Grain-size dependent austenite–ferrite phase transformation
表面处理 热处理英汉对照
表面处理、热处理关连用语英汉对照退火:anneal淬火:quench回火:temper正火normalizingage hardening 时效硬化ageing 老化处理air hardening 气体硬化air patenting 空气韧化annealing 退火anode effect 阳极效应anodizing 阳极氧化处理atomloy treatment 阿托木洛伊表面austempering 奥氏体等温淬火austenite 奥斯田体/奥氏体bainite 贝氏体banded structure 条纹状组织barrel plating 滚镀barrel tumbling 滚筒打光blackening 染黑法blue shortness 青熟脆性bonderizing 磷酸盐皮膜处理box annealing 箱型退火box carburizing 封箱渗碳bright electroplating 辉面电镀bright heat treatment 光辉热处理bypass heat treatment 旁路热处理carbide 炭化物carburized case depth 浸碳硬化深层carburizing 渗碳cementite 炭化铁chemical plating 化学电镀chemical vapor deposition 化学蒸镀coarsening 结晶粒粗大化coating 涂布被覆cold shortness 低温脆性comemtite 渗碳体controlled atmosphere 大气热处理corner effect 锐角效应creeping discharge 蠕缓放电decarburization 脱碳处理decarburizing 脱碳退火depth of hardening 硬化深层diffusion 扩散diffusion annealing 扩散退火electrolytic hardening 电解淬火embossing 压花etching 表面蚀刻ferrite 肥粒铁first stage annealing 第一段退火flame hardening 火焰硬化flame treatment 火焰处理full annealing 完全退火gaseous cyaniding 气体氧化法globular cementite 球状炭化铁grain size 结晶粒度granolite treatment 磷酸溶液热处理graphitizing 石墨退火hardenability 硬化性hardenability curve 硬化性曲线hardening 硬化heat treatment 热处理hot bath quenching 热浴淬火hot dipping 热浸镀induction hardening 高周波硬化ion carbonitriding 离子渗碳氮化ion carburizing 离子渗碳处理ion plating 离子电镀isothermal annealing 等温退火liquid honing 液体喷砂法low temperature annealing 低温退火malleablizing 可锻化退火martempering 麻回火处理martensite 马氏体/硬化铁炭metallikon 金属喷镀法metallizing 真空涂膜nitriding 氮化处理~nitrocarburizing 软氮化normalizing 正常化oil quenching 油淬化overageing 过老化overheating 过热pearlite 针尖组织phosphating 磷酸盐皮膜处理physical vapor deposition 物理蒸镀plasma nitriding 离子氮化pre-annealing 预备退火precipitation 析出precipitation hardening 析出硬化press quenching 加压硬化process annealing 制程退火quench ageing 淬火老化quench hardening 淬火quenching crack 淬火裂痕quenching distortion 淬火变形quenching stress 淬火应力reconditioning 再调质recrystallization 再结晶red shortness 红热脆性residual stress 残留应力retained austenite 残留奥rust prevention 防蚀salt bath quenching 盐浴淬火sand blast 喷砂处理seasoning 时效处理second stage annealing 第二段退火secular distortion 经年变形segregation 偏析selective hardening 部分淬火shot blast 喷丸处理shot peening 珠击法single stage nitriding 等温渗氮sintering 烧结处理soaking 均热处理softening 软化退火solution treatment 固溶化热处理spheroidizing 球状化退火stabilizing treatment 安定化处理straightening annealing 矫直退火strain ageing 应变老化stress relieving annealing 应力消除退火subzero treatment 生冷处理supercooling 过冷surface hardening 表面硬化处理temper brittleness 回火脆性temper colour 回火颜色tempering 回火tempering crack 回火裂痕texture 咬花thermal refining 调质处理thermoechanical treatment 加工热处理time quenching 时间淬火transformation 变态tufftride process 软氮化处理under annealing 不完全退火vacuum carbonitriding 真空渗碳氮化vacuum carburizing 真空渗碳处理vacuum hardening 真空淬火vacuum heat treatment 真空热处理vacuum nitriding 真空氮化water quenching 水淬火wetout 浸润处理。
金属材料及热处理工艺常用基础英语词汇翻译对照1 - 〖表面热处理〗 - 热处理工艺 - 热处理论坛 热处理技术
热处理论坛? 热处理工艺 ? 〖表面热处理〗 ? 金属材料及热处理工艺常用基础英语词汇翻译对照1返回列表发帖热处理新手keweijiani [原创] 金属材料及热处理工艺常用基础英语词汇翻译对照1X 线结晶分析法 X – ray crystal analyics method奥氏体 Austenite奥氏体碳钢 Austenite Carbon Steel奥氏铁孻回火 Austempering半静钢 Semi-killed steel包晶反应 Peritectic Reaction包晶合金 Peritectic Alloy包晶温度 Peritectic Temperature薄卷片及薄片(0.3至2.9mm 厚之片)机械性能 Mechanical Properties of Thin Stainless Steel (Thickness from 0.3mm to2.9mm ) – strip/sheet杯突测试(厚度: 0.4公厘至1.6公厘,准确至0.1公厘 3个试片平均数) Erichsen test (Thickness : 0.4mm to 1.6mm ,figure round up to 0.1mm )贝氏体钢片 Bainite Steel Strip比电阻 Specific resistivity & specific resistance比较抗磁体、顺磁体及铁磁体 Comparison of Diamagnetism , Paramagnetic & Ferromagnetism比热 Specific Heat比重 Specific gravity & specific density边缘处理 Edge Finish扁线、半圆线及异形线 Flat Wire , Half Round Wire , Shaped WirePrecision Shaped Fine Wire扁线公差 Flat Wire Tolerance变态点 Transformation Point表面保护胶纸 Surface protection film表面处理 Surface finish表面处理 Surface Treatment不破坏检验 Non – destructive inspections打印字体大小:1楼跳转到 ?倒序看帖 发表于 16 分钟前 | 只看该作者注册 登录论坛空间百科导航不锈钢基层金属 Stainless Steel as Base Metal不锈钢片、板用途例 Examples of End Usages of Strip, Sheet & Plate不锈钢片材常用代号 Designation of SUS Steel Special Use Stainless不锈钢片机械性能(301, 304, 631, CSP) Mechanical Properties of Spring use Stainless Steel不锈钢应力退火卷片常用规格名词图解 General Specification of Tension Annealed Stainless Steel Strips不锈钢之分类,耐腐蚀性及耐热性 Classification, Corrosion Resistant & Heat Resistance of Stainless Steel材料的加工性能 Drawing abillity插入型固熔体 Interstital solid solution常用尺寸 Commonly Used Size常用的弹簧不锈钢线-编号,特性,表面处理及化学成份 StainlessSpring Wire – National Standard number, Charateristic,Surface finish & Chemical composition常用的镀锌钢片(电解片)的基层金属、用途、日工标准、美材标准及一般厚度 Base metal, application, JIS & ASTM standard,Normal thickness of galvanized steel sheet长度公差 Length Tolerance超耐热钢 Special Heat Resistance Steel超声波探伤法 Ultrasonic inspection冲击测试 Impact Test冲剪 Drawing & stamping初释纯铁体 Pro-entectoid ferrite处理及表面状况 Finish & Surface纯铁体 Ferrite磁场 Magnetic Field磁畴 Magnetic domain磁粉探伤法 Magnetic particle inspection磁化率 Magnetic Susceptibility (Xm)磁矩 magnetic moment磁力 Magnetic磁力 Magnetic Force磁偶极子 Dipole磁性 Magnetisum磁性变态 Magnetic Transformation磁性变态点 Magnetic Transformation磁性感应 Magnetic Induction粗珠光体 Coarse pearlite淬火 Quenching淬火及回火状态 Hardened & Tempered Strip/ Precision – Quenched Steel Strip淬火剂 Quenching Media单相金属 Single Phase Metal单相轧压镀锡薄铁片(白铁皮/马口铁) Single-Reduced Tinplate弹簧不锈钢线,线径及拉力列表 Stainless Spring Steel, Wire diameterTensile strength of Spring Wire弹簧用碳钢片 CarbonSteel Strip For Spring Use弹簧用碳钢片材之边缘处理 Edge Finished弹性限度、阳氏弹性系数及屈服点 elastic limit, Yeung''s module of elasticity to yield point倒后擦发条 Pull Back Power Spring导热度 Heat conductivity低碳钢或铁基层金属 Iron & Low Carbon as Base Metal低碳马氏体不锈钢 Low Carbon Martensite Stainless Steel低温脆性 Cold brittleness低温退火 Low Temperature Annealing第二潜变期 Secondary Creep第三潜变期 Tertiary Creep第壹潜变期 Primary Creep点焊 Spot welding电镀金属钢片 Plate Metal Strip电镀金属捆片的优点 Advantage of Using Plate Metal Strip电镀锌(电解)钢片 Electro-galvanized Steel Sheet电镀锌钢片的焊接 Welding of Electro-galvanized steel sheet电镀锌钢片或电解钢片 Electro-galvanized Steel Sheet/Electrolytic Zinc Coated Steel Sheet电解/电镀锌大大增强钢片的防锈能力 Galvanic Action improving Weather & Corrosion Resistance of the Base Steel Sheet电解冷轧钢片厚度公差 Thickness Tolerance of Electrolytic Cold-rolled sheet电炉 Electric furnace电器及家电外壳用镀层冷辘 [低碳] 钢片 Coated (Low Carbon) Steel Sheets for Casing,Electricals & Home Appliances电器用的硅 [硅] 钢片之分类 Classification of Silicon Steel Sheet for Electrical Use电器用钢片的绝缘涂层 Performance of Surface Insulation of Electrical Steel Sheets电器用钢片用家需自行应力退火原因 Annealing of the Electrical Steel Sheet电器用硅 [硅] 钢片 Electrical Steel Sheet电阻焊 Resistance Welding定型发条 Constant Torque Spring定型发条的形状及翻动过程 ShapeSpring Back of Constant Torque Spring定型发条及上炼发条的驱动力 Spring Force of Constant Torque SpringWing-up Spring定型发条驱动力公式及代号 The FormulaSymbol of Constant Torque Spring镀层质量标记 Markings & Designations of Differential Coatings镀铬 Chrome Plated镀黄铜 Brass Plated镀铝(硅)钢片 – 美材试标准(ASTM A-463-77)35.7 JIS G3314镀热浸铝片的机械性能 Mechanical Properties of JIS G 3314 Hot-Dip Aluminum-coated SheetsCoils镀铝(硅)钢片 – 日工标准(JIS G3314) Hot-aluminum-coated sheetscoils to JIS G 3314镀铝(硅)钢片及其它种类钢片的抗腐蚀性能比较 Comparsion of various resistance of aluminized steel & other kinds of steel 镀铝(硅)钢片生产流程 Aluminum Steel Sheet, Production Flow Chart镀铝硅钢片 Aluminized Silicon Alloy Steel Sheet镀铝硅合金钢片的特色 Feature of Aluminized Silicon Alloy Steel Sheet镀镍 Nickel Plated镀锡薄钢片(白铁皮/马日铁)制造过程 Production Process of Electrolytic Tinplate镀锡薄铁片(白铁皮/马口铁)(日工标准 JIS G3303)镀锡薄铁片的构造 Construction of Electrolytic Tinplate锻造 Fogging断面缩率 Reduction of area发条的分类及材料 Power Spring Strip ClassificationMaterials发条片 Power Spring Strip反铁磁体 Antiferromagnetism方线公差 Square Wire Tolerance防止生锈 Rust Protection放射线探伤法 Radiographic inspection非晶粒取向电力用钢片的电力、磁力、机械性能及夹层系数 Lamination Factors of Electrical, Magnetic & Mechanical Non-Grain Oriented Electrical沸腾钢(未净钢) Rimmed steel分类 Classification负磁力效应 Negative effect钢板 Steel Plate钢板订货需知 Ordering of Steel Plate钢板生产流程 Production Flow Chart钢板用途分类及各国钢板的工业标准包括日工标准及美材试标准 Type of steel Plate & Related JIS, ASTMOther Major Industrial Standards钢材的熔铸、锻造、挤压及延轧 The Casting, Fogging, Extrusion, Rolling & Steel钢的脆性 Brittleness of Steel钢的种类 Type of Steel钢铁的名称 Name of steel钢铁的制造 Manufacturing of Steel钢铁的主要成份 The major element of steel钢铁生产流程 Steel Production Flow Chart钢铁用“碳”之含量来分类 Classification of Steel according to Carbon contents高锰钢铸 – 日工标准 High manganese steel to JIS standard高碳钢化学成份及用途 High Carbon Tool Steel, Chemical CompositionUsage高碳钢片 High Carbon Steel Strip高碳钢片用途 End Usage of High Carbon Steel Strip高碳钢线枝 High Carbon Steel Wire Rod (to JIS G3506)高温回火 High Temperature Tempering格子常数 Lattice constant铬钢 – 日工标准 JIS G4104 Chrome steel to JIS G4104铬镍不锈钢及抗热钢弹簧线材–美国材验学会 ASTM A313 – 1987 Chromium – Nickel StainlessHeat-resisting Steel Spring Wire – ASTM A313 – 1987铬系耐热钢 Chrome Heat Resistance Steel铬钼钢钢材 – 日工标准 G4105 62 Chrome Molybdenum steel to JIS G4105各种不锈钢线在不同处理拉力比较表 Tensile Strength of various kinds of Stainless Steel Wire under Different Finish工业标准及规格 – 铁及非铁金属 Industrial Standard – Ferrous & Non – ferrous Metal公差 Size Tolerance共晶 Eutectic共释变态 Eutectoid Transformation固熔体 Solid solution光辉退火 Bright Annealing光线(低碳钢线),火线(退火低碳钢线),铅水线(镀锌低碳钢线)及制造钉用低碳钢线之代号、公差及备注 Ordinary Low Carbon Steel Wire, Annealed Low Carbon Steel Wire, Galvanized low Carbon Steel Wire & Low Carbon Steel Wire for nail manufacturing - classification, Symbol of Grade, ToleranceRemarks.硅含量对电器用的低碳钢片的最大好处 The Advantage of Using Silicon low Carbon Steel滚焊 Seam welding过共晶体 Hyper-ectectic Alloy过共释钢 Hype-eutectoid含硫易车钢 Sulphuric Free Cutting Steel含铅易车钢 Leaded Free Cutting Steel含铁体不锈钢 Ferrite Stainless Steel焊接 Welding焊接合金 SolderingBrazing Alloy焊接能力 Weldability 镀铝钢片的焊接状态(比较冷辘钢片) Tips on welding of Aluminized sheet in comparasion with cold rolled steel strip合金平衡状态 Thermal Equilibrium厚度及阔度公差 Tolerance on Thickness & Width滑动面 Slip Plan化学成份 Chemical Composition化学结合 Chemical bond化学性能 Chemical Properties化学元素 Chemical element黄铜基层金属 Brass as Base Metal回复柔软 Crystal Recovery回火脆性 Temper brittleness回火有低温回火及高温回火 Low & High Temperature Tempering回火状态 Annealed Strip基层金属 Base Metal of Plated Metal Strip机械性能 Mechanical Properites机械性能 Mechanical properties畸变 Distortion级别、电镀方法、镀层质量及常用称号 Grade, Plating type, Designation of Coating Mass & Common Coating Mass级别,代号,扭曲特性及可用之线材直径 Classes, symbols, twisting characteristicapplied Wire Diameters级别,代号及化学成份 Classification, Symbol of GradeChemical Composition挤压 Extrusion加工方法 Manufacturing Method加工性能 Machinability简介 General交换能量 Positive energy exchange矫顽磁力 Coercive Force金属变态 Transformation金属材料的试验方法 The Method of Metal inspection金属材料的性能及试验 Properties & testing of metal金属的特性 Features of Metal金属的相融、相融温度、晶体反应及合金在共晶合金、固熔孻共晶合金及偏晶反应的比较 Equilibrium Comparision金属间化物 Intermetallic compound金属结晶格子 Metal space lattice金属捆片电镀层 Plated Layer of Plated Metal Strip金属塑性 Plastic Deformation金属特性 Special metallic features金属与合金 MetalAlloy金相及相律 Metal PhasePhase Rule晶粒取向(Grain-Oriented)及非晶粒取向(Non-Oriented)晶粒取向,定取向芯钢片及高硼定取向芯钢片之磁力性能及夹层系数(日工标准及美材标准) Magnetic PropertiesLamination Factor of SI-ORIENT-CORE& SI-ORIENT-CORE-HI B Electrical Steel Strip (JISAISI Standard)晶粒取向电器用硅 [硅] 钢;片 – 高硼低硫(LS)定取向钢片之磁力及电力性能 MagneticElectrical Properties of SI-ORIENT-CORE-HI-B-LS晶粒取向电器用硅 [硅] 钢片 – 高硼(HI-B)定取向芯钢片及定取向芯钢片之机械性能及夹层系数 Mechanical PropertiesLamination Factors of SI-ORIENT-CORE-HI-BSI-ORIENT-CORE Grain Orient Electrical Steel Sheets晶粒取向电器用硅 [硅] 钢片 – 高硼低硫(LS)定取向钢片之机械性能及夹层系数 Mechanical PropertiesLamination Factors of SI-ORIENT-CORE-HI-B-LS晶粒取向电器用硅(硅)钢片 – 高硼(HI-B)定取向芯钢片,定取向芯钢片及高硼低硫(LS)定取向芯钢片之标准尺寸及包装Standard FormsSize of SI-ORIENT-CORE-HI-B,SI-CORE, & SI-ORIENT-CORE-HI-B-LS Grain-晶粒取向电器用硅(硅)钢片-高硼(HI-B)定取向芯钢片,定取向芯钢片及高硼低硫(LS)定取向芯钢片之厚度及阔度公差Physical Tolerance of SI-ORIENT-CORE-HI-B, SI-ORIENT-CORE, & SI-CORE-HI-B-LS Grain晶粒取向电器用硅钢片 Grain-Oriented Electrical Steel晶粒取向电器用硅钢片主要工业标准 International Standard – Grain-Oriented Electrical Steel Silicon Steel Sheet for Electrical Use晶体结构 Crystal Pattern晶体结构,定向格子及单位晶格 Crystal structure, Space lattice & Unit cell净磁矩 Net magnetic moment绝缘表面 Surface Insulation均热炉 Soaking pit抗磁体 Diamagnetism抗腐蚀及耐用 Corrosion & resistance durability抗化学品能力 Chemical Resistance抗敏感及环境保护 Allergic, re-cycling & environmental protection抗热超级合金 Heat Resistance Super Alloy扩散退火 Diffusion Annealing拉尺发条 Measure Tape拉伸测试(顺纹测试) Elongation test冷冲及冷锻用碳钢线枝 Carbon Steel Wire Rods for Cold Heading & Cold Forging (to JIS G3507)冷拉钢板重量表 Cold Drawn Steel Bar Weight Table冷拉钢枝材 Cold Drawn Carbon Steel Shafting Bar冷拉高碳钢线 Hard Drawn High Carbon Steel Wire冷轧钢片 Cold-Rolled Steel Sheet/Strip冷轧高碳钢–日本工业标准 Cold-Rolled (Special Steel) Carbon Steel Strip to JIS G3311冷轧或热轧钢片阔度公差 Width Tolerance of Cold or Hot-rolled sheet冷轧状态 Cold Rolled Strip冷辘(低碳)钢片的分类用、途、工业标准、品质、加热状态及硬度表 End usages, industrial standard, quality,conditionhardness of cold rolled steel strip收藏分享球化退火 Spheroidizing Annealing曲面(假曲率) Camber屈服强度(降伏强度)(Yield strangth)全静钢 Killed steel热力应先从工件边缘透入 Heat from the Laminated Stacks Edges热膨胀系数 Coefficient of thermal expansion热轧钢片 Hot-Rolled Sheet/Strip热轧钢片厚度公差 Thickness Tolerance of Hot-rolled sheet日本工业标准–不锈钢的化学成份(先数字后字母排列) JIS – Chemical Composition of Stainless Steel (in order of number & alphabet)日工标准(JIS G3141)冷辘钢片化学成份 Chemical composition – cold rolled steel sheet to JIS G3141日工标准(JIS G3141)冷辘钢片重量列表 Mass of Cold-Rolled Steel Sheet to JIS G3141日工标准JIS G3141冷辘低碳钢片(双单光片)的编号浅释 Decoding of cold rolled(Low carbon)steel strip JIS G3141日工标准下的特殊钢材 Specail Steel according to JIS Standard熔铸 Casting软磁 Soft Magnetic软磁材料 Soft Magnetic Material软焊 Soldering Alloy软焊合金 – 日本标准 JIS H 4341 Soldering Alloy to JIS H 4341上链发条 Wind-up Spring上漆能力 Paint Adhesion伸长度 Elongation渗碳体 Cementitle渗透探伤法 Penetrate inspection生产流程 Production Flow Chart生锈速度表 Speed of rusting时间淬火 Time Quenching时间效应(老化)及拉伸应变 Aging & Stretcher Strains释出硬化不锈钢 Precipitation Hardening Stainless Steel双相辗压镀锡薄钢片(马口铁/白铁皮) Dual-Reduction Tinplate顺磁体 Paramagnetic碳钢回火 Tempering碳污染 Prevent Carbon Contamination特点 Characteristic特殊钢 Special Steel特殊钢以用途来分类 Classification of Special Steel according to End Usage特殊钢以原素分类 Classification of Special Steel according to Element提防过份氧化 No Excessive Oxidation铁磁体 Ferromagnetism铁铬系不锈钢片 Chrome Stainless Steel铁及非铁金属 Ferrous & Non Ferrous Metal铁锰铝不锈钢 Fe / Mn / Al / Stainless Steel铁线(低碳钢线)日工标准 JIS G 3532 Low Carbon Steel Wires ( Iron Wire ) to JIS G 3532铁相 Steel Phases同素变态 Allotropic Transformation铜基层金属 Copper as Base Metal透磁度 Magnetic Permeability退火 Annealing退火时注意事项 Annealing Precautionary外价电子 Outer valence electrons弯度 Camber完全退火 Full Annealing物理性能 Physical Properties物料科学 Material Science物料科学定义 Material Science Definition锡层质量 Mass of Tin Coating (JIS G3303-1987)锡基、铅基及锌基轴承合金比较表 Comparison of Tin base, Lead baseZinc base alloy for Bearing purpose细线材、枝材、棒材 Chapter Five Wire, Rod & Bar显微观察法 Microscopic inspection线材/枝材材质分类及制成品 ClassificationEnd Products of Wire/Rod线径、公差及机械性能(日本工业标准 G 3521) Mechanical Properties (JIS G 3521)相反旋转 Opposite span相律 Phase Rule锌包层之重量,铜硫酸盐试验之酸洗次数及测试用卷筒直径 Weight of Zinc-Coating, Number of Dippings in Cupric Sulphate TestDiameters of Mandrel Used for Coiling Test锌镀层质量 Zinc Coating Mass锌镀层质量(两个不同锌镀层厚度) Mass Calculation of coating (For differential coating)/MM锌镀层质量(两个相同锌镀层厚度) Mass Calculation of coating (For equal coating)/MM亚共晶体 Hypoeutetic Alloy亚铁磁体 Ferrimagnetism亚铁释体 Hyppo-Eutectoid延轧 Rolling颜色 Colour易车(快削)不锈钢 Free Cutting Stainless Steel易车(快削)不锈钢拉力表 Tensile Strength of Free Cutting Wires易车(快削)不锈钢种类 Type of steel易车不锈钢及易车钢之不同尺寸及硬度比较 Hardness of Different Types & Size of Free Cutting Steel易车碳钢 Free Cutting Carbon Steels (to JIS G4804 )易溶合金 Fusible Alloy应力退火温度 Stress –relieving Annealing Temperature应用材料 Material Used硬磁 Hard Magnetic硬磁材料 Hard Magnetic Material硬度 Hardness硬度及拉力 Hardness & Tensile strength test硬焊 Brazing Alloy硬化 Work Hardening硬化性能 Hardenability用含碳量分类 – 即低碳钢、中碳钢及高碳钢 Classification According to Carbon Contains用途 End Usages用组织结构分类 Classification According to Grain Structure幼珠光体 Fine pearlite元素的原子序数 Atom of Elements原子的组成、大小、体积和单位图表 The size, mass, charge of an atom,is particles (Pronton,NentronElectron)原子的组织图 Atom Constitutes原子及固体物质 Atomsolid material原子键结 Atom Bonding圆钢枝,方钢枝及六角钢枝之形状及尺寸之公差 Tolerance on ShapeDimensions for Round Steel Bar, Square Steel Bar,Hexagonal Steel Bar圆径及偏圆度之公差 Tolerance of Wire Diameters & Ovality圆面(“卜竹”)发条 Convex Spring Strip再结晶 Recrystallization正磁化率 Positive magnetic susceptibility枝/棒无芯磨公差表(μ)(μ = 1/100 mm) Rod/Bar Centreless Grind Tolerance枝材之美工标准,日工标准,用途及化学成份 AISI, JIS End UsageChemical Composition of Cold Drawn Carbon Steel Shafting Bar直径,公差及拉力强度 Diameter, ToleranceTensile Strength直径公差,偏圆度及脱碳层的平均深度 Diameter Tolerance, OvalityAverage Decarburized Layer Depth置换型固熔体 Substitutional type solid solution滞后回线 Narrow Hystersis。
铁素体 Ferrite(中英文对照)
铁素体铁素体(ferrite,缩写:FN,用F表示) 即碳在α-Fe中的间隙固溶体,具有体心立方晶格。
称为铁素体或α固溶体,用α或F表示,α常用在相图标注中,F在行文中常用。
亚共析成分的奥氏体通过先共析析出形成铁素体。
FerriteFerrite (abbreviation: ferrite, FN, F) or interstitial carbon in alpha -Fe solid solution, has a body centered cubic lattice. Known as ferrite or alpha solid solution, represented by alpha or F, a commonly used in phase diagram mark, commonly used F in the text. The sub eutectoid composition of austenite by Pro eutectoid ferrite precipitation formation.介绍这部分铁素体称为先共析铁素体或组织上自由的铁素体。
随形成条件不同,先共析铁素体具有不同形态,如等轴形、沿晶形、纺锤形、锯齿形和针状等。
铁素体还是珠光体组织的基体。
在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;铁素体的成分和组织对钢的工艺性能有重要影响,在某些场合下对钢的使用性能也有影响。
碳溶入δ-Fe中形成间隙固溶体,呈体心立方晶格结构,因存在的温度较高,故称高温铁素体或δ固溶体,用δ表示,在1394℃以上存在,在1495℃时溶碳量最大。
碳的质量分数为0.09%。
IntroductionThis part is called the proeutectoid ferrite ferrite free body or organization of ferrite. With the formation conditions, proeutectoid ferrite with different shapes, such as axes, along the crystal shape, spindle shaped, serrated and needle etc.. The matrix of ferrite and pearlite. Hot rolled in carbon steel and low alloy steel (normalizing) and the annealing microstructure, ferrite is the main phase; has an important impact on process performance ferrite components and microstructure of steel, and in some cases the using performance of steel also influence. Interstitial solid solution formation of carbon into the delta -Fe, a lattice structure of body centered cubic, because of the high temperature exists, so that high temperature ferrite or delta solid solution, with δsaid, in 1394 ℃, soluble carbon was the greatest at 1495 ℃. Carbon mass fraction is 0.09%物理性质纯铁在912℃以下为具有体心立方晶格。
表面处理专业术语
表面处理关连用语age hardening 时效硬化 ageing 老化处理air hardening 气体硬化 air patenting 空气韧化annealing 退火 anode effect 阳极效应anodizing 阳极氧化处理 atomloy treatment 阿托木洛伊表面austempering 奥氏体等温淬火 austenite 奥斯田体/奥氏体bainite 贝氏体 banded structure 条纹状组织barrel plating 滚镀 barrel tumbling 滚筒打光blackening 染黑法 blue shortness 青熟脆性bonderizing 磷酸盐皮膜处理 box annealing 箱型退火box carburizing 封箱渗碳 bright electroplating 辉面电镀bright heat treatment 光辉热处理 bypass heat treatment 旁路热处理carbide 炭化物 carburized case depth 浸碳硬化深层carburizing 渗碳 cementite 炭化铁chemical plating 化学电镀 chemical vapor deposition 化学蒸镀coarsening 结晶粒粗大化 coating 涂布被覆cold shortness 低温脆性 comemtite 渗碳体controlled atmosphere 大气热处理 corner effect 锐角效应creeping discharge 蠕缓放电 decarburization 脱碳处理decarburizing 脱碳退火 depth of hardening 硬化深层diffusion 扩散 diffusion annealing 扩散退火electrolytic hardening 电解淬火 embossing 压花etching 表面蚀刻 ferrite 肥粒铁first stage annealing 第一段退火 flame hardening 火焰硬化flame treatment 火焰处理 full annealing 完全退火gaseous cyaniding 气体氧化法 globular cementite 球状炭化铁grain size 结晶粒度 granolite treatment 磷酸溶液热处理graphitizing 石墨退火 hardenability 硬化性hardenability curve 硬化性曲线 hardening 硬化heat treatment 热处理 hot bath quenching 热浴淬火hot dipping 热浸镀 induction hardening 高周波硬化ion carbonitriding 离子渗碳氮化 ion carburizing 离子渗碳处理ion plating 离子电镀 isothermal annealing 等温退火liquid honing 液体喷砂法 low temperature annealing 低温退火malleablizing 可锻化退火 martempering 麻回火处理martensite 马氏体/硬化铁炭 metallikon 金属喷镀法metallizing 真空涂膜 nitriding 氮化处理nitrocarburizing 软氮化 normalizing 正常化oil quenching 油淬化 overageing 过老化overheating 过热 pearlite 针尖组织phosphating 磷酸盐皮膜处理 physical vapor deposition 物理蒸镀plasma nitriding 离子氮化 pre-annealing 预备退火precipitation 析出 precipitation hardening 析出硬化press quenching 加压硬化 process annealing 制程退火quench ageing 淬火老化 quench hardening 淬火quenching crack 淬火裂痕 quenching distortion 淬火变形quenching stress 淬火应力 reconditioning 再调质recrystallization 再结晶 red shortness 红热脆性residual stress 残留应力 retained austenite 残留奥rust prevention 防蚀 salt bath quenching 盐浴淬火sand blast 喷砂处理 seasoning 时效处理second stage annealing 第二段退火 secular distortion 经年变形segregation 偏析 selective hardening 部分淬火shot blast 喷丸处理 shot peening 珠击法single stage nitriding 等温渗氮 sintering 烧结处理soaking 均热处理 softening 软化退火solution treatment 固溶化热处理 spheroidizing 球状化退火stabilizing treatment 安定化处理 straightening annealing 矫直退火strain ageing 应变老化 stress relieving annealing 应力消除退火subzero treatment 生冷处理 supercooling 过冷surface hardening 表面硬化处理 temper brittleness 回火脆性temper colour 回火颜色 tempering 回火tempering crack 回火裂痕 texture 咬花thermal refining 调质处理 thermoechanical treatment 加工热处理time quenching 时间淬火 transformation 变态tufftride process 软氮化处理 under annealing 不完全退火vacuum carbonitriding 真空渗碳氮化 vacuum carburizing 真空渗碳处理vacuum hardening 真空淬火 vacuum heat treatment 真空热处理vacuum nitriding 真空氮化 water quenching 水淬火wetout 浸润处理。
材料专业英语常见词汇
材料专业英语常见词汇The saying "the more diligent, the more luckier you are" really should be my charm in2006.材料专业英语常见词汇一Structure 组织Ceramic 陶瓷Ductility 塑性Stiffness 刚度Grain 晶粒Phase 相Unit cell 单胞Bravais lattice 布拉菲点阵Stack 堆垛Crystal 晶体Metallic crystal structure 金属性晶体点阵 Non-directional 无方向性Face-centered cubic 面心立方Body-centered cubic体心立方 Hexagonal close-packed 密排六方 Copper 铜Aluminum 铝Chromium 铬 Tungsten 钨Crystallographic Plane晶面 Crystallographic direction 晶向 Property性质 Miller indices米勒指数 Lattice parameters 点阵参数Tetragonal 四方的Hexagonal 六方的Orthorhombic 正交的Rhombohedra 菱方的Monoclinic 单斜的Prism 棱镜 Cadmium 镉 Coordinate system 坐 Point defec点缺陷Lattice 点阵 Vacancy 空位Solidification 结晶Interstitial 间隙Substitution 置换Solid solution strengthening 固溶强化Diffusion 扩散Homogeneous 均匀的Diffusion Mechanisms 扩散机制Lattice distortion 点阵畸变Self-diffusion 自扩散Fick’s First Law 菲克第一定律 Unit time 单位时间Coefficient 系数Concentration gradient 浓度梯度Dislocations 位错Linear defect 线缺陷Screw dislocation 螺型位错Edge dislocation 刃型位错Vector 矢量Loop 环路Burgers’vector 柏氏矢量Perpendicular 垂直于Surface defect 面缺陷Grain boundary 晶界Twin boundary 晶界 Shear force 剪应力Deformation 变形Small or low angel grain boundary 小角度晶界Tilt boundary 倾斜晶界Supercooled 过冷的Solidification 凝固Ordering process 有序化过程Crystallinity 结晶度Microstructure 纤维组织Term 术语Phase Diagram 相图Equilibrium 平衡Melt 熔化Cast 浇注Crystallization 结晶Binary Isomorphous Systems 二元匀晶相图Soluble 溶解Phase Present 存在相Locate 确定Tie line 连接线Isotherm 等温线Concentration 浓度Intersection 交点The Lever Law 杠杆定律Binary Eutectic System 二元共晶相图Solvus Line 溶解线Invariant 恒定Isotherm 恒温线Cast Iron 铸铁Ferrite 珠光体Polymorphic transformation 多晶体转变Austenite 奥氏体Revert 回复Intermediate compound 中间化合物Cementite 渗碳体Vertical 垂线Nonmagnetic 无磁性的Solubility 溶解度Brittle 易脆的Eutectic 共晶Eutectoid invariant point 共析点Phase transformation 相变Allotropic 同素异形体Recrystallization 再结晶Metastable 亚稳的Martensitic transformation 马氏体转变Lamellae 薄片Simultaneously 同时存在Pearlite 珠光体Ductile 可塑的Mechanically 机械性能Hypo eutectoid 过共析的Particle 颗粒Matrix基体Proeutectoid 先共析Hypereutectoid 亚共析的Bainite 贝氏体Martensite 马氏体Linearity 线性的Stress-strain curve 应力-应变曲线Proportional limit 比例极限Tensile strength 抗拉强度Ductility 延展性Percent reduction in area 断面收缩率Hardness 硬度Modulus of Elasticity 弹性模量Tolerance 公差Rub 摩擦Wear 磨损Corrosion resistance 抗腐蚀性Aluminum 铝Zinc 锌Iron ore 铁矿Blast furnace 高炉Coke 焦炭Limestone 石灰石Slag 熔渣Pig iron 生铁Ladle 钢水包Silicon 硅Sulphur 硫Wrought 可锻的Graphite 石墨Flaky 片状Low-carbon steels 低碳钢Case hardening 表面硬化Medium-carbon steels 中碳钢Electrode 电极As a rule 通常Preheating 预热Quench 淬火Body-centered lattice 体心晶格Carbide 碳化物Hypereutectoid过共晶Chromium 铬Manganese 锰Molybdenum 钼Titanium 钛Cobalt 钴Tungsten 钨Vanadium 钒Pearlitic microstructure 珠光体组织Martensitic microstructure 马氏体组织Viscosity 粘性Wrought 锻造的Magnesium 镁Flake 片状Malleable 可锻的Nodular 球状Spheroidal 球状Superior property 优越性Galvanization 镀锌Versatile 通用的Battery grid 电极板Calcium 钙Tin 锡Toxicity 毒性Refractory 耐火的Platinum铂Polymer 聚合物Composite 混合物Erosive 腐蚀性Inert 惰性Thermo chemically 热化学Generator 发电机Flaw 缺陷Variability 易变的Annealing 退火Tempering回火Texture 织构Kinetic 动力学Peculiarity 特性Critical point 临界点Dispersity 弥散程度Spontaneous 自发的Inherent grain 本质晶粒Toughness 韧性Rupture 断裂Kinetic curve of transformation 转变动力学曲线Incubation period 孕育期Sorbite 索氏体Troostite 屈氏体Disperse 弥散的Granular 颗粒状Metallurgical 冶金学的Precipitation 析出Depletion 减少Quasi-eutectoid 伪共析Superposition 重叠Supersede 代替Dilatometric 膨胀Unstable 不稳定Supersaturate 使过饱和Tetragonality 正方度Shear 切变Displacement 位移Irreversible 不可逆的金属材料工程专业英语acid-base equilibrium酸碱平衡 acid-base indicator酸碱指示剂 acid bath酸槽 acidBessemerconverter 酸性转炉 acid brick酸性耐火砖 acid brittleness酸洗脆性、氢脆性 acid burden酸性炉料acid clay酸性粘土 acid cleaning同pickling酸洗 acid concentration酸浓度 acid converter酸性转炉 acid converter steel酸性转炉钢 acid content酸含量 acid corrosion酸腐蚀 acid deficient弱酸的、酸不足的 acid dip酸浸acid dip pickler沉浸式酸洗装置 aciddiptank酸液浸洗槽acid drain tank排酸槽acidless descaling无酸除鳞acid medium酸性介质acid mist酸雾acid-proof paint耐酸涂料漆acid-proof steel耐酸钢acid-resistant耐酸钢acid-resisting vessel耐酸槽acid strength酸浓度acid supply pump供酸泵acid wash酸洗acid value酸值acid wash solution酸洗液acieration渗碳、增碳Acm point Acm转变点渗碳体析出温度acorn nut螺母、螺帽acoustic absorption coefficient声吸收系数acoustic susceptance声纳actifier再生器action line作用线action spot作用点activated atom激活原子activated bath活化槽activated carbon活性碳activating treatment活化处理active corrosion活性腐蚀、强烈腐蚀active area有效面积active power有功功率、有效功率active product放射性产物active resistance有效电阻、纯电阻active roll gap轧辊的有效或工作开口度active state活性状态active surface有效表面activity coefficient激活系数、活度系数actual diameter钢丝绳实际直径actual efficiency实际效率actual error实际误差actual time实时actual working stress实际加工应力actuating device调节装置、传动装置、起动装置actuating lever驱动杆、起动杆actuating mechanism 动作机构、执行机构actuating motor驱动电动机、伺服电动机actuating pressure作用压力actuation shaft起动轴actuator调节器、传动装置、执行机构acute angle锐角adaptive feed back control自适应反馈控制adaptive optimization自适应最优化adaptor接头、接合器、连结装置、转接器、附件材料科学基础专业词汇:第一章晶体结构原子质量单位 Atomic mass unit amu 原子数 Atomic number 原子量 Atomic weight波尔原子模型 Bohr atomic model 键能 Bonding energy 库仑力 Coulombic force共价键 Covalent bond 分子的构型 molecular configuration电子构型electronic configuration 负电的 Electronegative 正电的 Electropositive基态 Ground state 氢键 Hydrogen bond 离子键 Ionic bond 同位素 Isotope金属键 Metallic bond 摩尔 Mole 分子 Molecule 泡利不相容原理 Pauli exclusion principle 元素周期表 Periodic table 原子 atom 分子 molecule 分子量 molecule weight极性分子 Polar molecule 量子数 quantum number 价电子 valence electron范德华键 van der waals bond 电子轨道 electron orbitals 点群 point group对称要素 symmetry elements 各向异性 anisotropy 原子堆积因数 atomic packing factorAPF 体心立方结构 body-centered cubic BCC 面心立方结构 face-centered cubic FCC布拉格定律bragg’s law 配位数 coordination number 晶体结构 crystal structure晶系 crystal system 晶体的 crystalline 衍射 diffraction 中子衍射 neutron diffraction电子衍射 electron diffraction 晶界 grain boundary 六方密堆积 hexagonal close-packed HCP 鲍林规则 Paulin g’s rules NaCl型结构 NaCl-type structureCsCl型结构Caesium Chloride structure 闪锌矿型结构 Blende-type structure纤锌矿型结构 Wurtzite structure 金红石型结构 Rutile structure萤石型结构 Fluorite structure 钙钛矿型结构 Perovskite-type structure尖晶石型结构 Spinel-type structure 硅酸盐结构 Structure of silicates岛状结构 Island structure 链状结构 Chain structure 层状结构 Layer structure架状结构 Framework structure 滑石 talc 叶蜡石 pyrophyllite 高岭石 kaolinite石英 quartz 长石 feldspar 美橄榄石 forsterite 各向同性的 isotropic各向异性的 anisotropy 晶格 lattice 晶格参数 lattice parameters 密勒指数 miller indices 非结晶的 noncrystalline多晶的 polycrystalline 多晶形 polymorphism 单晶single crystal 晶胞 unit cell电位 electron states化合价 valence 电子 electrons 共价键 covalent bonding金属键 metallic bonding 离子键Ionic bonding 极性分子 polar molecules原子面密度 atomic planar density 衍射角 diffraction angle 合金 alloy粒度,晶粒大小 grain size 显微结构 microstructure 显微照相 photomicrograph扫描电子显微镜 scanning electron microscope SEM透射电子显微镜 transmission electron microscope TEM 重量百分数 weight percent四方的 tetragonal 单斜的monoclinic 配位数 coordination number材料科学基础专业词汇:第二章晶体结构缺陷缺陷 defect, imperfection 点缺陷 point defect 线缺陷 line defect, dislocation面缺陷 interface defect 体缺陷 volume defect 位错排列 dislocation arrangement位错线 dislocation line 刃位错 edge dislocation 螺位错 screw dislocation混合位错 mixed dislocation 晶界 grain boundaries 大角度晶界 high-angle grain boundaries 小角度晶界 tilt boundary, 孪晶界 twin boundaries 位错阵列 dislocation array位错气团 dislocation atmosphere 位错轴dislocation axis 位错胞 dislocation cell位错爬移 dislocation climb 位错聚结 dislocation coalescence 位错滑移 dislocation slip位错核心能量 dislocation core energy 位错裂纹 dislocation crack位错阻尼 dislocation damping 位错密度 dislocation density原子错位 substitution of a wrong atom 间隙原子 interstitial atom晶格空位 vacant lattice sites 间隙位置 interstitial sites 杂质 impurities弗伦克尔缺陷 Frenkel disorder 肖脱基缺陷 Schottky disorder 主晶相 the host lattice错位原子 misplaced atoms 缔合中心 Associated Centers. 自由电子 Free Electrons电子空穴Electron Holes 伯格斯矢量 Burgers 克罗各-明克符号 Kroger Vink notation中性原子 neutral atom材料科学基础专业词汇:第二章晶体结构缺陷-固溶体固溶体 solid solution 固溶度 solid solubility 化合物 compound间隙固溶体 interstitial solid solution 置换固溶体 substitutional solid solution金属间化合物 intermetallics 不混溶固溶体 immiscible solid solution转熔型固溶体 peritectic solid solution 有序固溶体 ordered solid solution无序固溶体 disordered solid solution 固溶强化 solid solution strengthening取代型固溶体 Substitutional solid solutions 过饱和固溶体 supersaturated solid solution非化学计量化合物 Nonstoichiometric compound材料科学基础专业词汇:第三章熔体结构熔体结构 structure of melt过冷液体 supercooling melt 玻璃态 vitreous state软化温度 softening temperature 粘度 viscosity 表面张力 Surface tension介稳态过渡相 metastable phase 组织 constitution 淬火 quenching退火的 softened 玻璃分相 phase separation in glasses 体积收缩 volume shrinkage材料科学基础专业词汇:第四章固体的表面与界面表面 surface 界面 interface 同相界面 homophase boundary异相界面 heterophase boundary 晶界 grain boundary 表面能 surface energy小角度晶界 low angle grain boundary 大角度晶界 high angle grain boundary共格孪晶界 coherent twin boundary 晶界迁移 grain boundary migration错配度 mismatch 驰豫 relaxation 重构 reconstuction 表面吸附 surface adsorption表面能 surface energy 倾转晶界 titlt grain boundary 扭转晶界 twist grain boundary倒易密度 reciprocal density 共格界面 coherent boundary 半共格界面 semi-coherent boundary 非共格界面 noncoherent boundary 界面能 interfacial free energy应变能 strain energy 晶体学取向关系 crystallographic orientation惯习面habit plane材料科学基础专业词汇:第五章相图相图 phase diagrams 相 phase 组分 component 组元 compoonent相律 Phase rule 投影图 Projection drawing 浓度三角形 Concentration triangle冷却曲线 Cooling curve 成分 composition 自由度 freedom相平衡 phase equilibrium 化学势 chemical potential 热力学 thermodynamics相律 phase rule 吉布斯相律 Gibbs phase rule 自由能 free energy吉布斯自由能 Gibbs free energy 吉布斯混合能 Gibbs energy of mixing吉布斯熵 Gibbs entropy 吉布斯函数 Gibbs function 热力学函数 thermodynamics function 热分析 thermal analysis 过冷 supercooling 过冷度 degree of supercooling杠杆定律 lever rule 相界 phase boundary 相界线 phase boundary line相界交联 phase boundary crosslinking 共轭线 conjugate lines相界有限交联 phase boundary crosslinking 相界反应 phase boundary reaction相变 phase change 相组成 phase composition 共格相 phase-coherent金相相组织 phase constentuent 相衬 phase contrast 相衬显微镜 phase contrast microscope 相衬显微术 phase contrast microscopy 相分布 phase distribution相平衡常数 phase equilibrium constant 相平衡图 phase equilibrium diagram相变滞后 phase transition lag 相分离 phase segregation 相序 phase order相稳定性 phase stability 相态 phase state 相稳定区 phase stabile range相变温度 phase transition temperature 相变压力 phase transition pressure同质多晶转变 polymorphic transformation 同素异晶转变 allotropic transformation相平衡条件 phase equilibrium conditions 显微结构 microstructures 低共熔体 eutectoid不混溶性 immiscibility材料科学基础专业词汇:第六章扩散活化能 activation energy 扩散通量 diffusion flux 浓度梯度 concentration gradient菲克第一定律Fick’s first law 菲克第二定律Fick’s second law 相关因子 correlation factor 稳态扩散 steady state diffusion 非稳态扩散 nonsteady-state diffusion扩散系数 diffusion coefficient 跳动几率 jump frequency填隙机制 interstitalcy mechanism 晶界扩散 grain boundary diffusion短路扩散 short-circuit diffusion 上坡扩散 uphill diffusion 下坡扩散 Downhill diffusion互扩散系数 Mutual diffusion 渗碳剂 carburizing 浓度梯度 concentration gradient浓度分布曲线 concentration profile 扩散流量 diffusion flux 驱动力 driving force间隙扩散 interstitial diffusion 自扩散 self-diffusion 表面扩散 surface diffusion空位扩散 vacancy diffusion 扩散偶 diffusion couple 扩散方程 diffusion equation扩散机理 diffusion mechanism 扩散特性 diffusion property 无规行走 Random walk达肯方程 Dark equation 柯肯达尔效应 Kirkendall equation本征热缺陷 Intrinsic thermal defect 本征扩散系数 Intrinsic diffusion coefficient离子电导率 Ion-conductivity 空位机制 Vacancy concentration材料科学基础专业词汇:第七章相变过冷 supercooling 过冷度 degree of supercooling 晶核 nucleus 形核 nucleation形核功 nucleation energy 晶体长大 crystal growth 均匀形核 homogeneous nucleation非均匀形核 heterogeneous nucleation 形核率 nucleation rate 长大速率 growth rate热力学函数 thermodynamics function 临界晶核 critical nucleus临界晶核半径 critical nucleus radius 枝晶偏析 dendritic segregation局部平衡 localized equilibrium 平衡分配系数 equilibrium distributioncoefficient有效分配系数 effective distribution coefficient 成分过冷 constitutional supercooling引领领先相 leading phase 共晶组织 eutectic structure 层状共晶体 lamellar eutectic伪共晶 pseudoeutectic 离异共晶 divorsed eutectic 表面等轴晶区 chill zone柱状晶区 columnar zone 中心等轴晶区 equiaxed crystal zone定向凝固 unidirectional solidification 急冷技术 splatcooling 区域提纯 zone refining单晶提拉法 Czochralski method 晶界形核 boundary nucleation位错形核 dislocation nucleation 晶核长大 nuclei growth斯宾那多分解 spinodal decomposition 有序无序转变 disordered-order transition马氏体相变 martensite phase transformation 马氏体 martensite材料科学基础专业词汇:第八、九章固相反应和烧结固相反应 solid state reaction 烧结 sintering 烧成 fire 合金 alloy 再结晶 Recrystallization 二次再结晶 Secondary recrystallization 成核 nucleation 结晶 crystallization子晶,雏晶 matted crystal 耔晶取向 seed orientation 异质核化 heterogeneous nucleation均匀化热处理 homogenization heat treatment 铁碳合金 iron-carbon alloy渗碳体 cementite 铁素体 ferrite 奥氏体austenite 共晶反应 eutectic reaction 固溶处理 solution heat treatment。
冶金专业英语词汇(A—Z)
♦ A♦安全系数safety factor♦奥氏体austenite♦ B♦拔管机drawbench♦板材plate product♦板料冲压sheet metal parts♦板坯billet♦半成品semifinished product♦半导体元件semiconductor element ♦棒材bar♦贝氏体bainite♦箅条grid♦变速器speed changer♦变速箱gearbox♦变速箱体gearbox casing♦变形deformation♦变形力deforming force♦变压器transformer♦标准件standard component♦表面变形surface deformation♦表面硬化case hardening♦冰晶石cryolite♦剥落spalling♦薄板plate, sheet♦不定积分indefinite integral♦不锈钢stainless steel♦步进电机stepper motor♦布氏硬度brinell hardness♦ C♦残余应力residual stress♦插齿gear shaping♦超声传感器ultrasonic sensor♦车床lathe♦车刀lathe tool♦车架automotive chassis♦车间workshop♦车削turning♦成品finished product♦成型moulding, molding♦成型辊- forming rolls♦尺寸标注size marking♦齿轮gear♦齿轮加工gear machining♦赤铁矿haematite♦齿轮齿条pinion and rack♦冲压stamping, pressing♦重熔 remelting♦出铁 tapping♦出铁口taphole♦初轧方坯bloom♦初轧机blooming mill♦除尘器dust catcher♦除垢descale♦触发器flip-flop♦传动drive, transmission♦床式反射炉 hearth furnace♦吹炬blowlamp♦磁路magnetic circles♦伺服电机actuating motor♦粗糙asperity♦粗钢crude steel♦粗加工rough machining♦脆性brittleness♦脆性材料brittleness material♦淬火hardening; quench, quenching♦淬火层quench hardened case ; quenched case♦淬火冷却quench♦淬火深度hardness penetration; depth of hardening ♦淬水hardening♦淬透性hardenability; hardening capacity♦ D♦打桩锤pile hammer♦带状薄板coiled sheet♦挡板orifice plate; baffle plate♦刀尖nose of tool♦刀具cutter♦导轨lead rail♦导数differential coefficient♦导卫板fore plate♦倒角rounding chamfer♦低碳钢mild steel, soft steel♦电动机electromotor♦电镀plating♦电工钢electric steel♦电弧焊arc welding♦电化学腐蚀electrochemical corrosion♦电火花加工electric spark machining♦电火花线切割加工electrical discharge wire - cutting ♦电解electrolysis♦电路circuit♦电冶金学electrometallurgy♦垫圈washer♦定积分definite integral♦定径辊size rolls♦定位allocation♦定义域definitional domain♦锭模ingot mould♦动力学dynamic♦动量momentum♦动能kinetic energy♦锻钢forged steel; hammered steel; wrought steel♦煅烧calcination♦锻造forging♦断裂fracture♦ E♦二阶行列式second order determinant♦ F♦发黑black oxide coating♦发生器generator♦阀门valve♦钒vanadium♦反馈feedback♦反射炉 reverberatory furnace♦反应罐retort♦范成法generation method♦放渣口slag tap♦废铁scrap iron♦分析力学analyse mechanics♦粉化 pulverization♦粉末冶金学powder metallurgy♦风口tuyere, nozzle♦浮选 floatation, flotation♦腐蚀rust♦G♦概率probability♦坩埚钢cast steel感应淬火impedance matching;induction hardening ♦钢steel♦钢厂steelworks, steel mill♦钢带metal strip, metal band♦钢锭steel ingot♦刚度rigidity♦刚度准则rigidity criterion♦钢坯billet♦钢铁工业iron and steel industry♦高铬辊high chromium roll♦高铬滚轮high chromium wheel♦高铬合金轧辊high chromium alloy roll♦高速钢high-speed steel♦镉cadmium♦铬chromium♦功率power♦工程技术人员engineer♦工件workpiece♦攻丝tap♦工业造型设计industrial moulding design♦工作层working face; working lining♦汞齐化amalgamation♦共轭曲线conjugate curve♦鼓风炉blast furnace♦固溶处理solution treatment♦固溶体solid solution♦固态相变solid state phase changes♦光谱分析spectrum analysis♦硅silicon♦辊roller♦滚齿hobbing♦滚动轴承rolling bearing♦过盈配合interference fit♦H♦含碳量carbon content♦焊weld♦焊接钢管welded steel pipe,welded steel tube,welding steel tube ♦合成进给运动resultant movement of feed♦合成切削运动resultant movement of cutting♦合成切削运动方向direction of resultant movement of cutting♦合成纤维synthetic fibre♦合金alloy♦合金钢alloy steel♦合金化alloyage; alloying♦宏观硬度macro hardness♦后角clearance angle♦滑动轴承sliding bearing♦划痕scuffing♦化铁炉cupola♦画法几何descriptive geometry♦还原reduction♦黄铜brass♦回火temper♦I♦J♦机床machine tool♦机床夹具jig♦机加工machining♦机械加工余量machining allowance♦机械零件mechanical parts♦机械能守恒conservation of mechanical energy♦机械制图mechanical drawing♦基体matrix♦基体硬度matrix hardness♦基准benchmark♦集成电路integrate circuit♦几何形状geometrical♦挤压extrusion♦挤压辊squeeze roll; squeezing roller♦技术要求technical requirements♦加工machining, tooling♦加工中心machining center♦加热heating♦夹砂sonim♦夹杂物inclusion♦夹渣cinder inclusion♦剪切shear♦键spline♦交流电路AC circuit♦焦炭coke♦角钢angle iron♦绞孔fraising♦绞刀reamer♦搅炼puddling♦搅炼熟铁puddled iron♦矫直straighten♦结合剂bonding agent♦截面section♦介质medium♦金属工艺学technology of metals♦金属切削metal cutting♦金相试验metallographic test♦金相组织metallurgical structure; metallographic structure ♦进给方向direction of feed♦进给运动feed movement♦进行退火process anneal♦精度precision♦精加工finish machining♦晶格lattice♦晶粒grain♦晶粒度grain size♦精炼refining♦精炼炉 refining furnace♦卷扬机hoist♦K♦卡盘chuck♦可编程序逻辑控制器Programmable Logic Controller PLC ♦可靠性reliability♦可倾式混铁炉tilting mixer♦空冷air cooling♦孔加工spot facing machining♦L♦拉拔drawing♦拉床broaching machine♦拉孔broaching♦拉模板drawplate♦拉模铸造die casting♦拉伸pulling♦拉伸强度tensile strength♦拉伸试验tensile test♦拉丝wiredrawing♦拉丝机drawbench♦冷加工cold machining♦冷却cooling♦冷弯形钢cold bending shape steel♦冷作模具钢cold-work die steel♦离合器clutch♦离散信号discrete signal♦联结link♦联轴器coupling♦链chain♦炼焦coking♦炼焦厂coking plant♦料车skip♦料斗hopper, chute♦裂纹crack♦磷phosphor; phosphorus♦零件图part drawing♦硫sulfur; sulphur♦流体动力学fluid dynamics♦流体力学fluid mechanics♦炉底hearth♦炉顶 roof, arch♦炉腹bosh♦炉缸crucible♦炉口mouth, throat♦炉冷furnace cooling♦炉料charging♦炉身stack♦逻辑代数logic algebra♦逻辑电路logic circuit♦螺钉screw♦螺纹thread♦螺纹加工thread processing♦螺旋helix♦洛氏硬度rockwell hardness♦落差fall♦落锤 drop hammer♦铝 alumina♦M♦马弗炉muffle♦马口铁tinplate, tin♦马氏体martensite♦脉冲波形pulse shape♦脉石 gangue♦毛坯rough♦煤气净化器gas purifier♦门电路gate circuit♦锰manganese♦摩擦friction♦磨床grinder♦磨粒abrasive particle♦磨损wear; galling; abrasion; attrition;♦磨屑abrasive dust♦钼molybdenum♦N♦耐火砖衬firebrick lining♦耐磨wear resistance; antifriction♦耐磨性wear resistance; wear properties♦耐热heat resistance♦耐热钢heat resistance steel; refractory steel ♦耐热铁铸件heat resistance iron casting♦耐用度durability♦挠度deflection♦内力internal force♦内圆磨削internal grinding♦逆矩阵inverse matrix♦粘钢dead burning♦镍铬恒弹性钢elinvar♦镍铁ferronickel♦扭力torsion♦扭转twist♦O♦P♦排空装置emptier♦喷钢砂(处理)grit blasting♦喷砂(处理)sand blasting♦喷丸(处理)shot blasting♦坯锭billet♦疲劳极限fatigue limit♦皮带strap♦偏微分partial differential♦偏析segregation♦频率特性frequency characteristic♦平面磨削plane grinding♦平台floor♦破碎机 crusher♦剖视图profile chart♦Q♦汽缸cylinder♦气动夹紧pneuma lock♦气孔 blowhole; pore♦气体状态方程equation of state of gas♦气压air pressure; pneumatic pressure♦千分尺micrometer calipers♦前角rake angle♦前刀面rake face♦钳工locksmith♦强度intensity♦强韧性obdurability♦切线tangent♦切削深度cutting depth♦清理焊缝trimming♦青铜bronze♦求导derivation♦球墨铸铁nodular cast iron; ductile cast iron ♦屈服强度yield strength♦屈氏体troostite♦曲柄crank♦曲率curvature♦R♦热处理heat treatment; thermal treatment ♦热加工hot-work♦热交换器heat exchanger♦热强钢refractory steel♦熔剂flux♦熔炼fusion, melting, smelting♦蠕变creep♦软钢mild steel, soft steel♦S♦三相交流电three-phase AC(alternating current) ♦砂轮grinding wheel♦烧结fritting, sintering♦烧嘴burner♦摄像头CCD camera♦渗氮nitriding♦渗碳体 cementite;iron carbide♦渗碳carburization♦生铁 pig iron♦失效invalidation♦十字结联轴节crosshead♦石灰石溶剂 limestone flux♦时效处理aging treatment♦使用寿命service life♦视图view♦势能potential energy♦试样test specimen♦熟铁wrought iron♦数模digital analogy♦数学模型mathematical model♦竖炉shaft furnace♦丝杠screw rod♦酸洗pickling♦塑性变形plastic distortion♦随机变量random variable♦随机信号random signal♦缩孔shrinkage♦索氏体sorbite♦T♦弹簧spring♦弹塑性elasto plasticity♦弹性elasticity♦碳化铁 cementite♦碳化物carbide♦镗床boring machine♦陶瓷ceramics♦套筒sleeve♦剃边shavings♦调质hardening and tempering♦铁厂ironworks♦铁醇盐ferrite♦铁带 metal strip, metal band♦铁锭iron ingot♦铁钒土bauxite♦铁水包ladle♦铁水沟trough♦铁素体ferrite♦铁氧体 ferrite♦铁制品ferrous products♦投影projection♦凸轮cam♦退火annealing;anneal♦脱碳decarbonization, decarburization♦U♦V♦W♦瓦垅薄钢板corrugated iron♦外圆磨削external grinding♦弯曲应力bending stress♦微分differential coefficient♦维氏硬度vickers hardness, diamond pyramid hardness ♦位移displacement♦稳定性stability♦涡轮压缩机turbocompressor♦蜗杆蜗轮worm and worm gear♦钨tungsten♦无缝钢管seamless steel pipe, seamless steel tube♦误差error♦雾化pulverization♦X♦析出separate out♦洗涤塔washer♦夏氏冲击试验charpy impact test♦显微硬度micro hardness♦线材wire♦线性方程组linear equations♦铣床milling machine♦铣刀milling cutter♦铣削milling♦响应response♦相图phase diagram♦销pin♦消除残余应力relaxation of residual stress♦斜齿圆柱齿轮helical-spur gear♦芯部core segment♦型材section♦型钢profiled bar♦虚约束passive constraint♦蓄热室regenerator♦悬架suspension♦压锻 press♦压模stamping♦压缩hitting; compress♦压缩机compressor♦延伸率elongation♦氧化oxidation♦氮化物nitride♦氧化皮scale♦氧炔焊autogenous welding,fusion welding ♦摇杆rocker♦液压hydraulic pressure♦液压泵hydraulic pump♦液压传动机构fluid drive mechanism♦液压驱动泵fluid clutch♦冶金行业Metallurgical Industry♦一次碳化物primary carbide♦异步(感应)电动机asynchronous motor ♦异型钢材profiled bar♦应力stress♦应力释放stress relief♦硬度hardness;rigidity♦硬度计hardness tester♦硬钢hard steel♦优化设计optimal design♦游标卡尺slide caliper♦油冷oil cooling♦有色金属nonferrous metal♦有限元finite element♦余子式cofactor♦预热preheating♦原料stock; material♦圆铁round iron♦运动简图kinematic sketch♦运动学kinematics♦Z♦载荷load♦造渣slagging, scorification♦轧钢rolling steel♦轧钢机rolling mill♦轧机rolling mill♦轧机机架rolling-mill housing♦轧制 rolling♦正火normalizing♦正弦形的sinusoid♦直齿圆柱齿轮straight toothed spur gear ♦直齿锥齿轮straight bevel gear♦直缝straight stitch♦直缝焊管butt welded pipe ;butt welded tube ;straight welded tubing ♦直流电源DC electrical source♦值域range♦制动器arrester♦制模patternmaking♦轴shaft♦轴线axes♦珠光体perlite; pearlite♦主运动main movement♦主运动方向direction of main movement♦主轴spindle♦主轴箱headstock♦注入to insufflate, to inject♦铸床pig bed♦铸钢cast steel; moulded steel♦铸模mould♦铸铁cast iron♦铸铁锭cast iron ingot♦铸造casting; found♦铸造车间foundry♦转向器redirector♦转炉converter♦装料 charging, loading♦装料机charger♦装配assembling♦装配图assembly drawing♦组件subassembly♦钻床drill machine♦钻削bore。
模具行业英语词汇大全
air vent vale 通气阀anchor pin 锚梢angular pin 角梢baffle 调节阻板angular pin 倾斜梢baffle plate 折流档板ball button 球塞套ball plunger 定位球塞ball slider 球塞滑块binder plate 压板blank holder 防皱压板blanking die 落料冲头bolster 上下模板bottom board 浇注底板bolster 垫板bottom plate 下固定板bracket 托架bumper block 缓冲块buster 堵口casting ladle 浇注包casting lug 铸耳cavity 模穴(模仁)cavity retainer plate 模穴托板center pin 中心梢clamping block 锁定块coil spring 螺旋弹簧cold punched nut 冷冲螺母cooling spiral 螺旋冷却栓core 心型core pin 心型梢cotter 开口梢cross 十字接头cushion pin 缓冲梢diaphragm gate 盘形浇口die approach 模头料道die bed 型底die block 块形模体die body 铸模座die bush 合模衬套die button 冲模母模die clamper 夹模器die fastener 模具固定用零件die holder 母模固定板die lip 模唇die plate 冲模板die set 冲压模座direct gate 直接浇口dog chuck 爪牙夹头dowel 定位梢dowel hole 导套孔dowel pin 合模梢dozzle 辅助浇口dowel pin 定位梢draft 拔模锥度draw bead 张力调整杆drive bearing 传动轴承ejection pad 顶出衬垫ejector 脱模器ejector guide pin 顶出导梢ejector leader busher 顶出导梢衬套ejector pad 顶出垫ejector pin 顶出梢ejector plate 顶出板ejector rod 顶出杆ejector sleeve 顶出衬套ejector valve 顶出阀eye bolt 环首螺栓filling core 椿入蕊film gate 薄膜形浇口finger pin 指形梢finish machined plate 角形模板finish machined round plate 圆形模板fixed bolster plate 固定侧模板flanged pin 带凸缘销flash gate 毛边形浇口flask 上箱floating punch 浮动冲头gate 浇口gate land 浇口面gib 凹形拉紧楔goose neck 鹅颈管guide bushing 引导衬套guide pin 导梢guide post 引导柱guide plate 导板guide rail 导轨head punch 顶头冲孔headless punch 直柄冲头heavily tapered solid 整体模蕊盒hose nippler 管接头impact damper 缓冲器injection ram 压射柱塞inlay busher 嵌入衬套inner plunger 内柱塞inner punch 内冲头insert 嵌件insert pin 嵌件梢king pin 转向梢king pin bush 主梢衬套knockout bar 脱模杵land 合模平坦面land area 合模面leader busher 导梢衬套lifting pin 起模顶销lining 内衬locating center punch 定位中心冲头locating pilot pin 定位导梢locating ring 定位环lock block 压块locking block 定位块locking plate 定位板loose bush 活动衬套making die 打印冲子manifold block 歧管档块master plate 靠模样板match plate 分型板mold base 塑胶模座mold clamp 铸模紧固夹mold platen 模用板moving bolster 换模保持装置moving bolster plate 可动侧模板one piece casting 整体铸件parallel block 平行垫块paring line 分模线parting lock set 合模定位器pass guide 穴型导板peened head punch 镶入式冲头pilot pin 导销pin gate 针尖浇口plate 衬板pre extrusion punch 顶挤冲头punch 冲头puncher 推杆pusher pin 衬套梢rack 机架rapping rod 起模杆re-entrant mold 凹入模retainer pin 嵌件梢retainer plate 托料板return pin 回位梢riding stripper 浮动脱模器ring gate 环型浇口roller 滚筒runner 流道runner ejector set 流道顶出器runner lock pin 流道拉梢screw plug 头塞set screw 固定螺丝shedder 脱模装置shim 分隔片shoe 模座之上下模板shoot 流道shoulder bolt 肩部螺丝skeleton 骨架slag riser 冒渣口slide(slide core) 滑块slip joint 滑配接头spacer block 间隔块spacer ring 间隔环spider 模蕊支架spindle 主轴sprue 注道sprue bushing 注道衬套sprue bushing guide 注道导套sprue lock bushing 注道定位衬套sprue puller 注道拉料spue line 合模线square key 方键square nut 方螺帽square thread 方螺纹stop collar 限位套stop pin 止动梢stop ring 止动环stopper 定位停止梢straight pin 圆柱销stripper bolt 脱料螺栓stripper bushing 脱模衬套stripper plate 剥料板stroke end block 行程止梢submarine gate 潜入式浇口support pillar 支撑支柱/顶出支柱support pin 支撑梢supporting plate 托板sweep templete 造模刮板tab gate 辅助浇口taper key 推拔键taper pin 拔锥梢/锥形梢teeming 浇注three start screw 三条螺纹thrust pin 推力销tie bar 拉杵tunnel gate 隧道形浇口vent 通气孔wortle plate 拉丝模板alloy tool steel 合金工具钢aluminium alloy 铝合金钢bearing alloy 轴承合金blister steel 浸碳钢bonderized steel sheet 邦德防蚀钢板carbon tool steel 碳素工具钢clad sheet 被覆板clod work die steel 冷锻模用钢emery 金钢砂ferrostatic pressure 钢铁水静压力forging die steel 锻造模用钢galvanized steel sheet 镀锌铁板hard alloy steel 超硬合金钢high speed tool steel 高速度工具钢hot work die steel 热锻模用钢low alloy tool steel 特殊工具钢low manganese casting steel 低锰铸钢marging steel 马式体高强度热处理钢martrix alloy 马特里斯合金meehanite cast iron 米汉纳铸钢meehanite metal 米汉纳铁merchant iron 市售钢材molybdenum high speed steel钼系高速钢molybdenum steel 钼钢nickel chromium steel 镍铬钢prehardened steel 顶硬钢silicon steel sheet 矽钢板stainless steel 不锈钢tin plated steel sheet 镀锡铁板tough pitch copper 韧铜troostite 吐粒散铁tungsten steel 钨钢vinyl tapped steel sheet 塑胶覆面钢板aberration 色差bite 咬入blacking hole 涂料孔(铸疵)blacking scab 涂料疤blister 起泡blooming 起霜blow hole 破孔blushing 泛白body wrinkle 侧壁皱纹breaking-in 冒口带肉bubble 膜泡burn mark 糊斑burr 毛边camber 翘曲cell 气泡center buckle 表面中部波皱check 细裂痕checking 龟裂chipping 修整表面缺陷clamp-off 铸件凹痕collapse 塌陷color mottle 色斑corrosion 腐蚀crack 裂痕crazing 碎裂crazing 龟裂deformation 变形edge 切边碎片edge crack 裂边fading 退色filler speak 填充料斑fissure 裂纹flange wrinkle 凸缘起皱flaw 刮伤flow mark 流痕galling 毛边glazing 光滑gloss 光泽grease pits 污斑grinding defect 磨痕haircrack 发裂haze 雾度incrustation 水锈indentation 压痕internal porosity 内部气孔mismatch 偏模mottle 斑点necking 缩颈nick 割痕range peel 橘皮状表面缺陷overflow 溢流peeling 剥离pit 坑pitting corrosion 点状腐蚀plate mark 模板印痕pock 麻点pock mark 痘斑resin streak 树脂流纹resin wear 树脂脱落riding 凹陷sagging 松垂saponification 皂化scar 疤痕scrap 废料scrap jam 废料阻塞scratch 刮伤/划痕scuffing 深冲表面划伤seam 裂痕shock line 模口挤痕short shot 充填不足shrinkage pool 凹孔sink mark 凹痕skin inclusion 表皮摺叠straightening 矫直streak 条状痕surface check 表面裂痕surface roughening 橘皮状表皮皱摺surging 波动torsion 扭曲warpage 翘曲waviness 波痕webbing 熔塌weld mark 焊痕whitening 白化wrinkle 皱纹age hardening 时效硬化ageing 老化处理air hardening 气体硬化air patenting 空气韧化annealing 退火anode effect 阳极效应anodizing 阳极氧化处理atomloy treatment 阿托木洛伊表面austempering 奥氏体等温淬火austenite 奥斯田体/奥氏体bainite 贝氏体banded structure 条纹状组织barrel plating 滚镀barrel tumbling 滚筒打光blackening 染黑法blue shortness 青熟脆性bonderizing 磷酸盐皮膜处理box annealing 箱型退火box carburizing 封箱渗碳bright electroplating 辉面电镀bright heat treatment 光辉热处理bypass heat treatment 旁路热处理carbide 炭化物carburized case depth 浸碳硬化深层carburizing 渗碳cementite 炭化铁chemical plating 化学电镀chemical vapor deposition 化学蒸镀coarsening 结晶粒粗大化coating 涂布被覆cold shortness 低温脆性comemtite 渗碳体controlled atmosphere 大气热处理corner effect 锐角效应creeping discharge 蠕缓放电decarburization 脱碳处理decarburizing 脱碳退火depth of hardening 硬化深层diffusion 扩散diffusion annealing 扩散退火electrolytic hardening 电解淬火embossing 压花etching 表面蚀刻ferrite 肥粒铁first stage annealing 第一段退火flame hardening 火焰硬化flame treatment 火焰处理full annealing 完全退火gaseous cyaniding 气体氧化法globular cementite 球状炭化铁grain size 结晶粒度granolite treatment 磷酸溶液热处理graphitizing 石墨退火hardenability 硬化性hardenability curve 硬化性曲线hardening 硬化heat treatment 热处理hot bath quenching 热浴淬火hot dipping 热浸镀induction hardening 高周波硬化ion carbonitriding 离子渗碳氮化ion carburizing 离子渗碳处理ion plating 离子电镀isothermal annealing 等温退火liquid honing 液体喷砂法low temperature annealing 低温退火malleablizing 可锻化退火martempering 麻回火处理martensite 马氏体/硬化铁炭metallikon 金属喷镀法metallizing 真空涂膜nitriding 氮化处理nitrocarburizing 软氮化normalizing 正常化oil quenching 油淬化overageing 过老化overheating 过热pearlite 针尖组织phosphating 磷酸盐皮膜处理physical vapor deposition 物理蒸镀plasma nitriding 离子氮化pre-annealing 预备退火precipitation 析出precipitation hardening 析出硬化press quenching 加压硬化process annealing 制程退火quench ageing 淬火老化quench hardening 淬火quenching crack 淬火裂痕quenching distortion 淬火变形quenching stress 淬火应力reconditioning 再调质recrystallization 再结晶red shortness 红热脆性residual stress 残留应力retained austenite 残留奥rust prevention 防蚀salt bath quenching 盐浴淬火sand blast 喷砂处理seasoning 时效处理second stage annealing 第二段退火secular distortion 经年变形segregation 偏析selective hardening 部分淬火shot blast 喷丸处理shot peening 珠击法single stage nitriding 等温渗氮sintering 烧结处理soaking 均热处理softening 软化退火solution treatment 固溶化热处理spheroidizing 球状化退火stabilizing treatment 安定化处理straightening annealing 矫直退火strain ageing 应变老化stress relieving annealing 应力消除退火subzero treatment 生冷处理supercooling 过冷surface hardening 表面硬化处理temper brittleness 回火脆性temper colour 回火颜色tempering 回火tempering crack 回火裂痕texture 咬花thermal refining 调质处理thermoechanical treatment 加工热处理time quenching 时间淬火transformation 变态tufftride process 软氮化处理under annealing 不完全退火vacuum carbonitriding 真空渗碳氮化vacuum carburizing 真空渗碳处理vacuum hardening 真空淬火vacuum heat treatment 真空热处理vacuum nitriding 真空氮化water quenching 水淬火wetout 浸润处理assembly drawing 装配图auto tool change cycle 自动换刀时间周期beam 横梁bending moment 弯矩bending stress 弯曲应力bottoming 底靠buckling 纵弯曲chamfering 去角斜切channel 凹槽chattering 颤动check point 查核点chip 切屑chip conveyor 排屑输送机coefficient of friction 摩擦系数compact 小型的cooling pipe 冷却管coupon 试样胚deflection 挠曲量distortion 扭曲变形draft taper 拔模锥度draw out 拉拔fit tolerance 配合公差flexible rigidity 弯曲刚性gas vent 气孔hatching 剖面线heater cooler 加热器冷却装置hook cavity 钩穴inching 寸动lug 凸缘maintenance 维修保固metallurgy 冶金学notch effect 切口效果out of roughness 真圆度performance 动作性能pit 坑plane strain 倒角应力plug mill 蕊棒轧管机repeated load 重覆载荷riveted joint 铆钉接合sand paper 砂纸shift 偏移shrink fit 热压配合shrinkage hole 缩孔sinking 凹陷sketch 草图spalling 剥落straightness 直度submarine 深陷式surface roughness 表面粗度tapping 攻螺丝thermocouple 热电耦torsion load 扭转载荷toughness 韧性tracing 描图under cut 凹割3D coordinate measurement 三次元量床3D modeling 三次元模拟aberration 色差abnormal glow 不规则辉光放电abrasive 砂轮access 通路accretion 炉瘤accurate die casting 精密压铸acid converter 酸性转炉acid lining cupola 酸性熔铁炉acid open-hearth furnance 酸性平炉activator 活化剂acetylene 乙炔adjustable spanner 活动扳手aerator 松砂机age hardening 时效硬化ageing 老化处理air hardening 气体硬化airless plasting cleaning 离心喷光air patenting 空气韧化air permeability test 透气性试验air set mold 常温自硬铸模air vent valve 通气阀all core molding 集合式铸模alloy tool steel 合金工具钢allround die holder 通用模型aluminium alloy 铝合金钢ampere 电流安培梢angle cutter 角铣刀angle welding 角焊angular pin 角梢angular pin 倾斜梢anode effect 阳极效应annealing 退火anchor pin 锚acrylic 压克力casein 酪素cellulose acetate 醋酸纤维素CAcellulose acetate butyrate 醋酸丁酸纤维素CABcomposite material 复合材料cresol resin 甲酚树脂CFdially phthalate 苯二甲酸二烯丙酯disperse reinforcement 分散性强化复合材料engineering plastics 工程塑胶epoxy resin 环氧树脂EPethyl cellulose 乙基纤维素ethylene vinylacetatecopolymer 乙烯-醋酸乙烯EV Aethylene-vinlacetatecopolyme 醋酸乙烯共聚物EV Afiber reinforcement 纤维强化热固性/纤维强化复合材料high density polyethylene 高密度聚乙烯HDPEhigh impact polystyrene 高冲击聚苯乙烯HIPShigh impact polystyrenerigidity 高冲击性聚苯乙烯low density polyethylene 低密度聚乙烯LDPEmelamine resin 三聚氰胺酚醛树脂MFnitrocellulose 硝酸纤维素phenolic resin 酚醛树脂plastic 塑胶polyacrylic acid 聚丙烯酸PAPpolyamide 耐龙PApolybutyleneterephthalate 聚对苯二甲酸丁酯PBTpolycarbonate 聚碳酸酯PCpolyethyleneglycol 聚乙二醇PFGpolyethyleneoxide 聚氧化乙烯PEOpolyethyleneterephthalate 聚乙醇对苯PETPpolymetylmethacrylate 聚甲基丙烯酸甲酯PMMApolyoxymethylene 聚缩醛POMpolyphenylene oxide 聚硫化亚苯polyphenyleneoxide 聚苯醚PPOpolypropylene 聚丙烯PPpolystyrene 聚苯乙烯PSpolytetrafluoroethylene 聚四氟乙烯PTFEpolytetrafluoroethylene 聚四氟乙烯polythene 聚乙烯PEpolyurethane 聚氨基甲酸酯PUpolyvinylacetate 聚醋酸乙烯PV ACpolyvinylalcohol 聚乙烯醇PV Apolyvinylbutyral 聚乙烯醇缩丁醛PVBpolyvinylchloride 聚氯乙烯PVCpolyvinylfuoride 聚氟乙烯PVFpolyvinylidenechloride 聚偏二氯乙烯PVDCprepolymer 预聚物silicone resin 矽树脂thermoplastic 热塑性thermosetting 热固性thermosetting plastic 塑胶unsaturated polyester 不饱和聚酯树脂activator 活化剂bag moulding 气胎施压成形bonding strength 黏合强度breathing 排气caulking compound 填隙料cell 气孔cold slug 半凝式射出colorant 著色剂color matching 调色color masterbatch 色母料compound 混合料copolymer 共聚合体cull 残料废品cure 凝固化cryptometer 不透明度仪daylight 开隙dry cycle time 空料试车周期时间ductility 延性elastomer 弹性体extruded bead sealing 压出粒涂层法feed 供料filler 充填剂film blowing 薄膜吹制法floating platen 活动模板foaming agent 发泡剂gloss 光泽granule 颗粒料gunk 料斗hot mark 热斑hot stamping 烫印injection nozzle 射出喷嘴injection plunger 射出柱塞injection ram 射出冲柱isomer 同分异构物kneader 混合机leveling agent 匀涂剂lubricant 润滑剂matched die method 配合成形法mould clamping force 锁模力mould release agent 脱模剂nozzle 喷嘴oriented film 取向薄膜parison 吹气成形坏料pellet 粒料plasticizer 可塑剂plunger 压料柱塞porosity 孔隙率post cure 後固化premix 预混料purging 清除reciprocating screw 往复螺杆resilience 回弹性resin injection 树脂射出法rheology 流变学sheet 塑胶片shot 注射shot cycle 射出循环slip agent 光滑剂take out device 取料装置tie bar 拉杆toggle type mould clampingsystem 肘杆式锁模装置torpedo spreader 鱼雷形分流板transparency 透明性void content 空洞率adjustable spanner 活动扳手angle cutter 角铣刀arbour 心轴backing 衬垫belt sander 带式打磨机buffing 抛光chamfering machine 倒角机chamfering tool 去角刀具chisel 扁錾chuck 夹具compass 两角规concave cutter 凹面铣刀convex cutter 凸形铣刀cross joint 十字接头cutting edge clearance 刃口余隙角drill stand 钻台edge file 刃用锉刀file 锉刀flange joint 凸缘接头grinder 砂轮机hammer 铁锤hand brace 手摇钻hatching 剖面线hexagon headed bolt 六角头螺栓hexagon nut 六角螺帽index head 分度头jack 千斤顶jig 治具kit 工具箱lapping 研磨metal saw 金工锯nose angle 刀角pinchers 钳子pliers 铗钳plug 柱塞头polisher 磨光器protable driller 手提钻孔机punch 冲头sand paper 砂纸scraper 刮刀screw driver 螺丝起子scribing 划线second out file 中纹锉spanner 扳手spline broach 方栓槽拉刀square 直角尺square sleeker 方形镘刀square trowel 直角度stripping 剥离工具T-slot T形槽tool for lathe 车刀tool point angle 刀刃角tool post 刀架tosecan 划线盘trimming 去毛边waffle die flattening 压纹效平wiper 脱模钳wrench 螺旋扳手back shaft 支撑轴blank determination 胚料展开bottom slide press 下传动式压力机board drop hammer 板落锤brake 煞车buckle 剥砂面camlachie cramp 铸包chamotte sand 烧磨砂charging hopper 加料漏斗clearance 间隙closed-die forging 合模锻造clump 夹紧clutch 离合器clutch brake 离合器制动器clutch boss 离合器轮壳clutch lining 离合器覆盖coil car 带卷升降运输机coil cradle 卷材进料装置coil reel stand 钢材卷料架column 圆柱connection screw 连杆调节螺钉core compound 砂心黏结剂counter blow hammer 对击锻锤cradle 送料架crank 曲柄轴crankless 无曲柄式cross crank 横向曲轴cushion 缓冲depression 外缩凹孔dial feed 分度送料die approach 模口角度die assembly 合模die cushion 模具缓冲垫die height 冲压闭合高度die life 模具寿命die opening 母模逃孔die spotting press 调整冲模用压力机double crank press 双曲柄轴冲床draght angle 逃料倾斜角edging 边锻伸embedded core 加装砂心feed length 送料长度feed level 送料高度filling core 埋入砂心filling in 填砂film play 液面花纹fine blanking press 精密下料冲床forging roll 辊锻机finishing slag 炼後熔渣fly wheel 飞轮fly wheel brake 飞轮制动器foot press 脚踏冲床formboard 进模口板frame 床身机架friction 摩擦friction brake 摩擦煞车gap shear 凹口剪床gear 齿轮gib 滑块引导部gripper 夹具gripper feed 夹持进料gripper feeder 夹紧传送装置hammer 槌机hand press 手动冲床hand rack pinion press 手动齿轮齿条式冲床hand screw press 手动螺旋式冲床hopper feed 料斗送料idle stage 空站inching 微调尺寸isothermal forging 恒温锻造key clutch 键槽离合器knockout 脱模装置knuckle mechanic 转向机构land 模具直线刀面部loader 供料器unloader 卸料机loop controller 闭回路控制器lower die 下模micro inching device 微寸动装置microinching equipment 微动装置moving bolster 活动工作台notching press 冲缺口压力机opening 排料逃孔overload protection device 防超载装置pinch roll 导正滚轮pinion 小齿轮pitch 节距pressfit 压入progressive 连续送料pusher feed 推杆式送料pusher feeder 料片押片装置quick die change system 快速换模系统regrinding 再次研磨releasing 松释动作reversed blanking 反转下料robot 机器人roll forming machine 辊轧成形roll forming machine 辊轧成形机roll release 脱辊roller feed 辊式送料roller leveler 辊式矫直机rotary bender 卷弯成形机safety guard 安全保护装置scrap cutter 废料切刀scrap press 废料冲床seamless forging 无缝锻造shave 崩砂shear angle 剪角sheet loader 薄板装料机shot 单行程工作shrinkage fit 收缩配合shut height 闭合高度sieve mesh 筛孔sintering of sand 铸砂烧贴slide balancer 滑动平衡器slug hole 逃料孔spin forming machine 旋压成形机spotting 合模stack feeder 堆叠拨送料机stickness 黏模性straight side frame 冲床侧板stretcher leveler 拉伸矫直机strip feeder 料材送料装置stripping pressure 弹出压力stroke 冲程take out device 取料装置toggle press 肘杆式压力机transfer feed 连续自动送料装置turrent punch press 转塔冲床two speed clutch 双速离合器uncoiler 闭卷送料机unloader 卸载机vibration feeder 振动送料机wiring press 嵌线卷边机3D coordinate measurement 三次元量床boring machine 搪孔机cnc milling machine CNC铣床contouring machine 轮廓锯床copy grinding machine 仿形磨床copy lathe 仿形车床copy milling machine 仿形铣床copy shaping machine 仿形刨床cylindrical grinding machine 外圆磨床die spotting machine 合模机drilling machine 冲孔机engraving machine 雕刻机engraving E.D.M. 雕模放置加工机form grinding machine 成形磨床graphite machine 石墨加工机horizontal boring machine 卧式搪孔机horizontal machine center 卧式加工制造中心internal cylindrical machine 内圆磨床jig boring machine 冶具搪孔机jig grinding machine 冶具磨床lap machine 研磨机machine center 加工制造中心multi model miller 靠磨铣床NC drilling machine NC钻床NC grinding machine NC磨床NC lathe NC车床NC programming system NC程式制作系统planer 龙门刨床profile grinding machine 投影磨床projection grinder 投影磨床radial drilling machine 旋臂钻床shaper 牛头刨床surface grinder 平面磨床try machine 试模机turret lathe 转塔车床universal tool grinding machine万能工具磨床vertical machine center 立式加工制造中心wire E.D.M. 线割放电加工机accretion 炉瘤acid converter 酸性转炉acid lining cupola 酸性熔铁炉acid open-hearth furnace 酸性平炉aerator 松砂机air set mold 常温自硬铸模airless blasting cleaning 离心喷光all core molding 集合式铸模all round die holder 通用模座assembly mark 铸造合模记号back pouring 补浇注backing sand 背砂base bullion 粗金属锭base permeability 原砂透气度belling 压凸billet 坏料bleed 漏铸blocker 预锻模膛blocking 粗胚锻件blow hole 铸件气孔board drop hammer 板落锤bottom pour mold 底浇bottom pouring 底注boxless mold 脱箱砂模break-off core 缩颈砂心brick molding 砌箱造模法buckle 剥砂面camber 错箱camlachie cramp 铸包cast blade 铸造叶片casting flange 铸造凸缘casting on flat 水平铸造chamotte sand 烧磨砂charging hopper 加料漏斗cleaning of casting 铸件清理closed-die forging 合模锻造core compound 砂心黏结剂core template 砂心模板core vent 砂蕊排气孔corner gate 压边浇口counter blow hammer 对击锻造counter lock 止口镶嵌方式depression 外缩凹孔die approach 模口角度draw out 锻造拔长draw plate 起模板draw spike 起模长针dummying 预锻embedded core 加装砂心erosion 冲砂fettling 铸件清理filling core 埋入砂心filling in 填砂film play 液面花纹finishing slag 炼後熔渣flash gutter 锻模飞边槽flask molding 砂箱造模forging roll 辊锻机formboard 进模口板gutter 锻模飞边槽hammer man 锻工heading machine 顶镦机impacter 卧式锻造机inblock cast 整体铸造ingot 铸锭ingot blank 铸坯inlay casting 镶铸法investment casting 失模铸造isothermal forging 恒温锻造loose piece 木模活块molding pit 铸模地坑pouring process 浇注法recasting 重铸roll forging 轧锻rolled surface 轧制表面rough sand 粗砂roughing forge 粗锻sand crushing 塌箱seamless forging 无缝锻造separate 分离shave 崩砂shrinkage fit 收缩配合shut height 闭合高度sieve mesh 筛孔sintering of sand 铸砂烧贴slag 熔渣slag inclusion 夹渣stickness 黏模性strip layout 带状胚料排样法tap casting 顶注top gate 顶注浇口unworked casting 不加工铸件upender 翻转装置upending 顶锻uphill casting 底铸white cast iron 白口铸件barrel 滚筒(加工)bending 波纹加工broaching 拉刀切削centering 定中心cutting 切削cylindrical lathe cutting 外圆车削electric discharge machine 放电加工electrolytic grinding 电解研磨embossing 压花加工facing 面车削filing 锉刀修润hand finishing 手工修润hemming 卷边加工hobbing 滚齿加工joggling 摇动加工lapping 抛光/研磨修润laser beam machining 雷射加工lathe cutting 车床车削planning 刨削加工polishing 抛亮光reaming 铰孔修润rough machining 粗切削rounding 圆形加工sawing 锯削scaling 清除钢碇缺陷shaping 成形加工skiving 表面研磨slotting 切缝切削taper turning 锥度车削thread cutting 螺纹切削ultrasonic machining 超音波加工up cut milling 逆铣加工abrasive 砂轮Al2O3 氧化铝borazon 氧化硼立方晶buffing wheel 抛光布轮diamond 钻石dresser 砂轮整修机dressing 修整endless grinding belt 循环式研磨带finishing allowance 加工余量grain 磨粒grinding disc 研磨盘jamp up 孔眼堵塞mesh 网筛目resinoid grinding wheel 半树脂型砂轮slitting 切缝量vitrified 陶瓷的。
冶金钢铁行业英文词汇
indication 缺点1.2.test specimen 试样3.bar 棒材4.stock 原料5.billet 方钢,钢方坯6.bloom 钢坯,钢锭7.section 型材8.steel ingot 钢锭9.blank 坯料,半成品10.cast steel 铸钢11.nodular cast iron 球墨铸铁12.ductile cast iron 球墨铸铁13.bronze 青铜14.brass 黄铜15.copper 合金16.stainless steel 不锈钢17.decarburization 脱碳18.scale 氧化皮19.anneal 退火20.process anneal 进展退火21.quenching 淬火22.normalizing 正火23.Charpy impact text 夏比冲击试验24.fatigue 疲乏25.tensile testing 拉伸试验26.solution 固溶办理27.aging 时效办理28.Vickers hardness 维氏硬度29.Rockwell hardness 洛氏硬度30.Brinell hardness 布氏硬度31.hardness tester 硬度计32.descale 除污,除氧化皮等33.ferrite 铁素体34.austenite 奥氏体35.martensite 马氏体36.cementite 渗碳体37.iron carbide 渗碳体38.solid solution 固溶体39.sorbite 索氏体40.bainite 贝氏体41.pearlite 珠光体42.nodular fine pearlite/ troostite 屈氏体43.black oxide coating 发黑44.grain 晶粒45.chromium 铬46.cadmium 镉47.tungsten 钨48.molybdenum 钼49.manganese 锰50.vanadium 钒51.molybdenum 钼52.silicon 硅53.sulfer/sulphur 硫54.phosphor/ phosphorus 磷55.nitrided 氮化的56.case hardening 外表硬化,外表淬硬57.air cooling 空冷58.furnace cooling 炉冷59.oil cooling 油冷60.electrocladding /plating 电镀61.brittleness 脆性62.strength 强度63.rigidity 刚性,刚度64.creep 蠕变65.deflection 挠度66.elongation 延长率67.yield strength 折服强度68.elastoplasticity 弹塑性69.metallographic structure 金相组织70.metallographic test 金相试验71.carbon content 含碳量72.induction hardening 感觉淬火73.impedance matching 感觉淬火74.hardening and tempering 调质75.crack 裂纹76.shrinkage 缩孔,松散77.forging 锻〔件〕78.casting 铸〔件〕79.rolling 轧〔件〕80.drawing 拉〔件〕81.shot blasting 喷丸〔办理〕82.grit blasting 喷钢砂〔办理〕83.sand blasting 喷砂〔办理〕84.carburizing 渗碳85.nitriding 渗氮86.ageing/aging 时效87.grain size 晶粒度88.pore 气孔89.sonim 夹砂90.cinder inclusion 夹渣ttice 晶格92.abrasion/abrasive/rub/wear/wearing resistance (property) 耐磨性93.spectrum analysis 光谱解析热办理94.heat/thermal treatment95.inclusion 夹杂物96.seGREgation 偏析97.picking 酸洗,酸浸98.residual stress 节余应力99.remaining stress 节余应力100.relaxation of residual stress 除掉节余应力101.stress relief 应力开释A R steel 高温度锰钢abnormal steel 失常钢; 非正常钢aluminium-steel cable 钢铝电缆aluminized steel 涂铝钢aluminum nickel steel 铝镍钢anchored steel trestle 锚固式钢栈桥angle steel ruler 钢角尺anisotropic steel 各向异性钢片anisotropy silicon steel 各向异性硅钢片annealed sheet steel 退火薄钢板annealed steel 退火钢; 韧钢anti-creeping angle steel 防爬角铁anticorrosive aluminium-coated steel wire防蚀镀铝钢丝arc-furnace steel 电炉钢arc-welded steel pipe 电弧焊接钢管area of steel 钢筋断面面积; 钢筋截面面积area of structural steel 型钢截面积Armco aluminized steel 阿姆柯渗铝钢armco aluminized steel 外表浸镀铝钢Armco stabilized steel 阿母柯稳固化钢Armco steel 阿姆柯软钢armco steel 不硬化钢austenilic Ni-Cr stainless steel 奥氏体镍铬不锈钢austenitic alloy steel 奥氏体合金钢austenitic chromium-nickel steel 奥氏体铬-镍钢austenitic clad steel 奥氏体复合钢austenitic heat-resistance steel 奥氏体耐热钢austenitic manganese steel 奥氏体锰钢; 哈德菲尔德锰钢austenitic stainless steel 奥氏体不锈钢austenitic steel 奥氏体钢automatic steel 易切削钢automatic(al) steel 易切削钢axle shaft steel 车轴钢axle steel 车轴钢钢铁业的英语词汇 1Carbon Steel Plate 碳素钢板; 碳素钢板和型材Carbon Tool Steel 碳工具钢; 碳素工具钢Carbon-Containing Alloy Steel 含碳合金钢Carbon-Free Stainless Steel 无碳不锈钢Carbon-Free Steel 无碳钢Carburizing Steel 碳钢Case-Hardened Steel 外表渗碳硬化钢; 渗碳钢Bolts & Nuts For Steel Slotted 角钢螺丝Cast Alloy Steel Piston 合金铸钢活塞Cast Iron Electrode With Steel Core 钢芯铸铁焊条Cast Stainless Steel 锻造不锈钢Cast Steel 铸钢件Cast Steel Plate 铸钢板Cast(Carbon) Steel 铸钢Cast-In Steel Bush 铸入钢套Casement Section Steel 窗框钢Cast-Steel 铸钢Cast-Steel Crossing 铸钢辙叉Cast-Steel Pipe 铸钢管Cast-Steel Separator 铸钢隔板; 铸钢横梁Cast-Steel Shot 钢砂Cast-Steel Yoke 铸钢轭Cellular Steel Floor 格型钢楼板Cement-And-Grouted Steel Bolt 钢筋沙浆锚杆Cemented Steel 外表硬化钢Cemented Templet Steel 渗碳样板钢Centra Steel 球状石墨铸钢Centrifugal Steel 离心铸钢Centrifuge(D) Steel 离心锻造钢Channel Steel 槽钢Channel-Section Steel 槽形钢Channeled-Steel Wheel Rim 槽钢制轮辋Checkered Steel Plate 花纹钢板Chemical Capped Steel 化学封顶钢Chilled Cast Steel 冷硬铸钢Chilled Hardened Steel 淬火钢Chilled Steel 淬火钢; 淬硬钢Chisel Steel 凿钢; 凿子钢Chrome Hardened Steel 铬硬化钢Chrome Steel 铬钢Chrome-Carbon Steel 铬碳钢Chrome-Manganese Nitrogen Steel 铬锰氮钢Chrome-Manganese-Silicon Alloy Steel 铬锰硅合金钢Chrome-Molybdenum Steel 铬钼钢Chrome-Nickel Steel 铬镍钢Chrome-Plated Steel Nozzle 镀铬钢喷管Chrome-Silicon Steel 铬硅钢Chrome-Tungsten Steel 铬钨钢Chrome-Vanadium Steel 铬钒钢Chromemanganese Steel 铬锰钢Chromium Nickel Steel 高强度耐蚀铬镍钢Chromium Stainless Steel 铬不锈钢Chromium Steel 铬钢Chromium-Molybdenum Steel 铬钼钢Chromium-Nickel Steel 铬镍钢Chromium-Plated Mild Steel Animal Chain 镀铬软钢动物链条Chromium-Tungstenvanadium Steel 铬钨钒钢Chromiummanganese Steel 铬锰钢Chromiumnickel Austenite Stainless Steel 铬镍奥氏体不锈钢Chromiumplated Thin-Walled Steel Cylinder Liner 钢质薄壁镀铬汽缸衬套Chromized Steel 渗铬钢Circular Steel Support 环形金属支架Clad Sheet Steel 包层薄钢板Clad Steel 包层钢; 双层钢; 双金属钢Clad Steel Plate 复合钢板Cladding Steel 包覆钢Cladding Steel Sheet 复合钢板Clean Steel 纯洁钢; 干净钢Closed Die Steel 闭锻模钢Coarse-Grained Steel 粗晶粒钢Coated Steel 镀层钢板Coating Steel Pipe 镀锌钢管Cobalt High Speed Steel 钴高速钢Cobalt-Chromium Steel 钴铬钢Coiled Steel 成卷带钢Cold Forging Steel 冷锻钢Cold Pressed Steel 冷压钢Cold Reduced Steel 马口铁卷板Cold Rolled Ribbed Steel Bar 冷轧竹节钢筋Cold Rolled Sheet Steel 冷轧薄钢板Cold Twisted Steel Bar 冷扭钢筋Cold-Banded Steel Pipe 冷箍钢管Cold-Drawn Steel 冷拔钢; 冷拉钢Cold-Drawn Steel Pipe 冷拉钢管Cold-Drawn Steel Tube 冷拉钢管Cold-Finished Steel 冷加工精整钢Cold-Pressed Sheet Steel 冷压薄钢板Cold-Pressed Steel Plate 冷压钢板Cold-Pressing Quality Steel 冷弯钢Cold-Roll Steel Sheets 冷轧钢板Cold-Rolled (Cold Rolled) Steel 冷轧钢Cold-Rolled Carbon Spring Steel 冷轧弹簧碳钢Cold-Rolled Carbon Steel 冷轴碳钢Cold-Rolled Steel Strip 冷轧带钢Cold-Shaping Steel 冷变形钢Cold-Short Steel 冷脆钢Cold-Steel 利器Cold-Strip Steel 冷轧带钢Cold-Strip Steel Rolling Mill 冷轧带钢机; 带钢冷轧机Cold-Worked Steel 冷作钢Cold-Working Steel 冷作钢Coldshort Steel 冷脆钢Color Stainless Steel 彩色不锈钢Colored Stainless Steel 彩色不锈钢Column With Steel Hooping 螺旋箍筋柱Combined Steel And Concrete Column 钢骨混凝土柱Comminuted Steel Shot 钢粉Common Straight Carbon Steel 一般碳素钢Complex Alloy Steel 多元合金钢; 合金钢碳素构造钢Carbon Construction Steel碳素工具钢合金构造钢合金工具钢高速工具钢Carbon Tool Steel Alloy Construction Steel Alloy Tool SteelHigh Speed Tool Steel弹簧钢Spring Steel不锈耐热钢Stainless & Heat Resisting Steel 轴承钢Bearing Steel工字钢一般圆钢Ibeam Round Steel槽钢Channel扁钢Flat Steel Bar等边角钢不等边角钢Equal Angle SteelUnequal Angle Steelh型钢Hbeam钢坯Billet,Bloom钢筋混凝土用变形钢筋窗框钢Window SashHigh Strength Deformed Steel Bar 中厚钢板Steel Plate热轧钢板〔卷〕冷轧钢板〔卷〕镀锌钢板〔卷〕钢带Steel Strip Hot Rolled Steel CoilCold Rolled Steel Sheel or Coil Galvanized Steel Coil线材Wire Rod Coil无缝钢管Seamless Steel Pipe锅炉管石油套管高压管Boiler TubePipe For Oil Field Pressure Pipe高压气瓶用管地质钻探用管Tube for High-Pressure Vessel Seamless Steel Pipe For Geological Drill In镀锌焊管Galvanized Welded Pipe 石油钻探杆Drill Pipe For Oil Field 铸铁管Cast Iron Pipe重轨Heavy Rail轻轨Light Rail炼钢生铁锻造生铁一般圆钢钉Basic Pig Ironfoundry Pig IronRound Nails for General Uses镀锌底碳钢丝Galvanized Low Carbon Steel Wire.钢丝绳Steel Wire Rope钢绞线Stranded Wire预应力混凝土钢丝窗纱Window ScreenSteel Wire For Prestressed Concrete车轮Wheel Tyre轮筛Wheel Circleiron and steel industry 钢铁工业ironworks 铁厂foundry 锻造车间steelworks,steel mill 钢厂cokingplant 炼焦厂electrometallurgy 电冶金学powder metallurgy 粉末冶金学blast furnace 鼓风炉mouth, throat 炉口hopper, chute 料斗stack 炉身belly 炉腰bosh 炉腹crucible 炉缸slag tap 放渣口taphole 出铁口,出渣口pig bed 铸床mould 铸模(美作:mold)tuyere, nozzle 风口ingot mould 锭模(美作:ingot mold) floor 平台hearth 炉底charger 装料机ladle 铁水包,钢水包dust catcher 除尘器washer 清洗塔converter 转炉hoist 卷扬机compressor 压缩机tilting mixer 可倾式混铁炉regenerator 蓄热室heat exchanger 热交换器gas purifier 煤气净化器turbocompressor 涡轮压缩机burner 烧嘴cupola 化铁炉,冲天炉emptier 排空装置trough 铁沟渠,排渣沟skip 料车rolling mill 轧机,轧钢机blooming mill 初轧机roller 辊bed 底座rolling-mill housing 轧机机架drawbench 拔管机,拉丝机drawplate 拉模板shaft furnace 竖炉refining furnace 精华炉reverberatory furnace 反射炉hearth furnace 床式反射炉firebrick lining 耐火砖衬retort 反响罐muffle 马弗炉roof, arch 炉顶forge 锻造press 压锻pile hammer 打桩锤drop hammer 落锤die 拉模blowlamp 吹炬(美作:blowtorch) crusher 裂开机iron ore 铁矿石coke 焦炭bauxite 铁钒土alumina 铝cryolite 冰晶石flux 熔剂limestone flux 石灰石溶剂haematite 赤铁矿(美作:hematite) gangue 脉石cast iron 铸铁cast iron ingot 铸铁锭slag 炉渣soft iron 软铁pig iron 生铁wrought iron 熟铁iron ingot 铁锭puddled iron 搅炼熟铁round iron 圆铁scrap iron 废铁steel 钢crude steel 粗钢mild steel, soft steel 软钢,低碳钢hard steel 硬钢cast steel 坩埚钢,铸钢stainless steel 不锈钢electric steel 电工钢,电炉钢high-speed steel 高速钢moulded steel 铸钢refractory steel 热强钢,耐热钢alloy steel 合金钢plate, sheet 薄板corrugated iron 瓦垅薄钢板tinplate, tin 马口铁finished product 成品,产品semifinished product 半成品,中间产品ferrous products 铁制品coiled sheet 带状薄板bloom 初轧方坯metal strip, metal band 铁带,钢带billet 坯锭,钢坯shavings 剃边profiled bar 异型钢材shape, section 型钢angle iron 角钢frit 烧结wire 线材ferronickel 镍铁elinvar 镍铬恒弹性钢ferrite 铁氧体,铁醇盐cementite 渗碳体,碳化铁pearlite 珠光体charging, loading 装料,炉料fusion, melting, smelting 熔炼remelting 再溶化,重熔refining精华casting 出铁to cast 出铁tapping 出渣,出钢,出铁to insufflate, to inject 注入heating 加热preheating 预热tempering 回火temper 回火hardening 淬水annealing 退火reduction 复原cooling 冷却decarbonization, decarburization 脱碳coking 炼焦slagging, scorification 造渣carburization 渗碳case hardening 外表硬化cementation 渗碳fritting,sintering 烧结puddling搅炼pulverization 粉化,雾化nitriding 渗氮alloy 合金floatation, flotation 浮选patternmaking 制模moulding 成型(美作:molding) calcination 煅烧amalgamation 汞齐化rolling 轧制drawing 拉拔extrusion 挤压wiredrawing 拉丝stamping, pressing 冲压die casting 拉模锻造forging 锻造turning 车削milling 铣削machining, tooling 加工autogenous welding, fusion welding氧炔焊arc welding 电弧焊electrolysis 电解trimming 清理焊缝blowhole 气孔钢铁业的英语词汇 2Abnormal Steel 失常钢; 非正常钢Aluminum-steel Cable 钢铝电缆Aluminized Steel 涂铝钢Aluminum Nickel Steel 铝镍钢Anchored Steel Trestle 锚固式钢栈桥Angle Steel Ruler 钢角尺Anisotropic Steel 各向异性钢片Anisotropy Silicon Steel 各向异性硅钢片Annealed Sheet Steel 退火薄钢板Annealed Steel 退火钢; 韧钢Anti-Creeping Angle Steel 防爬角铁Anticorrosive Aluminum-Coated Steel Wire 防蚀镀铝钢丝1.Arc-Furnace Steel 电炉钢Arc-Welded Steel Pipe 电弧焊接钢管Area Of Steel 钢筋断面面积; 钢筋截面面积Area Of Structural Steel 型钢截面积Armco Aluminized Steel 阿姆柯渗铝钢Armco Aluminized Steel 外表浸镀铝钢Armco Stabilized Steel 阿母柯稳固化钢Armco Steel 阿姆柯软钢Armco Steel 不硬化钢Austenitic Ni-Cr Stainless Steel 奥氏体镍铬不锈钢Austenitic Alloy Steel 奥氏体合金钢Austenitic Chromium-Nickel Steel 奥氏体铬-镍钢Austenitic Clad Steel 奥氏体复合钢Austenitic Heat-Resistance Steel 奥氏体耐热钢Austenitic Manganese Steel 奥氏体锰钢; 哈德菲尔德锰钢Austenitic Stainless Steel 奥氏体不锈钢Austenitic Steel 奥氏体钢Automatic Steel 易切削钢Automatic(Al) Steel 易切削钢Axle Shaft Steel 车轴钢Axle Steel 车轴钢Bain tic Steel 贝氏体钢Balanced Steel 半冷静钢Ball Bearing Steel Strip 滚珠轴承钢带Ball Race Steel 滚珠轴承圈钢Ball-Bearing Steel 滚珠轴承钢Bamboo Steel 竹节钢筋Band Steel 带钢Banding Steel 带钢; 箍钢Bar Steel 棒钢; 条钢Basic Bessemer Steel 碱性贝氏转炉钢Basic Bessemer Steel 碱性转炉钢Basic Bessemer Steel Converter 碱性转炉钢转炉Basic Converter Steel 碱性转炉钢Basic Electric Furnace Steel 碱性电炉钢Basic Open Hearth Steel 碱性平炉钢Battened Steel Column 双肢钢Beam Steel Plate 大梁钢板Beam With Compression Steel 双筋梁Bearing Quality Steel 滚珠钢Bearing Steel 轴承钢Bent Steel 挠曲钢筋Bessemer Low Carbon Steel 酸性转炉低碳钢Bessemer Mild Steel 贝色麦钢Bessemer Steel 贝色麦钢; 酸性钢Best Plough Steel Wire 铅淬火高强度钢丝Billet Steel 坯段钢; 钢坯; 短条钢Binary Steel 二元合金钢Black Mild Steel Carriage Bolt And Nut 黑铁马车螺丝闩Black Mild Steel Fish Bolt And Nut 黑铁鱼尾螺丝闩Black Mild Steel Flat Head Rivet 黑铁扁头铆钉Black Mild Steel Flat Head Tin men Rivet 黑铁号头铆钉Black Mild Steel Hexagonal Nut 黑铁六角螺丝帽Black Mild Steel Pan Head Rivet 黑铁锥头铆钉Black Mild Steel Round Head Rivet 黑铁圆头铆钉Black Mild Steel Square Nut 黑铁四方螺丝帽Black Steel Pipe 黑钢板Black Steel Sheet 黑钢皮Black Tin Steel 黑钢板Blister Steel 泡钢; 泡面钢Abnormal Structure Steel 失常组织钢Abrasion-Resistant Steel 耐磨钢Blue Steel 蓝钢Bluing Of Steel 钢加蓝Boiler Steel 锅炉钢; 锅炉钢板Boiler Steel Plate 锅炉钢板Boiling Steel 沸腾钢Bolting Steel 螺栓钢Blue Planished Steel 发蓝薄钢板Bloom Steel 初轧钢; 钢坯Boron Steel 硼钢Brass Fitting Of Steel Window 钢窗铜配件Brass-Plated Mild Steel Round Bead Wood Screw 镀黄铜圆头软钢木螺丝Brass-Plated Mild Steel Round Head Machine Screw 镀黄铜圆头软钢机器螺丝Brass-Plated Steel Wire 镀黄铜钢丝Brearley Steel 布里阿雷不锈钢; 布氏高铬钢Bridge Steel 桥梁钢Bright And Black Mild Steel Flat Head Tinmen Rivet 号头铆钉Bright Mild Steel Cotter Pin 光明软钢开尾销Bright Mild Steel Countersunk Head Wood Screw 光明软钢平头木螺丝Bright Mild Steel Hexagonal Nut 光明软钢六角螺丝帽Bright Mild Steel Hexagonal Nuts 六角光螺帽; 六角螺丝帽Bright Mild Steel Hexagonal Pressed Nut 光明软钢六角冲压螺丝帽Bright Mild Steel Round Head Wood Screw 光明软钢圆头木螺丝Bright-Drawn Free Cutting Steel 光拉自由切削钢Bright-Drawn Steel 光明拉拔钢材Bright-Finished Steel 光明精整钢Bristol Steel Belt Lacing 布瑞斯涛钢带接头Bronze Steel 镀青铜钢Building Of Steel Frame Construction 钢框架房屋Bulb Steel 球扁钢Bulb-Rail Steel 球头丁字钢Burned Steel 过烧钢Calorized Steel 涂铝钢; 渗化钢Calorizing Steel 铝化钢Capped Steel 加盖钢; 半冷静钢Carbon And Low-Alloy Steel Vessels 碳钢及低合金钢容器Carbon Content Of Steel 钢含碳量Carbon Molybdenum Steel 钼碳钢Carbon Steel 碳钢; 碳素钢Carbon Steel Covered Electrode 碳钢焊条Carbon Steel Plate2.中文名英文名质量描述6063 6063 Extrusion-pntd 镀漆6061 6061 Extrusion-pntd 镀漆生铝件Tense 含铁〈2% 生杂铝Mixed Cast 含铁〈2% 旧铝片Old Sheet-Taint/Tabor 干净铝片Tough-Taboo 干净切碎铝Shredded Aluminum 干净汽车切片铝Shredded Auto Aluminum 含铝70% 带铁铝Irony Aluminum 需注明含量356 轮毂铝356 Auto Wheels 干净铝水箱Aluminum Radiator 干净带皮铝线Acsr/Ins 需注明含量铜铝水箱Al/Cu Radiator 干净易拉罐UBC-Baled/Densified 干净铝变压器Aluminum Transformer铝壳马达Aluminum Case Motor1# 光明铜线#1 Bare Bright 干净1# 铜#1 Candy 含铜98% 2# 铜#2 Birch/Cliff 含铜94-96% 1# 火烧线#1 Burnt Wire 含铜〉97% 1# 铜米#1 Cu-chop1# 铜线缆#1 Insulated Wire 含铜72%2# 铜线缆#2 Insulated Wire 含铜50-55% 1#2# 混杂铜线缆#1#2 Mixed Wire 含铜65% 黄杂铜Yellow Brass-Honey 干净干净铜水箱Ocean Auto Radiator 干净(牛粪)切碎电机Shredded Pickings 含铜18-20% 混杂电机Electric Motors 含铜8-12% 304 炉料304 Sabot 18-8304 可利用料316 可利用料304 Reusable 板或杆316 Reusable 板或杆3.1、烧结sintering粉末或压坯在低于主要组分熔点的温度下的热办理,目的在于经过颗粒间的冶金联合以提升其强度。
模具加工方法英语词汇
一.模具加工方法英语词汇barrel 滚筒(加工)bending 波纹加工broaching 拉刀切削centering 定中心cutting 切削cylindrical lathe cutting 外圆车削electric discharge machine 放电加工electrolytic grinding 电解研磨embossing 压花加工facing 面车削filing 锉刀修润hand finishing 手工修润hemming 卷边加工hobbing 滚齿加工joggling 摇动加工lapping 抛光/研磨修润laser beam machining 雷射加工lathe cutting 车床车削planning 刨削加工polishing 抛亮光reaming 铰孔修润rough machining 粗切削rounding 圆形加工sawing 锯削scaling 去除钢碇缺陷shaping 成形加工skiving 外表研磨 slotting 切缝切削taper turning 锥度车削thread cutting 螺纹切削ultrasonic machining 超音波加工up cut milling 逆铣加工二.模具砂轮用语英语词汇abrasive 砂轮Al2O3 氧化铝borazon 氧化硼立方晶buffing wheel 抛光布轮diamond 钻石dresser 砂轮整修机dressing 修整endless grinding belt 循环式研磨带finishing allowance 加工余量grain 磨粒grinding disc 研磨盘jamp up 孔眼堵塞mesh 网筛目resinoid grinding wheel 半树脂型砂轮 slitting 切缝量vitrified 陶瓷的三.模具锻铸造相关英语词汇accretion 炉瘤acid converter 酸性转炉acid lining cupola 酸性熔铁炉acid open-hearth furnace 酸性平炉aerator 松砂机air set mold 常温自硬铸模airless blasting cleaning 离心喷光all core molding 集合式铸模all round die holder 通用模座assembly mark 铸造合模记号back pouring 补浇注backing sand 背砂base bullion 粗金属锭base permeability 原砂透气度belling 压凸billet 坏料bleed 漏铸blocker 预锻模膛blocking 粗胚锻件blow hole 铸件气孔board drop hammer 板落锤bottom pour mold 底浇bottom pouring 底注boxless mold 脱箱砂模break-off core 缩颈砂心brick molding 砌箱造模法buckle 剥砂面camber 错箱camlachie cramp 铸包cast blade 铸造叶片casting flange 铸造凸缘casting on flat 水平铸造chamotte sand 烧磨砂charging hopper 加料漏斗cleaning of casting 铸件清理closed-die forging 合模锻造core pound 砂心黏结剂core template 砂心模板core vent 砂蕊排气孔corner gate 压边浇口counter blow hammer 对击锻造counter lock 止口镶嵌方式depression 外缩凹孔die approach 模口角度draw out 锻造拔长draw plate 起模板draw spike 起模长针dummying 预锻embedded core 加装砂心erosion 冲砂fettling 铸件清理filling core 埋入砂心filling in 填砂film play 液面花纹finishing slag 炼後熔渣flash gutter 锻模飞边槽flask molding 砂箱造模forging roll 辊锻机formboard 进模口板gutter 锻模飞边槽hammer man 锻工heading machine 顶镦机impacter 卧式锻造机inblock cast 整体铸造ingot 铸锭ingot blank 铸坯inlay casting 镶铸法investment casting 失模铸造isothermal forging 恒温锻造loose piece 木模活块molding pit 铸模地坑pouring process 浇注法recasting 重铸roll forging 轧锻rolled surface 轧制外表rough sand 粗砂roughing forge 粗锻sand crushing 塌箱seamless forging 无缝锻造separate 别离shave 崩砂shrinkage fit 收缩配合shut height 闭合高度sieve mesh 筛孔sintering of sand 铸砂烧贴slag 熔渣slag inclusion 夹渣stickness 黏模性strip layout 带状胚料排样法tap casting 顶注top gate 顶注浇口unworked casting 不加工铸件upender 翻转装置upending 顶锻uphill casting 底铸white cast iron 白口铸件四.模具线切割放电加工相关英语词汇abnormal glow 不规那么辉光放电arc discharge 电弧放电belt 皮带centreless 无心chrome bronze 铭铜clearance angle 後角corner shear drop 直角压陷deflection 桡曲度discharge energy 放电能量dressing 修整dwell 保压flange 凸缘gap 间隙graphite 石墨graphite contraction allowance 电极缩小余量graphite holder 电极夹座hair crack 发裂horn 电极臂jump 跳刀magnetic base 磁性座master graphite 标准电极pipe graphite 管状电极pulse 脉冲rib working 肋部加工roller electrode 滚轮式电极rotary surface 旋转面shank 柄部sharp edge 锐角部tough bronze 韧铜traverse 摇臂tungsten bronze 钨青铜waviness 波形起伏working allowance 加工余量working dischard 加工废料五.模具冲压机械与周边英语词汇back shaft 支撑轴blank determination 胚料展开bottom slide press 下传动式压力机board drop hammer 板落锤brake 煞车 buckle 剥砂面camlachie cramp 铸包chamotte sand 烧磨砂charging hopper 加料漏斗clearance 间隙closed-die forging 合模锻造clump 夹紧clutch 离合器clutch brake 离合器制动器clutch boss 离合器轮壳clutch lining 离合器覆盖coil car 带卷升降运输机coil cradle 卷材进料装置coil reel stand 钢材卷料架column 圆柱connection screw 连杆调节螺钉core pound 砂心黏结剂counter blow hammer 对击锻锤cradle 送料架crank 曲柄轴crankless 无曲柄式cross crank 横向曲轴cushion 缓冲depression 外缩凹孔dial feed 分度送料die approach 模口角度die assembly 合模die cushion 模具缓冲垫die height 冲压闭合高度die life 模具寿命die opening 母模逃孔die spotting press 调整冲模用压力机double crank press 双曲柄轴冲床draght angle 逃料倾斜角edging 边锻伸embedded core 加装砂心feed length 送料长度feed level 送料高度filling core 埋入砂心filling in 填砂film play 液面花纹fine blanking press 精细下料冲床forging roll 辊锻机finishing slag 炼後熔渣fly wheel 飞轮fly wheel brake 飞轮制动器foot press 脚踏冲床formboard 进模口板frame 床身机架friction 摩擦friction brake 摩擦煞车gap shear 凹口剪床gear 齿轮gib 滑块引导部gripper 夹具gripper feed 夹持进料gripper feeder 夹紧传送装置hammer 槌机hand press 手动冲床hand rack pinion press 手动齿轮齿条式冲床hand screw press 手动螺旋式冲床hopper feed 料斗送料idle stage 空站inching 微调尺寸isothermal forging 恒温锻造key clutch 键槽离合器knockout 脱模装置knuckle mechanic 转向机构land 模具直线刀面部loader 供料器 unloader 卸料机loop controller 闭回路控制器lower die 下模micro inching device 微寸动装置microinching equipment 微动装置moving bolster 活动工作台notching press 冲缺口压力机opening 排料逃孔overload protection device 防超载装置pinch roll 导正滚轮pinion 小齿轮pitch 节距pressfit 压入progressive 连续送料pusher feed 推杆式送料pusher feeder 料片押片装置quick die change system 快速换模系统regrinding 再次研磨releasing 松释动作reversed blanking 反转下料robot 机器人roll forming machine 辊轧成形roll forming machine 辊轧成形机roll release 脱辊roller feed 辊式送料roller leveler 辊式矫直机rotary bender 卷弯成形机safety guard 安全保护装置scrap cutter 废料切刀scrap press 废料冲床seamless forging 无缝锻造shave 崩砂shear angle 剪角sheet loader 薄板装料机shot 单行程工作shrinkage fit 收缩配合shut height 闭合高度sieve mesh 筛孔sintering of sand 铸砂烧贴slide balancer 滑动平衡器slug hole 逃料孔spin forming machine 旋压成形机spotting 合模stack feeder 堆叠拨送料机stickness 黏模性straight side frame 冲床侧板stretcher leveler 拉伸矫直机strip feeder 料材送料装置stripping pressure 弹出压力stroke 冲程take out device 取料装置toggle press 肘杆式压力机transfer feed 连续自动送料装置turrent punch press 转塔冲床two speed clutch 双速离合器uncoiler 闭卷送料机unloader 卸载机vibration feeder 振动送料机wiring press 嵌线卷边机六.模具冲模加工英语词汇barreling 滚光加工belling 压凸加工bending 弯曲加工blanking 下料加工bulging 撑压加工burring 冲缘加工cam die bending 凸轮弯曲加工coining 压印加工pressing 压缩加工pression bending 押弯曲加工crowning 凸面加工curl bending 卷边弯曲加工curling 卷曲加工cutting 切削加工dinking 切断蕊骨double shearing 叠板裁断drawing 引伸加工drawing with ironing 抽引光滑加工embossing 浮花压制加工extrusion 挤制加工filing 锉削加工fine blanking 精细下料加工finish blanking 光制下料加工finishing 精整加工flanging 凸缘加工folding 折边弯曲加工folding 摺叠加工forming 成形加工impact extrusion 冲击挤压加工indenting 压痕加工ironing 引缩加工knurling 滚花lock seaming 固定接合louvering 百叶窗板加工marking 刻印加工necking 颈缩加工notching 冲口加工parting 分断加工piercing 冲孔加工progressive bending 连续弯曲加工progressive blanking 连续下料加工progressive drawing 连续引伸加工progressive forming 连续成形加工reaming 铰孔加工restriking 二次精冲加工riveting 铆接加工roll bending 滚筒弯曲加工roll finishing 滚压加工rolling 压延加工roughing 粗加工scrapless machining 无废料加工seaming 折弯重叠加工shaving 缺口修整加工shearing 切断加工sizing 精压加工/矫正加工slitting 割缝加工spinning 卷边?接stamping 锻压加工swaging 挤锻压加工trimming 整缘加工upsetting 锻粗加工wiring 抽线加工七.模具常用刀具工作法英语词汇adjustable spanner 活动扳手angle cutter 角铣刀arbour 心轴backing 衬垫belt sander 带式打磨机buffing 抛光chamfering machine 倒角机chamfering tool 去角刀具chisel 扁錾chuck 夹具pass 两角规concave cutter 凹面铣刀convex cutter 凸形铣刀cross joint 十字接头cutting edge clearance 刃口余隙角drill stand 钻台edge file 刃用锉刀file 锉刀flange joint 凸缘接头grinder 砂轮机hammer 铁锤hand brace 手摇钻hatching 剖面线hexagon headed bolt 六角头螺栓hexagon nut 六角螺帽index head 分度头jack 千斤顶jig 治具kit 工具箱lapping 研磨metal saw 金工锯nose angle 刀角pinchers 钳子pliers 铗钳 plug 柱塞头polisher 磨光器protable driller 手提钻孔机punch 冲头sand paper 砂纸scraper 刮刀screw driver 螺丝起子scribing 划线second out file 中纹锉spanner 扳手spline broach 方栓槽拉刀square 直角尺square sleeker 方形镘刀square trowel 直角度stripping 剥离工具T-slot T形槽tool for lathe 车刀tool point angle 刀刃角tool post 刀架tosecan 划线盘trimming 去毛边waffle die flattening 压纹效平wiper 脱模钳wrench 螺旋扳手八.模具外表处理英语词汇age hardening 时效硬化ageing 老化处理air hardening 气体硬化air patenting 空气韧化annealing 退火anode effect 阳极效应anodizing 阳极氧化处理atomloy treatment 阿托木洛伊外表austempering 奥氏体等温淬火austenite 奥斯田体/奥氏体bainite 贝氏体banded structure 条纹状组织barrel plating 滚镀barrel tumbling 滚筒打光blackening 染黑法blue shortness 青熟脆性bonderizing 磷酸盐皮膜处理box annealing 箱型退火box carburizing 封箱渗碳bright electroplating 辉面电镀bright heat treatment 光辉热处理bypass heat treatment 旁路热处理carbide 炭化物carburized case depth 浸碳硬化深层carburizing 渗碳cementite 炭化铁chemical plating 化学电镀chemical vapor deposition 化学蒸镀coarsening 结晶粒粗大化coating 涂布被覆cold shortness 低温脆性emtite 渗碳体controlled atmosphere 大气热处理corner effect 锐角效应creeping discharge 蠕缓放电decarburization 脱碳处理decarburizing 脱碳退火depth of hardening 硬化深层diffusion 扩散diffusion annealing 扩散退火electrolytic hardening 电解淬火embossing 压花etching 外表蚀刻ferrite 肥粒铁first stage annealing 第一段退火flame hardening 火焰硬化flame treatment 火焰处理full annealing 完全退火gaseous cyaniding 气体氧化法globular cementite 球状炭化铁grain size 结晶粒度granolite treatment 磷酸溶液热处理graphitizing 石墨退火。
热处理英语词汇(注音版 最好用)
Heat treatment of English vocabulary热处理英语词汇A奥氏体 austenite 奥氏体化 austenitization奥氏体回火,等温淬火 austemperingB板条似的 lathy (adj) 白口铸铁 white cast iron白亮层 white layer,nitride layer 贝氏体 bainite表面粗糙度 surface finish 表面强化 hard facing 不锈钢 stainless steel不完全退火 intercritical annealing 布氏硬度试验 Brinell testC残余奥氏体 retained austensite 残余应力 residual stress淬火 quenching (n),quench (vt) 淬透性 hardenability淬硬性 hardening capacity 齿轮,传动装置 gearD氮气 nitrogen氮碳共渗,软氮化 nitrocarburizing 等温线 isotherm等温淬火, 奥氏体回火 austempering 低碳钢 low carbon steel 锻造 forging (n )E二次渗碳体 secondary cementite 二氧化碳 carbon dioxideF腐蚀 etch腐蚀状态,侵蚀 corrosion (n )奥氏体 austenite [英]['ɔ:st ə,nait] [美]['ɔst ə,na ɪt] 板条状马氏体 lathy martensite [英]['kæθi] [美]['kæθɪ][英]['m ɑ:tən,zait] [美]['m ɑrtən,za ɪt]贝氏体 bainite ['beinait] 二次渗碳体 secondary cementite [英][si'mentait] [美][s ɪ'm ɛn,ta ɪt] 回火马氏体tempered martensite [英]['m ɑ:tən,zait] [美]['m ɑrtən,za ɪt] 莱氏体 ledeburite ['leid əbu:rait] 粒状珠光体 globular pearlite [英]['ɡl ɔbjələ(r)] [美]['gl ɑbj əl ɚ] [英]['p ə:lait] [美]['p ɚ,la ɪt] 马氏体 martensite [英]['m ɑ:tən,zait] [美]['m ɑrtən,za ɪt] 屈氏体(托氏体) troostite [英]['tru:stait] [美]['tru,sta ɪt]上贝氏体 upper bainite ['beinait] 渗碳体 cementite [英][si'mentait] [美][s ɪ'm ɛn,ta ɪt] 铁素体 ferrite [英]['ferait] [美]['f ɛra ɪt] 魏氏体 widemanstatten 下贝氏体 low bainite 珠光体 pearlite 针状马氏体 acicular martensite显微结构 microstructure [英]['maikr əu,str ʌkt ʃə] [美]['ma ɪkro,str ʌkt ʃɚ]不锈钢 stainless steel [英]['steinlis] [美]['stenl ɪs] 低碳钢 low carbon steel [英]['k ɑ:bən] [美]['k ɑrbən] 非合金钢(普通碳素钢) plain-carbon steel 沸腾钢 rimming steel ['rimiŋ]高锰钢 high manganese steel [英]['mæŋɡəni:z] [美]['mæŋgə'niz] 高速钢 high-speed steel 高碳钢 high carbon steel 工具钢 tool steel共析钢 eutectoid steel [英][ju:'tekt ɔid] [美][ju't ɛkt ɔɪd]过共析钢 hypereutectoid steel [,haip ərju'tekt ɔid] 合金钢 alloy steel [英]['æl ɔi] [美]['æl,ɔɪ]冷轧钢,软钢 mild steel [英][ma ɪld] [美][ma ɪld] 马氏体时效钢,特高强度钢 maraging steel[英]['m ɑ:reid ʒiŋ] [美]['m ɑred ʒɪŋ] 热强钢 heat-resistant steel[英][r ɪ'z ɪst ənt] [美][r ɪ'z ɪst ənt]亚共析钢 hypoeutectoid steel [,haip əuju(:)'tekt ɔid] 中碳钢 medium carbon steel [英]['mi:di əm] [美]['mid ɪəm] 自硬钢 self-hardening steel [英]['h ɑ:dəniŋ] [美]['h ɑrdn ɪŋ]钢 steel[英][sti:l] [美][stil]G高速钢high-speed steel高碳钢high carbon steel感应淬火induction hardening工具钢tool steel共晶的(n) 共晶(体)的(adj) eutectic共晶转变(共晶反应) eutectic reaction共析(的) eutectoid n&adj固溶强化solid solution strengthening固溶热处理solution heat treatment光亮淬火(退火) bright quenching (annealing)过冷undercool过冷(现象) supercooling过共晶的hypereutectic (adj)过共析的hypereutectoid过共析钢hypereutectoid steel过热overheat H焊接区晶间腐蚀welddecay合金钢alloy steel合金元素alloy element化学气体沉积,CVD chemical vapor deposition 回火temper, tempering回火马氏体tempered martensite灰铸铁gray ironJ加工硬化work-hardened金相试样metallographic specimen晶界grain boundary晶粒grain晶粒度grain size晶粒细化处理structural grain refining K抗拉强度tensile strength抗压强度compressive strength 可锻铸铁malleable ironL莱氏体ledeburite冷轧钢,软钢mild steel冷硬铸铁chilled iron粒状渗碳体globular scementite 炉子furnace洛氏硬度计Rockwell apparatus 洛氏硬度试验Rockwell test M马氏体martensite马氏体时效钢,特高强度钢maraging steel 弥散强化dispersion strengtheningN耐磨铸铁wear resisting cast iron 耐热铸铁heat resisting cast iron 耐酸铸铁acid resisting cast iron 努氏硬度试验Knoop test Q侵蚀, 腐蚀状态corrosion n青铜bronze,gunmetal球状的,球体的spheroidal球墨铸铁spheroidal graphite cast iron, ductile iron球化(处理) spheroidize v球化退火spheroidize annealing球化作用spheroidization球化不良under-nodularizing球化衰退degradated spheroidisation去除应力stress relieving去内应力退火stress-relief annealR热强钢heat-resistant steel 人工时效artificial aging蠕墨铸铁vermicular graphite iron,compacted graphite cast iron 软钢mild steel,soft steel软氮化, 氮碳共渗nitrocarburizing castS渗氮nitriding渗碳carburize, carburizing, carburization渗碳层深度carburized (case) depth渗碳体cementite石墨graphite石墨化graphitization石墨化退火graphitizing annealing时效硬化age hardening试样specimen水韧处理water tougheningT炭黑soot碳氮共渗carbonitriding碳当量carbon equivalent碳钢carbon steel碳化物形成元素carbide-forming element 铁iron铁的,含铁的ferrous (adj)不含铁的nonferrous铁素体ferrite铁素体化退火ferritizing annealing退火anneal脱碳decarbonization,decarburization, decarburisation, decarburation脱碳层decarburizing layer脱碳倾向decarburizing tendency脱碳深度, 脱碳层厚度decarburized depth 脱碳退火decarburizing annealing调质处理thermal refining W完全退火full annealing网状碳化物network carbide微观组分microconstituent微观结构(组织), 显微组织microstructure, micromechanism维氏硬度计Vickers hardness tester魏氏体widemanstatten物理气体沉积,PVD physical vapor deposition无相变退火subcritical annealingX镶嵌mount (v)相图phase diagram显微组织,微观组织(结构) microstructure 显微硬度试验microhardness testing Y亚共晶的hypoeutectic (adj)亚共析的hypoeutectoid (adj)亚稳定相(亚稳定状态) metastable phase 研磨grind (v)氧化oxidation,oxygenation氧化皮scale冶金,冶金术metallurgy冶金学的metallurgicmetallurgical冶金学者metallurgist冶炼smelt应力去除stress relieving有效渗碳硬化层深度effective case depth 预氧化preoxidation孕育铸铁inoculated cast iron轴承bearing, axletree铸造,铸件cast针状的acicular (adj)正火normalizing自然时效natural aging自硬钢self-hardening steelZ再结晶退火recrystallization annealing中碳钢medium carbon steel轴axes,axis,axletree,shaft,spindle。
!生物体用金属材料
生物体用金属材料李 青(中国国机集团重庆仪表材料研究所 重庆 400700)作者简介:李 青,女,1961年出生。
湖南大学化学化工系毕业。
现从事功能材料的研究和应用,金属表面改性的研究和应用。
发表文章60余篇。
摘 要 随着科学技术的发展,生物体用金属材料也得到迅猛发展,许多先进的生物体用金属材料及通过各种表面处理技术对金属材料表面改性及应用相继被研究、开发,其研究及应用成果普遍受到医学界及企业界的重视。
本文在综述生物体用金属材料的发展、性能及应用的基础上,重点论述了最新表面处理技术在生物体用金属材料表面上的应用,用以制备表面性能优异的仿生生物材料。
关键词 生物材料 金属材料 表面处理中图分类号 TG 14;R318.08文献标识码:AMetal Materials for OrganismL i Qing(Chongqing Inst rument M aterial Research Institute ,Chongqing 400700)ABSTRACT Metal materials for organism has been developing rapidly with the development of science and technology.A number of advanced metal materials for organism and the surface treatment tech 2niques for metal surface modification and a pplication have been developed.The studies and development received great attention from madical and industrial circles on the baiss of summarizin g the development ,property and applications of metal material for organism ,the latest surface treatment techniques applied to prepare artificial biomaterial with excellent surface properties are mainly described.KE Y WOR DS biomaterial ,metal material ,surface treatment1 前 言16~17世纪,骨折、伤口的缝合使用的是白金和银等贵金属丝、钉,还使用了低熔点合金如青铜等丝材,但发现其耐蚀性比贵金属差。
一种铁素体-奥氏体相变动力学模型
收稿日期:2022-07-14基金项目:国家自然科学基金面上资助项目(51774082).作者简介:蓝慧芳(1981-)ꎬ女ꎬ山东烟台人ꎬ东北大学副教授.第44卷第7期2023年7月东北大学学报(自然科学版)JournalofNortheasternUniversity(NaturalScience)Vol.44ꎬNo.7Jul.2023㊀doi:10.12068/j.issn.1005-3026.2023.07.004一种铁素体-奥氏体相变动力学模型蓝慧芳ꎬ柳泽阳ꎬ武梦如(东北大学轧制技术及连轧自动化国家重点实验室ꎬ辽宁沈阳㊀110819)摘㊀㊀㊀要:基于混合模型及吉布斯能量平衡模型思想ꎬ建立了一种简单的吉布斯能量平衡模型ꎬ应用于Fe-C-Mn低碳钢在780ħ两相区等温过程中的铁素体向奥氏体相变模拟ꎬ并分析了三种吉布斯自由能㊁有效晶粒尺寸㊁元素分布等对相变的影响.结果表明ꎬ有效晶粒尺寸及界面迁移率影响相变速率ꎬ但对最终奥氏体体积分数无影响ꎻ相变过程中相界面处锰元素的富集导致的能量耗散同时降低了相变速率及最终奥氏体体积分数.对模拟结果进行实验验证ꎬ表明模拟结果与实验结果吻合良好.关㊀键㊀词:相变动力学ꎻ吉布斯能量平衡ꎻ铁素体-奥氏体相变ꎻ溶质拖曳效应中图分类号:TG111 5㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1005-3026(2023)07-0938-06AKineticModelforFerrite ̄AusteniteTransformationLANHui ̄fangꎬLIUZe ̄yangꎬWUMeng ̄ru(StateKeyLaboratoryofRollingandAutomationꎬNortheasternUniversityꎬShenyang110819ꎬChina.Correspondingauthor:LANHui ̄fangꎬE ̄mail:lanhf@ral.neu.edu.cn)Abstract:InthispaperꎬbasedontheconceptsofmixedmodelandGibbsenergybalancemodelꎬasimpleGibbsenergybalancemodelwasestablishedtosimulatetheferrite ̄austenitetransformationofFe ̄C ̄Mnlowcarbonsteelduringtheintercriticalannealingat780ħ.TheeffectsofGibbsfreeenergyꎬeffectivegrainsizeandalloyingdistributiononthetransformationwerestudied.Theresultsshowthattheinitialeffectivegrainsizeandinterfacialmobilitygreatlyaffectedthekineticsofphasetransformationꎬwhiletheyhadlittleeffectonthefinalvolumefractionoftheaustenite.ThedissipationenergycausedbytheMnenrichmentattheinterfaceduringphasetransformationsloweddownthetransformationkineticsandreducedthefinalvolumefractionoftheaustenite.Itisfoundthatthemodellingresultsaboveareingoodaccordancewiththeexperimentalones.Keywords:phasetransformationkineticsꎻGibbsenergybalanceꎻferrite ̄austenitetransformationꎻsolutedrageffect㊀㊀铁素体-奥氏体相变在钢铁行业的研究中具有非常重要的意义ꎬ工业钢的组织和性能依附于奥氏体冷却之后形成的各种相[1].关于奥氏体向铁素体相变的冷却过程已得到广泛研究[2]ꎻ相反的ꎬ对铁素体向奥氏体相变的加热过程研究相对较少.在加热过程中ꎬ奥氏体相变形核和长大受到诸多因素的影响.对于相变发生前的初始组织ꎬ如再结晶状态㊁第二相分布等ꎬ由于缺陷密度及空间碳分布差异ꎬ将在很大程度上影响奥氏体相变动力学[3-4]ꎬ导致奥氏体冷却后所形成的组织(例如铁素体晶粒尺寸㊁马氏体相变分数与分布等)出现差异.对于加热过程的晶粒长大来说ꎬ相变过程中组织难以实时观测ꎬ加之再结晶与奥氏体相变的相互作用[5-6]ꎬ使双相钢加热过程中对于相变及组织演变规律的研究具有挑战性.除了上述影响因素外ꎬ研究奥氏体的形成存在诸多挑战:加热时形成的奥氏体在冷却时又转化为不同的产物相ꎬ因此很难直接观察加热时形成的奥氏体ꎻ升温使奥氏体形成动力学的研究变得困难ꎬ初始组织的相分布和形态会影响奥氏体的形成过程ꎬ因此必须从不同的初始组织开始研究ꎬ这增加了所需的实验数量[7].这也是多年以来奥氏体逆相相对较少的原因.鉴于实验研究高温奥氏体化带来的不便ꎬ运用相关相变模型模拟相变过程成为可行之路.近些年来ꎬ人们已经提出了不同的生长模型来描述铁素体-奥氏体相变ꎬ其中运用较多的为:扩散控制模型[8]㊁界面控制模型[9]及混合模型[10].混合生长模型同时考虑了溶质扩散和界面迁移率的影响ꎬ与实验结果吻合较好[11].研究表明扩散控制模型与界面控制模型均为混合模型的一种极端情况[12-13]ꎬ因而在最近的研究中ꎬ混合生长模型被广泛使用[14].但是传统的混合模型主要考虑的是Fe-C二元体系ꎬ将其他合金元素的影响整合到了比例因子中ꎬ较难对其进行深入讨论.Mecozzi等[7]提出了基于Fe-C-Mn三元体系的等温铁素体向奥氏体转变的半解析混合模型ꎬ并对铁素体到奥氏体转变的扩散控制㊁界面控制和混合模型进行了比较研究.然而ꎬ他们没有对模型模拟结果进行实验验证.陈浩等提出了一个基于混合模型和溶质拖曳效应的吉布斯能量平衡(GibbsenergybalanceꎬGEB)模型[15]ꎬ该模型考虑了碳和其他替代元素的扩散ꎬ可以解释奥氏体ң贝氏体㊁奥氏体ң铁素体出现的停滞现象ꎬ但尚未应用于反向转变.安栋等基于混合模型的概念ꎬ建立了铁素体向奥氏体转变的吉布斯能量平衡模型[16]ꎬ并应用于Fe-C-Mn和Fe-C-Mn-Si合金在760ħ下的铁素体向奥氏体转变.模型预测的相变动力学与膨胀测量的结果比较接近ꎬ但未给出合金元素扩散对于相变过程影响的相关解释.本文基于半解析混合模型与吉布斯能量平衡模型ꎬ建立了一种简单的吉布斯能量平衡模型ꎬ模拟了Fe-0 1C-2Mn在加热过程中的相变动力学.将不同影响因素对奥氏体化相变过程的影响进行了讨论ꎬ并将模拟结果与实验进行了比较.1㊀GEB模型的建立吉布斯能量平衡模型的基本原理为[15]:相变过程的化学驱动力ΔGchem等于置换原子在相界面内再分配而引起的吉布斯自由能耗散ΔGdiff和界面移动带来的摩擦引起的吉布斯自由能耗散ΔGfricꎬ即ΔGchem=ΔGdiff+ΔGfric.(1)1 1㊀化学驱动力ΔGchem的计算铁素体向奥氏体加热过程相变的化学驱动力ΔGchem采用混合模型[7]进行计算.相关假设条件为:忽略奥氏体的形核过程ꎬ认为在计算区域(研究相变区域的一半长度为L)的最左边位置存在一个初始半径为sγꎬ0的奥氏体ꎬ该奥氏体由相变开始时具有共析碳成分为xPc的珠光体转变而来ꎬ其余部分为铁素体基体(L-sγꎬ0).随相变的进行ꎬ奥氏体长大ꎻ在t时刻时ꎬ界面迁移至z=sγ处(z为到奥氏体中心的距离)ꎬ此时奥氏体内部的碳分布如图1所示.由于碳在铁素体内部扩散速率远大于奥氏体ꎬ认为在相变过程中碳的摩尔分数始终等于平衡值xαꎬeqc.图1㊀碳的摩尔分数分布示意图Fig 1㊀Schematicofthemolarfractiondistributionofthecarbon㊀㊀根据半解析模型的假设ꎬ在奥氏体中存在与扩散距离z呈指数关系碳的摩尔分数为xc(tꎬz)=xγꎬhc+(xγꎬα/γc-xγꎬhc)cosh(z/z0)-1cosh(sγ/z0)-1.(2)式中:xγꎬhc为奥氏体中心碳的摩尔分数ꎻxγꎬα/γc为界面处奥氏体侧碳的摩尔分数ꎻxc(tꎬs)=xγꎬα/γcꎻz0为奥氏体相中碳分布曲线的宽度ꎬz0≫sγ.铁素体向奥氏体相变的化学驱动力ΔGchem可由式(3)计算[7]:ΔGchem=χ(xγꎬα/γc-xγꎬeqc).(3)新相奥氏体的生长速率v可由式(4)计算:v=MΔGchem.(4)式中:M为界面迁移率ꎬM的数值可由M=M0exp-QRTæèçöø÷计算ꎬM0为界面迁移率因子ꎻQ为激活能ꎻR为气体常数ꎻT为温度ꎬK.相变过程中界面处碳扩散通量守恒ꎬ即v(xγꎬα/γc-xαꎬeqc)=-Dγcdxcdzz=sγ.(5)为简化计算ꎬ假设z0≫sγ>sγꎬ0ꎬ结合式(1)~式(5)可推导出奥氏体相界面碳的摩尔分数xγꎬα/γc的解析表达式:939第7期㊀㊀㊀蓝慧芳等:一种铁素体-奥氏体相变动力学模型㊀㊀㊀㊀xγꎬα/γc=12Asγ[(AsγΔxc-3)+(AsγΔxc-3)2+12sγꎬ0A(xpc-xαꎬeqc)+xαꎬeqc.(6)式中:A=Mχ/DγcꎻΔxc=xγꎬeqc-xαꎬeqc.化学驱动力为ΔGchem=χ12Asγ[(AsγΔxc-3)+(AsγΔxc-3)2+12sγꎬ0A(xpc-xαꎬeqc)]+xαꎬeqc-xγꎬeqc{}.(7)1 2㊀自由能耗散ΔGdiff和ΔGfric的计算采用溶质拖曳模型[17]计算溶质原子在界面内再分配引起的吉布斯自由能耗散ΔGdiff.相变过程中ꎬ合金元素在界面处偏聚形成一个楔形的化学势阱ꎬ如图2所示ꎬ并且其深度与原子偏聚程度有关.其中μα和μγ分别为溶质原子在铁素体和图2㊀α/γ界面处Mn化学势阱示意图Fig 2㊀SchematicdiagramofthechemicpotentialwelloftheMnelementattheα/γinterface奥氏体相中的化学势ꎬΔE为Mn在铁素体和奥氏体中化学势之差的一半ꎬE0为结合能ꎬh为界面厚度的一半.根据上述假设ꎬ溶质原子耗散能ΔGdiff可由式(8)计算:ΔGdiff=-ʏ+h-h[C(y)-C0]dE(y)dydy.(8)式中:y为距界面的距离ꎻC0为合金中溶质Mn的标称分数ꎻC(y)为界面处溶质Mn随距离y变化的分数ꎻE(y)为图中随距离y变化的合金元素Mn的化学势.界面处置换元素的分布应满足菲克第二定律公式:∂∂yDint∂C(y)∂y+DintC(y)RT∂E(y)∂y+vC(y)[]=0.(9)式中ꎬDint为溶质原子在界面处的扩散系数.综合式(8)㊁式(9)可得到ΔGdiff的解析表达式:ΔGdiff=-RTC0-a2V1+a-b2V1+b+a2[1-exp(-V(1+a))](1+a)2+b2[1-exp(-V(1+b))](1+b)2-{ab[1-exp(-V(1+a))][1-exp(-V(1+b))](1+a)(1+b)}.(10)式中:Vꎬaꎬb为无量纲量ꎻV=vhDintꎻa=1V(ΔE-E0)RTꎻb=1V(ΔE+E0)RT.界面迁移造成的自由能耗散ΔGfric计算式为ΔGfric=vM.(11)式中:v为生长速率.1 3㊀模拟条件模拟选取质量分数为0 1%C-2%Mn的低碳钢.模拟工艺为:780ħ下铁素体向奥氏体的等温转变.碳在奥氏体中的扩散系数为1 5ˑ10-5ˑexp(-142100/RT)/(m2 s-1)[18].界面厚度2h为0 5nm[19].锰的结合能E0为9 9(kJ mol-1)[20].锰在界面的扩散系数DMn取Mn在奥氏体㊁铁素体内以及铁素体晶界处的锰元素扩散系数的几何平均值[20]ꎬ可由DICTRA[21]计算得到.碳平衡的摩尔分数xpcꎬxαꎬeqcꎬxγꎬeqcꎬMn的化学势差的一半ΔE㊁热力学比例因子χ均可由Thermo ̄calc计算[22].激活能Q为140(kJ mol-1)[23]ꎬ气体常数R=8 314J/(mol K).M0为0 5~0 005mol mJ-1s-1ꎬ在文献报道的取值范围内[24].计算区域长度L的大小由不同的奥氏体初始尺寸决定[7]ꎬ计算可知:L=xpc-xαꎬeqcx0c-xαꎬeqcsγꎬ0.(12)式中ꎬx0c为合金基体碳的摩尔分数.2㊀实验材料及方法实验材料选取质量分数为0 1%C-2%Mn㊁初始组织为铁素体+渗碳体的冷轧钢板.实验工艺如图3所示.分别以5ħ/s和80ħ/s的速度升至780ħꎬ等温300sꎬ随后加热至900ħꎬ保温30sꎬ以确定等温阶段奥氏体体积分数ꎬ随后以049东北大学学报(自然科学版)㊀㊀㊀第44卷㊀㊀80ħ/s的速度冷却至室温ꎬ如图3a所示ꎻ以5ħ/s的速度升至660ħꎬ保温100sꎬ使其发生再结晶ꎬ随后以5ħ/s的速度升至780ħꎬ等温300sꎬ再升温至900ħꎬ保温30sꎬ最后以80ħ/s的速度冷却至室温ꎬ如图3b所示.图3㊀奥氏体化工艺示意图Fig 3㊀Schematicdiagramofaustenitizationprocess(a) 加热等温ꎻ(b) 再结晶处理.3㊀结果与讨论3 1㊀模拟结果与实验结果对比80ħ/s加热等温工艺下模拟得到能量变化情况及模拟与实验得到不同时间下的新相奥氏体如图4所示.采用吉布斯自由能平衡模型及混合模型获得的80ħ/s加热至780ħ等温250s的模拟结果及实验结果如图4a所示.可知ꎬGEB模型的计算结果与实验结果吻合较好ꎬ而混合模型所计算的最终奥氏体体积分数偏高ꎬ可见GEB模型预测结果更加准确.对GEB模型的模拟结果进行分析发现ꎬ在0~25s阶段ꎬ相变进行迅速ꎬ奥氏体体积分数达到50%左右ꎻ25~100s阶段ꎬ相变速率较慢ꎬ奥氏体体积分数逐渐增大至60%ꎻ超过100s后ꎬ相变基本停止ꎬ奥氏体体积分数基本不再发生改变.而混合模型不论是相变速率还是奥氏体体积分数都要高于GEB模型.由于GEB模型是在混合模型的基础上加入溶质拖曳效应ꎬ导致合金元素在界面处扩散而引起的耗散能ΔGdiff成为相变过程的阻力ꎬ因此ΔGdiff不仅降低了相变速率ꎬ还导致最终奥氏体体积分数的降低.在GEB模型预测的等温转变过程中ꎬ化学驱动力ΔGchem(实线)㊁合金元素扩散引起的吉布斯自由能耗散ΔGdiff(点划线)㊁界面造成的自由能耗散ΔGfric(点线)与自由能耗散之和ΔGdiff+ΔGfric(虚线)随界面速率的变化ꎬ两曲线的交点即为发生相变时的驱动力及界面移动的临界速率ꎬ如图4b所示.可知ꎬ当奥氏体尺寸增大后ꎬΔGchem曲线向低能量㊁低界面迁移速率方向改变ꎬ即随相变的进行ꎬ奥氏体不断长大ꎬ相变的驱动力降低.对于ΔGdiff曲线ꎬ在低界面迁移速率(v<10-8m/s)下ꎬΔGdiff基本无变化(~10J mol-1)ꎻ随界面速率增大ꎬΔGdiff逐渐增大至3ˑ10-6m/s处的峰值ꎬ此后随界面速率增大ΔGdiff逐渐降低.对于ΔGfric曲线ꎬ在低界面迁移速率阶段约为0ꎬ随图4㊀奥氏体体积分数随时间变化及能量耗散随速度的变化Fig 4㊀Austenitevolumefractionwithtimeandenergydissipationwithvelocity(a) GEB模型㊁混合模型与实验结果ꎻ(b) 不同吉布斯自由能与界面速率的关系.149第7期㊀㊀㊀蓝慧芳等:一种铁素体-奥氏体相变动力学模型㊀㊀界面速率的增加ꎬΔGfric不断增加ꎬ呈上升趋势.对于总耗散能ΔGdiff+ΔGfric曲线ꎬ在低界面速率阶段ꎬ耗散能主要由ΔGdiff控制ꎻ在中界面迁移速率(10-6m/s<v<10-8m/s)阶段ꎬ总耗散能由两者共同控制ꎻ在高界面速率阶段(v>10-6m/s)ꎬ总耗散能主要由ΔGfric控制.分析ΔGchem曲线与ΔGdiff+ΔGfric曲线的交点可以发现ꎬ随奥氏体尺寸增加ꎬ交点处的界面迁移速率降低ꎬ这可以解释图4a中随相变的进行ꎬ相变速率越来越慢.3 2㊀有效晶粒尺寸的影响有效晶粒尺寸对相变的影响如图5所示.GEB模型计算的有效晶粒尺寸L不同时奥氏体体积分数随时间的变化如图5a所示ꎬ并与实验数据进行了对比.可知ꎬ随有效晶粒尺寸L的减小ꎬ相变速率加快ꎬ但其最终的稳定奥氏体体积分数基本不变.以80ħ/s的速度加热时ꎬ在加热阶段基本不发生或很少发生再结晶ꎬ有效晶粒尺寸最小ꎬ相变速率最快ꎻ经过660ħ等温100s后ꎬ再结晶比较充分ꎬ晶粒尺寸最大ꎬ等温阶段的相变速率最慢ꎻ5ħ/s的速率加热时ꎬ部分发生了再结晶ꎬ晶粒尺寸介于两者之间ꎬ因而相变速率介于两者之间.不同有效晶粒尺寸L对应的化学驱动力ΔGchem㊁耗散能之和ΔGdiff+ΔGfric随界面迁移速率的变化如图5b所示.分析不同L化学驱动力曲线与耗散能之和曲线的交点ꎬ可知ꎬL较小的奥氏体具有更高的化学驱动力及更快的界面迁移速率ꎬ这是因为随晶粒尺寸的减小ꎬ元素扩散距离减小ꎻ晶粒尺寸的减小会使单位面积内的晶粒数量增多ꎬ晶界面积更大ꎬ增加了形核的位置及数量ꎬ使得相变速率加快ꎬ这解释了有效晶粒尺寸较小的奥氏体相变速率相对更快的现象.图5㊀有效晶粒尺寸对相变的影响Fig 5㊀Effectoftheeffectivegrainsizeonphasetransformation(a) 奥氏体体积分数与等温时间的关系ꎻ(b) 吉布斯自由能与界面速度的关系.3 3㊀界面处合金元素的分布GEB模型同样可以预测相变过程中界面处合金元素(本文为锰)的分布ꎬ图6为GEB模型预测的780ħ等温相变过程中界面处Mn的质量分数随界面位置的变化.由图可知ꎬ在高界面迁移速率(v=10-5m/s)下ꎬ相变速率较快ꎬ相变主要由碳元素扩散控制ꎬ锰元素基本不发生扩散ꎬ界面处Mn的质量分数基本保持不变ꎻ在中界面迁移速率(v=4ˑ10-7m/s)下ꎬMn开始发生扩散ꎬ对相变有所影响ꎬ界面处出现了Mn的富集ꎬ从而导致Mn尖峰的形成ꎻ随相变继续进行ꎬ界面迁移速率进一步降低(v=10-9m/s)ꎬ此时相变已处于末期ꎬ主要由Mn扩散控制ꎬMn的尖峰也随之继续增高.这种相变过程中界面处出现的Mn元素富集导致产生较大的耗散能ꎬ从而抑制相变的进行.观察奥氏体侧Mn的质量分数可以发现ꎬ在高界面迁移速率情况下ꎬ奥氏体侧与基体Mn的质量分数接近ꎻ随相变速率进一步降低ꎬ相变接近停止时ꎬ奥氏体侧高于基体Mn的质量分数ꎬ即相变过程中出现了Mn的分配.图6㊀Mn元素在界面处分布情况Fig 6㊀DistributionoftheMnelementattheinterface249东北大学学报(自然科学版)㊀㊀㊀第44卷4㊀结㊀㊀论1)通过将混合模型与GEB模型相结合ꎬ建立了一个简单的GEB模型ꎬ并与实验进行了对比ꎬ模拟结果与实验结果吻合较好.2)合金元素扩散引起的自由能耗散不仅降低了相变速率ꎬ还导致最终奥氏体体积分数减少.3)不同的有效晶粒尺寸只影响了相变速率ꎬ对于最终的相变结果几乎没有影响.4)在相变过程中ꎬ锰在界面处出现了分布尖峰ꎬ离界面距离越远Mn的质量分数越低ꎬ最终趋近于一个稳定值.参考文献:[1]㊀GounéMꎬDanoixFꎬÅgrenJꎬetal.Overviewofthecurrentissuesinaustenitetoferritetransformationandtheroleofmigratinginterfacesthereinforlowalloyedsteels[J].MaterialsScienceandEngineeringsꎬ2015ꎬ92:1-38. [2]㊀vanBohemenSMCꎬSietsmaJ.Thekineticsofbainiteandmartensiteformationinsteelsduringcooling[J].MaterialsScienceandEngineering:Aꎬ2010ꎬ527(24/25):6672-6676.[3]㊀EtesamiSAꎬEnayatiMH.Microstructuralevolutionandrecrystallizationkineticsofacold ̄rolledꎬferrite ̄martensitestructureduringintercriticalannealing[J].MetallurgicalandMaterialsTransactionsAꎬ2016ꎬ47:3271-3276. [4]㊀KulakovMꎬPooleWJꎬMilitzerM.TheeffectoftheinitialmicrostructureonrecrystallizationandausteniteformationinaDP600steel[J].MetallurgicalandMaterialsTransactionsAꎬ2013ꎬ44:3564-3576.[5]㊀ZhengCWꎬRaabeD.Interactionbetweenrecrystallizationandphasetransformationduringintercriticalannealinginacold ̄rolleddual ̄phasesteel:acellularautomatonmodel[J].ActaMaterialiaꎬ2013ꎬ61(19):5504-5517. [6]㊀ChbihiAꎬBarbierDꎬGermainLꎬetal.Interactionsbetweenferriterecrystallizationandausteniteformationinhigh ̄strengthsteels[J].JournalofMaterialsScienceꎬ2014ꎬ49:3608-3621.[7]㊀MecozziMGꎬBosCꎬSietsmaJ.Amixed ̄modemodelfortheferrite ̄to ̄austenitetransformationinaferrite/pearlitemicrostructure[J].ActaMaterialiaꎬ2015ꎬ88:302-313. [8]㊀ZenerC.Theoryofgrowthofsphericalprecipitatesfromsolidsolution[J].JournalofAppliedPhysicsꎬ1949ꎬ20(10):950-953.[9]㊀HillertM.Diffusionandinterfacecontrolofreactionsinalloys[J].MetallurgicalTransactionsAꎬ1975ꎬ6:5-19. [10]SietsmaJꎬvanderZwaagS.Aconcisemodelformixed ̄modephasetransformationsinthesolidstate[J].ActaMaterialiaꎬ2004ꎬ52(14):4143-4152.[11]KrielaartGPꎬSietsmaJꎬvanderZwaagS.FerriteformationinFe ̄Calloysduringaustenitedecompositionundernon ̄equilibriuminterfaceconditions[J].MaterialsScienceandEngineering:Aꎬ1997ꎬ237(2):216-223.[12]ChenHꎬvanderZwaagS.Modelingofsoftimpingementeffectduringsolid ̄statepartitioningphasetransformationsinbinaryalloys[J].JournalofMaterialsScienceꎬ2011ꎬ46(5):1328-1336.[13]陈浩ꎬ张璁雨ꎬ朱加宁ꎬ等.奥氏体/铁素体界面迁移与元素配分的研究进展[J].金属学报ꎬ2018ꎬ54(2):217-227.(ChenHaoꎬZhangCong ̄yuꎬZhuJia ̄ningꎬetal.Austenite/ferriteinterfacemigrationandalloyingelementspartitioning:anoverview[J].ActaMetallurgicaSinicaꎬ2018ꎬ54(2):217-227.)[14]HuizengaRMꎬBosCꎬSietsmaJ.Interfaceconditionsduringmixed ̄modephasetransformationsinmetals[J].JournalofMaterialsScienceꎬ2008ꎬ43(11):3744-3749.[15]ChenHꎬvanderZwaagS.Ageneralmixed ̄modemodelfortheaustenite ̄to ̄ferritetransformationkineticsinFe ̄C ̄Malloys[J].ActaMaterialiaꎬ2014ꎬ72:1-12.[16]AnDꎬPanSꎬRenQꎬetal.AGibbsenergybalancemodelfortheisothermalferrite ̄to ̄austenitetransformation[J].ScriptaMaterialiaꎬ2020ꎬ178:207-210.[17]PurdyGRꎬBrechetY.Asolutedragtreatmentoftheeffectsofalloyingelementsontherateoftheproeutectoidferritetransformationinsteels[J].ActaMetallurgicaetMaterialiaꎬ1995ꎬ43(10):3763-3774.[18]MilitzerMꎬMeczziMꎬSietsmaJꎬetal.Three ̄dimensionalphasefieldmodellingoftheaustenite ̄to ̄ferritetransformation[J].ActaMaterialiaꎬ2006ꎬ54(15):3961-3972. [19]ChenHꎬBorgenstamAꎬOdqvistJꎬetal.Applicationofinterruptedcoolingexperimentstostudythemechanismofbainiticferriteformationinsteels[J].ActaMaterialiaꎬ2013ꎬ61(12):4512-4523.[20]ChenHꎬZhuKꎬZhaoLꎬetal.AnalysisoftransformationstasisduringtheisothermalbainiticferriteformationinFe ̄C ̄MnandFe ̄C ̄Mn ̄Sialloys[J].ActaMaterialiaꎬ2013ꎬ61(14):5458-5468.[21]BorgenstamAꎬHöglundLꎬÅgrenJꎬetal.DICTRAꎬatoolforsimulationofdiffusionaltransformationsinalloys[J].JournalofPhaseEquilibriaꎬ2000ꎬ21(3):269-280. [22]AnderssonJꎬHelanderTꎬHöglundLꎬetal.Thermo ̄Calc&DICTRAꎬcomputationaltoolsformaterialsscience[J].Calphadꎬ2002ꎬ26(2):273-312.[23]FazeliFꎬMilitzerM.Applicationofsolutedragtheorytomodelferriteformationinmultiphasesteels[J].MetallurgicalandMaterialsTransactionsAꎬ2005ꎬ36(6):1395-1405. [24]AnDꎬBaikSꎬPanSꎬetal.Evolutionofmicrostructureandcarbondistributionduringheattreatmentsofadual ̄phasesteel:modelingandatom ̄probetomographyexperiments[J].MetallurgicalandMaterialsTransactionsAꎬ2019ꎬ50(1):436-450.349第7期㊀㊀㊀蓝慧芳等:一种铁素体-奥氏体相变动力学模型㊀㊀。
表面处理关连用语专业英语中英文对照
表面处理关连用语专业英语中英文对照age hardening 时效硬化 ageing 老化处理air hardening 气体硬化 air patenting 空气韧化annealing 退火 anode effect 阳极效应anodizing 阳极氧化处理 atomloy treatment 阿托木洛伊表面austempering 奥氏体等温淬火 austenite 奥斯田体/奥氏体bainite 贝氏体 banded structure 条纹状组织barrel plating 滚镀 barrel tumbling 滚筒打光blackening 染黑法 blue shortness 青熟脆性bonderizing 磷酸盐皮膜处理 box annealing 箱型退火box carburizing 封箱渗碳 bright electroplating 辉面电镀bright heat treatment 光辉热处理 bypass heat treatment 旁路热处理carbide 炭化物 carburized case depth 浸碳硬化深层carburizing 渗碳 cementite 炭化铁chemical plating 化学电镀 chemical vapor deposition 化学蒸镀coarsening 结晶粒粗大化 coating 涂布被覆cold shortness 低温脆性 comemtite 渗碳体controlled atmosphere 大气热处理 corner effect 锐角效应creeping discharge 蠕缓放电 decarburization 脱碳处理decarburizing 脱碳退火 depth of hardening 硬化深层diffusion 扩散 diffusion annealing 扩散退火electrolytic hardening 电解淬火 embossing 压花etching 表面蚀刻 ferrite 肥粒铁first stage annealing 第一段退火 flame hardening 火焰硬化flame treatment 火焰处理 full annealing 完全退火gaseous cyaniding 气体氧化法 globular cementite 球状炭化铁grain size 结晶粒度 granolite treatment 磷酸溶液热处理graphitizing 石墨退火 hardenability 硬化性hardenability curve 硬化性曲线 hardening 硬化heat treatment 热处理 hot bath quenching 热浴淬火hot dipping 热浸镀 induction hardening 高周波硬化ion carbonitriding 离子渗碳氮化 ion carburizing 离子渗碳处理ion plating 离子电镀 isothermal annealing 等温退火liquid honing 液体喷砂法 low temperature annealing 低温退火malleablizing 可锻化退火 martempering 麻回火处理martensite 马氏体/硬化铁炭 metallikon 金属喷镀法metallizing 真空涂膜 nitriding 氮化处理nitrocarburizing 软氮化 normalizing 正常化oil quenching 油淬化 overageing 过老化overheating 过热 pearlite 针尖组织phosphating 磷酸盐皮膜处理 physical vapor deposition 物理蒸镀plasma nitriding 离子氮化 pre-annealing 预备退火precipitation 析出 precipitation hardening 析出硬化press quenching 加压硬化 process annealing 制程退火quench ageing 淬火老化 quench hardening 淬火quenching crack 淬火裂痕 quenching distortion 淬火变形quenching stress 淬火应力 reconditioning 再调质recrystallization 再结晶 red shortness 红热脆性residual stress 残留应力 retained austenite 残留奥rust prevention 防蚀 salt bath quenching 盐浴淬火sand blast 喷砂处理 seasoning 时效处理second stage annealing 第二段退火 secular distortion 经年变形segregation 偏析 selective hardening 部分淬火shot blast 喷丸处理 shot peening 珠击法single stage nitriding 等温渗氮 sintering 烧结处理soaking 均热处理 softening 软化退火solution treatment 固溶化热处理 spheroidizing 球状化退火stabilizing treatment 安定化处理 straightening annealing 矫直退火strain ageing 应变老化 stress relieving annealing 应力消除退火subzero treatment 生冷处理 supercoo-ling 过冷surface hardening 表面硬化处理 temper brittleness 回火脆性temper colour 回火颜色 tempering 回火tempering crack 回火裂痕 texture 咬花thermal refining 调质处理 thermoechanical treatment 加工热处理time quenching 时间淬火 transformation 变态tufftride process 软氮化处理 under annealing 不完全退火vacuum carbonitriding 真空渗碳氮化 vacuum carburizing 真空渗碳处理vacuum hardening 真空淬火 vacuum heat treatment 真空热处理vacuum nitriding 真空氮化 water quenching 水淬火wetout 浸润处理-。
机械类常用英语:表面处理、热处理
cementite 炭化铁 chemical plating 化学电镀 chemical vapor deposition 化学蒸镀 coarsening 结晶粒粗大化 coating 涂布被覆 cold shortness 低温脆性 comemtite 渗碳体 controlled atmosphere 大气热处理 corner effect 锐角效应 creeping discharge 蠕缓放电 decarburization 脱碳处理 decarburizing 脱碳退火 depth of hardening 硬化深层 diffusion 扩散 diffusion annealing 扩散退火 electrolytic hardening 电解淬火 embossing 压花 etching 表面蚀刻 ferrite 铁晶体 first stage annealing 第一段退火 flame hardening 火焰硬化 flame treatment 火焰处理 full annealing 完全退火 gaseous cyaniding 气体氧化法 globular cementite 球状炭化铁 grain size 结晶粒度 granolite treatment 磷酸溶液热处理 graphitizing 石墨退火 hardenability 硬化性
precipi ta tion ha rdening 析出硬化 press quenching 加压硬化 process annealing 制程退火 quench ageing 淬火老化 quench ha rdening 淬火 quenching cra ck 淬火裂痕 quenching distortion 淬火变形 quenching stress 淬火应力 recondi tioning 再调质 recrys tallization 再结晶 red shortness 红热脆性 residual s tress 残留应力 retained austeni te 残留奥 rus t prevention 防蚀 salt ba th quenching 盐浴淬火 sand blast 喷砂处理 seasoning 时效处理 second s tage annealing 第二段退火 secula r distorti on 经年变形 segregation 偏析 selecti ve hardening 部分淬火 shot blast 喷丸处理 shot peening 珠击法 single sta ge nitri ding 等温渗氮 sintering 烧结处理 soaking 均热处理 softening 软化退火 solution trea tment 固溶化热处理 spheroidizing 球状化退火
Grain size dependent mechanical properties of nanocrystalline diamond film
Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVDM.Wiora a ,⁎,K.Brühne a ,A.Flöter b ,P.Gluche b ,T.M.Willey c ,S.O.Kucheyev c ,A.W.Van Buuren c ,A.V.Hamza c ,J.Biener c ,H.-J.Fecht aa Institute for Micro and Nanomaterials,Ulm University,Germanyb Gesellschaft für Diamantprodukte GFD,GermanycLawrence Livermore National Laboratory,7000East Avenue,Livermore,CA 94551,USAa b s t r a c ta r t i c l e i n f o Available online 3December 2008Keywords:Nanocrystalline diamond films grain sizemechanical properties morphology stress TEM XANES ERDA HFCVDNanocrystalline diamond (NCD)films with a thickness of ~6µm and average grain sizes ranging from 60to 9nm were deposited on silicon wafers using a hot-filament chemical vapor deposition (HFCVD)process.These samples were then characterized in order to identify correlations between grain size,chemical composition and mechanical properties.The characterization reveals that our films are phase pure and exhibit a relatively smooth surface morphology.The levels of sp 2-bonded carbon and hydrogen impurities are low,showing a systematic variation with the grain size.The hydrogen content increases with decreasing grain size,whereas the sp 2carbon content decreases with decreasing grain size.The material is weaker than single crystalline diamond,since both stiffness and hardness decrease with the reduction in crystal size.These trends suggest gradual changes in the nature of the grain boundaries,from graphitic in case of 60nm grain size material to hydrogen terminated sp 3carbon in 9nm grain size material.The films exhibit low levels of internal stress and free-standing structures with a length of several centimeters could be fabricated without noticeable bending©2008Elsevier B.V.All rights reserved.1.IntroductionIn the field of wear-resistant coatings for tools or microparts;diamond can be the choice of material by virtue of its remarkable properties such as extreme hardness (~96GPa)and Young's modulus (~1050GPa),high fracture toughness and very low coef ficients of friction.However,conventionally CVD grown microcrystalline dia-mond (MCD)films (where the grain size exceeds several hundred nm)exhibit a rough surface morphology and therefore show poor friction coef ficients,which are especially unfavorable for wear-resistant coatings.This problem has been addressed by developing new nanocrystalline (NCD)and ultra-nanocrystalline (UNCD)CVD diamond materials which combine both superior mechanical strength and excellent tribological properties [1,2].The grain size in these materials is typically less than 100nm,leading to a smoother surface topography in the as-deposited material and therefore to a lower friction coef ficient.This dramatic reduction in crystal size down to a few nanometers is accompanied by a signi ficant increase in grain boundary volume fraction.Simple calculations [3]reveal that the fraction of atoms associated with grain boundaries can be as high as 10%.In general,the development of a nanocrystallinegrain structure in CVD diamond requires extremely high secondary nucleation rates.This can be achieved by purposely incorporating defects and impurities.An obvious impurity in CVD diamond growth is hydrogen,which has been reported to preferentially decorate grain boundaries [4],where it can form C –H bonds with sp 2and sp 3hybridized carbons [5,6].Indeed,previous studies revealed that the formation of a nanocrystalline grain structure is accompanied by an increase of the hydrogen content in the NCD films [7].For example,Xiao et al.[8]reported hydrogen concentration of up to 3–7at.%in NCD films with grain sizes of ~10nm.This dramatic change in the chemical composition and micro-structure has not only a signi ficant in fluence on the morphology but also on the mechanical properties.For example,Catledge et al.[9]reported a Young's modulus of 400to 800GPa and hardness values ranging from 45to 90GPa (measured by nanoindentation)and Phillip et al.[10](using laser pulsed generated acoustic waves)found that the Young's modulus in NCD diamond can vary between 517to 1120GPa.In terms of applications,it would be of considerable interest to understand and control the relation between the grain size and mechanical properties.Another critical issue in NCD films is the film stress as it can lead to film fracture or delamination of the film from the substrate.In general,the reduction of crystal size can strongly in fluence the mechanical stress of the films and residual stress values in NCD films can range form 0.5to 5.5GPa [11].A systematicalDiamond &Related Materials 18(2009)927–930⁎Corresponding author.Tel.:+497315025393;fax:+497315025488.E-mail address:matthias.wiora@uni-ulm.de (M.Wiora).0925-9635/$–see front matter ©2008Elsevier B.V.All rights reserved.doi:10.1016/j.diamond.2008.11.026Contents lists available at ScienceDirectDiamond &Related Materialsj o u r na l h o m e p a g e :w w w.e l s ev i e r.c o m /l o c a t e /d i a m o n dinvestigation of the correlation between grain size,chemical compo-sition and mechanical properties is given in this paper.2.ExperimentalNanocrystalline diamond films were grown in a hot filament CVD reactor using tungsten filaments.Four sets of diamond films with thickness of ~6µm were fabricated on 3in.diameter single crystalline p-doped silicon (100)wafers.In order to achieve nanocrystalline structure,a process has been developed to enhance the secondary nucleation using a mixture of H 2,CH 4,N 2and O 2.Scanning electron microscopy (SEM)was performed using a Zeiss Leo 1540.The roughness of the diamond surfaces was measured in tapping mode with Atomic Force Microscopy (AFM,Dimension 3100,Digital Instruments)using 10×10µm scans.Investigation of the microstructure was performed with High Resolution Transmission Electron Microscopy (HRTEM,FEI Titan 300kV)and Selective Area Electron Diffraction (SAED).To determine the sp 2content of our NCD films,we performed soft X-ray Absorption Near-Edge Structure spectro-scopy (XANES)experiments at the undulator beamline 8.0at the Advanced Light Source,Lawrence Berkeley National Laboratory.Hydro-gen incorporation was investigated by Elastic Recoil Detection Analysis (ERDA),and stress analysis was performed with a thin-film stress measurement instrument (Flexus,Tencor FLX-2320).The total residual stress (thermal and intrinsic)was calculated by measuring the radius of curvature,performed with a laser re flection technique and usingStoney's equation [12].Young's modulus and hardness were investi-gated by nanoindentation (Nanoindenter XP,MTS).Tests were performed with loads ranging from 135to 500mN at a fixed penetration depth of 500nm.The maximum displacement of the Berkovich diamond indenter was regulated at slightly less than one tenth of the film thickness to minimize substrate effects [13].Young's modulus hardness of the films were determined from the load versus displace-ment curves in complete load/unload cycles and were calculated using the Oliver and Pharr method [14].Additional to nanoindentation,a Laser Surface Acoustic Wave technique [15](LSAW,Fraunhofer IWS Dresden)was used for studying Young's modulus.In this method a pulsed laser induces an acoustic wave on the surface of the material.Based on the resulting waveform,several important properties can be measured.The dispersion of the wave is directly related to the thickness,Poison's ratio,density and the Young's modulus of the film.A data fitting program determines the Young's modulus and the density,using the measured film thickness and assuming a Poison's ratio of 0.12[16].3.Results and discussionFour sets of diamonds films (samples I –IV)were studied,and the results of AFM and SEM characterization are summarized in Table 1.The root mean square (rms)roughness decreases from sample I to sample IV by more than 50%.This decrease in surface roughness can be directly related to the decrease in the grain size as determined by SEM (Fig.1).Sample I shows a highly facetted surface morphology with grains ranging from 25to 150nm in diameter.The grain size of films III and IV is much finer with grains around 10–15nm,and faceting can no longer be resolved.These values have to be compared to roughness values of MCD films (grain size exceeds several hundred nanometers)which typically have signi ficantly larger roughness values (N 100nm).Note that we also studied the effect of film thickness (1µm up to 17µm)and did not observe any increase in grain size or roughness with increasing thickness.The corresponding HRTEM and SAED patterns are shown in Fig.2.The average crystal size taken from the TEM images are 60nm for sample I,16nm for sample II,11nm for sample III and 9nm for sampleTable 1Summary of the experimental results of AFM,HRTEM grain size analysis,XANES and ERDA.Sample ID Avg.roughness rms Avg.grain size sp 2carbon conc.Hydrogen conc.(nm)I (nm)(%)(at.%)I 41(±7)607-6 1.5II 20(±2)16(±14)5 3.2III 16(±1)11(±10)6-5 4.0IV18(±3)9(±8)4-34.3Fig.1.Top-view SEM micrographs of the four different NCD films.928M.Wiora et al./Diamond &Related Materials 18(2009)927–930IV.SAED was used to examine the phases present in the NCD films.All SAED patterns can be indexed to diamond,and the observation of polycrystalline ring patterns demonstrates the random grain orienta-tion in our materials.Re flections from the diamond planes (111),(022),(113)and (222)are visible.No appreciable scattering intensity from graphite crystallites was observed.The hydrogen content in our NCD films was studied by ERDA,and the results are presented in Table 1.We observe that the hydrogen concentration increases with decreasing crystallite size from 1.5to 4.3at.%.This is in good agreement with previous studies [17],and the observation that hydrogen is preferentially located at grain boundaries [4].XANES spectroscopy was used to estimate the sp 2carbon content in our NCD films.This was done by comparing the integrated intensity of the sp 2related s →π⁎transition at ~284.5eV of normalized C K -edge XANES spectra collected from our NCD films,with the spectrum collected from a highly oriented pyrolytic graphite reference sample (100%sp 2)[18].The results of this analysis are shown in Table 1.Contrary to previous studies [19],the observed sp 2carbon values decrease with decreasing grain sizes.This unexpected result seems to indicate that the character of the grain boundaries in our NCD samples changes from graphitic sp 2carbon (sample I)to hydrogen terminated sp 3carbon (sample IV)as the grain size decreases.This interpretation is consistent with the increase in hydrogen content as the grain size decreases (see ERDA results).For evaluation of the quality of these films in terms of the wear-resistant coating application,it is essential to study mechanical properties such as stress,Young's modulus and hardness.The calculated residual stress for our ~6µm thick films is compressive and varies in the range from 220to 360MPa.The films showed no delamination from the substrate,and photographs of a free-standing film (sample IV)in Fig.3indicate no visible bending due to mechanical stress.Nanoindentation was used to investigate the Young's modulus (E )and the hardness (H )of the grown films.Twenty-five indentations were made on each sample and the final results of E and H were averaged.To detect changes of the tip area function caused by the extreme hardness of our material we always performed calibration tests on a fused silica standard before and after each sets of indentation.The test con firmed that blunting of the diamond tip was minimal.Fig.4shows both Young's modulus and hardness of our NCD films as a function of the grain size.The Young's modulus values range from 597to 857GPa,and the hardness values range from 68to 86GPa.Although the error bars are large (which is especially true for the coarse-grained sample I due to its higher surface roughness),the data suggest the general trend that our NCD films get softer and weaker with decreasing grain size,and thus points towards grain boundary weakening.A laser surface acoustic wave technique was used to verify the nanoindentation results concerning Young's modulus,and the results are included in Fig.4.The LSAW measurement seems to con firm the nanoindentation results.The Young's modulus of sample I (60nmFig.2.HRTEM images and SAED patterns of the four NCD films.929M.Wiora et al./Diamond &Related Materials 18(2009)927–930grains)is close to that of natural diamond (1050GPa)and falls with decreasing grain size to around 700GPa.The large offset compared to the indentation results can be attributed to the different pared to LSAW,the nanoindentation measurement of the elastic modulus of thin films is more strongly affected by the substrate,especially when the film thickness is rather small.Even if we apply the 10%rule,the substrate affects the modulus values,especially in the case of a large mismatch in the modulus between substrate and film.Thus,the grain size clearly in fluences hardness and elastic properties of our NCD films.The weakening of our films with decreasing grain size can be explained by the increasing number of atoms associated with grain boundaries,and the existence of grain boundary related defects such as hydrogen impurities (sp 3-CH groups)and sp 2-carbon.Also a change in the nature of the grain boundaries,from graphitic in the case of larger grains to hydrogen terminated sp 3carbon may be important in this context.4.ConclusionThe correlation between grain size and mechanical properties of NCD films was studied by using four sets NCD films with different grain sizes.The films showed extremely low internal stress levels and smooth surfaces.The surface roughness further decreased with decreasing grain size.The levels of sp 2-bonded carbon and hydrogen impurities were low,and showed a systematic variation with the grain size.The hydrogen content increases with decreasing grain size,whereas the sp 2C content decreases with decreasing grain size.This observation seems to indicate a change of the nature of the grain boundaries,from graphitic in the case of larger grains to hydrogen terminated sp 3carbon.Investigation of mechanical properties showed grain size dependent Young's modulus and hardness which can be associated with change in grain boundary volume fraction and introduction of grain boundary related defects.AcknowledgementThis research was supported by the German Federal Ministry of Education and Research (3D-Nanowerk,FKZ 13N8998).We thank S.Selve for HRTEM and SAED measurements.XANES and ERDA analyseswere performed under the auspices of the U.S.Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.References[1]R.R.Chromik,A.L.Winfrey,J.Lüning,R.J.Nemanich,K.J.Wahl,Wear265(2008)477.[2]S.O.Kucheyev,J.Biener,J.W.Tringe,Y.M.Wang,P.B.Mirkarimi,T.van Buuren,S.L.Baker,A.V.Hamza,K.Brühne,H.-J.Fecht,Appl.Phys.Lett.86(2005)221914.[3]G.Palumbo,S.J.Thorpe,K.T.Aust,Scr.Metall.Mater.24(1990)1347.[4]P.Reichart,G.Datzmann,A.Hauptner,R.Hertenberger,C.Wild,G.Dollinger,Science 306(2004)1537.[5]J.Birrell,J.E.Gerbi,O.Auciello,J.M.Gibson,D.M.Gruen,J.A.Carlisle,J.Appl.Phys.93(2003)5606.[6]Sh.Michaelson,O.Ternyak,A.Hoffman,Y.Lifshitz,Appl.Phys.Lett.90(2007)031914.[7]A.Hoffman,A.Heiman,R.Akhvlediani,kin,E.Zolotoyabko,C.Cyterman,J.Appl.Phys.94(2003)4589.[8]X.Xiao,B.W.Sheldon,Y.Qi,A.K.Kothari,Appl.Phys.Lett.92(2008)131908.[9]S.A.Catledge,J.Borham,Y.K.Vohra,ce field,J.E.Lemons,J.Appl.Phys.91(2002)5347.[10]J.Philip,P.Hess,T.Feygelson,J.E.Butler,S.Chattopadhyay,K.H.Chen,L.C.Chen,J.Appl.Phys.93(2003)2164.[11]E.A.Mujica,F.Piazza,J.De Jesús,B.R.Weiner,S.D.Wolter,G.Morell,Thin SolidFilms 515(2007)7906.[12]G.G.Stoney,Proc.R.Soc.London,Ser.A 82(1909)172.[13]A.C.Fischer-Cripps,Nanoindentation,Springer,Berlin,2002,p.136.[14]W.C.Oliver,G.M.Pharr,J.Mater.Res.7(1992)1564.[15]D.Schneider,T.Schwarz,H.-J.Scheibe,M.Panzer,Thin Solid Films 295(1997)107.[16]Z.H.Shen,P.Hess,J.P.Huang,Y.C.Lin,K.H.Chen,Ultrasonics 44(2006)1229.[17]C.Liu,X.Xiao,J.Wang,B.Shi,V.P.Adiga,R.W.Carpick,J.A.Carlisle,O.Auciello,J.Appl.Phys.102(2007)074115.[18]L.Fayette,B.Marcus,M.Mermoux,G.Tourillon,ffon,P.Parent,F.Le Normand,Phys.Rev.,B 57(1998)14123.[19]D.Ballutaud,F.Jomard,T.Kociniewski,E.Rzepka,H.Girard,S.Saada,Diam.Relat.Mater.17(2008)451.Fig.4.Young's modulus and hardness as a function of grain size,measured by both nanoindentation and laser acoustictechniques.Fig.3.Photographs of a free-standing ~6µm film of sample IV,showing no noticeable bending due to mechanical stress.930M.Wiora et al./Diamond &Related Materials 18(2009)927–930。
冶金行业专业英语词汇
冶金行业专业英语词汇
合成进给运动 resultant movement of feed 合成切削运动 resultant movement of cutting 合成切削运动方向 direction of resultant movement of cutting 合成纤维 synthetic fibre 合金 alloy 合金钢 alloy steel 合金化 alloyage; alloying 宏观硬度 macro hardness 后角 clearance angle 滑动轴承 sliding bearing 划痕 scuffing 化铁炉 cupola 画法几何 descriptive geometry 还原 reproduction 黄铜 brass 回火 temper I J 机床 machine tool 机床夹具 jig 机电一体化 mechanotronics; mechanical-electrical integration
冶金行业专业英语词汇
粗钢 crude steel 粗加工 rough machining 脆性 brittleness 脆性材料 brittleness material 淬火 hardening; quench, quenching 淬火层 quench hardened case ; quenched case 淬火冷却 quench 淬火深度 hardness penetration; depth of hardening 淬水 hardening 淬透性 hardenability; hardening capacity
D 打桩锤 pile hammer 带状薄板 coiled sheet 挡板 orifice plate; baffle plate 刀尖 nose of tool 刀具 cutter 导轨 lead rail 导数 differential coefficient 导卫板 fore plate 倒角 rounding chamfer 低碳钢 mild steel, soft steel
粗大珠光体的形成原因(英文)
Factors influencing ferrite/pearlite banding andorigin of large pearlite nodules in a hypoeutectoidplate steels.W.Thompson and P.R.HowellThe microstructure and distribution of alloying elements in a hot rolled,low alloy plate steel containing(wt-%)0·15%C,0'26%Si,l'49%Mn,and0·03%AI were examined using light microscopy and electron probe microanalysis.Microstructural banding was caused by microchemical banding of manganese,where alternate bands ofproeutectoidferrite and pearlite were located in solute lean and solute rich regions,respectively.Bands were well definedfor a cooling rate of0·1K S-1,but banding was much less intense after cooling at1K s- 1.At a cooling rate of0·1K s-1and for austenite grains smaller than the microchemical band spacing,austenite decomposition occurred via the formation of'slabs'of proeutectoid ferrite in manganese lean regions resulting in the growth offerrite grains across austenite grain boundaries.Abnormally large austenite grains result in the formation of large,irregularly etching pearlite nodules which traversed several bands.In specimens cooled at1K S-1, ferrite/pearlite banding did not exist in regions where austenite grains were two or more times larger than the microchemical band spacing.MST/1397©1992The Institute of Materials.Manuscript received4January1991;infinalform16July1992.At the time the work was carried out the authors were in the Department of Materials Science and Engineering,The Pennsylvania State University, University Park,PA,USA.Dr Thompson is now at the Advanced Steel Processing and Products Research Center,Department of Metallurgical and Materials Engineering,Colorado School of Mines,Golden,CO,USA.IntroductionThis paper is part of a detailed examination of the nature and distribution of phases and microconstituents formed in a hot rolled,low alloy plate steel containing(wt-O/o) O'15°/oC,O·26°/oSi,1'49%Mn,and O·03°/oAI.The complexity of the microstructures that can be produced in this hot rolled hypoeutectoid steel is illustrated by Fig. 1.Figure la is a low magnification light micrograph which shows light bands of proeutectoid ferrite together with dark etching bands,some of the latter are arrowed.Similar images have been presented in numerous publications, e.g.Figs.22.5 and31.3of Ref.1.In view of previous publications,!,2it is likely that the dark regions consist of pearlite.Although microstructural banding is evident in Fig.I a,it is irregular and not likely to be an accurate reflection of any chemical segregation pattern.In addition to the dark bands,much larger dark regions exhibiting irregular etching character-istics are present, e.g.at A.These regions traverse several ferrite/pearlite bands and are referred to below as large pearlite nodules.Figure I b is a scanning electron microscope image of one such nodule.The irregular etching behaviour shown in Fig.I a can now be related to an irregular cementite distribution(cementite is the lighter phase in Fig.I b).Figure I b also shows faceted islands of proeutectoid ferrite within the large nodule(e.g.A-E)and regions of 'pearlite'which contain a low volume fraction of cementite (e.g.F,G).From the above observations it is apparent that the decomposition of austenite in this steel yields a complex microstructure.To determine the nature of the phase transformation products involved,the present investigation was initiated.Light microscopy,scanning electron micros-copy(SEM),electron probe microanalysis(EPMA),and transmission electron microscopy(TEM)have been employed to elucidate the details of the microstructures and to examine the effects of processing variables on the incidence of microstructural banding and large pearlite nodules.The results of this investigation will be summarised in three separate reports.In the present paper,the effect of cooling rate and austenite grain size on the propensityfor microstructural banding is documented.This aspect of the investigation also yields information regarding the origin of large pearlite nodules.The second paper describes the nature of these nodules in detail,where justification for the terminology'large pearlite nodule'is presented.The final paper describes the nature of the phases and microconstituents present in this hot rolled steel.From the results of the microstructural evaluation presented in the third paper,it is proposed that pearlite can be subdivided into two types:lamellar and non-lamellar.Additionally,a more rigorous definition of pearlite colonies and pearlite .nodules is provided in the final paper.BackgroundFerrite/pearlite banding is a common occurrence in hot rolled,low alloy steels.l-lo Banding is a term used to describe a microstructure consisting of alternate layers of proeutectoid ferrite and(frequently)pearlite,as opposed to a random distribution of these microstructural constituents.During solidification,alloying elements having partition ratios of<I(e.g.manganese,silicon,phosphorus,sulphur, and aluminium;see Ref.II)are rejected from the first formed b ferrite dendrites,resulting in interdendritic regions of high solute content.7,lO,l2Subsequent hot rolling of the steel in the austenitic condition leads to'pancaked'high solute regions.l This distribution of solute provides the basis for microstructural banding.Jatczak et al.3postulated that microstructural banding occurs because substitutional alloying elements affect the activity of carbon in austenite.Since interstitial carbon atoms possess high mobilities compared with substitutional atoms,regions of low and high carbon content will develop in regions of austenite containing different amounts of substitutional alloying elements.During cooling,these low carbon and high carbon austenite regions transform into proeutectoid ferrite and pearlite regions,respectively.Alternatively,Bastien4proposed that microstructural band-ing is a result of the influence of substitutional alloying Materials Science and Technology September1992Vol.8777778Thompson and Howell Ferrite/pearlite banding and origin of pearlite nodules in plate steelExperimentalFe Bal.AI 0·03Ra..LED PRODLeT0·003S p0·002II,--------------,,,,11)!._------------,,NORMAL DIRECllQ\Jt TRANSVERSErDIRECTIONROLLING DIRECllQ\JMn 1·49Si0·26TransversePlane,,,,1,1I,A--'--r-------------,,,,,RollingPlane ,AS-RECEIVED PLATELongitudinal Plane2Schematic diagram of as received steel platedetermine whether or not microstructural banding canoccur when the austenite grain size is less than the chemical banding wavelength.c0·15The hot rolled steel was supplied by the US Steel Research Laboratories,Monroeville,PA.This steel was vacuum melted and cast as a 75x 125x 350mm ingot.Subsequently,the ingot was reheated to 1200°C,rolled to plate of f"ooJ20mm thickness,finishing at about 980°C,then air cooled.A schematic diagram of the as received plate,which was a section of a larger plate,the latter being designated the rolled product,is shown in Fig.2.Chemical analysis of the as received steel plate was carried out using machined chips and standard spectro-scopic techniques.The chemical composition of this steel is given in Table 1.Specimens for light and scanning electron microscopy were prepared using standard techniques and etched in 2%nital or 4%picral.The SEM was an lSI model Super IlIA operating at 15kV.Specimens for EPMA were etched in 4%picral and examined in an Etec Autoprobe operating at 15kV using a probe size of f"ooJ1Jlm.Chemical analyses were obtained via energy dispersive spectrometry and results were corrected for effects due to atomic number Z differences,X-ray absorption A,and fluorescence F,i.e.the ZAF technique.Further details of the analyses have been reported elsewhere.13Austenite grain diameters were determined from speci-mens which had been reaustenitised for times of 5,10,15,and 30min at 900°C and water quenched.Standard stereological techniques were employed;further details are given in Ref.13.Table 1Chemical composition of as received steelplate,wt-%baferrite/pearlite banding,together with large,irregular pearlite nodules, e.g.at A (light micrograph);b large pearlite nodule -faceted islands of ferrite (A-E)and regions of 'pearlite',which contain a low volume fraction of cementite (F,G),are present (SEM)M icrostructu re of hot rolled plate steelelements on the temperature at which austenite becomes unstable with respect to ferrite formation upon cooling (i.e.the Ar3temperature).During austenite decomposition,alloying elements raise or lower the Ar3temperature.5If this temperature is lowered by the solute,then proeutectoid ferrite nucleates first in the solute lean regions.Conversely,if the Ar3temperature is raised by the solute,then proeutectoid ferrite forms preferentially in the solute rich regions.In either case,carbon atoms,which diffuse rapidly,are rejected from the proeutectoid ferrite,thereby producing carbon rich regions of austenite,which transform eventually to pearlite.Kirkaldy et al.5showed that the dominant effect in producing microstructural banding is that proposed by Bastien.4The discussion above has not considered variations in either cooling rate or austenite grain size.Although the effect of cooling rate has been examined,l to the authors'knowledge the effect of austenite grain size has received only scant attention.For example,Samuels 1noted that banding tends to disappear when the austenite grain size becomes large compared with the chemical banding wavelength.However,no information exists concerning the development of microstructural banding when the chemical banding wavelength is large compared with the austenite grain size.Hence,one aim of this investigation was toMaterials Science and TechnologySeptember1992Vol.8Thompson and Howell Ferrite/pearlite banding and origin of pearlite nodules in plate steel 779Results250F200100150Distance (11m)50IIII II III Ilb)la)0.41.0o0.20.1o50100150200250Distance (11m)a manganese profile;b silicon profileF proeutectoidferrite;P pearlite4Concentration profiles from steel in as received condition (longitudinal plane):bars in figure represent approximate error of 100/0of actual valueMICROSTRUCTURAL AND MICROCHEMICAL BANDINGFigures 3a and 3b are representative light micrographs from the centre of the as received plate (e.g.from position A in Fig.2)and show the transverse and longitudinal planes,respectively.Typically,microstructural banding was slightly more pronounced in sections revealing the longi-tudinal plane compared with sections of the transverse plane.Figure 3c is a light micrograph (longitudinal plane)which was recorded close to the edge of the plate,denoted C in Fig.2.The tendency towards the formation of alternate bands of proeutectoid ferrite and pearlite (i.e.micro-structural banding)near the plate edge (Fig.3c)is con-siderably less than that for the plate centre (Fig.3b).The less intense microstructural banding in Fig.3c,compared with Figs.3a and 3b,reflects the faster cooling rate experienced by regions close to either the edges or the faces (e.g.B in Fig.2)of the plate.This observation is discussed below.The horizontal direction in Figs.3a,3b,and 3c corresponds to the normal direction of the steel plate (see Fig.2):Fig.3a shows the transverse plane and Figs.3b and 3c show the longitudinal plane.All subsequent light micrographs in this paper have the same orientation as Figs.3b and 3c.The potential correlation between microstructural banding and microchemical banding was investigated by obtaining profiles of manganese and silicon contents.Figures 4a and 4b are plots of the manganese and silicon concentrations,respectively,as a function of distance in the direction normal to the microstructural bands (i.e.the normal direction in Fig.2).Regions of proeutectoid ferrite and pearlite were sampled and these regions are denoted F and P,respectively,in Fig.4.The lines between the letters F and P in these figures denote the positions ofca centre of transverse plane;b centre of longitudinalplane;c edgeof longitudinal plane3Microstructure of as received plate steel:in b large pearlite nodule is labelled A (light micrographs)Materials Science and TechnologySeptember 1992Vol.8780Thompson and Howell Ferrite/pearlite banding and origin of pearlite nodules in plate steel0.2o20406080100120Distance (!lm)a manganeseprofile;b silicon profileF aggregate of several proeutectoid ferrite grains;F j isolated grains of proeutectoid ferrite found inside pearlite colonies/nodules (e.g.regions A-E in Fig.1b);P u pearlite which exhibited uniformly dark etching characteristics (this feature was commonly observed at periphery of nodules,see Fig.5);Pi pearlite which exhibited irregular etching characteristics (e.g.central region of nodule shown in Fig.5and regions F andG in Fig.1b)6~Concentration profilesacross large pearlite nodule(longitudinal plane)2.01.8nlll I 11111I~IIIIIIIIc 1.6~IIlInlII IIIIIIIII I IIIlInIhI I Ollc ~~ 1.4~III I I 1.21.020406080100120Distance (!lm)0.4c ~0.300~bands within large pearlite nodules are continuous with the well defined pearlite bands outside the nodules,as indicated by Fig.5.The above discussion and examination of Fig.5suggest that the dark etching pearlite bands and light etching pearlite bands are located in manganese rich and manganese lean regions,respectively.However,there is only scant evidence to support this hypothesis owing to the complexity of these large,irregular pearlite nodules and because so few have been examined using EPMA.A light micrograph from a specimen which had been reaustenitised at 975°C for 180s,then furnace cooled is shown in Fig.7.This thermal treatment,at a low austenitising temperature and for a short time,has no measurable effect on microchemical banding.13However,the slow cooling rate promoted a more severely banded microstructure compared with the same steel in the as received condition (cf.Fig.3).In other words,there is a greater tendency towards well defined,alternate bands of proeutectoid ferrite and pearlite as cooling rate is decreased.Figure 7also shows that the large,irregular pearlite nodules,which were present in the as received,air cooled steel plate,are absent after this furnace cooling treatment.This observation is further discussed below.Figures 8a and 8b show manganese and silicon profiles,respectively,for the specimen heated to 975°C for 180s,then furnace cooled.In contrast to Figs.4and 6,excellent correlation between microstructural banding and microchemical band-ing is apparent in Fig.8.In other words,solute lean regions and solute rich regions consistently are associated with regions of proeutectoid ferrite and pearlite,respectively.Based on these results,the furnace cooled specimen was used to determine the distribution of microstructural banding wavelengths.The results of this analysis are presented in Fig.9:the average banding wavelength is about 60Jlm.5large,equiaxed pearlite nodule:arrows indicatelocations of pearlite bands in vicinity of nodule (light micrograph)the ferrite/pearlite interfaces,as determined using a light microscope attached to the microprobe.It can be seen from Figs.4a and 4b that the manganese and silicon profiles are 'in-phase',i.e.manganese rich regions corre-spond with silicon·rich regions.Additionally,there is some correlation between microstructural banding and chemical segregation.Specifically,.proeutectoid ferrite grains tend to be located in manganese/silicon lean regions and pearlite colonies/nodules tend to be located in manganese/silicon rich regions.From Figs.4a and 4b,the average banding wavelength is about 50Jlm,and the average compositional amplitudes are about 0.25°/0for manganese and 0.05°/0for silicon.As noted above,large,equiaxed pearlite nodules*,which span several ferrite/pearlite bands are frequently observed in the microstructure of the as received steel.Figure 5is a particularly striking example of such a nodule.The arrows.indicate the locations of pearlite bands in the vicinity of this nodule and the microstructural banding wavelength in this region was determined to be about 45Jlm.Chemical analyses were performed across a large,equiaxed pearlite nodule,similar to that shown in Fig.5,and the results are presented in Fig.6.Figures 4and 6reveal comparable maximum and minimum concentrations of manganese and silicon and similar chemical banding wavelengths.However,there was no apparent microstructural banding in the large,equi-axed pearlite nodule investigated using EPMA.These observations imply that the microstructure shown in Fig.5does not reflect accurately the segregation pattern,assuming that manganese or silicon has a dominant effect on microstructural banding.A different form of microstructural 'banding'was evident in some large pearlite nodules.In particular,'dark etching pearlite bands'and 'light etching pearlite bands'are evident within the nodule shown in Fig.5.Of the arrows above this micrograph,the two central arrows point to bands of pearlite which are located outside the large pearlite nodule.In addition,these arrows are parallel to dark etching pearlite bands which exist within the nodule itself.This observation suggests that either the distribution of ferrite and cementite crystals occurs on a finer scale within the dark etching pearlite bands in comparison with the adjacent light etching pearlite bands or there is a difference in the relative volume fractions of ferrite and cementite in these two types of band.Frequently,the dark etching pearlite*Apearlite nodule consists of more than one pearlite colony.Mehp4defines a pearlite colony as an area '...formed as a unit,usually with but one direction of lamellae,in which the ferrite and the ceplentite have each a single orientation.'Materials Science and Technology September 1992Vol.8250F200150100500.1o0.4c0.3~en~0.2Thompson and Howell Ferrite/pearlite banding and origin of pearlite nodules in plate steel781F F2.4I~I(a)2.22.0~~~I III I III l IIIIII Q,jc 1.8~ell C~ 1.6~~~II~I lIIIIw1I miI IIIII~IIIIIIm~IHI 1II~1.41.21.050100150200250Distance (Ilm)7Microstructure of specimen (longitudinal plane)reaustenitised at 975°C for 180s,then furnace cooled:A indicates 'bamboo'structure (light micrograph)Table 2Nominal austenite grain diameter of steel studied as function of austenitising time at900°CEFFECTS OF AUSTENITE GRAIN SIZE AND COOLING RATE ON MICROSTRUCTURAL BANDING AND INCIDENCE OF LARGE PEARLITE NODULESThe nominal austenite grain diameter as a function of austenitising time at 900De is presented in Table 2.Although the austenite grain size distributions were fairly uniform for austenitising times ranging from 5to 15min,some abnormal grain growth was evident.After a 30min austenitising treatment,abnormal grain growth was pre-dominant and a distinct bimodal distribution of prior austenite grains was evident.The largest austenite grains were in excess of 250/..lm in diameter.13To examine the effects of austenite grain size and cooling rate on both ferritejpearlite banding and the incidence of large nodules,the following thermal treatments were employed.Two specimens were reaustenitised for 5min,one was air cooled (cooling rate '"1K S -1through the transformation range)and the other was furnace cooled (cooling rate '"O·IK s -1).Two other specimens were austenitised for 30min at 900De and were either air cooled or furnace cooled.Representative micrographs are shown in Fig.10.From this figure,it can be concluded that for a given cooling rate,austenite grain size (for the grain size range 17-40/..lm)h as only a modest effect on microstructural banding (this statement excludes the large pearlite nodules,e.g.at A in Figs.lOa and 10c,which are discussed below).Banding is slightly more intense in Fig.lOa than in Fig.10c,whereas there is little difference in banding intensity for Figs.lOb and 10d.It is worth noting that for specimens austenitised for 5min at 900De (Figs.lOa and lOb)the average banding wavelength ('"60/..lm,s ee Fig.9)is greatly in excess of the austenite grain size ('"17/..lm,see Table 2).Reference to Figs.lOa and 10c shows that the major effect of coarse austenite grains (i.e.greater than '"100/..lm)onTime,minGrain dia.,Ilm517101815213040Distance (Ilm)a manganeseprofile;b silicon profile8Concentration profiles from furnace cooledspecimen of Fig.7(longitudinal plane)the final microstructure is that the incidence of large,irregular pearlite colonies increases markedly.This effect is more subtle in the two furnace cooled specimens.In Fig.lOb,the pearlite is confined almost exclusively within bands,whereas in Fig.10d some larger pearlite coloniesj nodules (e.g.at A)traverse several bands.These coloniesj nodules are greater than '"75/..lm in diameter (see 'Discussion'below).To facilitate the following discussion concerning the effect of austenite grain size on both microstructural banding and the formation of large pearlite nodules,some additional measurements were made on the specimens represented by Fig.10.The volume fraction of pearlite in the furnace cooled specimens was about 0·2and,as already discussed,the average banding wavelength was about 60/..lm.The largest pearlite nodules formed during air cooling had diameters of '"90and '"225/..lm for specimens austenitised at 900De for 5and 30min,respectively.These values were obtained from images such as those shown in Figs.lOa and lOcow~00W 100lW 1~100lWInterbandSpacing(~m)9Banding wavelength histogram:average bandingwavelength is '"6011mMaterials Science and Technology September 1992Vol.8782Thompson and Howell Ferrite/pearlite banding and origin of pearlite nodules in plate steelDiscussion.DEcopen-'=a.~'-C)'-(.)'E...,-'=.~"0Q)(5(.)uu..Q)(.)~c:'-:J'to-'-u~'-~c:Q)-'=...,ciiQ)E.;;fI):J'i:~>MICROSTRUCTURAL BANDINGThe results of the previous section are in full agreement with the findings of Kirkaldy et aI.,5who showed that manganese is the element most capable of producing banded ferrite/pearlite aggregates in hypoeutectoid steels. Thus,for the steel under consideration,the effect of about I'5%Mn(an austenite stabiliser)outweighs the combined effects of the silicon,phosphorus,sulphur,and aluminium additions(ferrite stabilisers;and see Refs.11,15,and16), since proeutectoid ferrite is most often located in solute lean regions and pearlite is located in solute rich regions.In an attempt to determine the reliability of the data presented in Figs.4a,6a,and8a,the maximum and minimum concentrations of manganese were estimated using the ScheH17equation,which was developed for the limiting case of no diffusion in the solid,but complete mixing in the liquidC s=kCo(1-ls)k-1.(1)where Csis the concentration of solute in the solid at a given fraction solidified Is,Co is the concentration of solute in the alloy,and k is the equilibrium partition ratio,defined ask=Cs/C1•(2)where C1is the concentration of solute in the liquid in equilibrium with the solid of concentration C s'To simplify the analysis,k is assumed to be constant throughout the solidification range.For manganese segregation,k=0·71 (Ref.10)and Co is I·49%Mn.Thus,C s=,..."1·1%Mn for Is=0'1,and C s=,...,,2·I%Mn for Is=0·9.These values are in reasonably good agreement with the maximum and minimum values of manganese concentration shown in Figs.4a,6a,and8a.The observation of extremely intense microstructural banding when the prior austenite grain size is less than the banding wavelength(Fig.lOb)has some consequences of interest concerning the mechanism of austenite decom-position.A possible sequence of events is illustrated in Figs.IIa-II!In Fig.IIa,a schematic diagram of the austenite grain structure is drawn to scale such that the mean grain size is about17Ilm,which corresponds to austenitisation of the steel for5min at900°C,and the banding wavelength is about55Ilm,as indicated by the scale bar in the diagram.The thin'bands'between closely spaced dashed lines(e.g.B)are taken to be manganese rich regions.Under conditions of very slow(i.e.furnace) cooling,it is suggested that proeutectoid ferrite grains will nucleate at locations remote from the manganese rich regions,particularly at austenite quadruple points,triple junctions,and grain boundaries(Fig.lIb).Continued cooling leads to growth of the proeutectoid ferrite grains along austenite grain boundaries and most probably across austenite triple junctions(e.g.at C in Fig.lIe).Continued growth of pre-existing proeutectoid ferrite grains together with additional nucleation events of the ferrite phase(at D in Fig.lIe)leads eventually to'slabs'of proeutectoid ferrite in the manganese lean regions(Fig.11d).These slabs are created because the first formed ferrite grains are localised within the solute lean regions of the austenite and,therefore,they quickly impinge on one another, thereby limiting most of the growth of ferrite grains in a direction perpendicular to the slabs.This sequence of events is indicated by grains C--+H in Figs.lId and lIe. Note that this scenario leads to proeutectoid ferrite grain boundaries that are perpendicular to the microstructural bands.This structure,referred to by Samuels1as a'bamboo' structure,is shown at A in Fig.7and at A and B in Fig.lOb.The final stages of austenite decomposition occurMaterials Science and Technology September1992Vol.8Thompson and Howell Ferrite/pearlite banding and origin of pearlite nodules in plate steel783a austenite(A)grain structure;b nucleation of ferrite grains inmanganese lean regions;c growth of ferrite grains along austenite grain boundaries and across triple junctions in manganese lean regions;d formation of ferrite'slabs'in manganese lean regions;e completion of ferrite'slab'formation;f final microstructure(pearlite bands are labelled P)11Mechanism for austenite decomposition during slow cooling when austenite grain size is less than banding wavelength:see text for details as continued growth of proeutectoid ferrite slabs leads to an increased carbon content in the remaining austenite,and the manganese rich regions(between the closely spaced dashed lines)transform to pearlite(P),as shown in Fig.II!Reference to Fig.II indicates that:(i)whole grains of austenite,e.g.A in Fig.Ila,transformto proeutectoid ferrite(ii)proeutectoid ferrite grows across austenite grain boundaries(iii)some austenite grains(e.g.at B in Fig.Ila)transformto virtually100%pearlite.The mode of austenite decomposition described above differs markedly from that which is generally accepted18in which a skeleton of ferrite forms around an austenite grain,thereby isolating each austenite grain from itsneighbours.Eventually,the interior of each austenite graintransforms to pearlite.Growth of proeutectoid ferrite across austenite grainboundaries was obtained in laboratory specimens by Purdy and Kirkaldy,19but,to the authors'knowledge,this phenomenon has not been documented in steels which have undergone commercial processing.Previous work hasshown that pearlite can grow across austenite grain boundaries2o,21and growth of cementite through austenite triple junctions has also been documented.22Hence,it is suggested that grain boundaries should not block thegrowth of proeutectoid ferrite grains,especially at high transformation temperatures.Reference to Fig.10shows that,irrespective of grain size (for the range studied),banding becomes less intense ascooling rate increases.This phenomenon was reported bySamuels1and by Bastien.4It is expected that the driving force for the proeutectoid ferrite reaction will be higherduring air cooling than furnace cooling.Hence,variations in the Ar3temperature are less likely to promote micro-structural banding during air cooling compared withfurnace cooling.As a result of a higher driving force forferrite formation during air cooling,some austenite grains are associated with a complete ferrite skeleton,and theremaining,entrapped austenite eventually transforms topearlite.However,complete ferrite skeletons do not form in association with all austenite grains and the ferrite which forms in these latter austenite grains can grow acrossadjacent austenite grain boundaries followed by pearlite formation in manganese rich regions of austenite.These comments are consistent with Fig.lOa,in which isolatedislands of pearlite can be observed within ferrite bands (e.g.at B),but most pearlite colonies are still present in the pearlite band.In addition,it should be possible to form proeutectoid ferrite in the manganese rich regions and reference to Fig.lOa confirms the existence of proeutec-toid ferrite in the pearlite bands, e.g.at C.The above discussion also explains why banding is less intense at the edge of the as received plate(Fig.3c)than at its centre (Fig.3b).Kirkaldy et al.5have provided the following expressionfor the minimum cooling rate T necessary for the elimination of intense microstructural bandingT>5DI1T/w2(3) where11T is the difference between Ar3temperatures for low and high solute regions,D is an average diffusion coefficient for carbon in austenite within the range11T, and w is the chemical banding wavelength.For11T=20K (Ref.16),D=3·6X10-12m2S-1(Ref.23),and w=60Jlm, the value of T is'"0·1K s-1.This value is consistent with the present results,as shown by comparison of Figs.7and lOb(furnace cooled at",0,1K S-1)with Fig.lOa(air cooled at'"I K S-1),thereby lending support to this discussion.Finally,it should be noted that at some cooling rate in excess of that experienced by air cooled samples ('"I K S-1)microstructural banding will be completelyMaterials Science and Technology September1992Vol.8。
Grain size introduction
Grain sizeWentworth grain size chart from United States Geological Survey OpenFile Report 20061195From Wikipedia, the free encyclopediaNot to be confused with Crystallite size which is referred to as Grain Size by Metallurgists.This article includes a list of references , but its sources remain unclear because it has insufficient inline citations . Please help to improve this articleby introducing more precise citations. (July 2011)Particle size , also called grain size , refers to the diameter of individual grains of sediment , or the lithified particles in clastic rocks . The term may also be applied to other granular materials . This is different from the crystallite size, which refers to the size of a single crystal inside a particle or grain. A single grain can be composed of several crystals . Granular material can range from very small colloidal particles ,through clay , silt , sand , and gravel , to boulders .Contents [hide ]1 Krumbein phi scale – United States2 International scale3 Sorting4 See also5 References6 External linksKrumbein phi scale – United States[edit ]Size ranges define limits of classes that are givennames in the Wentworth scale (or Udden–Wentworth scale) used in the United States . TheKrumbein phi (φ) scale, a modification of the Wentworth scale created by W. C. Krumbein [1] in 1937, is a logarithmic scale computed by the equationwhereis the Krumbein phi scale,is the diameter of the particle,[clarification needed ]andBeach cobbles (gravel) at Nash Point, South Wales.is a reference diameter, equal to 1 mm (to make the equation dimensionally consistent ).This equation can be rearranged to find diameter using φ:φ scale Size range (metric)Size range (approx. inches)Aggregate name(Wentworth class)Other names<−8>256 mm>10.1 in Boulder−6 to −864–256 mm 2.5–10.1 in Cobble−5 to −632–64 mm 1.26–2.5 in Very coarse gravel Pebble −4 to −516–32 mm 0.63–1.26 in Coarse gravel Pebble −3 to −48–16 mm 0.31–0.63 in Medium gravel Pebble −2 to −34–8 mm 0.157–0.31 in Fine gravel Pebble −1 to −22–4 mm 0.079–0.157 in Very fine gravel Granule0 to −11–2 mm 0.039–0.079 in Very coarse sand 1 to 00.5–1 mm0.020–0.039 inCoarse sand 2 to 10.25–0.5 mm 0.010–0.020 in Medium sand 3 to 2125–250µm 0.0049–0.010 in Fine sand 4 to 362.5–125 µm 0.0025–0.0049 in Very fine sand 8 to 4 3.9–62.5 µm 0.00015–0.0025 in Silt Mud 10 to 80.98–3.9 µm3.8×10−5–0.00015 inClayMud 20 to 100.95–977 nm 3.8×10−8–3.8×10−5 in ColloidMud In some schemes, gravel is anything larger than sand (comprising granule, pebble, cobble, and boulder in the table above).International scale[edit ]ISO 146881:2002, establishes the basic principles for the identification and classification of soils on the basis of those material and mass characteristics most commonly used for soils for engineering purposes.ISO 146881 is applicable to natural soils in situ , similar manmade materials in situ and soils redeposited by man.[2]ISO 146881:2002NameSize range (mm)Size range (approx. in)Large boulderLBo>630>24.8031Very coarse soil Boulder Bo200–6307.8740–24.803Cobble Co63–200 2.4803–7.8740Coarse soil GravelCoarse gravel CGr20–630.78740–2.4803Medium gravel MGr 6.3–200.24803–0.78740Fine gravel FGr 2.0–6.30.078740–0.24803 SandCoarse sand CSa0.63–2.00.024803–0.078740Medium sand MSa0.2–0.630.0078740–0.024803Fine sand FSa0.063–0.20.0024803–0.0078740Fine soil SiltCoarse silt CSi0.02–0.0630.00078740–0.0024803Medium silt MSi0.0063–0.020.00024803–0.00078740Fine silt FSi0.002–0.00630.000078740–0.00024803 Clay Cl≤0.002≤0.000078740Sorting[edit]An accumulation of sediment can also be characterized by the grain size distribution, called sorting. According to a formula[3] the sorting can be quantified asφ < 0.350.35 < φ <0.500.50 < φ < 0.710.71 < φ < 1.001.00 < φ <2.002.00 < φvery well sorted well sortedmoderately wellsortedmoderatelysortedpoorly sortedvery poorlysortedSee also[edit]Orders of magnitude (volume)Soil textureSubstrate (biology)Unified Soil Classification System (USCS)Martin diameterFeret diameterReferences[edit]1. ^ Krumbein, W. C.; Aberdeen, Esther (April 1937)."The Sediments of Barataria Bay". Journal of SedimentaryPetrology 7 (1). Retrieved 11 May 2014.(subscription required (help)).2. ^ "ISO 146881:2002 – Geotechnical investigation and testing – Identification and classification of soil – Part 1:Identification and description". International Organization for Standardization (ISO).3. ^ Folk, Robert L.; Ward, William C. (1957). "Brazos River bar: a study in the significance of grainsizeparameters" (PDF). Journal of Sedimentary Petrology 27 (1): 3–26. doi:10.1306/74d706462b2111d78648000102c1865d. Retrieved 11 May 2014.External links[edit]R D Dean & R A Dalrymple, Coastal Processes with Engineering Applications (Cambridge UniversityPress, 2002)W C Krumbein & L L Sloss, Stratigraphy and Sedimentation, 2nd edition (Freeman, San Francisco, 1963).J A Udden, "Mechanical composition of clastic sediments", Bull. Geol. Soc. Am. 25, 655744 (1914).C K Wentworth, "A scale of grade and class terms for clastic sediments", J. Geology V. 30, 377392 (1922).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
J O U R N A L O F M A T E R I A L S S C I E N C E39(2004)4009–4011L E T T E R S Grain-size dependent austenite–ferrite phase transformation behavior in pure ironY.C.LIUCollege of Materials Science&Engineering,Tianjin University,Tianjin300072,People’s Republic of ChinaE-mail:ycliu@A process of great interest in the production of steel is the austenite(γ)to ferrite(α)phase transforma-tion during cooling after hot rolling steel slabs.Since this inevitable solid-state transformation controls thefi-nal microstructure of the products,and hence the yield strength,it has been studied extensively both from a technological application and a basic scientific point of view[e.g.,1–7].Many efforts were made to model this transformation in the past decades,but some vital kinetic information was unnoticed.Abnormalγ→αtransformation be-havior in substitutional Fe–Co and Fe–Mn alloys(de-pendent on the grain size of the initial austenite phase) was recently recognized for thefirst time[8–10].With the aid of high-resolution dilatometry and differen-tial thermal analysis(DTA),two kinds of transforma-tion kinetics,normal and abnormal,for theγ→αtransformation were detected in the substitutional Fe-1.79at.%Co alloy[8].It was found that the normal transformation exhibited one maximum in the transfor-mation rate curve and that the abnormal one showed more than one maximum[8].Further investigation[9] demonstrated that a large austenite grain size is a pre-condition for the occurrence of abnormal transforma-tion kinetics.Theγ→αtransformation in the investigated Fe–Co and Fe–Mn alloys was considered as a partitionless transformation,i.e.,occurring without any redistribu-tion of the alloying element[8,9].It may be questioned if any redistribution of alloying elements(Co,Mn)did occur and was,somehow,the explanation for the occur-rence of the abnormal transformation.To rule out such an effect,in this study theγ→αtransformation in pure iron was investigated and it will be demonstrated that the abnormal transformation also occurs in this case.Bulk iron rods,of6.3mm in diameter and a purity of99.98wt%,were employed for the present study. The composition of the iron is listed in Table I.The as-received Fe ingots were hammered down to rods of 5.5mm diameter.In order to achieve a homogeneous microstructure all rods were sealed in a quartz container filled with argon gas at1.9×104Pa,annealed at1473K for10–100h(a change in the annealing time at this high temperature leads to a change of thefinal grain size such that the longer the annealing time,the larger the grain size)and cooled down to ambient temperature within the furnace.The specimens,heat treated at1473K for different annealing times,named as A(100h,439µm),B(70h,372µm),C(50h,288µm),and D(40h, 273µm),were used to investigate the influence of grain size on theγ→αtransformation behavior of pure iron.A Baehr DIL802differential dilatometer was used to record the length changes of the samples.With this instrument the difference between the sample and an inert reference sample is measured,which results in a high-resolution of about±0.01µm.The dilatometer was calibrated according to the method described in Ref.[11].The measurements were performed under flowing high purity argon to protect the specimens from oxidation.The ferrite grain sizes after each heat treatment cycle of the fully transformed Fe specimens were analyzed using light microscopy.The ferritic grain boundaries were revealed by etching with a2.5vol%nital solution. The line-intercept method[12]was employed in three different directions along the cross section to determine the mean grain size.Pure iron specimens with different grain sizes were prepared for isochronal dilatometric measurements. The length changes recorded for specimens of differ-ent grain size,during one heating and cooling cycle, are shown in Fig.1a.The initial length(L0)of the samples was about10mm.During continuous heat-ing,the specimen expands gradually before the onset of theα→γtransformation,which is associated with a length contraction.After completion of the transfor-mation,the normal thermal expansion and contraction of austenite occurs upon continued heating and subse-quent cooling.After completion of theγ→αtrans-formation upon cooling,associated with a length in-crease,the normal thermal contraction of ferrite can be observed upon continued cooling down to room temperature.The high temperature part of the curves are shown in Fig.1b.The transformation upon heating is associated with the(inhomogeneous)build up of theα/γmisfit deformation energy.After completion of theα→γphase transformation upon heating,this misfit strain energy relaxes,which corresponds to the length reduc-tion on top of the length increase due to thermal ex-pansion(see arrows in Fig.1b).Therefore the slope of the recorded length change of austenite upon contin-ued heating after theα→γtransformation is not con-stant.After holding at1223K for30min after the heat-ing up,the misfit strain energy is fully relaxed.Then, upon subsequent cooling,only normal contraction of0022–2461C 2004Kluwer Academic Publishers4009T A B L E I Chemical composition of the iron used (unit:ppm,as pro-vided by Aldrich Chemical Company)Element Si Cu Ti C Fe Content1310.614Balanceaustenite occurs and the correspondingly recorded dila-tion data reflect (only)the thermal linear contraction of austenite.As pointed out in Ref.[13],the small length change (<0.15µm in L 0)due to one measurement cycle,i.e.,γ→αand α→γtransformation,is not accompa-nied by a density change of the sample.The growth of the product phases during transformation,i.e.,γand αphase,is not completely isotropic:the growth of the phases along the axis direction is slightly dif-ferent from that in other directions of the cylindrical sample.For the small overall change of the sample after one measurement cycle,the dilatation of the sample during phase transformation can be considered to be largely isotropic.Then,from the data of relative length change, L /L 0,during the (nonisothermal)transformation,the fractions of γand αphase can be calculated by the lever rule.To investigate the influence of grain size on the γ→αtransformation kinetics,the dilation behaviors of Fe specimens with different initial austenite grain sizes were measured.The values determined for the ferrite fraction,f α,are illustrated for different Fe specimens as a function of temperature in Fig.2.The corresponding transforma-tion rate,d f α/d t ,for the different pure iron specimens are shown in Fig.3a and b as a function of temperature and ferrite fraction,respectively.According to the d f α/d t data (Fig.3),two kinds of transformation kinetics,abnormal and normal,are eas-ily recognized.Specimen A,with the largest grain size,exhibits distinctly abnormal transformation behavior as revealed by the occurrence of three maxima in the trans-formation rate curve (cf.the earlier results reported for Fe–Co in Ref.[8]).Specimens C and D,with the small-est grain size,exhibit only one maximum for d f α/d t ,which is typical for normal transformationbehavior.Figure 1Measured relative length change, L /L 0,of pure iron with different grain sizes (coded as A,B,C,and D)as function of temperature,T :(a)entire range and (b)expanded view of transformationregion.Figure 2The ferrite fraction,f α,as a function of temperature,T ,cal-culated from dilatometric measurements of different Fe specimens sub-jected to cooling from the austenite-phase field.The starting temperature of the abnormal γ→αtrans-formation (specimen A)is slightly higher than that of the normal transformation (specimens C and D).The first maximum in the first part of the d f α/d t curve of specimen B corresponds to the abnormal transforma-tion behavior (Fig.3).It follows that a relatively large austenite grain size is a precondition for the occurrence of the abnormal transformation kinetics;the kinetics changes from ab-normal to normal with decreasing (austenite)grain size of the pure iron.In conclusion,the occurrence of both abnormal and normal transformation kinetics was recognized for the first time for the γ→αtransformation in iron.Abnor-mal transformation kinetics is exhibited by the presence of more than one maximum in the transformation rate curve,as compared to the presence of only one maxi-mum in the transformation rate curve for normal trans-formation kinetics.The observation of abnormal trans-formation kinetics for pure iron excludes a decisive role for solute drag and solute diffusion in the occurrence of abnormal transformation kinetics.A prerequisite for the emergence of abnormal transformation kinetics is a large initial austenite grain size.The transformation behavior changes from abnormal to normal upon de-creasing austenite grain size.4010Figure3The ferrite transformation rate,d fα/d t,as a function of(a)temperature,T,(b)ferrite fraction,fα,of different Fe specimens A,B,C,and D as determined from dilatometric measurement(corresponding to the data shown in Fig.2).AcknowledgmentsThe authors are grateful to the Foundation for the Au-thor of National Excellent Doctoral Dissertation of PR China(FANEDD),and the National Natural Science Foundation of Tianjin City for grant andfinancial sup-port.References1.A.B O R G E N S T A M and M.H I L L E R T,Acta Mater.48(2000)2765.2.C.M.L I,F.S O M M E R and E.J.M I T T E M E I J E R,Mater.Sci.Eng.A325(2002)307.3.G.P.K R I E L A A R T and S.V A N D E R Z W A A G,Mater.Sci.Tech.14(1998)10.4.G.L.K R A S K O and G.B.O L S O N,Phys.Rev.B40(1989)11536.5.H.I.A A R O N S O N,Metall.Mater.Trans.33A(2002)2285.6.S.I.V O O I J S,Y.L E E U W N,J.S I E T S M A and S.V A ND E R Z W A A G,ibid.A31(2000)379.7.E.A.W I L S O N,Metal.Sci.18(1984)471.8.Y.C.L I U,F.S O M M E R and E.J.M I T T E M E I J E R,Acta.Mater.51(2003)507.9.Idem.,Phil.Mag.A2003,submitted for publication.10.A.T.W.K E M P E N,F.S O M M E R and E.J.M I T T E M E I J E R,Acta.Mater.50(2002)2543.11.Y.C.L I U,F.S O M M E R and E.J.M I T T E M E I J E R,Ther-mochimica Acta2003;in press.12.ASTME112.“Annual Book of ASTM Standards”(1988)V ol.03.01,p.297.13.V.F.R I C H T E R and V.L.M U E H E I M,Archiv fuer das Eisen-huettenwesen4(1972)303.Received15December2003and accepted12January20044011。