360°﹣ 2α .(用含 α的式子表示)考点 : 圆周角定理.剖析: 在优弧 AB 上取点 D ,连结 AD 、 BD ,依据圆内接四边形的性质求出 ∠ D 的度数, 再依据圆周角定理求出 ∠ AOB 的度数.解答: 解:在优弧 AB 上取点 D ,连结 AD 、 BD ,∵∠ ACB= α, ∴∠ D=180 °﹣ α,依据圆周角定理, ∠AOB=2 ( 180°﹣ α) =360°﹣2α. 故答案为: 360°﹣ 2α.评论: 本题考察的是圆周角定理及圆内接四边形的性质, 解答本题的重点是熟知以下观点:圆周角定理: 同弧所对的圆周角等于它所对圆心角的一半; 圆内接四边形的性质: 圆内接四边形对角互补.20.在 △ABC 中, AH ⊥ BC 于点 H ,点 P 从 B 点开始出发向 C 点运动,在运动过程中,设线段 AP 的长为 y ,线段 BP 的长为 x (如图 1),而 y 对于 x 的函数图象如图2 所示. Q ( 1,)是函数图象上的最低点.小明认真察看图1,图 2 两图,作出以下结论:① AB=2;② AH=;③ AC=2;④ x=2时,△ ABP是等腰三角形;⑤ 若△ABP为钝角三角形,则 0< x< 1;此中正确的选项是①②③④(填写序号).考点:动点问题的函数图象.剖析:(1)当x=0时,y的值即是AB 的长度;(2)图乙函数图象的最低点的y 值是 AH 的值;(3)在直角△ ACH 中,由勾股定理来求AC 的长度;(3)当点 P 运动到点 H 时,此时 BP( H)=1,AH=,在Rt△ ABH中,可得出∠B=60°,则判断△ ABP 是等边三角形,故BP=AB=2 ,即 x=2(5)分两种状况进行议论,① ∠ APB 为钝角,② ∠BAP 为钝角,分别确立 x 的范围即可.解答:解:( 1)当 x=0 时, y 的值即是 AB 的长度,故 AB=2 ,故①正确;(2)图乙函数图象的最低点的y 值是 AH 的值,故AH=,故② 正确;(3)如图乙所示: BC=6 , BH=1 ,则 CH=5 .又 AH= ,∴直角△ ACH 中,由勾股定理得: AC= = =2 ,故③正确;(4)在 Rt△ABH 中, AH= , BH=1 ,tan∠ B= ,则∠B=60 °.又△ ABP 是等腰三角形,∴△ ABP 是等边三角形,∴B P=AB=2 ,即 x=2.故④ 正确;(5)①当∠APB 为钝角时,此时可得 0<x< 1;②当∠ BAP 为钝角时,过点 A 作 AP⊥ AB ,则 BP==4,即当 4< x≤6 时,∠BAP 为钝角.综上可得0< x< 1 或 4< x≤6 时△ ABP 为钝角三角形,故⑤ 错误.故答案为:①②③④.评论:本题考察了动点问题的函数图象,有必定难度,解答本题的重点是联合图象及函数图象得出 AB 、 AH 的长度,第三问推知△ABP 是等边三角形是解题的难点.三、解答题(共 5 小题,满分58 分)22.( 10 分)(2015?邢台一模)如图,某城市中心的两条公路OM 和 ON,此中 OM 为东西走向, ON 为南北走向, A、 B 是两条公路所围地区内的两个标记性建筑.已知 A 、 B 对于∠MON 的均分线 OQ 对称. OA=1000 米,测得建筑物 A 在公路交错口 O 的北偏东 53.5°方向上.求:建筑物 B 到公路 ON 的距离.(参照数据: sin53.5 °=0.8, cos53.5°=0.6, tan53.5°≈1.35)考点:解直角三角形的应用-方向角问题.剖析:连结 OB,作 BD ⊥ ON 于 D,AC ⊥OM 于 C,则∠ CAO= ∠ NOA=53.5 °,解 Rt △AOC ,求出 AC=OA ?cos53.5°=600 米,再依据 AAS 证明△ AOC ≌ △ BOD ,得出 AC=BD=600 米,即建筑物 B 到公路 ON 的距离为 600 米.解答:解:如图,连结OB,作 BD ⊥ON 于 D, AC ⊥ OM 于 C,则∠ CAO= ∠ NOA=53.5 °,在 Rt△ AOC 中,∵∠ ACO=90 °,∴AC=OA ?cos53.5°=1000×0.6=600(米),OC=OA ?sin53.5°=1000 ×0.8=800 (米).∵A 、B 对于∠ MON 的均分线OQ 对称,∴∠ QOM= ∠QON=45 °,∴OQ 垂直均分AB ,∴OB=OA ,∴∠ AOQ= ∠ BOQ,∴∠ AOC= ∠ BOD .在△ AOC 与△ BOD 中,,∴△ AOC ≌ △ BOD ( AAS ),∴A C=BD=600 米.即建筑物 B 到公路 ON 的距离为600 米.评论:本题考察认识直角三角形的应用﹣方向角问题,轴对称的性质,全等三角形的判断与性质,正确作出协助线证明△AOC ≌△ BOD 是解题的重点.23.( 11 分)(2015?南宁校级一模)( 2015?邢台一模)中国是世界上13 个贫水国家之一.某校有 800 名在校学生,学校为鼓舞学生节俭用水,睁开“珍惜水资源,节俭每一滴水”系列教育活动.为响应学校呼吁,数学小组做了以下检查:小亮为认识一个拧不紧的水龙头的滴水状况,记录了滴水时间和烧杯中的水面高度,如图 1.小明设计了检盘问卷,在学校随机抽取一部分学生进行了问卷检查,并制作出统计图.如图 2 和图 3.经联合图 2 和图 3 回答以下问题:(1)参加问卷检查的学生人数为60人,此中选 C 的人数占检查人数的百分比为10%.(2)在这所学校中选“比较注意,有时水龙头滴水”的大体有440人.若在该校随机抽取一名学生,这名学生选 B 的概率为.请联合图 1 解答以下问题(3)在“水龙头滴水状况”图中,水龙头滴水量(毫升)与时间(分)能够用我们学过的哪一种函数表示?恳求出函数关系式.(4)为了保持生命,每人每日需要约2400 毫升水,该校选 C 的学生因没有拧紧水龙头, 2 小时浪费的水可保持多少人一天的生命需要?考点:一次函数的应用;用样本预计整体;扇形统计图;条形统计图;概率公式.剖析:(1)依据A的人数除以占的百分比求出检查总人数;求出 C 占的百分比即可;(2)求出 B 占的百分比,乘以 800 获得结果;找出总人数中 B 的人数,即可求出所求概率;(3)水龙头滴水量(毫升)与时间(分)能够近似看做一次函数,设为y=kx+b ,把两点坐标代入求出k 与 b 的值,即可确立出函数分析式;(4)设可保持 x 人一天的生命需要,依据题意列出方程,求出方程的解即可获得结果.解答:解:( 1)依据题意得: 21÷35%=60(人),选 C 的人数占检查人数的百分比为×100%=10% ;(2)依据题意得:选“比较注意,有时水龙头滴水”的大体有 800×( 1﹣35%﹣ 10%)=440(人);。

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax^2 + bx + c + dD. y = ax^2 + bx + c + dx2. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 83. 以下哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/104. 一个数的相反数是-3,那么这个数是多少?A. 3B. -3C. 0D. 65. 一个等腰三角形的底角是45度,求顶角的度数。

A. 45度B. 60度C. 90度D. 135度6. 圆的半径是5厘米,求圆的面积。

A. 25π平方厘米B. 50π平方厘米C. 75π平方厘米D. 100π平方厘米7. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 08. 以下哪个选项是不等式的基本性质?A. 如果a > b,那么a + c > b + cB. 如果a > b,那么ac > bcC. 如果a > b,那么a/c > b/cD. 如果a > b,那么a^2 > b^29. 一个长方体的长、宽、高分别是2cm、3cm、4cm,求其体积。

A. 8立方厘米B. 12立方厘米C. 24立方厘米D. 36立方厘米10. 一个多项式的最高次项系数是-1,且次数为3,这个多项式可能是?A. -x^3 + 2x^2 - 3x + 4B. -x^3 + 2x^2 + 3x - 4C. x^3 + 2x^2 - 3x + 4D. x^3 + 2x^2 + 3x - 4二、填空题(每题3分,共15分)1. 一个数的立方根是2,那么这个数是______。

2. 一个数的平方是9,那么这个数是______或______。

初三数学中考模拟试卷(附详细答案)

初三数学中考模拟试卷(附详细答案)

初三数学中考模拟试卷(附详细答案)初三数学中考模拟试卷(附详细答案)题目一:选择题1. 下列选项中,与集合{a, b, c}等势的集合是()。

A. {1, 2, 3}B. {a, b, a}C. {a, b, c, d}D. {a, a, a}答案:B2. 等差数列的前三项分别是1,3,5,那么它的通项公式是()。

A. an = a1 + (n-1)dB. an = a1 + dC. an = 2a1 + (n-1)dD. an = 2a1 + d答案:A3. 已知集合A = {x | x是奇数,0 < x < 10},那么集合A的元素个数是()。

A. 5B. 6C. 7D. 8答案:A4. 以下哪个数是无理数()。

A. √4B. πC. 3D. 0.5答案:B5. 若2x - 5 = 7,则x的值是()。

A. -1B. 1C. 3D. 6答案:C题目二:填空题1. 题设如图所示,根据图示线段,其中AC与BD相交于点E,则AE : CE = _______。

A--------B| || * || |C--------D答案:1:32. 甲、乙两人分别从A、B两地同时出发,相向而行,甲速度2km/h,乙速度1km/h,相遇时他们共走了______千米。

答案:23. 若2x - 5 = 7,则x = _______。

答案:64. 将81用素因数分解的形式表示为3的指数幂,则为3^_______。

答案:4题目三:解答题1. 解方程5x + 3 = 23。

解答:首先,将方程变形为5x = 23 - 3。

然后,计算出5x = 20。

最后,求得x = 4。

2. 一条河流中,两艘船以相同的速度向上游驶过某一点,并从该点同时向下游驶离开。

若上游行驶时间是下游行驶时间的3倍,并已知下游行驶的距离是上游行驶距离的两倍,求上游和下游的速度比。

解答:设上游的速度为v,下游的速度为2v。

根据题意,下游的时间是上游时间的3倍,下游的距离是上游距离的两倍。

最新版初三中考数学模拟试卷易错题及答案4880817

最新版初三中考数学模拟试卷易错题及答案4880817

中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息 一、选择题1.下列判断中,正确的是( ) A .顶角相等的两个等腰三角形全等 B .腰相等的两个等腰三角形全等C .有一边及锐角相等的两个直角三角形全等D .顶角和底边分别相等的两个等腰三角形全等2.已知点P (1,2)与点Q (x ,y )在同一条平行于x 轴的直线上,且Q 点到y 轴的距离等于2,那么点Q 的坐标是( ) A .(2,2)B .(-2,2)C .(-2,2)和(2,2)D .(-2,-2)和(2,-2)3.如图,将两根钢条AA ′、BB ′的中点O 连在一起,使AA ′、BB ′可以绕着点O 自由转动,就做成了一个测量工件,则A ′B ′的长等于内槽宽AB ,那么判定△OAB ≌△OA ′B ′的理由是( ) A .边角边B .角边角C .边边边D .角角边4.二元一次方程的一个解是( ) A .两个数值 B .任意一对未知数的值C .一对未知数的值D 5.以11x y =⎧⎨=-⎩为解的二元一次方程组是( )A .01x y x y +=⎧⎨-=⎩B .01x y x y +=⎧⎨-=-⎩C .02x y x y +=⎧⎨-=⎩D .02x y x y +=⎧⎨-=-⎩6.分式11a b+计算的结果是( ) A .b a + B .1a b+C .2a b+ D .a bab+ 7.已知10xm =,10yn =,则2x 310y+等于( )A .23m n +B .22m n +C .6mnD .23m n8.把式子2(3)(2)a a a -+-化简为13a +,应满足的条件是( )A . 2a -是正数B . 20a -≠D . 2a -是非负数 D .20a -=9.以下列各组数为长度的线段,能组成三角形的是( ) A .1cm, 2cm , 3cmB .2cm , 3cm , 6cmC .4cm , 6cm , 8cmD .5cm , 6cm , 12cm10.如图,在△ABC 中,DE 是边AB 的垂直平分线,AB=6,BC=8,AC=5,则△ADC 的周长是( )A.14 B .13 C .11 D . 911.等腰三角形一个角为 40°,则它的顶角是( ) A .40° B .70° C . 100°D . 40°或 100°12.已知12x y =⎧⎨=⎩是方程组120.ax y x by +=-⎧⎨-=⎩, 的解,则a+b=( )A .2B .-2C .4D .-413.在全等三角形的判定方法中,一般三角形不具有,而直角三形形具有的判定方法是 ( ) A .SSSB .SASC .ASAD .HL14.下面给出的是一些产品的商标图案,从几何图形的角度看(不考虑文字和字母),既是轴对称图形又能旋转180°后与原图重合的是( )15.如图,CD 是Rt △ABC 斜边AB 上的高,∠A=40°,则∠1=( ) A .30°B .40°C .45°D .60°16.一个几何体的主视图,左视图和俯视图都是正方形,那么这个几何体可以是( ) A .圆锥B .立方体C .圆柱D .直六棱柱17.在一组50个数据的数组中,平均数是42,将其中两个数l30和50舍去,则余下的数的平均数为( ) A .38B .39C . 40D .41 18. 一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表:如果鞋店要购进100双这种女鞋,那么购进24厘米、24.5厘米和25厘米三种女鞋数量之和最合适...的是()A.20双B.30双C.50双D.80双19.已知一组数据5,7,3,9,则它们的方差是()A. 3 B. 4 C. 5 D. 620.在国家实行一系列“三农”优惠政策后,农民收入大幅度增加.某乡所辖村庄去年年人均收入(单位:元)的情况如下表.该乡去年人均收入的中位数是()A.3700元B.3800元 C.3850元D.3900元21.不等式732122x x--+<的负整数解有()A.1 个B.2 个C.3 个D.4 个22.如图,直线AB对应的函数表达式是()A.3y x32=-+B.3y x32=+C.2y x33=-+D.2y x33=+23.如图,在Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,则下列结论中不正确的是()A.∠ACD=∠B B. CH=CE=EF C.AC=AF D.CH=HD24.已知数据:25,21,23,25,29,27,28,25,27,30,22,26,25,24,26,28,26,25,24,27.在列频数分布表时,如果取组距为2,那么落在24.5~26.5这一组的频率是()A.0.6 B.0.5 C.0.4 D.0.325.如图,小手盖住的点的坐标可能为()A.(5,2)B.(一6,3)C.(一4,一6)D.(3,一4)26.如图,CD是等腰直角三角形斜边AB上的中线,DE⊥BC于E,则图中等腰直角三角形的个数是()A.3个B.4个C.5个D.6个27.若x 表示一个两位数,y 也表示一个两位数,小明想用 x 、 y 来组成一个四位数,且把 x 放在 y 的右边..,你认为下列表达式中哪一个是正确的( ) A .yx B .x+y C .100x+y D .100y+x28.数轴上A 、B 两点分别是8.2,365,则 A .B 两点间的距离为( )A .4145B .2145C .-1. 6D .1. 629. 一个数的绝对值比本身大,那么这个数必定是( ) A .正数B .负数C .整数D . 030.在数|3|-,2-+,(0.5)--,|0|+-中负数共有( ) A .1 个B .2 个C .3 个D .4 个31.已知|2006||2007|0x y -++=,则x 与y 的大小关系是( ) A .x y < B .x y >C .0x y <-<D .0x y >->32.下列说法中,不具有相反意义的一对量是( ) A .向东 2.5千米和向西2千米 B .上升 3米和下降1.5米 C .零上 6℃和零下5℃ D .收入5000元和亏损5 000元33.一个数的倒数的相反数是233,那么这个数是( )A .113-B .142C .311-D .1234.设a 是大于 1 的有理数,若a 、23a +、213a +在数轴上的对应点分别记作 A .B 、C ,则A 、B 、C 三点在数轴上自左至右的顺序是( ) A .C 、B 、AB .B 、C 、A C .A 、B 、CD .C .A 、B35.下列四种说法:①正实数和负实数统称实数;②实数包括有理数和无理数;③分数都是实数;④数轴上的点可以表示无理数,其中正确的有( ) A .1 种B .2 种C .3种D .4 种36.下列方程中,是一元一次方程的为( ) A .x+y=1B .2210x x -+=C .21x= D .x=037.如图.在△ABC 中,AB AC ,AB 的中垂线DE 交AC 于点D ,交AB 于点E ,如果BC=10,△BDC 的周长为22,那么△ABC的周长是()A.24 B.30 C.32 D.3438.用科学记数法表示0.000 302 5为()A.3.025×10-4B.3025×10-4C.3.025×10-5D.3.025×10-639.若(3)(2)0-+=,则x的值是()x xA. 3 B. -2 C.-3或2 D.3或-240.已知点A(0,-l),M(1,2),N(-3,0),则射线AM和射线AN组成的角度数()A.一定大于90° B.一定小于90°C.一定等于90° D.以上三种情况都有可能41.如果关于m的方程 2m+b=m-1 的解是-4,那么b的值是()A.3 B.5 C. -3 D.-542.当2x=-时,这个代数式的值是()x=时,代数式2ax-的值是4;那么当2A. -4 B. -8 C.8 D. 243.张颖同学把自己一周的支出情况,用如图所示的统计图来表示.则从图中可以看出()A.一周支出的总金额B.一周各项支出的金额C.一周内各项支出金额占总支出的百分比D.各项支出金额在一周中的变化情况44.下列说法中正确的个数有()①两点确定一条直线;②线段上有无数个点;③两条直线至多只有一个公共点;④经过三个点能确定一条直线.A.1个B.2个C.3个D.4个45.在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面的平移中正确的是()A .先向下移动l 格,再向左移动l 格B .先向下移动l 格,再向左移动2格C .先向下移动2格,再向左移动l 格D .先向下移动2格,再向左移动2格46.下列图案,能通过某基本图形旋转得到,但不能通过平移得到的是 ( )47.顶角为20°的等腰三角形放大2倍后得到的三角形是( ) A .其顶角为40° B .其底角为80° C .周长不变 D .面积为原来的2倍48.方程41x y +=,21x y +=,0y z +=,1x y ⋅=,=23x yy +中,二元一次方程共有( ) A .1 个B .2 个C . 3 个D . 4 个49.下列等式成立的是( ) A .22()()x y x y -=-- B .22()()x y x y +=-- C .222()m n m n -=-D .222()m n m n +=+50.任何一个三角形的三个内角中至少有( ) A .一个角大于60°B .两个锐角C .一个钝角D .一个直角51.下列命题中正确的是( )A .三角形的角平分线、中线和高都在三角形内B .直角三角形的高只有一条C .三角形的高至少有一条在三角形内D .钝角三角形的三条高都在三角形外 52.下列从左到右的变形是因式分解的为( ) A .2(3)(3)9a a α-+=- B .22410(2)6x x x ++=++ C .2269(3)x x x -+=- D .243(2)(2)3x x x x x -+=-++53.已知△ABC 中,D 、E 分别是 AB 、AC 上的点,∠AED=∠B ,DE = 6,AB =10 ,AE =8,则 BC 等于( ) A .154B .7C .152D .24554.在平面直角坐标系中,点P 的坐标为(0,-3),则点P 在( )A .x 轴上B .y 轴上C .坐标原点D .第一象限55.反比例函数k y x=与二次函数2y kx =(k ≠0)画在同一个坐标系里,正确的是( )A .B .C .D .56.方程①2290x -=;②2110x x-=;③29xy x +=;④276x x +=中,是一元二次方程的个数有( ) A .1个B .2个C .3个D .4个57.已知函数2y ax bx c =++的图象如图所示,那么函数解析式为( )A .223y x x =-++ B .223y x x =-- C .223y x x =-+ D .223y x x =-+-58. 已知二次函数2y ax bx c =++的图象如图所示,则在①a<0;②b>0;③c<0;④240b ac ->中,正确的判断是( )A .①②③④B .④C .①②③D .①④59. 二次函数y =―3x 2―7x ―12的二次项系数、一次项系数及常数项分别是( ) A .―3,―7,―12B .-3,7,12C .3,7,12D .3,7,-1260.将一圆形纸片对折后再对折,得到如图的形状,然后沿着虚线剪开,得到两部分,其中一部分展开后得到的图形是( )A .B .C .D .61.如图,在条件:① ∠COA=∠AOD=60°;②AC=AD=OA ;③点E 分别是 AO 、CD 的中点;④OA ⊥CD 且∠ACO= 60°中,能 推出四边形皿D 是菱形的条件有( ) A .1 个B .2 个C .3 个D .4 个62.如图,点A 、B 、C 、D 是同一个圆上四点,则图中相等的圆周角共有 ( ) A .2 对B .4 对C .6 对D .8 对63. 如图,已知圆锥形烛台的侧面积是底面积的 2 倍,则两条母线所夹的∠AOB 为( ) A .30°B .45°C .60°D .120°64.如图,过反比例函数3y x=(x>0)图象上任意两点A 、B 分别作x 铀的垂线,垂足分别为 C .D ,连结 QA 、OB ,设△AOC 与△BQD 的面积分别为 S 1与S 2, 比较它们的大小可得( )A .S 1=S 2B .S 1>S 2C .S 1<S 2D .S 1与S 2大小关系不能确定65.如图,C 是以AB 为直径的⊙O 上一点,已知AB =5,BC =3,则圆心O 到弦BC 的距离是( ) A .1.5B .2C .2.5D .366.设P 是函数4y x=在第一象限的图像上任意一点,点P 关于原点的对称点为P ',过P 作PA 平行于y 轴,过P '作P A '平行于x 轴,PA 与P A '交于A 点,则PAP '△的面积( )A .等于2B .等于4C .等于8D .随P 点的变化而变化67.已知抛物线21(4)33y x =--的部分图象如图所示,图象再次与x 轴相交时的坐标是( )A .(5,0)B .(6,0)C .(7,0)D .(8,0)68.若把 Rt △ABC 的各边都扩大 3倍,则各边扩大后的cosB 与扩大前的cosB 的值之间 的关系是 ( ) A .扩大3倍B .缩小3倍C .相等D .不能确定69.甲、乙、丙、丁4人进行乒乓球比赛,每两人均比一场,无平局. 结果甲胜丁,且甲、乙、丙三入胜的场教相同,估计丁与乙进行比赛,丁获胜的概率为( ) A .OB .13C .12D .170.已知⊙O 的半径为 5 cm ,如果一条直线和圆心0的距离为 5 cm ,那么这条直线和⊙O 的位置关系是( ) A .相交B .相切C . 相离D . 相交或相离71.如图所示,PA 切⊙O 于A 点,PB 切⊙O 于B 点,OP 交⊙O 于C 点,下列结论中错误的是( ) A .∠APO=∠BP0B .PA=PBC .AB ⊥OPD .2PA PC PO =⋅72.已知关于x 的一元二次方程221()04x R r x d -++=无实数根,其中 R 、r 分别是⊙O 1、⊙O 2的半径,d 为两圆的圆心距,则⊙O 1、⊙O 2的位置关系为( ) A .外切B .内切C .外离D .外切或内切73.若两圆的半径分别是1cm 和5cm ,圆心距为6cm ,则这两圆的位置关系是( ) A .内切B .相交C .外切D .外离74.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( ) A .B .C .D .75.如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m ,塔影长DE=18 m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为( ) A .24m B .22m C .20 m D .18 m76.如果用□表示1个立方体,用 表示两个立方体叠加,•用■表示三个立方体叠加,那么下图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )B D77.如图表示的是一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为( )A .B .C .D .78.如图,△ABC 中,延长 BC 到点 D ,使 CD=BC ,E 是 AC 中点,DE 交 AB 于点 F ,则DEDF=( ) A .23B .34C .35D .4579.已知a b <,则下列不等式一定成立的是( ) A .33a b +>+B .22a b >C .a b -<-D .0a b -<80.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( ) A .x (x +1)=1035 B .x (x -1)=1035×2 C .x (x -1)=1035 D .2x (x +1)=103581.不等式组213351x x +>⎧⎨-≤⎩的解在数轴上表示正确的是( )A .B .C .D .82.若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何体可能是( ) A .球B .圆柱C .圆锥D .棱锥83.关于x 的一元二次方程()220x mx m -+-=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法确定84.在频数分布直方图中,每个小长形的高度等于( ) A .组距B .组数C .每小组的频率D .每小组的频数85. 如图是抛物线2(1)2y a x =++的一部分,该抛物线在 y 轴右侧部分与x 轴交点坐标是( ) A .(12,0) B .(1,0) C . (2,0)D . (3,0)86.下列图形中,不是正方形的表面展开图的是( )A .B .C .D .87.如图,△OAP 、△ABQ 均是等腰直角三角形,点 P 、Q 在函数4(0)y x x=>的图象上,直角顶点 A .B 均在x 轴上,则点B 的坐标为( )A 1,0)B 1,0)C . (3,0)D .(1-,0)88.如图,顺次连结四边形ABCD 各边的中点得四边形EFGH ,要使EFGH 是菱形,应添加的条件是 ( )A .AD ∥BCB .AC=BDC .AC ⊥BD D .AD=AB89.若01322=-+-p x px 是关于x 的一元二次方程则( )A .p=1B .p>0C .p ≠0D .p 为任意实数 90.下列各组点中,关于坐标原点对称的是( )A .(-3,-4)和(-3,4)B .(-3,-4)和(3,-4)C .(-3,-4)和(3,4)D .(-3,-4)和(4,3)91.在四边形中,直角最多可以有 ( )A .1个B .2个C .3个D .4个 92.下列不在函数y=-2x+3的图象上的点是 ( )A .(-5,13)B .(0.5,2)C .(3,0)D .(1,1)93.在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可能是( )A .1∶2∶3∶4B .1∶2∶2∶1C .2∶2∶1∶1D .2∶1∶2∶125,则□ABCD 的周长为( )A .20B .30C .40D .5095.如图,一张矩形纸片沿BC 折叠,顶点A 落在A ′处,第二次过A ′再折叠,使折痕DE ∥BC ,若AB=2,AC=3,则梯形BDEC 的面积为( )A .8B .9C .10D .1196.如图.在□ABCD 中,对角线AC 和BD 相交于点O ,则下面条件能判定□ABCD 是矩形的是( )A .AC BD =B .AC BD ⊥ C .AC BD =且AC BD ⊥ D .AB AD =97.如图,在梯形ABCD 中,AD ∥BC ,AB=AD=DC ,∠C=60°.若这个梯形的周长为50,则AB 的长为( )A .8B .9C .10D .1298.某厂计划用两年的时间把某种型号的电视机成本降低36%,若每年下降的百分比相同,则这个百分比为( )A .16%B .18%C .20%D .22% 99.函数1y x =-的图象与坐标轴交点个数是( )A .2 个B .1个C . 0个D .无法确定100.某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是 乒乓球比赛,1场是羽毛球比赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛 的概率是( )A .14 B .13 C .12 D .23101.如图,直线a 、b 被直线c 所截,现给出下列四个条件:( 1 ) ∠l =∠5;(2) ∠ 1 = ∠7;(3)∠2 +∠3 =180°;(4)∠4 = ∠7. 其中能判定 a ∥b 的条件的序号是( )A . (1)(2)B . (1)(3)C .(1)(4)D . (3)(4)102.杭州湾跨海大桥于5月1日23时58分开始试运行,大桥全长36千米,按规定桥上最低时速为60千米,最高时速为100千米,两辆汽车从桥的南北两端同时出发,正常行驶时到它们在途中交会所需时间可能为( )A .36分钟B .22分钟C .15分钟D .7分钟A CB a c b 103.在相同时刻阳光下的物高与影长成比例,如果高为1.5m 的测杆的影长为2.5m ,那么影长为30m 的旗杆的高是( )A .20mB .16mC .18mD .15m104.下列图形中的直线 1与⊙0的位且关系是相离的是( )A .B .C .D .105.如图1表示正六棱柱形状的高大建筑物,图2表示该建筑物的俯视图,P 、Q 、M 、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在( )A .P 区域B .Q 区域C .M 区域D .N 区域106.小勇投镖训练的结果如图所示,他利用所学的统计知识对自己10次投镖的成绩进行了 评价,①平均数是(10+8×4+7×2+6×2+5)÷10=7.3(环),②众数是8环,打8环的次数占40%,③中位数是8环,比平均数高0.7环.上述说法中,正确的个数有( )A . 0个B .l 个C .2个D .3个107.随机掷两枚硬币,落地后全部正面朝上的概率是( )A .1B .21C .31D .41108.如图,在Rt ABC △中,90C =∠,三边分别为a b c ,,,则cos A 等于( )A .a c B .ab C .b a D .b c109.设四边形ABCD 为一凸四边形,AB=2,BC=4.CD=7,若令AD=a ,下列结论中正确的是 ( ) A .2<a<7 B .2<a<13 C .O< a<13 D .1< a<13110.把方程260-=配方,化为2()x m n +=的形式应为( )A .2(4)6x -=B .2(2)4x -=C .2(2)0x -=D .2(2)10x -=【参考答案】***试卷处理标记,请不要删除一、选择题1.D2.C3.A4.D5.C6.D7.D8.B9.C10.B11.D12.B13.D14.C15.B16.B17.C18.B19.C20.B21.A22.A23.D24.C25.D29.B 30.A 31.B 32.D 33.C 34.B 35.C 36.D 37.D 38.A 39.D 40.C 41.A 42.B 43.C 44.C 45.C 46.A 47.B 48.C 49.B 50.B 51.C 52.C 53.C 54.B 55.A 56.B 57.A 58.D 59.A63.C 64.A 65.B 66.C 67.C 68.C 69.A 70.B 71.D 72.C 73.C 74.D 75.A 76.B 77.C 78.B 79.D 80.C 81.C 82.C 83.A 84.D 85.B 86.D 87.B 88.B 89.C 90.C 91.D 92.C 93.D97.C 98.C 99.C 100.B 101.A 102.C 103.C 104.C 105.B 106.C 107.D 108.D 109.D 110.D。

中考数学模拟考试卷(附答案与解析)

中考数学模拟考试卷(附答案与解析)

中考数学模拟考试卷(附答案与解析)本试卷共4页,23小题,满分120分,考试用时90分钟.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)4的倒数是()A.4B.C.D.﹣42.(3分)2022年中国空间站已基本建成,内部空间大约有220立方米,空间站离地球约410000米远,则410000用科学记数法表示为()A.4.1×105B.4.1×106C.41×104D.0.41×106 3.(3分)下列几何体的三视图中没有圆的是()A.B.C.D.4.(3分)某校七年级选出三名同学参加学校组织的“校园安全知识竞赛”.比赛规定,以抽签方式决定每个人的出场顺序,主持人将表示出场顺序的数字1,2,3分别写在3张同样的纸条上,并将这些纸条放在一个不透明的盒子中,搅匀后从中任意抽出一张,小星同学第一个抽,下列说法中正确的是()A.小星抽到数字1的可能性最小B.小星抽到数字2的可能性最大C.小星抽到数字3的可能性最大D.小星抽到1,2,3的可能性相同5.(3分)如图,在3×3正方形网格中,点A,B在格点上,若点C也在格点上,且△ABC 是等腰三角形,则符合条件的点C的个数为()A.1B.2C.3D.46.(3分)下列一元二次方程中最适合用因式分解法来解的是()A.(x﹣2)(x+5)=2B.2x2﹣x=0C.x2+5x﹣2=0D.12(2﹣x)2=37.(3分)已知a,b是方程x2+x﹣3=0的两个实数根,则a+b+2022的值是()A.2024B.2023C.2022D.20218.(3分)某市为解决冬季取暖问题需铺设一条长3500米的管道,为尽量减少施工对交通造成的影响,实际施工时“…”,设实际每天铺设管道x米,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果提前15天完成B.每天比原计划少铺设10米,结果延期15天完成C.每天比原计划少铺设15米,结果延期10天完成D.每天比原计划多铺设15米,结果提前10天完成9.(3分)已知二次函数y=ax2+(b﹣1)x+c+1的图象如图所示,则在同一坐标系中y1=ax2+bx+1与y2=x﹣c的图象可能是()A.B.C.D.10.(3分)如图,已知在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=11,BC=13,AB =12.动点P、Q分别在边AD和BC上,且BQ=2DP.线段PQ与BD相交于点E,过点E作EF∥BC,交CD于点F,射线PF交BC的延长线于点G,设DP=x.下列说法正确的有几个()(1)四边形PQCD为平行四边形时,x=;(2)=;(3)当点P运动时,四边形EFGQ的面积始终等于;(4)当△PQG是以线段PQ为腰的等腰三角形时,则x=、2或.A.1B.2C.3D.4二.填空题(共5小题,满分15分,每小题3分)11.(3分)分解因式:2x﹣x2=.12.(3分)如图所示的网格是正方形网格,A,B,C是网格线交点,则∠ACB的度数为.13.(3分)若关于x的不等式组的解集是x>2a,则a的取值范围是.14.(3分)如图,在平面直角坐标系xOy中,等腰直角三角形OAB的斜边OB在x轴的负半轴上,顶点A在反比例函数y=(x<0)的图象上,若△OAB的面积为4,则k的值是.15.(3分)如图,已知正方形ABCD,延长AB至点E使BE=AB,连接CE、DE,DE与BC交于点N,取CE的中点F,连接BF,AF,AF交BC于点M,交DE于点O,则下列结论:①DN=EN;②OA=OE;③CN:MN:BM=3:1:2;④tan∠CED=;⑤S四边形BEFM=2S△CMF.其中正确的是.(只填序号)三.解答题(共8小题,满分75分)16.(8分)先化简,再求值:(2x+y)(2x﹣y)﹣(8x3y﹣2xy3﹣x2y2)÷2xy,其中x=﹣1,y=2.17.(8分)解分式方程:.18.(8分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图.请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;(2)在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(3)在一次购物中,小明和小亮都想从“微信”“支付宝”“银行卡”三种方式中选一种方式进行支付,请用画树状图或列表的方法,求出两人恰好选择同一种支付方式的概率.19.(9分)在平面直角坐标系内,△ABC的位置如图所示.(1)画出与△ABC关于y轴对称的△A1B1C1.(2)以原点O为位似中心,在第四象限内作出△ABC的位似图形△A2B2C2,且△A2B2C2与△ABC的相似比为2:1.20.(9分)已知:a是不等式组的最小整数解,反比例函数的图象与一次函数y=kx+b的图象相交于A(﹣4,m),B(n,﹣4)两点.(1)求反比例函数与一次函数的表达式;(2)直接写出使一次函数值小于反比例函数值的x的取值范围.21.(9分)2022年北京冬奥会点燃了人们对冰雪运动的热情,各种有关冬奥会的纪念品也一度脱销.某实体店购进了甲、乙两种纪念品各30个,共花费1080元.已知乙种纪念品每个进价比甲种纪念品贵4元.(1)甲、乙两种纪念品每个进价各是多少元?(2)这批纪念品上架之后很快售罄.该实体店计划按原进价再次购进这两种纪念品共100件,销售官网要求新购进甲种纪念品数量不低于乙种纪念品数量的(不计其他成本).已知甲、乙纪念品售价分别为24元/个,30元/个.请问实体店应怎样安排此次进货方案,才能使销售完这批纪念品获得的利润最大?22.(12分)如图,AB为⊙O的直径,弦CD交AB于点E,且DE=OE.(1)求证:∠BAC=3∠ACD;(2)点F在弧BD上,且∠CDF=∠AEC,连接CF交AB于点G,求证:CF=CD;(3)①在(2)的条件下,若OG=4,设OE=x,FG=y,求y关于x的函数关系式;②求出使得y有意义的x的最小整数值,并求出此时⊙O的半径.23.(12分)如图,二次函数y=ax2+bx+4与x轴交于A(﹣4,0)、B(8,0)两点,且与y轴交于点C.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上一动点,过点P作PM⊥BC于点M,交x轴于点N,过点P作PQ∥y轴交BC于点Q,求的最大值及此时P点坐标;(3)将抛物线y=ax2+bx+4沿射线CB平移个单位,平移后得到新抛物线y',D是新抛物线对称轴上一动点.在平面内确定一点E,使得以B、C、D、E四点为顶点的四边形是矩形.直接写出点E的坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:4的倒数是.故选:B.2.解:410000=4.1×105.故选:A.3.解:A.该几何体的三视图都是圆,故不符合题意;B.该几何体的主视图是矩形,左视图是矩形,俯视图是三角形,故符合题意;C.该几何体的俯视图是圆,故不符合题意;D.该几何体的俯视图是一个有圆心的圆,故不符合题意;故选:B.4.解:∵3张同样的纸条上分别写有1,2,3∴小星抽到数字1的概率是,抽到数字2的概率是,抽到数字3的概率是∴小星抽到每个数的可能性相同;故选:D.5.解:以AB为腰的等腰三角形有两个,以AB为底的等腰三角形有一个,如图:所以符合条件的点C的个数为3个故选:C.6.解:A、化简(x﹣2)(x+5)=2得:x2+3x﹣12=0,等式左边不能因式分解,故不符合题意;B、∵2x2﹣x=0,∴x(2x﹣1)=0,故符合题意;C、∵x2+5x﹣2=0,∴方程的左边不能分解因式,故不符合题意;D、∵12(2﹣x)2=3,∴方程可以利用直接开平方法解方程,故不符合题意.故选:B.7.解:∵a,b是方程x2+x﹣3=0的两个实数根∴a+b=﹣1∴a+b+2022=﹣1+2022=2021.故选:D.8.解:∵利用工作时间列出方程:∴缺失的条件为:每天比原计划多铺设10米,结果提前15天完成.故选:A.9.解:∵二次函数y=ax2+(b﹣1)x+c+1的图象与x轴的交点的横坐标为m、n ∴二次函数y=ax2+bx+1与直线y=x﹣c的交点的横坐标为m、n∴在同一坐标系中y1=ax2+bx+1与y2=x﹣c的图象可能是A故选:A.10.解:(1)如图,作EM⊥BC,垂足为点M在△BCD中∵EF∥BC∴==∵BC=13∴EF=∴四边形PQCD为平行四边形时,EF=PD=x=;(2)在梯形ABCD中∵AD∥BC∴=∵EF∥BC∴=又∵BQ=2DP∴=;(3)在△BCD中∵EF∥BC∴==∵BC=13∴EF=又∵PD∥CG∴==∴CG=2PD.∴CG=BQ,即QG=BC=13.作DN⊥BC,垂足为点N.∴===∵AB=12∴EM=8.∴S=(+13)×8=;(4)作PH⊥BC,垂足为点H.(i)当PQ=PG时,QH=GH=QG=∴2x+=11﹣x解得x=(ii)当PQ=GQ时,PQ==13解得x=2或x=综上所述,当△PQG是以PQ为腰的等腰三角形时,x的值为、2或.所以正确的结论有4个.故选:D.二.填空题(共5小题,满分15分,每小题3分)11.解:原式=x(2﹣x).故答案为:x(2﹣x).12.解:如图:∵∠ADC=90°,AD=CD∴∠ACD=∠DAC=45°∴∠ACB=180°﹣∠ACD=135°故答案为:135°.13.解:化简原不等式组得,因为不等式组的解集为x>2a∴2a≥4∴a≥2.故答案为:a≥2.14.解:过点A作AM⊥x轴于点M因为△ABO是等腰直角三角形,且S△OAB=4 所以S△OAB=2.令A(m,n)则OM=﹣m,AM=n所以,得mn=﹣4.又点A在的图象上所以k=mn=﹣4.故答案为:﹣4.15.解:∵四边形ABCD为正方形,AB=BE ∴AB=CD=BE,AB∥CD∴△NCD∽△NBE∴==1∴CN=BN,DN=EN,故①正确;如图,连接AN∵DN=NE,∠DAE=90°∴AN=NE∵AO>AN,NE>OE∴AO>OE,故②错误;∵∠CBE=90°,BC=BE,F是CE的中点∴∠DCE=45°,BF=CE=BE,FB=FE,BF⊥EC ∴∠BCE=90°+45°=135°,∠FBE=45°∴∠ABF=135°∴∠ABF=∠ECD∵==∴△ABF∽△ECD∴∠CED=∠FBG如图,作FG⊥AE于G,则FG=BG=GE∴∴tan∠F AG=∴tan∠CED=,故④正确;∵tan∠F AG=∴=∴∴S△FBM=S△FCM∵F是CE的中点∴S△FBC=S△FBE∴S四边形BEFM=2S△CMF,故⑤正确;∵∴设BM=2x,MC=4x∴BC=6x∴CN=BN=3x∴MN=x∴CN:MN:BM=3:1:2,故③正确;故答案为:①③④⑤.三.解答题(共8小题,满分75分)16.解:(2x+y)(2x﹣y)﹣(8x3y﹣2xy3﹣x2y2)÷2xy=4x2﹣y2﹣(4x2﹣y2﹣xy)=4x2﹣y2﹣4x2+y2+xy=xy当x=﹣1,y=2时,原式=×(﹣1)×2=﹣1.17.解:方程两边都乘x﹣1,得x=﹣1+3(x﹣1)解得:x=2检验:当x=2时,x﹣1≠0所以x=2是分式方程的解即分式方程的解是x=2.18.解:(1)这次活动共调查的人数为30÷15%=200(人)故答案为:200;(2)“支付宝”的人数为200﹣(200×30%+30+50+15)=45(人)所以表示“支付宝”支付的扇形圆心角的度数为360°×=81°故答案为:81°;(3)将微信记为A,支付宝记为B,银行卡记为C,列表格如下:A B CA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)共有9种等可能性的结果,其中两人恰好选择同一种支付方式的结果有3种则P(两人恰好选择同一种支付方式)=.19.解:(1)如图,△A1B1C1即为所作.(2)如图,△A2B2C2即为所作.20.解:(1)解不等式组,得﹣5<x≤﹣1∴a=﹣4∴反比例函数解析式为y=﹣.∵A(﹣4,m),B(n,﹣4)两点在反比例函数y=﹣的图象上∴m=﹣=1,n=﹣=1∴A(﹣4,1),B(1,﹣4).∵y=kx+b经过A(﹣4,1),B(1,﹣4)∴,解得∴一次函数的解析式为y=﹣x﹣3;(2)使一次函数值小于反比例函数值的x的取值范围为:﹣4<x<0或x>1.21.解:(1)设甲种纪念品每件进价是x元,乙种纪念品每件进价为y元由题意得解得:答:甲种纪念品每件进价是16元,乙种纪念品每件进价为20元.(2)设新购甲种纪念品m件,则乙种纪念品为(100﹣m)件,设销售完这批纪念品获得的利润为w元.由题意可得,,解得m≥25.∴25≤m≤100.w=(24﹣16)m+(30﹣20)(100﹣m)=﹣2m+1000.∵﹣2<0∴w随m的增大而减小且25≤m≤100∴当m=25时,w有最大值,此时100﹣m=75.答:购进甲种纪念品25件,乙种纪念品75件时利润最大.22.(1)证明:如图1中,连接OD,OC,设∠D=x.∵ED=EO∴∠D=∠EOD=x∵OD=OC∴∠D=∠OCD=x∴∠CEO=∠D+∠EOD=2x,∠COB=∠OEC+∠OCD=3x∵OA=OC∴∠A=∠ACO∵∠A+∠ACO=∠COB=3x∴∠A=∠ACO=x∴∠ACD=x∴∠BAC=3∠ACD;(2)证明:连接CO,延长CO交DF于T.由(1)可知,∠AEC=180°﹣2x∵∠AEC=2∠CDF∴∠CDF=90°﹣x∴∠CDF+∠DCO=90°∴CT⊥DF∴DT=TF∴CD=CF.(3)解:①连接CO,延长CO交DF于T,过点O作OM⊥CD于M,ON⊥CF于N.由(2)可知,CD=CF,CT⊥DF∴∠DCO=∠FCO∵ON⊥CF,OM⊥CD∴OM=ON∵∠GEC=∠GCE∴GE=GC=x+4∴CD=CF=CG+FG=x+y+4∵ED=OE=x∴EC=CD﹣DE=y+4∵==∴=∴y=x2+x﹣4.②设OA=OB=R当y>0时,x2+x﹣4>0解得x>2﹣2或x<﹣2﹣2∴x的最小整数值为3∴CG=7,FG=∵AG•GB=CG×FG∴(R+4)(R﹣4)=7×∴R=(负根已经舍去)∴此时⊙O的半径为.23.解:(1)∵二次函数y=ax2+bx+4的图象与x轴交于A(﹣4,0)、B(8,0)两点∴解得∴抛物线的解析式为;(2)延长PQ交x轴于H点,则PH⊥x轴,如图:在y=﹣x2+x+4中,令x=0得y=4∴C(0,4)由B(8,0),C(0,4)得直线BC解析式为y=﹣x+4,BC==4设P(m,﹣m2+m+4),则Q(m,﹣m+4)∴PQ=﹣m2+m+4﹣(﹣m+4)=﹣m2+m,PH=﹣m2+m+4∵∠PMQ=∠PHB=90°,∠PQM=∠BQH∴∠NPH=∠OBC∴cos∠NPH=cos∠OBC===∴=∴PH=PN∴PQ+PN=PQ+PH=﹣m2+m﹣m2+m+4=﹣m2+m+4=﹣(m﹣3)2+∵﹣<0∴当m=3时,PQ+PN取最大值,此时P(3,);∴PQ+PN的最大值为,P的坐标为(3,);(3)∵C(0,4),B(8,0)∴将抛物线y=﹣x2+x+4沿射线CB平移个单位相当于先向下平移2个单位,再向右平移4个单位∵抛物线y=﹣x2+x+4的对称轴为直线x=﹣=2∴新抛物线的对称轴为直线x=6设D(6,t),E(p,q)①若BC,DE为对角线,则BC,DE的中点重合,且BC=DE∴解得或∴E(2,﹣2)或(2,6);②若CD,BE为对角线,同理可得;解得∴E(﹣2,0);③当CE,BD为对角线时解得∴E(14,12);综上所述,E的坐标为(2,﹣2)或(2,6)或(﹣2,0)或(14,12).。

最新版初三中考数学模拟试卷易错题及答案8778874

最新版初三中考数学模拟试卷易错题及答案8778874

中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.下列计算中,正确的是( ) A .1025m m m =⋅B .(a 2)3=a 5C .(2ab 2)3=6ab 6D .(-m 2)3= -m 62.下列各式中,计算正确的是( ) A .325a a a +=B .326a a a ⋅=C .3332a a a ⋅=D . 2.36m m m m ⋅=3.要得到2()a b -,多项式23Z a ab b ++应加上( ) A .ab -B .3ab -C .5ab -D .7ab -4.下列多项式的运算中正确的是( ) A .222()x y x y -=-B .22(2)(22)24a b a b a b ----C . 11(1)(1)1222l a b ab +-=- D .2(1)(2)2x x x x +-=--5.下列计算中正确的是( ) A .326x x x ⋅=B .222(3)9xy x y -=-C .235235x x x ÷=D .32()()x x x -÷-=6.下列计算中,正确的是( ) A .9338(4)2x x x ÷= B .23234(4)0a b a b ÷= C .2m 2m a a a ÷=D .2212()4c 2ab c ab ÷-=-7.如图①,在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >),再沿黑线剪开,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( ) A .22()()a b a b a b -=+- B .222()2a b a ab b +=++ C .222()2a b a ab b -=-+D .222()a b a b ⋅-=-8.计算220(2)2(2)----+-得( )A .9B .112C .1D .129. 如图,每个小正方形网格的边长都为1,右上角的圆柱体是由左下角的圆柱体经过平移得到的.下列说法错误的是( )A .先沿水平方向向右平移4个单位长度,再向上沿垂直的方向平移4个单位长度, 然后再沿水平方向向右平移3个单位长度B .先沿水平方向向右平移7个单位长度,再向上沿垂直的方向平移4个单位长度C .先向上沿垂直的方向平移4个单位长度,再沿水平方向向右平移7个单位长度D .直接沿正方形网格的对角线方向移动7个单位长度10.下列扑克牌中,以牌的对角线交点为旋转中心,旋转180O 后能与原图形重合的有( )A .4张B .3张C .2张D .111.从一副扑克牌中任意抽出一张,可能性相同的的是( ) A .大王与黑桃B .大王与10C .10与红桃D .红12.下列不是二元一次方程组的是( )A .⎪⎩⎪⎨⎧=-=+141y x y xB .⎩⎨⎧=+=+42634y x y xC . ⎩⎨⎧=-=+14y x y xD . ⎩⎨⎧=+=+25102553y x y x13.已知坐标平面内三点A (5,4),B (2,4),C (4,2),那么△ABC 的面积为( ) A .3B .5C .6D .714.下列计算27a 8÷31a 3÷9a 2的顺序不正确的是( )A .(27÷31÷9)a 8-3-2B .(27a 8÷31a 3)÷9a 2C .27a 8÷(31a 3÷9a 2)D .(27a 8÷9a 2)÷31a 315.下列说法正确的是( )A . 如果一件事情发生的机会是 99. 9%,那么它必然发生B . 即使一件事情发生的机会是0.0l%,它仍然可能发生C . 如果一件事情极有可能发生,那么它必然发生 D16) A ..D .17.2x y =⎧⎨=⎩是方程ax -y =3的解,则a 的取值是( ) A .5B .-5C .2D .118. 有一种足球是由 32块黑白相间的牛皮缝制而成的(如图),黑皮可看作正五边形,白皮可看作正六边形,设白皮有x 块,黑皮有y 块,则列出的方程组是( )A.323x yx y+=⎧⎨=⎩B.3235x yx y+=⎧⎨=⎩C.3253x yx y+=⎧⎨=⎩D.326x yx y+=⎧⎨=⎩19.用小数表示2310-⨯的结果是()A.-0.03 B. -0.003 C. 0.03 D. 0.00320.下列各语句中,正确的是()A.两个全等三角形一定关于某直线对称B.关于某直线对称的两个三角形不一定是全等三角形C.关于某直线对称的两个三角形对应点连接的线段平行于对称轴D.关于某直线对称的两个三角形一定是全等三角形21.下列现象中,属于平移变换的是()A.前进中的汽车轮子B.沿直线飞行的飞机C.翻动的书D.正在走动中的钟表指针22.下列说法错误的是()A.三个角都相等的三角形是等边三角形B.有两个角是60。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.如图是由若干个同样大小的立方体搭成的几何体的俯视图,小正方形中的数字表示 的是该位置上立方体的个数,则这个几何体的主视图是( )A .B .C .D .2.不式式组324235x x ->⎧⎨+<⎩的解是( ).A . 12x <<B . 2x >或1x <C .无解D .01x <<3.一个正方形的边长增加了 2 cm ,面积相应增加了32 cm 2,则这个正方形的边长为( ) A . 6cmB . 5cmC .8cmD .7cm4.如图,∠1=∠2,则下列结论中正确的是( ) A .AD ∥BCB .AB ∥CDC .AD ∥EFD .EF ∥BC5.如图,∠BAC= 50°,AE ∥BC ,且∠B= 60°,则∠CAE=( ) A .40°B .50°C .60°D .70.6.如图,如果 AB ∥CD ,∠C=60°,那么∠A+∠E=( )A .20B .30°C .40D .60°7.如图,小明从A 处出发沿北偏东60°向行走至B 处,又沿北偏西20°方向行走至 C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A .右转80°B .左传80°C .右转100°D .左传100°8.等腰三角形一个角为 40°,则它的顶角是( ) A .40° B .70° C . 100°D . 40°或 100°9.△ABC 和△DEF 都是等边三角形,若△ABC 的周长为24 cm ,△DEF 的边长比△ABC 的边长长3 cm ,则△DEF 的周长为( ) A .27 cmB .30 cmC .33 cmD .无法确定10.如图,在△ABC 中,AB=AC ,∠BAC=120°,点D 在BC 上,AD=BD=2 cm ,则CD 长为( )A .3 cmB cmC D .4 cm11.如图 ,在Rt △ABC 中,∠C = 90°,E 是BC 上的一点,DE ⊥AB ,点0为垂足,则∠A 与∠CED 的关系是( ) A . 相等B . 互余C . 互补D .以上都有可能12.若2,1x y =⎧⎨=-⎩是下列某二元一次方程组的解,则这个方程组为( )A .35,1x y x y +=⎧⎨+=⎩B .3,25x y y x =-⎧⎨+=⎩C .25,1x y x y -=⎧⎨+=⎩D .2,31x y x y =⎧⎨=+⎩13.将如图1所示的Rt △ABC 绕直角边BC 旋转一周,所得几何体的左视图是( )14.下列说法不正确的是()A.在平移变换中,图形中的每一个点都沿同一方向移动了相同的距离B.在旋转变换中,图形中的每一点都绕旋转中心旋转了相同的角度C.在相似变换中,图形中的每一个角都扩大(或缩小)相同的倍数D.在相似变换中,图形中的每一条线段都扩大(或缩小)相同的倍数15.某校把学生的纸笔测试、实践能力、成长记录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的成绩如上表(单位:分),学期总评成绩优秀的是()A.甲B.乙和丙C.甲和乙D.甲和丙16.下列说法错误的是()A.不等式39x-<的解集是3x>-B.不等式5x>的整数解有无数个C.不等式132x<的正整数解只有一个D.—40 是不等式28x<-的一个解17.||3x≤的整数解是()A.0,1,2,3 B.0,1,2,3±±±C.1,2,3±+±D.-1,-2 ,-3,018.某种商品的进价为 800 元,出售时标价为1200 元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至少可打()A.6 折B.7 折C.8 折D.9 折19.如图,直线AB对应的函数表达式是()A.3y x32=-+B.3y x32=+C.2y x33=-+D.2y x33=+20.某校有在校师生共2000人,如果每人借阅10册书,那么中国国家图书馆共2亿册书,可以供多少所这样的学校借阅? ()A.100000所B.10000所C.1000所D.2000所21.已知24221x y kx y k+=⎧⎨+=+⎩,且10x y-<-<,则k的取值范围为()A.112k-<<-B.12k<<C.01k<<D.112k<<22.如图①所示,为五角大楼示意图,图②是它的俯视图,小红站在地面上观察这个大楼,若想看到大楼的两个侧面,小红应站在()A .A 区域B .B 区域C .C 区域D .三个区域都可以 23.不等式组2130x x ≤⎧⎨+>⎩的解在数轴上可表示为( )A .B .C .D .24.若2a a >,则a 应满足( ) A .0a <B .01a <<C .11a -<<D .1a >或0a <25.若△ABC 的三条边长分别为 a 、b 、c ,且满足222323a b c c ab -=-,则△ABC 是( ) A . 直角三角形B .边三角形C .等腰直角三角形D . 等腰三角形26.如图所示的虚线中,是对称轴的是( ) A .①②③④B .①②③C .①③D .②27.小明编制了一个计算程序,当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1之和,若输入-2,显示的结果应当是( )A .2 B.3 C.4 D.5 28.如果一个数的平方与这个数的差等于0,那么这个数只能是( ) A . 0B . -1C . 1D .0或 129.下列各式中,计算正确的是( )A =B =C .(a b -3=- 30.下列合并同类项正确的是( ) A .22523x x -=B .6713x y xy +=C .2222a b a b a b -+=D .523x x -=31.设某数为x ,“比某数的12大3的数等于5的相反数”,列方程为 ( )A .1352x -+=-B .1352x +=-C .1(3)52x -+=D .1352x -=-32.下列条件中不能判定两个直角三角形全等的是 ( ) A .两条直角边对应相等 B .直角边和斜边对应相等 C .两个锐角对应相等 D .斜边和锐角对应相等 33.方程1235x --=的解为( )A .-5B .-15C .-25D .-3534.下列方程的变形是移项的是( ) A .由723x =,得67x = B .由x=-5+2x, x =2x-5 C .由2x-3=x+5, 得2x+x=5-3D .由111223y y -=+,得112123y y -=+35.如图是某公司近三年的资金投放总额与利润统计示意图,根据图中的信息判断:①2001年的利润率比2000年的高2%; ②2002年的利润率比2001年的利润率高8%; ③这三年的平均利润率为14%; ④这三年中2002年的利润率最高. 以上判断正确的结论有( ) A .1个B .2个C .3个D .4个36.下列四个图中,能表示线段x=a+c-b 的是( )A .B .C .D .37.下列四个图形中,不是轴对称图形的是( )A .B .C .D .38.关于三角形的高的位置,下列判断中正确的是( ) A .必在三角形内 B .必在三角形外C .不在三角形内,就在三角形外D .以上都不对39.若||a a >-,则a 的取值范围是( ) A .0a >B .0a ≥C .0a <D .D. 自然数40.如图所示是跷跷板的示意图,支柱0C 与地面垂直,点0是横板AB 的中点,AB 可以绕着点0上下转动,当A 端落地时,∠0AC=20°.跷跷板上下可转动的最大角度(即∠A ′OA )是( ) A .800B .60°C .40°D .20°41.如图所示,已知AD=CB ,∠AD0=∠CB0,那么可用“SAS”全等识别法说明的是( ) A .△AD0≌△CB0B .△AOB ≌△CODC .△ABC ≌△CDAD .△ADB ≌△CBD42.如图所示是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是( ) A .1号袋B .2号袋C .3号袋D .4号袋43.如图所示,一 块正方形铁皮的边长为 a ,如果一边截去6,另一边截去 5,那么所剩铁皮的面积( 阴影部分)表示成:①(5)(6)a a --;②256(5)a a a ---;③265(6)a a a ---;④25630a a a --+其中正确的有( ) A .1 个B . 2 个C .3 个D . 4 个44.已知0.5a b a b x y +--与1337a x y -是同类项,那么( )A .12a b =-⎧⎨=⎩B . 12a b =⎧⎨=-⎩C . 21a b =⎧⎨=-⎩D . 21a b =-⎧⎨=⎩ 45.公因式是23ax -的多项式是( ) A .2225ax a --B .22236a x ax --C .2223612ax a x ax --+D .3261224ax ax a x ---46.若2(2007)987654321N +=,则(2017)(1997)N N +⋅+的值等于( ). A .987654321B .987456311C . 987654221D . 无法确定47.下列计算正确的是( ) A .112333()a b a b +=+B .22222()y y x x=C .0a aa b b a-=-- D .220()()a aa b b a -=-- 48.若关于x 的方程2111x m x x ++=--会产生增根,则m 是( ) A .-1B .1C .-2D .249.一只小猫在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A .154 B .31C .51D .152 50.当43a =-时,代数式3 (a + 1) + 4的值是( ) A . -3B . 13-C . 3D .17351.如图,若A 、B 、C 、P 、Q 、甲、乙、丙、丁都是方格纸中的格点,为使△ABC ∽△PQR ,则点R 应是甲、乙、丙、丁四点中的( ) A . 甲B . 乙C .丙D . 丁52.抛物线221y x x =--+的顶点在( ) A . 第一象限B .第二象限C .第三象限D .第四象限53.如图,表示A 点的位置的准确说法是( ) A .距0点3 km 的地方B.在O点的东北方向上C.在O点东偏北40°的方向D.在0点北偏东50°方向,距O点3 km的地方54.在一个圆中任意引两条直径,顺次连结它们的四个端点组成一个四边形,则这个四边形一定是()A.菱形B.等腰梯形C.矩形D.正方形55.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数()A.至多6人B.至少6人C.至多5人D.至少5人56.将一圆形纸片对折后再对折,得到如图的形状,然后沿着虚线剪开,得到两部分,其中一部分展开后得到的图形是()A.B.C.D.57.如图,AB、CD 是⊙O的两条直径,∠1≠∠2,则图中相等的弧(半圆除外)共有()A.8对B.6 对C.4对D.2 对58.若圆的一条弦把圆周角分度数的比为1:3的两条弧,则劣弧所对的圆周角等于()A.45°B.90°C.135°D.270°59.如图,在⊙O中,∠ABC=50°,则∠AOC等于()A.50°B.80°C.90°D. 100°60.已知△ABC 中,D、E分别是 AB、AC 上的点,∠AED=∠B,DE = 6,AB =10 ,AE =8,则 BC 等于()A.154B.7 C.152D.24561.已知反比例函数y=kx(k<0)的图象上有两点A(x1,y1),B(x2,y2),且x1<x2,则y1-y2的值是()A .正数B .负数C .非正数D .不能确定62.某学习小组在讨论“变化的鱼”时,知道大鱼和小鱼是位似图形(如图所示),则小鱼上的点(a ,b )对应大鱼上的点.( ) A .(-2a ,-2b )B .(-a ,-2b )C .(-2b ,-2a )D .(-2a ,-b )63.若A (1,413y -),B (2,45y -),C (3,41y )为二次函数245y x x =+-的图象上的三点,则1,y 2,y 3y 的大小关系是( ) A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<64.如图,在△ABC 中,点D 在AB 上,点E 在AC 上,若∠ADE=∠C ,且AB=5,AC=4,AD=x ,AE=y ,则y 与x 的关系式是( )A .x y 5=B .x y 54=C .x y 45=D .x y 209=65.一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形 的长和宽分别为x 、y ,剪去部分的面积为20,若2≤x ≤10,则y 与x 的函数图象是( ) 66.如图,一次函数y1=x-1与反比例函数y2=x2的图像交于点A (2,1),B (-1,-2),则使y1>y2的x的取值范围是( )A .x>2B .x>2 或-1<x<0C .-1<x<2D .x>2 或x<-167. 如图所示,在△ABC 中,∠C= 90°,AC =BAC 的平分线交 BC 于 D ,且 则 cos ∠BAC 的值是( )A .12B .2C D68.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ) A .118B .112C .19D .1669.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有( ) A .18个B .15个C .12个D .10个70.已知两圆半径分别为1与5,圆心距为4,则这两圆的位置关系是( ) A .外离B .外切C .相交D .内切71.如图,为了确定一条小河的宽度BC ,可在点C 左侧的岸边选择一点A ,使得AC ⊥BC ,若测得AC=a ,∠CAB=θ,则BC=( ) A .asinθB .acos θC .atan θD .θtan a72.己半径分别为 1 和 5 的两个圆相交,则圆心距d 的取值范围是( ) A .d<6B .4<d<6C .4≤d ≤6D .1<d<573.已知⊙O 的半径为5,点P 在直线l 上,且5OP =,直线l 与⊙O 的位置关系是( ) A .相切B .相交C .相离D .相切或相交74.把一个多边形改成和它相似的多边形,如果面积缩小为原来的一,那么边长缩小为原来的( )A .1:3B .3:1C .D75.已知AABC 的三个内角度数比为2:3:4,则这个三角形是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形76.2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延.如果把世界地图看成一个平面,如图中以中国为坐标原点建立平面直角坐标系,请写出墨西哥所在位置的坐标是( )A . (4,9)B .(3,8)C .(8,-l )D .(-8,3)77.已知△ABC 在平面直角坐标系中的位置如图所(图中小方格的边长均代表1个单位),将△ABC 向右平移2个单位,则平移后的点B 的坐标是( )A .(-l ,1)B .(1,-l )C .(1,-2)D .(0,2)78.已知一次函数y=kx+b ,当-3≤x ≤l 时,对应的y 值为l ≤y ≤9,则kb 的值为( )A . 14B .-6C .-4或21D .-6或1479.函数11y k x b =+与22y k x =的图象的交点为(-1,2),且k 1>0,k 2<0,则当y l <y 2时,x 的取值范围是( )A .x<-1B .x>-1C .x>2D .x<280.22x py =中,下列说法正确的是 ( )A .x 是变量,y 是常量B .x ,p ,y 全是变量C .x 、y 是变量,2p 是常量D .2、p 是常数81.已知正比例函数y kx =的图象经过点(2,4),k 的值是( )A . 1B .2C . -1D .-282.在直角坐标系中,横、纵坐标都是整数的点称为整点,那么一次函数3y x =-+在第一象限内的图象上,整点的个数有( )A . 2B .3C .4D . 683.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数是 ( )A . 50°B .30°C .20°D .15°84.下列方程是一元二次方程的是( )A .12=+y xB .()32122+=-x x xC .413=+xx D .022=-x 85.在10,20,40,30,80,90,50,40,40,50这10个数据中,极差是( ) A .40 B .70 C .80D .90 86. 已知力 F 所做的功是 30J ,则力 F 与物体在力的方向上通过的距离 S 的图象大致是 ( )A .B .C .D .87.一个凸多边形的外角和等于它的内角和的一半,那么这个多边形的边数为 ( )A .4B . 5C .6D .788.下列方程中,无实数根的是( )A .2250x x ++=B .220x x --=C .22100x x +-=D .2210x x --= 89.顺次连结矩形ABCD 各边中点所得的四边形是( )90.下列图形中,不能单独镶嵌成平面图形的是( )A . 正三角形B . 正方形C . 正五边形D . 正六边形91.用反证法证明“三角形中必有一个内角不小于60°”,先应当假设这个三角形中( ) A .有一个内角小于60° B .每一个内角都小于60°C .有一个内角大于60°D .每一个内角都大于60°92.下列图形中,是中心对称图形而不是轴对称图形的是( )A . 平行四边形B . 正方形C . 正三角形D . 线段AB93.如图,点0为□ABCD 的两条对角线的交点,E ,F 分别为 OA ,OC 的中点,则图中全等三角形有( )A . 3对B . 4对C .6对D .7对94.下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线互相平分的四边形是平行四边形C .四条边相等的四边形是菱形D .对角线互相垂直且相等的四边形是正方形95.如图所示,P 为□ABCD 内任意一点,分别记△PAB ,△PBC ,△PCD ,△PDA 的面积为S 1,S 2,S 3,S 4,则有 ( )A .S 1=S 4B .S 1+S 2=S 3+S 4C .S 1+S 3=S 2+S 4D .以上都不对96.在绘制频数分布直方图时,各个小长方形的高等于相应各组的( )A .频数B .组距C .组中值D .频率97. 小王身上只有 2元和 5元两种面值的人民币,他买一件学习用品要支付27元,则付款的( )A .1种B .2种C .3种D .4种98 )A .大于16小于18B .大于4小于5C .大于3小于4D .大于5小于699.如果方程213x +=和203a x --=的解相同,则a 的值是( ) A .7B .5C .3D .0 100.将方程0.0210.110.030.6x x ++-=中分母化为整数,正确的是( )A .2110110036x x ++-= B .21001011036x x ++-= C .2100101136x x ++-= D .210101136x x ++-= 101.某车间56名工人,每人每天能生产螺栓16个或螺母24个,设有x 名工人生产螺栓,y 名工人生产螺母,每天生产的螺栓和螺母按1:2配套,所列方程正确的是( )A .⎩⎨⎧=⨯=+y x y x 2416256B .⎩⎨⎧=⨯=+y x y x 1624256C .⎩⎨⎧==+y x y x 241628D .⎩⎨⎧==+y x y x 162456 102.下列计算中,正确的是( )A .a 3÷a 3=a 3-3=a 0=1B .x 2m+3÷x 2m -3=x 0=1 C .(-a )3÷(-a )=-a 2 D .(-a )5÷(-a )3×(-a )2=1103.BC 是 Rt △ABC 的一直角边,以 EC 为直径的圆交斜边于 D .若 BC=4 cm ,∠ACB=60°,则 AD 为 ( )A .4cnnB .6 cmC .2 cmD .8 cm104.如图,已知圆心角78BOC ∠=,则圆周角BAC ∠的度数是( )A .156B .78C .39D .12105. 某人沿着倾斜角为α的斜坡前进了c 米,则他上升的高度为( )A . csin αB .ctan αC . ccos αD .tan c α106.“明天下雨的概率为80%”这句话指的是( )A .明天一定下雨B .明天80%的地区下雨,20%的地区不下雨C .明天下雨的可能性是80%D .明天80%的时间下雨,20%的时间不下雨107.己如,已知1l ∥2l ,AB ∥CD ,CE ⊥2l 于点E ,FG ⊥2l 于点 G ,下列说法中不正确的是( )A .∠ABD=∠CDEB .CE=FGC .A 、B 两点间的距离就是线段AB 的长度D .1l 与2l 之间的距离就是线段CD 的长度108.如图,∠AEF 和∠EFD 是一对( )A .同位角B .内错角C .同旁内角D .以上都不对109.已知抛物线2232y mx x m m =-+-经过原点,则 m 的值为( )A .0B .2C .0 或2D .不能确定 110.下午 17 时,时钟上的分针与时针之间的夹角为( )A .100°B .120°C .135°D .150°【参考答案】***试卷处理标记,请不要删除一、选择题1.A2.C3.D4.C5.D6.D7.A8.D9.C10.D11.C12.C13.A14.C15.C16.C17.B18.B19.A23.A 24.D 25.D 26.D 27.D 28.D 29.C 30.C 31.B 32.C 33.C 34.D 35.B 36.D 37.A 38.D 39.A 40.C 41.D 42.B 43.D 44.C 45.B 46.C 47.D 48.D 49.B 50.C 51.C 52.B 53.D57.C 58.A 59.D 60.C 61.D 62.A 63.B 64.C 65.C 66.B 67.A 68.B 69.C 70.D 71.C 72.B 73.D 74.C 75.A 76.C 77.B 78.D 79.A 80.B 81.B 82.A 83.C 84.D 85.C 86.B 87.C91.B 92.A 93.D 94.D 95.C 96.A 97.C 98.B 99.A 100.C 101.A 102.A 103.B 104.C 105.A 106.C 107.D 108.B 109.B 110.D。

相关文档
最新文档