结构化学习题答案(3)汇总

合集下载

结构化学答案3

结构化学答案3

03 共价键和双原子分子的结构化学【3.1】试计算当Na +和Cl +相距280pm 时,两离子间的静电引力和万有引力;并说明讨论化学键作用力时,万有引力可以忽略不计。

(已知:完有引力11122, 6.710m m F GG r -==⨯22N m kg -⋅⋅;静电引力922122,9.010q q F KK N m C r -==⨯⋅⋅)解:万有引力 静电引力由上计算可见,在这情况下静电引力比万有引力大3410倍,所以万有引力可以忽略不计。

【3.2】写出2O ,2O +,22O -的键级,键长长短次序和磁性。

解:分子(或离子) 键 级 2.521.51键长次序磁 性顺磁 顺磁 顺磁 抗磁【3.3】2H 分子基态的电子组态为()21s σ,其激发态有()a 1s s σσ*↑↓,()*11s s b σσ↑↑,()*11s s c σσ↑↓试比较()a ,()b ,()c 三者能级的高低次序,说明理由,能量最低的激发态是顺磁性还是反磁性?解:ca b E E E >。

因为(c )中两个电子都在反键轨道上,与H 原子的基态能量相比,c E 约高出2β-。

而(a )和(b )中的2个电子分别处在成键轨道和反键轨道上,a E 和b E 都与H 原子的基态能量相近,但(a )中2个电子的自旋相反,(b )中的2个电子的自旋相同,因而a E 稍高于b E 。

能级最低的激发态(b )是顺磁性的。

【3.4】试比较下列同核双原子分子:2B ,2C ,2N ,2O ,2F 的键级、键能和键长的大小关系,在相邻两个分子间填入“”或“”符号表示。

解:【3.5】基态2C 为反磁性分子,试写出其电子组态;实验测定2C 分子键长为124pm ,比C 原子共价双键半径和()267pm ⨯短,试说明其原因。

解:2C 分子的基组态为:由于s-p 混杂,1u σ为弱反键,2C 分子的键级在23之间,从而使实测键长比按共价双键半径计算得到的值短。

【免费下载】结构化学第三章习题答案

【免费下载】结构化学第三章习题答案

dz2 - dz2

px –px

3025 12221432 , 3 , 反磁
3026 dxy ,
3027 py, dxy 3028 C2 ( 1g)2( 1u)2( 1u)2+2 s-p 混杂显著.
因 1u 为弱反键,而 1g 和 1u 均为强成键,故键级在 2-3 之间.
所以 Hab 为负值。
∫ g ud=(4 - 4S2)-1/2∫( 1sa + 1sb )(( 1sa - 1sb )d
= (4 - 4S2)-1/2∫[ 1sa 2 - 1sb 2 ] d
= (4 - 4S2)-1/2 [ 1 - 1 ] = 0 故相互正交。
3004 ( C )
3019 3020 3021
3022 3023 3024
(C)
轨道: s-s, s-pz , s-dz, pz –pz , pz - d z2 , d z2 - d z2 ,
轨道 px –px ,px –dxz ,py –py ,py –dyz ,dyz –dyz ,dxz –dxz 轨道:dxy-dxy, d x2 y2 - d x2 y2



(B)
原子轨道对
pz-dxy px-dxz
d x2y2 - d x2y2
不能
不能
分子轨道 ×

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配,料置不试技仅卷术可要是以求指解,机决对组吊电在顶气进层设行配备继置进电不行保规空护范载高与中带资负料荷试下卷高总问中体题资配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,.卷编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试5写交卷、重底保电要。护气设管装设备线置备4高敷动调、中设作试电资技,高气料术并中课3试中且资件、卷包拒料中管试含绝试调路验线动卷试敷方槽作技设案、,术技以管来术及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

结构化学课后习题答案

结构化学课后习题答案

结构化学课后习题答案北师⼤结构化学课后习题第⼀章量⼦理论基础习题答案1 什么是物质波和它的统计解释?参考答案:象电⼦等实物粒⼦具有波动性被称作物质波。

物质波的波动性是和微粒⾏为的统计性联系在⼀起的。

对⼤量粒⼦⽽⾔,衍射强度(即波的强度)⼤的地⽅,粒⼦出现的数⽬就多,⽽衍射强度⼩的地⽅,粒⼦出现的数⽬就少。

对⼀个粒⼦⽽⾔,通过晶体到达底⽚的位置不能准确预测。

若将相同速度的粒⼦,在相同的条件下重复多次相同的实验,⼀定会在衍射强度⼤的地⽅出现的机会多,在衍射强度⼩的地⽅出现的机会少。

因此按照波恩物质波的统计解释,对于单个粒⼦,ψψ=ψ*2代表粒⼦的⼏率密度,在时刻t ,空间q 点附近体积元τd 内粒⼦的⼏率应为τd 2ψ;在整个空间找到⼀个粒⼦的⼏率应为 12=ψ?τd 。

表⽰波函数具有归⼀性。

2 如何理解合格波函数的基本条件?参考答案合格波函数的基本条件是单值,连续和平⽅可积。

由于波函数2ψ代表概率密度的物理意义,所以就要求描述微观粒⼦运动状态的波函数⾸先必须是单值的,因为只有当波函数ψ在空间每⼀点只有⼀个值时,才能保证概率密度的单值性;⾄于连续的要求是由于粒⼦运动状态要符合Schr?dinger ⽅程,该⽅程是⼆阶⽅程,就要求波函数具有连续性的特点;平⽅可积的是因为在整个空间中发现粒⼦的概率⼀定是100%,所以积分?τψψd *必为⼀个有限数。

3 如何理解态叠加原理?参考答案在经典理论中,⼀个波可由若⼲个波叠加组成。

这个合成的波含有原来若⼲波的各种成份(如各种不同的波长和频率)。

⽽在量⼦⼒学中,按波函数的统计解释,态叠加原理有更深刻的含义。

某⼀物理量Q 的对应不同本征值的本征态的叠加,使粒⼦部分地处于Q 1状态,部分地处于Q 2态,……。

各种态都有⾃⼰的权重(即成份)。

这就导致了在态叠加下测量结果的不确定性。

但量⼦⼒学可以计算出测量的平均值。

4 测不准原理的根源是什么?参考答案根源就在于微观粒⼦的波粒⼆象性。

《结构化学》第三章习题答案

《结构化学》第三章习题答案

《结构化学》第三章习题答案3001 ( A, C )3002 H ab =∫ψa [-21∇2- a r 1 - br 1 +R 1 ] ψb d τ =E H S ab + R 1 S ab - ∫a r 1ψa ψb d τ= E H S ab + K因 E H = -13.6e V , S ab 为正值,故第一项为负值; 在分子的核间距条件下, K 为负值。

所以 H ab 为负值。

3003 ∫ψg ψu d τ=(4 - 4S 2)-1/2∫(ψa s 1+ψb s 1)((ψa s 1-ψb s 1)d τ = (4 - 4S 2)-1/2∫[ψa s 12 -ψb s 12 ] d τ= (4 - 4S 2)-1/2 [ 1 - 1 ] = 0故相互正交。

3004 ( C )3006 描述分子中单个电子空间运动状态的波函数叫分子轨道。

两个近似 (1) 波恩 - 奥本海默近似 ( 核质量 >> 电子质量 )(2) 单电子近似 (定态)3007 单个电子3008 (B)3009 (1) 能级高低相近(2) 对称性匹配(3) 轨道最大重叠3010 不正确3011 (B)3012 ψ= (0.8)1/2φA + (0.2)1/2φB3013 能量相近, 对称性匹配, 最大重叠> , < 或 < , >3014 正确3015 不正确3016 σ π π δ30173018 z3019 (C)3020 π3021 σ轨道: s -s , s -p z , s -d z , p z –p z , p z -2z d , 2z d -2z d ,π轨道p x –p x ,p x –d xz ,p y –p y ,p y –d yz ,d yz –d yz ,d xz –d xzδ轨道:d xy -d xy , d 22y x -- d 22y x -3022 σ δ π 不能 不能3023 (B)3024 原子轨道对 分子轨道p z -d xy ×p x -d xz πd 22y x -- d 22y x - δ2z d -2z d σp x –p x π3025 1σ22σ21π43σ2 , 3 , 反磁3026 d xy , δ3027 p y , d xy3028 C 2 ( 1σg )2( 1σu )2( 1πu )2+2 s -p 混杂显著.因1σu 为弱反键,而1σg 和1πu 均为强成键,故键级在2-3之间.3029 N 2: (1σg )2(1σu )2(1πu )4(2σg )2O 2: σ2s 2σ2s σ2pz 2π2px 2π2py 2π2px *π2py *1或 ( 1σg )2(1σu )22σg 2(1πu )4(1πg )23030 ( 1σg )2( 1σu )2( 1πu )4( 2σg )2的三重键为 1 个σ键 (1σg )2,2个π键 (1πu )4,键级为 3( 1σu )2和(2σg )2分别具有弱反键和弱成键性质, 实际上成为参加成键作用很小的两对孤对电子,可记为 :N ≡N: 。

结构化学基础习题答案

结构化学基础习题答案

结构化学基础习题答案结构化学基础习题答案在学习结构化学的过程中,习题是不可或缺的一部分。

通过解答习题,我们可以巩固所学的知识,提高解决问题的能力。

下面我将为大家提供一些结构化学基础习题的答案,希望能对大家的学习有所帮助。

1. 以下化合物中,哪一个具有最高的沸点?答案:沸点取决于分子间的相互作用力。

在这些化合物中,氢键是最强的相互作用力,因此具有最高沸点的化合物应该是具有氢键的化合物。

在给出的化合物中,甲醇(CH3OH)具有氢键,因此其沸点最高。

2. 以下哪个分子是非极性分子?答案:分子的极性取决于键的极性和分子的几何形状。

如果分子中的键都是非极性的,并且分子的几何形状对称,那么该分子就是非极性分子。

在给出的分子中,二氧化碳(CO2)的键都是非极性的,并且分子的几何形状是线性的,因此二氧化碳是非极性分子。

3. 以下哪个分子是具有最高的极性?答案:分子的极性取决于键的极性和分子的几何形状。

在给出的分子中,氟化氢(HF)的键是最极性的,因为氟原子的电负性最高。

所以,氟化氢是具有最高极性的分子。

4. 以下哪个化合物是具有最高的熔点?答案:熔点取决于分子间的相互作用力。

在这些化合物中,离子键是最强的相互作用力,因此具有最高熔点的化合物应该是具有离子键的化合物。

在给出的化合物中,氯化钠(NaCl)具有离子键,因此其熔点最高。

5. 以下哪个分子是具有最高的沸点?答案:沸点取决于分子间的相互作用力。

在这些分子中,范德华力是最弱的相互作用力,而氢键是最强的相互作用力。

在给出的分子中,水(H2O)具有氢键,而其他分子都是通过范德华力相互作用的。

因此,水具有最高的沸点。

通过解答以上习题,我们可以巩固对结构化学基础知识的理解。

同时,我们也能够更好地理解分子间相互作用力对物质性质的影响。

希望这些答案能够对大家的学习有所帮助,并且激发大家对结构化学更深入的探索。

祝大家学习进步!。

结构化学习题答案(3)

结构化学习题答案(3)

《结构化学》第三章习题3001 H 2+的H ˆ= 21∇2- a r 1 - b r 1 +R1, 此种形式已采用了下列哪几种方法: ------------------------------ ( )(A) 波恩-奥本海默近似 (B) 单电子近似(C) 原子单位制 (D) 中心力场近似3002 分析 H 2+的交换积分(β积分) H ab 为负值的根据。

3003 证明波函数 ()()()()b a b a ψψψψψψS S s 1s 121u s 1s 121g 221221--=++=是相互正交的。

3004 通过变分法计算得到的微观体系的能量总是:----------------- ( )(A) 等于真实基态能量(B) 大于真实基态能量(C) 不小于真实基态能量(D) 小于真实基态能量3006 什么叫分子轨道?按量子力学基本原理做了哪些近似以后才有分子轨道的概念?这些近似的根据是什么?3007 描述分子中 _______________ 空间运动状态的波函数称为分子轨道。

3008 对于"分子轨道"的定义,下列叙述中正确的是:----------------- ( )(A) 分子中电子在空间运动的波函数(B) 分子中单个电子空间运动的波函数(C) 分子中单电子完全波函数(包括空间运动和自旋运动)(D) 原子轨道线性组合成的新轨道3009 试述由原子轨道有效地形成分子轨道的条件。

3010 在 LCAO-MO 中,所谓对称性匹配就是指两个原子轨道的位相相同。

这种说法是否正确?3011 在LCAO-MO 方法中,各原子轨道对分子轨道的贡献可由哪个决定:----------------- ( )(A) 组合系数 c ij (B) (c ij )2(C) (c ij )1/2 (D) (c ij )-1/23012 在极性分子 AB 中的一个分子轨道上运动的电子,在 A 原子的φA 原子轨道上出现的概率为80%, B 原子的φB 原子轨道上出现的概率为20%, 写出该分子轨道波函数 。

大三结构化学考试题及答案

大三结构化学考试题及答案

大三结构化学考试题及答案一、单选题(每题2分,共20分)1. 以下哪种晶体结构中,原子的配位数为12?A. 立方体心立方晶格B. 面心立方晶格C. 六角密堆积D. 体心立方晶格答案:B2. 根据价层电子对互斥理论,水分子的空间构型是:A. 直线形B. V形C. 四面体形D. 三角锥形答案:B3. 在分子轨道理论中,下列哪个分子的键级为2.5?A. H2B. N2C. O2D. F2答案:B4. 下列哪种元素的电负性最高?A. 氟B. 氧C. 氮D. 碳答案:A5. 根据晶体场理论,八面体配位场中,d轨道分裂能Δo的大小与下列哪个因素无关?A. 配体的场强B. 金属离子的电荷C. 配体的几何构型D. 金属离子的电子排布答案:C6. 以下哪种化合物不属于离子化合物?A. NaClB. HClC. MgOD. CaF2答案:B7. 根据分子轨道理论,下列哪种分子的键级为3?A. COB. N2C. O2D. NO答案:A8. 在周期表中,第VA族元素的原子最外层电子排布为:A. ns^2np^1B. ns^2np^2C. ns^2np^3D. ns^2np^4答案:C9. 根据价层电子对互斥理论,氨分子的空间构型是:A. 三角锥形B. 四面体形C. V形D. 直线形答案:B10. 在分子轨道理论中,下列哪个分子的键级为1.5?A. O2B. N2C. COD. NO答案:A二、填空题(每题2分,共20分)1. 根据晶体场理论,八面体配位场中,d轨道分裂能Δo的大小与配体的场强成正比。

2. 价层电子对互斥理论中,分子的几何构型是由中心原子周围的价层电子对数决定的。

3. 电负性是衡量原子吸引电子对的能力的物理量,通常用Pauling电负性标度来表示。

4. 离子化合物是由正负离子通过静电作用力结合而成的化合物。

5. 分子轨道理论认为,分子轨道是由原子轨道通过分子形成时的相互作用而形成的。

6. 根据价层电子对互斥理论,乙炔分子的空间构型是直线形。

结构化学课后答案第3章双原子分子的结构与分子光谱

结构化学课后答案第3章双原子分子的结构与分子光谱

第3章双原子分子的结构与分子光谱习题答案1. CO是一个极性较小的分子还是极性较大的分子?其偶极距的方向如何?为什么?解:CO是一个异核双原子分子。

其中氧原子比碳原子多提供2个电子形成配位键::C=0:氧原子的电负性比碳原子的高,但是在CO分子中,由于氧原子单方面向碳原子提供电子,抵消了部分碳氧之间的电负性差别引起的极性,所以说CO是一个极性较小的分子。

偶极矩是个矢量,其方向是由正电中心指向负电中心,CO的偶极距4 = 0.37 10-30c m,氧原子端显正电,碳原子端显负电,所以CO分子的偶极距的方向是由氧原子指向碳原子。

2. 在N2, NO , O2, C2, F2, CN, CO, XeF中,哪几个得电子变为AB-后比原来中性分子键能大,哪几个失电子变为AB+后比原来中性分子键能大?解:就得电子而言,若得到的电子填充到成键电子轨道上,则AB-比AB键能大,若得到得电子填充到反键分子轨道上,则AB-比AB键能小。

就失电子而言,若从反键分子轨道上失去电子,则AB+比AB键能大,若从成键轨道上失去电子,则AB+比AB键能小。

2 2 4 2(1) N2 :(1「g) (1%) (V:u) (2^) 键级为3N2 :(l-g)2(l u)2(V:u)4(^g)1键级为2.5N2—:(16)2(1%)2(1L)4(26)2(2二u)1键级为2.5N2的键能大于N2+和N2的键能(2) NO : (1-)2(2-)2(1T)4(3-)2(27.)1键级为 2.5NO : (1;「)2(2二)2(1二)4(3二)2键级为32 2 4 2 2 ”NO:(1G (2G (1 二)(3匚)(2二) 键级为2所以NO的键能小于NO+的键能,大于NO-的键能⑶亠 2 2 2 2 2 4 1O2 :1;「g1;「u2;「g2;「u3;键级为2.5,2 2 2 2 2 4 2O2 :1;初汛2 汪2;二3汪1 二u1 二g 键级为2,2, 2 c 2 c 2小2, 4, 3O2 :1汪1汛2汪263;[1—1二9键级为1.5, 所以。

结构化学 试题及答案

结构化学 试题及答案

结构化学试题及答案A.等于真实体系基态能量B.大于真实体系基态能量《结构化学》答案 C.不小于真实体系基态能量 D.小于真实体系基态能量一、填空(共30分,每空2分 ) 4、求解氢原子薛定谔方程,我们常采用下列哪些近似( B )。

1)核固定 2)以电子质量代替折合质量 3)变数分离 4)球极坐标 ,6,1、氢原子的态函数为,轨道能量为 - 1.51 eV ,轨道角动量为,3,2,1)2)3)4) A.1)3)B.1)2)C.1)4)D.1学号,轨道角动量在磁场方向的分量为。

5、下列分子中磁矩最大的是( D )。

: +2、(312)晶面在a、b、c轴上的截距分别为 1/3 , 1 ,1/2 。

B.C C.C D.B A.Li22223、NaCl晶体中负离子的堆积型式为 A1(或面心立方) ,正离子填入八面体的6、由一维势箱的薛定谔方程求解结果所得量子数n,下面论述正确的是( C ) 装A. 可取任一整数B.与势箱宽度一起决定节点数空隙中,CaF晶体中负离子的堆积型式为简单立方,正离子填入立方体的22姓空隙中。

C. 能量与n成正比 D.对应于可能的简并态名3: D4、多电子原子的一个光谱支项为,在此光谱支项所表征的状态中,原了的总轨道2,,,,,7、氢原子处于下列各状态:1) 2) 3) 4) 5) ,问哪22px3p3dxz3223dzz订6,角动量等于,原子的总自旋角动量等于 2, ,原子的总角动量等于,,2M些状态既是算符的本征函数又是算符的本征函数( C )。

Mz6,,在磁场中,此光谱支项分裂出5个塞曼能级。

系A.1)3) B.2)4) C.3)4)5) D.1)2)5) 别: 11线 8、下列光谱项不属于pd组态的是( C )1/22,r/2a0(3/4,)cos,(3/4,)cos,,(r,,,,)5、= ,若以对作图,(,,,)N(r/a)e2PZ01131 A. B. C. D. PDFS则该图是电子云角度图,也即表示了电子云在方向上单位立体角内的几率(,,,)9、下列对分子轨道概念叙述正确的是( B )。

厦门大学结构化学第3章答案

厦门大学结构化学第3章答案

③ H2N-NH2
(μ=0.9×10-30C·m)
⑤ N≡C-C≡N 解:
分子点群大致可分为: Cn , Cnv , Cnh , Dn , Dnd , Dnh 以及高阶群。 i.偶极矩是分子中正、负电中心的矢量和,由于处在对称心上的矢量大小为 0, 所以具有对称中心的分子没有偶极矩,即 Ci , Cnh , Dnd , Dnh( n 为偶数,n 为奇数) ii.具有多个 Cn (n>1)轴的分子,偶极矩为 0,一个矢量不可能同时与两个方向重合。 即有高阶群以及 Dn , Dnd , Dnh iii. Cnh ( n 为奇数)与 S n 同构,又除 S1 外所有的 S n 映转轴对称性的分子没有偶极 距。 综上,只有 Cn , Cnv , Cs 点群具有偶极矩。注意:镜面与二重映转轴等同,故不能 说具有映转轴对称性的分子没有偶极矩。 ① ② ③ ④ ⑤ 直线型 (非共面的 Z 字形) 马鞍形 点群: C2 v V形 直线形 点群: C2 v 点群: Dh 点群: C2 点群: Dh
3.9 指出下列分子中的对称元素及其所属点群: SO2(V 型) 、P4(四面体) 、PCl5(三角双锥) 、S6(船型) 、S8(冠状) 、Cl2 解: SO2: 点群: C2 v P4 :点群: Td PCl5:点群: D3h S6(船型) :点群: C2 v S8:点群: D4 d Cl2:点群: Dh
v
v
v
v
E C2
v
v
C2 E
v
v
v
v
v
v
3.6 BF3 为平面三角形分子,属 D3h 点群,请写出其 12 个对称元素,并将其分为 6 类。 解: BF3 为平面三角形分子,属 D3h 点群 对称元素: 2C3 ,3C2 , h ,3 v ,2S3

结构化学答案3

结构化学答案3

”或“ ”符号表示。
解:
键级
键能
键长
【3.5】基态 C2 为反磁性分子,试写出其电子组态;实验测定
C 2 分子键长为 124 pm ,比 C
原子共价双键半径和 2 67pm 短,试说明其原因。
解: C2 分子的基组态为:
由于 s-p 混杂, 1 u 为弱反键, C2 分子的键级在 2 3 之间,从而使实测键长比按共价双键
是非键轨道,即电离的电子是由 O 和 F 提供的非键电子,因此, OH 和 HF 的第一电离能差
值与 O 原子和 F 原子的第一电离能差值相等。
( e) S 1/ 2, 1 ,基态光谱项为: 2
【 3.15】
H
79
Br
在远红外区有一系列间隔为
16.94cm 1 的谱线,计算 HBr 分子的转动惯量
和平衡核间距。
(e) 写出它的基态光谱项。
解:( a) H 原子的 1s 轨道和 O 原子的 2 pz 轨道满足对称性匹配、能级相近(它们的能
级 都 约 为 - 13.6eV ) 等 条 件 , 可 叠 加 形 成
2
2
3
1 2 1。
轨 道 。 OH 的 基 态 价 电 子 组 态 为
2
2
3
1 实 际 上 是 O 原 子 的 2s , 而 1 实 际 上 是 O
(b) 振动频率为:
(c) 振动零点能为:
(d)
H
127
I
的约化质量为:
H127I 的力常数为:
【 3.20】在 CO 的振动光谱中观察到
2169.8cm 1 强吸收峰,若将 CO 的简正振动看做谐振
子,计算 CO 的简正振动频率、力常数和零点能。

结构化学第三章课后作业题答案教学文案

结构化学第三章课后作业题答案教学文案

谢谢3 (2) CH2=CH-CH=CH2(反式) C2对称轴,σh 点群:C2h 无偶极矩无旋光性 (3) OCS 无对称中心线形分子 点群: Cv 有偶极矩和旋光性 (4) IF7(五角双锥) 对称中心, C5对称轴5个C2对称轴,1个h对称面 点群: D5h 没有偶极矩和旋光性 (5) CH4 对称元素:4个C3,3个C2,3个S4对称轴,对称中心,6个d对称面 Td点群没有偶极矩和旋光性 (6) B2H6 对称中心, C2对称轴2个C2对称轴,1个h对称面 点群: D2h 没有偶极矩和旋光性 (7) H3BO3(平面型) 对称中心, C3对称轴3个C2对称轴,1个h对称面 点群: C3h 没有偶极矩和旋光性
构化学第三章课后
业题答案
谢谢2 2. 写出HCN,CO2,H2O2,CH2=CH2和C6H6(苯)分子的对称元素以及所属点群。 解: HCN:旋转轴 反映面 点群: Cv CO2: 对称中心i,反映面,旋转轴 点群: Dh H2O2: 1条C2旋转轴, 点群: C2 CH2=CH2: 3条C2旋转轴(其中与平面垂直的作为主轴) ,一个σh 对称中心i 点群:D2h C6H6: 6条C2. 写出ClHC=CHCl(反式)分子全部对称操作及其乘法表。 解:分子点群为C2h 对称操作:1条C2旋转轴,一个σh 乘法表: 2hC ?E 2?C ?h i ?E ?E 2?C ?h i 2?C 2?C ?E i ?h ?h ?h i ?E 2?C i i ?h 2?C ?E 4. 自己动手制作下列分子模型,找出它们的对称元素及所属分子点群,并指出它们是否有偶极矩和旋光性。 (1) CH2Cl2 对称中心, C2对称轴, 两个v对称面 点群: C2v 有偶极矩无旋光性

结构化学试题及答案

结构化学试题及答案

结构化学试题及答案一、选择题(每题2分,共10分)1. 以下哪个元素的原子核外电子排布遵循泡利不相容原理?A. 氢(H)B. 氦(He)C. 锂(Li)D. 铍(Be)答案:B2. 原子轨道的量子数l代表什么?A. 电子云的形状B. 电子云的径向分布C. 电子云的角动量D. 电子云的自旋答案:C3. 以下哪个化合物是离子化合物?A. 二氧化碳(CO2)B. 氯化钠(NaCl)C. 氮气(N2)D. 水(H2O)答案:B4. 共价键的形成是由于:A. 电子的共享B. 电子的转移C. 电子的排斥D. 电子的吸引答案:A5. 根据分子轨道理论,以下哪个分子是顺磁性的?A. 氮气(N2)B. 氧气(O2)C. 氟气(F2)D. 氢气(H2)答案:B二、填空题(每题2分,共10分)1. 原子轨道的量子数n=1时,可能的l值有______。

答案:02. 碳原子的价电子排布是______。

答案:2s^2 2p^23. 离子键是由______形成的。

答案:电子的转移4. 根据杂化轨道理论,甲烷(CH4)的碳原子采用______杂化。

答案:sp^35. 金属键的形成是由于______。

答案:电子的共享三、简答题(每题5分,共20分)1. 简述价层电子对互斥理论(VSEPR)的基本原理。

答案:价层电子对互斥理论认为,分子的几何构型是由中心原子周围的价层电子对之间的排斥作用决定的,这些电子对可以是成键电子对或孤对电子。

2. 什么是分子轨道理论?答案:分子轨道理论是一种化学理论,它将分子中的电子视为分布在整个分子空间内的轨道上,而不是局限于两个原子之间。

这些分子轨道是由原子轨道线性组合而成的。

3. 描述一下什么是超共轭效应。

答案:超共轭效应是指在有机分子中,通过σ键的π轨道与π键的π轨道之间的相互作用,从而降低π键的能级和增加σ键的稳定性的现象。

4. 什么是路易斯酸碱理论?答案:路易斯酸碱理论认为,酸是能够接受电子对的物种,而碱是能够提供电子对的物种。

结构化学课后习题答案

结构化学课后习题答案

结构化学课后习题答案结构化化学课后习题答案一、化学键与分子结构1. 选择题a) 正确答案:D解析:选择题中,选项D提到了共价键的形成是通过电子的共享,符合共价键的定义。

b) 正确答案:B解析:选择题中,选项B提到了离子键的形成是通过电子的转移,符合离子键的定义。

c) 正确答案:C解析:选择题中,选项C提到了金属键的形成是通过金属原子之间的电子云重叠,符合金属键的定义。

d) 正确答案:A解析:选择题中,选项A提到了氢键的形成是通过氢原子与高电负性原子之间的吸引力,符合氢键的定义。

2. 填空题a) 正确答案:共价键解析:填空题中,根据问题描述,两个非金属原子之间的键称为共价键。

b) 正确答案:离子键解析:填空题中,根据问题描述,一个金属原子将电子转移到一个非金属原子上形成的键称为离子键。

c) 正确答案:金属键解析:填空题中,根据问题描述,金属原子之间的电子云重叠形成的键称为金属键。

d) 正确答案:氢键解析:填空题中,根据问题描述,氢原子与高电负性原子之间的吸引力形成的键称为氢键。

二、有机化学1. 选择题a) 正确答案:C解析:选择题中,选项C提到了烷烃是由碳和氢组成的,符合烷烃的定义。

b) 正确答案:D解析:选择题中,选项D提到了烯烃是由含有一个或多个双键的碳原子组成的,符合烯烃的定义。

c) 正确答案:B解析:选择题中,选项B提到了炔烃是由含有一个或多个三键的碳原子组成的,符合炔烃的定义。

d) 正确答案:A解析:选择题中,选项A提到了芳香烃是由芳香环结构组成的,符合芳香烃的定义。

2. 填空题a) 正确答案:醇解析:填空题中,根据问题描述,含有羟基(-OH)的有机化合物称为醇。

b) 正确答案:醚解析:填空题中,根据问题描述,含有氧原子连接两个碳原子的有机化合物称为醚。

c) 正确答案:酮解析:填空题中,根据问题描述,含有羰基(C=O)的有机化合物称为酮。

d) 正确答案:酯解析:填空题中,根据问题描述,含有羧基(-COO)的有机化合物称为酯。

结构化学答案

结构化学答案

03 共价键和双原子分子的结构化学【3.1】试计算当Na +和Cl +相距280pm 时,两离子间的静电引力和万有引力;并说明讨论化学键作用力时,万有引力可以忽略不计。

(已知:完有引力11122, 6.710m m F GG r -==⨯22N m kg -⋅⋅;静电引力922122,9.010q q F KK N m C r -==⨯⋅⋅)解:万有引力 静电引力由上计算可见,在这情况下静电引力比万有引力大3410倍,所以万有引力可以忽略不计。

【3.2】写出2O ,2O +,22O -的键级,键长长短次序和磁性。

解:分子(或离子) 键 级 2.521.51键长次序磁 性顺磁 顺磁 顺磁 抗磁【3.3】2H 分子基态的电子组态为()21s σ,其激发态有()a 1s s σσ*↑↓ ,()*11s s b σσ↑↑,()*11s s c σσ↑↓试比较()a ,()b ,()c 三者能级的高低次序,说明理由,能量最低的激发态是顺磁性还是反磁性?解:ca b E E E >。

因为(c )中两个电子都在反键轨道上,与H 原子的基态能量相比,c E 约高出2β-。

而(a )和(b )中的2个电子分别处在成键轨道和反键轨道上,a E 和b E 都与H 原子的基态能量相近,但(a )中2个电子的自旋相反,(b )中的2个电子的自旋相同,因而a E 稍高于b E 。

能级最低的激发态(b )是顺磁性的。

【3.4】试比较下列同核双原子分子:2B ,2C ,2N ,2O ,2F 的键级、键能和键长的大小关系,在相邻两个分子间填入“”或“”符号表示。

解:【3.5】基态2C 为反磁性分子,试写出其电子组态;实验测定2C 分子键长为124pm ,比C 原子共价双键半径和()267pm ⨯短,试说明其原因。

解:2C 分子的基组态为:由于s-p 混杂,1u σ为弱反键,2C 分子的键级在23之间,从而使实测键长比按共价双键半径计算得到的值短。

结构化学习题集答案

结构化学习题集答案

结构化学习题集答案习题选答习题11.2 600nm(红), 3.31310-19J, 199KJ2mol-1550nm(黄), 3.61310-19J, 218KJ2mol-1400nm(蓝), 4.97310-19J, 299KJ2mol-1200nm(紫), 9.93310-19J, 598KJ2mol-11.3 6.51310-34J2s1.4 (1)100eV电⼦ 122.6pm(2)10eV中⼦ 9.03pm(3)1000m/sH原⼦0.399nm1.5 ⼦弹~10-35m, 电⼦~10-6m1.6 Dx=1.226310-11m<< 10-6m1.8 (2),(4) 是线性厄⽶算符.1.9 (1) exp(ikx)是本征函数, 本征值ik.(2), (4)不是.1.101.12 , 本征值为±√B1.131.16 当两算符可对易, 即两物理量可同时测定时,式⼦成⽴.1.18 (1) (2) = l/2, (3)=01.19 0.4l~0.6l间, 基态出现⼏率0.387,第⼀激发态出现⼏率0.049.1.20 (1) 基态n x=n y=n z=1 ⾮简并(2) 第⼀激发态211, 121, 112 三重简并(3) 第⼆激发态221, 122, 212 三重简并1.23 λ=239nm.习题22.1 (1) E0=-13.6eV, E1=-3.4eV.(2) =3a0/2 ,=02.4 ψ1s波函数在r=a0, 2a0处⽐值为2.718ψ2在r=a0, 2a0处⽐值为7.389.2.6 3d z2 , 3d xy各有2个节⾯: 3d z2是2个圆锥节⾯, 3d xy是XZ,YZ⾯.2.9 (1) 2p轨道能量为-3.4eV ⾓动量为(2) 离核平均距离为5a0.(3) 极⼤值位置为4a0.2.102.11 ; He+ a0/2, F8+ a0/9.2.13(1)径向分布函数最⼤值离核距离a0/3,(2)电⼦离核平均距离为a0/2.(3) 因⽆电⼦相关, 2s, 2p态能量相同., 磁矩为2.15 轨道⾓动量为12.17 (1) N 原⼦价电⼦层半充满, 电⼦云呈球状分布.(2)基态谱项为4S, ⽀项为4S3/2(3)2p23s1光谱项: p2—3P,1D,1S, s1—2S, 偶合后4P, 2P, 2D, 2S. 2.19 Al S K Ti Mn基态谱项2P 3P 2S 3F 6S光谱⽀项2P1/23P22S1/2 3F2 6S5/22.20 C(2p13p1): 3D, 1D, 3P, 1P, 3S, 1S.Mg(3s13p1): 3P,1PTi(3d34s1): 5F,3F,5P,3P,3H,1H,3G,1G,3F,1F,3D,1D,3P,1P2.21 3d84s2态含3F4谱项2.22 I1=5.97eV , I2=10.17eV .习题33.2 CO: C∞, ∞个σv ;CO2: C∞, ∞个C2, ∞个σv, σh.3.3 顺丁⼆烯: C2, σv, σv/;反丁⼆烯: C2, σh, I3.4 (1)菱形: C2, C2', C2”, σh " D2h;(2) 蝶形: C2, σv, σv' "C2v(3) 三棱柱: C3,3C2,3σv, σh" D3h;(4) 四⽅锥: C4, 4σv" C4v(5) 圆柱体: C∞, ∞个C2, ∞个σv, σh. "D∞h(6) 五棱台: C5,5σv" C5v3.53.6 E,{C31, C32},{C2,C2',C2”},σh, {S31,S32}, {σv, σv', σv”}3.73.8 苯D6h; 对⼆氯苯D2h ; 间⼆氯苯C2v; 氯苯C2v; 萘D2h3.9 SO2 C2v, P4 T d, PCl5 D3h, S6(椅式) D3d,S8 D4d, Cl2 D∞h3.10 ①D2h②C2v ③D3h④C2v⑤D2h3.14 CoCl4F23+分⼦有2种异构体, 对⼆氟异构体为D4h, 邻⼆氟异构体为C2v3.15 ①C s②C2v③C s④C4v⑤D2h⑥C2v⑦C i⑧C2h3.16 (1) C60 I h⼦群: D5d, D5, C5v, C5, D3h, D3, C3v, C3等.(2) ⼆茂铁D5d,⼦群D5, C5v等.(3)甲烷T d, ⼦群C3v, C3, D2d, D2等.3.17 ①C3O2直线形D∞h②双氧⽔C2③NH2NH2鞍马型C2V ④F2O V形C2v ⑤NCCN 线形D∞h 3.18 8.7(邻), 5.0310-30C﹒m (间), 0 (对)3.20 ①~⑧均⽆旋光性; ①、③船式、⑦、⑧有偶极矩, 其余⽆。

结构化学习题解答

结构化学习题解答

物质结构第三章习题1. 试述正八面体场、正四面体场、正方形场中,中心离子d 轨道的分裂方式;2. 试根据晶体场理论说明直线形配合物MX 2中以分子轴为z 轴,中心原子的d 轨道如何分裂,并给出这些轨道的能量高低顺序;3. 试根据晶体场理论说明三角双锥配合物中,中心原子的d 轨道如何分裂,并给出这些轨道的能量高低顺序;4. 简述分裂能与中心离子和配体的关系;5. 配体CN -,NH 3,H 2O,X -在络光谱化学序列中的顺序是 A X -< CN --< NH 3 < H 2O B CN -< NH 3< X - < H 2OC X -< H 2O < NH 3 < CN -D H 2O < X -< NH 3 < CN -6. 在下列每对络合物中,哪一个有较大的O ,并给出解释;① FeH 2O 62+ 和 FeH 2O 63+ ② bCoCl 64- 和 CoCl 42-③ CoCl 63- 和 CoF 63- ④ FeCN 64-和 OsCN 64-7. 下列配合物离子中, 分裂能最大的是ACoNH 362+BCoNH 363+CCoH 2O 63+DRhNH 363+8. 下列配位离子中,O 值最大的是A CoCl 64-B CoCl 42-C CoCl 63-D CoF 63-9. 以下结论是否正确“凡是在弱场配体作用下,中心离子d 电子一定取高自旋态;凡是在强场配体作用下,中心离子d 电子一定取低自旋态;”10. 试写出d 6金属离子在八面体场中的电子排布和未成对电子数分强场和弱场两种情况; 11. 下列络合物哪些是高自旋的A CoNH 363+B CoNH 362+C CoCN 64-D CoH 2O 63+12. 按配位场理论,正八面体场中无高低自旋态之分的组态是A d 3B d 4C d 5D d 6E d 713. 试判断下列配位离子为高自旋构型还是低自旋构型, 并写出d 电子的排布;①FeH 2O 62+②FeCN 64-③CoNH 363+④CrH 2O 62+⑤MnCN 64-14. 为什么正四面体的络合物大多是高自旋15. Ni 2+的低自旋络合物常常是平面正方形结构,而高自旋络合物则多是四面体结构,试用晶体场理论和杂化轨道理论解释之; 16. Ni 2+有两种络合物,根据磁性测定知 NiNH 342+是顺磁性,NiCN 42-为反磁性,试推测其空间结构;17. F -是弱配体,但配位离子NiF 62-却呈反磁性,这说明Ni 4+的d 电子按低自旋排布,试解释原因; 1-17答案1. 正八面体场中分裂成两组:低能级d xy , d xz , d yz t 2g ;高能级d x 2-y 2,d z 2e g 正四面体场中分裂成两组:低能级d x 2-y 2,d z 2 e ;高能级d xy , d xzd yz t 2正方形场中分裂成四组:由高到低依次为:{d xz , d yz }; {d z 2}{d xy };{d x 2-y 2}2. d z 2直指配体, 能量最高; d x 2-y 2, d xy 受到配体的斥力最小;d xzd yz 能量居中; 3. d z 2直指配体, 能量最高; d xz , d yz 受到配体的斥力最小;d x 2-y 2d xy 能量居中;4. ①配体固定时,中心离子的电荷越高,周期数越大,则越大;②中心离子固定时,随配体的变化由光谱化学序列确定该顺序几乎和中心离子无关,若只看配位原子,随配位原子半径的减小而增大:I<Br<Cl<S<F<O<N<C 5. C 6. ①FeH 2O 63+,因为Fe 3+有高电荷;②CoCl 64-,因为O >T ;③CoF 63-,因为F -是比Cl -强的配位体 ④OsCN 64-,因为Os 2+的周期数大于Fe 2+7. D NH 3是强配体,Rh 3+的电荷数高、周期数大; 8. D F -是Cl -强的配体,Co 3+引起的分裂能比Co 2+大;9. 此结论仅在正八面体场中,中心离子d 电子数为4,5,6,7时才成立;八面体场中,d 电子数为1,2,3,8,9,10时,无论强场弱场,电子只有一种排布方式,无高低自旋之分;正四面体场中,分裂能较小,故如果可有高、低自旋态,大多是高自旋态;而正方形场中则大多是低自旋态 10. 强场,t 2g 6,无未成对电子;弱场,t 2g 4e g 2,4个未成对电子 11. BD 12. A13. ①FeH 2O 62+,d 6,弱场高自旋,t 2g 4e g 2②FeCN 64-,d 6,强场低自旋,t 2g 6③CoNH 363+ d 6,强场低自旋,t 2g6④CrH 2O 62+,d 4,弱场高自旋,t 2g 3e g 1⑤MnCN 64-,d 5,强场低自旋,t 2g514. 正四面体场分裂能较小, 通常<P , 因此多高自旋配合物;15. Ni 2+为d 8组态1 根据配位场理论,若是正方形场,d 电子排布是d xz ,d yz 4d z 22d x 2-y 22,所有d 电子成对;若是四面体场,d 电子排布是e 4t 24,有两个未成对电子;2 根据杂化轨道理论,若为低自旋,则8个d 电子集中在 4 个轨道,空出的一个d 轨道和s ,p 轨道形成dsp 2杂化轨道,为平面正方形;若为高自旋,8个d 电子分布在5个d 轨道,取sp 3杂化,形成四面体形;16. NiNH342+是四面体构型,NiCN42-为正方形构型17. 分裂能随金属离子电荷增高而增大,Ni4+d6电荷高,使分裂能大于成对能,而采取低自旋排布t2g6,呈反磁性;18. 用晶体场理论推测下列络合物的未成对电子以及磁性:① FeCN64-② FeCN63-③ MnCN64-,④CoNO263-⑤ FeH2O63+⑥CoF63-19. 下列哪个络合物的磁矩最大A 六氰合钴Ⅲ离子B 六氰合铁Ⅲ离子C 六氨合钴Ⅲ离子D 六水合锰Ⅱ离子E 六氨合钴Ⅱ离子20. 下列配位离子中磁性最大的是A MnH2O63+B FeH2O63+C FeCN64-D CoNH363+E CrH2O62+21. 凡是低自旋络合物一定是反磁性物质;这一说法是否正确22. FeF63-络离子的磁矩为A 3B B 5BC BD B23. K3FeF6的磁矩为玻尔磁子,而K3FeCN6的磁矩为玻尔磁子,这种差别的原因是A 铁在这两种化合物中有不同的氧化数B CN-离子比 F-离子引起的晶体场场分裂能更大C 氟比碳或氮具有更大的电负性D K3FeF6不是络合物24. 已知FeCN63-,FeF63-络离子的磁矩分别为B,B,①分别计算两种络合物中心离子未成对电子数;②用图分别表示中心离子d轨道上电子排布情况;③两种络合物其配位体所形成的配位场,是强场还是弱场25. 某金属离子在八面体弱场中的磁矩为玻尔磁子, 而它在八面体强场中的磁矩为0, 该中心离子可能是A CrⅢB MnⅡC CoⅡD FeⅡ26. 在FeH2O62+和FeCN64-中,Fe2+的有效离子半径哪个大说明理由;27. 为什么过渡金属络合物大多有颜色28. 络合物的光谱d-d跃迁一般在什么区域A 远紫外B 红外C 可见-近紫外D 微波29. 络合物中电子跃迁属d-d跃迁,用_________光谱研究最为合适;30. 推测下列两对络合物中,哪一个络合物的d-d跃迁能量较高:①PtNH342+ , PdNH342+ ② CoCN63-, IrCN63-31.推测下列两对络合物中,哪一个络合物的d-d跃迁能量较高:①CoCN63-和IrCN63-②RhCl63-和RhCN63-32. 铁的两种络合物:A FeCN6,B Na3FeF6,它们的磁矩大小关系为A___B,它们的紫外可见光谱d-d跃迁的波长大小关系为A___B;33. 推测1六水合铁Ⅲ, 2六水合铁Ⅱ, 3六氟合铁Ⅱ三种络合物的d-d跃迁频率大小顺序A 1>2>3B 1>3>2C 3>2>1D 3>1>2E 2>1>334. 某同学测定了三种络合物d-d跃迁光谱,但忘了贴标签,请帮他将光谱波数和络合物对应起来;已知三种络合物为 CoF63-,CoNH363+,CoCN63-,它们的三个光谱波数分别为 34,000 cm-1,13,000 cm-1,23,000 cm-1;18-34答案18.络合物未成对电子磁性FeCN64-t2g6 0 反磁性FeCN63-t2g5 1 顺磁性MnCN64-t2g5 1 顺磁性CoNO263-t2g6 0 反磁性FeH2O63+t2g3e g2 5 顺磁性CoF63-t2g4e g2 4 顺磁性注,高自旋态的d电子配对情况和自由离子是相同的,例如,Co和CoF63-中,未成对d电子数都是4;19. D 络合物磁矩Bnnμμ)2(+=B为玻尔磁子, n是未成对电子数;容易看出,选项中只有D是弱场高自旋,未成对电子数为4.20. B FeH2O63+是弱场高自旋,有5个未成对电子21. 否,低自旋络合物仍可能有未成对电子;22. D Fe3+d5组态,八面体弱场,t2g3e g2,有5个未成对电子,BBBnnμμμμ9.5)25(5)2(=+=+=23. B24. Fe3+d5,八面体场,①FeCN63-:7.1)2(=+nn n=1; FeF63-:n=5② FeCN63-:低自旋,t2g5; FeF63-:高自旋,t2g3e g2③FeCN63-:强场; FeF63-:弱场25. D26. 高自旋态的离子半径大于低自旋态;FeH2O62+是弱场高自旋,FeCN64-是强场低自旋,前者Fe2+的有效半径大;27. 在配位场作用下, d轨道产生了分裂, 分裂后的能级差值落在可见光谱区域, 因此可以吸收可见光谱而产生d-d跃迁;物质的颜色为吸收的可见光谱的互补色, 故有颜色;28. C29. 紫外-可见光谱;30. 分裂能大的络合物d-d跃迁能量高①PtNH342+;② IrCN63-31. 分裂能大的络合物d-d跃迁能量高①IrCN63-;②RhCN63-32. <,<FeCN6,强场低自旋态,未成对电子少,故磁矩较小;又,分裂能大故d-d跃迁的波长较小频率或波数较大33. A 三种络合物的分裂能递增,故d-d跃迁频率递减34. CoF 63-13,000 cm -1CoNH 363+23,000 cm -1CoCN 63-34,000 cm -135. 解释为什么大多数Zn 2+的配合物无色;36. 用配位场理论判断NiCO 4不能观察到d-d 跃迁的光谱,对吗 37. 试用配位场理论解释变色硅胶变色的原因变色剂为CoCl 2; 38. 解释为什么FeF 63-是无色的39. 实验测得FeH 2O 62+配位离子在1000nm 处有一吸收峰, 试求出跃迁能级的间隔采用波数单位cm -1; 40. 求FeCN 64-的CFSE;41. 对于CoF 63-,试写出:①d 电子排布;②磁矩;③CFSE42. 已知:CoF 63-:O = 13,000 cm -1CoCN 63-:O = 34,000 cm -1P = 21, 000 cm -1确定上述两种络合物的磁性,并计算其 CFSE 以 cm -1为单位;43. 凡是中心离子电子组态为d 6的八面体络合物,其CFSE 都是相等的,这一说法是否正确 44. 已知 ML 6络合物中M 3+为d 6,f =1,g = 20,000 cm -1,P = 25,000 cm -1,求CFSE45. 为什么在过渡金属络合物中,八面体构型远较四面体构型多46. 用配位场理论估算下列离子的结构和未成对电子数: ①MoCl 63- ②RuNH 363+ ③MnO 43- ④NiI 42- ⑤AuCN 4- 47. Jahn-Teller 效应的内容为_____________; 48. 若忽略电子相互作用, d 2组态的基态在正八面体场中的简并度为_______; 49. 下列八面体络合物的电子结构中发生大畸变的是A t 2g 5e g 2B t 2g 3e g 2C t 2g 4e g 2D t 2g 6e g 335-49答案35. Zn 2+d 10的d 轨道填满电子,它通常是以sp 3杂化轨道形成配键,无d-d 能级跃迁;因此络合物一般无色;36. 对; 37. Co 2+为d 7组态;在无水CoCl 2中,当电子发生d-d 跃迁时,吸收波长为650~750nm 的红光,因而显示蓝色;但CoCl 2吸水后,变为CoH 2O 6Cl 2,即由相对较强的配体H 2O 取代了相对较弱的配体Cl -,引起分裂能变大,使电子发生d-d 跃迁时吸收的能量增大,即吸收光的波长缩短蓝移,吸收波长为490~500nm 的蓝光,因而呈粉红色;38. Fe 3+d 5的电子分占5个d 轨道,自旋平行,按照原子光谱的跃迁选律,此时t 2g →e g 的跃迁是自旋禁阻的,故FeCl 63-不吸收可见光,无色;在原子光谱中,若采用L-S 偶合,对于允许跃迁而言,两个状态的总自旋之差应等于零,即S =0,这表明当两个状态的自旋相同时,跃迁才可能发生,否则,跃迁是禁阻的,即称为自旋禁阻跃迁 39. 1/=1/1000×10-7cm=10000cm -140.t 2g 6,PD P P P q O O 22425123526SEF C -=-∆=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛∆-⨯-=41. ①t 2g 4e g 2;②B μ62;③ q O O O D P P 452532524CFSE =∆=⎥⎦⎤⎢⎣⎡+∆⨯+⎪⎭⎫⎝⎛∆-⨯-=42. CoF 63-:顺磁性,5200 cm -1CoCN 63-:反磁性,39600 cm -143. 否,与高、低自旋态的有关;44. 八面体络合物的分裂能可近似表示为g f O ⨯=∆,f 是配体的贡献以00.1O 2H =f 为标准,g 是中心离子的贡献;依据题意,1cm 20000-=⨯=∆g f O ,由于P O <∆,为弱场高自旋,t 2g 4e g 2,晶体场稳定化能为45. 正八面体场的LFSE 比正四面体场的CFSE 大, 只有在d 0, d和弱场d 5时二者相等, 这意味着八面体构型比四面体构型稳定所以八面体构型比四面体多;46. 离子 d 电子数 形状 d 电子排布 未成对电子数MoCl 63- d 3 八面体 t 2g 33RuNH 363+ d 5 八面体 t 2g 51MnO 43- d 2 四面体 e 22NiI 42- d 8 四面体 e 4t 242AuCN 4- d 8 正方形 d xz ,d yz 4d z 22d x 2-y 22一个配位离子究竟采取何种几何构型,主要决定于它在能量上和几何上是否有利; 对于6配位的离子,比较容易判断有时需要考虑是否会发生Jahn-Teller 效应;对于4配位的离子,因素复杂些;本题中的MnO 43-离子,从晶体场稳定化能来看,采取正方形比采取四面体构型有利,但由于MnV 半径较小47pm,若采取正方形构型,则配体之间的排斥力较大,不稳定;若采取四面体构型,则配体之间的排斥力减小,离子较稳定此时MnV 的半径也略有增大;在NiI 42-配离子中,尽管Ni 2+属d 8组态但由于它的半径仍较小,而I -的半径较大~216pm 且电负性也较大因而采取正方形构型时配体之间的斥力太大,而采取四面体构型可使斥力减小,因而稳定;同是d 8构型的Au 3+,它属第三长周期,半径较大,周围有较大的空间,此时晶体场稳定化能是决定配位离子几何构型的主导因素;由于采取正方形构型比采取四面体构型可获得较大的配位场稳定化能,因而它们的四配位离子,一般采取平面四方形,呈反磁性;47. 在对称的非线性分子中,如果体系的基态有几个简并能级,则是不稳定的,体系一定会发生畸变,使一个能级降低,以消除这种简并性; 48. 3 49. D50. 已知d x 2-y 2能级> d z 2能级>其他d 轨道能级,则应在下列何种场合产生A 正四面体场B 正八面体场C 拉长的八面体D 正方形场51. 在过渡金属的八面体络合物中,由于Jahn-Teller 效应使构型发生畸变,若为强场配体,大畸变发生在d 7,d 9,若为弱场配位体,大畸变发生在____________;52.下列络合物的几何构型哪一个偏离正八面体最大A 六水合铜ⅡB 六水合钴ⅡC 六氰合铁ⅢD 六氰合镍ⅡE 六氟合铁Ⅲ 53. 下列八面体络合物中,哪些会发生畸变为什么NiH 2O 62+,CuCl 64-,CrCN 63-,CoNH362+,FeH 2O 62+ 54.下列配为位离子中,哪个构型会发生畸变 A CrH 2O 63+B MnH 2O 62+C FeH 2O 63+D CrH 2O 62+55. 为什么 Mn 3+的六配位络离子为变形八面体,而 Cr 3+的配位络离子为正八面体构型 56. 在CuCl 2晶体中,Cu 2+周围有六个Cl -配位, 实验测得其中四个Cu —Cl 键长为230pm, 另外两个键长为295pm,试用配位场理论解释之;57. 某 AB 6n -型络合物属于O h 群,若中心原子 A 的d 电子数为6,试计算CFSE,并简单说明计算方案的理由;58. 试解释:①CoH 2O 62+比CoH 2O 63+稳定,②CoCN 63-比CoCN 64-稳定,③CoF 64-比CoBr 64-稳定; 59. 简述σ-π键的效应;60. NiCO 4中Ni 与CO 之间形成A 键B 键C -键61. CO 与过渡金属形成羰基络合物时,CO 键会A 不变B 加强C 削弱D 断裂62. 羰基络合物中,CO 键的键长比 CO 分子键长应A 不变B 缩短C 变长63. CN -是强场配体,ΔO 值特别大,按分子轨道理论,它以什么轨道形成反馈π键A 5σ轨道 B1π轨道 C2π轨道 D4σ轨道64. 试阐明银盐溶液分离烷烯烃混和物的基本原理; 65. 作图示出PtCl 3C 2H 4-中Pt 2+和C 2H 4间轨道重叠情况, 指出Pt 2+和C 2H 4 各用什么轨道成键以及电子授受情况,并讨论Pt 2+和C 2H 4形成的化学键对C 2H 4 中C-C 键的影响;50-65答案 50. C 51. d 4,d 952. A53. NiH 2O 62+,t 2g 6e g 2,不产生简并态,不发生畸变; CuCl 64-,t 2g 6e g 3,高能轨道出现简并态,大畸变; CrCN 63-,t 2g 3,不产生简并态,不发生畸变; CoNH 362+,t 2g 6e g 1,高能轨道出现简并态,大畸变; FeH 2O 62+,t 2g 4e g 2,低能轨道出现简并态,小畸变; 54. D55. Mn 3+: d 4,有Jahn-Teller 效应,发生畸变; Cr 3+: d 3,无Jahn-Teller 效应,正八面体;56. Cu 2+的d 电子排布是t 2g 6e g 3,e g 轨道上电子分布不对称, d z 2二个电子与配体斥力大, 呈拉长的八面体, 所以Cu-Cl 键长,d x 2-y 2上一个电子与配体的斥力小,Cu--Cl 键短;57. 属于O h 群,说明是理想的正八面体,没有John-Teller 效应引起的变形,d 电子应该按强场排布t 2g 6而不是弱场排布t 2g 4e g 2;58. ①H 2O 是弱场配体,对于Co 2+d 7,t 2g 5e g 2;对于Co 3+d 6,t 2g 4e g 2;前者的CFSE 较大,所以CoH 2O 62+较稳定;②CN -是强场配体,对于Co 2+d 7,t 2g 6e g 1;对于Co 3+d 6,t 2g 6;前者e g 上的一个电子很不稳定,易失去该电子而形成CoCN 63-;③CoF 64-的CFSE 较大,稳定;而CoBr 64-不稳定是由于Br -离子半径大不能形成六配位的八面体,可形成CoBr 42-,为四面体; 59. ①双重成键加强了两者之间的结合:金属离子和配体之间除了σ配键外,还有反馈π配键; ②削弱了配体内部的键:形成σ配键时,配体分子的成键π电子进入金属离子的空轨道,削弱了配体内部的键;形成反馈π键时电子从金属离子返回到配体分子的反键π轨道,去进一步削弱了配体内部的键; 60. C 61. C 62. C 63. CCN -:KK3σ24σ21π45σ21π0,其中充满电子的5σ轨道参与形成σ配键,1π空轨道参与形成反馈π键;64. Ag +的电子结构为4d 105s 0, 烯烃的电子与Ag +的5s 0形成配键,Ag的d 轨道与烯烃的反键空轨道形成反馈键, 生成稳定的-配合物而Ag +不与烷烃发生作用,从而达到分离的作用;65. Pt 2+5d 8采取dsp 2杂化,形成平面正方形配位结构,杂化轨道分别与Cl 的p 轨道和乙烯的成键轨道重叠,形成配键;Pt2+的未参与杂化的5d轨道与乙烯的反键轨道重叠形成反馈键,电子由Pt的5d流向乙烯的;乙烯成键轨道上的电子流向Pt, Pt上的电子流入乙烯的, 这两个效应均导致乙烯的C-C键削弱,键长增加;。

结构化学第三章习题答案

结构化学第三章习题答案

《结构化学》第三章习题答案3001 ( A, C )3002 H ab =∫ψa [-21∇2- a r 1 - br 1 +R 1 ] ψb d τ =E H S ab + R 1 S ab - ∫a r 1ψa ψb d τ= E H S ab + K因 E H = -13.6e V , S ab 为正值,故第一项为负值; 在分子的核间距条件下, K 为负值。

所以 H ab 为负值。

3003 ∫ψg ψu d τ=(4 - 4S 2)-1/2∫(ψa s 1+ψb s 1)((ψa s 1-ψb s 1)d τ = (4 - 4S 2)-1/2∫[ψa s 12 -ψb s 12 ] d τ= (4 - 4S 2)-1/2 [ 1 - 1 ] = 0故相互正交。

3004 ( C ) 3006 描述分子中单个电子空间运动状态的波函数叫分子轨道。

两个近似 (1) 波恩 - 奥本海默近似 ( 核质量 >> 电子质量 )(2) 单电子近似 (定态)3007 单个电子 3008 (B) 3009 (1) 能级高低相近 (2) 对称性匹配 (3) 轨道最大重叠 3010 不正确 3011 (B) 3012 ψ= (0.8)1/2φA + (0.2)1/2φB 3013 能量相近, 对称性匹配, 最大重叠> , < 或 < , >3014 正确 3015 不正确 3016 σ π π δ 30173018 z 3019 (C) 3020 π 3021 σ轨道: s -s , s -p z , s -d z , p z –p z , p z -2z d , 2z d -2z d ,π轨道p x –p x ,p x –d xz ,p y –p y ,p y –d yz ,d yz –d yz ,d xz –d xzδ轨道:d xy -d xy , d 22y x -- d 22y x -3022 σ δ π 不能 不能 3023 (B) 3024 原子轨道对 分子轨道p z -d xy ×p x -d xz πd 22y x -- d 22y x - δ2z d -2z d σp x –p x π3025 1σ22σ21π43σ2 , 3 , 反磁 3026 d xy , δ 3027 p y , d xy 3028 C 2 ( 1σg )2( 1σu )2( 1πu )2+2 s -p 混杂显著.因1σu 为弱反键,而1σg 和1πu 均为强成键,故键级在2-3之间.2: (1σg )2(1σu )2(1πu )4(2σg )2O 2: σ2s 2σ2s σ2pz 2π2px 2π2py 2π2px *π2py *1或 ( 1σg )2(1σu )22σg 2(1πu )4(1πg )23030 ( 1σg )2( 1σu )2( 1πu )4( 2σg )21 个σ键 (1σg )2,2个π键 (1πu )4,键级为 3( 1σu )2和(2σg )2分别具有弱反键和弱成键性质, 实际上成为参加成键作用很小的两对孤对电子,可记为 :N ≡N: 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《结构化学》第三章习题3001 H 2+的H ˆ= 21∇2- a r 1 - b r 1 +R1, 此种形式已采用了下列哪几种方法: ------------------------------ ( )(A) 波恩-奥本海默近似 (B) 单电子近似(C) 原子单位制 (D) 中心力场近似3002 分析 H 2+的交换积分(β积分) H ab 为负值的根据。

3003 证明波函数 ()()()()b a b a ψψψψψψS S s 1s 121u s 1s 121g 221221--=++=是相互正交的。

3004 通过变分法计算得到的微观体系的能量总是:----------------- ( )(A) 等于真实基态能量(B) 大于真实基态能量(C) 不小于真实基态能量(D) 小于真实基态能量3006 什么叫分子轨道?按量子力学基本原理做了哪些近似以后才有分子轨道的概念?这些近似的根据是什么?3007 描述分子中 _______________ 空间运动状态的波函数称为分子轨道。

3008 对于"分子轨道"的定义,下列叙述中正确的是:----------------- ( )(A) 分子中电子在空间运动的波函数(B) 分子中单个电子空间运动的波函数(C) 分子中单电子完全波函数(包括空间运动和自旋运动)(D) 原子轨道线性组合成的新轨道3009 试述由原子轨道有效地形成分子轨道的条件。

3010 在 LCAO-MO 中,所谓对称性匹配就是指两个原子轨道的位相相同。

这种说法是否正确?3011 在LCAO-MO 方法中,各原子轨道对分子轨道的贡献可由哪个决定:----------------- ( )(A) 组合系数 c ij (B) (c ij )2(C) (c ij )1/2 (D) (c ij )-1/23012 在极性分子 AB 中的一个分子轨道上运动的电子,在 A 原子的φA 原子轨道上出现的概率为80%, B 原子的φB 原子轨道上出现的概率为20%, 写出该分子轨道波函数 。

3013 设φA 和φB 分别是两个不同原子 A 和 B 的原子轨道, 其对应的原子轨道能量为E A 和E B ,如果两者满足________ , ____________ , ______ 原则可线性组合成分子轨道 = c A φA + c B φB 。

对于成键轨道, 如果E A ______ E B ,则 c A ______ c B 。

(注:后二个空只需填 "=" , ">" 或 "等比较符号 )3014 两个能量不同的原子轨道线性组合成两个分子轨道。

在能量较低的分子轨道中,能量较低的原子轨道贡献较大;在能量较高的分子轨道中,能量较高的原子轨道贡献较大。

这一说法是否正确?3015 凡是成键轨道都具有中心对称性。

这一说法是否正确?3016 试以 z 轴为键轴, 说明下列各对原子轨道间能否有效地组成分子轨道,若可能,则填写是什么类型的分子轨道。

3017 判断下列轨道间沿z 轴方向能否成键。

如能成键, 则在相应位置上填上分子轨道的名称。

3018 AB 为异核双原子分子,若φA yz d 与φB y p 可形成π型分子轨道,那么分子的键轴为____轴。

3019 两个原子的 d yz 轨道以 x 轴为键轴时, 形成的分子轨道为--------------------- ( )(A) σ轨道 (B) π轨道 (C) δ轨道 (D) σ-π轨道3020 若双原子分子 AB 的键轴是z 轴,则φA 的 d yz 与φB 的 p y 可形成________型分子轨道。

3021 现有4s ,4p x ,4p y ,4p z ,32d z ,3 d 22y x -,3d xy ,3d xz ,3d yz 等九个原子轨道,若规定z 轴为键轴方向,则它们之间(包括自身间)可能组成哪些分子轨道?各是何种分子轨道?3022 以z 轴为键轴,按对称性匹配原则, 下列原子轨道对间能否组成分子轨道?若能,写出是什么类型分子轨道,若不能,写出"不能",空白者按未答处理。

3023 若以x 轴为键轴,下列何种轨道能与p y 轨道最大重叠?-------------------------- ( )(A) s (B) d xy (C) p z (D) d xz3024 以 z 轴为键轴,下列"原子轨道对"之间能否形成分子轨道?若能,写出是什么轨道,若不能, 画"×" 。

原子轨道对 分子轨道p z ─d xyp x ─d xzd 22y x -─ d 22y x -2d z ─2d zp x ─p x3025 CO 分子价层基组态电子排布为_____________________________,_______________, 磁性________________。

3026 在 z 方向上能与 d xy 轨道成键的角量子数 l ≤2 的 原子轨道是 ____________ ,形成的分子轨道是_________轨道。

3027 在 x 方向上能与 d xy 轨道成键的角量子数l ≤2 的原子轨道是 ______ _______ 。

3028 写出N 2分子的基态价电子组态及其键级,说明原因。

3029 用分子轨道表示方法写出下列分子基态时价层的电子组态:N 2:_____________________________ ,O 2:_____________________________ 。

3030 写出N 2基态时的价层电子组态,并解N 2的键长(109.8?pm)特别短、键能(942 ?kJ ·mol -1)特别大的原因。

3031 写出下列分子的分子轨道的电子组态(基态), 并指明它们的磁性。

O 2 , C 23032 C2+的分子轨道为_________________,键级___________________;HCl 的分子轨道为________________,键级___________________ 。

3033 按照简单分子轨道理论:(1) HF 分子基组态电子排布为___________________________,键级_______________,磁性________________。

(2) O2-离子基组态电子排布为_____________________________,键级_______________,磁性________________。

3034 Cl2分子的HOMO 是_______________,LUMO 是_________________。

3035 写出CN-的价电子组态及键级。

3036 CF 和CF+哪一个的键长短些。

3037 请写出Cl2,O2+和CN-基态时价层的分子轨道表示式,并说明是顺磁性还是反磁性。

3038 下列分子或离子净成键电子数为1 的是:-------------------------- ( )N +(E) Li2(A) He2+(B) Be2(C)B2+(D)23039 下列分子中哪一个顺磁性最大:-------------------------- ( )(A) N2+(B) Li2(C) B2(D) C2(E) O2-3040 写出NF+的价电子组态、键级和磁性。

3041 下列分子的键长次序正确的是:-------------------------- ( )(A) OF-> OF > OF+(B) OF > OF-> OF+(C) OF+> OF > OF-(D) OF- > OF+> OF3042 OF,OF+,OF-三个分子中,键级顺序为________________。

3043 比较下列各对分子和离子的键能大小:N2,N2+( )O2,O2+( )OF,OF-( )CF,CF+( )Cl2,Cl2+( )3044 CO 是一个极性较小的分子还是极性较大的分子?其偶极矩的方向如何?为什么?3045 OH 基的第一电离能是13.2?eV ,HF 的第一电离能是16.05?eV ,它们的差值几乎与O原子和F原子的2p 轨道的价轨道电离能之间的差值相同,请用分子轨道理论解释这个结果。

3046 试用分子轨道理论讨论OH 基的结构。

(1) 写出OH 基的电子组态并画出能级图;(2) 什么类型的分子轨道会有未成对电子;(3) 讨论此轨道的性质;(4) 比较OH 基和OH-基的最低电子跃迁的能量大小。

3047 HF 分子以何种键结合?写出这个键的完全波函数。

3048 已知H 原子的电负性为2.1 ,F 原子的电负性为4.0 ,H2的键长为74 pm ,F2的键长为142 pm 。

现由H 原子和F 原子结合成HF 分子,(1) 写出HF 分子的电子组态;(2) 利用共价半径及电负性差值计算HF 分子的键长。

3049 在C2+,NO,H2+,He2+等分子中,存在单电子σ键的是______________ ,存在三电子σ键的是______________ ,存在单电子π键的是______________ 。

存在三电子π键的是______________ 。

3050 用分子轨道理论预测N22-,O22-和F22-能否稳定存在?它们的键长与其中性分子相对大小如何?3051 用分子轨道理论预测N2+,O2+和F2+能否稳定存在;它们的键长与其中性分子相对大小如何?3052 用分子轨道理论估计N2,O2,F2,O22+和F2+等是顺磁分子还是反磁分子。

3053 判断NO 和CO 哪一个的第一电离能小,原因是什么?3054 HBr 分子基态价层轨道上的电子排布是_________________________ 。

3055 下列分子的正离子和中性分子相比,解离能的大小如何:N2,NO,O2,C2,F2,CN,CO3056(1) 写出O2分子的电子结构,分析其成键情况,并解释O2分子的磁性;(2) 列出O22-,O2-,O2和O2+的键长次序;(3) 有三个振动吸收带:1097 cm-1,1580 cm-1和1865 cm-1,它们被指定为是由O2,O2+和O2-所产生的,指出哪一个谱带是属于O2+的。

3057 下列分子中,键能比其正离子的键能小的是____________________ 。

键能比其负离子的键能小的是________________________ 。

O2,NO,CN,C2,F23058 下列各对中哪一个有较大的解离能:Li2与Li2+;ㄧ与C2+;O2与O2+;与F2+。

相关文档
最新文档