电子学第1章上
机械电子学-第01章参考答案
机械电子学-第1章习题-参考答案1-1试说明较为人们接受的机电一体化的含义。
(★)答:机电一体化乃是在机械的主功能、动力功能、信息功能和控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成系统的总称。
1-2机电一体化的目的是什么?答:提高系统的附加价值,即多功能、高效率、高可靠性、省材料省能源,并使产品结构向短小轻薄化方向发展从而不断满足人们生活的多样化和生产的省力化、自动化需求。
1-3机电一体化时代的特征是什么?(★)答:机电一体化时代是以机电有机结合为时代特征,具体的说就是以微型计算机为代表的微电子技术逐步向机械领域渗透,并与机械技术有机的结合,为机械增添“头脑”,使其增加新的功能。
1-4何谓机电一体化技术革命?(★)答:将微型计算机等微电子技术用于机械并给机械以“智能”的技术革新潮流可称“机电一体化技术革命”。
1-5说明我国机电一体化优先发展的领域?答:数控机床等机制设备、电子化量具量仪、工业自动化控制仪表、电子化低压电表、工业机器人、电子化家用电器、电子控制轻工机械、电子控制纺织机械、机电一体化医疗机械、汽车机电一体化、机电一体化办公机械、机电一体化印刷机械、机电控制系统电子化、数码照相机、数码摄影机。
1-6优先发展的机电一体化领域必须同时具备哪些条件?答:a、短期或中期普遍需要;b、具有显著的经济效益;c、具备或经过短期努力能具备必需的物质技术基础;d、社会效益十分显著。
1-7.机电一体化系统有哪些基本要素组成?分别实现哪些功能?(★)答:1-8.工业三大要素指的是什么?(★)答:物质、能量、信息。
1-9.机电一体化的三大效果是什么?答:省能、省资源、智能化。
1-10.说明机电一体化系统(产品)的设计步骤。
答1-11.机电一体化系统(产品)的主要评价内容是什么?答:①、主功能,高性能化、低价格化、高可靠性化;②、计测、控制功能,智能化;③、动力功能,智能化;④、构造功能,轻薄短小化。
《电工电子学》第一章电路的基本概念与基本定律(课时).总结
1 1 1 1 R R1 R2 Rn
分流公式
+
i i1
R1
i2
R2
R2 i1 i R1 R2
R1 i2 i R1 R2
理想电流源的串联与并联:
IS1 IS2 IS3 IS
并联
IS= ISk
注意参考方向
IS= IS1+ IS2 - IS3
串联
电流相同的理想电流源才能串联,且每个恒流 源的端电压均由它本身及外电路共同决定。
想想
US
练练
在电路等效 的过程中,与理 想电流源相串联 的电压源不起作 用;与理想电压 源并联的电流源 不起作用。 is=is2-is1
KVL通常用于闭合回路,但也可推 广应用到任一不闭合的电路上。 例:列出下图的KVL方程
a + uab b - + us3 -
i1
+ us1 -
R1
i4
+ us2 -
i2
R2
uab us3 i3 R3 i2 R2 us 2 i1R1 us1
uab us3 i3 R3 i2 R2 us 2 i1R1 us1 0
导线 理想化 电源
I
电 池
灯 泡
+
_ 电源 E
R
U
理想化 元件
负载
今后我们分析的都是 电路模型,简称电路。
1-1电路中的物理量及其正方向
电路分析的主要任务在于分析求解电路物理 量,其中最基本的电路物理量就是电流、电 压和功率。
一、电流
电荷的定向移动形成电流。
电流的大小用电流强度表示,简称电流。
电流强度:单位时间内通过导体截面的电荷量。
电路与电子技术 第1章 电路基本概念
负反馈电路 信号的运算与处理电路
数字电子技术-分析和设计
逻辑代数 组合逻辑电路 时序逻辑电路
二、课程结构和任务 前序课程
高等数学,大学物理
后续课程
计算机组成原理,微机原理等
课程任务
理论学习 实验学习
四、实验内容
1、基尔霍夫定律验证 2、戴维南,诺顿定理验证 3、仪器仪表的使用 4、单级放大电路
U ab
dW dq
(1.3)
式中dW是电场力所作的功,单位是焦耳(J)。
4、电位
点的电位,用符号V表示。
定义:电路中任选一点作为参考点,则其他各点与参考点的电压叫做该
例如,电路中a、b两点的电位分别表示为Va和Vb ,并且a、b两点间的电压 与该两点电位有以下关系: Uab = Va - Vb (1.4)
注意:对关联欧姆定律表达式写成I=U/R;对非关联欧姆定律表 达式写成I=-U/R(两套正负号:一是公式本身的,二是U.I的正负)
1.2.3 功率与能量
1、电功率
电能对时间的变化率即为电功率,简称功率。用p或P表示。功率的表达式 为: dW dW d q p u i (1.5)
dt
dq dt
解: 根据题目所给已知条件可得 P1 = U1 I1 = 1×1 = 1 W (吸收功率1 W,负载) P1+ P2 + P3= P4 + P5=35W P2 = U2 I2 = (-6)×(-3) = 18 W 结论:电路中各元件发出的功率 (吸收功率18 W,负载) 总和等于吸收功率总和,这就是 P3 = -U3 I3 = -(-4)×4 = 16 W 电路的“功率平衡”。 (吸收功率16W,负载) 功率平衡是能量守恒定律在电路 P4 = U4 I4 = 5×(-1) = -5 W 中的体现。 (发出功率5 W,电源) P5 = -U5 I5 = -(-10)×(-3) = -30 W (发出功率 30W,电源)
电工电子技术(少学时) 第一章直流电路 林平勇 高嵩
电源:电路中提供电能的装置。如发电机、蓄电 池等。
电路组成 负载:在电路中接收电能的设备。如电动机、电
灯等。
中间环节:电源和负载之间不可缺少的连接、控 制和保护部件,如连接导线、开关设 备、测量设备以及各种继电保护设备 等。
电路的功能:完成能量传输、转换;信号处理、传递等。如: 电力系统、广播电视等。
q-u 特性
q
C Ou
电容的单位换算:
1F 106 μF 1μF 106 pF
4.线性电容电压电流关系如图示
iC
u、i 取关联参考方向时,将q=Cu代入
i dq dt
得 i C du dt
u
表示:电容电流正比于电压对时间的变化率。该式还可表为:
u(t) 1
t
idt 1 [ 0 idt
教学重点和难点 重点:电流、电压的参考方向及关联参考方向和电功率
的计算。 难点:电功率的计算及对电路发出和吸收功率的判断。
1-1实际电路和电路模型
一、实际电路 实际电路元件:实际中电气元件的物理实体。如:电灯等。 实际电路:由实际电路元件按一定方式连接起来的物理实体。
如:日光灯等。
电路的组成与功能
2.分类:
电容元件
线性电容
时变 时不变
非线性电容
时变 时不变
与电阻元件类似
3.线性电容元件(线性时不变)
定义:元件上电荷正比于电压,该元件称为线性电容。
可表为
q=Cu
C q
其中: q:正极板上的电荷。C
+u _
u:电容电压(参考方向如图示)。V
C:电容系数,简称电容(线性电容为常数)。F
1电路的基本概念与基本定律-电工电子学
(b) 电流从“+”流入,故为负载;
(c) 电流从“+”流入,故为负载 ;
(d) 电流从“+”流出,故为电源。
2.功率与功率平衡
功率 设电路任意两点间的电压为 U ,流入此部分电
路的电流为 I, 则这部分电路消耗的功率为:
P UI
W为瓦[特] KW为千瓦
功率平衡:由U=E-R0I得 UI=EI-R0I2
返回
物理量参考方向的表示方法
I
a
电 池
灯 泡
+ EU
_
+
R
Uab
_
b
电压
正负号 箭头 双下标
a + U_ ab b
电流:从高电位 指向低电位。
a
Uabb
I
Uab(高电位在前, + R -
低电位在后)
1.4 欧 姆 定 律
欧姆定律:流过电阻的电流与电阻两端的电压成正比。
U R I
+ I
U -
U=RI (a)
I1 R1
c
+ U3
E1 U1
R2 I2
a
d
- - U4 +
U1+U4=U2+U3
U2 E2 U1-U2-U3+U4=0
即 U=0
电位降取正
b
电位升取负
上式可改写为
I1 R1
c
+ U3
R2 a
- - U4
I2
d
+
E1-E2-R1I1+R2I2=0 E1
U1
或 E1-E2=R1I1-R2I2
U2 E2
U=E1-U1=E1-IR01
E1=U+R01I=220
徐淑华电工电子技术 第一章
1.1.2 电流和电压的参考方向
电流和电压的正方向: 实际正方向:
物理量 电流I 电动势E 电压U
实际正方向 假设正方向
物理中对电量规定的方向。
正方向 正电荷移动的方向 单位 A, kA, mA, A V, kV, mV, V V, kV, mV, V
6
电源驱动正电荷的方向
低电位 高电位 电位降落的方向
di dt
0
u 0
29
所以,在直流电路中电感相当于短路.
电感的储能
u L
di
dt 电感是一种储能元件, 储存的磁场能量为:
WL
t 0
uidt WL
i 0
Lidi
2
1 2
Li
2
1 2
Li
?
电感中的电流是直流时, 储 存的磁场能量是否为0?
否!W L
1 2
LI
2
30
5.电容 C
C
q = Cu
du dt
直流电 路中, 电容两 端的电 压是否 为0?
i
dq dt
C
i C
du
dt 1 u idt C
当u
U (直流) 时,
du dt
0
i0
33
所以,在直流电路中电容相当于开路。
电容的储能
i C
du dt
电容是一种储能元件, 储存的电场能量为:
WC
t 0
11
例2 假设: I R 与 UR 的方向一致
a
IR UR
(关联参考方向)
b
U R = I R· R
假设: I R 与 UR 的方向相反 a IR UR b
电工电子学 林小玲主编 第一章答案
第1章习题答案1.1.1 填空题(1)在图1-67所示电路中,甲同学选定电流的参考方向为I,乙同学选定为I′。
若甲计算出I=-3A,则乙得到的计算结果应为I′=__3__A。
电流的实际方向与__乙__的方向相同。
(2)由电压源供电的电路通常所说的电路负载大,就是指_负载电阻小,吸收的电流大,消耗的功率大;____。
(3)恒压源的输出电流与_负载电阻____有关;恒流源的端电压与_负载电阻____有关。
(4)在图1-68所示电路中,已知I1=1A,则I2=_-0.5____A。
图1-67 题1.1.1(1)图图1-68 题1.1.1(4)图1.1.2 选择题(1)一个实际电路的电路模型: ( b )(A)是唯一的;(B)在不同应用条件下可以有不同的形式(2)理想电路元件用于表征:( a )(A)某种确定的电磁性能;(B)某种确定的功能。
(3)电流的定义是( B )(A)自由电子(B)自由电子移动的速度(C)移动电子所需的能量(D)自由电子的电荷(4)电阻的主要目的是( D )(A)增加电流(B)限制电流(C)产生热(D)阻碍电流的变化(5) 功率可以定义为( C )(A)能量(B)热(C)能量的使用速率(D)使用能量所需的时间(6) 通过一个定值电阻的电流从10mA增加到12mA,电阻的功率将( A )(A)增加(B)减少(C)保持不变(7)在图1-69所示电路中,发出功率的元件是__A___。
(A)仅是5V的电源(B)仅是2V的电源(C)仅是电流源(D)电压源和电流源都发出功率(E)条件不足(8)在图1-70所示电路中,当R2增大时,恒流源Is两端的电压U__B___。
(A)不变(B)升高(C)降低图1-69 题1.1.2(7)图图1-70 题1.1.2(8)图(9)在图1-71所示电路中,当开关S闭合后,P点的电位__B___。
(A)不变(B)升高(C)为零(10)在图1-72所示电路中,对负载电阻R而言,点画线框中的电路可用一个等效电源代替,该等效电源是__C___。
电工电子学课件_______第一章
uab
b
13
关联参考方向与非关联参考方向 对一个元件,电流参考方向和电压参考方向 可以相互独立地任意确定,但为了方便起见,常 常将其取为一致,称关联参考方向;如不一致, 称非关联参考方向。 i
a
i u
b a
+
−
u
+
b
(a)关联参考方向
(b)非关联参考方向
如果采用关联参考方向,在标注时标出一种即可。 如果采用非关联参考方向,则必须全部标注。
b (b)
三、电路中的功率
定义: 单位时间内元件吸收(消耗)或发出(释 放)的电能。 dw 数学表达式: p dt 单位:瓦特 W 方向:在电压、电流取关联参考方向下,p=ui 表 示的是该元件吸收(消耗)功率的大小。即为:
i i
w
+ u
w
+ u
p>0
18
p<0
第一章 电路的基本概念、定律与分析方法
34
第一章 电路的基本概念、定律与分析方法
实际电压源 I + − Rs Us
U Us
RL
0 理想电压源 实际电压源
U
I
电源内阻,表 示内部损耗 U = Us – IRs
Rs越小 特性曲线越平坦
当Rs = 0 时,实际电压源模型就变成电压源模型
35
第一章 电路的基本概念、定律与分析方法
2.电流源
Uab
15
第一章 电路的基本概念、定律与分析方法
Uab是否表示a端的电位高 于b端的电位?
a
Uab 元件
b
Uab只表示a、b两端电位的参考 方向为由a指向b。实际两点电 位哪点高,要看是Uab>0,还是 Uab<0。若Uab>0,则a端电位高 于b端电位。反之, b 端电位高 于a端电位。
大学经典教材--电工学第一章第一部分
本学期准备继续开展电路设 计及仿真软件的学习活动,主要 是以自学为主。可以自己到实验 中心EDA实验室,登记上机。 对于使用该软件较好, 可独立设计出较复杂的系统, 并给出报告的可在期末给与加分 奖励。
通 知 我系对非电专业学生开展SRT训练,可 在老师指导下进行电工电子技术科技活动, 培养动手能力和科研能力。该训练可贯穿至 毕业设计。愿参加者可到我处报名,报名时 间不限,在我任课的三个学期内均可。报名 人数每班不超过2人,总共可接纳10人左右 。活动地点在西主楼一区215。
半导体的导电机理不同于其它物质,所以它具有 不同于其它物质的特点。例如: • 当受外界热和光的作用时,它的导电能
力明显变化。
• 往纯净的半导体中掺入某些杂质,会使
它的导电能力明显改变。
2.1.3 半导体二极管
一、基本结构
PN 结加上管壳和引线,就成为半导体二极管。
点接触型
触丝 PN结
引线
外壳
小功率高频
到50年代末,人们越来越强烈地感到, 一个个互相独立的元件、器件的小型化之路, 将走到尽头。这是因为, 一个复杂的电路,里面有大量的元器件, 这些“零件”之间要用导线连接起来。 大量的导线也限制了电路体积的缩小。 在科学技术发展的关键时刻, 往往需要富有想象力的科学家创造全新的观念。 1958年,就出现了两位这样的人物: 基尔比和诺伊斯。
以上均是二极管的直流参数,二极管的应用是 主要利用它的单向导电性,主要应用于整流、限幅、 保护等等。下面介绍两个交流参数。
二极管:死区电压=0 .5V,正向压降0.7V(硅二极管) 理想二极管:死区电压=0 ,正向压降=0 利用二极管的单向导电特性可作为电子开关。 如下面的两个例子就是其典型应用。
§1.1 半导体的基本知识
3.电子技术第1章1.2(放大器)17
3、RO RL =1KΩ;
UO 1 I = = 3 ≈ 0.17mA 4、 L R + R 6 ×10 O L
UL = I L R L = 0.17 × 10 3 × 5× 10
当有交流信号输入时,放大电路的状态称为动态。 在动态时,交流信号和直流信号一起叠加到三极管 上。设置适当的静态工作点,目的就是使放大电路 工作在线性放大状态,避免信号在放大过程中产生 失真。
• 由此可见,设置适当的静态工作点,目的就 是使放大电路工作在线性放大状态,避免信 号在放大过程中产生失真。同时也说明,放 大电路必须有直流偏置电路。
放大器的输出电阻Ro是指从放大器的输出端(不包括 负载电阻RL)看进去,放大电路相当于一个具有内阻 Ro 和电动势uo的等效电路,这个内阻Ro就是放大电路的输 出电阻,输出电阻等于三极管集电极-发射极间等效电 阻rce与RC的并联值,即:Ro=RC//rce 由于三极管在放大区rce很大,即rce>>RC,故上式可 以近似为:Ro≈RC
R
R
UB
B
B
C
UC
C
共射放大电路各元件作用
耦合电容: 电解电容,有极性,取值 为几微法到几十微法。
作用:隔离输 入输出与电路 直流的联系, 同时能使信号 C 顺利输入输出。
C
1
+ + R R
C B
2
ui
UB
B
UC
C
uo
单电源供电 C C
1 2
R
R
可以省去
C
UB
B
B
UC
C
单电源供电 +UCC RB C1 T
(4) 丙类放大器 丙类放大器的输出信号仅对输入信号波形的少 一半部分(<50%)进行放大。这种放大器的效 率最高,它一般用于对已调波的信号进行放大。
电路与电子学基础第一章
刻所带的电荷量q(t)为
t
q(t) i(t)dt q(0) Nhomakorabea0
电路中用来储存电荷的容器称为电容器。电容器由电介质隔开的 两金属电极片组成,电容器在电路中常用的符号是 “ ”。
表征电容器性质的物理量称为电容器的电容, 用字母C来表示。电容C的定义为:电容器上所 储存的电荷量Q与两极板的电位差Uab之比,即
IQ t
交流电流强度的表达式为
电流强度的单位为安培,简称安(A)。大
dq 型电力变压器中的电流可达几百到上千安培, i 而晶体管电路中的电流往往只有千分之几安
培,对于很小的电流可用毫安(mA)或微
dt
安(μA)来表示
2、电压
在物理学课程中已知,电荷在电场中移动时,电场力将对电荷 做功。描述电场力对电荷做功能力大小的物理量是电压。
电感线圈在电路中也是一个储能元件,
电感线圈内所储存的电能为
WL
1 LI 2 2
1.1.4 电流、电压和电动势的参考方向
中学物理在分析和计算电路问题的时候,电流、电压和电动势的 方向是统一约定的。即,电流I在外电路中从电源的正极出发,流 向负极;在内电路中从电源的负极出发流向正极。电压U的方向 是从电源的正极指向负极,电动势E的方向是从电源的负极指向 正极。这种约定的方向与电路中电流、电压和电动势的实际方向 相一致,在分析、计算简单电路(单电源电路)的问题时是可行 的,但在分析、计算复杂电路问题时却有困难。
电场中a,b两点间电压Uab的定义为:Uab在 数值上等于把单位正电荷从a点移到b点时,电场 力所作的功。电压的定义式为
W U ab Q
电压也常写成电位差的形式
U ab U a Ub
电科专业纳米电子学基础第一章
光年
以上
实际范围 河外星系
适用理论 尚无
宇观 宏观 微观
渺观
1021米=105 光年 102米
10-17米= 10-15厘米
10-36米= 10-34厘米
从3亿公里到 3×1014光年
从3 ×10-6厘米 到3亿公里
从3 ×10-25厘 米到3 ×10-6厘 米
3 ×10-25厘米 以下
从太阳系 到银河系 从大分子 到太阳系 从基本粒子 到大分子
§1.3 材料
纳米结构材料的基本特性
II. 小尺寸效应
特殊的力学性质
Å 陶瓷材料在通常情况下呈脆性,然而由纳米超微颗粒压制成的纳米陶瓷
材料却具有良好的韧性。因为纳米材料具有大的界面,界面的原子排列是 相当混乱的,原子在外力变形的条件下很容易迁移,因此表现出甚佳的韧 性与一定的延展性,使陶瓷材料具有新奇的力学性质。美国学者报道氟化 钙纳米材料在室温下可以大幅度弯曲而不断裂。研究表明,人的牙齿之所 以具有很高的强度,是因为它是由磷酸钙等纳米材料构成的。呈纳米晶粒 的金属要比传统的粗晶粒金属硬3~5倍。至于金属一陶瓷等复合纳米材料 则可在更大的范围内改变材料的力学性质,其应用前景十分宽广。
纳米电子学基础
主讲人:杨红官
课程内容:
第一章 绪 论 第二章 纳电子学的物理基础 第三章 共振隧穿器件 第四章 单电子晶体管 第五章 量子点器件 第六章 碳纳米管器件 第七章 分子电子器件 第八章 纳米级集成系统原理 第九章 纳电子学发展中的问题
参考资料:
1. 纳电子学导论,蒋建飞 编著,科学出版社。 2. 纳米电子学,杜磊 庄奕琪 编著,电子工业出版社。 3. 纳电子器件及其应用,蔡理 编著,电子工业出版社。 4. 纳电子学与纳米系统,陈贵灿 等译,西安交通大学 出版社。
光电子学第一章
一、光波和光子
光的粒子性—光子
光是粒子 它具有能量E 和动量P
按爱因斯坦假设 能量 E=h,因为E=mc2
P E h h
子运动,使其减速,从而降
光学粘胶的实验系统
低了原子温度。
1995年,24pK(2.4×10-11K)
一、光波和光子
日本的“伊卡洛斯”太阳帆
“太阳帆”是“依靠太阳辐射加速的星 际风筝-飞行器 ”的缩写,发音听起来
很像是希腊神话人物伊卡洛斯 (Icarus),他曾借助鸟羽飞翔。
美国“光帆1号”
由特种铝材和太空塑料制成,总重量 不超过4.5公斤。由四个小帆板组成, 530.93平方米,厚度小于50μm,光压
h h 1.781010 (米)
2mE 2mk BT
常温下中子的波长大约比光波长小三个数量级。
一、光波和光子
粒子的波动性
速度为10米/秒的棒球,质量为1.0kg。试求其德布洛
意波长?
h p
h mv
6.61034焦耳 秒 1.010千克米/ 秒
6.6 1035 米
电子显微镜的线分辨率约等于德布洛意波长,使用的 电压为100仟伏,求这台电子显微镜的理论极限?
光子动量:
c c
光子质量: m E h 1
c2 c
光子质量与波长成反比
一、光波和光子
粒子的波动性
1924年法国物理学家德布洛意(de Broglie)在光的二象性的 启发下,提出实物粒子,例如:电子、原子、中子等也具 有波粒二象性的假设。粒子的能量E和动量P与 “粒子波” 的频率ν和波长λ之间,德布洛意借用了光子的波粒二象关 系式把物质波也表示为:
大一电路知识点第一章
大一电路知识点第一章电路是电子学的基础,大一学生学习电路是打开电子学大门的第一步。
在本章中,我们将介绍一些大一电路学习的基本知识点,包括电路的基本概念、基本元件以及基本电路定律等内容。
1. 电路的基本概念电路是由电子元件、导线和电源等组成的系统。
通常,电路可以分为两类:闭合电路和开放电路。
闭合电路是指由连通的导线、电子元件和电源组成的电路,其中电流可以流动。
开放电路是指其中一个或多个元件的两个端子未连接,电流无法流动。
2. 电流、电压和电阻电流是电荷在电路中的流动,用单位时间内通过某一截面的电荷量来表示。
电流的单位是安培(A)。
电压是电荷在电路中受到的推动力或压力,用伏特(V)来表示。
电阻是电路对电流流动的阻碍,用欧姆(Ω)来表示。
3. 电子元件电子元件是构成电路的基本组成部分。
常见的电子元件包括电阻、电容、电感和二极管等。
其中,电阻用来阻碍电流流动,电容用来存储电荷,电感用来存储磁能,而二极管用来控制电流的流动方向。
4. 基本电路定律在学习电路时,我们需要了解一些基本的电路定律。
其中,欧姆定律是最基本的电路定律之一,它描述了电压、电流和电阻之间的关系。
欧姆定律可以表示为V = I * R,其中V代表电压,I代表电流,R代表电阻。
除了欧姆定律,基尔霍夫定律也是电路分析中常用的定律。
基尔霍夫定律包括节点定律和回路定律,可以用来分析复杂电路中的电流和电压分布。
5. 串联和并联电路在电路中,元件的连接方式可以分为串联和并联。
串联是将元件依次连接在一起,电流只有一个路径可以流动。
并联是将元件的一个端子相连接,电流可以选择不同的路径流动。
串联和并联电路的分析方法也不同。
在串联电路中,电流保持不变而电压分布依次;而在并联电路中,电压保持不变而电流分布不同。
6. 电路等效电路等效是指将复杂电路简化为等效电路,以便分析和计算。
等效电路是能够代替原始电路在性质上相等的简化电路。
常见的电路等效包括电阻的串并联、电源的理想化等。
固态电子论-第一章习题参考解答
其晶胞和原胞: 晶胞中包含的格点数为4,包含的硅原子 数为8。 原胞中包含的格点数为1,包含的两种不 同状态的硅各1个。 配位数为4。
c
b
一种状态硅原子
另一种状态硅原子
a
c
a3
a2 b
晶面族(110):
原子面密度
2 2 2a2 a2
晶面间距 d a
2
垂直于(110)晶面的对称轴是110
晶面族(111):
原子面密度
43 3a 2
晶面间距 d a
3
垂直于(111)晶面的对称轴是111
a a
a 2a
2a
(111)
2a
第11题
基本的晶体点对称操作共有8种,包括:
砷
c
镓 1/4体对角线原子
b
a
c
a3
a2 b
a1
a
晶胞和原胞
第4题
⑤ 碳化硅的晶体结构为纤锌矿结构。由碳 原子六方晶格与硅原子六方晶格沿六方轴 C 移动3C/8长度套构形成。
将一个碳原子与一个硅原子看成一个基 元。则对应的格点构成六方晶格。
其晶胞和原胞: 晶胞中包含的格点数为6,包含的砷原子 数为6,镓原子数为6。 原胞中包含的格点数为1,包含的砷原子 数和镓原子数均为1。 配位数为4。
r b1
2
ar1
aarr22
aarr33
ar2 ar3
d
r b2
2
r a1
电工电子学学习指导练习题题解-第1章-电路的基本概念和基本定律
图1.8
分析如下:仍然是典型电阻串、并联套公式的题目,它是本课程非 常基本的内容,在以后各章节中都会用到。比如图1.8(b)的电路 中,四个电阻两两组成三个回路,都是并联。尽管并联分流公
1.2典型例题和典型错误
式是两个电阻的公式,但要灵活运用。
I= R//R
2R+R//R
×
2R 2R+2R
×
IS
= 2R//R//R
1.1.5简单电路的分析
1.1知识梳理
表1.2 简单电路的分析公式
1.1知识梳理
可以套用公式的电路称为简单电路,表1.2汇总了相关公式,以 及分析要点。
1.1.6利用元件VCR、KCL和KVL分析电路的原则:
1.求电路中某电压的方法: (1)无源元件的VCR,已知电流求电压;(2)用KVL求解,典型 的求开路电压、理想电流源的电压。 2.求电路中某电压的方法: (1)无源元件的VCR,已知电压求电流;(2)用KCL求解,典 型的求短路(导线)电流、理想电压源的电流等。 经验分享:选择回路写KVL时,应优先选择含有理想电压源、 避开理想电流源,且元件较少的回路,简单时写出的是一元一次方 程;选择结点写KCL时,应优先选择与理想电流源相连的、避开与 理想电压源相连且支路较少的结点。
1.1知识梳理
1.1.1参考方向
定义:人为规定电压、电流等代数量取正的方向,通常 用符号直观的表示在电路图上。 1.电流的符号表示(如图1.1)
2.电压的符号表示(如图1.2)
图1.1
图1.2 3.电动势的符号表示(图1.3)
有时也用参考方向表示,图1.3(a)是理想电压源电动 势的符号表示,但是理想电流源不用电动势,用端电压。
1.1.3 电路的基本元件
电路邱关源电子教(学)案第一章
第一章电路的基本定律与分析方法第1节 电路和电路模型一、 电路1、定义:由各种电气设备或元件按一定方式连接构成的电流的通路,具有电能的传输、转换和信号的传递、处理等功能。
2、组成:电源、负载、中间环节 例:手电筒电池开关灯泡R电路模型 二、电路模型定义:将实际电路中的元器件理想化,以理想电路元件(R 、L 、C 、电源)模拟替代,由一些理想电路元件组成的电路就是实际电路的电路模型。
简称电路。
理想电路元件:有某种确定的电磁性能的理想元件第2节电流和电压的参考方向一、 电流的参考方向(i ,I )电流:带电粒子有规则的定向运动。
电流的实际方向:规定正电荷的运动方向。
RiAiE R R在简单电路中,电流的实际方向不难判断;但是,复杂电路或电路中的电流随时间变 化时,其电流的实际方向往往很难事先判断。
为了分析电路的方便,故引入了参考方向。
电流的参考方向:人为的假定。
(为了分析电路方便)相同 0i > 电流的参考方向与实际方向的关系:相反 0i <选定了参考方向以后,电流有了正负之分,成为一个代数量。
电流参考方向的两种表示方法:(1)箭头:箭头的指向为电流的参考方向。
ABi(2)双下标:如AB I , 电流的参考方向由A 指向B 。
ABABi单位:KA 、A 、mA 、A μ。
336110,110,110KA A mA A A A μ--===二、电压的参考方向电压:两点之间的电位之差。
电压的实际正方向:由高电位指向低电位,即电位真正降低的方向。
电压的参考方向:人为的假定,假设的电位降低方向。
相同 0u >电压的参考方向与实际方向的关系: 相反 0u <Au >Au <电压参考方向的三种表示方法: (1) 用箭头表示A(2) 用双下标表示AABu(3) 用正负极性表示A电压的单位:KV 、V 、mV 、V μ。
336110,110,110KV V mV V V V μ--===三、关联参考方向i i UU关联参考方向非关联参考方向我们在分析电路时,一般采用关联参考方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、 主要参数
3. 反向峰值电流IRM 二极管外加最高反向工作电压时的反向电流。反 向电流小,说明管子的单向导电性好。 IRM受温度的影响,温度越高反向电流越大。硅管 的反向电流较小,锗管的反向电流较大,为硅管的几 十到几百倍。 4. 最高工作频率fM 二极管单向导电作用开始明显退化时交流信号的 频率。因为PN结具有电容效应。
三、 主要参数
1. 最大整流电流 IDM 二极管长期工作时,允许通过二极管的最大正向 平均电流。 它与PN结的结面积和外界散热条件有关,使用时 超过此值,会使PN结过热而烧坏二极管。 2. 反向工作峰值电压URM 二极管在使用时允许外加的最高反向电压。一般 是二极管反向击穿电压UBR的一半或三分之二。二极 管击穿后单向导电性被破坏,甚至过热而烧坏。
电工与电子技术A(2)
主讲:向菲 Email:fayexiang@ 教材:《电子技术》(电工学Ⅱ) 孙立功主编 高教出版社 参考教材:《电子技术》陈正传 机械工业出版社 罗会昌主编,
成绩:期终考试占70%, 平时(作业与考勤)占20%, 实验占10%。 本课程共计64学时,其中理论课时50学时, 实验学时14学时,我们共做7个实验。 答疑安排:每周一、四晚7:30—9:00。
动画
P内电场 外电场来自N–+
2. PN 结加反向电压(反向偏置) P接负、N接正
PN 结变宽
- - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + +
动画
P
IR
内电场 外电场
N
–
内电场被加 强,少子的漂 移加强,由于 少子数量很少, 形成很小的反 向电流。
( d) 符号
( b) 面接触型
二、伏安特性
特点:非线性 反向击穿 电压U(BR) I
正向特性
P
+
–
N
硅0.6~0.8V 导通压降 锗0.2~0.3V U 硅管0.5V, 死区电压 锗管0.1V。 外加电压大于死区 电压二极管才能导通。
反向电流 在一定电压 范围内保持 常数。
P
–
+N
反向特性
外加电压大于反向击 穿电压二极管被击穿, 失去单向导电性。
例3:
+ ui –
R D + uo –
8V
已知:ui 18sin t V 二极管是理想的,试画 出 uo 波形。 二极管的用途: 整流、检波、 限幅、钳位、开 关、元件保护、 温度补偿等。
ui 18V 8V
参考点
t
二极管阴极电位为 8 V ui > 8V,二极管导通,可看作短路 uo = 8V ui < 8V,二极管截止,可看作开路 uo = ui
1. PN结的特性是 (a. 单向导电性
a
第二节 二极管
二极管是最基本的电子元件,其内部主要是 一个PN结,加上引出的两个电极。 常见的外形:
第二节 二极管
一、 基本结构
(a) 点接触型 结面积小、 结电容小、正 向电流小。用 于检波和变频 等高频电路。 (b)面接触型 结面积大、 正向电流大、 结电容大,用 于工频大电流 整流电路。
N
内电场被 削弱,多子 的扩散加强, 形成较大的 扩散电流。
PN 结加正向电压时,PN结变窄,正向电流较 大,正向电阻较小,PN结处于导通状态。
2. PN 结加反向电压(反向偏置) P接负、N接正
- - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + +
P 型半导体
Si Si
Si B–
Si
硼原子 接受一个 电子变为 负离子
掺入三价元素 空穴 掺杂后空穴数目大量 增加,空穴导电成为这 种半导体的主要导电方 式,称为空穴半导体或 P型半导体。 在 P 型半导体中空穴是多 数载流子,自由电子是少数 载流子。
动画
无论N型或P型半导体都是中性的,对外不显电性。
自由电子和空穴都称为载流子。
本征半导体的导电机理 自由电子和空穴成对地产生的同时,又不断复 合。在一定温度下,载流子的产生和复合达到动态 平衡,半导体中载流子便维持一定的数目。 注意: (1) 本征半导体中载流子数目极少, 其导电性能很 差; (2) 温度愈高, 载流子的数目愈多,半导体的导电 性能也就愈好。 所以,温度对半导体器件性能影响很大。
+
PN 结加反向电压时,PN结变宽,反向电流较小, 反向电阻较大,PN结处于截止状态。 温度越高少子的数目越多,反向电流将随温度增加。
b.正向导通 c .反向截至) 2. PN结的正向电阻 b (a. 较大、b.趋于零) 3. 当温度升高时,反向电流将 c (a. 减少、b. 不变、c. 增大)。
3、杂质半导体
N型半导体 在常温下即可 变为自由电子
Si
掺入五价元素
Si
p+ Si
Si
多 余 电 子
动画
掺杂后自由电子数目 大量增加,自由电子导电 成为这种半导体的主要导 电方式,称为电子半导体 或N型半导体。
失去一个 电子变为 正离子
磷原子
在N 型半导体中自由电子 是多数载流子,空穴是少数 载流子。
例1:
D + 3k
A
电路如图,求:UAB 取 B 点作参考点, 断开二极管,分析二 极管阳极和阴极的电 位。
6V 12V
UAB
– B
V阳 =-6 V V阴 =-12 V V阳>V阴 二极管导通 若忽略管压降,二极管可看作短路,UAB =- 6V 否则, UAB低于-6V一个管压降,为-6.3V或-6.7V 在这里,二极管起钳位作用。
P 型半导体
- - - - - -
- - - - - - - - - - - -
动画
内电场 N 型半导体
+ + + + + + + + + + + +
+ + + + + +
- - - - - -
+ + + + + +
扩散和漂移 这一对相反的 运动最终达到 动态平衡,空 间电荷区的厚 度固定不变。
浓度差 形成空间电荷区
第八节 共集电极放大电路 第九节 多级放大电路及频率特性 第十节 功率放大电路
第一章 半导体器件与放大电路
学习电子技术,就是要掌握常用半导体器件的
原理、特性,以及由这些器件所组成的电子电路
的分析方法。二极管与晶体管是最常用的半导体
器件,而PN结是构成各种半导体器件的基础。
第一节 PN结
什么是半导体? 半导体是导电能力介于导体和绝缘体之间的物质。
这一现象称为本征激发。
温度愈高,晶体中产生的自由电子便愈多, 同时空穴也越多。
本征半导体的导电机理 在外电场的作用下,空穴吸引相邻原子的价电子 来填补,而在该原子中出现一个空穴,其结果相当 于空穴的运动(相当于正电荷的移动)。
当半导体两端加上外电压时,在半导体中将出 现两部分电流 (1)自由电子作定向运动 电子电流 (2)价电子递补空穴 空穴电流
P 型半导体
- - - - - - - - - - - -
- - - - - - - - - - - -
N 型半导体
+ + + + + +
+ + + + + + + + + + + +
+ + + + + +
PN 结也称空间电荷区、或耗尽层、或内电场、 或阻挡层。
1、PN结的形成
少子的漂移运动
内电场越强,漂移运 动越强,而漂移使空间 电荷区变薄。
四、应用举例 导通 截止 若二极管是理想的,正向导通时正向管压降为零, 反向截止时二极管相当于断开。
定性分析:判断二极管的工作状态
否则,正向管压降
硅0.6~0.7V 锗0.2~0.3V
分析方法:将二极管断开,分析二极管两端电位 的高低或所加电压UD的正负。 若 V阳 >V阴或 UD为正( 正向偏置 ),二极管导通 若 V阳 <V阴或 UD为负( 反向偏置 ),二极管截止
(c) 平面型 用于集成电路制作工艺中。PN结结面积可大可 小,用于高频整流和开关电路中。
二极管的结构示意图
金属触丝 阳极引线 N型锗片 阴极引线
阳极引线 二氧化硅保护层
N型硅
P 型硅
( a) 点接触型
铝合金小球 N 型硅
外壳
阴极引线
阳极引线 PN结 金锑合金 底座
(c ) 平面型
阳极
D 阴极
阴极引线
例2:
D2 D1
求:UAB
3k 12V
6V
两个二极管的阴极接在一起 A + 取 B 点作参考点,断开二极 UAB 管,分析二极管阳极和阴极 – B 的电位。
V1阳 =-6 V,V2阳=0 V,V1阴 = V2阴= -12 V UD1 = 6V,UD2 =12V ∵ UD2 >UD1 ∴ D2 优先导通, D1截止。 若忽略管压降,二极管可看作短路,UAB = 0 V 流过 D2 的电流为 12 在这里, D2 起 I D2 4mA 钳位作用, D1起 3 D1承受反向电压为-6 V 隔离作用。