高中数学 人教B版必修3 1.1.2

合集下载

高中数学 3.1.1、2 随机现象 事件与基本事件空间同步课件 新人教B版必修3

高中数学 3.1.1、2 随机现象 事件与基本事件空间同步课件 新人教B版必修3
第五页,共40页。
课前预习
1.常见现象的特点及分类
名称
定义
必然现象 在一定条件下必然发生某种结果的现象
在相同的条件下多次观察同一现象,每次
随机现象 观察到的结果不一定相同,事先很难预料
哪一种结果会出现的现象
第六页,共40页。
2.试验 把观察随机现象或为了 某种目的 而进行的实验统称为 试验,把观察结果或实验结果称为 试验的结果.
第二十六页,共40页。
剖析 由三种事件的定义来判断,特别要注意“在一定条 件下”这一前提,忽略了它可能会导致概念不清.
第二十七页,共40页。
解析 由题意知,(2)、(4)、(5)是随机事件;(1)(6)是必然 事件;(3)是不可能事件.
第二十八页,共40页。
规律技巧 事件都是在一定条件下发生的,当条件变化 时,事件性质也发生变化.要判定事件是何种事件,首先要看 清条件,因为三种事件都是相对于一定条件而言的.第二步再 看它是一定发生,还是不一定发生,还是一定不发生.
变式训练3 一个口袋中有完全相同的2个白球、3个黑 球,从中任取2球.
(1)写出这个试验的基本事件空间; (2)求这个试验的基本事件总数; (3)“至少有1个白球”这一事件包含哪几个基本事件.
第三十四页,共40页。
解 (1)将小球编号:白色小球记为A,B,黑色小球记为 C,D,E,
则基本事件空间Ω={AB,AC,AD,AE,BC,BD,BE, CD,CE,DE}.
第九页,共40页。
思考探究 1.随机现象是否是一种杂乱无章的现象? 提示 随机现象不是一种杂乱无章的现象,是有一定规律 可循的. 2.事件的分类是确定的吗? 提示 事件的分类是相对于条件来讲的,在不同的条件 下,必然事件、随机事件、不可能事件可以相互转化.

2017-2018学年高中数学必修三(人教B版)课件:1.1算法与程序框图1.1.2、1.1.3 第1课时

2017-2018学年高中数学必修三(人教B版)课件:1.1算法与程序框图1.1.2、1.1.3 第1课时

下等马对下等马.由于齐威王每个等级的马都比田忌的强,三场比赛下来,田
忌都失败了.田忌垂头丧气正准备离开马场时,他的好朋友孙膑招呼他过来, 拍着他的肩膀说:“从刚才的情形看,大王的马比你的马快不了多少呀,你再 同他赛一次,我有办法让你取胜.” 你能设计出孙膑用同样的马使田忌获胜的步骤吗?
1.程序框图的概念 通常用一些 ________________________ 通用图形符号构成一张图 来表示算法,这种图称作程序框图 (简称框图)或流程图.
1 5.已知三角形边长分别为 a、b、c,设 p= (a+b+c),则三角形的面积 S 2 = pp-ap-bp-c, 这个公式称为海伦公式, 写出用这个公式求三边长分别 是 2、3、4 的三角形面积的算法,并画出程序框图. 导学号 95064039
[解析] S1 输入 a、b、c 的值; 1 S2 计算 p= (a+b+c); 2 S3 计算 S= pp-ap-bp-c; S4 输出 S.
互动探究学案
命题方向1 ⇨程序框图的认识和理解
下列对程序框图的图形符号的理解: ①任何一个程序框图都必须有起止框;②输入框只能放在输出框之前;③判 断框是惟一具有超过一个退出点的图形符号;④对于一个程序框图来说,判断框 内条件的写法是惟一的. 其中,正确的个数是 导学号 95064040 ( B ) A.1 C.3 B.2 D.4
[解析]
对于①,任何程序框图都必须有起始和结束,从而必须有起止框,
故正确;对于②,输入、输出框可以用在算法中任何需要输入、输出的位置, 故错误;对于③,判断框只有一个进入点,但一般有两个退出点,其他程序框 只有一个进入点和一个退出点,故正确;对于④,判断框内条件的写法不是惟
一的,故错误.
『规律总结』

2017-2018学年高中数学必修三(人教B版)课件:1.1算法与程序框图1.1.1

2017-2018学年高中数学必修三(人教B版)课件:1.1算法与程序框图1.1.1
数 学 必 修 ③ · 人 教 B 版
S6 输出运算结果 21.
返回导航
第一章 算法初步
命题方向3 ⇨非数值性问题的算法
有蓝和黑两个墨水瓶,但是错把黑墨水装在了蓝墨水瓶里面,而 蓝墨水装在了黑墨水瓶里面.请你设计一个算法,将其互换. 导学号 95064009
[分析]
数 学 必 修 ③ · 人 教 B 版
数 学 必 修 ③ · 人 教 B 版
S4 整理 S3 得到的方程,得到方程 3x-y+2- 3=0.
返回导航
第一章 算法初步
互动探究学案
数 学 必 修 ③ · 人 教 B 版
返回导航
第一章 算法初步
命题方向1 ⇨算法的概念
我们已学过的算法有一元二次方程的求根公式、加减消元法求二 元一次方程组的解、二分法求函数零点等.对算法的描述有: (1)对一类问题都有效; (2)对个别问题有效;
-b- b2-4ac x2= . 2a
数 学 必 修 ③ · 人 教 B 版
b S5 当 a≠0,b -4ac=0 时,原方程有两个相等实数解 x1=x2=- . 2a
2
S6 当 a≠0,b2-4ac<0 时,原方程没有实数解.
返回导航
第一章 算法初步
1.下面四种叙述中,能称为算法的是 导学号 95064013 ( B ) A.上学须有自行车 B.做米饭需要刷锅、淘米、添水、加热这些步骤 C.网上认识的朋友叫网友
数 学 必 修 ③ · 人 教 B 版
有限步后 能得出结果. 混不清,而且经过__________
返回导航
第一章 算法初步
1.算法的有穷性是指 导学号 95064000 ( C ) A.算法的最后包含输出 B.算法中每个操作步骤都是可执行的 C.算法的步骤必须有限

【优化方案】2012高中数学 第1章1.1.2程序框图同步课件 新人教B版必修3

【优化方案】2012高中数学 第1章1.1.2程序框图同步课件 新人教B版必修3
1.1.2
程序框图
课前自主学案 1.1.2 程 序 框 图 知能优化训练 课堂互动讲练
学习目标 1.通过模仿 、 操作 、 探索 、 经历设计程序框 通过模仿、 操作、 探索、 通过模仿 图表达解决问题的过程. 图表达解决问题的过程. 2.掌握常用的表示算法步骤的图形符号. .掌握常用的表示算法步骤的图形符号. 3.理解并掌握画程序框图的规则. .理解并掌握画程序框图的规则.
一次方程组的问题, 一次方程组的问题,可用公式 D=a11a22-a21a12, = b1a22-b2a12 b2a11-b1a21 x1 = 去解决, , x2 = 去解决 ,只需 D D 输入相应的系数,按相应步骤执行即可. 输入相应的系数,按相应步骤执行即可.
在本例中, 互动探究 2 在本例中,画出用高斯消去法求解方 x1+x2=17 ① 的程序框图. 的程序框图. 程组 x1+2x2=24 ②
求解一次方程组的程序框图
例3 画 出 用 公 式 法 解 方 程 组
x1+x2-17=0 = 的程序框图. 的程序框图. = x1+2x2-24=0
思路点拨】 由题目可获取以下主要信息: 【思路点拨】 由题目可获取以下主要信息:①明 的二元一次方程组; 确给出了方程组为关于x 确给出了方程组为关于 1,x2的二元一次方程组; ②明确了求解所用的软件. 明确了求解所用的软件. 解答本题应先明确用Scilab软件求解二元一次方程 解答本题应先明确用 软件求解二元一次方程 组的先后顺序,然后依次写出即可. 组的先后顺序,然后依次写出即可.
例1
算法: 【解】 算法: S1 r1=3,r2=4,h=5. , , = S2 求 l= ( r2-r1)2+h2. = 2 2 S3 S1=πr1,S2=πr2,S3=π(r1+r2)l. S4 S=S1+S2+S3. = S5 输出 S. 该算法的程序框图如图所示. 该算法的程序框图如图所示.

人教B版必修3高中数学1.2.2-1.2.3《条件语句和循环语句》word教案

人教B版必修3高中数学1.2.2-1.2.3《条件语句和循环语句》word教案

满足条件? 是
否 语句 2
ELSE
语句 2
语句 1
当计算机执行上述语句时,首先对 IF 后的条件进行判断,如果条件符合,就执行 THEN 后的语句 1, END IF 否则执行 ELSE 后的语句 2。其对应的程序框图为:(如上右图) 在某些情况下,也可以只使用 IF-THEN 语句:(即 IF-THEN 格式)
WHILE 条件 循环体
循环体 满足条件? 否 是
WEND
其中循环体是由计算机反复执行的一组语句构成的.WHLIE 后面的“条件”是用于控制计算机执行循 环体或跳出循环体的. 当计算机遇到 WHILE 语句时,先判断条件的真假,如果条件符合,就执行 WHILE 与 WEND 之间的循环 体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符 合为止.这时,计算机将不执行循环体,直接跳到 WEND 语句后,接着执行 WEND 之后的语句.因此,当型 循环有时也称为“前测试型”循环.其对应的程序结构框图为:(如上右图) (2)UNTIL 语句的一般格式是:
满足条件? IF 条件 THEN 语句 否

语句
END IF 2.循环语句 算法中的循环结构是由循环语句来实现的.对应于程序框图中的两种循环结构,一般程序设计语言中 也有当型(WHILE 型)和直到型(UNTIL 型)两种语句结构.即 WHILE 语句和 UNTIL 语句. (1)WHILE 语句
1.2.2-1.2.3 条件语句和循环语句
1.正确理解条件语句和循环语句的概念,并掌握其结构的区别与联 系; 2.会应用条件语句和循环语句编写程序. 重点:条件语句和循环语句的步骤、结构及功能. 难点:会编写程序中的条件语句和循环语句.

2019(新课标)高中数学人教B版目录(全)新版

2019(新课标)高中数学人教B版目录(全)新版

2.1.1 等式的性质与方程的解集
4.6 函数的应用 (二)
2.1.2 一元二次方程的解集及其根与 系数的关系
4.7
数学建模活动:生长规律的描述
2.1.3 方程组的解集

第五章 统计与概率
2.2 不等式
5.1 统计
2.2.1 不等式及其性质
2.2.2 不等式的解集 2.2.3 一元二次不等式的解法 2.2.4 均值不等式及其应用 第三章 函数 3.1 函数的概念与性质
6.2.3 平面向量的坐标及其运算 6.3 平面向量线性运算的应用 本书拓展阅读目录 对数发明起源的简介 素数个数与对数 指数运算与生活哲学 我国古代统计工作简介 用样本估计总体的失败案例 “黄金72小时”中的概率 向量的推广与应用
人教B版 (2019)必修三 第七章 三角函数 7.1 任意角的概念与弧度制
6.1.1 向量的概念
自主招生中的充分条件与必要条件
6.1.2 向量的加法
《九章算术》中的代数成就简介
6.1.3 向量的减法
函数定义的演变过程简介
6.1.4数乘向量
物理中的变化率
6.1.5 向量的线性运算
付出与收获的关系
6.2 向量基本定理与向量的坐标
二分法在搜索中的应用
6.2.1 向量基本定理
6.2.2 直线上向量的坐标及其运算
10.2 复数的运算
1.2.5 空间中的距离
10.2.1 复数的加法与减法
第二章 平面解析几何
10.2.2 复数的乘法与除法
2.1坐标法
10.3 复数的三角形式及其运算
2.2 直线及其方程
第十一章 立体几何初步
2.2.1直线的倾斜角 与斜率
11.1 空间几何体

高中数学人教新课标B版必修3--《1.1.2 程序框图》教学设计(表格式)

高中数学人教新课标B版必修3--《1.1.2 程序框图》教学设计(表格式)

1. 框图中具有赋值、执行计算语句的是()
A 处理框
B 输入、输出框
C 循环框
D 判断框
2.下面程序框图中具有超过一个退出点的符号是()
3.已知正四棱锥的底面边长为a,高为h,求给定一组边长和高的正四棱锥的体积,写出算法,画出相应的
程序框图。

题的能力分析,并从实
际生活中找到模型和
解决的办法
巩固练习
4.下边程序框图表
示的算法是( )
A.输出c,b,a
B.输出最大值
C.输出最小值
D.比较a,b,c的大小
5.读下面框图,
说明该程序
框图输出的结果。

学生自主解决巩固算法
课堂小结1、程序框图:
2、算法的描述方式:
3、算法的特点
学生归纳
老师补充
巩固新知
课时作业课后作业:教材A1,3 B组1,3 独立完成巩固本节
所学的知识
与方法。

2019-2020学年高中数学人教B版必修3教学案:第三章 3.1 3.1.1 & 3.1.2 随机现象 事件与基本事件空

2019-2020学年高中数学人教B版必修3教学案:第三章 3.1 3.1.1 & 3.1.2 随机现象 事件与基本事件空

3.1.1 & 3.1.2随机现象事件与基本事件空间预习课本P91~94,思考并完成以下问题(1)必然现象和随机现象是如何定义的?(2)事件分为哪三类?(3)基本事件和基本事件空间是如何定义?[新知初探]1.随机现象与随机事件(1)必然现象与随机现象:(2)事件:①不可能事件:在同样的条件下重复进行试验时,始终不会发生的结果.②必然事件:在同样的条件下重复进行试验时,每次试验中一定会发生的结果.③随机事件:在同样的条件下重复进行试验时,可能发生,也可能不发生的结果.2.基本事件与基本事件空间(1)基本事件:试验中不能再分的最简单的,且其他事件可以用它们来描绘的随机事件.(2)基本事件空间:①定义:所有基本事件构成的集合称为基本事件空间.②表示:基本事件空间常用大写希腊字母Ω表示.[小试身手]1.下列现象是必然现象的是( )A.一天中进入某超市的顾客人数B.一顾客在超市中购买的商品数C.一颗麦穗上长着的麦粒数D.早晨太阳从东方升起答案:D2.下列事件:①长度为3,4,5的三条线段可以构成一个直角三角形;②经过有信号灯的路口,遇上红灯;③下周六是晴天.其中,是随机事件的是( )A.①②B.②③C.③①D.②解析:选B①为必然事件;②③为随机事件.3.“李晓同学一次掷出3枚骰子,3枚全是6点”的事件是( )A.不可能事件B.必然事件C.可能性较大的随机事件D.可能性较小的随机事件解析:选D掷出的3枚骰子全是6点,可能发生,但发生的可能性较小.4.先后抛掷两枚质地均匀的硬币,所有可能的结果为________.答案:(正,正)、(正,反)、(反,正)、(反,反)必然现象、随机现象[典例](1)将三个小球全部放入两个盒子中,其中有一个盒子里有一个以上的球;(2)一个射击运动员每次射击命中的环数;(3)三角形的内角和为180°;(4)二次函数y=ax2+bx+c(a≠0)的开口方向.[解](1)三个小球全部放入两个盒子,其中有一个盒子里有一个以上的球,这个结果一定发生,故为必然现象;(2)射击运动员每次射击命中的环数可能为1环,2环等,因此是随机现象;(3)三角形的内角和一定是180°,是确定的,故为必然现象;(4)二次函数y=ax2+bx+c(a≠0)的开口方向与a的取值有关,当a>0时,开口向上,当a<0时,开口向下,故在a≠0的条件下开口可能向上也可能向下,故是随机现象.判断是必然现象还是随机现象关键点是看给定条件下的结果是否一定发生,若一定发生,则为必然现象,若不确定,则其为随机现象,即随机现象事先难以预料,而必然现象事先就能知道结果.[活学活用]判断下列现象是必然现象还是随机现象.(1)在一个装有1个白球,9个黄球的不透明袋子中,任意摸出两球,至少有一个黄球;(2)一个不透明的袋子中装有5个白球,2个黑球,3个红球,大小形状完全相同,搅拌均匀后,从中任取一球为红球.解:(1)袋中装有1个白球、9个黄球,从中任取2个,一定至少有一个黄球,故是必然现象.(2)袋中有5个白球,2个黑球,3个红球,从中任取一个,可能是白球,可能是黑球,也可能是红球,故是随机现象.事件类型的判断[典例](1)某人购买福利彩票一注,中奖500万元;(2)三角形的两边之和大于第三边;(3)没有空气和水,人类可以生存下去;(4)从分别标有1,2,3,4的四张标签中任取一张,抽到1号标签;(5)科学技术达到一定水平后,不需任何能量的“永动机”将会出现.[解](1)购买一注彩票,可能中奖,也可能不中奖,所以是随机事件.(2)所有三角形的两边之和都大于第三边,所以是必然事件.(3)空气和水是人类生存的必要条件,没有空气和水,人类无法生存,所以是不可能事件.(4)任意抽取,可能得到1,2,3,4号标签中的任一张,所以是随机事件.(5)由能量守恒定律可知,不需任何能量的“永动机”不会出现,所以是不可能事件.对事件分类的两个关键点(1)条件:在条件S下事件发生与否是与条件相对而言的,没有条件,无法判断事件是否发生;(2)结果发生与否:有时结果较复杂,要准确理解结果包含的各种情况.[活学活用]指出下列事件是必然事件、不可能事件,还是随机事件.(1)我国东南沿海某地明年将受到3次冷空气的侵袭;(2)抛掷硬币10次,至少有一次正面向上;(3)同一门炮向同一目标发射多枚炮弹,其中50%的炮弹击中目标;(4)没有水分,种子发芽.解:(1)我国东南沿海某地明年可能受到3次冷空气侵袭,也可能不是3次,是随机事件.(2)抛掷硬币10次,也可能全是反面向上,也可能有正面向上,是随机事件.(3)同一门炮向同一目标发射,命中率可能是50%,也可能不是50%,是随机事件.(4)没有水分,种子不可能发芽,是不可能事件.基本事件与基本事件空间[典例] y,结果为(x,y).(1)写出这个试验的基本事件空间;(2)求这个试验的基本事件的总数;(3)“x+y=5”这一事件包含哪几个基本事件?“x<3且y>1”呢?(4)“xy=4”这一事件包含哪几个基本事件?“x=y”呢?[解](1)Ω={(1,1),(1,2),(1, 3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.(2)基本事件的总数为16.(3)“x+y=5”包含以下4个基本事件:(1,4),(2,3),(3,2),(4,1);“x<3且y>1”包含以下6个基本事件:(1,2),(1,3),(1,4),(2,2),(2,3),(2,4).(4)“xy=4”包含以下3个基本事件:(1,4),(2,2),(4,1);“x=y”包括以下4个基本事件:(1,1),(2,2),(3,3),(4,4).确定基本事件空间的方法(1)必须明确事件发生的条件;(2)根据题意,按一定的次序列出问题的答案.特别要注意结果出现的机会是均等的,按规律去写,要做到既不重复也不遗漏.[活学活用]甲、乙两人做出拳游戏(锤、剪、布).(1)写出基本事件空间;(2)写出事件“甲赢”;(3)写出事件“平局”.解:(1)Ω={(锤,剪),(锤,布),(锤,锤),(剪,锤)(剪,剪),(剪,布),(布,锤),(布,剪),(布,布)}.(2)记“甲赢”为事件A,则A={(锤,剪),(剪,布),(布,锤)}.(3)记“平局”为事件B,则B={(锤,锤),(剪,剪),(布,布)}.[层级一学业水平达标]1.同时投掷两枚大小相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的基本事件的个数是( )A.3 B.4C.5 D.6解析:选D有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)共6个基本事件.2.在25件同类产品中,有2件次品,从中任取3件产品,其中不可能事件为( )A.3件都是正品B.至少有1件次品C.3件都是次品D.至少有1件正品解析:选C25件产品中只有2件次品,所以不可能取出3件都是次品.3.写出下列试验的基本事件空间:(1)甲、乙两队进行一场足球赛,观察甲队比赛结果(包括平局)________;(2)从含有6件次品的50件产品中任取4件,观察其中次品数________.解析:(1)对于甲队来说,有胜、平、负三种结果;(2)从含有6件次品的50件产品中任取4件,其次品的个数可能为0,1,2,3,4,不能再有其他结果.答案:(1)Ω={胜,平,负} (2)Ω={0,1,2,3,4}4.做试验“从0,1,2这3个数字中,不放回地取两次,每次取一个数字,构成有序数对(x,y),x为第1次取到的数字,y为第2次取到的数字”.(1)写出这个试验的基本事件空间;(2)求这个试验基本事件的总数;(3)写出“第1次取出的数字是2”这一事件.解:(1)这个试验的基本事件空间Ω={(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)}.(2)易知这个试验的基本事件的总数是6.(3)记“第1次取出的数字是2”这一事件为A,则A={(2,0),(2,1)}.[层级二应试能力达标]1.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.①B.②C.③D.④解析:选D三角形的三条边必须满足两边之和大于第三边.2.在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是( ) A.必然事件B.不可能事件C.随机事件D.以上选项均不正确解析:选C若取1,2,3,则和为6,否则和大于6,所以“这三个数字的和大于6”是随机事件.3.已知集合A={-9,-7,-5,-3,-1,0,2,4,6,8},从集合A中任取不相同的两个数作为点P的坐标,则事件“点P落在x轴上”包含的基本事件共有( )A.7个B.8个C.9个D.10个解析:选C“点P落在x轴上”包含的基本事件的特征是纵坐标为0,横坐标不为0,因A中有9个非零数,故选C.4.已知集合A是集合B的真子集,下列关于非空集合A,B的四个命题:①若任取x∈A,则x∈B是必然事件;②若任取x∉A,则x∈B是不可能事件;③若任取x∈B,则x∈A是随机事件;④若任取x∉B,则x∉A是必然事件.其中正确的命题有( )A.1个B.2个C.3个D.4个解析:选C∵集合A是集合B的真子集,∴A中的任意一个元素都是B中的元素,而B中至少有一个元素不在A中,因此①正确,②错误,③正确,④正确.5.下列给出五个事件:①某地2月3日下雪;②函数y=a x(a>0,且a≠1)在定义域上是增函数;③实数的绝对值不小于0;④在标准大气压下,水在1 ℃结冰;⑤a,b∈R,则ab=ba.其中必然事件是________;不可能事件是________;随机事件是________.解析:由必然事件、不可能事件、随机事件的定义即可得到答案.答案:③⑤④①②6.从1,2,3,4,5中随机取三个不同的数,则其和为奇数这一事件包含的基本事件数为________.解析:从1,2,3,4,5中随机取三个不同的数有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种情况,其中(1,2,4),(1,3,5),(2,3,4),(2,4,5)中三个数字之和为奇数.答案:47.设集合A={x|x2≤4,x∈Z},a,b∈A,设直线3x+4y=0与圆(x-a)2+(y-b)2=1相切为事件M,用(a,b)表示每一个基本事件,则事件M所包含的基本事件为___________.解析:A ={-2,-1,0,1,2},由直线与圆相切知,|3a +4b|5=1, 所以3a +4b =±5,依次取a =-2,-1,0,1,2,验证知,只有⎩⎪⎨⎪⎧ a =-1,b =2,⎩⎪⎨⎪⎧ a =1,b =-2满足等式. 答案:(-1,2),(1,-2)8.将一枚质地均匀且四个面上分别标有1,2,3,4的正四面体先后抛掷两次,其底面落于桌面上,记第一次朝下面的数字为x ,第二次朝下面的数字为y .用(x ,y )表示一个基本事件.(1)请写出所有的基本事件.(2)满足条件“x y为整数”这一事件包含哪几个基本事件? 解:(1)先后抛掷两次正四面体的基本事件:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).共16个基本事件.(2)用A 表示满足条件“x y为整数”的事件, 则A 包含的基本事件有:(1,1),(2,1),(2,2),(3,1),(3,3),(4,1),(4,2),(4,4),共8个基本事件.9.设有一列北上的火车,已知停靠的站由南至北分别为S 1,S 2,…,S 10站.若甲在S 3站买票,乙在S 6站买票,设基本事件空间Ω表示火车所有可能停靠的站,令A 表示甲可能到达的站的集合,B 表示乙可能到达的站的集合.(1)写出该事件的基本事件空间Ω;(2)写出事件A 、事件B 包含的基本事件;(3)铁路局需为该列车准备多少种北上的车票?解:(1)Ω={S 1,S 2,S 3,S 4,S 5,S 6,S 7,S 8,S 9,S 10};(2)A ={S 4,S 5,S 6,S 7,S 8,S 9,S 10};B ={S 7,S 8,S 9,S 10}.(3)铁路局需要准备从S 1站发车的车票共计9种,从S 2站发车的车票共计8种,……,从S 9站发车的车票1种,合计共9+8+…+2+1=45(种).。

高中数学3.1.2函数的单调性第1课时函数的单调性及函数的平均变化率人教B版必修第一册

高中数学3.1.2函数的单调性第1课时函数的单调性及函数的平均变化率人教B版必修第一册

第1课时 函数的单调性及函数的平均变化率[A 基础达标]1.如图是函数y =f (x )的图像,则此函数的单调递减区间的个数是( )A .1B .2C .3D .4解析:选B.由图像,可知函数y =f (x )的单调递减区间有2个.故选B. 2.下列函数中,在区间(0,2)上为增函数的是( ) A .y =3-x B .y =x 2+1 C .y =1xD .y =-|x +1|解析:选B.y =3-x ,y =1x,y =-|x +1|在(0,2)上都是减函数,只有y =x 2+1在(0,2)上是增函数.3.若函数f (x )在R 上是减函数,则下列关系式一定成立的是( ) A .f (a )>f (2a ) B .f (a 2)<f (a ) C .f (a 2+a )<f (a )D .f (a 2+1)<f (a 2)解析:选D.因为f (x )是R 上的减函数,且a 2+1>a 2,所以f (a 2+1)<f (a 2).故选D. 4.函数y =|x +2|在区间[-3,0]上( ) A .递减 B .递增 C .先减后增D .先增后减解析:选C.因为y =|x +2|=⎩⎪⎨⎪⎧x +2,x ≥-2,-x -2,x <-2.作出y =|x +2|的图像,如图所示,易知在[-3,-2)上为减函数,在[-2,0]上为增函数.5.(2019·宣城检测)已知函数y =ax 和y =-bx在(0,+∞)上都是减函数,则函数f (x )=bx +a 在R 上是( )A .减函数且f (0)<0B .增函数且f (0)<0C .减函数且f (0)>0D .增函数且f (0)>0解析:选A.因为y =ax 和y =-bx在(0,+∞)上都是减函数, 所以a <0,b <0,所以f (x )=bx +a 为减函数且f (0)=a <0,故选A.6.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥1,5-x ,x <1,则f (x )的单调递减区间是________.解析:当x ≥1时,f (x )是增函数,当x <1时,f (x )是减函数,所以f (x )的单调递减区间为(-∞,1).答案:(-∞,1)7.如果二次函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上是增函数,则实数a 的取值范围为________.解析:因为二次函数f (x )=x 2-(a -1)x +5的图像的对称轴为直线x =a -12,又函数f (x )在区间⎝ ⎛⎭⎪⎫12,1上是增函数,所以a -12≤12,解得a ≤2.答案:(-∞,2]8.已知函数f (x )在R 上是减函数,A (0,-2),B (-3,2)是其图像上的两点,那么不等式-2<f (x )<2的解集为__________.解析:因为A (0,-2),B (-3,2)在函数y =f (x )的图像上,所以f (0)=-2,f (-3)=2,故-2<f (x )<2可化为f (0)<f (x )<f (-3),又f (x )在R 上是减函数,因此-3<x <0.答案:(-3,0)9.作出函数f (x )=⎩⎪⎨⎪⎧-x -3,x ≤1,(x -2)2+3,x >1的图像,并指出函数的单调区间. 解:f (x )=⎩⎪⎨⎪⎧-x -3,x ≤1,(x -2)2+3,x >1的图像如图所示,由图像可知,函数的单调递减区间为(-∞,1]和(1,2]; 单调递增区间为(2,+∞). 10.已知函数f (x )=2x -1x +1.(1)求f (x )的定义域;(2)证明函数f (x )=2x -1x +1在[1,+∞)上是增函数.解:(1)由题意知x +1≠0,即x ≠-1.所以f (x )的定义域为(-∞,-1)∪(-1,+∞). (2)证明:∀x 1,x 2∈[1,+∞),且x 1<x 2,则f (x 2)-f (x 1)=2x 2-1x 2+1-2x 1-1x 1+1=(2x 2-1)(x 1+1)-(2x 1-1)(x 2+1)(x 2+1)(x 1+1)=3(x 2-x 1)(x 2+1)(x 1+1).因为x 1<x 2,所以x 2-x 1>0. 又因为x 1,x 2∈[1,+∞), 所以x 2+1>0,x 1+1>0. 所以f (x 2)-f (x 1)>0, 所以f (x 2)>f (x 1).所以函数f (x )=2x -1x +1在[1,+∞)上是增函数.[B 能力提升]11.函数y =2x -3的单调递增区间是( ) A .(-∞,-3] B.⎣⎢⎡⎭⎪⎫32,+∞ C .(-∞,1)D .[-1,+∞)解析:选B.由2x -3≥0,得x ≥32.又因为t =2x -3在(-∞,+∞)上单调递增,y =t在定义域上是增函数,所以y =2x -3的单调递增区间是⎣⎢⎡⎭⎪⎫32,+∞. 12.已知函数f (x )=⎩⎪⎨⎪⎧-x +3a ,x ≥0,x 2-ax +1,x <0是(-∞,+∞)上的减函数,则实数a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,13B.⎝ ⎛⎭⎪⎫0,13C.⎝ ⎛⎦⎥⎤0,13 D.⎣⎢⎡⎭⎪⎫0,13 解析:选A.当x <0时,函数f (x )=x 2-ax +1是减函数,解得a ≥0,当x ≥0时,函数f (x )=-x +3a 是减函数,分段点0处的值应满足1≥3a ,解得a ≤13,所以0≤a ≤13.13.已知定义在[1,4]上的函数f (x )是减函数,求满足不等式f (1-2a )-f (3-a )>0的实数a 的取值范围.解:由题意,可得f (1-2a )>f (3-a ). 因为f (x )在定义域[1,4]上单调递减,所以⎩⎪⎨⎪⎧1≤1-2a ≤41≤3-a ≤41-2a <3-a ,解得-1≤a ≤0,所以实数a 的取值范围为[-1,0].14.已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,求实数a 的取值范围.解:设1<x 1<x 2,所以x 1x 2>1.因为函数f (x )在(1,+∞)上是增函数,所以f (x 1)-f (x 2)=x 1-a x 1+a 2-⎝ ⎛⎭⎪⎫x 2-a x 2+a 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1+ax 1x 2<0.因为x 1-x 2<0,所以1+ax 1x 2>0,即a >-x 1x 2. 因为1<x 1<x 2,x 1x 2>1,所以-x 1x 2<-1,所以a ≥-1. 所以a 的取值范围是[-1,+∞).[C 拓展探究]15.设f (x )=x 2+1,g (x )=f (f (x )),F (x )=g (x )-λf (x ).问是否存在实数λ,使F (x )在区间⎝ ⎛⎭⎪⎫-∞,-22上是减函数且在区间⎝ ⎛⎭⎪⎫-22,0上是增函数? 解:假设存在这样的实数λ,则由f (x )=x 2+1,g (x )=f (f (x )),得g (x )=(x 2+1)2+1, 所以F (x )=g (x )-λf (x )=x 4+(2-λ)x 2+2-λ. 令t =x 2,则t =x 2在(-∞,0)上递减,且当x ∈⎝ ⎛⎭⎪⎫-∞,-22时,t >12;当x ∈⎝ ⎛⎭⎪⎫-22,0时,0<t <12.故要使F (x )在⎝ ⎛⎭⎪⎫-∞,-22上递减,在⎝ ⎛⎭⎪⎫-22,0上递增, 则函数φ(t )=t 2+(2-λ)t +2-λ在⎝ ⎛⎭⎪⎫12,+∞上递增,在⎝ ⎛⎭⎪⎫0,12上递减,所以函数φ(t )=t 2+(2-λ)t +2-λ的图像的对称轴t =λ-22为t =12,即λ-22=12,则λ=3.故存在这样的实数λ(λ=3),使F (x )在区间⎝ ⎛⎭⎪⎫-∞,-22上是减函数且在区间⎝ ⎛⎭⎪⎫-22,0上是增函数.。

人教B版高中数学必修三课件第一章1.21.2.3循环语句

人教B版高中数学必修三课件第一章1.21.2.3循环语句

[通一类]
2.写出求满足1+2+3+…+n>2011的最小自然数n的
程序.
解:程序为:
S=0; n=1; While S<=2011; S=S+n; n=n+1; end n=n-1; print(%io(2),n)
[研一题] [例3] 写出求12-22+32-42+…+992-1002的值的程
名称 格式
for循环 for循环变量=:初值 :步长 终值
循环体
end
while循环
while 表达式 循环体 end
名称
for循环
while循环
适合
循环次数
用于预先知道的情形
条件
用于预先不知道次循数环的情 形
作用 用来控制有规律的或重者复在运程算序中需要对某些语句进行 重复的执行
[小问题·大思维] 1.在“for语句”中,步长代表什么?它可以为零吗?
S=0 i=1 while i<=100 S=S+i i=i+1 end M=-S print(%io(2),M)
[悟一法] (1)for语句和while语句的区别可总结为:for语句“先执行,后 判断”,while语句“先判断,后执行”. (2)理解for循环的关系是理解计算机如何执行循环体,例如“S =S+1”这个执行过程实际上是每次循环直至结束.而while 循环则是在每次执行循环体之前,都要判断表达式是否为 真.这样重复执行,一直到表达式为假时,就跳过循环体部 分,结束循环. (3)在Scilab界面内可直接输入程序,for(while)循环语句可以 写在同一行,但在循环条件后面要用“,”号分开,也可以分 行写,但要记住加end.
序.
[自主解答] 法一:程序如下:
M=0; N=0; for i=1:2:99 M=M+i^2; end for i=2:2:100 N=N-i^2; end S=M+N; print%io2,S

《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修3【配套备课资源】1.1.2

《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修3【配套备课资源】1.1.2

3.表示“根据给定条件判断”的图形符号框的是
练一练·当堂检测、目标达成落实处
1.1.2
1.在设计计算机程序时要画出程序运行的程序框图,有了这
本 课 时 栏 目 开 关
个程序框图,再去设计程序就有了依据,从而就可以把整 个程序用机器语言表述出来,因此程序框图是我们设计程 序的基本和开端. 2.组成任何一个程序框图的三要素是“四框”、 “一线”加 “文字说明”.“四框”即起、止框、输入(出)框、处理 框、 判断框.“一线”即流程线,任意两个程序框之间都存 在流程线.“文字说明”即在框图内加以说明的文字、算 式等,这是每个框图不可缺少的内容.
问题 4 一个算法步骤到另一个算法步骤之间如何连接? 如果一个框图需要分开来画,怎样来处理?
答 一个算法步骤到另一个算法步骤之间用流程线连接;如 果一个框图需要分开来画,要在断开处画上连接点,并标出 连接点的号码.
研一研·问题探究、课堂更高效
探究点三 画程序框图的规则 问题
1.1.2
为了使大家彼此之间能够读懂各自画出的框图,也为
研一研·问题探究、课堂更高首先看
本 课 时 栏 目 开 关
到的是景点线路图,通过观看景点线路图能直观、迅速、 准确的知道景区有哪几个景点,各景点之间按怎样的路径 走,从而避免迷途或者漏掉景点的事情发生.本节将探究 使算法表达得直观、准确的方法,即程序框图.
1.1.2
问题 2 在一个程序框图中,能缺少起、止框吗?为什么?
答 起、止框是任何流程不可少的,因为任何程序框图中都 有开始和结束,所以必须有起、止框.
本 课 时 栏 目 开 关
问题 3 在一个算法程序框图中,输入数据只能在开始处,输 出数据只能在结束处,这种说法正确吗? 答 不正确,输入和输出可用在算法中任何需要输入、输出 的位置.

高中数学(人教新课标B版)教学设计 必修一:3.1.2 指数函数

高中数学(人教新课标B版)教学设计 必修一:3.1.2 指数函数

示范教案整体设计教学分析有了前面的知识储备,我们就可以顺理成章地学习指数函数的概念,作指数函数的图象以及研究指数函数的性质.本节安排的内容蕴涵了许多重要的数学思想方法,如数形结合的思想(用指数函数的图象研究指数函数的性质)等.同时,编写时充分关注与实际问题的结合,体现数学的应用价值.根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.三维目标1.通过实际问题了解指数函数的实际背景,理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质,体会具体到一般数学讨论方式及数形结合的思想.2.让学生了解数学来自生活,数学又服务于生活的哲理.培养学生观察问题、分析问题的能力,培养学生严谨的思维和科学正确的计算能力.3.通过训练点评,让学生更能熟练指数幂运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.重点难点教学重点:指数函数的概念和性质及其应用. 教学难点:指数函数性质的归纳、概括及其应用. 课时安排 2课时教学过程第1课时导入新课思路1.用清水漂洗衣服,若每次能洗去污垢的34,写出存留污垢y 与漂洗次数x 的关系式,它是函数关系式吗?若是,请计算若要使存留的污垢不超过原有的164,则至少要漂洗几次?教师引导学生分析,列出关系式y =(14)x ,发现这个关系式是个函数关系且它的自变量在指数的位置上,这样的函数叫做指数函数,引出本节课题.思路2.教师复习提问指数幂的运算性质,并要求学生计算23,20,2-2,1621324149,27,16-.再提问怎样画函数的图象,学生思考,分组交流,写出自己的答案8,1,14,2,9,17,先建立平面直角坐标系,再描点,最后连线.点出本节课题.推进新课 新知探究 提出问题1.一种放射性物质不断衰减为其他物质,每经过一年剩留量约是原来的84%,求出这种物质经过x 年后的剩留量y 与x 的关系式是__________.2.某种细胞分裂时,由一个分裂成两个,两个分裂成四个,四个分裂成十六个,依次类推,一个这样的细胞分裂x 次后,得到的细胞个数y 与x 的关系式是__________.讨论结果:1.y =0.84x 2.y =2x 提出问题1你能说出函数y =0.84x 与函数y =2x 的共同特征吗?2你是否能根据上面两个函数关系式给出一个一般性的概念?3为什么指数函数的概念中明确规定a>0,a≠1?4为什么指数函数的定义域是实数集?5如何根据指数函数的定义判断一个函数是否是一个指数函数?请你说出它的步骤.活动:先让学生仔细观察,交流讨论,然后回答,教师提示点拨,及时鼓励表扬给出正确结论的学生,引导学生在不断探索中提高自己应用知识的能力,教师巡视,个别辅导,针对学生共性的问题集中解决.对于问题(1),看这两个函数的共同特征,主要是看底数和自变量以及函数值. 对于问题(2),一般性的概念是指用字母表示不变化的量即常量. 对于问题(3),为了使运算有意义,同时也为了问题研究的必要性.对于问题(4),在(3)的规定下,我们可以把a x 看成一个幂值,一个正数的任何次幂都有意义.对于问题(5),使学生回想指数函数的定义,根据指数函数的定义判断一个函数是否是一个指数函数,紧扣指数函数的形式.讨论结果:(1)对于两个解析式我们看到每给自变量x 一个值,y 都有唯一确定的值和它对应,再就是它们的自变量x 都在指数的位置上,它们的底数都大于0,但一个大于1,一个小于1.0.84与2虽然不同,但它们是两个函数关系中的常量,因为变量只有x 和y.(2)对于两个解析式y =0.84x 和y =2x ,我们把两个函数关系中的常量用一个字母a 来表示,这样我们得到指数函数的定义:一般地,函数y =a x (a >0,a≠1,x ∈R )叫做指数函数,其中x 叫做自变量,函数的定义域是实数集R .(3)a =0时,x >0时,a x 总为0;x≤0时,a x 没有意义. a <0时,如a =-2,x =12,a x =(-2)21=-2显然是没有意义的.a =1时,a x 恒等于1,没有研究的必要.因此规定a >0,a≠1.此解释只要能说明即可,不要深化.(4)因为a >0,x 可以取任意的实数,所以指数函数的定义域是实数集R .(5)判断一个函数是否是一个指数函数,一是看底数是否是一个常数,再就是看自变量是否是一个x 且在指数位置上,满足这两个条件的函数才是指数函数.提出问题1前面我们学习函数的时候,根据什么思路研究函数的性质,对指数函数呢? 2前面我们学习函数的时候,如何作函数的图象?说明它的步骤., 3利用上面的步骤,作函数y =2x 的图象.4利用上面的步骤,作函数xy )21( 的图象.5观察上面两个函数的图象各有什么特点,再画几个类似的函数图象,看是否也有类似的特点?6根据上述几个函数图象的特点,你能归纳出指数函数的性质吗?7把y =2x 和xy )21(=的图象,放在同一坐标系中,你能发现这两个图象的关系吗? 8你能证明上述结论吗?9能否用y =2x 的图象画xy )21(=的图象?请说明画法的理由.10什么是限制函数?活动:教师引导学生回顾需要研究的函数的那些性质,共同讨论研究指数函数的性质的方法,强调数形结合,强调函数图象在研究函数性质中的作用,注意从具体到一般的思想方法的运用,渗透概括能力的培养,进行课堂巡视,个别辅导,投影展示画得好的部分学生的图象,及时评价学生,补充学生回答中的不足.学生独立思考,提出研究指数函数性质的思路,独立画图,观察图象及表格,表述自己的发现,同学们相互交流,形成对指数函数性质的认识,推荐代表发表本组的集体的认识.讨论结果:(1)我们研究函数时,根据图象研究函数的性质,由具体到一般,一般要考虑函数的定义域、值域、单调性、奇偶性,有时也通过画函数图象,从图象的变化情况来看函数的性质.(2)一般是列表,描点,连线,借助多媒体手段画出图象,用计算机作函数的图象. (3)列表. x … -3 -2 -1 0 1 2 3 … y =2x…1814121248…(4)列表. x … -3 -2 -1 0 1 2 3 … y =(12)x…8421121418…作图如下图.(5)通过观察上图,可知图象左右延伸无止境,说明定义域是实数.图象自左至右是上升的,说明是增函数,图象位于x轴上方,说明值域大于0.图象经过点(0,1),且y值分布有以下特点:x<0时,0<y<1;x>0时,y>1.图象不关于x轴对称,也不关于y轴对称,说明函数既不是奇函数也不是偶函数.通过观察下图,可知图象左右延伸无止境,说明定义域是实数.图象自左至右是下降的,说明是减函数,图象位于x轴上方,说明值域大于0.图象经过点(0,1),且y值分布有以下特点:x<0时,y>1;x>0时,0<y<1.图象不关于x轴对称,也不关于y轴对称,说明函数既不是奇函数也不是偶函数.可以再画下列函数的图象以作比较,y=3x,y=6x,y=(13)x,y=(16)x.重新观察函数图象的特点,推广到一般的情形.(6)一般地,指数函数y=a x在a>1和0<a<1的情况下,它的图象特征和函数性质如下表所示.图象特征函数性质a>1 0<a<1 a>1 0<a<1向x轴正负方向无限延伸函数的定义域为R图象关于原点和y轴不对称非奇非偶函数函数图象都在x轴上方函数的值域为R+函数图象都过定点(0,1) a0=1自左向右,图象逐渐上升自左向右,图象逐渐下降增函数减函数在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1x>0,a x>1 x>0,a x<1在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于1x<0,a x<1 x<0,a x>1一般地,指数函数y=a x在底数a>1及0<a<1这两种情况下的图象和性质如下表所示:a>1 0<a<1(7)在同一坐标系中作出y =2x 和y =(12)x 两个函数的图象,如下图.经过仔细研究发现,它们的图象关于y 轴对称.(8)证明:设点P(x 1,y 1)是y =2x 上的任意一点,它关于y 轴的对称点是P 1(-x 1,y 1),它满足方程y =(12)x =2-x ,即点P 1(-x 1,y 1)在y =(12)x 的图象上.反之亦然,所以y =2x 和y =(12)x 两个函数的图象关于y 轴对称.(9)因为y =2x 和y =(12)x 两个函数的图象关于y 轴对称,所以可以先画其中一个函数的图象,利用轴对称的性质可以得到另一个函数的图象,同学们一定要掌握这种作图的方法,对以后的学习非常有好处.(10)由指数函数的定义可知,指数函数的定义域是实数集,但在实际问题中不都如此.例如,开始引进的两个函数的例子,函数y =2x 的定义域是非负整数集,函数y =0.84x 的定义域是正整数集,它们的定义域都是指数函数定义域的子集,而且它们在其定义域内分别与指数函数y =2x ,y =0.84x 取相同的值.通常,我们把这类函数称为指数函数的“限制函数”.应用示例思路1例1判断下列函数是否是一个指数函数?y =x 2,y =8x ,y =2·4x ,y =(2a -1)x (a >12,a≠1),y =(-4)x ,y =πx ,y =6x3+2.活动:学生观察,小组讨论,尝试解决以上题目,学生紧扣指数函数的定义解题,因为y =x 2,y =2·4x ,y =6x 3+2都不符合y =a x 的形式,教师强调y =a x 的形式的重要性,即a 前面的系数为1,a 是一个正常数(也可以是一个表示正常数的代数式),指数必须是x 的形式或通过转化后能化为x 的形式.解:y =8x ,y =(2a -1)x (a >12,a≠1),y =πx 是指数函数;y =(-4)x ,y =x 2,y =2·4x ,y=6x 3+2不是指数函数.2比较下列各题中的两个值的大小:(1)1.72.5与1.73;(2)0.8-0.1与0.8-0.2;(3)1.70.3与0.93.1.活动:学生自己思考或讨论,回忆比较数的大小的方法,结合题目实际,选择合理的,再写出(最好用实物投影仪展示写得正确的答案),比较数的大小,一是作差,看两个数差的符号,若为正,则前面的数大;二是作商,但必须是同号数,看商与1的大小,再决定两个数的大小;三是计算出每个数的值,再比较大小;四是利用图象;五是利用函数的单调性.教师在学生中巡视其他学生的解答,发现问题及时纠正并及时评价.解法一:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出y =1.7x 的图象,如下图.在图象上找出横坐标分别为2.5、3的点,显然,图象上横坐标为3的点在横坐标为2.5的点的上方,所以1.72.5<1.73,同理0.8-0.1<0.8-0.2,1.70.3>0.93.1.解法二:用计算器直接计算:1.72.5≈3.77,1.73≈4.91,所以1.72.5<1.73.同理0.8-0.1<0.8-0.2,1.70.3>0.93.1. 解法三:利用函数单调性:(1)1.72.5与1.73的底数是1.7,它们可以看成函数y =1.7x ,当x =2.5和3时的函数值;因为1.7>1,所以函数y =1.7x 在R 上是增函数,而2.5<3,所以1.72.5<1.73.(2)0.8-0.1与0.8-0.2的底数是0.8,它们可以看成函数y =0.8x ,当x =-0.1和-0.2时的函数值;因为0<0.8<1,所以函数y =0.8x 在R 上是减函数,而-0.1>-0.2,所以0.8-0.1<0.8-0.2.(3)因为1.70.3>1,0.93.1<1,所以1.70.3>0.93.1.点评:在第(3)小题中,可以用解法一、解法二解决,但不适合.由于1.70.3与0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小,这里的1是中间值.思路2例1求下列函数的定义域和值域: (1)412-x y =;(2)||)32(x y -=.活动:学生先思考,再回答,由于指数函数y =a x (a >0且a≠1)的定义域是R ,所以这类类似指数函数的函数的定义域要借助指数函数的定义域来求,教师适时点拨和提示,求定义域,只需使指数有意义即可,转化为解不等式.解:(1)令x -4≠0,则x≠4,所以函数y =21x -4的定义域是{x ∈R |x≠4},又因为1x -4≠0,所以412-x ≠1,即函数412-x y =的值域是{y|y >0且y≠1}.(2)因为-|x|≥0,所以只有x =0. 因此函数||)32(x y -=的定义域是{x|x =0}.而||)32(x y -==(23)0=1,即函数||)32(x y -=的值域是{y|y =1}. 点评:求与指数函数有关的定义域和值域时,要注意到充分考虑并利用指数函数本身的2比较下列两个数的大小:(1)30.8,30.7;(2)0.75-0.1,0.750.1;(3)1.80.6,0.81.6;(4)53322,)31(--. 活动:教师提示学生指数函数的性质,根据学生的解题情况及时评价学生. 解法一:直接用科学计算器计算各数的值,再对两个数进行大小的比较: 对(1),因为30.8=2.408 225,30.7=2.157 669,所以30.8>30.7;对(2),因为0.75-0.1=1.029 186,0.750.1=0.971 642,所以0.75-0.1>0.750.1; 对(3),因为1.80.6=1.422 864,0.81.6=0.699 752,所以1.80.6>0.81.6;对(4),因为32)31(-=2.080 084,2-35=0.659 754,所以32)31(->2-35.解法二:利用指数函数的性质对两个数进行大小的比较:对(1),因为函数y =3x 在R 上是增函数,0.8>0.7,所以30.8>30.7;对(2),因为函数y =0.75x 在R 上是减函数,0.1>-0.1,所以0.75-0.1>0.750.1; 对(3),由指数函数的性质知1.80.6>1.80=1=0.80>0.81.6,所以1.80.6>0.81.6;对(4),由指数函数的性质知32)31(->(13)0=1=20>2-35,所以32)31(->2-35.解法三:利用图象法来解,具体解法略.点评:在利用指数函数的性质对两个数进行大小比较时,首先把这两个数看作指数函数的两个函数值,利用指数函数的单调性比较.若两个数不是同一函数的两个函数值,则寻求一个中间量,两个数都与这个中间量进行比较,这是常用的比较数的大小的方法,然后得两个数的大小,数学上称这种方法为“中间量法”.知能训练1.下列关系中正确的是()答案:D2.函数y=a x(a>0,a≠1)对任意的实数x、y都有()A.f(xy)=f(x)·f(y)B.f(xy)=f(x)+f(y)C.f(x+y)=f(x)·f(y)D.f(x+y)=f(x)+f(y)答案:C3.函数y=a x+5+1(a>0,a≠1)恒过定点__________.答案:(-5,2)拓展提升探究一:在同一坐标系中作出函数y=2x,y=3x,y=10x的图象,比较这三个函数增长的快慢.活动:学生深刻回顾作函数图象的方法,交流作图的体会.列表、描点、连线,作出函数y=2x,y=3x,y=10x的图象,如下图.x …-2 -1 0 1 2 3 …10 …y=2x…0.25 0.5 1 2 4 8 … 1 024 …y=3x...0.11 0.33 1 3 9 27 (59)049…y=10x…0.01 0.1 1 10 100 1 000 …1010…从表格或图象可以看出:(1)x<0时,有2x>3x>10x;(2)x>0时,有2x<3x<10x;(3)当x从0增长到10,函数y=2x的值从1增加到1 024,而函数y=3x的值从1增加到59 049.这说明x>0时y=3x比y=2x的函数值增长得快.同理y=10x比y=3x的函数值增长得快.因此得:一般地,a>b>1时,(1)x<0时,有a x<b x<1;(2)x=0时,有a x=b x=1;(3)x>0时,有a x>b x>1;(4)指数函数的底数越大,x>0时其函数值增长就越快.探究二:分别画出底数为0.2、0.3、0.5的指数函数的图象(如下图所示),对照底数为2、3、10的指数函数的图象,研究指数函数y=a x(0<a<1)中a对函数的图象变化的影响.由此得:一般地,0<a<b<1时,(1)x>0时,有a x<b x<1;(2)x=0时,有a x=b x=1;(3)x<0时,有a x>b x>1;(4)指数函数的底数越小,x>0时,其函数值减少就越快.课堂小结1.指数函数的定义.2.指数函数的图象和性质.3.利用函数的图象说出函数的性质,即数形结合的思想(方法),它是一种非常重要的数学思想和研究方法.4.利用指数函数的单调性比较几个数的大小,特别是中间变量法.作业课本本节练习B2、3.设计感想本节课是在前面研究了函数性质的基础上,研究具体的初等函数,它是重要的初等函数,它有着丰富的内涵,且和我们的实际生活联系密切,也是以后学习对数函数的基础,在指数函数的概念讲解过程中,既要向学生说明定义域是什么,又要向学生交代,为什么规定底数a 是大于0而不等于1的,本节内容课堂容量大,要提高课堂的效率和节奏,多运用信息化的教学手段,顺利完成本堂课的任务.备课资料例1 (1)求使不等式4x >32成立的x 的集合; (2)已知a 45>a2,求实数a 的取值范围.活动:学生先思考,再讨论,然后回答.(1)由于x 在指数位置上,因此,要利用指数函数的性质进行转化,特别是指数函数的单调性,(2)也是利用指数函数的性质判断底数的范围.解:(1)4x >32,即22x >25.因为y =2x 是R 上的增函数,所以2x >5,即x >52.满足4x >32的x 的集合是(52,+∞).(2)由于45<2,则y =a x 是减函数,所以0<a <1.点评:正确理解和运用指数函数的性质是解题的关键. 例2用函数单调性的定义证明指数函数的单调性.活动:教师点拨提示定义法判断函数单调性的步骤,单调性的定义证明函数的单调性,要按规定的格式书写.证法一:设x 1、x 2∈R ,且x 1<x 2,则 y 2-y 1=ax 2-ax 1=ax 1(ax 2-x 1-1).因为a >1,x 2-x 1>0,所以ax 2-x 1>1,即ax 2-x 1-1>0. 又因为ax 1>0, 所以y 2-y 1>0, 即y 1<y 2.所以当a >1时,y =a x ,x ∈R 是增函数. 同理可证,当0<a <1时,y =a x 是减函数.证法二:设x 1、x 2∈R ,且x 1<x 2,则y 2与y 1都大于0,则y 2y 1=ax 2ax 1=ax 2-x 1.因为a >1,x 2-x 1>0,所以ax 2-x 1>1,即y 2y 1>1,y 1<y 2.所以当a >1时,y =a x ,x ∈R 是增函数. 同理可证,当0<a <1时,y =a x 是减函数.例3截止到1999年底,我国人口约13亿,如果今后能将人口年平均增长率控制在1%,那么经过20年后,我国人口数最多为多少?(精确到亿)活动:师生共同讨论,将实际问题转化为数学表达式,建立目标函数,常采用特殊到一般的方式,教师引导学生注意题目中自变量的取值范围,可以先考虑一年一年增长的情况,再从中发现规律,最后解决问题:1999年底 人口约为13亿;经过1年 人口约为13(1+1%)亿;经过2年 人口约为13(1+1%)(1+1%)=13(1+1%)2亿;经过3年人口约为13(1+1%)2(1+1%)=13(1+1%)3亿;经过x年人口约为13(1+1%)x亿;经过20年人口约为13(1+1%)20亿.解:设今后人口年平均增长率为1%,经过x年后,我国人口数为y亿,则y=13(1+1%)x,当x=20时,y=13(1+1%)20≈16(亿).答:经过20年后,我国人口数最多为16亿.点评:类似此题,设原值为N,平均增长率为p,则对于经过时间x年后总量y=N(1+p)x,像y=N(1+p)x等形如y=ka x(k∈R,a>0且a≠1)的函数称为指数型函数.(设计者:韩双影)第2课时导入新课思路1.我们在学习指数函数的性质时,利用了指数函数的图象的特点,并且是用类比和归纳的方法得出,在上节课的探究中我们知道,函数①y=3x,②y=3x+1,③y=3x-1的图象之间的关系,由其中的一个可得到另外两个的图象,那么,对y=a x与y=a x+m(a>0,m∈R)有着怎样的关系呢?在理论上,含有指数函数的复合函数是否具有奇偶性呢?这是我们本堂课研究的内容.教师点出课题.思路2.我们在第一章中,已学习了函数的性质,特别是单调性和奇偶性是某些函数的重要特点,我们刚刚学习的指数函数,严格地证明了指数函数的单调性,便于我们在解题时应用这些性质,在实际生活中,往往遇到的不单单是指数函数,还有其他形式的函数,有的是指数函数的复合函数,我们需要研究它的单调性和奇偶性,这是我们面临的问题,也是我们本堂课要解决的问题.推进新课新知探究提出问题1指数函数有哪些性质?2利用单调性的定义证明函数单调性的步骤有哪些?3对复合函数,如何证明函数的单调性?4如何判断函数的奇偶性,有哪些方法?活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容.讨论结果:(1)指数函数的图象和性质.一般地,指数函数y=a x在底数a>1及0<a<1这两种情况下的图象和性质如下表所示:a>10<a<1(2)依据函数单调性的定义证明函数单调性的步骤是:①取值.即设x1、x2是该区间内的任意两个值且x1<x2.②作差变形.即求f(x2)-f(x1),通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形.③定号.根据给定的区间和x2-x1的符号确定f(x2)-f(x1)的符号,当符号不确定时,可以进行分类讨论.④判断.根据单调性定义作出结论.(3)对于复合函数y=f可以总结为:当函数f(x)和g(x)的单调性相同时,复合函数y=f是增函数;当函数f(x)和g(x)的单调性相异即不同时,复合函数y=f是减函数;又简称为口诀“同增异减”.(4)判断函数的奇偶性:一是利用定义法,即首先是定义域关于原点对称,再次是考察式子f(x)与f(-x)的关系,最后确定函数的奇偶性;二是作出函数图象或从已知图象观察,若图象关于原点或y轴对称,则函数具有奇偶性.应用示例思路1例在同一坐标系下作出下列函数的图象,并指出它们与指数函数y=2x的图象的关系.(1)y=2x+1与y=2x+2;(2)y=2x-1与y=2x-2.活动:教师适当时候点拨,学生回想作图的方法和步骤,特别是指数函数图象的作法,学生回答并到黑板上作图,教师指点学生,列出对应值表,抓住关键点,特别是(0,1)点,或用计算机作图.解:(1)列出函数数据表作出图象如下图.x …-3 -2 -1 0 1 2 3 …2x…0.125 0.25 0.5 1 2 4 8 …2x+1…0.25 0.5 1 2 4 8 16 …2x+2…0.5 1 2 4 8 16 32 …比较可知函数y=2x+1、y=2x+2与y=2x的图象的关系为:将指数函数y=2x的图象向左平行移动1个单位长度,就得到函数y=2x+1的图象;将指数函数y=2x的图象向左平行移动2个单位长度,就得到函数y=2x+2的图象.(2)列出函数数据表作出图象如下图.x …-3 -2 -1 0 1 2 3 …2x…0.125 0.25 0.5 1 2 4 8 …2x-1…0.625 0.125 0.25 0.5 1 2 4 …2x-2…0.312 5 0.625 0.125 0.25 0.5 1 2 …比较可知函数y=2x-1、y=2x-2与y=2x的图象的关系为:将指数函数y=2x的图象向右平行移动1个单位长度,就得到函数y=2x-1的图象;将指数函数y=2x的图象向右平行移动2个单位长度,就得到函数y=2x-2的图象.点评:类似地,我们得到y=a x与y=a x+m(a>0,a≠1,m∈R)之间的关系:y=a x+m(a>0,m∈R)的图象可以由y=a x的图象变化而来.当m >0时,y =a x 的图象向左移动m 个单位得到y =a x +m 的图象;当m <0时,y =a x 的图象向右移动|m|个单位得到y =a x +m 的图象. 上述规律也简称为“左加右减”.思路2例1设a >0,f(x)=e x a +aex 在R 上满足f(-x)=f(x).(1)求a 的值;(2)证明f(x)在(0,+∞)上是增函数.活动:学生先思考或讨论,如果有困难,教师提示,引导.(1)求单独一个字母的值,一般是转化为方程,利用f(-x)=f(x)可建立方程. (2)证明增减性一般用定义法,回忆定义法证明增减性的步骤,规范书写的格式. (1)解:依题意,对一切x ∈R 有f(-x)=f(x)成立,即1ae x +ae x=e x a +a e x .所以(a -1a )(e x -1e x )=0对一切x ∈R 成立.由此可得a -1a =0,即a 2=1.又因为a >0,所以a =1.(2)证明:设0<x 1<x 2,f(x 1)-f(x 2)=e x1-e x2+1e x1-1e x2=(e x1-e x2)(1e x1+x2-1)=e x1(e x2-x1-1)·(1-e x1+x2e x1+x2).由x 1>0,x 2>0,x 2-x 1>0,得x 2+x 1>0,e x2-x1-1>0,1-e x2+x1<0,所以f(x 1)-f(x 2)<0,即f(x)在(0,+∞)上是增函数.点评:在已知等式f(-x)=f(x)成立的条件下,对应系数相等,求出a ,也可用特殊值求解.证明函数的单调性,严格按定义写出步骤,判断过程尽量明显直观.例2已知函数f(x)=3x ,且x =a +2时,f(x)=18,g(x)=3ax -4x 的定义域为. (1)求g(x)的解析式;(2)求g(x)的单调区间,确定其增减性并用定义证明; (3)求g(x)的值域.解:(1)因为f(x)=3x ,且x =a +2时f(x)=18,所以f(a +2)=3a +2=18.所以3a =2. 所以g(x)=3ax -4x =(3a )x -4x . 所以g(x)=2x -4x .(2)因为函数g(x)的定义域为,令t =2x ,因为x ∈时,函数t =2x 在区间上单调递增, 所以t ∈,则g(t)=t -t 2=-(t 2-t)=-(t -12)2+14,t ∈.因为函数t =2x 在区间上单调递增,函数g(t)=t -t 2在t ∈上单调递减,所以函数g(x)在区间上单调递减.证明:设x 1和x 2是区间上任意两个值,且x 1<x 2,g(x 2)-g(x 1)=2x 2-4x 2-2x 1+4x 1=(2x 2-2x 1)-(2x 2-2x 1)(2x 2+2x 1)=(2x 2-2x 1)(1-2x 1-2x 2),因为0≤x 1≤x 2≤1,所以2x 2>2x 1,且1≤2x 1<2,1<2x 2≤2. 所以2<2x 1+2x 2<4.所以-3<1-2x 1-2x 2<-1,可知(2x 2-2x 1)(1-2x 1-2x 2)<0. 所以g(x 2)<g(x 1).所以函数g(x)在区间上单调递减. (3)因为函数g(x)在区间上单调递减, 所以x ∈时,有g(1)≤g(x)≤g(0).因为g(1)=21-41=-2,g(0)=20-40=0, 所以-2≤g(x)≤0.故函数g(x)的值域为.点评:此题是一道有关函数的概念、函数性质的应用、推理、证明综合题,要通盘考虑. 知能训练求函数y =(12)|1+2x|+|x -2|的单调区间.活动:教师提示,因为指数含有两个绝对值,要去绝对值,要分段讨论,同时注意底数的大小,分析出指数的单调区间,再确定函数的单调区间,利用复合函数的单调性学生思考讨论,然后解答.解:由题意可知2与-12是区间的分界点.当x <-12时,因为y =(12)-1-2x -x +2=(12)1-3x =23x -1=12·8x ,所以此时函数为增函数.当-12≤x <2时,因为y =(12)1+2x -x +2=(12)3+x =2-3-x =18·(12)x ,所以此时函数为减函数.当x≥2时,因为y =(12)1+2x +x -2=(12)3x -1=21-3x =2·(18)x ,所以此时函数为减函数.当x 1∈上单调递增,在++…+ =500×1=500.点评:第(2)问是第(1)问的继续,第(1)问是第(2)问的基础,两个问号是衔接的,利用前一个问号解决后一个问号是我们经常遇到的情形,要注意问号与问号之间的联系. 课堂小结本节课复习了指数函数的性质,借助指数函数的性质的运用,我们对函数的单调性和奇偶性也进行了复习巩固,利用单调性和奇偶性解决了一些问题,对常考的函数图象的变换进行了学习,要高度重视,在不断学习中升华提高. 作业课本习题3—1 B 3、5、6.设计感想 指数函数作为一类基本的初等函数,它虽然不具有函数通性中的奇偶性,但是它与其他函数复合构成具有比较复杂的单调性的函数,同时也可以复合出比较特殊的奇函数和偶函数,判断复合函数的单调性和奇偶性要十分小心,严格按规定的要求,有时借助数形结合可帮我们找到解题思路,本堂课是在以前基础上的提高与深化,同时又兼顾了高考常考的内容,因此涉及面广,容量大,要集中精力,加快速度,高质量完成教学任务.备课资料 富兰克林的遗嘱与拿破仑的诺言富兰克林利用放风筝而感受到电击,从而发明了避雷针.这位美国著名的科学家死后留下了一份有趣的遗嘱:“……一千英镑赠给波士顿的居民,如果他们接受了这一千英镑,那么这笔钱应该托付给一些挑选出来的公民,他们得把这些钱按每年5%的利率借给一些年轻的手工业者去生息.这些款过了100年增加到131 000英镑.我希望那时候用100 000英镑来建立一所公共建筑物,剩下的31 000英镑拿去继续生息100年.在第二个100年末了,这笔款增加到4 061 000英镑,其中1 061 000英镑还是由波士顿的居民来支配,而其余的3 000 000英镑让马萨诸塞州的公众来管理.过此之后,我可不敢主张了!”你可曾想过:区区的1 000英镑遗产,竟立下几百万英镑财产分配的遗嘱,是“信口开河”,还是“言而有据”呢?事实上,只要借助于复利公式,同学们完全可以通过计算而作出自己的判断. y n =m(1+a)n 就是复利公式,其中m 为本金,a 为年利率,y n 为n 年后本金与利息的总和.在第一个100年末富兰克林的财产应增加到:y 100=1 000(1+5%)100=131 501(英镑),比遗嘱中写的还多出501英镑.在第二个100年末,遗产就更多了:y 100=131 501(1+5%)100=4 142 421(英镑).可见富兰克林的遗嘱是有科学根据的.遗嘱故事启示我们:在指数效应下,微薄的财产,低廉的利率,可以变得令人瞠目结舌.威名显赫的拿破仑,由于陷进了指数效应的漩涡而使法国政府十分难堪!1797年,拿破仑参观国立卢森堡小学,赠上了一束价值三个金路易的玫瑰花,并许诺只要法兰西共和国存在一天,他将每年送一束价值相等的玫瑰花,以作两国友谊的象征.由于连年征战,拿破仑忘却了这一诺言!1894年,卢森堡王国郑重地向法兰西共和国提出了“玫瑰花悬案”,要求法国政府在拿破仑的声誉和1 375 596法郎的债款中,两者选取其一.这笔巨款就是三个金路易的本金,以5%的年利率,在97年的指数效应下的产物.(设计者:刘玉亭)。

人民教育出版社B版高中数学目录(全)

人民教育出版社B版高中数学目录(全)

人民教育出版社B版高中数学目录(全)高中数学(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算整合提升第二章函数2.1 函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(I)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法整合提升第三章基本初等函数(I)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数-3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)整合提升高中数学(B版)必修二第1章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系(第1课时)空间中的平行关系(第2课时)1.2.3空间中的垂直关系(第1课时)空间中的垂直关系(第2课时)综合测试阶段性综合评估检测(一)第2章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3 圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系综合测试高中数学(B版)必修三一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样显示全部信息第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关单元回眸第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用单元回眸高中数学(B版)必修四第一章基本初等函数(2)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角单元回眸第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用单元回眸第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积单元回眸高中数学(B版)必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例复习与小结第一章综合测试第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和复习与小结第二章综合测试第三章不等式. 3.1 不等关系与不等式3.1.1 不等关系3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)与简单的线性规划问题3.5.2 简单的线性规划复习与小结第三章综合测试高中数学(B版)选修1-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离高中数学(B版)选修1-2目录:第一章统计案例1.1独立性检验1.2回归分析单元回眸第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明单元回眸第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.2复数的运算单元回眸第四章框图4.1流程图4.2结构图单元回眸高中数学(人教B)选修2-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质.2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离第3章综合测试题阶段性综合评估检测(二)高中数学人教B选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章整合提升第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法本章整合提升第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章整合提升高中数学人教B选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角单元回眸第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布单元回眸第三章统计案例3.1独立性检验3.2回归分析单元回眸高中数学(B版)选修4-1第一章相似三角形定理与圆幂定理1.1相似三角形1.1.1相似三角形判定定理1.1.2相似三角形的性质1.1.3平行截割定理1.1.4锐角三角函数与射影定理1.2圆周角与弦切角1.2.1圆的切线1.2.2圆周角定理1.2.3弦切角定理1.3圆幂定理与圆内接四边形1.3.1圆幂定理1.3.2圆内接四边形的性质与判定本章小结阅读与欣赏欧几里得附录不可公度线段的发现与逼近法第二章圆柱、圆锥与圆锥曲线2.1平行投影与圆柱面的平面截线2.1.1平行投影的性质2.1.2圆柱面的平面截线2.2用内切球探索圆锥曲线的性质2.2.1球的切线与切平面2.2.2圆柱面的内切球与圆柱面的平面截线2.2.3圆锥面及其内切球2.2.4圆锥曲线的统一定义本章小结阅读与欣赏吉米拉•丹迪林附录部分中英文词汇对照表后记高中数学(B版)选修4-4第一章坐标系1.1直角坐标系,平面上的伸缩变换1.2极坐标系本章小结第二章参数方程2.1曲线的参数方程2.2直线和圆的参数方程2.3圆锥曲线的参数方程2.4一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式、贝努利不等式本章小结阅读与欣赏完全归纳法和不完全归纳法数学归纳法数学归纳法简史附录部分中英文词汇对照表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

框、判断框.“一线”即流程线,任意两个程序框之间都存
在流程线.“文字说明”即在框图内加以说明的文字、算
式等,这是每个框图不可缺少的内容.
练一练·当堂检测、目标达成落实处
1.1.2
填一填 研一研 练一练
3.画程序图的总体步骤是:第一步,先设计算法,因为算法

的设计是画程序框图的基础,所以在画程序框图前,首先
课 时
应在稿纸上写出相应的算法步骤;第二步,再把算法步骤
栏 目
转化为对应的程序框图,在这种转化过程中往往需要考虑
开 关
很多细节,是一个将算法“细化”的过程.
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
开 关
点,判断框是具有超过一个退出点的唯一符号;
(4)一种判断框是二择一形式的判断,有且仅有两个可能的
结果;另一种是多分支判断,可能有几种不同的的结果;
(5)在图形符号内描述的语言要非常简练清楚.
填一填 研一研 练一练
研一研·问题探究、课堂更高效
1.1.2
例 1 一个完整的程序框图至少包含
(A )
第四个图称作判断框,表示根据给定条件判断;第五个图称
作流程线,表示流程进行的方向.
填一填 研一研 练一练
研一研·问题探究、课堂更高效
1.1.2
问题 2 在一个程序框图中,能缺少起、止框吗?为什么?
答 起、止框是任何流程不可少的,因为任何程序框图中都 有开始和结束,所以必须有起、止框.
问题 3 在一个算法程序框图中,输入数据只能在开始处,输
1.1.2
填一填 研一研 练一练
1.程序框图
通常用一些通用图形符号 构成一张图来表示算法,这种图称
本 课
做程序框图(简称 框图 ).
时 栏
2.常用算法图形符号
目 开 关
图形 符号
名称
符号表示的意义
起、止框
框图的开始或结束
输入、输出框 数据的输入或者结果的输出
填一填·知识要点、记下疑难点
1.1.2
填一填
栏 目 开 关
研一研·问题探究、课堂更高效
1.1.2
跟踪训练 2 画出计算 1+2+3+4+5 的程序框图.
填一填


研一研
时 栏

练一练


练一练·当堂检测、目标达成落实处
1.1.2
填一填 研一研 练一练
1.程序框图的判断框,一种判断框是二择一形式的判断,有一
本 个入口和 n 个出口,则 n 的值为

关 解析 由于画程序框图要使用标准的程序框符号,故①错;
由于判断框的功能是判断某一条件是否成立 ,故②错;③
错,④⑤正确.
填一填 研一研 练一练
研一研·问题探究、课堂更高效
1.1.2
例 2 已知函数 y=2x+3,设计一个算法,给出函数图象上任
一点的横坐标 x(由键盘输入),求该点到坐标原点的距离,
⑤ 搁置问题抓住老师的思路。碰到自己还没有完全理解老师所讲内容的时候,最好是做个记号,姑且先把这个问题放在一边,继续听老师讲后面的 内容,以免顾此失彼。来自:学习方法网
⑥ 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。
2019/8/29
最新中小学教学课件
18
谢谢欣赏!
语言清楚、简练.
填一填 研一研 练一练
研一研·问题探究、课堂更高效
1.1.2
跟踪训练 1 下列说法正确的是__④_⑤_____.(填序号)
①程序框图中的图形符号可以由个人来确定;

也可以用来执行计算语句;

③输入框只能紧接在起始框之后;
课 时
④程序框图一般按从上到下、从左到右的方向画;
栏 目
⑤判断框是具有超出一个退出点的唯一符号.
1.1.2
填一填 研一研 练一练
1.1.2 程序框图
【学习要求】
1.掌握程序框图的概念;
本 课
2.熟悉各种程序框及流程线的功能和作用;
时 栏
3.掌握画程序框图的规则.
目 开
【学法指导】
关 在理解程序框图概念的基础上,要弄清各种图形符号的意义,
明确每个图形符号的使用环境,图形符号间的联结方式.
填一填·知识要点、记下疑难点
A.起、止框和输入、输出框
B.起、止框和处理框

C.起、止框和判断框
课 时
D.起、止框、处理框和输入、输出框
栏 目
解析 一个完整的程序框图至少需包括起、止框和输入、
开 关
输出框.对于处理框,由于输出框含有计算功能,所以可不必
有.
小结 画程序框图时要注意:①使用标准的程序框符号;②
框图一般从上到下,从左到右画;③描述语言写在程序框内,
1.1.2
填一填 研一研 练一练
[问题情境] 我们都喜欢旅游,进入景区大门后,我们首先看
本 到的是景点线路图,通过观看景点线路图能直观、迅速、

时 准确的知道景区有哪几个景点,各景点之间按怎样的路径
栏 目
走 ,从 而避免迷途 或者漏掉景 点的事情发 生 .本节将探 究
开 关
使算法表达得直观、准确的方法,即程序框图.
1.1.2
探究点二 图形符号的功能及作用 问题 1 阅读课本 P8 程序框图的相关概念及基本程序框图
符号,说出下列图形符号的名称和所表达的意义?




目 开
答 第一个图称作起、止框,表示框图的开始或结束;第二个
关 图称作输入、输出框,表示数据的输入或者结果的输出;第三
个图称作处理框,表示赋值、执行计算语句、结果的传送;
填一填 研一研 练一练
研一研·问题探究、课堂更高效
1.1.2
探究点一 程序框图的概念
问题 1 讨论如何形象直观的表示算法?
答 图形方法.
问题 2 为什么要用图形的方法表示算法?
本 课
答 算法是由一系列明确和有限的计算步骤组成的,我们可
时 栏
以用自然语言表述一个算法,但往往过程复杂,缺乏简洁性,
目 开
连接点的号码.
填一填 研一研 练一练
研一研·问题探究、课堂更高效
1.1.2
探究点三 画程序框图的规则
问题 为了使大家彼此之间能够读懂各自画出的框图,也为
了画图的方便,应怎样规定画程序框图的规则?

答 (1)使用标准的框图的符号;
课 时
(2)框图一般按从上到下、从左到右的方向画;
栏 目
(3)除判断框外,其它框图符号只有一个进入点和一个退出
2019/8/29
最新中小学教学课件
19
因此,我们有必要探究使算法表达得更加直观、准确的方法,
关 这个想法可以通过程序框图来实现.
问题 3 在用图形的方法表示算法时,我们称这个图形为
“程序框图”,那么如何定义程序框图呢?
答 通常用一些通用图形符号构成一张图来表示算法,这种
图称为程序框图(简称框图).
填一填 研一研 练一练
研一研·问题探究、课堂更高效
1.在设计计算机程序时要画出程序运行的程序框图,有了这

个程 序框图 ,再去 设计程序就 有了依据 ,从而就可以把 整
课 时
个程序用机器语言表述出来,因此程序框图是我们设计程
栏 目
序的基本和开端.
开 关
2.组成任何一个程序框图的三要素是“四框”、“一线”加
“文字说明”.“四框”即起、止框、输入(出)框、处理
的方向画.
本 课
(3)除 判断框 外,其他框图符号只有一个进入点和一个退
时 栏
出点. 判断框 是具有超过一个退出点的唯一符号.
目 开
(4)一种判断框是 二择一 形式的判断,有且仅有两个可能

结果;另一种是 多分支 判断,可能有几种不同的结果.
(5)在图形符号内描述的语言要非常 简练清楚.
研一研·问题探究、课堂更高效
并画出程序框图.
解 算法如下:
本 课
S1 输入横坐标的值 x.
时 栏
S2 计算 y=2x+3.


S3 计算 d= x2+y2.

S4 输出 d.
程序框图如图所示:
研一研·问题探究、课堂更高效
1.1.2
填一填 研一研 练一练
本 小结 画程序框图时,开始和结束都要使用起、止框,以表示

时 一个程序的开始或结束.
① 根据课堂提问抓住老师的思路。老师在讲课过程中往往会提出一些问题,有的要求回答,有的则是自问自答。一般来说,老师在课堂上提出的问 题都是学习中的关键,若能抓住老师提出的问题深入思考,就可以抓住老师的思路。
② 根据自己预习时理解过的逻辑结构抓住老师的思路。老师讲课在多数情况下是根据教材本身的知识结构展开的,若把自己预习时所理解过的知识 逻辑结构与老师的讲解过程进行比较,便可以抓住老师的思路。
课 时
A.1
B.2
C.3
D.4
栏 目
2.下列图形符号表示输入、输出框的是
开 关
A.矩形框
B.平行四边形框
(B ) (B )
C.圆角矩形框
D.菱形框
3.表示“根据给定条件判断”的图形符号框的是 ( D )
A.矩形框
B.平行四边形框
C.圆角矩形框
D.菱形框
练一练·当堂检测、目标达成落实处
1.1.2
填一填 研一研 练一练
③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等等,这些 用语往往体现了老师的思路。来自:学习方法网
相关文档
最新文档