生物化学 Bioenergetics and Biological Oxidation
生物化学(英文版)biochemistry-chapter1英
Through biochemical research, people can understand the basic processes and mechanisms of organisms, explore the mechanisms of disease occurrence and development, and provide scientific basis for disease prevention, diagnosis, and treatment.
Biochemistry is an interdisciplinary field that aims to reveal the chemical essence behind life phenomena.
Definition of Biochemistry
Biochemistry helps to increase crop yield and improve quality in agriculture, and contributes to the development of nutritious, safe, and reliable new types of food in the food industry.
Large molecules in living organisms, such as proteins, nucleic acids, and polysaccharides, all have carbon as their core.
Carbon atoms can form complex network structures through covalent bonds, which endow biomolecules with high diversity and stability.
生物化学名词解释
《生物化学》名词解释总结生物化学biochemistry生物化学即生命的化学,是一门研究生物体的化学组成、体内发生的反应和过程的学科。
肽键peptide bond蛋白质分子中的主要共价键,是连接两个氨基酸的酰胺键,由一个羧基和一个氨基脱水缩合而成肽peptide氨基酸通过肽键相连的化合物,蛋白质不完全水解的产物也是肽。
一般含有几个到十几个以下的氨基酸组成的肽称为寡肽oligopeptide,由十几个以上的氨基酸组成的称为多肽poly peptide蛋白质的一级结构primary structure蛋白质的一级结构是指多肽链中氨基酸残基的排列顺序,包括形成二硫键的半胱氨酸残基的位置。
一级结构是蛋白质空间构象和生物学功能的基础,但不是决定其空间构象的唯一因素。
蛋白质的二级结构secondary structure蛋白质的二级结构是指多肽链中相邻的氨基酸残基形成的局部肽链空间结构,是主链原子的局部空间排列。
二级结构的形式包括α螺旋、β片层、β转角、π螺旋、随意卷曲等。
蛋白质的三级结构tertiary structure蛋白质的三级结构是指整条多肽链中所有氨基酸残基,包括相距甚远的氨基酸残基主链和侧链所形成的全部分子结构。
蛋白质的四级结构quaternary structure蛋白质的四级结构是指各具独立三级结构的多肽链再以各自特定的形式接触排布后,结集所形成的蛋白质最高层次空间结构。
超二级结构super secondary structure蛋白质分子中的一些二级结构单元,往往有规律地聚集在一起,形成相对稳定的超二级结构的基本形式(如αα、βββ、βαβ等),又称模体motif结构域structural domain单个或多个超二级结构进一步集结起来,形成的在蛋白质分子空间结构中明显可区分的区域,称为结构域,结构域同时又是蛋白质分子中分工的功能单位。
亚基subunit部分蛋白质分子由几条多肽链组成,每条多肽链都是其独立的三级结构,这些肽链再以各自特定形式接触排布后,形成蛋白质的四级结构,而这些具有独立三级结构的肽链称为亚基,亚基单独存在时不具有生物活性。
生物化学名词解释
绪论1.生物化学(biochemistry):从分子水平来研究生物体(包括人类、动物、植物和微生物内基本物质的化学组成、结构,以及在生命活动中这些物质所进行的化学变化(即代谢反应)的规律及其与生理功能关系的一门科学,是一门生物学与化学相结合的基础学科。
2.新陈代谢(metabolism):生物体与外界环境进行有规律的物质交换,称为新陈代谢。
通过新陈代谢为生命活动提供所需的能量,更新体内基本物质的化学组成,这是生命现象的基本特征,是揭示生命现象本质的重要环节。
3.分子生物学(molecular biology):分子生物学是现代生物学的带头学科,它主要研究遗传的分子基础(分子遗传学),生物大分子的结构与功能和生物大分子的人工设计与合成,以及生物膜的结构与功能等。
4.药学生物化学:是研究与药学科学相关的生物化学理论、原理与技术,及其在药物研究、药品生产、药物质量控制与药品临床中应用的基础学科。
第一章糖的化学1.糖基化工程:通过人为的操作(包括增加、删除或调整)蛋白质上的寡糖链,使之产生合适的糖型,从而达到有目的地改变糖蛋白的生物学功能。
2.单糖(monosaccharide):凡不能被水解成更小分子的糖称为单糖。
单糖是糖类中最简单的一种,是组成糖类物质的基本结构单位。
3.多糖(polysaccharide):由许多单糖分子缩合而成的长链结构,分子量都很大,在水中不能成真溶液,有的成胶体溶液,有的不溶于水,均无甜味,也无还原性。
4.寡糖(oligosaccharide):是由单糖缩合而成的短链结构(一般含2~6个单糖分子)。
5.结合糖(glycoconjugate):也称糖复合物或复合糖,是指糖和蛋白质、脂质等非糖物质结合的复合分子。
6.同聚多糖(homopolysaccharide):也称为均一多糖,由一种单糖缩合而成,如淀粉、糖原、纤维素、戊糖胶、木糖胶、阿拉伯糖胶、几丁质等。
7.杂多糖(heteropolysaccharide):也称为不均一多糖,由不同类型的单糖缩合而成,如肝素、透明质酸和许多来源于植物中的多糖如波叶大黄多糖、当归多糖、茶叶多糖等。
生物化学概论
4、层析 (1)离子交换层析:电荷、分子量、分子形状 (2)亲和层析:生物特性 (3)吸附层析:吸附特性 (4)凝胶过滤层析(分子筛):
分子大小及形状大分子先洗脱下 来 5、超速离心:分子大小及形状、溶液特性
5.2 Pr含量测定法
1. 微量凯氏定氮法: 2. 缩二脲法: 稀CuSO4 ,NaOH; 肽键 3. Lowry’s法:Folin-酚试剂
由特殊的亚单位(subunit)按一定的顺序、首 尾连接形成的多聚物(polymer)。
亚单位在多聚物中的排列是有一定顺序(称为序 列,sequence)。序列决定着生物大分子的空 间(立体)结构形式和功能,决定着生物大分子 的信息内容。
Байду номын сангаас
蛋白质和核酸的比较
1.组 成
①基本组成单位 氨基酸
核苷酸
5. 紫外吸收法
由于核酸在260nm具有光吸收,对测定干扰较大,可 采用280nm、260nm同测法。 蛋白质浓度mg/ml=1.45A280-0.74A260
变性
粘度↑
粘度↓ Tm
复性
3.2 空间结构与功能的关系
1. 空间结构(特定区域)体现生物活性;空间 结构的灵活性,体现了生物活性的可调节特 性。【举例】变构效应
2. 空间构象并非生物活性的唯一影响因素 【举例】低温下酶活性低,但并不影响构象; 盐析时沉淀的酶无活性,但构象不变。
3. 蛋白构象疾病: 错误构象相互聚集,形成抗蛋白水解酶的淀
➢ 生物分子: 由C、H、O、N等组成的有机化合物 如:糖类、脂类、蛋白质、核酸和维生素等。
➢ 生物大分子 : 分子量较大,结构复杂 包括:聚糖类、聚脂类、蛋白质和核酸等
➢ 生物信息分子: 结构蕴藏信息 包括:聚糖类、蛋白质和核酸等
生物化学与分子生物学学会
生物化学与分子生物学学会生物化学与分子生物学学会(Society for Biochemistry and Molecular Biology,简称ASBMB)是一个致力于生物化学和分子生物学研究的国际性组织,其成立的主要目的是为了促进和发展生物化学和分子生物学学科以及相关领域的研究和教育工作。
ASBMB成立于1906年,总部设在美国马里兰州贝塞斯达市,目前已经发展成为一个全球范围内拥有超过18,000名会员的组织。
其会员涵盖了从初学者到世界著名专家的各个层次,包括学生、研究人员、教师、科学家、科研管理人员、出版商等。
ASBMB以发表权威的学术刊物、组织国际性学术会议、提供培训及奖励计划、推动科学政策制定等方式促进和发展生物化学和分子生物学领域。
其主要学术刊物包括“生物化学和分子生物学杂志(Journal of Biological Chemistry)”、“分子和细胞生物学杂志(Molecular and Cellular Biology)”、“蛋白质科学杂志(Protein Science)”等期刊。
这些期刊以高质量的出版物和严格审稿程序赢得了广泛的认可和尊重,并为ASBMB的发展提供了重要的支撑。
在组织国际性学术会议方面,ASBMB定期举办各类研讨会、研究生课程、研究所、论坛等活动,为各国生物化学和分子生物学领域的专家学者提供了交流互动、分享经验、展示研究成果的平台。
其中,ASBMB年会是其最重要的会议之一,每年举行一次,可以汇聚全球生物化学和分子生物学领域的精英人才,为学界、产业界和政府机构提供了广泛的交流和合作机会。
在提供培训及奖励计划方面,ASBMB的目标是鼓励和支持年轻科学家的发展,为他们提供各种培训、研究基金、科研奖项等机会。
其提供的奖项包括“ASBMB杰出成就奖(ASBMB Award for Exemplary Contributions to Education)”、“ASBMB新面孔奖(ASBMB Award for Exemplary Contributions to Research)”、“ASBMB儿童医院研究奖(ASBMB Children's Hospital Research Award)”等,这些奖项都被认为是生物化学和分子生物学领域中最具荣誉和价值的奖项之一。
生物化学习题与答案_生物氧化
生物氧化〔一〕名词解释1.生物氧化〔 biological oxidation〕2.呼吸链〔 respiratory chain〕3.氧化磷酸化〔 oxidative phosphorylation〕4.磷氧比 P/O〔P/O〕5.底物水平磷酸化〔 substrate level phosphorylation〕6.能荷〔 energy charge 〕( 二)填空题1.生物氧化有 3 种方式: _________、 ___________和__________ 。
2.生物氧化是氧化复原过程,在此过程中有 _________、_________和________ 参与。
3.原核生物的呼吸链位于_________。
4,△ G'为负值是_________反响,可以_________进展。
05.△G'与平衡常数的关系式为_________,当 Keq= 1 时,△ G'为_________。
6.生物分子的 E0'值小,那么电负性 _________,供出电子的倾向 _________。
7.生物体内高能化合物有_________、 _________、 _________、 _________、_________、 _________等类。
8.细胞色素 a 的辅基是 _________与蛋白质以 _________键结合。
9.在无氧条件下,呼吸链各传递体都处于_________状态。
10.NADH呼吸链中氧化磷酸化的偶联部位是_________、_________、_________。
11.磷酸甘油与苹果酸经穿梭后进人呼吸链氧化,其P/O比分别为_____和_____。
12.举出三种氧化磷酸化解偶联剂_________、_________、_________。
13.举出 4 种生物体内的天然抗氧化剂_________、_________、_________、_________。
14.举出两例生物细胞中氧化脱羧反响_________、_________。
生物化学英语
生物化学英语Biological chemistry, also known as bio-chemistry, is the scientific study of chemical processes within and related to living organisms. It studies the structure and behavior ofthe molecules that make up living cells and investigates the chemical mechanisms of biological phenomena. It combines physical, chemical, and mathematics principles to understand essential processes of life at the molecular level.Biochemists investigate the structure and properties of proteins, lipids, carbohydrates, and other important biomolecules, as well as the transfer of energy and its transformation into organic matter in photosynthesis and cellular respiration. Biological chemistry is also concerned with the regulation of biochemical pathways and their relationship to physiological responses, such as those of the immune system. This field also studies the interactions of organic molecules in the body, including their effects on different diseases, and their interactions with drugs.Biochemists employ various techniques to analyze and manipulate biomolecules, including chromatography, electrophoresis, fluorimetry, spectrophotometry, spectrometry, mass spectroscopy, centrifugation, and x-ray crystallography. Through these methods, biochemists are able to determine the structure of biomolecules, identify them, and analyze their function. They can also create synthetic molecules to studythe reaction dynamics of cellular processes such as signal transduction, protein folding, and gene expression.In addition to investigating molecules involved in life processes, biochemists also explore their potentialapplications in biotechnology. This includes developing new pharmaceuticals, agricultural products, and food additives through the modification of existing molecules or the creation of new ones. Biochemists are also responsible for designing and constructing novel biomolecular machines and nanostructures that could be used for medical diagnosis and treatment.Thus, biological chemistry is an important and dynamic field of science that is essential to the advancement of modern medicine and biotechnology. It provides a unique platform from which to explore the inner workings of life and to develop innovative ways of combating disease.。
生物化学名词解释
生物化学名词解释集锦第一章蛋白质1.两性离子(dipolarion)2.必需氨基酸(essential amino acid)3.等电点(isoelectric point,pI)4.稀有氨基酸(rare amino acid)5.非蛋白质氨基酸(nonprotein amino acid) 6.构型(configuration)7.蛋白质的一级结构(protein primary structure)8.构象(conformation)9.蛋白质的二级结构(protein secondary structure)10.结构域(domain)11.蛋白质的三级结构(protein tertiary structure)12.氢键(hydrogen bond)13.蛋白质的四级结构(protein quaternary structure)14.离子键(ionic bond)15.超二级结构(super-secondary structure) 16.疏水键(hydrophobic bond)17.范德华力( van der Waals force) 18.盐析(salting out)19.盐溶(salting in)20.蛋白质的变性(denaturation)21.蛋白质的复性(renaturation)22.蛋白质的沉淀作用(precipitation) 23.凝胶电泳(gel electrophoresis)24.层析(chromatography)第二章核酸1.单核苷酸(mononucleotide)2.磷酸二酯键(phosphodiester bonds)3.不对称比率(dissymmetry ratio)4.碱基互补规律(complementary base pairing)5.反密码子(anticodon)6.顺反子(cistron)7.核酸的变性与复性(denaturation、renaturation)8.退火(annealing)9.增色效应(hyper chromic effect)10.减色效应(hypo chromic effect)11.噬菌体(phage)12.发夹结构(hairpin structure)13.DNA 的熔解温度(melting temperature Tm)14.分子杂交(molecular hybridization)15.环化核苷酸(cyclic nucleotide)第三章酶与辅酶1.米氏常数(Km 值)2.底物专一性(substrate specificity)3.辅基(prosthetic group)4.单体酶(monomeric enzyme)5.寡聚酶(oligomeric enzyme)6.多酶体系(multienzyme system)7.激活剂(activator)8.抑制剂(inhibitor inhibiton)9.变构酶(allosteric enzyme)10.同工酶(isozyme)11.诱导酶(induced enzyme)12.酶原(zymogen)13.酶的比活力(enzymatic compare energy)14.活性中心(active center)第四章生物氧化与氧化磷酸化1.生物氧化(biological oxidation)2.呼吸链(respiratory chain)3.氧化磷酸化(oxidative phosphorylation)4.磷氧比P/O(P/O)5.底物水平磷酸化(substrate level phosphorylation)6.能荷(energy charg第五章糖代谢1.糖异生(glycogenolysis)2.Q 酶(Q-enzyme)3.乳酸循环(lactate cycle)4.发酵(fermentation)5.变构调节(allosteric regulation)6.糖酵解途径(glycolytic pathway)7.糖的有氧氧化(aerobic oxidation)8.肝糖原分解(glycogenolysis)9.磷酸戊糖途径(pentose phosphate pathway) 10.D-酶(D-enzyme)11.糖核苷酸(sugar-nucleotide)第六章脂类代谢1.必需脂肪酸(essential fatty acid)2.脂肪酸的α-氧化(α- oxidation)3.脂肪酸的β-氧化(β- oxidation)4.脂肪酸的ω-氧化(ω- oxidation)5.乙醛酸循环(glyoxylate cycle)6.柠檬酸穿梭(citriate shuttle)7.乙酰CoA 羧化酶系(acetyl-CoA carnoxylase)8.脂肪酸合成酶系统(fatty acid synthase system)第八章含氮化合物代谢1.蛋白酶(Proteinase)2.肽酶(Peptidase)3.氮平衡(Nitrogen balance)4.生物固氮(Biological nitrogen fixation)5.硝酸还原作用(Nitrate reduction)6.氨的同化(Incorporation of ammonium ions into organic molecules)7.转氨作用(Transamination)8.尿素循环(Urea cycle)9.生糖氨基酸(Glucogenic amino acid)10.生酮氨基酸(Ketogenic amino acid)11.核酸酶(Nuclease)12.限制性核酸内切酶(Restriction endonuclease)13.氨基蝶呤(Aminopterin)14.一碳单位(One carbon unit)第九章核酸的生物合成1.半保留复制(semiconservative replication)2.不对称转录(asymmetric trancription)3.逆转录(reverse transcription)4.冈崎片段(Okazaki fragment)5.复制叉(replication fork)6.领头链(leading strand)7.随后链(lagging strand)8.有意义链(sense strand)9.光复活(photoreactivation)10.重组修复(recombination repair)11.内含子(intron)12.外显子(exon)13.基因载体(genonic vector)14.质粒(plasmid)第十一章代谢调节1.诱导酶(Inducible enzyme)2.标兵酶(Pacemaker enzyme)3.操纵子(Operon)4.衰减子(Attenuator)5.阻遏物(Repressor)6.辅阻遏物(Corepressor)7.降解物基因活化蛋白(Catabolic gene activator protein)8.腺苷酸环化酶(Adenylate cyclase)9.共价修饰(Covalent modification)10.级联系统(Cascade system)11.反馈抑制(Feedback inhibition)12.交叉调节(Cross regulation)13.前馈激活(Feedforward activation)14.钙调蛋白(Calmodulin)第十二章蛋白质的生物合成1.密码子(codon)2.反义密码子(synonymous codon) 3.反密码子(anticodon)4.变偶假说(wobble hypothesis)5.移码突变(frameshift mutant)6.氨基酸同功受体(isoacceptor)7.反义RNA(antisense RNA)8.信号肽(signal peptide)9.简并密码(degenerate code)10.核糖体(ribosome)11.多核糖体(poly some)12.氨酰基部位(aminoacyl site)13.肽酰基部位(peptidy site)14.肽基转移酶(peptidyl transferase) 15.氨酰- tRNA 合成酶(amino acy-tRNA synthetase)16.蛋白质折叠(protein folding)17.核蛋白体循环(polyribosome) 18.锌指(zine finger)19.亮氨酸拉链(leucine zipper)20.顺式作用元件(cis-acting element) 21.反式作用因子(trans-acting factor) 22.螺旋-环-螺旋(helix-loop-helix)第一章蛋白质1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。
化学生物学 专业英语
化学生物学专业英语English:Chemical biology is an interdisciplinary field that combines the principles of chemistry and biology to address important biological questions at the molecular level. This field focuses on understanding the chemical processes and interactions that occur within living organisms, and how they can be manipulated for various applications. Chemical biologists use a wide range of techniques and tools, such as chemical synthesis, spectroscopy, and imaging, to study biological systems and elucidate the underlying molecular mechanisms. By gaining a deep understanding of the chemical aspects of biological processes, chemical biologists can contribute to the development of new drugs, the design of novel biomaterials, and the engineering of cellular systems for therapeutic purposes.中文翻译:化学生物学是一门跨学科领域,将化学和生物学的原理结合起来,以解决分子水平上重要的生物学问题。
生物化学的英语名词解释
生物化学的英语名词解释生物化学是一门研究生命体内化学反应过程的学科,主要关注生命体内的分子和化学反应,以及它们对生命体结构和功能的影响。
在生物化学领域中,有许多专业术语和名词,下面将对其中一些常见的名词进行解释。
1. Protein(蛋白质):Proteins are large molecules composed of amino acids, linked together by peptide bonds. They play a crucial role in many biological processes, serving as structural components, enzymes, hormones, receptors, and transporters in the body.2. Enzyme(酶):Enzymes are catalysts that facilitate chemical reactions in living organisms. They accelerate the rate of reactions by lowering the activation energy required for the reaction to occur. Enzymes are usually proteins, and each enzyme is specific to a particular reaction.3. DNA(脱氧核糖核酸):DNA, or deoxyribonucleic acid, is a molecule that carries the genetic instructions used in the growth, development, functioning, and reproduction of all known living organisms. It consists of two long chains of nucleotides twisted into a double helix structure.4. RNA(核糖核酸):RNA, or ribonucleic acid, is a molecule that plays multiple roles in the coding, decoding, regulation, and expression of genes. It is involved in protein synthesis and acts as a messenger between DNA and ribosomes.5. Metabolism(代谢):Metabolism refers to all the chemical reactions that occur in an organism to maintain life. It can be divided into two main processes: catabolism, which breaks down molecules to release energy, and anabolism, which synthesizes molecules to build and repair tissues.6. Lipid(脂质):Lipids are a diverse group of biomolecules that are insoluble in water but soluble in organic solvents. They include fats, oils, phospholipids, and steroids. Lipids serve as a source of energy, insulation, and as structural components of cell membranes.7. Carbohydrate(碳水化合物):Carbohydrates are organic compounds that consist of carbon, hydrogen, and oxygen atoms. They are an essential source of energy for living organisms. Carbohydrates can be classified as monosaccharides (simple sugars), disaccharides, and polysaccharides.8. Metabolite(代谢产物):Metabolites are the small molecules that are intermediates or end products of metabolic reactions. They can serve as signaling molecules, energy sources, or building blocks for complex molecules.9. pH(pH值):pH is a measure of the acidity or alkalinity of a solution. It is determined by the concentration of hydrogen ions (H+) present in the solution. pH values range from 0 to 14, with 7 being considered neutral, values below 7 acidic, and values above 7 alkaline.10. ATP(三磷酸腺苷):ATP, or adenosine triphosphate, is a molecule that serves as the primary energy source for many cellular processes. It is often referred to as the "energy currency" of the cell, as it stores and releases energy during reactions.这些是生物化学中常见的一些名词和术语的英语解释。
第九版生物化学与分子生物学
第九版生物化学与分子生物学英文回答:Biochemistry and molecular biology are two closely related fields that study the chemical processes and molecules that are essential for life. These disciplines provide insights into the fundamental mechanisms of living organisms at the molecular level. In biochemistry, we investigate the chemical reactions and pathways that occur within cells, while molecular biology focuses on the structure and function of biomolecules such as DNA, RNA, and proteins.Biochemistry plays a crucial role in understanding how cells function and how diseases develop. For example, the study of enzymes, which are proteins that catalyze biochemical reactions, helps us understand metabolic pathways and how they can be disrupted in diseases such as cancer. By studying the structure and function of biomolecules, molecular biology provides insights into howgenetic information is stored, transmitted, and expressed. This knowledge is essential for developing new treatments and therapies for genetic disorders.One of the major advancements in biochemistry and molecular biology is the development of techniques for DNA sequencing. The ability to sequence the entire genome of an organism has revolutionized our understanding of genetics and has opened up new possibilities for personalized medicine. For example, by sequencing an individual's genome, we can identify genetic variations that may increase their risk of developing certain diseases. This information can then be used to develop targeted therapies or preventive measures.Another important area of research in biochemistry and molecular biology is the study of protein structure and function. Proteins are involved in almost every biological process and understanding their structure allows us to understand how they carry out their functions. This knowledge is crucial for drug discovery and development, as many drugs target specific proteins to treat diseases. Forexample, the development of drugs that target specific proteins involved in cancer cell growth has revolutionized cancer treatment and improved patient outcomes.In conclusion, biochemistry and molecular biology are interdisciplinary fields that provide insights into the chemical processes and molecules that are essential forlife. These fields have revolutionized our understanding of genetics, disease mechanisms, and drug development. The advancements made in these fields have paved the way for personalized medicine and have the potential to greatly impact human health.中文回答:生物化学和分子生物学是两个紧密相关的领域,研究生命必需的化学过程和分子。
生物能学原理及生物氧化
目录
(二)热力学第二定律 ——自动发生的过程总熵增加
熵(entropy)表示一个系统的无序或随机程度。 常用∆G(自由能的变化)衡量一个生物化学过程是否能够自发进行:
∆G<0,反应不可逆 ∆G>0,反应为吸能反应( ∆G值越大,则系统 越 稳定,发生反应的倾向越小。) ∆G=0,反应系统处于平衡状态
-30.5 -27.6 -27.6 -20.9 -15.9 -14.2
(-10.3)
(-7.3) (-6.6) (-6.6) (-5.0) (-3.8) (-3.4)
6-磷酸葡萄糖
3-磷酸甘油醛
-13.8
-9.2
(-3.3)
(-2.2)
目录
(二)ATP将热力学上不利的过程和有利 的反应相偶联
体内许多代谢物的“活化” 反应(吸能)大多直接或间接地与ATP酸 酐键的水解放能反应相偶联,使“活化”反应能顺利进行。
目录
4. 复合体Ⅳ将电子从细胞色素C传递给氧
复合体Ⅳ
还原型Cyt c → CuA→a→a3→CuB
→ O2
其中Cyt a3 和CuB形成的活性部位将电子交给O2。
目录
细胞色素C氧化酶CuA中心
目录
细胞色素氧化酶a3-CuB中心
目录
HO-Y O2
HO-Y(Tyrosine 244)
Fe (Ⅱ)
需耗氧、排出CO2,又在活细胞内进行,故又称 细胞呼吸(cellular respiration)。
目录
* 生物氧化的一般过程
糖
脂肪
O2 CO2和H2O ADP+Pi
蛋白质
能量
ATP
热能
目录
营养物质分解氧化三阶段
生物化学与分子生物学 英语
生物化学与分子生物学英语Biological chemistry and molecular biology are two closely related fields in the study of living organisms at the molecular level. Biological chemistry focuses on the chemical processes within living organisms, while molecular biology studies the structure and function of the molecules that make up living organisms.Biological chemistry, also known as biochemistry, explores the chemical processes and substances that occur within living organisms. This includes the study of biological molecules such as proteins, nucleic acids, carbohydrates, and lipids, as well as the chemical reactions that take place in cells. Biochemists seek to understand how these molecules and processes contribute to the overall function and regulation of living organisms.Molecular biology, on the other hand, focuses on the structure and function of the molecules that make up living organisms, particularly DNA, RNA, and proteins. Molecular biologists study how these molecules interact and how they are involved in processes such as gene expression, replication, and protein synthesis. They also investigatehow variations in these molecules can lead to diseases and other disorders.Both biological chemistry and molecular biology are essential for understanding the fundamental processes of life, as well as for developing new treatments for diseases and improving human health. By studying the molecular mechanisms of living organisms, scientists can gaininsights into how biological systems function and how they can be manipulated for various purposes.生物化学与分子生物学是研究生物体分子水平的两个密切相关领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
异丙基焦磷酸 甲羟基戊酸 类花生酸
红色表示放能 蓝色表示耗能
生物氧化
第一节 生物能学
一、化学反应的自由能(G)
△G = G产物 - G反应物 = △H - T△S
△G < 0,反应自发进行,可做有用功。 △G > 0,不能自发进行。 △G = 0,处于平衡状态。
自由能的变化与反应路径无关。
△G < 0只是反应能自发进行的必要条件。 当△ G 为正值时,反应吸能,此时只有与
第一步:Glc + Pi → G-6-P + H2O
△G 1´° = 13.8 kJ/mol 第二步:ATP + H2O → ADP + Pi △G 2´° = - 30.5 kJ/mol △G总´° = - 16.7 kJ/mol
一个热力学上不能进行的反应,可与其它 反应偶联,使整个反应可以进行。在生物体内, 此类反应很普遍。 分步进行的连续反应1,2,…n. △G总´°= △G 1 ´°+ △G 2 ´°+ … + △G n ´°
第十章 生物能学和氧化磷酸化
Bioenergetics and Oxidative phosphorylation
要求
1. 了解自由能变化与化学反应平衡的关系
2. 了解生物氧化的特点 3. 掌握氧化磷酸化作用
4. 了解抑制剂和解偶联剂对氧化磷酸化的
调控
自养生物
异养生物
分解代谢与合成代谢
趋同的分解代谢与趋异的合成代谢
四、高能磷酸化合物
水解产生25 kJ/mol以上能量的磷酸化合物。
1. 高能化合物的类型
① 磷氧键型 a. 酰基磷酸化合物: 3-磷酸甘油酸磷酸,乙酰磷酸, 氨甲酰磷酸,酰基腺苷酸,氨酰腺苷酸
b. 焦磷酸化合物:无机磷酸,ATP,ADP
c. 烯醇式磷酸化合物:磷酸烯醇式丙酮酸
酰基磷酸化合物
化学渗透:电子传递过程中释放的自由能驱动
H+从线粒体基质跨过内膜进入到膜间 隙,H+电化学梯度驱动ATP合成。
2. ATP合成机制
亲和素
抗生物素蛋白
3. 解偶联机制 电子传递与磷酸化作用解偶联。
A. 解偶联剂
2, 4-二硝基苯酚,酸性环境中携带H+, 破坏跨膜梯度,抑制ATP的形成,不抑制电 子传递过程。
3. 细胞色素还原酶(Complex Ⅲ) 辅酶Q-细胞色素c还原酶,细胞色素bc1复 合体。
4. 细胞色素氧化酶(Complex Ⅳ)
四、电子传递链的抑制剂 1. 鱼藤酮、安密妥、杀粉蝶菌素 阻止电子从NADH向CoQ传递 2. 抗菌素A
抑制电子从Cyt b向Cyt c1传递
3. 氰化物、硫化氢、叠氮化物、CO 阻断电子从Cyt aa3 向O2传递
磷酸肌酸、磷酸精氨酸储存能量
能荷: [ATP + 0.5ADP] / [ATP + ADP + AMP]×100%
五、生物氧化及其特点 生物氧化:糖、脂、蛋白质在细胞中氧化
分解,生成CO2和H2O,并释放能量。
特点:活细胞中进行, pH 中性,温度适 中,一系列酶和中间体参与,逐步释放能量。
真核细胞的生物氧化在线粒体中进行,原 核细胞的生物氧化在细胞膜上进行。
一、氧化还原电势与自由能变化
电子传递链的氧化还原电势
氧化还原电势与标准自由能 △G´°=- n F△E´°
n : 转移电子数
F:法拉第常数,96.48 kJ/V· mol △E´°: 电子供体与电子受体的标准电势差。
二、电子传递过程
生物氧化途径中生成大量的还原型辅酶, 其中的氢以质子形式脱下,电子沿电子传 递链转移,最后质子和电子传递到氧分子 上,生成H2O。
放能反应相偶联,反应才能进行。
二、自由能变化与化学反应平衡常数的关系 aA+ bB = cC+ d D
△G°-标准自由能的变化 若将标准状况pH定为pH=7.0,则标准 值自由能的变化用△G ´°表示。
标准状态下pH= 7.0时的平衡常数
平衡常数与化学 反应标准自由能 变化的关系
标准状态平衡常数、标准自由能变化 与化学反应方向
B. 解偶联蛋白
褐色脂肪线粒体
产热素
Thermogenin
可以被脂肪酸激活
葡萄糖完全氧化合成ATP的数量
标准自由能变化举例
三、自由能变化的可加性 在多个偶联的化学反应中,总自由能的 变化等于每一步反应自由能变化之和。 A → B,△G 1´°;B → C,△G 2 ´° A → C,△G总´°
△G总´° = △G 1 ´° + △G 2 ´°
举例:总反应 Glc + ATP → G-6-P + ADP
焦磷酸化合物
烯醇式磷酸化合物
② 氮磷键型 磷酸肌酸,磷酸精氨酸 ③ 硫酯键型 3-磷酸腺苷-5-磷酰硫酸
酰基辅酶A
④ 甲硫键型 S-腺苷甲硫氨酸
氮磷键型
硫酯键型
甲硫键型
高能磷酸化合物与低能磷酸化合物
2. 生物体能量的储存和利用 ATP、磷酸肌酸、磷酸精氨酸
ATP是胞内产能反应和需能反应的偶联剂
底物磷酸化:酵解途径中
1, 3-二磷酸甘油酸,磷酸烯醇丙酮酸 氧化磷酸化占90%以上。
第二节 氧化磷酸化
细胞内有机分子氧化分解成CO2和H2O, 并释放出能量使ADP和Pi合成ATP的过程。
需氧细胞通过一系列酶的催化作用实现
的以电子传递链为基础的氧化还原反应,并
利用此过程释放的能量合成ATP。
可分为电子传递和ATP合成。
电子传递链的抑制剂
五、ATP的合成
1. 能量偶联假说
1953年 Edward Slater---化学偶联
1964年 Pual Boyer---构象偶联
1961年 Peter Mitchell---化学渗透
化学偶联:电子传递过程中,高能中间物裂 解,驱动ATP合成。 构象偶联:电子传递过程中,线粒体内膜蛋 白构象变成高能形式,驱动ATP合成。
电子传递链
P/O比
在氧化磷酸化过程中2个电子通过电子传递 链传递给氧所产生ATP的分子数。 NADH → 2.5 ATP FADH2→1.5 ATP
三、电子传递链的组成
1. NADH-Q还原酶(ComplexⅠ)
铁硫蛋白
辅酶Q接受黄素酶脱下的电子和氢原子
2. 琥珀酸-Q还原酶(ComplexⅡ)