直线的参数方程
选修4-4 第五节几种常见的参数方程
x=1+2cos t, (0≤t≤π),把它化为普通 y=-2+2sin t
方程,并判断该曲线表示什么图形.
所求的曲线的参数方程为 (x-1)2+(y+2)2=4(-2≤y≤0). 这是一个半圆,其圆心为(1,-2),半径为 2.
例2
已知圆的普通方程为
x2+y2+2x-6y+9=0, 将它化为参
轴上,所以椭圆的标准方程为 + =1, 25 16 x=4cos θ , 故参数方程为 (θ 为参数). y=5sin θ
y2
x2
(x-1)2 (y+2)2 1. 写出圆锥曲线 + =1 的 3 5
例1
x=5+3t, 设直线的参数方程为 y=10-4t.
(1)求直线的普通方程; (2)化参数方程为标准形式.
解析:(1) 4x+3y-50=0.
3 4 4 k tan (2) 3 cos α =- ,sin α = . 5 5 3 x=5- u, 5 则参数方程的标准形式为: 4 y=10+ u. 5
例 3 已知直线 l 的方程为 3x-4y+1=0,点 P(1,1)在 直线 l 上,写出直线 l 的参数方程,并求点 P 到点 M(5,4)和 点 N(-2,6)的距离.
3 解析:由直线方程 3x-4y+1=0 可知,直线的斜率为 ,设直线的 4 3 3 4 则 tan α = ,sin α = ,cos α = . 4 5 5
制作人:葛海泉
课前预习
1.பைடு நூலகம்线的参数方程
x=x0+tcosα , 1. 经过点 M0(x0, y0), 倾斜角为 α 的直线 l 的参数方程为 y=y0+tsinα
(t 为参数).
t0
直线的参数方程及应用
直线的参数方程及应用直线的参数方程及应用直线参数方程的标准式过点P(x,y),倾斜角为α的直线l的参数方程是x = x + tcosαy = y + tsinα其中t为参数,表示有向线段PP的数量,P(x,y)为直线上的任意一点。
直线l上的点与对应的参数t是一一对应关系。
若P1、P2是直线上两点,所对应的参数分别为t1、t2,则P1P2 = t2 - t1,|P1P2| = |t2 - t1|。
若P1、P2、P3是直线上的点,所对应的参数分别为t1、t2、t3,则P1P2中点P3的参数为t3 = (t1 + t2)/2,|PP3| = |(t1 + t2)/2|。
若P为P1P2的中点,则t1 + t2 = 0,t1·t2 < 0.直线参数方程的一般式过点P(xb,y),斜率为k = a的直线的参数方程是x = x + aty = y + bt其中t为参数,表示有向线段PP的数量,P(xb,y)为直线上的任意一点。
直线的参数方程给定点P(xl,y),倾斜角为α,求经过该点的直线l的参数方程。
直线l的参数方程为x = x + tcosαy = y + tsinα其中t为参数,表示有向线段PP的数量,P(xl,y)为直线上的任意一点。
特别地,若直线l的倾斜角α = 90°,直线l的参数方程为x = x + ty = y其中t为参数,表示有向线段PP的数量,P(xl,y)为直线上的任意一点。
2、直线的参数方程与标准形式如果直线的方向已知,那么可以使用参数方程来表示直线。
对于倾斜角为 $\alpha$,过点 $M(x,y)$ 的直线 $l$,其参数方程一般式为:begin{cases}x=x_M+t\cos\alpha \\y=y_M+t\sin\alphaend{cases}其中 $t$ 是参数,表示从点 $M$ 沿着直线 $l$ 方向前进的距离。
如果要将参数方程转化为标准形式,可以通过以下步骤:1.消去参数 $t$,得到 $y-y_M=\dfrac{\sin\alpha}{\cos\alpha}(x-x_M)$。
直线的参数方程
直线的参数方程(1)直线的标准参数方程:经过定点,倾斜角为的直线的参数方程为:(为参数);性质:(2)直线的一般参数方程:过定点,且其斜率为的直线的参数方程为: 性质:(为参数,为为常数,)例1.把y=2x+3化为参数方程。
变式:直线l 的方程:1sin 252cos 25x t y t ì=-ïí=+ïî(t 为参数),那么直线l 的倾斜角( ) A 65° B 25° C 155° D 115°例2. 已知直线l:15x t y ì=+ïíï=-î (t 为参数)与直线m:0x y --=交于P 点, 求点M(1,-5)到点P 的距离.例3:已知直线L过点M(1,1),且倾斜角的余弦值为35,L与圆229x y+=交与A,B,且AB中点为C(1)求L的参数方程(2)求中点C所对应的参数t及C点坐标(3)求|CM|(4)求|AM|(5)求|AB|(6)求|MA|+|MB|(7)求|MA||MB|二、根据t的式子求解1.在平面直角坐标系中,圆的参数方程为(为参数),直线经过点,倾斜角.(Ⅰ)写出圆的标准方程和直线的参数方程;(Ⅱ)设与圆相交于、两点,求的值.2.在直角坐标系xOy中,直线的参数方程为(为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以轴正半轴为极轴)中,圆C的方程为ρ=2sinθ.(1)求圆C的直角坐标方程;(2)设圆C与直线交于点.若点的坐标为(3,),求.3.在直角坐标系中,以原点为极点,以轴正半轴为极轴,圆的极坐标方程为(Ⅰ)将圆的极坐标方程化为直角坐标方程;(Ⅱ)过点作斜率为1直线与圆交于两点,试求的值.4.在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为 (为参数),与分别交于. (Ⅰ)写出的平面直角坐标系方程和的普通方程; (Ⅱ)若成等比数列,求的值.5.已知圆锥曲线(为参数)和定点,、是此圆锥曲线的左、右焦点,以原点为极点,以轴的正半轴为极轴建立极坐标系.(1)求直线的直角坐标方程; (2)经过点且与直线垂直的直线交此圆锥曲线于、两点,求的值.6.在直角坐标系xOy 中,圆C 的方程为22(+6)+=25x y .(Ⅰ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是(t 为参数),l 与C 交于A ,B 两点,AB =求l 的斜率.圆的参数方程已知圆心为,半径为的圆的参数方程为:(是参数,);1.在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos r q =,0,2p q 轾Î犏臌. (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.椭圆的参数方程椭圆()的参数方程(为参数)。
直线的参数方程(最全)
则 t 的几何意义:t=M0M
t>0
M 在 M0 的上方
t=0 M 与 M0 重合
t<0
M 在 M0 的下方
非标准形式 一般说来,t 不具有上述 几何意义
x x0 at
y
y0
bt
(t 为参数)
表示过定点(x0,y0),斜率
为 b 的直线的参数方程
a
例1
已知直线 L 过点 M0(4,0),倾为
(t为参数)
b ( a2 b2 t)
a2 b2
设: a = cos; b sin; a2 b2t t,则
a2 b2
a2 b2
x y
x0 y0
tcos(t为参数) tsin
当b 0时,t有上述的几何意义。
基础训练
1
直线
x y
2t 1
sin 200 t cos 200
直线的参数方程
2020/7/4
请同学们回忆:
直线的普通方程都有哪些?
点斜式: y y0 k(x x0) y kx b
两点式: y y1 x x1
y2 y1 x2 x1
x y 1 ab
一般式: Ax By C 0
法线式: Ax By C 0 (直线l的法向量(A,B))
t cos t sin
(t为参数)
思考
由M0M te,你能得到直线l的参数方程中
参数t的几何意义吗?
解: M0M te M0M te
y M
又 e是单位向量, e 1
M0M t e t
M0
所以,直线参数方程中
参数t的绝对值等于直
线上动点M到定点M0的 距离. |t|=|M0M|
直线的参数方程及应用
直线的参数方程及应用1、 直线参数方程的标准式(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ⎩⎨⎧+=+=ααs i n c o s00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)为直线上任意一点.P 0P=t ∣P 0P ∣=t(2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,则P 1P 2=t 2-t 1,∣P 1P 2∣=∣t 2(3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t +2.直线参数方程的一般式过点P 0(00,y x ),斜率为ab k =的直线的参数方程是:⎩⎨⎧+=+=bty y at x x 00 (t 为参数) 例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义,例2:化直线2l 的参数方程⎩⎨⎧+=+-= t313y t x (t 为参数)为普通方程,并求倾斜角, 说明∣t ∣的几何意义.例3:已知直线l 过点M 0(1,3),倾斜角为3π,判断方程⎪⎪⎩⎪⎪⎨⎧+=+=t y tx 233211(t 为参数)和方程⎩⎨⎧+=+= t331y t x (t 为参数)是否为直线l 的参数方程?如果是直线l 的参数方程,指出方程中的参数t 是否具有标准形式中参数t 的几何意义.例4:写出经过点M 0(-2,3),倾斜角为43π的直线l 的标准参数方程,并且求出直线l 上与点M 0相距为2的点的坐标.例5:已知直线l 过点P (2,0),斜率为34,直线l 和抛物线x y 22=相交于A 、B 两点, 设线段AB 的中点为M,求:(1)P 、M 两点间的距离|PM|;(2)M 点的坐标; (3)线段AB 的长|AB|例6:已知直线l 经过点P (1,-33),倾斜角为3π, (1)求直线l 与直线l ':32-=x y 的交点Q 与P 点的距离| PQ |; (2)求直线l 和圆22y x +=16的两个交点A ,B 与P 点的距离之积.例7:设抛物线过两点A(-1,6)和B(-1,-2),对称轴与x 轴平行,开口向右,直线y=2x +7被抛物线截得的线段长是410,求抛物线方程.xy ,)例8:已知椭圆134)1(22=+-y x ,AB 是通过左焦点F 1的弦,F 2为右焦点, 求| F 2A |·| F 2B |的最大值.方法总结:利用直线l 的参数方程⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数),给研究直线与圆锥曲线C :F(y x ,)=0的位置关系提供了简便的方法.一般地,把l 的参数方程代入圆锥曲线C :F(y x ,)=0后,可得一个关于t 的一元二次方程,)(t f =0, 1、(1)当Δ<0时,l 与C 相离;(2) 当Δ=0时,l 与C 相切;(3) 当Δ>0时,l 与C 相交有两个交点;2、 当Δ>0时,方程)(t f =0的两个根分别记为t 1、t 2,把t 1、t 2分别代入l 的参数方程即可求的l 与C 的两个交点A和B 的坐标.3、 l 被C 截得的弦AB 的长|AB|=|t 1-t 2|;P 0A ·P 0B= t 1·t 2;弦AB 中点M 点对应的参数为221t t +;| P 0M |=221t t +基础知识测试1、 求过点(6,7),倾斜角的余弦值是23的直线l 的标准参数方程.2、 直线l 的方程:⎩⎨⎧+=-= 25cos 225sin 1t y t x (t 为参数),那么直线l 的倾斜角( ) A 65° B 25° C 155° D 115°3、 直线⎪⎪⎩⎪⎪⎨⎧+-=-=ty t x 521511(t 为参数)的斜率和倾斜角分别是( )A) -2和arctg(-2) B) -21和arctg(-21) C) -2和π-arctg2 D) -21和π-arctg 214、 已知直线⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)上的点A 、B 所对应的参数分别为t 1,t 2,点P 分线段BA 所成的比为λ(λ≠-1),则P 所对应的参数是 .5、直线l :⎩⎨⎧+=+=bty y at x x 00 (t 为参数)A 、B 是直线l 上的两个点,分别对应参数值t 1、t 2,那么|AB|等于( )A ∣t 1-t 2∣B 22b a +∣t 1-t 2∣C 2221b a t t +- D ∣t 1∣+∣t 2∣6、 已知直线l :⎩⎨⎧+-=+= t351y tx (t 为参数)与直线m :032=--y x 交于P 点,求点M(1,-5)到点P 的距离.7、 直线⎩⎨⎧+-=+=t21y t x (t 为参数)与椭圆8222=+y x 交于A 、B 两点,则|AB|等于( ) 8、直线⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)与二次曲线A 、B 两点,则|AB|等于( )A |t 1+t 2|B |t 1|+|t 2|C |t 1-t 2| D221t t +9、 直线⎪⎩⎪⎨⎧+-=-=t211212y t x (t 为参数)与圆122=+y x 有两个交点A 、B ,若P 点的坐标为(2,-1),则|PA|·|PB|=10、过点P(6, 27)的直线⎪⎩⎪⎨⎧+=+=t 2726y t x 与抛物线y 2=2x 相交于A 、B 两点,则点P 到A,B 距离之积为 11.直线⎩⎨⎧-=+=20cos 420sin 3t y t x (t 为参数)的倾斜角 .。
直线的参数方程
直线的参数方程1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M 得到的参数方程⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =ba (a ,b 为常数)的直线,参数方程为⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.1.已知直线l 的方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),则直线l 的倾斜角为( )A .65°B .25°C .155°D .115°解析:选D.方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),化为标准形式⎩⎪⎨⎪⎧x =1+t cos 115°,y =2+t sin 115°(t为参数),倾斜角为115°.故选D.2.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-22t ,y =2+22t (t 为参数),则直线l 的斜率为( )A .1B .-1 C.22D .-22解析:选B.直线l 的普通方程为x +y -1=0,斜率为-1.故选B.3.以t 为参数的方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t表示( )A .过点(1,-2)且倾斜角为π3的直线B .过点(-1,2)且倾斜角为π3的直线C .过点(1,-2)且倾斜角为2π3的直线D .过点(-1,2)且倾斜角为2π3的直线解析:选C.化参数方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t (t 为参数)为普通方程得y +2=-3(x -1).直线过定点(1,-2),斜率为-3,倾斜角为2π3,故选C.4.过抛物线y 2=4x 的焦点F 作倾斜角为π3的弦AB ,则弦AB 的长是________.解析:由已知焦点F (1,0),又倾斜角为π3,cos π3=12,sin π3=32.所以弦AB 所在直线的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t (t 为参数),代入抛物线的方程y 2=4x ,得⎝ ⎛⎭⎪⎫32t 2=4⎝ ⎛⎭⎪⎫1+12t .整理得3t 2-8t -16=0.设方程两根分别为t 1,t 2,则有⎩⎪⎨⎪⎧t 1+t 2=83,t 1·t 2=-163.由参数t 的几何意义得|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=⎝ ⎛⎭⎪⎫832+643=163.答案:163根据直线的参数方程求直线的倾斜角、斜率已知直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t sin αy =-2+t cos α,(t 为参数),其中实数α的取值范围是⎝ ⎛⎭⎪⎫π2,π.求直线l 的倾斜角. [解] 设直线l 的倾斜角为θ,则由题意知tan θ=cos αsin α=1tan α=tan ⎝ ⎛⎭⎪⎫3π2-α,所以θ=3π2-α.所以直线l 的倾斜角为3π2-α.由直线的参数方程求倾斜角与斜率的方法已知直线l 的参数方程(1)若是标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),则可直接得出倾斜角即方程中的α,否则需化成标准式再求α.(2)若是一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt ,则当a ≠0时,斜率k =b a ,再由tan α=ba 及0≤α<π求出α,当a =0时,显然直线与x 轴垂直,倾斜角为α=π2.(3)若是其他形式,则通过消参化成普通方程,再求斜率及倾斜角.1.若直线的参数方程为⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数),则此直线的斜率为( )A. 3 B .- 3 C .33D .-33解析:选B.直线的参数方程⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数)可化为标准形式⎩⎪⎨⎪⎧x =3+⎝ ⎛⎭⎪⎫-12(-t )y =3+32(-t ),(-t 为参数). 所以直线的斜率为- 3.2.若直线的参数方程为⎩⎪⎨⎪⎧x =2-3ty =1+t ,(t 为参数),求直线的斜率.解:法一:把直线的参数方程⎩⎪⎨⎪⎧x =2-3ty =1+t ,消去参数t 得x +3y -5=0, 所以其斜率k =-13.法二:由⎩⎪⎨⎪⎧x =2-3t y =1+t ,得⎩⎪⎨⎪⎧x -2=-3ty -1=t ,所以k =y -1x -2=t -3t =-13. 直线参数方程中参数几何意义的应用已知过点M (2,-1)的直线l :⎩⎪⎨⎪⎧x =2-t2,y =-1+t2(t 为参数),与圆x 2+y 2=4交于A ,B 两点,求|AB |及|AM |·|BM |.[解] l 的参数方程为⎩⎪⎨⎪⎧x =2-22⎝ ⎛⎭⎪⎫t 2,y =-1+22⎝ ⎛⎭⎪⎫t 2(t 为参数).令t ′=t2,则有⎩⎪⎨⎪⎧x =2-22t ′,y =-1+22t ′(t ′为参数).其中t ′是点M (2,-1)到直线l 上的一点P (x ,y )的有向线段的数量,代入圆的方程x 2+y 2=4,化简得t ′2-32t ′+1=0.因为Δ>0,可设t 1′,t 2′是方程的两根,由根与系数的关系得t 1′+t 2′=32,t 1′t 2′=1.由参数t ′的几何意义得|MA |=|t 1′|,|MB |=|t 2′|,所以|MA |·|MB |=|t 1′·t 2′|=1,|AB |=|t 1′-t 2′|=(t 1′+t 2′)2-4t 1′t 2′=14.(1)在直线参数方程的标准形式下,直线上两点之间的距离可用|t 1-t 2|来求.本题易错的地方是:将题目所给参数方程直接代入圆的方程求解,忽视了参数t 的几何意义.(2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论: ①直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; ②定点M 0是弦M 1M 2的中点⇒t 1+t 2=0;③设弦M 1M 2中点为M ,则点M 对应的参数值t M =t 1+t 22(由此可求|M 1M 2|及中点坐标).在极坐标系中,已知圆心C ⎝⎛⎭⎪⎫3,π6,半径r =1.(1)求圆的直角坐标方程;(2)若直线⎩⎪⎨⎪⎧x =-1+32t ,y =12t(t 为参数)与圆交于A ,B 两点,求弦AB 的长.解:(1)由已知得圆心C ⎝ ⎛⎭⎪⎫332,32,半径为1,圆的方程为⎝⎛⎭⎪⎫x -3322+⎝ ⎛⎭⎪⎫y -322=1,即x 2+y 2-33x -3y +8=0.(2)由⎩⎪⎨⎪⎧x =-1+32t ,y =12t (t 为参数)得直线的直角坐标方程x -3y +1=0,圆心到直线的距离d =⎪⎪⎪⎪⎪⎪332-332+12=12,所以⎝ ⎛⎭⎪⎫|AB |22+d 2=1,解得|AB |= 3. 直线参数方程的综合应用已知直线l 过定点P (3,2)且与x 轴和y 轴的正半轴分别交于A ,B 两点,求|PA |·|PB |的值为最小时的直线l 的方程.[解] 设直线的倾斜角为α,则它的方程为⎩⎪⎨⎪⎧x =3+t cos α,y =2+t sin α(t 为参数).由A ,B 是坐标轴上的点知y A =0,x B =0,所以0=2+t sin α, 即|PA |=|t |=2sin α,0=3+t cos α,即|PB |=|t |=-3cos α,故|PA |·|PB |=2sin α·⎝ ⎛⎭⎪⎫-3cos α=-12sin 2α. 因为90°<α<180°,所以当2α=270°,即α=135°时, |PA |·|PB |有最小值.所以直线方程为⎩⎪⎨⎪⎧x =3-22t ,y =2+22t (t 为参数),化为普通方程为x +y -5=0.利用直线的参数方程,可以求一些距离问题,特别是求直线上某一定点与曲线交点距离时使用参数的几何意义更为方便.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy 取相同长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |. 解:(1)由ρ=25sin θ,得ρ2=25ρsin θ. 所以x 2+y 2-25y =0,即x 2+(y -5)2=5. (2)法一:直线l 的普通方程为y =-x +3+5,与圆C :x 2+(y -5)2=5联立,消去y ,得x 2-3x +2=0,解之得⎩⎨⎧x =1y =2+5或⎩⎨⎧x =2,y =1+ 5.不妨设A (1,2+5),B (2,1+5). 又点P 的坐标为(3,5), 故|PA |+|PB |=8+2=3 2.法二:将l 的参数方程代入x 2+(y -5)2=5,得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0,① 由于Δ=(32)2-4×4=2>0. 故可设t 1,t 2是①式的两个实根. 所以t 1+t 2=32,且t 1t 2=4. 所以t 1>0,t 2>0.又直线l 过点P (3,5),所以由t 的几何意义,得|PA |+|PB |=|t 1|+|t 2|=3 2.1.对直线参数方程标准形式中参数t 的理解从参数方程推导的过程中可知参数t 应理解为直线l 上有向线段M 0M →的数量,它的几何意义可以与数轴上点A 的坐标的几何意义作类比,|t |=|M 0M →|代表有向线段M 0M →的长度.另外,将直线的点斜式方程y -y 0=k (x -x 0)改写成y -y 0sin α=x -x 0cos α,其中k =tan α,α为直线倾斜角,则t =y -y 0sin α=x -x 0cos α,则有⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α,从中不难看出直线的普通方程(点斜式)与参数方程(标准式)的联系.2.化直线的参数方程一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t 为参数)为标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),由⎩⎪⎨⎪⎧x =x 0+aty =y 0+bt 变形为⎩⎪⎨⎪⎧x =x 0+a a 2+b 2·a 2+b 2ty =y 0+b a 2+b2·a 2+b 2t,令cos α=aa 2+b2,sin α=b a 2+b2,t ′=a 2+b 2 t ,则可得标准式⎩⎪⎨⎪⎧x =x 0+t ′cos αy =y 0+t ′sin α(t ′为参数),其中α为直线的倾斜角,k =tan α=ba 为直线的斜率.1.直线⎩⎪⎨⎪⎧x =1+t cos αy =-2+t sin α,(α为参数,0≤α<π)必过点( )A .(1,-2)B .(-1,2)C .(-2,1)D .(2,-1)解析:选A.由参数方程可知该直线是过定点(1,-2),倾斜角为α的直线.2.已知直线l 1:⎩⎪⎨⎪⎧x =1+3ty =2-4t ,(t 为参数)与直线l 2:2x -4y =5相交于点B ,且点A (1,2),则|AB |=________.解析:将⎩⎪⎨⎪⎧x =1+3t y =2-4t,代入2x -4y =5,得t =12,则B ⎝ ⎛⎭⎪⎫52,0.而A (1,2),得|AB |=52.答案:523.已知曲线C 的极坐标方程为ρ=1,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,直线l的参数方程是⎩⎪⎨⎪⎧x =-1+4ty =3t ,(t 为参数),则直线l与曲线C 相交所截得的弦长为________.解析:曲线C的直角坐标方程为x 2+y 2=1,将⎩⎪⎨⎪⎧x =-1+4ty =3t ,代入x 2+y 2=1中得25t 2-8t =0,解得t 1=0,t 2=825.故直线l 与曲线C 相交所截得的弦长l =42+32·|t 2-t 1|=5×825=85.答案:85[A 基础达标]1.直线⎩⎪⎨⎪⎧x =2+3ty =-1+t ,(t 为参数)上对应t =0,t =1两点间的距离是( )A .1B .10C .10D .2 2解析:选B.将t =0,t =1代入参数方程可得两点坐标为(2,-1)和(5,0), 所以d =(2-5)2+(-1-0)2=10.2.若⎩⎪⎨⎪⎧x =x 0-3λ,y =y 0+4λ(λ为参数)与⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)表示同一条直线,则λ与t 的关系是( )A .λ=5tB .λ=-5tC .t =5λD .t =-5λ解析:选C.由x -x 0,得-3λ=t cos α,由y -y 0,得4λ=t sin α,消去α的三角函数,得25λ2=t 2,得t =±5λ,借助于直线的斜率,可排除t =-5λ,所以t =5λ.3.经过点M (1,5)且倾斜角为π3的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A.⎩⎪⎨⎪⎧x =1+12t ,y =5-32t(t 为参数)B .⎩⎪⎨⎪⎧x =1-12t ,y =5+32t (t 为参数)C.⎩⎪⎨⎪⎧x =1-12t ,y =5-32t(t 为参数)D .⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数)解析:选D.该直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos π3,y =5+t sin π3(t 为参数),即⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数),选D.4.若直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)与直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)互相垂直,那么a 的值等于( )A .1B .-13C .-23D .-2解析:选D.直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)的斜率为y +12x =-a2,直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)的斜率为y -1x -1=-1,由两直线垂直得-a2×(-1)=-1得a =-2.故选D. 5.对于参数方程⎩⎪⎨⎪⎧x =1-t cos 30°y =2+t sin 30°和⎩⎪⎨⎪⎧x =1+t cos 30°y =2-t sin 30°,下列结论正确的是( )A .是倾斜角为30°的两平行直线B .是倾斜角为150°的两重合直线C .是两条垂直相交于点(1,2)的直线D .是两条不垂直相交于点(1,2)的直线 解析:选B.因为参数方程⎩⎪⎨⎪⎧x =1-t cos 30°,y =2+t sin 30°可化为标准形式⎩⎪⎨⎪⎧x =1+t cos 150°,y =2+t sin 150°,所以其倾斜角为150°.同理,参数方程⎩⎪⎨⎪⎧x =1+t cos 30°,y =2-t sin 30°,可化为标准形式⎩⎪⎨⎪⎧x =1+(-t )cos 150°,y =2+(-t )sin 150°,所以其倾斜角也为150°.又因为两直线都过点(1,2),故两直线重合.6.若直线⎩⎪⎨⎪⎧x =1-2ty =2+3t ,(t 为参数)与直线4x +ky =1垂直,则常数k =________.解析:由直线的参数方程可得直线的斜率为-32,由题意得直线4x +ky =1的斜率为-4k ,故-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案:-67.已知直线l 的斜率k =-1,经过点M 0(2,-1).点M 在直线上,以M 0M →的数量t 为参数,则直线l 的参数方程为____________.解析:因为直线的斜率为-1, 所以直线的倾斜角α=135°. 所以cos α=-22,sin α=22. 所以直线l 的参数方程为⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数).答案:⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数)8.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =1+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝ ⎛⎭⎪⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.解析:直线l 的普通方程为y =x +2,曲线C 的直角坐标方程为x 2-y 2=4(x ≤-2),故直线l 与曲线C 的交点为(-2,0),对应极坐标为(2,π).答案:(2,π)9.已知曲线C :ρ=2cos θ,直线l :⎩⎪⎨⎪⎧x =2-t ,y =32+34t ,(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任一点P 作与l 夹角为45°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α,(α是参数).直线l 的普通方程为3x +4y -12=0.(2)曲线C 上任意一点P (1+cos α,sin α)到l 的距离为d =15|3cos α+4sin α-9|,则|PA |=d sin 45°=2⎪⎪⎪⎪⎪⎪sin(α+φ)-95,且tan φ=34. 当sin(α+φ)=-1时,|PA |取得最大值1425; 当sin(α+φ)=1时,|PA |取得最小值425. 10.(2016·高考全国卷甲)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44. 由|AB |=10得cos 2α=38,tan α=±153. 所以l 的斜率为153或-153. [B 能力提升]11.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为( )A .1B .2C .3D .4 解析:选C.直线l :⎩⎪⎨⎪⎧x =t ,y =t -a消去参数t 后得y =x -a . 椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1. 又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3.12.给出两条直线l 1和l 2,斜率存在且不为0,如果满足斜率互为相反数,且在y 轴上的截距相等,那么直线l 1和l 2叫做“孪生直线”.现在给出4条直线的参数方程如下:l 1:⎩⎪⎨⎪⎧x =2+2t ,y =-4-2t (t 为参数); l 2:⎩⎪⎨⎪⎧x =3-22t ,y =4-22t (t 为参数); l 3:⎩⎪⎨⎪⎧x =1+t ,y =1-t (t 为参数); l 4:⎩⎪⎨⎪⎧x =6+22t ,y =8+22t (t 为参数). 其中能构成“孪生直线”的是________.解析:根据条件,两条直线构成“孪生直线”意味着它们的斜率存在且不为0,且互为相反数,且在y 轴上的截距相等,也就是在y 轴上交于同一点.对于本题,首先可以判断出其斜率分别为-1,1,-1,1,斜率互为相反数条件很明显.再判断在y 轴上的截距,令x =0得出相应的t 值,代入y 可得只有直线l 3和直线l 4在y 轴上的截距相等,而其斜率又恰好互为相反数,可以构成“孪生直线”.答案:直线l 3和直线l 413.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为:⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数),直线l 与曲线C 分别交于M ,N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若|PM |,|MN |,|PN |成等比数列,求a 的值.解:(1)曲线的极坐标方程变为ρ2sin 2θ=2aρcos θ,化为直角坐标方程为y 2=2ax ;直线⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数)化为普通方程为y =x -2. (2)将⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,代入y 2=2ax 得 t 2-22(4+a )t +8(4+a )=0.则有t 1+t 2=22(4+a ),t 1t 2=8(4+a ),因为|MN |2=|PM |·|PN |,所以(t 1-t 2)2=t 1·t 2,即(t 1+t 2)2-4t 1t 2=t 1t 2,(t 1+t 2)2-5t 1t 2=0,故8(4+a )2-40(4+a )=0,解得a =1或a =-4(舍去).故所求a 的值为1.14.(选做题)以直角坐标系原点O 为极点,x 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12+t cos αy =t sin α,(t 为参数,0<α<π),曲线C的极坐标方程ρ=2cos θsin 2θ. (1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值.解:(1)由ρ=2cos θsin 2θ得ρ2sin 2θ=2ρcos θ,所以曲线C 的直角坐标方程为y 2=2x . (2)将直线l 的参数方程代入y 2=2x ,得t 2sin 2α-2t cos α-1=0,设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=2cos αsin 2α,t 1·t 2=-1sin 2α, 所以|AB |=|t 1-t 2| =(t 1+t 2)2-4t 1t 2 =4cos 2αsin 4α+4sin 2α=2sin 2α, 当α=π2时,|AB |取得最小值2.。
直线的标准参数方程
直线的标准参数方程直线是我们在几何学中经常接触到的一种基本图形,而直线的参数方程是描述直线的一种重要方式。
在本文中,我们将详细介绍直线的标准参数方程及其应用。
首先,我们来看一下直线的标准参数方程是如何定义的。
对于直线上的任意一点P(x, y),我们可以用参数t来表示其坐标,即P(x, y) = P(x(t), y(t))。
而直线的标准参数方程可以表示为:x(t) = x1 + at。
y(t) = y1 + bt。
其中,(x1, y1)是直线上的一点,而a和b分别是直线的方向向量。
这样,我们就可以用参数t来表示直线上的任意一点,这就是直线的标准参数方程。
接下来,我们来看一下直线的标准参数方程的应用。
首先,我们可以通过参数方程方便地表示直线上的点。
当我们知道直线上的一点和方向向量时,直接代入参数t就可以得到直线上的任意一点的坐标。
这在计算直线上的点的坐标时非常方便。
其次,直线的标准参数方程还可以用于表示直线的方程。
我们知道,一般情况下直线的方程可以表示为Ax + By + C = 0,而通过参数方程我们也可以将直线的方程表示为x = x1 + at, y = y1 + bt的形式。
这样,我们就可以用参数方程来表示直线的方程,这对于一些特定问题的求解非常有用。
此外,直线的标准参数方程还可以用于表示直线的向量方程。
我们知道,直线的向量方程可以表示为r = a + tb,其中r是直线上的一点的位置向量,a是直线上的一点的位置向量,b是直线的方向向量。
而直线的标准参数方程正是直线的向量方程的一种特殊形式,通过参数方程我们也可以方便地得到直线的向量方程。
综上所述,直线的标准参数方程是描述直线的一种重要方式,它可以用于表示直线上的点、直线的方程以及直线的向量方程。
通过参数方程,我们可以更方便地进行直线相关问题的求解,这对于我们理解直线的性质和应用也非常有帮助。
总之,直线的标准参数方程是我们在几何学中经常接触到的一个重要概念,它有着广泛的应用价值。
直线的参数方程
3
直线参数方程可以用于解决一些与直线相关的 解析几何问题,如交点、距离等。
在物理中的应用
在力学中,直线参数方程可以用于描述物体的运 动轨迹。
在电磁学中,直线参数方程可以用于描述电流和 电压的关系。
在光学中,直线参数方程可以用于描述光的传播 路径。
在计算机图形学中的应用
在计算机图形学中 ,直线参数方程可 以用于绘制直线和 曲线。
在计算机图形学中,直线的参数方程可以用来描述物体的形状和轮廓。例如,在 绘制一条直线时,可以使用直线的参数方程来表示。这种方程形式可以方便地表 示出直线的方向和位置,并且可以方便地进行绘制和控制。
直线参数方程与三维建模
在三维建模中,直线的参数方程可以用来描述物体的表面和边缘。例如,在创建 一个立方体或球体时,可以使用直线的参数方程来表示。这种方程形式可以方便 地表示出物体的形状和轮廓,并且可以方便地进行修改和控制。
THANK YOU.
用点斜式推导直线参数方程
总结词
利用点斜式的直线方程,推导出直线参数方程的表达式 。
详细描述
已知直线通过点 $P_{1}(x_{1}, y_{1})$ 和斜率为 $k$, 则直线的点斜式方程为 $y - y_{1} = k(x - x_{1})$。为 了将其转化为参数方程形式,引入参数 $t$ 并令 $y y_{1} = t$,则 $x = x_{1} + \frac{t}{k}$
直线参数方程的特殊形式包括
当 θ = π/2 时,直线垂直于 y 轴 ,t 为任意实数;
直线参数方程的性质还包括:通 过改变 t 的值可以得到直线上不 同的点,t 的取值范围为全体实数 。
02
直线参数方程的应用
在解析几何中的应用
直线参数方程的标准形式
直线参数方程的标准形式
直线的参数方程的标准形式,是在二维空间中表示直线的最常用的数学表达式。
它的特点是由一个个系数加以组合,表示属于直线一般方程组中的任意一个方程,形式如下:
1、标准形式:Ax+By+C=0;
2、含有参数的方程:x=at+b;
3、含有两个参数的方程:y=at+b/ct+d;
4、极坐标的参数方程:r=a+bθ;
5、椭圆的参数方程:x=acost+bsint;
6、椭圆的参数方程:y=adcbrt+bssqrt;
7、双曲线的参数方程:x=acosth+bsinth;
8、双曲线的参数方程:y=a cosh + b sinh;
9、圆的参数方程:x=acost+bsint;
10、圆的参数方程:y=a cosh + b sinh;
准确说,直线参数方程不仅包含上述几种,还有环境、双曲面等特殊形式。
但总的来说,参数方程都有两个参数,它们会改变直线的斜率和位移,以便实现所需的椭圆和曲线,同时保持直线的特性。
归根结底,参数方程的作用就在于使图形变得灵活多变,以便根据不同的应用场景,实现准确的绘图效果。
通过控制参数的变化,可以快速地实现圆、弧等曲线图形的绘制,而不需要为每个曲线绘制一行程序代码。
直线的参数方程
1.运动(一般)式:
x y
x0 y0
vx vy
t t
(t为参数) (t为时间)
vy
M(x,y)
vx
M0(x0,y0)
2.数量(标准)式:
(t为参数) M0(x0,y0)
(t为数量)
M(x,y)
x
注1.区分: 运动特例数量式 非负为1平方和
运动(一般)式
x y
x0 y0
at bt
数量(标准)式 a2 b2 1
x y
1 2t at 2 .
,(t为为参参数
,aa∈ R
)) ,且点M(5,4)在C
则常数a=__1_____
(4)若曲线M:
x
y
sin cos 2
A.(2,7)
B. (1 , 1) 32
(θ为参数) ,则在M上的点是
C. (1 , 1) 22
【C】 D.(1,0)
二、直线的参数方程
一、以焦点F为极点,以对称轴为极轴的极坐标系:
建立如图所示的极坐标系,
则圆锥曲线有统一的极坐标方程
M(ρ,θ)
ep
F
x
1 e cos
注1:椭圆(双曲线)的焦参数 p b2c注2:若AB为焦源自弦,则|AB|
2ep
1 e2 cos2
;
1 1 2 | AF | | BF | ep
二、以直角坐标系的x正半轴为极轴的极坐标系:
cos 20
数形结合巧转化 类比三角辅助角
除以振幅正余弦 同+异-纵为正
(7)将直线的普通方程 x 3y 1 0 改写成参数方程
析①
:直线的参数方程为
x
y
x0 y0
t t
直线的参数方程
t t ( t t ) 4t t
' 1 ' 2 ' 1 ' 2 2 ' ' 1 2
4 17
.
练习
2.动点M作匀速直线运动,它在x轴和y轴方向的 分速度分别是3m/s和4m/s,直角坐标系的长 度单位是1cm,点M的起始位置在点M0(2,1)处, 求点M的轨迹的参数方程.
y
B
A M(x,y)
0
(t是参数)
M0(x0,y0)
0
O
x •t表示有向线段M0P的数量。|t|=| M0M|
若M 0为中点, t 0 t1+t 2 0
•t只有在标准式中才有上述几何意义 设A,B为直线上任意两点,它们所对应的参 数值分别为t1,t2. (1)|AB|= t1 t 2
直线的参数方程
直线的参数方程(标准式)
x x 0 t cos 直线的参数方程 ( t为参数) y y 0 t sin
其中(x 0 , y0 )时直线上的定点, 是倾斜角; 其对应的 普通方程为y y0 k ( x x0 )或x x0。 t表示几何意义: M( (x, y )(不同于点M 0)的 0 x0 , y0 )到直线上的点M 有向线段M 0 P的数量.
(2)M是AB的中点,求M对应的参数
t1 t 2 2
1 x 1 t 2 5.一条直线的参数方程是 (t为参数), y 5 3 t 2 另一条直线的方程是x-y-2 3 0, 则两直线的交点 与点(1,-5)间的距离是
4 3
6.动点M作等速直线运动,它在x轴和y轴方向分 速度分别为9,12,运动开始时,点M位于A(1,1), 求点M的轨迹的参数方程. x 1 9t (t为参数) y 1 12t
空间中直线的方程式
空间中直线的方程式
在三维空间中,直线是一种基本的几何体。
直线的方程式描述了
直线的位置和方向。
直线的方程式有多种表示方法,其中最常用的是
向量表示和参数方程表示。
向量表示法是将直线看作是一个向量加上某一点,直线方向由这
个向量所表示。
设直线上一点为P,方向向量为v,则直线的向量表示
为L = P + tv,其中t为任意实数。
参数方程表示法是用一个参数t表示直线上所有点的坐标。
设直
线上一点为P0,方向向量为v,则直线的参数方程表示为x = x0 + tvx,y = y0 + tvy,z = z0 + tvz。
对于给定的两个不同的点P1和P2,可以通过它们的坐标求出直线的向量表示和参数方程表示。
设P1的坐标为(x1, y1, z1),P2的坐标为(x2, y2, z2),则直线的向量表示为L = (x1, y1, z1) + t(x2 -
x1, y2 - y1, z2 - z1),直线的参数方程表示为x = x1 + t(x2 -
x1),y = y1 + t(y2 - y1),z = z1 + t(z2 - z1)。
直线的方程式可以用来描述空间中的直线的位置和方向。
在工程、物理等领域,直线方程式是十分重要的数学工具。
掌握直线方程式的
基本知识,有助于理解空间几何学的其他概念和应用。
直线的参数方程
8 由根与系数的关系,t′1+t′2=- , 5 t′1· t′2=-4. 根据参数 t′的几何意义. 12 5 |t′1-t2′|= t′1+t′2 -4t′1t′2= 5 . 12 5 故直线被圆截得的弦长为 5 .
x x0 at (t为参数) y y0 bt
a 2 2 x x ( a b t) 0 2 2 a b b y y0 ( a 2 b 2 t) 2 2 a b
x 1 t y 3 3 t
1 2 2 x 1 ( 1 ( 3 ) t) 2 2 1 ( 3) 3 y 3 ( 12 ( 3 ) 2 t ) 2 2 1 ( 3 )
【自主解答】
x=1+2t, 将参数方程 y=2+t
(t 为参数)转化
为直线参数方程的标准形式为 x=1+ y=2+ 2 t′, 5 1 t′ 5
(t′为参数)
代入圆方程 x2+y2=9, 2 1 2 得(1+ t′) +(2+ t′)2=9, 5 5 整理,有 5t′2+8t′-4 5=0.
(θ 为参数)交于 A,
B 两点,求|PA|· |PB|. 【解】 (1)直线 l 的参数方程为
5 3 x=-3+tcos6π=-3- 2 t, y=3+t sin5π=3+ t . 6 2
(t 为参数)
(2)把曲线 C 的参数方程中参数 θ 消去,得 4x2+y2-16 =0. 把直线 l 的参数方程代入曲线 C 的普通方程中,得 3 2 1 2 4(-3- t) +(3+ t) -16=0. 2 2 即 13t2+4(3+12 3)t+116=0. 由 t 的几何意义,知 |PA |· |PB |=|t1· t2|, 116 故|PA |· |PB |= |t1· t2|= 13 .
直线参数方程标准式和一般式
直线参数方程标准式和一般式
直线参数方程标准式和一般式是描述直线的两种常用方式。
直线参数方程标准式是指使用参数t表示直线上的点,参数t的取值范围通常是从0到1,直线的起点和终点分别对应t=0和t=1。
直线参数方程标准式的形式为:x = x1 + t(x2 - x1)
y = y1 + t(y2 - y1)其中,(x1, y1)和(x2, y2)分别是直线的起点和终点坐标。
直线一般式是指使用一般的代数式来表示直线。
直线一般式的形式为:Ax + By + C = 0其中,A、B、C是实数常数,且A和B不同时为0。
直线一般式可以通过直线的斜率和截距来推导出来。
直线参数方程标准式和一般式都有其适用的场合。
直线参数方程标准式适用于描述直线的起点和终点,以及直线上的任意一点。
而直线一般式则适用于求解直线与其他几何元素的交点,以及描述直线的斜率和截距等性质。
直线参数方程标准式和一般式是描述直线的两种常用方式,它们可以互相转换,根据具体场合选择合适的方式描述直线。
直线的参数方程及弦长公式
直线的参数方程及弦长公式直线是几何学中非常基础的概念,常用于描述两点之间的最短路径。
在数学中,直线可以通过参数方程来表示。
本文将介绍直线的参数方程以及计算直线上两点之间的弦长公式。
直线的参数方程直线的参数方程可以通过一个参数来表示。
一条直线可以平行于 x 轴、y 轴或者斜率不为零,这里我们以斜率不为零的情况进行讨论。
对于一条斜率不为零的直线,我们可以通过两个参数 x 和 y 来表示,其中 x 是直线上的任一点横坐标,y 是对应的纵坐标。
假设直线上已知一点坐标为(x₁, y₁),斜率为 k。
我们通过以下步骤可以求得直线的参数方程:1.利用斜率公式k = (y₂ - y₁) / (x₂ - x₁),选择另外一个已知点坐标(x₂,y₂)。
2.将斜率公式变形得到 y = k * (x - x₁) + y₁,即为直线的参数方程。
在参数方程中,x 是一个自变量,y 是一个关于 x 的函数。
弦长公式弦长是指直线上两点之间的距离,可以通过两点的坐标来计算。
对于直线的参数方程,我们可以通过给定的参数值来计算两点的坐标,从而得到弦长。
假设我们有直线的参数方程为:x = f(t),y = g(t)。
我们可以进行如下步骤计算弦长:1.选择两个参数值t₁ 和t₂。
2.根据参数方程计算得到两点坐标为(x₁, y₁) 和(x₂, y₂)。
3.计算两点之间的距离d = √((x₂ - x₁)² + (y₂ - y₁)²)。
根据上述步骤,我们可以得到直线上任意两点之间的弦长。
通过本文,我们了解了直线的参数方程以及求解直线上两点之间弦长的公式。
直线的参数方程可以通过选择斜率不为零的点以及斜率,通过参数方程,我们可以方便地描述直线上的任意一点。
而弦长公式则可以用于计算直线上任意两点之间的距离,提供了一个有效的方法进行数学计算和几何分析。
需要注意的是,本文的讨论主要针对斜率不为零的直线情况,对于平行于 x 轴和 y 轴的直线,可以使用不同的参数方程来表示。
直线的参数方程
直线的参数方程一、直线的参数方程(标准形式)⎩⎨⎧+=+=ααsin cos 00t y y t x x ,其中t 表示参数t 对应的动点(x,y )与直线上的定点(00,y x )之间的距离,α为直线的倾斜角。
当要解决与距离有关的几何问题时,常用直线方程的这一形式,若A 对应参数t 1,B 对应参数t 2,则21t t AB -=二、直线的参数方程(一般形式)⎩⎨⎧+=+=mty y lt x x 00,其中,向量),(m l 与直线平行巩固练习1、直线的参数方程标准形式,t的意义设直线1l 过点)4,2(-A ,倾斜角为65π:(1)求1l 的参数方程; (2)设直线2l :01=+-y x ,2l 与1l 的交点为B ,求点B 与点A 的距离。
解:(1)⎪⎪⎩⎪⎪⎨⎧+-=-=t y t x 214232(t 为参数)(2))13(7||-=AB2、已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x 轴的正半轴重合.直线l 的参数是⎪⎪⎩⎪⎪⎨⎧+-=+-=ty t x 541531为参数)t (,曲线C 的极坐标方程为).4sin(2πθρ+=(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于N M ,两点,求N M ,两点间的距离。
解:(1)21)21()21(:22=-+-y x C(2)541 3、直线过点)3,1(A ,且与向量)4,2(-共线:(1)写出该直线参数方程;(2)求点)1,2(--P 到此直线的距离。
解:(1)⎩⎨⎧-=+=ty tx 4321(t 为参数)(2)524、极坐标与参数方程 已知直线的参数方程为⎩⎨⎧+=+=t y tx 231(t 为参数),圆的极坐标方程为θθρsin 4cos 2+=(1)求直线的普通方程和圆的直角坐标方程;(2)求直线被圆截得的弦长 解:(1)5)2()1(,01222=-+-=+-y x y x(2)5304 5、设直线的参数方程为⎩⎨⎧-=+=t y tx 41035(t 为参数)(1)求直线的直角坐标方程;(2)把一般形式参数方程化成标准形式参数方程。
直线的标准参数方程
直线的标准参数方程直线是平面几何中最基本的几何元素之一,它具有许多重要的性质和特点。
在平面直角坐标系中,我们可以通过不同的方式来表示一条直线,其中标准参数方程是一种常用的表示方法。
本文将介绍直线的标准参数方程的定义、推导过程和应用示例,帮助读者更好地理解和运用这一概念。
一、标准参数方程的定义。
直线的标准参数方程是指通过参数方程形式来表示直线的方程。
设直线上一点的坐标为(x, y),直线的参数方程可表示为:x = x0 + at。
y = y0 + bt。
其中(x0, y0)为直线上一点的坐标,a和b为参数,t为参数变量。
二、标准参数方程的推导。
我们来推导一下直线的标准参数方程。
设直线上一点的坐标为(x1, y1),直线的方向向量为(a, b)。
则直线上任意一点的坐标可以表示为:(x, y) = (x1, y1) + t(a, b)。
展开得到:x = x1 + at。
y = y1 + bt。
这就是直线的标准参数方程。
三、标准参数方程的应用示例。
现在我们通过一个具体的示例来应用直线的标准参数方程。
假设有一条直线,过点A(1, 2),方向向量为(2, 3),求直线的标准参数方程。
解:直线的标准参数方程为:x = 1 + 2t。
y = 2 + 3t。
其中t为参数。
通过这个示例,我们可以看到直线的标准参数方程的具体应用过程。
四、总结。
通过本文的介绍,我们了解了直线的标准参数方程的定义、推导过程和应用示例。
直线的标准参数方程是一种常用的表示直线的方法,通过参数方程形式可以清晰地描述直线的性质和特点。
在实际问题中,我们可以通过标准参数方程来解决直线相关的计算和分析问题,具有重要的应用价值。
五、延伸阅读。
如果读者对直线的参数方程表示方法还有疑惑,可以继续深入学习相关知识,例如直线的对称式方程、一般式方程等。
同时,也可以结合具体的例题来加深对直线参数方程的理解和掌握。
六、参考资料。
1. 《高等数学》。
2. 《线性代数》。
直线参数方程标准形式
直线参数方程标准形式直线是我们在数学中经常遇到的一个基本图形,它具有许多特殊的性质和形式。
在平面几何中,我们可以通过不同的方法来描述一条直线,其中之一就是参数方程标准形式。
本文将详细介绍直线参数方程标准形式的概念、推导方法和应用。
一、概念。
直线参数方程标准形式是描述平面上一条直线的一种方式。
它的一般形式为:x = x0 + at。
y = y0 + bt。
其中(x0, y0)是直线上的一点,而a和b是方向向量。
这种形式的参数方程可以清晰地表达直线的位置和方向,是描述直线的一种简洁而有效的方式。
二、推导方法。
我们可以通过直线的一般方程Ax + By + C = 0来推导直线的参数方程标准形式。
假设直线的斜率为k,那么我们可以得到方向向量为(a, b) = (1, k)。
接下来,我们需要找到直线上的一点(x0, y0)来确定参数方程的具体形式。
假设直线上的一点为P(x0, y0),那么我们可以得到直线的一般方程为Ax0 + By0 + C = 0。
将直线的一般方程与参数方程的形式进行比较,可以得到x0 = -C/A,y0 = -C/B。
将这些信息代入参数方程的一般形式中,就可以得到直线的参数方程标准形式。
三、应用。
直线参数方程标准形式在实际问题中具有广泛的应用。
例如,在物理学中,描述质点在直线上运动的轨迹时,参数方程标准形式可以清晰地表达质点的位置随时间的变化规律。
在工程学中,描述直线运动的机械臂或者输送带的运动轨迹时,参数方程标准形式也可以提供简洁而有效的描述。
此外,在计算机图形学中,参数方程标准形式也被广泛应用于描述直线的绘制和计算。
总结。
直线参数方程标准形式是描述平面上一条直线的一种简洁而有效的方式。
通过本文的介绍,我们了解了直线参数方程标准形式的概念、推导方法和应用。
它不仅在数学理论中具有重要意义,而且在实际问题中也具有广泛的应用价值。
希望本文的介绍能够帮助读者更好地理解和运用直线参数方程标准形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五课时 直线的参数方程
一、教学目标:
知识与技能:了解直线参数方程的条件及参数的意义
过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
二重难点:教学重点:曲线参数方程的定义及方法
教学难点:选择适当的参数写出曲线的参数方程.
三、教学方法:启发、诱导发现教学. 四、教学过程 (一)、复习引入:
1.写出圆方程的标准式和对应的参数方程。
圆222r y x =+参数方程⎩
⎨⎧==θθ
sin cos r y r x (θ为参数)
(2)圆22020)\()(r y y x x =+-参数方程为:⎩⎨⎧+=+=θθ
sin cos 00r y y r x x (θ为参数)
2.写出椭圆参数方程.
3.复习方向向量的概念.提出问题:已知直线的一个点和倾斜角,如何表示直线的参数方程? (二)、讲解新课:
1、问题的提出:一条直线L 的倾斜角是0
30,并且经过点P (2,3),如何描述直线L 上任意点的位置呢? 如果已知直线L 经过两个 定点Q (1,1),P (4,3), 那么又如何描述直线L 上任意点的 位置呢?
2、教师引导学生推导直线的参数方程: (1)过定点),(00y x P 倾斜角为α的直线的
参数方程
⎩⎨⎧+=+=α
α
sin cos 00t y y t x x (t 为参数)
【辨析直线的参数方程】:设M(x,y)为直线上的任意一点,参数t 的几何意义是指从点P 到点M 的位移,可以用有向线段PM 数量来表示。
带符号. (2)、经过两个定点Q 11
(,)y x ,P 22
(,)y x (其中12x x ≠)的直线的参数方程为
12112
1(1){
x X y y x y λλ
λλλλ++++=
=≠-为参数,。
其中点M(X,Y)为直线上的任意一点。
这里参数λ的几何意义与参数方程(1)中的t 显然不同,它所反映的是动点M 分有向线段QP 的数量比
QM MP。
当o λ>时,M 为内分点;当o λ<且1λ≠-时,M
为外分点;当o λ=时,点M 与Q 重合。
(三)、直线的参数方程应用,强化理解。
1、例题:
学生练习,教师准对问题讲评。
反思归纳:1、求直线参数方程的方法;2、利用直线参数方程求交点。
2、巩固导练:
补充:1、直线)(sin cos 为参数θθθ⎩⎨⎧==t y t x 与圆)(sin 2cos 24为参数ϕϕϕ
⎩
⎨⎧=+=y x 相切,那么直线的
倾斜角为(A ) A .6
π或
65π B .4π或43π C .3π或32π D .6π-或6
5π
- 2、(2009广东理)(坐标系与参数方程选做题)若直线112,
:()2.x t l t y kt =-⎧⎨=+⎩
为参数与
直线2,
:12.
x s l y s =⎧⎨=-⎩(s 为参数)垂直,则k = .
解:直线112,:()2.
x t l t y kt =-⎧⎨=+⎩为参数化为普通方程是)1(22--=-x k
y ,
该直线的斜率为2
k
-,
直线2,
:12.
x s l y s =⎧⎨=-⎩(s 为参数)化为普通方程是12+-=x y ,
该直线的斜率为2-,
则由两直线垂直的充要条件,得()122-=-⋅⎪⎭
⎫
⎝⎛-k , 1-=k 。
(四)、小结:(1)直线参数方程求法;(2)直线参数方程的特点;(3)根据已知条件和图形的几何性质,注意参数的意义。
(五)、作业:
补充: (2009天津理)设直线1l 的参数方程为113x t
y t
=+⎧
⎨
=+⎩(t 为参数),直
线2l 的方程为y=3x+4则1l 与2l 的距离为_______ w.w.w.k.s.5.u.c.o.m
【考点定位】本小题考查参数方程化为普通方程、两条平行线间的距离,基础题。
解析:由题直线1l 的普通方程为023=--y x ,故它与与2l 的距离为
5
10
310|24|=
+。
五、教学反思:。