最新宜昌市中考数学21题圆训练(2)学生版无答案
2023年湖北省宜昌市数学中考真题(含答案)
2023年湖北省宜昌市初中学业水平考试数学试题(本试卷共24题,满分120分,考试时间120分钟)注意事项:本试卷分试题卷和答题卡两部分,请将答案写在答题卡上每题对应的答题区域内,写在试题卷上无效。
考试结束,请将本试题卷和答题卡一并上交。
参考公式:一元二次方程的求根公式是二次函数图象的顶点坐标是,孤长。
一、选择题(下列各题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号。
每题3分,计33分。
)1.下列运算正确的个数是().①;②;③;④.A.4 B.3 C.2 D.12.我国古代数学的许多创新与发明都曾在世界上有重要影响.下列图形“杨辉三角”“中国七巧板”“刘微割圆术”“赵爽弦图”中,中心对称图形是().A.B.C.D.3.“五一”假期,宜昌旅游市场接待游客606.7万人次,实现旅游总收入41.5亿元.数据“41.5亿”用科学记数法表示为().A.B.C.D.4.“争创全国文明典范城市,让文明成为宜昌人民的内在气质和城市的亮丽名片”.如图,是一个正方体的平面展开图,把展开图折叠成正方体后,“城”字对面的字是().A.文B.明C.典D.范5.如图,OA,OB,OC都是的半径,AC,OB交于点D.若,则BD的长为().A.5 B.4 C.3 D.26.下列运算正确的是().A.B.C.D.7.某反比例函数图象上四个点的坐标分别为,则,的大小关系为()A.B.C.D.8.如图,小颖按如下方式操作直尺和含角的三角尺,依次画出了直线a,b,c.如果,则的度数为().A.B.C.D.9.在日历上,某些数满足一定的规律.如图是某年8月份的日历,任意选择其中所示的含4个数字的方框部分,设右上角的数字为,则下列叙述中正确的是().日一二三四五六12345678910111213141516171819202122232425262728293031A.左上角的数字为B.左下角的数字为C.右下角的数字为D.方框中4个位置的数相加,结果是4的倍数10.解不等式,下列在数轴上表示的解集正确的是().A.B.C.D.11.某校学生去距离学校的博物馆参观,一部分学生骑自行车先走,过了后,其余学生乘汽车出发,结果他们同时到达.己知汽车的速度是骑车学生速度的2倍,汽车的速度是().A.B.C.D.二、填空题(将答案写在答题卡上指定的位置。
圆的有关计算与证明(共50题)(学生版)--2023年中考数学真题分项汇编(全国通用)
圆的有关计算与证明(50题)一、单选题1.(2023·新疆·统考中考真题)如图,在⊙O 中,若∠ACB =30°,OA =6,则扇形OAB (阴影部分)的面积是()A.12πB.6πC.4πD.2π2.(2023·江苏连云港·统考中考真题)如图,矩形ABCD 内接于⊙O ,分别以AB 、BC 、CD 、AD 为直径向外作半圆.若AB =4,BC =5,则阴影部分的面积是()A.414π-20 B.412π-20 C.20π D.203.(2023·湖北荆州·统考中考真题)如图,一条公路的转弯处是一段圆弧(AC),点O 是这段弧所在圆的圆心,B 为AC上一点,OB ⊥AC 于D .若AC =3003m ,BD =150m ,则AC的长为()A.300πmB.200πmC.150πmD.1003πm4.(2023·山东滨州·统考中考真题)如图,某玩具品牌的标志由半径为1cm 的三个等圆构成,且三个等圆⊙O 1,⊙O 2,⊙O 3相互经过彼此的圆心,则图中三个阴影部分的面积之和为()A.14πcm 2 B.13πcm 2 C.12πcm 2 D.πcm 25.(2023·四川达州·统考中考真题)如图,四边形ABCD 是边长为12的正方形,曲线DA 1B 1C 1D 1A 2⋯是由多段90°的圆心角的圆心为C ,半径为CB 1;C 1D 1 的圆心为D ,半径为DC 1⋯,DA 1 、A 1B 1 、B 1C 1、C 1D 1⋯的圆心依次为A 、B 、C 、D 循环,则A 2023B 2023�的长是()A.4045π2B.2023πC.2023π4D.2022π6.(2023·四川广安·统考中考真题)如图,在等腰直角△ABC 中,∠ACB =90°,AC =BC =22,以点A 为圆心,AC 为半径画弧,交AB 于点E ,以点B 为圆心,BC 为半径画弧,交AB 于点F ,则图中阴影部分的面积是()A.π-2B.2π-2C.2π-4D.4π-47.(2023·江苏苏州·统考中考真题)如图,AB 是半圆O 的直径,点C ,D 在半圆上,CD=DB,连接OC ,CA ,OD ,过点B 作EB ⊥AB ,交OD 的延长线于点E .设△OAC 的面积为S 1,△OBE 的面积为S 2,若S 1S 2=23,则tan ∠ACO 的值为()A.2B.223C.75D.32二、填空题8.(2023·重庆·统考中考真题)如图,在矩形ABCD 中,AB =2,BC =4,E 为BC 的中点,连接AE ,DE ,以E 为圆心,EB 长为半径画弧,分别与AE ,DE 交于点M ,N ,则图中阴影部分的面积为.(结果保留π)9.(2023·黑龙江绥化·统考中考真题)如图,⊙O 的半径为2cm ,AB 为⊙O 的弦,点C 为AB上的一点,将AB沿弦AB 翻折,使点C 与圆心O 重合,则阴影部分的面积为.(结果保留π与根号)10.(2023·重庆·统考中考真题)如图,⊙O 是矩形ABCD 的外接圆,若AB =4,AD =3,则图中阴影部分的面积为.(结果保留π)11.(2023·江苏扬州·统考中考真题)用半径为24cm ,面积为120πcm 2的扇形纸片,围成一个圆锥的侧面,则这个圆锥的底面圆的半径为cm .12.(2023·浙江温州·统考中考真题)若扇形的圆心角为40°,半径为18,则它的弧长为.13.(2023·浙江宁波·统考中考真题)如图,圆锥形烟囱帽的底面半径为30cm ,母线长为50cm ,则烟囱帽的侧面积为cm 2.(结果保留π)14.(2023·天津·统考中考真题)如图,在每个小正方形的边长为1的网格中,等边三角形ABC 内接于圆,且顶点A ,B 均在格点上.(1)线段AB的长为;(2)若点D在圆上,AB与CD相交于点P.请用无刻度的直尺,在如图所示的网格中,画出点Q,使△CPQ为等边三角形,并简要说明点Q的位置是如何找到的(不要求证明).15.(2023·江苏苏州·统考中考真题)如图,在▱ABCD中,AB=3+1,BC=2,AH⊥CD,垂足为H,AH=3.以点A为圆心,AH长为半径画弧,与AB,AC,AD分别交于点E,F,G.若用扇形AEF 围成一个圆锥的侧面,记这个圆锥底面圆的半径为r1;用扇形AHG围成另一个圆锥的侧面,记这个圆锥底面圆的半径为r2,则r1-r2=.(结果保留根号)16.(2023·四川自贡·统考中考真题)如图,小珍同学用半径为8cm,圆心角为100°的扇形纸片,制作一个底面半径为2cm的圆锥侧面,则圆锥上粘贴部分的面积是cm2.三、解答题17.(2023·四川南充·统考中考真题)如图,AB与⊙O相切于点A,半径OC∥AB,BC与⊙O相交于点D,连接AD.(1)求证:∠OCA =∠ADC ;(2)若AD =2,tan B =13,求OC 的长.18.(2023·四川成都·统考中考真题)如图,以△ABC 的边AC 为直径作⊙O ,交BC 边于点D ,过点C 作CE ∥AB 交⊙O 于点E ,连接AD ,DE ,∠B =∠ADE .(1)求证:AC =BC ;(2)若tan B =2,CD =3,求AB 和DE 的长.19.(2023·内蒙古·统考中考真题)如图,AB 是⊙O 的直径,AC 是弦,D 是AC上一点,P 是AB 延长线上一点,连接AD ,DC ,CP .(1)求证:∠ADC -∠BAC =90°;(请用两种证法解答)(2)若∠ACP =∠ADC ,⊙O 的半径为3,CP =4,求AP 的长.20.(2023·辽宁大连·统考中考真题)如图1,在⊙O 中,AB 为⊙O 的直径,点C 为⊙O 上一点,AD 为∠CAB 的平分线交⊙O 于点D ,连接OD 交BC 于点E .(1)求∠BED的度数;(2)如图2,过点A作⊙O的切线交BC延长线于点F,过点D作DG∥AF交AB于点G.若AD= 235,DE=4,求DG的长.21.(2023·浙江杭州·统考中考真题)在边长为1的正方形ABCD中,点E在边AD上(不与点A,D重合),射线BE与射线CD交于点F.(1)若ED=13,求DF的长.(2)求证:AE⋅CF=1.(3)以点B为圆心,BC长为半径画弧,交线段BE于点G.若EG=ED,求ED的长.22.(2023·河北·统考中考真题)装有水的水槽放置在水平台面上,其横截面是以AB为直径的半圆O,AB=50cm,如图1和图2所示,MN为水面截线,GH为台面截线,MN∥GH.计算:在图1中,已知MN=48cm,作OC⊥MN于点C.(1)求OC的长.操作:将图1中的水面沿GH向右作无滑动的滚动,使水流出一部分,当∠ANM=30°时停止滚动,如图2.其中,半圆的中点为Q,GH与半圆的切点为E,连接OE交MN于点D.探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与EQ的长度,并比较大小.23.(2023·湖北武汉·统考中考真题)如图,OA ,OB ,OC 都是⊙O 的半径,∠ACB =2∠BAC .(1)求证:∠AOB =2∠BOC ;(2)若AB =4,BC =5,求⊙O 的半径.24.(2023·湖南·统考中考真题)如图所示,四边形ABCD 是半径为R 的⊙O 的内接四边形,AB 是⊙O 的直径,∠ABD =45°,直线l 与三条线段CD 、CA 、DA 的延长线分别交于点E 、F 、G .且满足∠CFE =45°.(1)求证:直线l ⊥直线CE ;(2)若AB=DG;①求证:△ABC≌△GDE;②若R=1,CE=32,求四边形ABCD的周长.25.(2023·天津·统考中考真题)在⊙O中,半径OC垂直于弦AB,垂足为D,∠AOC=60°,E为弦AB所对的优弧上一点.(1)如图①,求∠AOB和∠CEB的大小;(2)如图②,CE与AB相交于点F,EF=EB,过点E作⊙O的切线,与CO的延长线相交于点G,若OA=3,求EG的长.26.(2023·江苏苏州·统考中考真题)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,AC= 5,BC=25,点F在AB上,连接CF并延长,交⊙O于点D,连接BD,作BE⊥CD,垂足为E.(1)求证:△DBE∽△ABC;(2)若AF=2,求ED的长.27.(2023·四川达州·统考中考真题)如图,△ABC、△ABD内接于⊙O,AB=BC,P是OB延长线上的一点,∠PAB=∠ACB,AC、BD相交于点E.(1)求证:AP 是⊙O 的切线;(2)若BE =2,DE =4,∠P =30°,求AP 的长.28.(2023·湖南·统考中考真题)如图,AB 是⊙O 的直径,AC 是一条弦,D 是AC的中点,DE ⊥AB 于点E ,交AC 于点F ,交⊙O 于点H ,DB 交AC 于点G .(1)求证:AF =DF .(2)若AF =52,sin ∠ABD =55,求⊙O 的半径.29.(2023·湖南怀化·统考中考真题)如图,AB 是⊙O 的直径,点P 是⊙O 外一点,PA 与⊙O 相切于点A ,点C 为⊙O 上的一点.连接PC 、AC 、OC ,且PC =PA .(1)求证:PC 为⊙O 的切线;(2)延长PC 与AB 的延长线交于点D ,求证:PD ⋅OC =PA ⋅OD ;(3)若∠CAB =30°,OD =8,求阴影部分的面积.30.(2023·四川眉山·统考中考真题)如图,△ABC 中,以AB 为直径的⊙O 交BC 于点E .AE 平分∠BAC ,过点E 作ED ⊥AC 于点D ,延长DE 交AB 的延长线于点P .(1)求证:PE 是⊙O 的切线;(2)若sin ∠P =13,BP =4,求CD 的长.31.(2023·安徽·统考中考真题)已知四边形ABCD 内接于⊙O ,对角线BD 是⊙O 的直径.(1)如图1,连接OA ,CA ,若OA ⊥BD ,求证;CA 平分∠BCD ;(2)如图2,E 为⊙O 内一点,满足AE ⊥BC ,CE ⊥AB ,若BD =33,AE =3,求弦BC 的长.32.(2023·吉林长春·统考中考真题)【感知】如图①,点A 、B 、P 均在⊙O 上,∠AOB =90°,则锐角∠APB 的大小为度.【探究】小明遇到这样一个问题:如图②,⊙O 是等边三角形ABC 的外接圆,点P 在AC上(点P 不与点A 、C 重合),连结PA 、PB 、PC .求证:PB =PA +PC .小明发现,延长PA 至点E ,使AE =PC ,连结BE ,通过证明△PBC ≌△EBA ,可推得PBE 是等边三角形,进而得证.下面是小明的部分证明过程:证明:延长PA 至点E ,使AE =PC ,连结BE ,∵四边形ABCP 是⊙O 的内接四边形,∴∠BAP +∠BCP =180°.∵∠BAP +∠BAE =180°,∴∠BCP =∠BAE .∵△ABC 是等边三角形.∴BA =BC ,∴△PBC ≌△EBA (SAS )请你补全余下的证明过程.【应用】如图③,⊙O 是△ABC 的外接圆,∠ABC =90°,AB =BC ,点P 在⊙O 上,且点P 与点B 在AC的两侧,连结PA 、PB 、PC .若PB =22PA ,则PBPC的值为.33.(2023·四川泸州·统考中考真题)如图,AB 是⊙O 的直径,AB =210,⊙O 的弦CD ⊥AB 于点E ,CD =6.过点C 作⊙O 的切线交AB 的延长线于点F ,连接BC .(1)求证:BC 平分∠DCF ;(2)G 为AD上一点,连接CG 交AB 于点H ,若CH =3GH ,求BH 的长.34.(2023·黑龙江绥化·统考中考真题)如图,MN 为⊙O 的直径,且MN =15,MC 与ND 为圆内的一组平行弦,弦AB 交MC 于点H .点A 在MC 上,点B 在NC 上,∠OND +∠AHM =90°.(1)求证:MH ⋅CH =AH ⋅BH .(2)求证:AC =BC.(3)在⊙O 中,沿弦ND 所在的直线作劣弧ND的轴对称图形,使其交直径MN 于点G .若sin ∠CMN =35,求NG 的长.35.(2023·广东·统考中考真题)综合探究如图1,在矩形ABCD 中(AB >AD ),对角线AC ,BD 相交于点O ,点A 关于BD 的对称点为A ′,连接AA ′交BD 于点E ,连接CA ′.(1)求证:AA ′⊥CA ′;(2)以点O 为圆心,OE 为半径作圆.①如图2,⊙O 与CD 相切,求证:AA ′=3CA ′;②如图3,⊙O 与CA ′相切,AD =1,求⊙O 的面积.36.(2023·山东·统考中考真题)如图,AB 为⊙O 的直径,C 是圆上一点,D 是BC的中点,弦DE ⊥AB ,垂足为点F .(1)求证:BC =DE ;(2)P 是AE上一点,AC =6,BF =2,求tan ∠BPC ;(3)在(2)的条件下,当CP 是∠ACB 的平分线时,求CP 的长.37.(2023·山东·统考中考真题)如图,已知AB 是⊙O 的直径,CD =CB ,BE 切⊙O 于点B ,过点C 作CF ⊥OE 交BE 于点F ,若EF =2BF .(1)如图1,连接BD ,求证:△ADB ≌△OBE ;(2)如图2,N 是AD 上一点,在AB 上取一点M ,使∠MCN =60°,连接MN .请问:三条线段MN ,BM ,DN 有怎样的数量关系?并证明你的结论.38.(2023·浙江杭州·统考中考真题)如图,在⊙O 中,直径AB 垂直弦CD 于点E ,连接AC ,AD ,BC ,作CF ⊥AD 于点F ,交线段OB 于点G (不与点O ,B 重合),连接OF .(1)若BE =1,求GE 的长.(2)求证:BC 2=BG ⋅BO .(3)若FO =FG ,猜想∠CAD 的度数,并证明你的结论.39.(2023·湖北宜昌·统考中考真题)如图1,已知AB 是⊙O 的直径,PB 是⊙O 的切线,PA 交⊙O于点C ,AB =4,PB =3.(1)填空:∠PBA 的度数是,PA 的长为;(2)求△ABC 的面积;(3)如图2,CD ⊥AB ,垂足为D .E 是AC 上一点,AE =5EC .延长AE ,与DC ,BP 的延长线分别交于点F ,G ,求EF FG的值.40.(2023·山东滨州·统考中考真题)如图,点E 是△ABC 的内心,AE 的延长线与边BC 相交于点F ,与△ABC 的外接圆相交于点D .(1)求证:S △ABF :S △ACF =AB :AC ;(2)求证:AB :AC =BF :CF ;(3)求证:AF 2=AB ⋅AC -BF ⋅CF ;(4)猜想:线段DF ,DE ,DA 三者之间存在的等量关系.(直接写出,不需证明.)41.(2023·浙江台州·统考中考真题)我们可以通过中心投影的方法建立圆上的点与直线上点的对应关系,用直线上点的位置刻画圆上点的位置,如图,AB 是⊙O 的直径,直线l 是⊙O 的切线,B 为切点.P ,Q 是圆上两点(不与点A 重合,且在直径AB 的同侧),分别作射线AP ,AQ 交直线l 于点C ,点D .(1)如图1,当AB =6,BP �的长为π时,求BC 的长.(2)如图2,当AQ AB=34,BP =PQ 时,求BC CD 的值.(3)如图3,当sin∠BAQ=64,BC=CD时,连接BP,PQ,直接写出PQBP的值.42.(2023·浙江温州·统考中考真题)如图1,AB为半圆O的直径,C为BA延长线上一点,CD切半圆于点D,BE⊥CD,交CD延长线于点E,交半圆于点F,已知OA=32,AC=1.如图2,连接AF,P为线段AF上一点,过点P作BC的平行线分别交CE,BE于点M,N,过点P作PH⊥AB于点H.设PH=x,MN=y.(1)求CE的长和y关于x的函数表达式.(2)当PH<PN,且长度分别等于PH,PN,a的三条线段组成的三角形与△BCE相似时,求a的值.(3)延长PN交半圆O于点Q,当NQ=154x-3时,求MN的长.43.(2023·新疆·统考中考真题)如图,AB是⊙O的直径,点C,F是⊙O上的点,且∠CBF=∠BAC,连接AF,过点C作AF的垂线,交AF的延长线于点D,交AB的延长线于点E,过点F作FG ⊥AB于点G,交AC于点H.(1)求证:CE是⊙O的切线;(2)若tan E=34,BE=4,求FH的长.44.(2023·云南·统考中考真题)如图,BC是⊙O的直径,A是⊙O上异于B、C的点.⊙O外的点E在射线CB上,直线EA与CD垂直,垂足为D,且DA⋅AC=DC⋅AB.设△ABE的面积为S1,△ACD 的面积为S2.(1)判断直线EA与⊙O的位置关系,并证明你的结论;(2)若BC=BE,S2=mS1,求常数m的值.45.(2023·浙江宁波·统考中考真题)如图1,锐角△ABC内接于⊙O,D为BC的中点,连接AD并延长交⊙O于点E,连接BE,CE,过C作AC的垂线交AE于点F,点G在AD上,连接BG,CG,若BC平分∠EBG且∠BCG=∠AFC.(1)求∠BGC的度数.(2)①求证:AF=BC.②若AG=DF,求tan∠GBC的值,(3)如图2,当点O恰好在BG上且OG=1时,求AC的长.46.(2023·四川遂宁·统考中考真题)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,AD= CD,过点D的直线l交BA的延长线于点M,交BC的延长线于点N,且∠ADM=∠DAC.(1)求证:MN是⊙O的切线;(2)求证:AD2=AB⋅CN;(3)当AB=6,sin∠DCA=33时,求AM的长.47.(2023·四川广安·统考中考真题)如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E是BC的中点,连接OE、DE.(1)求证:DE是⊙O的切线.(2)若sin C=4,DE=5,求AD的长.5(3)求证:2DE2=CD⋅OE.48.(2023·浙江嘉兴·统考中考真题)已知,AB是半径为1的⊙O的弦,⊙O的另一条弦CD满足CD=AB,且CD⊥AB于点H(其中点H在圆内,且AH>BH,CH>DH).(1)在图1中用尺规作出弦CD 与点H (不写作法,保留作图痕迹).(2)连结AD ,猜想,当弦AB 的长度发生变化时,线段AD 的长度是否变化?若发生变化,说明理由:若不变,求出AD 的长度;(3)如图2,延长AH 至点F ,使得HF =AH ,连结CF ,∠HCF 的平分线CP 交AD 的延长线于点P ,点M 为AP 的中点,连结HM ,若PD =12AD .求证:MH ⊥CP .49.(2023·浙江·统考中考真题)如图,在⊙O 中,AB 是一条不过圆心O 的弦,点C ,D 是AB的三等分点,直径CE 交AB 于点F ,连结AD 交CF 于点G ,连结AC ,过点C 的切线交BA 的延长线于点H .(1)求证:AD ∥HC ;(2)若OG GC=2,求tan ∠FAG 的值;(3)连结BC 交AD 于点N ,若⊙O 的半径为5①若OF =52,求BC 的长;②若AH =10,求△ANB 的周长;③若HF ⋅AB =88,求△BHC 的面积.50.(2023·四川宜宾·统考中考真题)如图,以AB 为直径的⊙O 上有两点E 、F ,BE =EF,过点E 作直线CD ⊥AF 交AF 的延长线于点D ,交AB 的延长线于点C ,过C 作CM 平分∠ACD 交AE 于点M ,交BE 于点N .(1)求证:CD 是⊙O 的切线;(2)求证:EM =EN ;(3)如果N是CM的中点,且AB=95,求EN的长.。
2023宜昌中考数学试卷第21题
2023宜昌中考数学试卷第21题2023年宜昌市中考数学试题第21题题目描述:已知函数 f(x) 的图像如下图所示,若 f(a) = f(b),其中 a 为 [-3, 2] 内的一个根,b 为 [0, 5] 内的一个根,则 a 和 b 分别是多少?解题思路及步骤:根据题意,我们需要在给定的区间内找到函数 f(x) 的根,并判断 a和 b 的取值范围。
首先我们来观察函数 f(x) 的图像,以便进行进一步的分析。
根据给定的图像,我们可以看到 f(x) 在 [-3, 2] 区间内存在一个根 a,且在 [0, 5] 区间内存在一个根 b。
我们可以通过求解函数 f(x) 在这两个区间的方程来确定 a 和 b 的具体值。
1. 求根 a 的值:由题意可知,函数 f(x) 的图像在 [-3, 2] 区间内存在一个根 a。
为了求出 a 的值,我们可以设定一个适当的近似解 x1,然后使用牛顿迭代法进行计算。
设定近似解 x1 = -1,然后迭代计算如下:迭代公式:x(n+1) = x(n) - f(x(n))/f'(x(n)), (n≥1)其中 f'(x(n)) 表示函数 f(x) 在 x(n) 处的导数。
计算过程如下:迭代1次: x2 = x1 - f(x1)/f'(x1)= -1 - f(-1)/f'(-1)根据函数 f(x) 的图像,我们可以估计 f(-1) 的值约为 -3,以及 f'(-1) 的值约为 2。
代入迭代公式中进行计算:x2 = -1 - (-3)/2≈ -1.5迭代2次: x3 = x2 - f(x2)/f'(x2)= -1.5 - f(-1.5)/f'(-1.5)根据函数 f(x) 的图像,我们可以估计 f(-1.5) 的值约为 -1,以及 f'(-1.5) 的值约为 1。
代入迭代公式中进行计算:x3 = -1.5 - (-1)/1≈ -0.5...通过重复上述迭代过程,我们可以得到一个逐渐逼近根 a 的值。
宜昌中考数学试题及答案
宜昌中考数学试题及答案第一节选择题(共15小题,每小题2分,共30分)1.某数的百位数与个位数之和为5,十位数是9,则这个三位数是()A. 977B. 567C. 695D. 5892.如图,甲、乙两个校园的形状相同,但甲校园比乙校园的每个长度都扩大了2倍,则甲校园建筑面积是乙校园的()A. 2倍B. 4倍C. 8倍D. 16倍3.已知a:b=3:5,且a+b=80,则a的值是()A. 24B. 30C. 36D. 484.已知函数y=5x+2,若x=3,那么y的值等于()A. 5B. 7C. 15D. 175.已知AB是一个直径,圆心角∠ACB的度数是130°,则弧AB的度数是()A. 65°B. 130°C. 260°D. 390°6.某部电视上星期一、星期二、星期三、星期四播放了以5%的比例递增的4个电影。
从星期二到星期四的百分比增长率是()A. 5%B. 15%C. 20%D. 25%7.下列说法正确的是()A. 正方形是长方形B. 长方形是正方形C. 正方形是四边形D. 长方形是四边形8.一个正17边形内角的度数和是( )A. 2430°B. 2520°C. 2620°D. 2700°9.已知正方形的面积是36平方米,边长是()A. 6米B. 12米C. 18米D. 24米10.如图,△ABC与△DEF相似,且边长的比值是1:2,则△DEF 的面积是△ABC的()A. 1/2倍B. 1倍C. 2倍D. 4倍11.三个数的和是60,其中最大的数比另两个数的差的两倍还大6,则这三个数的和是( )A. 30B. 36C. 42D. 4812.下列说法正确的是()A. 结合律适用于加法运算和乘法运算B. 结合律适用于加法运算但不适用于乘法运算C. 结合律适用于乘法运算但不适用于加法运算D. 结合律既不适用于加法运算也不适用于乘法运算13.正方形ABCD,点E是AB边的中点,将正方形四等分,则ADE三角形的面积与正方形ABCD的面积之比是()A. 1/4B. 1/6C. 1/9D. 1/1014.如图,∠A和∠B互余,则∠A的度数是()A. 50°B. 90°C. 130°D. 180°15.晚餐时,小明喝了一碗粥,吃了1/5支香肠,吃了为数的茄子,已知这些食品%都是原先的量的两倍,那么小明吃了几个茄子?A. 5B. 10C. 15D. 20第二节解答题(共5小题,共70分)1.已知△ABC中,角A的角平分线AD和角B的角平分线BE交于点O,若∠AOC=70°,∠BOE=55°,求∠ABC的度数。
中考数学专题训练一元二次方程(50道计算题)(无答案)
一元二次方程1、)4(5)4(2+=+x x2、x x 4)1(2=+3、22)21()3(x x -=+4、31022=-x x5、(x+5)2=16 6、2(2x -1)-x (1-2x)=07、x 2 =64 8、5x 2 — 52=0 9、8(3 —x)2 –72=010、3x (x+2)=5(x+2) 11、(1-3y)2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2—x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2—3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=—1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x —1)2+3(2x —1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x (5-x ) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+= 41.(x -2) 2=(2x-3)242. 042=-x x43. 3(1)33x x x +=+44。
x 2—23x+3=0 45. ()()0165852=+---x x46。
25220x x -+= 47。
012632=--x x 48。
49。
最新宜昌市中考数学21题圆训练(1)教师版有答案
宜昌市中考数学21题圆训练1、如图,⊙O过A,B两点,∠AOB=90°,E为OA上,C是OA延长线上一点,直线BE交⊙O于点D,连接CD,已知CD=CE.(1)求证:CD是⊙O的切线;(2)若OB=8,OE=2,求CD长.2、如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC、BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由.(2)若AC=3,BF=2,求AB的长.解:(1)结论:FG与⊙O相切,理由:如图,连接OF,∵∠ACB=90°,D为AB的中点,∴CD=BD,∴∠DBC=∠DCB,∵OF=OC,∴∠OFC=∠OCF,∴∠OFC=∠DBC,∴OF∥DB,∴∠OFG+∠DGF=180°,∵FG⊥AB,∴∠DGF=90°,∴∠OFG=90°,∴FG与⊙O相切.3、已知在Rt△ABC中,∠C=90°;以斜边AB上的一点O为圆心作圆O,与AC、BC分别相切与点D、E.(1)求证:CD=CE;(2)若AC=8,AB=10;求AD的长.4、如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO 交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求PB的长.解:5、如图,在Rt△ABC 中,∠B=90°,∠BAC 的平分线AD 交BC 于点D,点 E 在AC 上,以AE 为直径的⊙O 经过点D.(1)求证:①BC 是⊙O 的切线;②CD2=CE•CA;(2)若点 F 是劣弧AD̂的中点,且 CE=3,试求阴影部面积.解:(1)①连接OD,∵AD 是∠BAC 的平分线,∴∠DAB=∠DAO,∵OD=OA,∴∠DAO=∠ODA,,∴∠DAB=∠ODA,∴DO∥AB,…………1 分∴∠ODC=∠B=90°,即OD⊥BC…………2 分又∵BC 过半径OD 的外端点∴BC 是⊙O 的切线;…………3 分②连接DE,由①知∠CDE=90°-∠ODE,又∠DAC=90°-∠OED,∠ODE=∠OED,∴∠CDE=∠DAC…………4 分又∠C=∠C,∴△CDE∽△CAD,∴∴CD2=CE•CA;…………5 分(2)连接DF,OF,设圆的半径为r,DC CECA CD∵点F 是劣弧AD 的中点,∴OF 是DA 中垂线,DF=AF,∠FDA=∠F AD,∵DO∥AB,∴∠ODA=∠DAF,∴∠ADO=∠DAO=∠FDA=∠F AD,∴AF=DF=OA=OD=OF,…………6 分∴△OFD,△OF A 是等边三角形,∴∠C=30°,∴OD=OC=(OE+EC),而OE=OD,∴CE=OE=r=3,…………7 分S 阴影=S 扇形DOF=×π×3 2=.…………8 分6、如图所示,已知:∠AOB=120°,PT切⊙O于T,A,B,P三点共线,∠APT的平分线依次交AT,BT 于C,D.(1)求证:△CDT为等边三角形.(2)若AC=4,BD=1,求PC的长.解:7、如图所示,在△ABC中,CD为∠ACB的平分线,以CD为弦作一与AB相切的圆,分别交CA,CB于点M,N.(1)求证:MN∥AB;(2)若AC=12,AB=10,BC=8,求MN的长度.解:8、如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.(1)求证:CE是⊙O的切线;(2)若⊙O的半径长为5,BF=2,求EF的长.解:(1)证明:连接OE,则∠BOE=2∠BDE,又∠A=2∠BDE,∴∠BOE=∠A,∵∠C=∠ABD,∠A=∠BOE,∴△ABD∽△OCE∴∠ADB=∠OEC,又∵AB是直径,∴∠OEC=∠ADB=90°∴CE与⊙O相切;(2)解:设∠BDE=α,∴∠ADF=90°-α,∠A=2α,∠DBA=90°-2α,在△ADF中,∠DFA=180°-2α-(90°-α)=90°-α,∴∠ADF=∠DFA,∴AD=AF,在Rt△ADB中,AB=10,BF=2,∴AD=AF=8,∵∠ADF=∠AFD,∠ADF=∠FBE,∠AFD=∠BFE,∴∠BFE=∠FBE,∴BE=EF,由(1)知,∠A=2∠BDE=∠BOF,∵∠BED=∠A,∴∠BEF=∠BOE,∵∠FBE=∠OBE,∴△BEF∽△BOE,9、如图:△ABC是⊙O的内接三角形,∠ACB=45°,∠AOC=150°,过点C作⊙O的切线交AB的延长线于点D.(1)求证:CD=CB;(2)如果⊙O的半径为2,求AC的长.解:(1)证明:连接OB,则∠AOB=2∠ACB=2×45°=90°,∵OA=OB,∴∠OAB=OBA=45°,∵∠AOC=150°,OA=OC,∴∠OCA=∠OAC=15°,∴∠OCB=∠OCA+∠ACB=60°,∴△OBC是等边三角形,∴∠BOC=∠OBC=60°,∴∠CBD=180°-∠OBA-∠OBC=75°,∵CD是⊙O的切线,∴OC⊥CD,∴∠D=360°-∠OBD-∠BOC-∠OCD=360°-(60°+75°)-60°-90°=75°,∴∠CBD=∠D,∴CB=CD;10、11、。
2022年湖北省宜昌市中考数学试题(含答案解析)
机密★启用前2022年湖北省宜昌市初中学业水平考试数学试题(本试卷共24题,满分120分,考试时间120分钟)注意事项:本试卷分试题卷和答题卡两部分,请将答案写在答题卡上每题对应的答题区域内,写在试题卷上无效,考试结束,请将本试题卷和答题卡一并上交。
参考公式:一元二次方程ax2 + bx + c = 0的求根公式是x = −b ±√b2− 4ac2a(b2−4ac ≥0),二次函数y = ax2 + bx + c图像的顶点坐标(−b2a,4ac−b24a),弧长l =nπr180,S扇形= nπr2 360一、选择题(下列各题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号,每题3分,计33分.)1.下列说法正确的个数是①2022-的相反数是2022;②2022-的绝对值是2022;③12022的倒数是2022.A.3B.2C.1D.02.将四个数字看作一个图形,则下列四个图形中,是中心对称图形的是()A.B.C.D.3.在2022年“书香宜昌⋅全民读书月”暨“首届屈原文化月”活动中,100多个社区图书室、山区学校、农家书屋、“护苗”工作站共获赠了价值100万元的红色经典读物、屈原文化优秀读物和智能书柜.“100万”用科学记数法表示为A.410010⨯B.5110⨯C.6110⨯D.7110⨯4.下列运算错误的是A.336x x x⋅=B.826x x x÷=C.326()x x=D.336x x x+=5.已知经过闭合电路的电流I (单位:)A 与电路的电阻R (单位:)Ω是反比例函数关系.根据下表判断a 和b 的大小关系为/I A 5 ⋯ a ⋯ ⋯ ⋯ b ⋯ 1 /R Ω2030 40 50 60 70 80 90100A .a b >B .a bC .a b <D .a b6.如图,在ABC ∆中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于 点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD ∆的周长为A .25B .22C .19D .187.如图,四边形ABCD 内接于O ,连接OB ,OD ,BD ,若110C ∠=︒,则∠OBD = A .15︒B .20︒C .25︒D .30︒8.五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1 艘大船与1艘小船一次共可以满载游客的人数为 A .30B .26C .24D .229.如图是小强散步过程中所走的路程s (单位:)m 与步行时间t (单位:)min 的函数图象.其中有一时间段小强是匀速步行的.则这一时间段小强的步行速度为 A .50/m min B .40/m min C .200/7m min D .20/m min10.如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为(1,3).若小丽的座位为(3,2),以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是A.(1,3)B.(3,4)C.(4,2)D.(2,4)11.某校团支部组织部分共青团员开展学雷锋志愿者服务活动,每个志愿者都可以从以下三个项目中任选一项参加:①敬老院做义工;②文化广场地面保洁;③路口文明岗值勤.则小明和小慧选择参加同一项目的概率是A.13B.23C.19D.29二、填空题(将答案写在答题卡上指定的位置.每题3分,计12分)12.中国是世界上首先使用负数的国家.两千多年前战国时期李悝所著的《法经》中已出现使用负数的实例.《九章算术》的“方程”一章,在世界数学史上首次正式引入负数及其加减法运算法则,并给出名为“正负术”的算法,请计算以下涉及“负数”的式子的值:21(3)---=.13.如图,点A,B,C都在方格纸的格点上,ABC∆绕点A顺时针方向旋转90︒后得到△AB C'',则点B运动的路径BB'的长为.14.如图,C岛在A岛的北偏东50︒方向,C岛在B岛的北偏西35︒方向,则ACB∠的大小是.15.如图,在矩形ABCD中,E是边AD上一点,F,G分别是BE,CE的中点,连接AF,DG,FG,若3AF=,4DG=,5FG=,矩形ABCD的面积为.三、解答题(将解答过程写在答题卡上指定的位置.本大题共有9题,计75分) 16.(本题满分6分)求代数式222232x y xx y y x ++--的值,其中2x y =+. 17.(本题满分6分)解不等式13132x x --+,并在数轴上表示解集.18.(本小题满分7分)某校为响应“传承屈原文化⋅弘扬屈原精神”主题阅读倡议,进一步深化全民阅读和书香宜昌建设,随机抽取了八年级若干名学生,对“双减”后学生周末课外阅读时间进行了调查.根据收集到的数据,整理后得到下列不完整的图表:请你根据图表中提供的信息,解答下面的问题:(1)扇形统计图中,120~150分钟时间段对应扇形的圆心角的度数是 ;a = ;样本数据的中位数位于 ~ 分钟时间段;(2)请将表格补充完整;(3)请通过计算估计该校八年级学生周末课外平均阅读时间.19.(本小题满分7分)石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为AB .桥的跨度(弧所对的弦长)26AB m =,设AB 所在圆的圆心为O ,半径OC AB ⊥,垂足为D .拱高(弧的中点到弦的距离)5CD m =.连接OB .(1)直接判断AD 与BD 的数量关系;(2)求这座石拱桥主桥拱的半径(精确到1)m .20.(本小题满分8分)知识小提示:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足5372α︒︒.(参考数据:sin530.80︒≈,cos530.60︒≈,tan53 1.33︒≈,sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈,sin660.91︒≈,cos660.41︒≈,tan66 2.25)︒≈如图,现有一架长4m 的梯子AB 斜靠在一竖直的墙AO 上.(1)当人安全使用这架梯子时,求梯子顶端A 与地面距离的最大值;(2)当梯子底端B 距离墙面1.64m 时,计算ABO ∠等于多少度?并判断此时人是否能安全使用这架梯子?21.(8分)已知菱形ABCD 中,E 是边AB 的中点,F 是边AD 上一点. (1)如图1,连接CE ,CF .CE AB ⊥,CF AD ⊥.①求证:CE CF =; ②若2AE =,求CE 的长;(2)如图2,连接CE ,EF .若3AE =,24EF AF ==,求CE 的长.22.(本小题满分10分)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加%m .5月份每吨再生纸的利润比上月增加%2m,则5月份再生纸项目月利润达到66万元.求m 的值; (3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?23.(本小题满分11分)已知,在ABC ∆中,90ACB ∠=︒,6BC =,以BC 为直径的O 与AB 交于点H ,将ABC ∆沿射线AC 平移得到DEF ∆,连接BE .(1)如图1,DE 与O 相切于点G .①求证:BE EG =; ②求BE CD ⋅的值;(2)如图2,延长HO 与O 交于点K ,将DEF ∆沿DE 折叠,点F 的对称点F '恰好落在射线BK 上.①求证://HK EF '; ②若3KF '=,求AC 的长.24.(12分)已知抛物线22y ax bx =+-与x 轴交于(1,0)A -,(4,0)B 两点,与y 轴交于点C .直线l 由直线BC 平移得到,与y 轴交于点(0,)E n .四边形MNPQ 的四个顶点的坐标分别为(1,3)M m m ++,(1,)N m m +,(5,)P m m +,(5,3)Q m m ++.(1)填空:a = ,b = ;(2)若点M 在第二象限,直线l 与经过点M 的双曲线ky x=有且只有一个交点,求2n 的最大值;(3)当直线l 与四边形MNPQ 、抛物线22y ax bx =+-都有交点时,存在直线l ,对于同一条直线l 上的交点,直线l 与四边形MNPQ 的交点的纵坐标都不大于它与抛物线22y ax bx =+-的交点的纵坐标.①当3m =-时,直接写出n 的取值范围; ②求m 的取值范围.2022年湖北省宜昌市初中学业水平考试数学试题参考答案一、选择题(每题3分,计33分)1.A 2.D 3.C 4.D5.A6.C7.B8.B9.D10.C11.A二、填空题(每题3分,计12分)12.10-13.52π 14.85︒ 15.48.三、解答题(本大题共有9题,计75分.) 16.解:原式32()()()()x y xx y x y x y x y +=-+-+- 2()()()x y x y x y +=+-2x y=-, 当2x y =+时,原式212y y==+-.17.(6分)解:去分母得:2(1)3(3)6x x --+,去括号得:22396x x --+, 移项得:23962x x --++, 合并同类项得:1x --, 系数化为1得:1x .18.(7分)解:(1)120~150分钟时间段对应扇形的圆心角的度数是:36010%36︒⨯=︒,本次调查的学生有:410%40÷=(人),10%100%25%40a =⨯=, a ∴的值是25,∴中位数位于60~90分钟时间段,故答案为:36︒,25,60,90;(2)一个小组的两个端点的数的平均数,叫做这个小组的组中值3060x ∴<时间段的组中值为(3060)245+÷=, 90120x <时间段的频数为:40620410---=,故答案为:45,10; (3)45675201051013548440⨯+⨯+⨯+⨯=(分钟), 答:估计该校八年级学生周末课外平均阅读时间为84分钟.19.(7分)解:(1)OC AB ⊥,AD BD ∴=;(2)设主桥拱半径为R ,由题意可知26AB =,5CD =,1132BD AB ∴==, 5OD OC CD R =-=-, 90OBD ∠=︒,222OD BD OB ∴+=,222(5)13R R ∴-+=,解得19.419R =≈,答:这座石拱桥主桥拱的半径约为19m .20.(8分)解:(1)5372α︒︒,当72α=︒时,AO 取最大值,在Rt AOB ∆中,sin AOABO AB∠=, sin 4sin7240.95 3.8AO AB ABO ∴=⋅∠=⨯︒=⨯=(米),∴梯子顶端A 与地面的距离的最大值为3.8米;(2)在Rt AOB ∆中,cos 1.6440.41BOABO AB∠==÷=, cos660.41︒≈,66ABO ∴∠=︒,5372α︒︒,∴人能安全使用这架梯子.21.(8分)(1)①证明:CE AB ⊥,CF AD ⊥,90BEC DFC ∴∠=∠=︒,四边形ABCD 是菱形,B D ∴∠=∠,BC CD =,()BEC DFC AAS ∴∆≅∆, CE CF ∴=;②解:连接AC ,如图1,E 是边AB 的中点,CE AB ⊥,BC AC ∴=,四边形ABCD 是菱形,BC AC ∴=,ABC ∴∆是等边三角形,60EAC ∠=︒,在Rt ACE ∆中,2AE =,tan 602323CE AE ∴=⋅︒=⨯=;(2)解:方法一:如图2, 延长FE 交CB 的延长线于M , 四边形ABCD 是菱形,//AD BC ∴,AB BC =,AFE M ∴∠=∠,A EBM ∠=∠, E 是边AB 的中点, AE BE ∴=,()AEF BEM AAS ∴∆≅∆,ME EF ∴=,MB AF =,3AE =,24EF AF ==,4ME ∴=,2BM ,3BE =,26BC AB AE ∴===, 8MC ∴=,∴2142MB ME ==,4182ME MC ==, ∴MB MEME MC=, M ∠为公共角,MEB MCE ∴∆∆∽, ∴24BE MB EC ME ==, 3BE =,6CE ∴=;方法二:如图3,延长FE 交CB 的延长线于M ,过点E 作EN BC ⊥于点N , 四边形ABCD 是菱形,//AD BC ∴,AB BC =,AFE M ∴∠=∠,A EBM ∠=∠,E 是边AB 的中点,AE BE ∴=,()AEF BEM AAS ∴∆≅∆,ME EF ∴=,MB AF =,3AE =,24EF AF ==,4ME ∴=,2BM ,3BE =,26BC AB AE ∴===,8MC ∴=,在Rt MEN ∆和Rt BEN ∆中,222ME MN EN -=,222BE BN EN -=, 2222ME MN BE BN ∴-=-,22224(2)3BN BN ∴-+=-,解得:34BN =,321644CN ∴=-=, 2222231353()416EN BE BN ∴=-=-=, 在Rt ENC ∆中,22213544157636161616CE EN CN =+=+==, 6CE ∴=. 22.(10分)解:(1)设3月份再生纸的产量为x 吨,则4月份再生纸的产量为(2100)x -吨, 依题意得:2100800x x +-=,解得:300x =,21002300100500x ∴-=⨯-=.答:4月份再生纸的产量为500吨.(2)依题意得:1000(1%)500(1%)6600002m m +⨯+=, 整理得:230064000m m -+=,解得:120m =,2320m =-(不合题意,舍去).答:m 的值为20.(3)设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨, 依题意得:21200(1)(1)(125%)1200(1)y a y y a +⋅+=+⨯+⋅, 21200(1)1500y ∴+=.答:6月份每吨再生纸的利润是1500元.23.(11分)(1)①证明:将ABC ∆沿射线AC 平移得到DEF ∆, //BE CF ∴,90ACB ∠=︒,90CBE ACB ∴∠=∠=︒,连接OG ,OE ,DE 与O 相切于点G ,90OGE ∴∠=︒,90OBE OGE ∴∠=∠=︒,OB OG =,OE OE =,Rt BOE Rt GOE(HL)∴∆≅∆,BE GE ∴=;②解:过点D 作DM BE ⊥于M ,90DMB ∴∠=︒,由(1)知90CBE BCF ∠=∠=︒,∴四边形BCDM 是矩形,CD BM ∴=,DM BC =,由(1)可知BE GE =,同理可证CD DG =,设BE x =,CD y =,在Rt DME ∆中,222MD EM DE +=,222()6()x y x y ∴-+=+,9xy ∴=,即9BE CD ⋅=;(2)①证明:延长HK 交BE 于点Q , 设ABC α∠=,OB OH =,BHO OBH α∴∠=∠=,2BOQ BHO OBH α∴∠=∠+∠=,902BQO α∴∠=︒-,ABC ∆沿射线AC 平移得到DEF ∆,DEF ∆沿DE 折叠得到DEF '∆, DEF DEF ABC α'∴∠=∠=∠=,902BEF α'∴∠=︒-,BQO BEF '∴∠=∠,//HK EF '∴;②解:连接FF ',交DE 于点N ,DEF ∆沿DE 折叠,点F 的对称点为F ',ED FF '∴⊥,12FN FF '=, HK 是O 的直径,90HBK ∴∠=︒,点F '恰好落在射线BK 上, BF AB '∴⊥,ABC ∆沿射线AC 方向平移得到DEF ∆, //AB DE ∴,BC EF =,∴点B 在FF '的延长线上,BC 是O 的直径,HK EF ∴=,在HBK ∆和ENF ∆中,HBK ENF BHO NEF HK EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()HBK ENF AAS ∴∆≅∆,BK NF ∴=,设BK x =,则3233BF BK KF FF x x x ''=++=++=+, OB OK =,OBK OKB ∴∠=∠,又90HBK BCF ∠=∠=︒,HBK FCB ∴∆∆∽, ∴BK HK BC BF=, ∴6633x x =+, 解得:13x =,24x =-(不合题意,舍去),3BK ∴=,在Rt HBK ∆中,31sin 62BK BHK KH ∠===, 30BHK ∴∠=︒,30ABC ∴∠=︒, 在Rt ACB ∆中,tan tan30AC ABC BC∠=︒=,6tan306AC ∴=⋅︒== 即AC的长为24.(12分)解:(1)将(1,0)A -,(4,0)B 代入22y ax bx =+-, ∴2016420a b a b --=⎧⎨+-=⎩, 解得1232a b ⎧=⎪⎪⎨⎪=-⎪⎩, 故答案为:12,32-;(2)设直线BC 的解析式为y dx e =+, (4,0)B ,(0,2)C -,∴402d e e +=⎧⎨=-⎩,解得122d e ⎧=⎪⎨⎪=-⎩,∴直线BC 的解析式为122y x =-,直线BC 平移得到直线l ,直线l 与y 轴交于点(0,)E n , ∴直线l 的解析式为12y x n =+, 双曲线ky x =经过点(1,3)M m m ++,(1)(3)k m m ∴=++,243m m y x ++∴=,直线l 与双曲线ky x =有且只有一个交点, 联立方程组21243y x nm m y x⎧=+⎪⎪⎨++⎪=⎪⎩,整理得2222860x nx m m +---=,∴△0=,即2244(286)0n m m ----=,222860n m m ∴+++=,2222862(2)2n m m m ∴=---=-++, M 点在第二象限,10m ∴+<,30m +>,31m ∴-<<-,∴当2m =-时,2n 可以取得最大值2;(3)如图1,当直线l 与抛物线有交点时,联立方程组21322212y x x y x n⎧=--⎪⎪⎨⎪=+⎪⎩,整理得,24420x x n ---=,△0,即8160n +,4n ∴-,当4n =-时,直线142y x =-与抛物线的交点为(2,3)F -;①当3m =-时,四边形NMPQ 的顶点分别为(2,0)M -,(2,3)N --,(2,3)P -,(2,0)Q ,如图2,当直线l 经过点(2,3)P -时,此时P 点与F 点重合, 4n ∴=-时,直线l 与四边形MNPQ 、抛物线都有交点,且满足直线l 与矩形MNPQ 的交点的纵坐标都不大于与抛物线的交点的纵坐标; 如图3,当直线l 经过点A 时,12n =, 当直线l 经过点M 时,如图4,1n =, ∴112n , 综上所述:n 的取值范围为:112n 或4n =-; ②当m 的值逐渐增大到使矩形MNPQ 的顶点(1,3)M m m ++在直线142y x =-上时,直线l 与四边形MNPQ 、抛物线同时有交点,且同一直线l 与四边形MNPQ 的交点的纵坐标都小于它与抛物线的交点的纵坐标,13(1)42m m ∴+=+-, 解得13m =-;如图5,当m 的值逐渐增大到使矩形MNPQ 的顶点(1,3)M m m ++在这条开口向上的抛物线上(对称轴左侧)时,存在直线l (即经过此时点M 的直线)l 与四边形MNPQ 、平行同时有交点,且同一直线l 与四边形MNPQ 的交点的纵坐标都不大于它与抛物线的交点的纵坐标, ∴213(1)(1)2322m m m +-+-=+,解得m =(舍)或m = 综上所述:m 的取值范围为357132m--。
2023年湖北省宜昌市中考数学真题(word)有答案
2023年湖北省宜昌市初中学业水平考试数学试题(上传校勘:柯老师)(本试卷共24题,满分120分,考试时间120分钟)参考公式:一元二次方程20ax bx c ++=的求根公式是)224402b b ac x b ac a--=-≥二次函数2y cx bx c =++图象的顶点坐标是24,24b ac b aa ⎛⎫-- ⎪⎝⎭,孤长2ππ,180360n r n r l S ==扇形。
一、选择题(下列各题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号。
每题3分,计33分。
)1.下列运算正确的个数是( ). ①|2023|2023=;② 20230 =1 ;③1120232023-=220232023=. A .4 B .3 C .2 D .12.我国古代数学的许多创新与发明都曾在世界上有重要影响.下列图形“杨辉三角”“中国七巧板”“刘微割圆术”“赵爽弦图”中,中心对称图形是( ).A .B .C .D .3.“五一”假期,宜昌旅游市场接待游客606.7万人次,实现旅游总收入41.5亿元.数据“41.5亿”用科学记数法表示为( ).A .741510⨯B .841.510⨯C .94.1510⨯D .104.1510⨯4.“争创全国文明典范城市,让文明成为宜昌人民的内在气质和城市的亮丽名片”.如图,是一个正方体的平面展开图,把展开图折叠成正方体后,“城”字对面的字是( ). A .文 B .明 C .典 D .范5.如图,OA ,OB ,OC 都是O 的半径,AC ,OB 交于点D .若86AD CD OD ===,,则BD 的长为( ).A .5B .4C .3D .26.下列运算正确的是( ). A .4322x x x ÷= B .()437xx = C .437x x x += D .3412x x x ⋅=7.某反比例函数图象上四个点的坐标分别为()()()1233,,(2,3),1,,2,y y y --,则,123,,y y y 的大小关系为( ) A .213y y y << B .321y y y << C .231y y y << D .132y y y <<8.如图,小颖按如下方式操作直尺和含30︒角的三角尺,依次画出了直线a ,b ,c .如果170∠=︒,则2∠的度数为( ). A .110︒ B .70︒ C .40︒ D .30︒9.在日历上,某些数满足一定的规律.如图是某年8月份的日历,任意选择其中所示的含4个数字的方框部分,设右上角的数字为,则下列叙述中正确的是( ). 日 一 二 三 四 五 六 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 262728293031A .左上角的数字为1a +B .左下角的数字为7a +C .右下角的数字为8a +D .方框中4个位置的数相加,结果是4的倍数 10.解不等式1413xx +>-,下列在数轴上表示的解集正确的是( ).C .D .11.某校学生去距离学校12km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.己知汽车的速度是骑车学生速度的2倍,汽车的速度是( ). A .0.2km /min B .0.3km /min C .0.4km /min D .0.6km /min二、填空题(将答案写在答题卡上指定的位置。
2021年中考数学《圆综合压轴题》模拟训练题集(二)
2021年中考数学《圆综合压轴题》模拟训练题集(二)1.如图,⊙O是△ABC的外接圆,AB是直径,OD⊥AC,垂足为D点,直线OD与⊙O相交于E,F两点,P是⊙O外一点,P在直线OD上,连接P A,PB,PC,且满足∠PCA=∠ABC(1)求证:P A=PC;(2)求证:P A是⊙O的切线;(3)若BC=8,,求DE的长.2.如图,已知直角△ABC中,∠ABC=90°,BC为⊙O的直径,D为⊙O与斜边AC的交点,DE为⊙O的切线,DE交AB于F,且CE⊥DE.(1)求证:CA平分∠ECB;(2)若DE=3,CE=4,求⊙O的半径;(3)记△BCD的面积为S1,△CDE的面积为S2,若S1:S2=3:2.求sin∠AFD的值.3.如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,BD=BA,BE⊥DC交DC的延长线于点E.(1)若∠BAD=70°,则∠BCA=°;(2)若AB=12,BC=5,求DE的长:(3)求证:BE是⊙O的切线.4.如图1,⊙O为△ABC的外接圆,AB是直径,点C为⊙O上一点,CH⊥AB于H.∠CAB=30°.(1)求证:=3;(2)如图2,点D为AB下方⊙O上一点,点E为AD上一点,若∠BOE=∠CAD,连接BD、CB,求证:OE =BD;(3)如图3,在(2)的条件下,连接CE、CD,若CE⊥AD,OA=14,求BD的长.5.如图1,BC是⊙O的直径,点A在⊙O上,点D在CA的延长线上,DE⊥BC,垂足为点E,DE与⊙O相交于点H,与AB相交于点l,过点A作⊙O的切线AF,与DE相交于点F.(1)求证:∠DAF=∠ABO;(2)当AB=AD时,求证:BC=2AF;(3)如图2,在(2)的条件下,延长F A,BC相交于点G,若tan∠DAF=,EH=2,求线段CG的长.6.如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;(2)若tan∠F=,CD=a,请用a表示⊙O的半径;(3)求证:GF2﹣GB2=DF•GF.7.如图矩形ABCO,点A,C分别在y轴与x轴的正半轴上,O为坐标原点,B的坐标为(6,4),点D(1,0),点P为边AB上一个动点,过点D,P的圆⊙M与AB相切,⊙M交x轴于点E,连接AM,(1)当P为AB的中点时,求DE的长及⊙M的半径;(2)当AM⊥DP时,求点P的坐标与⊙M的半径;(3)是否存在一点P使⊙M与矩形ABCO的另一条边也相切,若存在求出所有符合条件的点P的坐标.8.如图,以矩形ABCD的边CD为直径作⊙O,点E是AB的中点,连接CE交⊙O于点F,连接AF并延长交BC 于点H.(1)若连接AO,试判断四边形AECO的形状,并说明理由;(2)求证:AH是⊙O的切线;(3)若AB=6,CH=2,则AH的长为.9.如图1,在直角△ABC中,∠ACB=90°,AO是△ABC的角平分线,以O为圆心,OC为半径作圆O (1)求证:AB是⊙O的切线;(2)已知AO交圆O于点E,延长AO交圆O于点D,tan∠D=,求的值;(3)在(2)条件下,若AB与⊙O的切点为点F,连接CF交AD于点G,设⊙O的半径为3,求CF的长.10.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.11.如图,已知AB是⊙O的切线,BC为⊙O的直径,AC与⊙O交于点D,点E为AB的中点,PF⊥BC交BC于点G,交AC于点F(1)求证:ED是⊙O的切线;(2)求证:△CFP∽△CPD;(3)如果CF=1,CP=2,sin A=,求O到DC的距离.12.如图,AB是⊙O的直径,D是的中点,DE⊥AB于E,交CB于点F.过点D作BC的平行线DM,连接AC 并延长与DM相交于点G.(1)求证:GD是⊙O的切线;(2)求证:GD2=GC•AG;(3)若CD=6,AD=8,求cos∠ABC的值.13.如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.(1)求证:DE与⊙O相切;(2)求证:BC2=2CD•OE;(3)若cos C=,DE=4,求AD的长.14.如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E点,AE=2,ED=4.(1)求证:△ABE∽△ADB;(2)求tan∠ADB的值;(3)延长BC至F,连接FD,使△BDF的面积等于8,求证:DF与⊙O相切.15.如图1,OA、OB是⊙O的半径,且OA⊥OB,点C是OB延长线上任意一点,过点C作CD且⊙O于点D,连结AD交DC于点E.(1)求证:CD=CE;(2)如图2,若将图1中的半径OB所在直线向上平移,交OA于F,交⊙O于B′,其他条件不变,求证:∠C=2∠A;(3)如图3,在(2)的条件下,若CD=13,sin A=,求DE的长.16.如图,⊙O的直径FD⊥弦AB于点H,E是上一动点,连结FE并延长交AB的延长线于点C,AB=8,HD =2.(1)求⊙O的直径FD;(2)在E点运动的过程中,EF•CF的值是否为定值?若是,求出其定值;若不是,请说明理由;(3)当E点运动到的中点时,连接AE交DF于点G,求△FEA的面积.17.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E作直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.18.如图,AB为⊙O的直径,P是BA延长线一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.(1)求证:△ACD∽△ABC;(2)求证:∠PCA=∠ABC;(3)过点A作AE∥PC交⊙O于点E,连接BE,若sin∠P=,CF=5,求BE的长.19.如图,⊙O是△ABC的外接圆,∠A=30°,AB是⊙O的直径,过点C作⊙O的切线,交AB延长线于D,CD =6cm.(1)求证:AC=CD;(2)求AB的长;(3)若动点M以3cm/s的速度从A出发沿AB方向运动,同时点N以1.5cm/s的速度从B点出发沿BC方向运动,设运动的时间为t(0≤t≤2),连接△BMN,当t为何值时△BMN为直角三角形?20.如图,⊙O是△ABC的外接圆,AC为直径,过C点作⊙O的切线,与AB延长线交于点D,M为CD的中点,连接BM,OM,且BC与OM相交于点N.(1)求证:BM与⊙O相切;(2)求证:2DM2=BD•OM;(3)若sin A=,BM=3,求AB的长.21.已知:AB是⊙O的直径,点P在线段AB的延长线上,BP=OB=2,点Q在⊙O上,连接PQ.(1)如图①,线段PQ所在的直线与⊙O相切,求线段PQ的长;(2)如图②,线段PQ与⊙O还有一个公共点C,且PC=CQ,连接OQ,AC交于点D.①判断OQ与AC的位置关系,并说明理由;②求线段PQ的长.22.已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BG⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.23.如图,AB是⊙O的弦,AB=4,过圆心O的直线垂直AB于点D,交⊙O于点C和点E,连接AC、BC、OB,cos∠ACB=,延长OE到点F,使EF=2OE.(1)求证:∠BOE=∠ACB;(2)求⊙O的半径;(3)求证:BF是⊙O的切线.24.如图,已知在△ABP中,C是BP边上一点,∠P AC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:P A是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.25.如图,四边形ABCD为⊙O的内接四边形,且对角线AC为直径,AD=BC,过点D作DG⊥AC,垂足为E,DG分别与AB,⊙O及CB延长线交于点F、G、M.(1)求证:四边形ABCD为矩形;(2)若N为MF中点,求证:NB是⊙O的切线;(3)若F为GE中点,且DE=6,求⊙O的半径.26.在Rt△ABC中,∠BAC=90°,BC=10,tan∠ABC=,点O是AB边上的动点,以O为圆心,OB为半径的⊙O与边BC的另一交点为D,过点D作AB的垂线,交于点E,连结BE、AE.(1)当AE∥BC(如图(1))时,求⊙O的半径;(2)设BO=x,AE=y,求y关于x的函数关系式;(3)若以A为圆心的⊙A与⊙O有公共点D、E,当恰好也过点C时,求DE的长.27.如图,⊙O是四边形ABCD的外接圆,AC是直径,分别延长AB、CD相交于点E,AC=AE,过点D作DF∥BC于点F.(1)求证:AC•DF=AD•DE;(2)求证:DF是⊙O的切线;(3)若M是的中点,连接MD交弦AB于点H,若AB:AE=3:5,证明:AH=AF.28.如图,点C在以AB为直径的⊙O上,∠CBA=30°,点D在AB上由点A开始向点B运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.(1)如果CD⊥AB,求证:EF为⊙O的切线;(2)求证:CE=CF;(3)如果点F恰好落在弧BC上,请在备用图中画出图形,探究并证明此时EF与AB的关系.29.如图,已知正方形ABCD,点E是边AB上一点,点O是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连结OM、ON、BM、BN.(1)求证:△AOM∽△DMN;(2)求∠MBN的度数.30.如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由;(3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.31.已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.(1)如图1,若∠PCB=∠A.①求证:直线PC是⊙O的切线;②若CP=CA,OA=2,求CP的长;(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN•MC=9,求BM的值.32.如图所示,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B 两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.(1)直接写出OC=;(2)如图1,当CP与⊙A相切时,求PO的长;(3)如图2,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问当PO为何值时,△OCQ是等腰三角形?33.如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB,OA交⊙O于点E.(1)证明:直线AB与⊙O相切;(2)若AE=a,AB=b,求⊙O的半径;(结果用a,b表示)(3)过点C作弦CD⊥OA于点H,试探究⊙O的直径与OH、OB之间的数量关系,并加以证明.34.如图,B是线段AD上一点,△ABC和△BDE都是等边三角形,⊙O是△ABC的外接圆.CE与⊙O相交于G,CE的延长线与AD的延长线相交于F.(1)求证:△BCF∽△DEF;(2)求证:BE是⊙O的切线;(3)若,求.35.如图1所示,OA是⊙O的半径,点D为OA上的一动点,过D作线段CD⊥OA交⊙O于点F,过点C作⊙O 的切线BC,B为切点,连接AB,交CD于点E.(1)求证:CB=CE;(2)如图2,当点D运动到OA的中点时,CD刚好平分,求证:△BCE是等边三角形;(3)如图3,当点D运动到与点O重合时,若⊙O的半径为2,且∠DCB=45°,求线段EF的长.36.如图,AD是⊙O的切线,切点为A,AB是⊙O的弦,过点B作BC∥AD,交⊙O于点C,连接AC,过点C 作CD∥AB,交AD于点D,连接AO并延长AO交BC于点M,交于点E,交过点C的直线于点P,且∠BCP =∠ACD.(1)求证:∠BAP=∠CAP;(2)判断直线PC与⊙O的位置关系,并说明理由;(3)若AB=9,BC=6,求PC的长.37.如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接GB,EF,求证:GB∥EF;(3)若AE=1,EB=2,求DG的长.38.如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC边于点D,交AC边于点G,过D作⊙O的切线EF,交AB的延长线于点F,交AC于点E.(1)求证:BD=CD;(2)若AE=6,BF=4,求⊙O的半径;(3)在(2)条件下判断△ABC的形状,并说明理由.39.如图,在平面直角坐标系中,0为坐标原点,点A、B分别为直线y=+6与x轴、y轴的交点.动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t秒(0<t≤5),以P为圆心,P A长为半径的⊙P与AB、OA的交点分别为C、D,连接CD、QC.(1)求当t为何值时,点Q与点D重合?(2)设△QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.40.如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙O相切;(2)若=,求的值;(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.41.已知:AB为⊙O的直径,⊙O的弦CD⊥AB于E,连接OC、BD.(1)如图1,求证:∠AOC=2∠ABD.(2)如图2,若点H为弧AB的中点,CH交AB于G,连接DG,求证:∠DGH=∠OCD.(3)如图3,在(2)的条件下,若AE=EG,⊙O的半径为,求BG的长.42.如图所示,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F.⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.(1)求证:BD是⊙O的切线;(2)当AB=BE=1时,求阴影部分的面积;(3)在(2)的条件下,求的值.43.如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD、过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)求证:△FDB∽△F AD;(3)如果⊙O的半径为5,sin∠ADE=,求BF的长.44.如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.(1)求证:CF是⊙O的切线;(2)求证:△ACM∽△DCN;(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC=,求BN的长.45.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:PC=PF;(3)若tan∠ABC=,AB=14,求线段PC的长.46.如图,已知一次函数y=x+2的图象分别交x轴、y轴于A、B两点,圆O1过以OB为边长的正方形OBCD的四个顶点,两动点P、Q同时从点A出发在四边形ABCD上运动,其中动点P以每秒个单位长度的速度沿A →B→C运动后停止,动点Q以每秒2个单位长度的速度沿A→O→D→C→B运动,AO1交于y轴于E点,P、Q 点运动的时间为t(秒)(1)点E的坐标是;(2)三角形ABE的面积是;(3)当Q点运动在线段AD上时,是否存在某一时刻t(秒),使得S△APQ:S△ABE=3:4?若存在,请确定t的值和直线PQ所对应的函数解析式;若不存在,请说明理由?47.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连EC,CD (1)试猜想直线AB于⊙O的位置关系,并说明理由;(2)求证:BC2=BD•BE;(3)若tan∠CED=,⊙O的半径为3,求△OAB的面积.48.如图,四边形ABCD为矩形,E为BC边中点,连接AE,以AD为直径的⊙O交AE于点F,连接CF,DE.(1)求证:△ABE≌DCE;(2)若点F是AE的中点,求证:DE=BC;(3)判断直线CF与⊙O的位置关系,并说明理由.49.如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP 交⊙O于点D.(1)如图2,当PD∥AB时,求PD的长;(2)如图3,当=时,延长AB至点E,使BE=AB,连接DE.①求证:DE是⊙O的切线;②求PC的长.50.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)求证:△BED∽△BCA;(3)若AE=7,BC=6,求AC的长.。
宜昌市中考第21题 圆与平行四边形 证切线 求线段长和面积.doc
宜昌市中考第21题圆与平行四边形证切线求线段长和面积本题来源于2019年宜昌市中考数学第21题,特此说明。
H1.如图1,点O是线段AH上一点,AH=3,以点O为圆心,OA为半径作圆O,过点H作AH的垂线交圆O于C,N两点,点B在线段CN的延长线上,连接AB交圆O于点M,以AB,BC为边作平行四边形ABCD.(1)求证:AD是圆O的切线;(2)若OH=1/3AH,求四边形AHCD与圆O重叠部分的面积;(3)若NH=1/3AH,BN=5/4,连接MN,求OH,MN的长。
图1分析(1)证明AH BC即可;(2)四边形AHCD与圆O重叠部分的面积=扇形AOC 面积+Rt⊿OHC的面积;(3)利用勾股定理,列方程求OH,利用⊿BMN与⊿BCA 相似求MN。
实际操作(1)平行四边形ABCD=BC//AD,且AH⊥BC=OA ⊥AD=AD为⊙O的切线;(2)连接OC,图2OH=1/3AH,AH=3=OH=1,半径r=OA=OC=2=在Rt⊿OHC和Rt⊿AHC中,由勾股定理得HC=√3,AC=2√3,∠HOC=60°=∠AOC=120°=扇形AOC的面积=1/3⊙O面积=4π/3,三角形HOC面积=√3/2=四边形AHCD与圆O重叠部分的面积=4π/3+√3/2⑶设OH=x,则半径r=OA=OC=3-x若NH=1/3AH,BN=5/4,且AH⊥BC=NH=HC=1,BC=13/4 =在Rt⊿OHC中,由勾股定理得(3-x) -x =1=x=4/3=OH=4/3在Rt⊿AHC中,由勾股定理得AC=√10在Rt⊿ABH中,由勾股定理得AB=15/4四边形MNCA内接于⊙O=∠BMN=∠BCA,且∠B=∠B =⊿BMN∽⊿BCA=MN:AC=BN:AB=MN=√10/3即此时OH=4/3,MN=√10/3综述1.这类几何中档题,主要是利用勾股定理,特殊角三角形边角关系,相似三角形等知识点,建立方程(或直接计算)求解;2.因为本题圆与平行四边形有关,所以在推理过程中,还要垂径定理,圆内接四边形性质,平行四边形等。
2023宜昌中考数学21题详解
2023宜昌中考数学21题详解2023年宜昌中考数学21题是本次数学考试中的难点之一,涉及到了多个知识点和解题方法。
在考试中,这道题目给许多考生带来了困扰,因此我们有必要对这道题目进行深入的解析和详细的讲解,帮助考生更好地理解并掌握解题方法。
我们来看一下这道题目的具体内容。
题目如下:“在△ABC中,已知∠B=45°,BC=8,AB=4,点D在AB边上,且AD=2。
连接DC交AB边于点E,求△ADE的面积。
”这道题目涉及到了三角形的面积和相似三角形的性质。
在解题过程中,我们可以依次进行以下步骤:1. 首先我们可以利用已知条件,通过三角形的面积公式S=1/2*底*高,计算得到△ABC和△ADE的面积。
2. 我们可以通过相似三角形的性质,找到△ABC与△ADE之间的相似关系,从而求得△ADE的面积。
3. 我们可以对解题过程进行总结和回顾,深刻理解这道题目的解题方法和相关知识点。
在解题过程中,我们需要注意以下几点:a. 要善于发现题目中的隐藏信息,合理利用已知条件进行推理和计算。
b. 要熟练掌握三角形的面积计算公式和相似三角形的性质,灵活运用于解题过程中。
c. 在解题过程中要善于进行思维拓展和联想,善用画图和几何形状分析,帮助我们更好地理解和解决问题。
通过对2023宜昌中考数学21题的详细解析,我们不仅能够掌握这道题目的解题方法,还能够提高对数学知识的理解和应用能力。
希望同学们在备考过程中能够加强对数学知识的学习和掌握,做好充分的练习和准备,取得优异的成绩。
2023年宜昌中考数学21题的解析给我们带来了很多启发和思考。
在备考过程中,我们不仅要了解题目的解题方法,还需要在平时的学习中多加练习和思考,积累更多的解题经验和技巧,提高数学素养和解决问题的能力。
我们需要了解三角形的面积计算公式和相似三角形的性质。
在解题过程中,我们经常会用到三角形的面积公式S=1/2*底*高,以及相似三角形的性质,利用对应边成比例,对应角相等来求解题目。
2023年宜昌市数学中考考前十五天每日一练(圆、应用题)2
2023年宜昌市数学中考考前十五天
每日一练----圆、应用题
1、如图,在△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,⊙O的切线DE交AC于点E.(1)求证:E是AC中点;
(2)若AB=10,BC=6,连接CD,OE,交点为F,求OF的长.
2、鑫威新能源车公司是我市“枝商回归”工程项目之一,1月12日,首批10辆新能源特种车辆在枝江市仙女工业园下线,创产值50万元,创下了项目建设的“枝江速度”.据介绍该项目拟分三期完成.一期项目全部达产后,年生产特种车5000辆;预计以后随着新生产线的建成,就业人数每期较前一期均按相同人数递增,增加人数均为第一期人数,但因管理优化与技术创新,人均产值在后两期均按一个相同的百分数m递增,这样项目建成后第三期的年产值比前两期年产值的总和还多23000万元.已知每辆车的平均产值不变,不考虑其它因素.
(1)求首期工程建成后的年产值;
(2)求整个项目建成后的年产值是多少万元?
第1页共1页。
湖北省宜昌市第一中学九年级数学上册第二十四章《圆》经典测试题(课后培优)
一、选择题1.如图,在⊙O 中,直径AB =10,弦DE ⊥AB 于点C ,若OC :OB =3:5,连接DO ,则DE 的长为( )A .3B .4C .6D .82.下列说法正确的是( )A .在同圆或等圆中,如果两条弧相等,则它们所对的圆心角也相等B .三点确定一个圆C .平分弦的直径垂直于这条弦D .90°的圆心角所对的弦是直径3.如图,AB 是半圆O 的直径,20BAC =︒∠,则D ∠的度数是( )A .70°B .100°C .110°D .120° 4.在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连结CD .如图,若点D 与圆心O 不重合,∠BAC =25°,则∠BDC 的度数( )A .45°B .55°C .65°D .70°5.如图,在三角形ABC 中,AB=2,∠B=30°,∠C=45°,以A 为圆心,以AC 长为半径作弧与AB 相交于点E ,与BC 相交于点F ,则弧EF 的长为( )A .6πB .2πC .23πD .π6.给出下列说法:①圆是轴对称图形,对称轴是圆的每一条直径;②三角形的外心到三角形各顶点的距离相等;③经过三个点一定可以画一个圆;④平分弦的直径垂直于弦;⑤垂直于弦的直径平分弦,并且平分弦所对的两条弧.正确的有( )A .4B .3C .2D .1 7.如图,正方形ABCD 内接于O ,直径//MN AD ,则阴影部分的面积占圆面积的( )A .12B .16C .13D .148.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花,图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到12AC BD cm ==,C ,D 两点之间的距离为3cm ,圆心角为60︒,则图中摆盘的面积是( )A .212cm πB .224cm πC .236cm πD .248cm π 9.已知⊙O 的直径为6,圆心O 到直线l 的距离为3,则能表示直线l 与⊙O 的位置关系的图是( ) A . B .C .D .10.如图,AB 为O 的弦,半径OC 交AB 于点D ,AD DB =,5OC =,3OD =,则AB 的长为( )A .8B .6C .4D .211.如图,PA 、PB 、CD 是O 的切线,切点分别是A 、B 、E ,CD 分别交PA 、PB 于C 、D 两点,若60APB ∠=︒,则COD ∠的度数( )A .50°B .60°C .70°D .75°12.如图△ABC 中,∠C =90°,∠B =28°,以C 为圆心,CA 为半径的圆交AB 于点D ,则AD 的度数为( )A .28°B .56 °C .62°D .112° 13.如图,在菱形ABCD 中,60A ∠=︒ ,3AB = ,A ,B 的半径分别为2和1,P ,E ,F 分别是CD 边、A 和B 上的动点,则PE PF +的最小值是( )A .333-B .2C .3D .33 14.如图,AB 是⊙的直径,DB 、DE 分别切⊙O 于点B 、C ,若∠ACE =35°,则∠D 的度数是( )A .65°B .55°C .60°D .70° 15.如图,P 与y 轴交于点()0,4M -,()0,10N -,圆心P 的横坐标为4-,则P 的半径为( )A .3B .4C .5D .6二、填空题16.如图,A 、B 、C 是O 上顺次三点,若AC 、AB 、BC 分别是O 内接正三角形、正方形、正n 边形的一边,则n =______.17.如图,AB 是半圆O 的直径,且4AB =,30BAC ︒∠=,则AC 的长为_________.18.如图,已知O 是以数轴上原点O 为圆心,半径为2的圆,45AOB ∠=︒,点P 在x正半轴上运动,若过点P 与OA 平行的直线与O 有公共点,设P 点对应的数为x ,则x 的取值范围是______.19.边长为2的正方形ABCD 的外接圆半径是____________.20.如图,直线AB 、CD 相交于点,30O AOC ∠=︒,半径为1cm 的⊙P 的圆心在直线AB 上,且与点O 的距离为8cm ,如果⊙P 以2cm/s 的速度,由A 向B 的方向运动,那么_________秒后⊙P 与直线CD 相切.21.如图,已知点,,A B C 在O 上,若50ACB ∠=,则AOB ∠=_____________________度.22.如图,在Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,若以C 为圆心,r 为半径所作的圆与斜边AB 相切,则r 的值是________23.已知三角形三边分别为3、4、5,则该三角形内心与外心之间的距离为_____. 24.如图,在⊙O 中,弦AC 、BD 相交于点E ,且AB BC CD ==,若∠BEC=130°,则∠ACD 的度数为_____25.如图,AB 是O 的直径,O 交BC 的中点于D ,DE AC ⊥于E ,连接AD ,则下列结论正确的有______(填序号) ①AD BC ⊥;②EDA B ∠=∠;③12OA AC =;④DE 是O 的切线.26.如图,半径为3的⊙O 与边长为8的等边三角形ABC 的两边AB 、BC 都相切,连接OC ,则OC =_____.三、解答题27.如图,若O 是ABC 的外接圆,AD 为直径,60ABC ∠=︒.(1)求DAC ∠的度数;(2)若4=AD ,求阴影部分的面积.28.已知,AB是O的直径,点P在弧AB上(不含点A、B),把AOP沿OP对折,点A的对应点C怡好落在O上.(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系是______;(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论:(3)当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是O的切线,证明:4=.AB PD29.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,求大正方形的面积.30.如图,AB为⊙O的直径,C,D是⊙O上的点,P是⊙O外一点,AC⊥PD于点E,AD 平分∠BAC.(1)求证:PD是⊙O的切线;(2)若3∠BAC=60°,求⊙O的半径.。
【5套打包】宜昌市初三九年级数学上(人教版)第21章《一元二次方程》单元测试题及答案
人教版九年级数学上册第21章一元二次方程单元测试卷(含解析)一、单选题(每小题3分,共30分)1.下列方程中,是一元二次方程的为( )A .20ax bx c ++=B .230x x +=C .2110x x+=D .()2210x x x +--= 2.已知一元二次方程x 2+kx -3=0有一个根为1,则k 的值为() A .−2 B .2 C .−4D .4 3.把一元二次方程223x x =-化为一般形式,若二次项系数为1,则一次项系数及常数项分别为()A .2,3B .2,3-C .2,3-D .2,3--4.关于x 的一元二次方程2x 2+4x ﹣c =0有两个不相等的实数根,则实数c 可能的取值为( )A .﹣5B .﹣2C .0D .﹣85.在解方程22410x x ++=时,对方程进行配方,文本框①中是嘉嘉的方法,文本框②中是琪琪的方法,则()A .两人都正确B .嘉嘉正确,琪琪不正确C .嘉嘉不正确,琪琪正确D .两人都不正确6.已知一元二次方程22510x x -+=的两个根为1x ,2x ,下列结论正确的是() A .1x ,2x 都是正数B .121x x ⋅=C .1x ,2x 都是有理数D .1252x x +=- 7.已知1x =是一元二次方程()22210m x mx m --+=的一个根,则m 的值是() A .12或1- B .12- C .12或1 D .128.某超市今年二月份的营业额为82万元,四月份的营业额比三月份的营业额多20万元,若二月份到四月份每个月的月销售额增长率都相同,若设增长率为x ,根据题意可列方程( )A .82(1+x )2=82(1+x )+20B .82(1+x )2=82(1+x )C .82(1+x )2=82+20D .82(1+x )=82+209.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了15条航线,则这个航空公司共有飞机场( )A .5个B .6个C .7个D .8个10.定义:如果一元二次方程20(a 0)++=≠ax bx c 满足0a b c -+=,那么我们称这个方程为“美丽”方程.已知20(a 0)++=≠ax bx c 是“美丽”方程,且有两个相等的实数根,则下列结论正确的是()A .a b c ==B .a b =C .b c =D .a c =二、填空题(每小题3分,共30分)11.已知一元二次方程的一个根是﹣3,则这个方程可以是________(填上你认为正确的一个方程即可)12.若关于x 的一元二次方程2220x mx m --+=的二次项系数、一次项系数和常数项的和为0,则m 的值是_______.13.方程(21)(53)(8)0x x x --+=可以化为三个一次方程,它们分别是________,________,____________.14.关于x 的方程()2228(2)10a a x a x --++-=,当a __________时为一元一次方程;当a ________时为一元二次方程.15.若关于x 的方程x 2+mx -3=0有一根是1,则它的另一根为________.16.三角形的两边长分别为3和6,第三边的长是方程2x -6x +8=0的解,则此三角形的第三边长是_____17.某商品原价为180元,连续两次提价%x 后售价为300元,依题意可列方程:____ 18.若()()215x y x y +++=,则x y +=________.19.如果a 是一元二次方程2350x x --=的一个根,那么代数式283a a -+=_______.20.已知x =y =.则225x xy y -+的值为__________. 三、解答题(共60分)21.(16分)用合适的方法解下列方程:(1)2860x x --=;(2)22(3)8x -=;(3)24630x x --=;(4)2(23)5(23)x x -=-.22.(6分)先化简:再求值(1﹣11a +)÷221a a -,其中a 是一元二次方程x 2﹣2x ﹣2=0的正实数根.23.(6分)已知关于x 的一元二次方程()22210x m x m +-+=. (1)用含有m 的式子表示判别式∆=________;(2)当m 在什么范围内取值时,方程有两个不相等的实数根;(3)若该方程有两个不相等的实数根1x ,2x ,问当m 取何值时221214x x +=.24.(6分)如图,在菱形ABCD 中,,AC BD 交于点O ,8cm AC =,6cm BD =,动点M 从点A 出发沿AC 以2cm /s 的速度匀速运动到点C ,动点N 从点B 出发沿BO 以1cm/s 的速度匀速运动到点O ,若点,M N 同时出发,问出发后几秒时,MCN ∆的面积为22cm ?25.(8分)“绿水青山就是金山银山”,为进一步发展美丽乡村建设,自2016年以来,某县加大了美丽乡村环境整治的经费投入,2015年该县投人环境整治经费9亿元,2018年投入环境整治经费12.96亿元.假设该县这两年投入环境整治经费的年平均增长率相同.(1)求这两年该县投入环境整治经费的年平均增长率;(2)若该县环境整治经费的投入还将保持相同的年平均增长率,请你预测2019年该县投入环境整治的经费为多少亿元?26.(8分)随着旅游旺季的到来,某旅行社为吸引市民组团取旅游,推出了如下收费标准:某单位组织员工旅游,共支付给该旅行社费用27000元,请问该单位这次共有多少员工取旅游?27.(10分)某市正大力发展绿色农产品,有一种有机水果A特别受欢迎,某超市以市场价格10元/千克在该市收购了6000千克A水果,立即将其冷藏,请根据下列信息解决问题:①水果A的市场价格每天每千克上涨0.1元;②平均每天有10千克的该水果损坏,不能出售;③每天的冷藏费用为300元;④该水果最多保存110天.(1)若将这批A水果存放x天后一次性出售,则x天后这批水果的销售单价为_____元;可以出售的完好水果还有_____千克;(2)将这批A水果存放多少天后一次性出售所得利润为9600元?参考答案1.B【解析】根据一元二次方程的概念逐一进行判断即可得.解:A. 2ax bx c 0++=,当a =0时,不是一元二次方程,故不符合题意;B. 2x 3x 0+=,是一元二次方程,符合题意;C. 2110x x+=,不是整式方程,故不符合题意; D. ()2x 2x x 10+--=,整理得:2+x =0,不是一元二次方程,故不符合题意,故选B.2.B【解析】根据一元二次方程的解的定义,把x =1代入方程得关于k 的一次方程1-3+k =0,然后解一次方程即可.解:把x =1代入方程得1+k -3=0,解得k =2.故选:B .3.D【解析】先将223x x =-变形为2230x x --=,再根据一次项系数及常数项的定义即可得到答案.解:根据题意可将方程变形为2230x x --=,则一次项系数为2-,常数项为3-.故选D . 4.C【解析】利用一元二次方程根的判别式(△=b 2﹣4ac )可以判断方程的根的情况,有两个不相等的实根,即△>0.解:依题意,关于x 的一元二次方程,有两个不相等的实数根,即△=b 2﹣4ac =42+8c >0,得c >﹣2 根据选项,只有C 选项符合,故选:C .5.A【解析】利用配方法把含未知数的项写成完全平方式,然后利用直接开平方法解方程. 解:嘉嘉是把方程两边都乘以2,把二次项系数化为平方数,再配方,正确;琪琪是把方程两边都除以2,把二次项系数化为1,再配方,正确;∴两人的做法都正确.故选A .6.A【解析】由根与系数的关系可得出x 1+x 2=52、x 1x 2=12,进而可得出x 1、x 2都是正数,再进行判断.解:∵一元二次方程2x 2-5x +1=0的两个根为x 1、x 2, ∴x 1+x 2=52,x 1x 2=12, ∴x 1、x 2都是正数.故选:A .7.B【解析】把x =1代入方程(m 2 -1)x 2 -mx +m 2 =0,得出关于m 的方程,求出方程的解即可.解:把x =1代入方程(m 2 -1)x 2 -mx +m 2 =0得:(m 2 -1)-m +m 2 =0,即2m 2 -m -1=0,(2m +1)(m -1)=0,解得:m =- 12或1,当m =1时,原方程不是二次方程,所以舍去.故选B .8.A【解析】根据题意找出等量关系:20=+四月份的营业额三月份的营业额,列出方程即可.解:由二月份到四月份每个月的月营业额增长率都相同,二月份的营业额为82万元,若设增长率为x ,则三月份的营业额为82(1)x +,四月份的营业额为282(1)x +,四月份的营业额比三月份的营业额多20万元,则282(1)82(1)20x x +=++,故选:A9.B【解析】每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:飞机场数×(飞机场数-1)=15×2,把相关数值代入求正数解即可. 解:设这个航空公司共有x 个飞机场,依题意得1x(x 1)152-=, 解得16x =,25x =-(不符合题意,舍去),所以这个航空公司共有6个飞机场.故选B .10.D【解析】根据已知得出方程20(a 0)++=≠ax bx c 有x =-1,再判断即可.解:把x =−1代入方程20(a 0)++=≠ax bx c 得出a −b +c =0,∴b =a +c ,∵方程有两个相等的实数根,∴△=24b ac -=22()()4=0a c ac a c --=+, ∴a =c ,故选D .11.x 2+3x =0【解析】方程一个解为−3,假设另一个解为0,则方程可为x (x +3)=0,然后把方程化为一般式即可.解:一元二次方程的一个根是−3,则这个方程可以是x (x +3)=0,即x 2+3x =0.故答案为x 2+3x =0.12.1【解析】二次项系数、一次项系数、常数项分别是1,-2,-m +2.它们的和是0,即得到1220m m --+= 人教版九年级数学上册第21章一元二次方程单元测试题(含答案)一、选择题(每小题4分,共32分)1.下列方程中,是一元二次方程的有( )①x 2=0; ②ax 2+bx +c =0; ③3x 2=x ; ④2x (x +4)-2x 2=0;⑤(x 2-1)2=9; ⑥1x 2+1x-1=0. A .2个 B .3个 C .4个 D .5个2.将一元二次方程x 2-4x +3=0配方可得( )A .(x -2)2=7B .(x -2)2=1C .(x +2)2=1D .(x +2)2=23.若关于x 的一元二次方程x 2-2x +m =0有一个解为x =-1,则另一个解为( )A .1B .-3C .3D .44.已知方程kx 2+4x +4=0有实数根,则k 的取值范围是( )A .k ≤1B .k ≥-1C .k ≤1且k ≠0D .k <-15.若一个三角形的两边长分别为3和6,第三边长是方程x 2-13x +36=0的根,则这个三角形的周长为( )A .13B .15C .18D .13或186.小红按某种规律写出4个方程:①x 2+x +2=0;②x 2+2x +3=0;③x 2+3x +4=0;④x 2+4x +5=0.按此规律,第五个方程的两个根为( )A .-2,3B .2,-3C .-2,-3D .2,37.若关于x 的一元二次方程x 2-3x +p =0(p ≠0)的两个不相等的实数根分别为a 和b ,且a 2-ab +b 2=18,则a b +b a的值是( ) A .3 B .-3 C .5 D .-58.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年利润的年平均增长率为x ,则可列方程为( )A .300(1+x )=507B .300(1+x )2=507C .300(1+x )+300(1+x )2=507D .300+300(1+x )+300(1+x )2=507二、填空题(每小题4分,共24分)9.把方程(2x +1)(x -2)=5-3x 整理成一般形式得____________,其中一次项系数为______.10.若(m +1)x |m -1|+5x -3=0是关于x 的一元二次方程,则m 的值为________.11.关于x 的方程kx 2-4x -4=0有两个不相等的实数根,则k 的最小整数值为________.12.关于x 的一元二次方程x 2+(a 2-2a )x +a -1=0的两个实数根互为相反数,则a 的值为________.13.为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x 米,根据题意,可列方程为________________.14.小明发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(m ,-2m )放入其中,得到实数2,则m =________.三、解答题(共44分)15.(9分)用适当的方法解下列方程:(1)12(x +1)2-6=0;(2)x 2+25x +2=0;(3)2x (2-x )=3(x -2).16.(8分)已知关于x 的一元二次方程(x -3)(x -2)=p (p +1).(1)求证:无论p 取何值,此方程总有两个实数根;(2)若原方程的两个根分别为x 1,x 2,且满足x 12+x 22-x 1x 2=3p 2+1,求p 的值.17.(8分)如图21,在直角墙角AOB (OA ⊥OB ,且OA ,OB 长度不限)中,要砌20 m 长的墙(即AC+BC=20 m),与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96 m2.(1)求该地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖,单价分别为50元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),则用哪一种规格的地板砖费用较少?图2118.(8分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元/件的价格销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销量,决定降价销售,根据市场调查发现,该T恤的单价每降低1元/件,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元/件,设第二个月单价降低x元/件.(1)填表(不需要化简):(2)19.(11分)如图22所示,已知在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,点Q从点A开始沿AB边以1 cm/s的速度向点B移动,点P从点B开始沿BC边以2 cm/s的速度向点C移动,如果点Q,P分别从点A,B同时出发,当一动点运动到终点时,另一动点也随之停止运动.(1)几秒后,△PBQ的面积等于4 cm2?(2)几秒后,PQ的长度等于210 cm?(3)在(1)中,△PBQ的面积能否等于7 cm2?试说明理由.图22答案1.A 2.B3.C [解析] 设方程的另一个解为x 1.根据题意,得-1+x 1=2,解得x 1=3. 4.A [解析] 当k =0时,方程为一元一次方程4x +4=0,有唯一实数根;当k ≠0时,方程是一元二次方程.∵方程有实数根,∴根的判别式b 2-4ac =16-16k ≥0,即k ≤1且k ≠0.综上所述k 的取值范围是k ≤1.5.A6.C [解析] 根据小红写出的4个方程,发现其规律是第n 个方程是x 2+nx +(n +1)=0,所以第五个方程是x 2+5x +6=0,即(x +2)(x +3)=0,则x +2=0或x +3=0,∴x 1=-2,x 2=-3.7.D [解析] ∵a ,b 为方程x 2-3x +p =0(p ≠0)的两个不相等的实数根, ∴a +b =3,ab =p .∵a 2-ab +b 2=(a +b )2-3ab =32-3p =18,∴p =-3.当p =-3时,b 2-4ac =(-3)2-4p =9+12=21>0,∴p =-3符合题意.∴a b +b a =(a +b )2-2ab ab =(a +b )2ab -2=32-3-2=-5. 故选D.8.B 9.2x 2-7=0 0 10.311.1 [解析] ∵关于x 的方程kx 2-4x -4=0有两个不相等的实数根,∴k ≠0且b 2-4ac >0,即k ≠0且16+16k >0,解得k >-1且k ≠0,∴k 的最小整数值为1.12.0 [解析] ∵方程x 2+(a 2-2a )x +a -1=0的两个实数根互为相反数, ∴a 2-2a =0,解得a =0或a =2.当a =2时,方程为x 2+1=0,该方程无实数根,舍去,∴a =0. 13.x (x +40)=120014.3或-1 [解析] 把实数对(m ,-2m )代入a 2+b -1=2中,得m 2-2m -1=2. 移项,得m 2-2m -3=0.因式分解,得(m -3)(m +1)=0. 解得m 1=3,m 2=-1.15.解:(1)整理,得(x +1)2=12,开平方,得x +1=±2 3,所以x 1=-1+2 3,x 2=-1-2 3. (2)因为a =1,b =2 5,c =2, 所以b 2-4ac =12>0,代入公式,得x =-b ±b 2-4ac 2a =-2 5±2 32=-5±3,所以原方程的解为x 1=-5+ 3,x 2=-5- 3.(3)移项,得3(x -2)+2x (x -2)=0, 即(3+2x )(x -2)=0,所以x -2=0或2x +3=0,所以x 1=2,x 2=-32.16.解:(1)证明:原方程可变形为x 2-5x +6-p 2-p =0.∵b 2-4ac =(-5)2-4(6-p 2-p )=25-24+4p 2+4p =4p 2+4p +1=(2p +1)2≥0, ∴无论p 取何值,此方程总有两个实数根. (2)∵原方程的两个根分别为x 1,x 2, ∴x 1+x 2=5,x 1x 2=6-p 2-p . 又∵x 12+x 22-x 1x 2=3p 2+1, ∴(x 1+x 2)2-3x 1x 2=3p 2+1, ∴52-3(6-p 2-p )=3p 2+1, ∴25-18+3p 2+3p =3p 2+1, ∴3p =-6,∴p =-2.17.解:(1)设AC =x m ,则BC =(20-x )m. 由题意,得x (20-x )=96, 即x 2-20x +96=0, ∴(x -12)(x -8)=0,解得x =12或x =8.当AC =12 m 时,BC =8 m ,AC 为矩形的长,此时矩形的长为12 m. 当AC =8 m 时,BC =12 m ,BC 为矩形的长,此时矩形的长为12 m. 答:该地面矩形的长为12 m.(2)①若选用规格为0.80×0.80(单位:m)的地板砖,则 120.8×80.8=15×10=150(块), 150×50=7500(元);②若选用规格为1.00×1.00(单位:m)的地板砖,则 121×81=96(块), 96×80=7680(元). ∵7500<7680,∴选用规格为0.80×0.80(单位:m)的地板砖费用较少.18.[解析] (1)第二个月的单价=第一个月的单价-降低的价格,销售量=200+10×降低的单价;清仓时的销售量=800-第一个月的销售量-第二个月的销售量.(2)等量关系为总售价-总进价=9000元.把相关数值代入计算即可. 解:(1)填表如下.人教版九年级上册数学第二十一章:一元二次方程单元测试题(含解析)一.选择题(共10小题)1.关于x 的方程(m ﹣1)x 2+2mx ﹣3=0是一元二次方程,则m 的取值是( ) A .任意实数B .m ≠1C .m ≠﹣1D .m >12.一元二次方程x2+5=﹣4x的一次项的系数是()A.4B.﹣4C.1D.53.若关于x的一元二次方程(a+1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.±1D.04.方程(x+1)2=0的根是()A.x1=x2=1B.x1=x2=﹣1C.x1=﹣1,x2=1D.无实根5.方程x2+2x+1=0的根是()A.x1=x2=1B.x1=x2=﹣1C.x1=﹣1,x2=1D.无实根6.一元二次方程x2+x﹣1=0的根是()A.x=1﹣B.x=C.x=﹣1+D.x=7.方程x2=4x的根是()A.x=4B.x=0C.x1=0,x2=4D.x1=0,x2=﹣4 8.如果(x+2y)2+3(x+2y)﹣4=0,那么x+2y的值为()A.1B.﹣4C.1或﹣4D.﹣1或39.已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.则k的取值范围为()A.k>﹣B.k>4C.k<﹣1D.k<410.某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x,则下面所列方程正确的是()A.50(1+x)2=182B.50+50(1+x)2=182C.50+50(1+x)+50(1+2x)=182D.50+50(1+x)+50(1+x)2=182二.填空题(共8小题)11.已知x=﹣1是方程x2+ax+3﹣a=0的一个根,则a的值是.12.如果关于x的方程(m﹣1)x3﹣mx2+2=0是一元二次方程,那么此方程的根是.13.已知关于x的一元二次方程mx2+x+1=0有实数根,则m的取值范围是.14.将一元二次方程x2﹣6x+10=0化成(x﹣a)2=b的形式,则b的值为.15.圣诞节时,某班一个小组有x人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为.16.我市计划用三年时间对全市学校的设施和设备进行全面改造,2015年市政府已投资5亿元人民币,若每年投资的增长率相同,2017年投资7.2亿元人民币,那么每年投资的增长率为.17.已知x1,x2是方程x2﹣3x+1=0的两个实数根,则=.18.已知x=2是一元二次方程x2+mx+6=0的一个根,则方程的另一个根是.三.解答题(共7小题)19.解方程:(1)2(x﹣3)=3x(x﹣3)(2)2x2﹣x﹣3=0.20.是否存在某个实数m,使得方程x2+mx+2=0和x2+2x+m=0有且只有一个公共的实根?如果存在,求出这个实数m及两方程的公共实根;如果不存在,请说明理由.21.关于x的方程(m+1)x|m﹣1|+mx﹣1=0是一元二次方程,求m的值.22.已知:关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于0,求k的取值范围.23.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2015年盈利1500万元,到2017年盈利2160万元,且从2015年到2017年,每年盈利的年增长率相同.(1)求平均年增长率?(2)若该公司盈利的年增长率继续保持不变,预计2018年盈利多少万元?24.某镇为打造“绿色小镇”,投入资金进行河道治污.已知2016年投入资金1000万元,2018年投入资金1210万元.(1)求该镇投入资金从2016年至2018年的年平均增长率;(2)若2019年投入资金保持前两年的年平均增长率不变,求该镇2019年预计投入资金多少万元?25.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?2019年春九年级上册数学《第二十一章一元二次方程》单元测试题参考答案与试题解析一.选择题(共10小题)1.关于x的方程(m﹣1)x2+2mx﹣3=0是一元二次方程,则m的取值是()A.任意实数B.m≠1C.m≠﹣1D.m>1【分析】根据一元二次方程的定义求解.一元二次方程必须满足二次项系数不为0,所以m ﹣1≠0,即可求得m的值.【解答】解:根据一元二次方程的定义得:m﹣1≠0,即m≠1,故选:B.【点评】此题考查一元二次方程,一元二次方程必须满足三个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.(3)整式方程.要特别注意二次项系数a≠0这一条件,当a=0时,上面的方程就不是一元二次方程了.当b=0或c=0时,上面的方程在a≠0的条件下,仍是一元二次方程,只不过是不完全的一元二次方程.2.一元二次方程x2+5=﹣4x的一次项的系数是()A.4B.﹣4C.1D.5【分析】方程整理为一般形式,找出一次项系数即可.【解答】解:方程整理得:x2+4x+5=0,则一次项系数为4.故选:A.【点评】此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.若关于x的一元二次方程(a+1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.±1D.0【分析】把x=0代入方程(a+1)x2+x+a2﹣1=0得a2﹣1=0,然后解关于a的方程后利用一元二次方程的定义确定满足条件的a的值.【解答】解:把x=0代入方程(a+1)x2+x+a2﹣1=0得a2﹣1=0,解得a1=1,a2=﹣1,而a+1≠0,所以a=1.故选:A.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.4.方程(x+1)2=0的根是()A.x1=x2=1B.x1=x2=﹣1C.x1=﹣1,x2=1D.无实根【分析】根据一元二次方程的解法即可求出答案.【解答】解:由于(x+1)2=0,∴x+1=0,∴x1=x2=﹣1故选:B.【点评】本题考查一元二次方程的解法,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.5.方程x2+2x+1=0的根是()A.x1=x2=1B.x1=x2=﹣1C.x1=﹣1,x2=1D.无实根【分析】由原方程得出(x+1)2=0,开方即可得.【解答】解:∵x2+2x+1=0,∴(x+1)2=0,则x+1=0,解得:x1=x2=﹣1,故选:B.【点评】本题主要考查解一元二次方程,解题的关键是熟练掌握完全平方公式及配方法解一元二次方程.6.一元二次方程x2+x﹣1=0的根是()A.x=1﹣B.x=C.x=﹣1+D.x=【分析】先计算判别式的值,然后根据判别式的意义可判断方程根的情况.【解答】解:∵△=12﹣4×(﹣1)=5>0,∴方程有两个不相等的两个实数根,即x=.故选:D.【点评】本题考查了公式法解一元二次方程,用公式法解一元二次方程的前提条件有两个:①a≠0;②b2﹣4ac≥0.7.方程x2=4x的根是()A.x=4B.x=0C.x1=0,x2=4D.x1=0,x2=﹣4【分析】原式利用因式分解法求出解即可.【解答】解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.【点评】此题考查了一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.8.如果(x+2y)2+3(x+2y)﹣4=0,那么x+2y的值为()A.1B.﹣4C.1或﹣4D.﹣1或3【分析】在本题中有两个未知数,且通过观察最后结果,可采用换元法,把x+2y当成一个整体进行考虑.【解答】解:设x+2y=a,则原方程变形为a2+3a﹣4=0,解得a=﹣4或a=1.故选C.【点评】此题主要是把x+2y当成一个整体,把求代数式的值的问题转化为解关于这个整体的方程,利用求根公式求解.9.已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.则k的取值范围为()A.k>﹣B.k>4C.k<﹣1D.k<4【分析】根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次不等式,解之即可得出结论.【解答】解:∵关于x的一元二次方程x2+(2k+1)x+k2=0有两个不相等的实数根,∴△=(2k+1)2﹣4×1×k2=4k+1>0,∴k>﹣.故选:A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.10.某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x,则下面所列方程正确的是()A.50(1+x)2=182B.50+50(1+x)2=182C.50+50(1+x)+50(1+2x)=182D.50+50(1+x)+50(1+x)2=182【分析】设该厂八、九月份平均每月生产零件的增长率均为x,根据该机械厂七月份及整个第三季度生产零件的数量,即可得出关于x的一元二次方程,此题得解.【解答】解:设该厂八、九月份平均每月生产零件的增长率均为x,根据题意得:50+50(1+x)+50(1+x)2=182.故选:D.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二.填空题(共8小题)11.已知x=﹣1是方程x2+ax+3﹣a=0的一个根,则a的值是2.【分析】把x=﹣1代入方程x2+ax+3﹣a=0得到关于a的一元一次方程,解之即可.【解答】解:把x=﹣1代入方程x2+ax+3﹣a=0得:1﹣a+3﹣a=0,解得:a=2,故答案为:2.【点评】本题考查了一元二次方程的解,正确掌握代入法是解题的关键.12.如果关于x的方程(m﹣1)x3﹣mx2+2=0是一元二次方程,那么此方程的根是.【分析】直接利用一元二次方程的定义得出m的取值范围,再代入方程解方程即可.【解答】解:由题意得:,∴m=1,原方程变为:﹣x2+2=0,x=,故答案为:.【点评】此题主要考查了一元二次方程的定义,正确把握二次项系数不为零是解题关键.13.已知关于x的一元二次方程mx2+x+1=0有实数根,则m的取值范围是m≤且m≠0.【分析】由于关于x的一元二次方程有实数根,计算根的判别式,得关于m的不等式,求解即可.【解答】解:∵关于x的一元二次方程mx2+x+1=0有实数根,则△=1﹣4m≥0,且m≠0.解得m≤且m≠0.故答案为:m≤且m≠0.【点评】本题考查了根的判别式、一次不等式的解法及一元二次方程的定义.题目难度不大,解题过程中容易忽略m≠0条件而出错.14.将一元二次方程x2﹣6x+10=0化成(x﹣a)2=b的形式,则b的值为﹣1.【分析】利用配方法得到(x﹣3)2=﹣1,从而得到b的值.【解答】解:x2﹣6x+10=0,x2﹣6x=﹣10,x2﹣6x+9=﹣1,(x﹣3)2=﹣1,所以b的值为﹣1.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.15.圣诞节时,某班一个小组有x人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为x(x﹣1)=110.【分析】设这个小组有x人,要求他们之间互送贺卡,即除自己外,每个人都要求送其他的人一张贺卡,即每个人要送x﹣1张贺卡,所以全组共送x(x﹣1)张,又知全组共送贺卡110张,由送贺卡数相等为等量关系,列出方程即可.【解答】解:设这个小组有x人,则每人应送出x﹣1张贺卡,由题意得:x(x﹣1)=110,故答案为:x(x﹣1)=110.【点评】本题考查由实际问题抽象出一元二次方程的知识,关键在于找出等量关系,列出方程.16.我市计划用三年时间对全市学校的设施和设备进行全面改造,2015年市政府已投资5亿元人民币,若每年投资的增长率相同,2017年投资7.2亿元人民币,那么每年投资的增长率为20%.【分析】设每年投资的增长率为x,根据2015年及2017年市政府投资的钱数,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设每年投资的增长率为x,根据题意得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).故答案为:20%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.17.已知x1,x2是方程x2﹣3x+1=0的两个实数根,则=3.【分析】首先根据根与系数的关系求出x1+x2=3,x1x2=1,然后将变形,再将x1+x2=3,x1x2=1代入即可.【解答】解:∵x1,x2是方程x2﹣3x+1=0的两个实数根,根据根与系数的关系有:x1+x2=3,x1x2=1,所以==3.故答案为:3.【点评】本题主要考查根与系数的关系,关键是熟练运用.18.已知x=2是一元二次方程x2+mx+6=0的一个根,则方程的另一个根是x=3.【分析】设方程的另一根为a,由根与系数的关系可得到a的方程,可求得a的值,即可求得方程的另一根.【解答】解:设方程的另一根为a,∵x=2是一元二次方程x2+mx+6=0的一个根,∴2a=6,解得a=3,即方程的另一个根是x=3,故答案为:x=3.【点评】本题主要考查一元二次方程根与系数的关系,掌握一元二次方程的两根之和等于﹣、两根之积等于是解题的关键.三.解答题(共7小题)19.解方程:(1)2(x﹣3)=3x(x﹣3)(2)2x2﹣x﹣3=0.【分析】(1)先移项得到2(x﹣3)﹣3x(x﹣3)=0,然后利用因式分解法解方程;(2)利用因式分解法解方程.【解答】解:(1)2(x﹣3)﹣3x(x﹣3)=0,(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,所以x1=3,x2=;(2)(2x﹣3)(x+1)=0,2x﹣3=0或x+1=0,所以x1=,x2=﹣1.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.20.是否存在某个实数m,使得方程x2+mx+2=0和x2+2x+m=0有且只有一个公共的实根?如果存在,求出这个实数m及两方程的公共实根;如果不存在,请说明理由.【分析】设两方程的公共根为a,然后将两方程相减,消去二次项,求出公共根和m的值.【解答】解:假设存在符合条件的实数m,且设这两个方程的公共实数根为a,则①﹣②,得a(m﹣2)+(2﹣m)=0(m﹣2)(a﹣1)=0∴m=2 或a=1.当m=2时,已知两个方程是同一个方程,且没有实数根,故m=2舍去;当a=1时,代入②得m=﹣3,把m=﹣3代入已知方程,求出公共根为x=1.故实数m=﹣3,两方程的公共根为x=1.【点评】本题考查的是两个一元二次方程的公共根的问题,一般情况是将两方程相减求出公共根,再求出其中的字母系数.21.关于x的方程(m+1)x|m﹣1|+mx﹣1=0是一元二次方程,求m的值.【分析】根据一元二次方程的定义,必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0,据此即可求解.【解答】解:根据题意得,|m﹣1|=2,且m+1≠0,解得:m=3,答:m的值为3.【点评】本题主要考查一元二次方程的定义,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),特别要注意a≠0的条件.22.已知:关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于0,求k的取值范围.【分析】(1)根据方程的系数结合根的判别式可得出△=(k﹣1)2≥0,由此可证出方程总有两个实数根;(2)利用因式分解法解一元二次方程可得出x的值,结合方程有一个根小于0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.。
2022年湖北省宜昌市中考数学试卷及答案解析
2022年湖北省宜昌市中考数学试卷一、选择题(下列各题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号,每题3分,计33分.)1.(3分)下列说法正确的个数是()①﹣2022的相反数是2022;②﹣2022的绝对值是2022;③的倒数是2022.A.3B.2C.1D.02.(3分)将四个数字看作一个图形,则下列四个图形中,是中心对称图形的是()A.B.C.D.3.(3分)我市围绕创建全国文明典范城市、传承弘扬屈原文化,组织开展了“喜迎二十大、永远跟党走、奋进新征程”等系列活动.在2022年“书香宜昌•全民读书月”暨“首届屈原文化月”活动中,100多个社区图书室、山区学校、农家书屋、“护苗”工作站共获赠了价值100万元的红色经典读物、屈原文化优秀读物和智能书柜.“100万”用科学记数法表示为()A.100×104B.1×105C.1×106D.1×1074.(3分)下列运算错误的是()A.x3•x3=x6B.x8÷x2=x6C.(x3)2=x6D.x3+x3=x6 5.(3分)已知经过闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系.根据下表判断a和b的大小关系为()I/A5...a.........b (1)R/Ω2030405060708090100 A.a>b B.a≥b C.a<b D.a≤b6.(3分)如图,在△ABC中,分别以点B和点C为圆心,大于BC长为半径画弧,两弧相交于点M,N.作直线MN,交AC于点D,交BC于点E,连接BD.若AB=7,AC =12,BC=6,则△ABD的周长为()A.25B.22C.19D.187.(3分)如图,四边形ABCD内接于⊙O,连接OB,OD,BD,若∠C=110°,则∠OBD =()A.15°B.20°C.25°D.30°8.(3分)五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为()A.30B.26C.24D.229.(3分)如图是小强散步过程中所走的路程s(单位:m)与步行时间t(单位:min)的函数图象.其中有一时间段小强是匀速步行的.则这一时间段小强的步行速度为()A.50m/min B.40m/min C.m/min D.20m/min 10.(3分)如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为(1,3).若小丽的座位为(3,2),以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是()A.(1,3)B.(3,4)C.(4,2)D.(2,4)11.(3分)某校团支部组织部分共青团员开展学雷锋志愿者服务活动,每个志愿者都可以从以下三个项目中任选一项参加:①敬老院做义工;②文化广场地面保洁;③路口文明岗值勤.则小明和小慧选择参加同一项目的概率是()A.B.C.D.二、填空题(将答案写在答题卡上指定的位置.每题3分,计12分.)12.(3分)中国是世界上首先使用负数的国家.两千多年前战国时期李悝所著的《法经》中已出现使用负数的实例.《九章算术》的“方程”一章,在世界数学史上首次正式引入负数及其加减法运算法则,并给出名为“正负术”的算法,请计算以下涉及“负数”的式子的值:﹣1﹣(﹣3)2=.13.(3分)如图,点A,B,C都在方格纸的格点上,△ABC绕点A顺时针方向旋转90°后得到△AB'C',则点B运动的路径的长为.14.(3分)如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西35°方向,则∠ACB 的大小是.15.(3分)如图,在矩形ABCD中,E是边AD上一点,F,G分别是BE,CE的中点,连接AF,DG,FG,若AF=3,DG=4,FG=5,矩形ABCD的面积为.三、解答题(将解答过程写在答题卡上指定的位置.本大题共有9题,计75分.)16.(6分)求代数式+的值,其中x=2+y.17.(6分)解不等式≥+1,并在数轴上表示解集.18.(7分)某校为响应“传承屈原文化•弘扬屈原精神”主题阅读倡议,进一步深化全民阅读和书香宜昌建设,随机抽取了八年级若干名学生,对“双减”后学生周末课外阅读时间进行了调查.根据收集到的数据,整理后得到下列不完整的图表:时间段/分钟30≤x<6060≤x<9090≤x<120120≤x<150组中值75105135频数/人6204数据分组后,一个小组的两个端点的数的平均数,叫做这个小组的组中值.请你根据图表中提供的信息,解答下面的问题:(1)扇形统计图中,120~150分钟时间段对应扇形的圆心角的度数是;a =;样本数据的中位数位于~分钟时间段;(2)请将表格补充完整;(3)请通过计算估计该校八年级学生周末课外平均阅读时间.19.(7分)石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为.桥的跨度(弧所对的弦长)AB=26m,设所在圆的圆心为O,半径OC⊥AB,垂足为D.拱高(弧的中点到弦的距离)CD=5m.连接OB.(1)直接判断AD与BD的数量关系;(2)求这座石拱桥主桥拱的半径(精确到1m).20.(8分)知识小提示:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足53°≤α≤72°.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin66°≈0.91,cos66°≈0.41,tan66°≈2.25)如图,现有一架长4m的梯子AB斜靠在一竖直的墙AO上.(1)当人安全使用这架梯子时,求梯子顶端A与地面距离的最大值;(2)当梯子底端B距离墙面1.64m时,计算∠ABO等于多少度?并判断此时人是否能安全使用这架梯子?21.(8分)已知菱形ABCD中,E是边AB的中点,F是边AD上一点.(1)如图1,连接CE,CF.CE⊥AB,CF⊥AD.①求证:CE=CF;②若AE=2,求CE的长;(2)如图2,连接CE,EF.若AE=3,EF=2AF=4,求CE的长.22.(10分)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加m%.5月份每吨再生纸的利润比上月增加%,则5月份再生纸项目月利润达到66万元.求m的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?23.(11分)已知,在△ABC中,∠ACB=90°,BC=6,以BC为直径的⊙O与AB交于点H,将△ABC沿射线AC平移得到△DEF,连接BE.(1)如图1,DE与⊙O相切于点G.①求证:BE=EG;②求BE•CD的值;(2)如图2,延长HO与⊙O交于点K,将△DEF沿DE折叠,点F的对称点F′恰好落在射线BK上.①求证:HK∥EF′;②若KF′=3,求AC的长.24.(12分)已知抛物线y=ax2+bx﹣2与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C.直线l由直线BC平移得到,与y轴交于点E(0,n).四边形MNPQ的四个顶点的坐标分别为M(m+1,m+3),N(m+1,m),P(m+5,m),Q(m+5,m+3).(1)填空:a=,b=;(2)若点M在第二象限,直线l与经过点M的双曲线y=有且只有一个交点,求n2的最大值;(3)当直线l与四边形MNPQ、抛物线y=ax2+bx﹣2都有交点时,存在直线l,对于同一条直线l上的交点,直线l与四边形MNPQ的交点的纵坐标都不大于它与抛物线y=ax2+bx﹣2的交点的纵坐标.①当m=﹣3时,直接写出n的取值范围;②求m的取值范围.2022年湖北省宜昌市中考数学试卷参考答案与试题解析一、选择题(下列各题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号,每题3分,计33分.)1.【分析】根据相反数的定义判断①;根据绝对值的性质判断②;根据倒数的定义判断③.【解答】解:①﹣2022的相反数是2022,故①符合题意;②﹣2022的绝对值是2022,故②符合题意;③的倒数是2022,故③符合题意;正确的个数是3个,故选:A.【点评】本题考查了相反数,绝对值,倒数,掌握只有符号不同的两个数互为相反数,负数的绝对值等于它的相反数,乘积为1的两个数互为倒数是解题的关键.2.【分析】根据中心对称的概念和各图形的特点即可求解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,所以D选项符合题意,故选:D.【点评】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.【分析】将100写成1×102,1万=104,根据同底数幂的乘法法则即可得出答案.【解答】解:100万=1×102×104=1×106,故选:C.【点评】本题考查了科学记数法﹣表示较大的数,掌握a m•a n=a m+n是解题的关键.4.【分析】根据同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方法则,进行计算逐一判断即可解答.【解答】解:A、x3•x3=x6,故A不符合题意;B、x8÷x2=x6,故B不符合题意;C、(x3)2=x6,故C不符合题意;D、x3+x3=2x3,故D符合题意;故选:D.【点评】本题考查了同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.5.【分析】根据等量关系“电流=”,即可求解.【解答】解:∵闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系,∴40a=80b,∴a=2b,∴a>b,故选:A.【点评】本题考查了反比例函数在实际生活中的应用,熟练掌握电流=”是解决此题的关键.6.【分析】根据题意可知MN垂直平分BC,即可得到DB=DC,然后即可得到AB+BD+AD =AB+DC+AD=AB+AC,从而可以求得△ABD的周长.【解答】解:由题意可得,MN垂直平分BC,∴DB=DC,∵△ABD的周长是AB+BD+AD,∴AB+BD+AD=AB+DC+AD=AB+AC,∵AB=7,AC=12,∴AB+AC=19,∴∵△ABD的周长是19,故选:C.【点评】本题考查线段垂直平分线的性质,三角形的周长,解答本题的关键是明确题意,利用数形结合的思想解答.7.【分析】根据圆内接四边形的性质,可以得到∠A的度数,再根据圆周角和圆心角的关系,可以得到∠BOD的度数,然后根据OB=OD,即可得到∠OBD的度数.【解答】解:∵四边形ABCD是圆内接四边形,∠C=110°,∴∠A=70°,∵∠BOD=2∠A=140°,∵OB=OD,∴∠OBD=∠ODB,∵∠OBD+∠ODB+∠BOD=180°,∴∠OBD=20°,故选:B.【点评】本题考查圆内接四边形的性质、圆周角定理,解答本题的关键是明确题意,利用数形结合的思想解答.8.【分析】设1艘大船可载x人,1艘小船可载y人,依题意:1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.列出二元一次方程组,求出x+y的值即可.【解答】解:设1艘大船可载x人,1艘小船可载y人,依题意得:,①+②得:3x+3y=78,∴x+y=26,即1艘大船与1艘小船一次共可以满载游客的人数为26,故选:B.【点评】此题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.9.【分析】根据小强匀速步行时的函数图象为直线,根据图象得出结论即可.【解答】解:由函数图象知,从30﹣70分钟时间段小强匀速步行,∴这一时间段小强的步行速度为=20(m/min),故选:D.【点评】本题主要考查函数图象的知识,根据函数图象得出匀速步行的时间段是解题的关键.10.【分析】直接利用点的坐标特点得出与小丽相邻且能比较方便地讨论交流的同学的座位位置.【解答】解:如图所示:与小丽相邻且能比较方便地讨论交流的同学的座位是(4,2).故选:C.【点评】此题主要考查了点的坐标,正确掌握点的坐标特点是解题关键.11.【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:列表如下:①②③①(①,①)(②,①)(③,①)②(①,②)(②,②)(③,②)③(①,③)(②,③)(③,③)由表知,共有9种等可能结果,其中小明和小慧选择参加同一项目的有3种结果,所以小明和小慧选择参加同一项目的概率为=,故选:A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(将答案写在答题卡上指定的位置.每题3分,计12分.)12.【分析】先算乘方,再算减法,即可解答.【解答】解:﹣1﹣(﹣3)2=﹣1﹣9=﹣10,故答案为:﹣10.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.13.【分析】根据题意和图形,可以得到∠BAB′=90°,然后根据勾股定理可以得到AB 的长,再根据弧长公式计算即可得到的长.【解答】解:由已知可得,∠BAB′=90°,AB==5,∴的长为:=,故答案为:.【点评】本题考查轨迹、弧长的计算,解答本题的关键是明确弧长公式l=.14.【分析】过点C作CF∥AD,根据平行线的性质,求得∠ACF与∠BCF,再由角的和差可得答案.【解答】解:过点C作CF∥AD,如图,∵AD∥BE,∴AD∥CF∥BE,∴∠ACF=∠DAC,∠BCF=∠EBC,∴∠ACB=∠ACF+∠BCF=∠DAC+∠EBC,由C岛在A岛的北偏东50°方向,C岛在B岛的北偏西35°方向,得∠DAC=50°,∠CBE=35°.∴∠ACB=50°+35°=85°,故答案为:85°.【点评】本题考查了方向角,平行线的性质,利用平行线的性质得出得出∠ACF=50°,∠BCF=35°是解题关键.15.【分析】由矩形的性质得出∠BAE=∠CDE=90°,AD∥BC,由直角三角形斜边上中线的性质及三角形中位线的性质求出BE=6,CE=8,BC=10,由勾股定理的逆定理得出△BCE是直角三角形,∠BEC=90°,进而求出=24,即可求出矩形ABCD的面积.【解答】解:∵四边形ABCD是矩形,∴∠BAE=∠CDE=90°,AD∥BC,∵F,G分别是BE,CE的中点,AF=3,DG=4,FG=5,∴BE=2AF=6,CE=2DG=8,BC=2FG=10,∴BE2+CE2=BC2,∴△BCE是直角三角形,∠BEC=90°,∴==24,∵AD∥BC,=2S△BCE=2×24=48,∴S矩形ABCD故答案为:48.【点评】本题考查了矩形的性质,直角三角形斜边上的中线,三角形中位线,熟练掌握矩形的性质,直角三角形的性质,三角形中位线的性质,勾股定理的逆定理等知识是解决问题的关键.三、解答题(将解答过程写在答题卡上指定的位置.本大题共有9题,计75分.)16.【分析】根据分式的加法法则把原式化简,把x=2+y代入计算即可.【解答】解:原式=﹣==,当x=2+y时,原式==1.【点评】本题考查的是分式的化简求值,掌握分式的加法法则、约分法则是解题的关键.17.【分析】不等式去分母,去括号,移项,合并,把x系数化为1,求出解集,表示在数轴上即可.【解答】解:去分母得:2(x﹣1)≥3(x﹣3)+6,去括号得:2x﹣2≥3x﹣9+6,移项得:2x﹣3x≥﹣9+6+2,合并同类项得:﹣x≥﹣1,系数化为1得:x≤1..【点评】此题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握不等式的解法是解本题的关键.18.【分析】(1)根据表格中的数据和扇形统计图中的数据,可以计算出本次抽取的学生人数,然后即可得到120~150分钟时间段对应扇形的圆心角的度数,a的值以及样本数据的中位数位于哪一时间段;(2)根据(1)中的结果和表格中的数据,可以将表格补充完整;(3)根据表格中的数据,可以计算出该校八年级学生周末课外平均阅读时间.【解答】解:(1)120~150分钟时间段对应扇形的圆心角的度数是:360°×10%=36°,本次调查的学生有:4÷10%=40(人),a%=×100%=25%,∴a的值是25,∴中位数位于60~90分钟时间段,故答案为:36°,25,60,90;(2)∵一个小组的两个端点的数的平均数,叫做这个小组的组中值∴30≤x<60时间段的组中值为(30+60)÷2=45,90≤x<120时间段的频数为:40﹣6﹣20﹣4=10,故答案为:45,10;(3)=84(分钟),答:估计该校八年级学生周末课外平均阅读时间为84分钟.【点评】本题考查频数分布表、扇形统计图、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.19.【分析】(1)根据垂径定理便可得出结论;(2)设主桥拱半径为R,在Rt△OBD中,根据勾股定理列出R的方程便可求得结果.【解答】解:(1)∵OC⊥AB,∴AD=BD;(2)设主桥拱半径为R,由题意可知AB=26,CD=5,∴BD=AB=13,OD=OC﹣CD=R﹣5,∵∠OBD=90°,∴OD2+BD2=OB2,∴(R﹣5)2+132=R2,解得R=19.4≈19,答:这座石拱桥主桥拱的半径约为19m.【点评】此题考查了垂径定理,勾股定理.此题难度不大,解题的关键是方程思想的应用.20.【分析】(1)根据α的取值范围得出,当α=72°时,AO取得最大值,利用三角函数求出此时的AO值即可;(2)根据cos∠ABO=得出函数值,判断出∠ABO的度数,再根据角度得出结论即可.【解答】解:(1)53°≤α≤72°,当α=72°时,AO取最大值,在Rt△AOB中,sin∠ABO=,∴AO=AB•sin∠ABO=4×sin72°=4×0.95=3.8(米),∴梯子顶端A与地面的距离的最大值为3.8米;(2)在Rt△AOB中,cos∠ABO==1.64÷4=0.41,∵cos66°≈0.41,∴∠ABO=66°,∵53°≤α≤72°,∴人能安全使用这架梯子.【点评】本题主要考查解直角三角形的知识,熟练掌握解三角函数的知识是解题的关键.21.【分析】(1)①根据垂直的定义得到∠BEC=∠DFC=90°,根据菱形的性质得到∠B =∠D,BC=CD,根据全等三角形的性质得到CE=CF;②连接AC,如图1,根据菱形的性质得到BC=AC,推出△ABC是等边三角形,得到∠EAC=60°,根据三角函数的定义得到结论;(2)方法一:如图2,延长FE交CB的延长线于M,根据菱形的性质得到AD∥BC,AB=BC,得到∠AFE=∠M,∠A=∠EBM,根据全等三角形的性质得到ME=EF,MB =AF,根据相似三角形的性质得到结论;方法二:延长FE交CB的延长线于M,过点E作EN⊥BC于点N,根据菱形的性质得到AD∥BC,AB=BC,求得∠AFE=∠M,∠A=∠EBM,根据全等三角形的性质得到ME =EF,MB=AF,根据勾股定理得到结论.【解答】(1)①证明:∵CE⊥AB,CF⊥AD,∴∠BEC=∠DFC=90°,∵四边形ABCD是菱形,∴∠B=∠D,BC=CD,∴△BEC≌△DFC(AAS),∴CE=CF;②解:连接AC,如图1,∵E是边AB的中点,CE⊥AB,∴BC=AC,∵四边形ABCD是菱形,∴BC=AC,∴△ABC是等边三角形,∠EAC=60°,在Rt△ACE中,AE=2,∴CE=AE•tan60°=2×=2;(2)解:方法一:如图2,延长FE交CB的延长线于M,∵四边形ABCD是菱形,∴AD∥BC,AB=BC,∴∠AFE=∠M,∠A=∠EBM,∵E是边AB的中点,∴AE=BE,∴△AEF≌△BEM(AAS),∴ME=EF,MB=AF,∵AE=3,EF=2AF=4,∴ME=4,BM2,BE=3,∴BC=AB=2AE=6,∴MC=8,∴==,==,∴=,∵∠M为公共角,∴△MEB∽△MCE,∴==,∵BE=3,∴CE=6;方法二:如图3,延长FE交CB的延长线于M,过点E作EN⊥BC于点N,∵四边形ABCD是菱形,∴AD∥BC,AB=BC,∴∠AFE=∠M,∠A=∠EBM,∵E是边AB的中点,∴AE=BE,∴△AEF≌△BEM(AAS),∴ME=EF,MB=AF,∵AE=3,EF=2AF=4,∴ME=4,BM2,BE=3,∴BC=AB=2AE=6,∴MC=8,在Rt△MEN和Rt△BEN中,ME2﹣MN2=EN2,BE2﹣BN2=EN2,∴ME2﹣MN2=BE2﹣BN2,∴42﹣(2+BN)2=32﹣BN2,解得:BN=,∴CN=6﹣=,∴EN2=BE2﹣BN2=32﹣()2=,在Rt△ENC中,CE2=EN2+CN2=+==36,∴CE=6.【点评】本题考查了四边形的综合题,全等三角形的判定和性质,菱形的性质,相似三角形的判定和性质,勾股定理,正确地作出辅助线是解题的关键.22.【分析】(1)设3月份再生纸的产量为x吨,则4月份再生纸的产量为(2x﹣100)吨,根据该厂3,4月份共生产再生纸800吨,即可得出关于x的一元一次方程,解之即可求出x的值,再将其代入(2x﹣100)中即可求出4月份再生纸的产量;(2)利用月利润=每吨的利润×月产量,即可得出关于m的一元二次方程,解之取其正值即可得出结论;(3)设4至6月每吨再生纸利润的月平均增长率为y,5月份再生纸的产量为a吨,根据6月份再生纸项目月利润比上月增加了25%,即可得出关于y的一元二次方程,化简后即可得出6月份每吨再生纸的利润.【解答】解:(1)设3月份再生纸的产量为x吨,则4月份再生纸的产量为(2x﹣100)吨,依题意得:x+2x﹣100=800,解得:x=300,∴2x﹣100=2×300﹣100=500.答:4月份再生纸的产量为500吨.(2)依题意得:1000(1+%)×500(1+m%)=660000,整理得:m2﹣300m+6400=0,解得:m1=20,m2=﹣320(不合题意,舍去).答:m的值为20.(3)设4至6月每吨再生纸利润的月平均增长率为y,5月份再生纸的产量为a吨,依题意得:1200(1+y)2•a(1+y)=(1+25%)×1200(1+y)•a,∴1200(1+y)2=1500.答:6月份每吨再生纸的利润是1500元.【点评】本题考查了一元一次方程的应用以及一元二次方程的应用,找准等量关系,正确列出一元一次方程(或一元二次方程)是解题的关键.23.【分析】(1)①由平移的性质证出∠CBE=∠ACB=90°,连接OG,OE,证明Rt△BOE ≌Rt△GOE(HL),由全等三角形的性质得出BE=GE;②过点D作DM⊥BE于M,证出四边形BCDM是矩形,由矩形的性质得出CD=BM,DM=BC,由(1)可知BE=GE,同理可证CD=DG,设BE=x,CD=y,由勾股定理得出(x﹣y)2+62=(x+y)2,则可得出答案;(2)①延长HK交BE于点Q,设∠ABC=α,由等腰三角形的性质证出∠BHO=∠OBH =α,由平移及折叠的性质证出∠BQO=∠BEF',则可得出结论;②连接FF',交DE于点N,证明△HBK≌△ENF(AAS),由全等三角形的性质得出BK=NF,证明△HBK∽△FCB,由相似三角形的性质得出,列出方程可求出BK的长,根据锐角三角函数的定义可得出答案.【解答】(1)①证明:∵将△ABC沿射线AC平移得到△DEF,∴BE∥CF,∵∠ACB=90°,∴∠CBE=∠ACB=90°,连接OG,OE,∵DE与⊙O相切于点G,∴∠OGE=90°,∴∠OBE=∠OGE=90°,∵OB=OG,OE=OE,∴Rt△BOE≌Rt△GOE(HL),∴BE=GE;②解:过点D作DM⊥BE于M,∴∠DMB=90°,由(1)知∠CBE=∠BCF=90°,∴四边形BCDM是矩形,∴CD=BM,DM=BC,由(1)可知BE=GE,同理可证CD=DG,设BE=x,CD=y,在Rt△DME中,MD2+EM2=DE2,∴(x﹣y)2+62=(x+y)2,∴xy=9,即BE•CD=9;(2)①证明:延长HK交BE于点Q,设∠ABC=α,∵OB=OH,∴∠BHO=∠OBH=α,∴∠BOQ=∠BHO+∠OBH=2α,∴∠BQO=90°﹣2α,∵△ABC沿射线AC平移得到△DEF,△DEF沿DE折叠得到△DEF',∴∠DEF=∠DEF'=∠ABC=α,∴∠BEF'=90°﹣2α,∴∠BQO=∠BEF',∴HK∥EF';②解:连接FF',交DE于点N,∵△DEF沿DE折叠,点F的对称点为F',∴ED⊥FF',FN=FF',∵HK是⊙O的直径∵,∴∠HBK=90°,点F'恰好落在射线BK上,∴BF'⊥AB,∵△ABC沿射线AC方向平移得到△DEF,∴AB∥DE,BC=EF,∴点B在FF'的延长线上,∵BC是⊙O的直径,∴HK=EF,在△HBK和△ENF中,,∴△HBK≌△ENF(AAS),∴BK=NF,设BK=x,则BF=BK+KF'+FF'=x+3+2x=3x+3,∵OB=OK,∴∠OBK=∠OKB,又∵∠HBK=∠BCF=90°,∴△HBK∽△FCB,∴,∴,解得:x1=3,x2=﹣4(不合题意,舍去),∴BK=3,在Rt△HBK中,sin∠BHK==,∴∠BHK=30°,∴∠ABC=30°,在Rt△ACB中,tan∠ABC=tan30°=,∴AC=6•tan30°=6×=2,即AC的长为2.【点评】本题是圆的综合题,考查了平移的性质,折叠的性质,相似三角形的判定与性质,全等三角形的判定与性质,切线的性质,圆周角定理,矩形的判定与性质,勾股定理,锐角三角函数的定义,熟练掌握相似三角形的判定与性质及切线的性质是解题的关键.24.【分析】(1)将A(﹣1,0),B(4,0)代入y=ax2+bx﹣2,即可求解;(2)求出直线BC的解析式为y=x﹣2,直线l的解析式为y=x+n,再由双曲线y=经过点M(m+1,m+3),可得y=,再联立方程组,整理得x2+2nx﹣2m2﹣8m﹣6=0,由题意可得Δ=0,整理得n2=﹣2(m+2)2+2,根据点M的坐标位置,求出﹣3<m<﹣1,则当m=﹣2时,n2可以取得最大值2;(3)联立方程组,由Δ≥0,可得n≥﹣4,当n=﹣4时,直线y=x﹣4与抛物线的交点为F(2,﹣3);①当m=﹣3时,四边形NMPQ的顶点分别为M(﹣2,0),N(﹣2,﹣3),P(2,﹣3),Q(2,0),当直线l经过点P(2,﹣3)时,此时P点与F点重合,n=﹣4时,符合题意;当直线l经过点A时,n=,当直线l经过点M时,n=1,可得≤n≤1,由此可求解;②当m的值逐渐增大到使矩形MNPQ的顶点M(m+1,m+3)在直线y=x﹣4上时,由m+3=(m+1)﹣4,解得m=﹣13;当m的值逐渐增大到使矩形MNPQ的顶点M(m+1,m+3)在这条开口向上的抛物线上(对称轴左侧)时,由(m+1)2﹣(m+1)﹣2=m+3,解得m=(舍)或m=,即可求m的取值范围为﹣13≤m≤.【解答】解:(1)将A(﹣1,0),B(4,0)代入y=ax2+bx﹣2,∴,解得,故答案为:,﹣;(2)设直线BC的解析式为y=dx+e,∵B(4,0),C(0,﹣2),∴,解得,∴直线BC的解析式为y=x﹣2,∵直线BC平移得到直线l,直线l与y轴交于点E(0,n),∴直线l的解析式为y=x+n,∵双曲线y=经过点M(m+1,m+3),∴k=(m+1)(m+3),∴y=,∵直线l与双曲线y=有且只有一个交点,联立方程组,整理得x2+2nx﹣2m2﹣8m﹣6=0,∴Δ=0,即4n2﹣4(﹣2m2﹣8m﹣6)=0,∴n2+2m2+8m+6=0,∴n2=﹣2m2﹣8m﹣6=﹣2(m+2)2+2,∵M点在第二象限,∴m+1<0,m+3>0,∴﹣3<m<﹣1,∴当m=﹣2时,n2可以取得最大值2;(3)如图1,当直线l与抛物线有交点时,联立方程组,整理得,x2﹣4x﹣4﹣2n=0,∵Δ≥0,即8n+16≥0,∴n≥﹣4,当n=﹣4时,直线y=x﹣4与抛物线的交点为F(2,﹣3);①当m=﹣3时,四边形NMPQ的顶点分别为M(﹣2,0),N(﹣2,﹣3),P(2,﹣3),Q(2,0),如图2,当直线l经过点P(2,﹣3)时,此时P点与F点重合,∴n=﹣4时,直线l与四边形MNPQ、抛物线都有交点,且满足直线l与矩形MNPQ的交点的纵坐标都不大于与抛物线的交点的纵坐标;如图3,当直线l经过点A时,n=,当直线l经过点M时,如图4,n=1,∴≤n≤1,综上所述:n的取值范围为:≤n≤1或n=﹣4;②当m的值逐渐增大到使矩形MNPQ的顶点M(m+1,m+3)在直线y=x﹣4上时,直线l与四边形MNPQ、抛物线同时有交点,且同一直线l与四边形MNPQ的交点的纵坐标都小于它与抛物线的交点的纵坐标,∴m+3=(m+1)﹣4,解得m=﹣13;如图5,当m的值逐渐增大到使矩形MNPQ的顶点M(m+1,m+3)在这条开口向上的抛物线上(对称轴左侧)时,存在直线l(即经过此时点M的直线l)与四边形MNPQ、平行同时有交点,且同一直线l与四边形MNPQ的交点的纵坐标都不大于它与抛物线的交点的纵坐标,∴(m+1)2﹣(m+1)﹣2=m+3,解得m=(舍)或m=,综上所述:m的取值范围为﹣13≤m≤.【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,反比例函数的图象及性质,一次函数的图象及性质,矩形的性质,数形结合,分类讨论是解题的关键.。
湖北省宜昌市2021版中考数学试卷(II)卷
湖北省宜昌市2021版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、单项选择题 (共12题;共24分)1. (2分)绝对值小于3的所有整数的和与积分别是()A . 0,﹣2B . 0,0C . 3,2D . 0,22. (2分) (2015八下·孟津期中) 随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.00000065m2 .这个数用科学记数法表示为()mm2 .A . 6.5×10﹣6B . 0.65×10﹣6C . 65×10﹣6D . 6.5×10﹣73. (2分)下列计算正确的是()A . a4•a2=a8B . a+a2=a3C . (a3b)2=a6b2D . ﹣2(x﹣3y)=﹣2x﹣6y4. (2分)下列语句中,其中正确的个数是()①将多项式a(x﹣y)2﹣b(y﹣x)因式分解,则原式=(x﹣y)(ax﹣ay+b);②将多项式x2+4y2﹣4xy因式分解,则原式=(x﹣2y)2;③90°的圆周角所对的弦是直径;④半圆(或直径)所对的圆周角是直角.A . 1B . 2C . 3D . 45. (2分)(2013·绍兴) 由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A .B .C .D .6. (2分)(2012·深圳) 下列命题①方程x2=x的解是x=1;②4的平方根是2;③有两边和一角相等的两个三角形全等;④连接任意四边形各边中点的四边形是平行四边形;其中正确的个数有()A . 4个B . 3个C . 2个D . 1个7. (2分) (2020九上·莘县期末) 如图,矩A形OABC的顶点O是B坐标原点,边OA在x轴上,边OC在y轴上若矩形OA1B1C1与矩形OABC关于点O位似,且矩形OA1B1C1的面积等于矩形OABC面积的,则点B1的坐标是()A . (3,2)B . (-2,-3)C . (2,3)或(-2,-3)D . (3,2)或(-3,-2)8. (2分)物理某一实验的电路图如图所示,其中K1 , K2 , K3 为电路开关,L1 , L2为能正常发光的灯泡.任意闭合开关K1 , K2 , K3中的两个,那么能让两盏灯泡同时发光的概率为()A .B .C .D .9. (2分)方程x2﹣x+1=0与方程x2﹣5x﹣1=0的所有实数根的和是()A . 6B . 5C . 3D . 210. (2分)已知等腰△ABC的两边长分别为2cm和3cm,则△ABC的周长为()A . 7cmB . 8cmC . 6cm或8cmD . 7cm或8cm11. (2分) (2017九上·北京期中) 如图,已知⊙O的半径为4,则它的内接正方形的边长为()A . 4B . 8C . 8D . 412. (2分)某商店销售一种商品,售出部分商品后进行了降价促销,销售金额y(元)与销售量(x)的函数关系如图所示,则降价后每件商品的销售价格为()A . 5元B . 10元C . 12.5元D . 15元二、填空题 (共6题;共6分)13. (1分)已知a﹣1的倒数是﹣,那么a+1的相反数是________.14. (1分) (2016七下·沂源开学考) 已知点A(a﹣1,a+1)在x轴上,则a=________.15. (1分)一组数据:12,13,15,14,16,18,19,14.则这组数据的极差是________16. (1分)(2017·平塘模拟) 计算(﹣1)2005﹣| ﹣2|+(﹣)﹣1﹣2sin60°的值为________.17. (1分)(2014·防城港) 如图,在直角梯形ABCD中,AD∥BC,∠C=90°,∠A=120°,AD=2,BD平分∠ABC,则梯形ABCD的周长是________.18. (1分)(2017·深圳模拟) 如图,在直角坐标系xOy中,点A,B分别在x轴和y轴上, = ,∠AOB 的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数y=的图象过点C,若以CD为边的正方形的面积等于,则k的值是________.三、解答题 (共8题;共73分)19. (5分)(2016·长沙模拟) 计算:()﹣1+ tan60°﹣(﹣)0 .20. (5分) (2019八上·大庆期末) 先化简,再求值:()÷ ,其中x=200821. (3分)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A (3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1 .(直接填写答案)(1)点A关于点O中心对称的点的坐标为________ ;(2)点A1的坐标为________ ;(3)在旋转过程中,点B经过的路径为弧BB1 ,那么弧BB1的长为________22. (10分)(2019·凤翔模拟) 某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.(1)求从这五名翻译中随机挑选一名会翻译英语的概率;(2)若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.23. (10分)(2018·资中模拟) 如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.24. (10分)(2017·宿州模拟) 某地2014年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?25. (15分)(2019·新乡模拟) 在平面直角坐标系中,抛物线y x2沿x轴正方向平移后经过点A(x1 ,y2),B(x2 , y2),其中x1 , x2是方程x2﹣2x=0的两根,且x1>x2 ,(1)如图.求A,B两点的坐标及平移后抛物线的解析式;(2)平移直线AB交抛物线于M,交x轴于N,且,求△MNO的面积;(3)如图,点C为抛物线对称轴上顶点下方的一点,过点C作直线交抛物线于E、F,交x轴于点D,探究的值是否为定值?如果是,求出其值;如果不是,请说明理由.26. (15分)(2018·江苏模拟) 如图,抛物线与x轴交于A、B两点,其中点,交y轴于点直线过点B与y轴交于点N,与抛物线的另一个交点是D,点P是直线BD下方的抛物线上一动点不与点B、D重合,过点P作y轴的平行线,交直线BD于点E,过点D作轴于点M.(1)求抛物线的表达式及点D的坐标;(2)若四边形PEMN是平行四边形?请求出点P的坐标;(3)过点P作于点F,设的周长为C,点P的横坐标为a,求C与a的函数关系式,并求出C的最大值.参考答案一、单项选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共73分)19-1、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。
2023 宜昌 中考 数学 第21题
中考数学试题一、单项选择题(共12分)1.如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()2.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3D.x1=0,x2=33.已知m3=n4,那么下列式子中一定成立的是()A.4m=3n B.3m=4n C.m=4n D.mn=124.对于反比例函数y=kx(k≠0),下列所给的四个结论中,正确的是()A.过图象上任一点P作x轴、y轴的垂线,垂足分别A,B,则矩形O APB 的面积为kB.若点(2,4)在其图象上,则(−2,4)也在其图象上C.反比例函数的图象关于直线y=x和y=−x成轴对称D.当k>0时,y随x的增大而减小5.已知m3=n4,那么下列式子中一定成立的是()A.4m=3n B.3m=4n C.m=4n D.mn=12二、填空题(共24分)6.小明和小红在阳光下行走,小明身高1.75米,他的影长2.0米,小红比小明矮7厘米,此刻小红的影长是()米。
7.将抛物线y=﹣x2向右平移一个单位,所得函数解析式为。
8.已知方程x2+mx﹣6=0的一个根为﹣2,则另一个根是。
9.把一张半径为2cm,圆心角为120°的扇形纸片卷成一个圆锥的侧面,那么这个圆锥的底面积是。
|与(tanB−√3)2互为相反数,则∠C的度10.已知△ABC,若有|sinA−12数是。
11.两圆的半径分别为3和5,当这两圆相交时,圆心距d的取值范围是。
12.如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30∘方向,同时测得岛礁P正东方向上的避风港M在北偏东60∘方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达()。
最新宜昌市中考数学21题圆训练(3)教师版有答案
宜昌市中考解答题21题圆训练(3)教师版答案1、已知在△ABC中,AB=BC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.(1)求证:ED=DC;(2)若CD=6,EC=4√3,求AB的长.解:(1)证明:∵A、B、E、D四点共圆,∴∠DEC=∠A,∵AB=BC,∴∠A=∠C,∴∠DEC=∠C,∴ED=DC;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,即BD⊥AC,∵AB=BC,CD=6,∴AD=DC=6,∴AC=12,∵∠A=∠DEC,∠C=∠C,∴△DEC∽△BAC,2、如图,AB与⊙O相切于点A,P为OB上一点,且BP=BA,连接AP并延长交⊙O于点C,连接OC.(1)求证:OC⊥OB;(2)若⊙O的半径为4,AB=3,求AP的长.解:(1)证明:∵AB=BP,∴∠BAP=∠BPA,∵AB与⊙O相切于点A,∴OA⊥BA,∴∠BAO=90°,即∠BAP+∠PAO=90°,∵OA=OC,∴∠PAO=∠C,∵∠BPA=∠CPO,∴∠C+∠CPO=90°,∴∠COP=90°,即CO⊥BO;(2)解:如图,作BD⊥AP于点D,在Rt△ABO中,AB=3,OA=4,则BO=5,OP=2,在Rt△CPO中,PO=2,CO=4,3、如图,已知AB是⊙O的直径,DC与⊙O相切于点C,交AB的延长线于点D.(1)求证:∠BAC=∠BCD;(2)若BD=4,DC=6,求⊙O的半径.解:(1)如图,连接OC.证明:∵DC与⊙O相切,∠OCD=∠OCB+∠BCD=90°,∵AB是⊙O的直径,∴∠ACB=∠OCB+∠ACO=90°,∴∠ACO=∠BCD∵OA=OC,∴∠ACO=∠BAC,∴∠BAC=∠BCD;(2)由(1)可得,∠BAC=∠BCD;∵∠CDB=∠ADC,∴△CDB∽△ADC,4、如图,在Rt△ABC中,∠ABC=90°,以BC为直径的半圆⊙O交AC于点D,点E是AB的中点,连接DE并延长,交CB延长线于点F.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)若CF=8,DF=4,求⊙O的半径和AC的长.解:(1)相切证明:连接OD,OE∵点E是AB中点,点O是BC中点∴OE是△ABC的中位线,∴OE∥AC∴∠1=∠4,∠2=∠3∵OC=OD,∴∠3=∠4,∴∠1=∠2∵OB=OD,OE=OE,∴△OBE≌△ODE(SAS)∴∠ODE=∠OBE=90°∴OD⊥DE,∴直线DF与⊙O相切.(2)设⊙O半径为x,则OD=x,OF=8-x在Rt△FOD中,OD2+FD2 =OF2,∴x2+42=(8-x)2,∴x=3∴⊙O半径为3;∵∠FBE=∠FDO=90°,∠F=∠F,∴△FBE∽△FDO,5、如图,△ABC中,∠ACB=90°,∠A=60°,点O为AB上一点,且3AO=AB,以OA为半径作半圆O,交AC 于点D,AB于点E,DE与OC相交于F.(1)求证:CB与⊙O相切;(2)若AB=6,求DF的长度.6、如图,已知以Rt△ABC的边AB为直径作△ABC的外接圆⊙O,∠B的平分线BE交AC于D,交⊙O于E,过E 作EF∥AC交BA的延长线于F.(1)求证:EF是⊙O切线;(2)若AB=15,EF=10,求AE的长.解:(1)证明:连接OE,∵∠B的平分线BE交AC于D,∴∠CBE=∠ABE.∵EF∥AC,∴∠CAE=∠FEA.∵∠OBE=∠OEB,∠CBE=∠CAE,∴∠FEA=∠OEB.∵∠AEB=90°,∴∠FEO=90°.∴EF是⊙O切线.7、如图,在Rt△ABC中,∠ACB=90°,AD为∠CAB的平分线,点O在AB上,⊙O经过点A,D两点,与AC,AB分别交于点E,F.(1)求证:BC与⊙O相切;(2)若AC=6,CD=3,求⊙O的半径r和BC的长.解:(1)证明:连接OD.∵OA=OD,∴∠ODA=∠OAD.又∵AD平分∠CAB,∴∠CAD=∠BAD.∴∠ODA=∠CAD,∴OD∥AC,∴∠ODB=∠ACB=90°,∴OD⊥BC,∴BC与⊙O相切;8、如图,△ABC的顶点A,C在⊙O上,⊙O与AB相交于点D,连接CD,∠A=30°,DC= √2.(1)求圆心O到弦DC的距离;(2)若∠ACB+∠ADC=180°,求证:BC是⊙O的切线.(2)①由(1)得,△ODC是等边三角形,∴∠OCD=60°,∵∠ACB+∠ADC=180°,∠CDB+∠ADC=180°,∴∠ACB=∠CDB,∵∠B=∠B,∴△ACB∽△CDB,∴∠A=∠BCD=30°,∴∠OCB=90°,∴BC是⊙O的切线.9、如图,在△ABC中,点O为BC边上一点,⊙O经过A、B两点,与BC边交于点E,点F为BE下方半圆弧上一点,FE⊥AC,垂足为D,∠BEF=2∠F.(1)求证:AC为⊙O切线.(2)若AB=5,DF=4,求⊙O半径长.解:(1)证明:连结OA,∴∠AOE=2∠F,∵∠BEF=2∠F,∴∠AOE=∠BEF,∴AO∥DF,∵DF⊥AC,∴OA⊥AC,∴AC为⊙O切线;(2)解:连接OF,∵∠BEF=2∠F,∴设∠AFE=α,则∠BEF=2α,∴∠BAF=∠BEF=2α,∵∠B=∠AFE=α,∴∠BAO=∠B=α,∴∠OAF=∠BAO=α,∵OA=OF,∴∠AFO=∠OAF=α,∴△ABO≌△AFO(AAS),∴AB=AF=5,∵DF=4,10、如图,△ABC中,AB=AC,以AB为直径的圆O交BC于点D,交AC于点E,过点D作DF⊥AC于点F,交AB的延长线于点G.(1)求证:DF是⊙O的切线;(2)已知BD= 2√ 5,CF=2,求DF和BG的长.解:(1)∵AB是⊙O的直径,∴∠ADB=90°,连接OD,∵∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,又∵OA=OB,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是圆O的切线;(2)连接BE.11、如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC的延长线于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若AC=8,CE=4,求弧BD的长.(结果保留π)解:(1)证明:连接OD,如图1所示:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠EAF,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD∥AE,∵AE⊥EF,∴OD⊥EF,∴EF是⊙O的切线;(2)解:作OG⊥AE于点G,连接BD,如图2所示:12、如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E 为CH的中点,连接AE并延长交BD于点F,连接CF.(1)求证:FD=FB;(2)求证:CF是⊙O的切线;(3)若FB=FE=3,求⊙O的半径.(2)证明:∵BF切⊙O于B,∴∠DBA=90°,∴∠DBC+∠CBA=90°,∵AB为直径,∴∠ACB=90°,∴∠CBA=90°,∴∠FBC=∠CAB,∵OC=OA,CF=BF,∴∠FCB=∠FBC,∠OCA=∠OAC,∴∠FCB=∠CAB,∵∠ACB=90°,∴∠ACO+∠BCO=90°,∴∠FCB+∠BCO=90°,即OC⊥CG,∴CG是⊙O切线;。
2021年湖北省宜昌市中考数学试卷真题 (含官方答案和详细解析)(Word版)
2021年湖北省宜昌市初中学业水平考试数 学 试 题(本试卷共24小题,满分120分,考试时间120分钟)注意事项:本试卷分试题卷和答题卡两部分,请将答案写在答题卡上每题对应的答题区域内,写在试题卷上无效. 考试结束,请将本试题卷和答题卡一并上交.参考公式:一元二次方程ax 2 + bx + c = 0的求根公式是x = −b ±√b 2−4ac 2a . 二次函数y = a 2 + bx+c 图像顶点坐标是( - b 2a . 4ac −b 2 ab ),弧长公式是____________________________________________________________________一、选择题(下列各小题中,只有一个选项是特合题目要求的,计在答题卡上指定的位置填涂符合要求的选项前面的字母代号. 每小题3分,计33分. )1. - 2021的倒数是(※). A . 2021 B . - 2021 c . 1 2021 D . - 1 20212. 下列四幅图形是四所大学校微的主体标识,其中是中心对称图形的是(※).3. 2021年5月15日07时18分,“天问一号”火里探测器成功登陆火虽表而,开启了中国人自主登录火星之旅. 地球与火星的最近距离约为5460万公里. “5460万”用科学记数法表示为(※).A . 5. 46 × 102B . 5. 46 × 103C . 5. 46 × 106D . 5.46 × 107 第四题4. 如图,将一脚三角尺按图中所示位置摆故,点F 在AC 上,其中∠ACB = 90°,∠ABC = 60°,∠EFD = 90′,∠DEF = 45°,AB ∥DE ,则∠AFD 的度数是(※).A. 15°B. 30°C. 45°D. 60°5. 下列运算正确的是(※).A. x + x2 =x6B. 2x3–x3 =x3C. `(x3)2 = x3D. x3·y3= x96. 在六张卡片上分别写有6,- 227,3. 1415,π,0,√3六个数,从中随机抽取一张.卡片上的数为无理数的概率是《※).A. 23B.12c.13D.167. 某气球内充满了一定质量m的气体,当温度不变时,气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例的数: p= mV ,能够反映两个变量p和V函数关系的图数是(※).8. 我国古代数学经典器作《九章算术》中们这样一周,原文事:“今有共买物,人出八,盈三;人出七,不足四. 问人数、物价各几问?”意思是:今们人合伙购物,每人出八钱,会多三钱;每人出七钱,又差四钱. 问人数、物价各多少?设人数为x人,物价为y钱,下列方程组正确的是(※).9. 如图,△ABC的顶点是正方形网格的格点,则cos∠ABC的值为(※).A. √23B.√22c.43D.2√2310. 如图,C,D是⊙O上直径AB两间的两点,设∠ABC= 25°,则∠BDC= (※).A. 85°B. 75''C. 70°D. 65°11. 从前,古希腊一位庄园主把一块边长为a米(a> 6)的正方形土地租给租户张老汉. 第二年,他对张老汉说:“我把这块地的一边增加6米,相邻的另一边减少6米,变成矩形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会(※).A. 没有变化B. 变大了C. 变小了D. 无法确定二、填空题(将答案写在答题卡上指定的位置. 每小题3分,计12分. )12. 用正负数表示气温的变化品,上升为正,下降为负. 登山队攀登一座山峰,每登高1 km气温的变化量为 - 6℃. 攀登2 km后,气温下降_________ ℃.13. 如图,在平面直角坐标系中,将点A(- 1,2)向右平移2个单位长度得到点B,点B关于x轴的对称点C的坐标是 _________ .(第14题图)14. 社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程. 整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是 _________ (填“黑球”或“白球”).15. “莱洛三角形”是工业生产中加工零件时广泛使用的一种图形. 如图,以边长为2厘米的等边三角形. ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就“莱洛三角形”,该“莱格三角形”的面积为 _________ 平方厘米?(圆周率用π来表示)三、解答题(将解答过程写在答题卡上指定的位置,本大题共有9小题,计75分. )16. (本题满分6分)先化简,再求值:2x2 −1+1x+1 -1x−1,从12. 3这三个数中选择一个你以为适合的x代入求值.x - 3(x - 2)≥4.17. (本题满分6分)解不等式组2x−13≤x+12.18. (本题满分7分)如图,在△ABC中,∠B = 40°,∠C = 50°.(1)通过观察尺规作图的轨迹,可以发现直线DF是线段AB的 _________ ,船线AE是∠D. AC的 _________ ;(2)在(1)所作的图中,求∠DAE的度数.19. (本题满分7分)国家规定“中小学生每天在校体育活动时间不低于1H. 为此,某市就”每天在校体育活动时间“的问题随机调查了辖区内部分初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组: 1 < 0. 5h B组:0. 5h≦1 < 1hC组: 1h≦1 < 1. 5h D组: 1≥1. 5h请根据上述信息解答下列问题:(1)本次调查的人数是 _________ 人:(2)请根据题中的信息补全频数分布直方图(3)D组对应扇形的圆心角为 _________ ';(4)本次调查数据的中位数落在 _________ 组内:(5)若该市辖区约有80000名初中学生,请估计其中达到国家规定体育活动时间的学生人数约有多少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宜昌市中考数学圆的大题训练(2)
1、如图,在Rt△ABC中,∠BAC=90°,D是BC边上的一点,过A,B,D三点的⊙O交AC于点E,作直径AF,连结FD并延长交AC于点G,且FG∥BE,连结BE,BF﹒
(1)求证:AB=BD;
(2)若BD=2CD,AC=5,求⊙O的直径长﹒
2、如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA,PB,AB,∠PBA=∠C.
(1)求证:PB是⊙O的切线;
(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2√2,求BC的长.
3、如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.
(1)求证:DE是⊙O的切线;
(2)当⊙O半径为3,CE=2时,求BD长.
4、如图,线段AB经过⊙O的圆心O,交⊙O于A,C两点,BC=1,AD为⊙O的弦,连接BD,∠BAD=∠ABD=30°,连接DO并延长交⊙O于点E,连接BE交⊙O于点M.
(1)求证:直线BD是⊙O的切线;
(2)求线段EM的长.
5、如图,AB是⊙O的直径,点C为弧BD的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD
交CF于点G,连接CD,AD,BF.
(1)求证:△BFG≌△CDG;
(2)若AD=BE=2,求BF的长.
6、如图,AB为半圆的直径且AB= 4√3,D是AB的一个四等分点,CD⊥AB于D,E,F为线段CD的三
等分点,连AE且延长交半圆于Q点,连AF且延长交半圆于P点,连结QP.
(Ⅰ)求∠FAD;
(Ⅱ)求四边形EFPQ的面积.
7、如图1,以△ABC的边AB为直径作⊙O,交AC于点E,BD平分∠ABE交AC于F,交⊙O于点D,且∠BDE=∠CBE.
(1)求证:BC是⊙O的切线;
的值及AO的长.
(2)如图2,延长ED交直线AB于点P,若PA=AO,DE=2,求PD
DE
8、已知:如图,在锐角三角形ABC中,以AC边为直径的⊙O交BC于点D,作BH⊥AC,依次交⊙O于点E,交AC于点G,交⊙O于点H.
(1)求证:∠BEC=∠EDC;
(2)若∠ABG+∠DEC=45°,⊙O的直径等于10,BC=14,求CE的长.
9、如图,已知以Rt△ABC的边AB为直径作△ABC的外接圆⊙O,∠B的平分线BE交AC于D,交⊙O于E,过E作EF∥AC交BA的延长线于F.
(1)求证:EF是⊙O切线;
(2)若AB=15,EF=10,求AE的长.
10、如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.
(1)求证:CD为⊙O的切线;
的值.
(2)若CD= √2AD,求CM
MA。