2010年八年级数学上第一章 全等三角形 单元测试1
人教版八年级上学期数学《全等三角形》单元测试卷(带答案)
(2)已知B C=7,A D=5,求AF的长.
21.如图,在△A B C和△A DE中,A B=A C,A D=AE,且∠B A C=∠D AE,点E在B C上.过点D作DF∥B C,连接D B.
求证:(1)△A B D≌△A CE;
(2)DF=CE.
22.如图,DE⊥A B于E,DF⊥A C于F,若B D=C D、BE=CF,
[点睛]本题考查了全等三角形的性质的应用,能根据全等三角形的性质求出A C=DE是解此题的关键,注意:全等三角形的对应角相等,对应边相等.
4.边长都为整数的△A B C≌△DEF,A B与DE是对应边,A B=2,B C=4.若△DEF的周长为偶数,则DF的长为( )
A.3B.4C.5D.3或4或5
三、解答题:
19.如图,点E在△A B C的外部,点D边B C上,DE交A C于点F,若∠1=∠2,AE=A C,B C=DE,
(1)求证:A B=A D;
(2)若∠1=60°,判断△A B D的形状,并说明理由.
20.如图所示,在△A B C中,A D⊥B C于D,CE⊥A B于E,A D与CE交于点F,且A D=C D,
(5)全等三角形的面积相等;(6)面积相等的两个三角形全等.
其中不正确的是( )
A.(4)(5)B.(4)(6)C.(3)(6)D.(3)(4)(5)(6)
[答案]B
[解析]
[分析]
根据全等三角形的性质逐个分析即可.
[详解]根据全等三角形的性质可得:全等三角形的对应边相等;全等三角形的对应角相等;全等三角形的周长相等;周长相等的两个三角形不一定相等;全等三角形的面积相等;面积相等的两个三角形不一定全等.
八年级数学上册全等三角形单元测试题
八年级数学上册全等三角形单元测试题以下是查字典数学网为您推荐的八年级数学上册全等三角形单元测试题,希望本篇文章对您学习有所帮助。
八年级数学上册全等三角形单元测试题一.选择题(每小题3分,共30分)1.在⊿ABC和⊿A/B/C/中,AB=A/B/,A/,若证⊿ABC≌⊿A/B/C/还要从下列条件中补选一个,错误的选法是( )(A)B/ (B)C/ (C)BC=B/C/ (D)AC=A/C/2.如图,已知:△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是( )(A)AC=DF (B)AD=BE (C) DF=EF (D)BC=EF3..如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )(A)带①去(B)带②去(C)带③去(D)带①和②去4、如图,△ABD和△ACE都是等边三角形,则ADC≌ABE 的根据是( )(A)SSS (B)SAS (C)ASA (D)AAS5.如图所示,在下列条件中,不能作为判断△ABD≌△BAC 的条件是( )(A)C,BAD=ABC (B)BAD=ABC,ABD=BAC(C)BD=AC,BAD=ABC (D)AD=BC,BD=AC6. 如图,E、B、F、C四点在同一条直线上,EB=CF,D,再添一个条件仍不能证明△ABC≌△DEF的是( )(A)AB=DE (B)DF∥AC (C)ABC (D)AB∥DE7. 如图,要测量河两岸相对的两点A,B的距离,先在AB 的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在同一条直线上,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是( )(A) (B) (C) (D)8.如图,从下列四个条件:①BC=BC,②AC=AC,③ACA=BCB,④AB=AB中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是( )(A)1个(B)2个(C)3个(D)4个9.在RtABC中,ACB=90,E是AB上一点,且BE=BC,过E作DEAB交AC于D,如果AC=5cm,则AD+DE=( )(A)3 cm (B)4 cm (C)5 cm (D)6 cm10.如图,△ABC中,A=90,AB=AC,BD平分ABC交AC 于D,DEBC于点E,且BC=6,则△DEC的周长是( )(A)6cm (B)4 cm (C)10 cm (D)以上都不对二、填空题(每小题3分,共15分)11. 如图,已知AE∥BF, F,要使△ADE≌△BCF,可添加的条件是__________.12. 如图,在△ABC中,C=90,AD是BAC的角平分线,若BC=5㎝,BD=3㎝,则点D到AB的距离为.13.如图,AD沿AM折叠使D点落在BC上,若AD=7cm,DM=5cm,DAM=30,则AN=_ __ cm,NAM=_________。
数学八年级上册《全等三角形》单元检测含答案
人教版数学八年级上学期《全等三角形》单元测试考试时间:120分钟;满分:150分一.选择题(共10小题,满分40分,每小题4分)1.(4分)如图,△ABC≌△DEF,则此图中相等的线段有()A.1对 B.2对 C.3对 D.4对2.(4分)如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210° D.225°3.(4分)如图,已知两个三角形全等,则∠a=()A.50°B.72°C.58°D.80°4.(4分)三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是()A.90°B.120°C.135° D.180°5.(4分)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD6.(4分)下列语句中正确的是()A.斜边和一锐角对应相等的两个直角三角形全等B.有两边对应相等的两个直角三角形全等C.有两个角对应相等的两个直角三角形全等D.有一直角边和一锐角对应相等的两个直角三角形全等7.(4分)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c8.(4分)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS9.(4分)如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是()A.2 B.3 C.4 D.610.(4分)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°二.填空题(共4小题,满分20分,每小题5分)11.(5分)如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.12.(5分)如图,∠EAD为锐角,C是射线AE上一点,点B在射线AD上运动(点A 与点B不重合),设点C到AD的距离为d,BC长度为a,AC长度为b,在点B运动过程中,b、d保持不变,当a满足条件时,△ABC唯一确定.13.(5分)如图,AC=BC,请你添加一对边或一对角相等的条件,使AD=BE.你所添加的条件是14.(5分)如图,已知△ABC的周长是32,OB,OC分别平分∠ABC和∠ACB,OD⊥BC 于D,且OD=6,△ABC的面积是.三.解答题(共9小题,满分90分)15.(8分)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.16.(8分)阅读并理解下面的证明过程,并在每步后的括号内填写该步推理的依据.已知:如图,AM,BN,CP是△ABC的三条角平分线.求证:AM、BN、CP交于一点.证明:如图,设AM,BN交于点O,过点O分别作OD⊥BC,OF⊥AB,垂足分别为点D,E,F.∵O是∠BAC角平分线AM上的一点(),∴OE=OF().同理,OD=OF.∴OD=OE().∵CP是∠ACB的平分线(),∴O在CP上().因此,AM,BN,CP交于一点.17.(8分)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.18.(8分)如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB.求证:AB﹣CF=BD.19.(10分)如图,△ADF≌△BCE,∠B=32°,∠F=28°,BC=5cm,CD=1cm求:(1)∠1的度数(2)AC的长20.(10分)如图,△ADF≌△CBE,点E、B、D、F在同一条直线上.(1)线段AD与BC之间的数量关系是,其数学根据是.(2)判断AD与BC之间的位置关系,并说明理由.21.(12分)如图,在△ABC中,D是AB上一点,DF交AC于点E,DE=FE,AB∥CF,请判断AE与CE是否相等?并说明你的理由.22.(12分)如图,△ACF≌△DBE,∠E=∠F,若AD=11,BC=7.(1)试说明AB=CD.(2)求线段AB的长.23.(14分)(1)如图1,在四边形ABCD中,AB=CB,AD=CD.求证:∠C=∠A.(2)如图2,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD.求证:AB=DE.参考答案一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据两个三角形全等,可以得到3对三角形的边相等,根据BC=EF,又可以得到BE=CF可得答案是4对.【解答】解:∵△ABC≌△DEF∴AB=DE,AC=DF,BC=EF∵BC=EF,即BE+EC=CF+EC∴BE=CF即有4对相等的线段故选:D.【点评】本题主要考查了全等三角形的对应边相等问题;做题时,结合已知,认真观察图形,得到BE=CF是正确解答本题的关键.2.【分析】根据SAS可证得△ABC≌△EDC,可得出∠BAC=∠DEC,继而可得出答案.【解答】解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC,∴∠BAC=∠DEC,∠1+∠2=180°.故选:B.【点评】本题考查全等图形的知识,比较简单,解答本题的关键是判断出△ABC≌△EDC.【分析】直接利用全等三角形的性质得出∠α=72°.【解答】解:如图所示:∵两个三角形全等,∴∠α=72°,故选:B.【点评】此题主要考查了全等三角形的性质,正确得出对应角是解题关键.4.【分析】直接利用平角的定义结合三角形内角和定理以及全等三角形的性质得出∠4+∠9+∠6=180°,∠5+∠7+∠8=180°,进而得出答案.【解答】解:如图所示:由图形可得:∠1+∠4+∠5+∠8+∠6+∠2+∠3+∠9+∠7=540°,∵三个全等三角形,∴∠4+∠9+∠6=180°,又∵∠5+∠7+∠8=180°,∴∠1+∠2+∠3+180°+180°=540°,∴∠1+∠2+∠3的度数是180°.故选:D.【点评】此题主要考查了全等三角形的性质以及三角形内角和定理,正确掌握全等三角形的性质是解题关键.5.【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA 添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.6.【分析】根据全等三角形的判定方法即可一一判断;【解答】解:A、正确.根据AAS即可判断;B、错误.有两边对应相等的两个直角三角形不一定全等;C、错误.有两个角对应相等的两个直角三角形不全等;D、错误.有一直角边和一锐角对应相等的两个直角三角形不一定全等;故选:A.【点评】本题考查直角三角形全等的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b﹣c;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.8.【分析】由O是AA′、BB′的中点,可得AO=A′O,BO=B′O,再有∠AOA′=∠BOB′,可以根据全等三角形的判定方法SAS,判定△OAB≌△OA′B′.【解答】解:∵O是AA′、BB′的中点,∴AO=A′O,BO=B′O,在△OAB和△OA′B′中∴△OAB≌△OA′B′(SAS),故选:A.【点评】此题主要全等三角形的应用,关键是掌握全等三角形的判定方法:SSS、SAS、ASA、AAS,HL,要证明两个三角形全等,必须有对应边相等这一条件.9.【分析】根据角的平分线上的点到角的两边的距离相等即可得.【解答】解:∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DE=DF=6,故选:D.【点评】本题主要考查角平分线的性质,解题的关键是掌握角的平分线上的点到角的两边的距离相等.10.【分析】作MN⊥AD于N,根据平行线的性质求出∠DAB,根据角平分线的判定定理得到∠MAB=21∠DAB ,计算即可. 【解答】解:作MN ⊥AD 于N ,∵∠B=∠C=90°,∴AB ∥CD ,∴∠DAB=180°﹣∠ADC=70°,∵DM 平分∠ADC ,MN ⊥AD ,MC ⊥CD ,∴MN=MC ,∵M 是BC 的中点,∴MC=MB ,∴MN=MB ,又MN ⊥AD ,MB ⊥AB ,∴∠MAB=21∠DAB=35°, 故选:B .【点评】本题考查的是角平分线的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.二.填空题(共4小题,满分20分,每小题5分)11.【分析】根据△ABC ≌△ADE ,得到AE=AC ,由AB=7,AC=3,根据BE=AB ﹣AE 即可解答.【解答】解:∵△ABC ≌△ADE ,∴AE=AC ,∵AB=7,AC=3,∴BE=AB ﹣AE=AB ﹣AC=7﹣3=4.故答案为:4.【点评】本题考查全等三角形的性质,解决本题的关键是熟记全等三角形的对应边相等.12.【分析】过点C作CF⊥AB于点F,此时△ACF是直角三角形.①当点B与点F重合时,△ABC是直角三角形,△ABC唯一确定;②当AC⊥BC时,△ABC也是直角三角形,△ABC唯一确定.【解答】解:如图,过点C作CF⊥AB于点F,此时△ACF是直角三角形.①当点B与点F重合时,即a=d时,△ABC是直角三角形,△ABC唯一确定;②当AC⊥BC时,△ABC也是直角三角形,此时a≥b,△ABC唯一确定.故答案是:a=d或a≥b.【点评】本题考查了点到直线的距离,点到直线的距离,由已知元素求未知元素的过程就是解直角三角形和三角形的存在性的问题,解题的关键是要确定点B的位置.13.【分析】根据全等三角形的判定解答即可.【解答】解:因为AC=BC,∠C=∠C,所以添加∠A=∠B或∠ADC=∠BEC或CE=CD,可得△ADC与△BEC全等,利用全等三角形的性质得出AD=BE,故答案为:∠A=∠B或∠ADC=∠BEC或CE=CD.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.【分析】过O作OM⊥AB,ON⊥AC,连接AO,根据角平分线的性质可得OM=ON=OD,再求出△ABO,△BCO,△ACO的面积和即可.【解答】解:过O作OM⊥AB,ON⊥AC,连接AO,∵OB ,OC 分别平分∠ABC 和∠ACB ,∴OM=ON=OD=6,∴△ABC 的面积为:21×AB ×OM +⨯21BC ×DO +⨯⨯AC 21NO=21(AB +BC +AC )×DO=⨯2132×6=96.故答案为:96.【点评】此题主要考查了角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.三.解答题(共9小题,满分90分)15.【分析】欲证明∠F=∠C ,只要证明△ABC ≌△DEF (SSS )即可;【解答】证明:∵DA=BE ,∴DE=AB ,在△ABC 和△DEF 中,∴△ABC ≌△DEF (SSS ),∴∠C=∠F .【点评】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定方法,属于中考基础题目.16.【分析】根据角平分线的性质解答即可.【解答】证明:设AM ,BN 交于点O ,过点O 分别作OD ⊥BC ,OF ⊥AB ,垂足分别为点D,E,F.∵O是∠BAC角平分线AM上的一点(已知),∴OE=OF(角平分线上的一点到这个角的两边的距离相等).同理,OD=OF.∴OD=OE(等量代换).∵CP是∠ACB的平分线(已知),∴O在CP上(角的内部到角的两边距离相等的点在这个角的平分线上).因此,AM,BN,CP交于一点;故答案为:已知;角平分线上的一点到这个角的两边的距离相等;等量代换;已知;角的内部到角的两边距离相等的点在这个角的平分线上.【点评】此题考查角平分线的性质,关键是根据角平分线的两个性质解答.17.【分析】根据ASA证明△ADE≌△ABC;【解答】证明:(1)∵∠1=∠2,∵∠DAC+∠1=∠2+∠DAC∴∠BAC=∠DAE,在△ABC和△ADE中,∴△ADE≌△ABC(ASA)∴BC=DE,【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有”SSS”、”SAS”、”ASA”、”AAS”;全等三角形的对应边相等18.【分析】根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出△ADE≌△CFE,根据全等三角形的性质即可解决问题;【解答】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中,∴△ADE≌△CFE(AAS),∴AD=CF,∵AB﹣AD=BD,∴AB﹣CF=BD.【点评】本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定△ADE≌△FCE是解此题的关键,解题时注意运用全等三角形的对应边相等,对应角相等.19.【分析】(1)根据全等三角形的对应角相等和三角形外角性质求得答案;(2)根据全等三角形的对应边相等求出AD,根据图形计算即可.【解答】解:(1)∵△ADF≌△BCE,∠F=28°,∴∠E=∠F=28°,∴∠1=∠B+∠E=32°+28°=60°;(2)∵△ADF≌△BCE,BC=5cm,∴AD=BC=5cm,又CD=1cm,∴AC=AD+CD=6cm.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.20.【分析】(1)利用全等三角形的性质即可判断;(2)结论:AD=BC.只要证明∠ADB=∠CBD即可;【解答】解:(1)∵△ADF≌△CBE,∴AD=BC(全等三角形的对应边相等),故答案为AD=BC,全等三角形的对应边相等;(2)结论:AD∥BC.理由:∵△ADF≌△CBE,∴∠ADF=CBE,∴∠ADB=∠CBD,∴AD∥BC.【点评】本题考查全等三角形的性质、平行线的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【分析】由DE=FE,AB∥CF,易证得△ADE≌△CFE,即可得AE=CE.【解答】解:AE=CE.理由如下:∵AB∥CF,∴∠A=∠ACF在△ADE与△CFE中∴△AED≌△CEF(AAS)∴AE=CE.【点评】此题考查了全等三角形的判定与性质以及平行线的性质.此题难度不大,注意掌握数形结合思想的应用.22.【分析】(1)根据全等三角形对应边相等可得AC=DB,然后推出AB=CD,(2)代入数据进行计算即可得解.【解答】解:(1)∵△ACF≌△DBE,∴AC=DB,∴AC﹣BC=DB﹣BC,即AB=CD(2)∵AD=11,BC=7,∴AB=21(AD ﹣BC )= 21(11﹣7)=2 即AB=2【点评】本题考查了全等三角形对应边相等的性质,根据图形以及全等三角形对应顶点的字母写在对应位置上准确找出AC 、DB 是对应边是解题的关键.23.【分析】(1)欲证明∠C=∠A ,只要证明△BDC ≌△BDA 即可;(2)欲证明AB=DE ,只要证明△ACB ≌△DFE 即可 【解答】证明:(1)如图1中,连接BD .在△BDC 和△BDA 中,∴△BDC ≌△BDA (SSS ),∴∠C=∠A .(2)如图2中,∵FB=CE ,∴BC=EF ,∵AB ∥ED ,AC ∥FD ,∴∠B=∠E ,∠ACB=∠EFD ,在△ABC 和△DEF 中,∴△ACB ≌△DFE (ASA ),∴AB=DE .【点评】本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。
苏科版八年级数学上册第1章《全等三角形》单元测试(含答案)
苏科版八年级数学上册第1章《全等三角形》单元测试一.选择题1.下列各组中的两个图形属于全等图形的是()A.B.C.D.2.下列说法正确的是()A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形3.如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是()A.∠ABC=∠DCB B.AB=DC C.AC=DB D.∠A=∠D 4.图中的两个三角形全等,则∠1等于()A.45°B.62°C.73°D.135°5.已知△ABC≌△DEF,∠A=∠B=30°,则∠E的度数是()A.30°B.120°C.60°D.90°6.如图,若△ABC≌△DEF,B、E、C、F在同一直线上,BC=7,EC=4,则CF的长是()A.2 B.3 C.5 D.77.下列说法正确的是()A.周长相等的两个三角形全等B.如果三角形的三个内角满足∠A:∠B:∠C=1:2:3.则这个三角形是直角三角形C.从直找外一点到这条直线的垂线段,叫做这点到直线的距离D.两条直线被第三条直线所截,同位角相等二.填空题8.如图,四边形ABCD≌四边形A′B′C′D′,则∠A的大小是.9.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=.10.如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件,使△ABC≌△ADC.11.如图,已知△ABC≌△ABD,且点C与点D对应,点A与点A对应,∠ACB=30°,∠ABC=85°,则∠BAD的度数为.12.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为.13.如图,已知△ABD≌△ACE,∠A=53°,∠B=22°,则∠C=°.14.如图是5×5的正方形网格,△ABC的顶点都在小正方形的顶点上,像△ABC这样的三角形叫格点三角形.画与△ABC有一条公共边且全等的格点三角形,这样的格点三角形最多可以画个.三.解答题15.如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).16.如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.17.如图,AB交CD于点O,在△AOC与△BOD中,有下列三个条件:①OC=OD,②AC=BD,③∠A=∠B.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法).(1)你选的条件为、,结论为;(2)证明你的结论.18.已知:如图,AC,DB相交于点O,AB=DC,∠ABO=∠DCO.求证:(1)△ABO≌△DCO;(2)∠OBC=∠OCB.19.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC =4,∠D=30°,∠C=70°.(1)求线段AE的长.(2)求∠DBC的度数.20.如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.21.如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.参考答案一.选择题1.解:A、两个图形不能完全重合,故本选项错误;B、两个图形能够完全重合,故本选项正确;C、两个图形不能完全重合,故本选项错误;D、两个图形不能完全重合,故本选项错误;故选:B.2.解:A、两个等边三角形相似但不一定全等,故说法错误,不符合题意;B、两个全等图形的面积一定相等,正确,符合题意;C、形状相同的两个图形相似但不一定全等,故说法错误,不符合题意;D、两个正方形相似但不一定全等,故说法错误,不符合题意,故选:B.3.解:在△ABC和△DCB中,∵∠ACB=∠DBC,BC=BC,A:当∠ABC=∠DCB时,△ABC≌△DCB(ASA),故A能证明;B:当AB=DC时,不能证明两三角形全等,故B不能证明;C:当AC=DB时,△ABC≌△DCB(SAS),故C能证明;D:当∠A=∠D时,△ABC≌△DCB(AAS),故D能证明;故选:B.4.解:∵两个三角形全等,∴边长为a的对角是对应角,∴∠1=73°,故选:C.5.解:∵△ABC≌△DEF,∠A=∠B=30°,∴∠D=∠E=∠A=∠B=30°,则∠E的度数是30°.故选:A.6.解:∵△ABC≌△DEF,BC=7,∴EF=BC=7,∴CF=EF﹣EC=3,故选:B.7.解:A、周长相等的两个三角形,不一定全等,说法错误,不符合题意;B.三角形三个内角的比是1:2:3,则这个三角形的最大内角的度数是×180°=90°,即这个三角形是直角三角形,说法正确,符合题意;C.直线外一点到这条直线的垂线段的长度,叫做这点到该直线的距离,说法错误,不合题意;D.两条直线被第三条直线所截,同位角相等,是假命题.两直线不平行,没有这个性质.不符合题意;故选:B.二.填空题8.解:∵四边形ABCD≌四边形A'B'C'D',∴∠D=∠D′=130°,∴∠A=360°﹣∠B﹣∠C﹣∠D=360°﹣75°﹣60°﹣130°=95°,故答案为:95°.9.解:如图所示:由题意可得:∠1=∠3,则∠1+∠2=∠2+∠3=135°.故答案为:135°.10.解:添加的条件是AD=AB,理由是:在△ABC和△ADC中,∴△ABC≌△ADC(SAS),故答案为:AD=AB(答案不唯一).11.解:在△ABC中,∵∠ACB=30°,∠ABC=85°,∠BAC+∠ACB+∠ABC=180°,∴∠BAC=180°﹣∠ACB+∠ABC=65°,∵△ABC≌△ABD,且点C与点D对应,点A与点A对应,∴∠BAD=∠BAC=65°,故答案为65°.12.解:∵△ABE≌△ACF∴AC=AB=5∴EC=AC﹣AE=5﹣2=3,故答案为:3.13.解:∵△ABD≌△ACE,∴∠C=∠B,∵∠B=22°,∴∠C=22°,故答案为:22.14.解:如图,以BC为公共边可画出△BDC,△BEC,△BFC三个三角形和原三角形全等.以AB为公共边可画出三个三角形△ABG,△ABM,△ABH和原三角形全等.所以可画出6个.故答案为:6.三.解答题15.解:如图所示:.16.证明:∵△ABC≌△DEC,∴∠B=∠DEC,BC=EC,∴∠B=∠BEC,∴∠BEC=∠DEC,∴CE平分∠BED.17.(1)解:由AAS,选的条件是:①,③,结论是②,故答案为:①,③,②(答案不唯一);(2)证明:在△AOC和△BOD中,,∴△AOC≌△BOD(AAS),∴AC=BD.18.证明:(1)∵∠AOB=∠COD,∠ABO=∠DCO,AB=DC,在△ABO和△DCO中,,∴△ABO≌△DCO(AAS);(2)由(1)知,△ABO≌△DCO,∴OB=OC∴∠OBC=∠OCB.19.解:(1)∵△ABC≌△DEB,DE=10,BC=4,∴AB=DE=10,BE=BC=4,∴AE=AB﹣BE=6;(2)∵△ABC≌△DEB,∠D=30°,∠C=70°,∴∠BAC=∠D=30°,∠DBE=∠C=70°,∴∠ABC=180°﹣30°﹣70°=80°,∴∠DBC=∠ABC﹣∠DBE=10°.20.(1)证明:∵△ABC≌△DEC,∴CB=CE,∠DCE=∠ACB,∴∠CEB=∠B=65°,在△BEC中,∠CEB+∠B+∠ECB=180°,∴∠ECB=180°﹣65°﹣65°=50°,又∠DCE=∠ACB,∴∠DCA=∠ECB=50°;(2)解:∵△ABC≌△DEC,∴∠D=∠A=20°,在△DFC中,∠DFA=∠DCA+∠D=50°+20°=70°.21.(1)证明:∵CF∥AB,∴∠ADF=∠F,∠A=∠ECF.在△ADE和△CFE中,,∴△ADE≌△CFE(AAS).(2)∵△ADE≌△CFE,∴AD=CF=4.∴BD=AB﹣AD=5﹣4=1.。
苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)
第1章《 全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是( )A .两个等边三角形一定全等B .腰对应相等的两个等腰三角形全等C .形状相同的两个三角形全等D .全等三角形的面积一定相等2.已知与全等,A 、B 、C 的对应点分别为D 、E 、F ,且E 点在AE 上,B 、F 、C 、D 四点共线,如图所示若,,则下列叙述何者正确?( )A .,B .,C .,D .,3.如图,在△ABC 中,AB =BC ,点D 为AC 上的点,连接BD ,点E 在△ABC 外,连接AE ,BE ,使得CD =BE ,∠ABE =∠C ,过点B 作BF ⊥AC 交AC 点F ,若∠BAE =21°,∠C =28°,则∠FBD =( )A .49°B .59°C .41°D .51°4.如图,有一块边长为4的正方形塑料模板,将一块足够大的直角三角板的直角顶点落在点,两条直角边分别与交于点F ,与延长线交于点E .则四边形的面积是( )ABC V DEF V .=40A ∠︒=35CED ∠︒=EF EC =AE FC=EF EC AE FC ≠EF EC ≠=AE FC EF EC ≠AE FC≠ABCD A CD CB AECFA .4B .6C .10D .165.如图,在的网格中,每一个小正方形的边长都是1,点,,,都在格点上,连接,相交于,那么的大小是( )A .B .C .D .6.△ABC 中,AB =AC ,∠ABC =72°,以B 为圆心,以任意长为半径画弧,分别交BA 、BC 于M 、N ,再分别以M 、N为圆心,以大于MN 为半径画弧,两弧交于点P ,射线BP 交AC 于点D ,则图中与BC 相等的线段有( )A .BD B .CD C .BD 和AD D .CD 和AD7.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( )33⨯A B C D AC BD P APB ∠80︒60︒45︒30︒1212A .B .若,则点D 到AB 的距离为2C .若,则D .8.如图,长方形中,点为上一点,连接,将长方形沿着直线折叠,点恰好落在的中点上,点为的中点,点为线段上的动点,连接、,若、、,则的最小值是( )A .B .C .D .9.如图,点在线段上,于,于.,且,,点以的速度沿向终点运动,同时点以的速度从开始,在线段上往返运动(即沿运动),当点到达终点时,,同时停止运动.过,分别作的垂线,垂足为,.设运动时间为,当以,,为顶点的三角形与全等时,的值为( )A .1或3B .1或C .1或或 D .1或或510.如图,在中,,和的平分线、相交于点,交于点,交于点,若已知周长为,,,则长为( )CAD BAD ∠=∠2CD =30B ∠=CDA CAB ∠=∠2ABD ACDS S =V V ABCD E AD CE ABCD CE D AB F G CF P CE PF PG AE a =ED b =AF c =PF PG +a c b +-2b c +2a b c ++a b+C BD AB BD ⊥B ED BD ⊥D 90ACE ∠=︒5cm AC =6cm CE =P 2cm/s A C E →→E Q 3cm/s E EC E C E C →→→→⋅⋅⋅P P Q P Q BD M N s t P C M QCN △t 115115235115ABC V 60A ∠=︒ABC ∠ACB ∠BD CE O BD AC D CE AB E ABC V 207BC =:4:3AE AD =AEA. B . C . D .4二、填空题(本大题共8小题,每小题4分,共32分)11.如图,已知正方形中阴影部分的面积为3,则正方形的面积为 .12.数学课上,老师出示如下题目:“已知:.求作:.”如图是小宇用直尺和圆规的作法,其中的道理是作出△,根据全等三角形的性质,得到.△的依据是 .13.如图,已知,,,直线与,分别交于点,,且,,则的度数为 .14.如图,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中∠ABM =NBC =∠90°,连接MN ,已知MN =4,则BD = .187247267AOB ∠A O B AOB '''∠=∠ΔC O D COD ''≅'A O B AOB '''∠=∠ΔC O D COD ''≅'AB AD =AC AE =BC DE =BC AD DE F G 65DGB ∠=︒120EAB ∠=︒CAD ∠15.如图,为的平分线,为上一点,且于点,,给出下列结论:①;②;③;④;⑤四边形的面积是面积的2倍,其中结论正确的个数有 .16.如图,把两块大小相同的含45°的三角板ACF 和三角板CFB 如图所示摆放,点D 在边AC 上,点E 在边BC 上,且∠CFE =13°,∠CFD =32°,则∠DEC 的度数为 .17.如图,在中,,,,有下列结论:①;②;③连接,;④过点作交于点,连接,则.其中正确的结论有 .18.如图,在Rt △ABC 中,∠C =90°,两锐角的角平分线交于点P ,点E 、F 分别在边BC 、AC 上,且都不与点C 重合,若∠EPF =45°,连接EF ,当AC =6,BC =8,AB =10时,则△CEF的BN MBC ∠P BN PD BC ⊥D 180APC ABC ∠+∠=︒MAP ACB ∠=∠PA PC =2BC AB CD -=BP AC =BAPC PBD △ABC V AD BC ⊥AD BD =BF AC =ADC BDF △≌△BE AC ⊥DE 135AED ∠=︒D DM AB ∥AC M FM BF AM MD =+周长为 .三、解答题(本大题共6小题,共58分)19.(8分)如图,,点E 在BC 上,且,.(1) 求证:;(2) 判断AC 和BD的位置关系,并说明理由.BD BC =BE AC =DE AB =ABC EDB V V ≌20.(8分)如图,在五边形中,,.(1) 请你添加一个条件,使得,并说明理由;(2) 在(1)的条件下,若,,求的度数.21.(10分)在复习课上,老师布置了一道思考题:如图所示,点M ,N 分别在等边的边上,且,,交于点Q .求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1) 若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.ABCDE AB DE =AC AD =ABC DEA △△≌66CAD ∠=︒110B ∠=︒BAE ∠ABC V ,BC CA BM CN =AM BN 60BQM ∠=︒BM CN =60BQM ∠=︒(2) 若将题中的点M ,N 分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.22.(10分)如图1,点P 、Q 分别是边长为4cm 的等边三角形ABC 的边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s .(1)连接AQ 、CP 交于点M ,则在P ,Q 运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P 、Q 运动几秒时,是直角三角形?,BC CA 60BQM ∠=︒ABQ ∆CAP ∆CMQ ∠PBQ ∆(4)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则变化吗?若变化说明理由,若不变,则求出它的度数。
数学八年级上学期《全等三角形》单元测试题(附答案)
所以∠C A D=30°.
故答案为30.
3.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()
A. 76°B. 62°
C. 42°D. 76°、62°或42°都可以
[答案]B
[解析]
[分析]
根据全等三角形的性质求解即可.
[详解]∵对应边的对角是对应角,
∴∠DFB=∠B A D=20°.
故选B.
[点睛]本题主要利用全等三角形对应角相等的性质,准确识图也是考查点之一.
9.如图,OA=OC,OB=OD且OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②C D=A B;③∠C D A=∠A B C;其中正确 结论是()
A. ①②B. ①②③C. ①③D. ②③
A 1个B.2个C.3个D.4个
5.如图,点A,D,C,E在同一条直线上,A B∥EF,A B=EF,∠B=∠F,AE=10,A C=7,则C D的长为( )
A.5.5B.4C.4.5D.3
6.如图所示,将两根钢条 的中点O连在一起,使 可以绕着点O自由转动,就做成了一个测量工具,则 的长等于内槽宽A B,那么判定 的理由是:()
26.问题:如图①,在直角三角形 中, , 于点 ,可知 (不需要证明);
(1)探究:如图②, ,射线 在这个角的内部,点 、 在 的边 、 上,且 , 于点 , 于点 .证明: ;
(2)证明:如图③,点 、 在 的边 、 上,点 、 在 内部的射线 上, 、 分别是 、 的外角.已知 , .求证: ;
17.如图,要测量池塘的宽度A B,在池塘外选取一点P,连接AP、BP并各自延长,使PC=PA,PD=PB,连接C D,测得C D长为25m,则池塘宽A B为________ m,依据是________
苏科新版八年级上册数学《第1章 全等三角形》 单元测试卷(,含答案)
苏科新版八年级上册数学《第1章全等三角形》单元测试卷(,含答案)一.选择题(共6小题,满分24分)1.如图所示,某同学把一块三角形的模具不小心打碎成了三块,现在要去商店配一块与原来一样的三角形模具,那么最省事的是带哪一块去()A.①B.②C.③D.①和②2.对于两个图形,下列结论:①两个图形的周长相等;②两个图形的面积相等;③能够完全重合的两个图形.其中能得出这两个图形全等的结论共有()A.0个B.1个C.2个D.3个3.如图,△OAB≌△OCD,若∠A=80°,OB=3,则下列说法正确的是()A.∠COD=80°B.CD=3C.∠D=20°D.OD=34.如图,已知MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN的是()A.AM=CN B.AC=BD C.AB=CD D.AM∥CN5.如图,已知点A、D、C、F在同一条直线上,∠B=∠E=90°,AB=DE,若添加一个条件后,能用“HL”的方法判定Rt△ABC≌Rt△DEF,添加的条件可以是()A.BC=EF B.∠BCA=∠F C.AB∥DE D.AD=CF6.如图,AD是△ABC的中线,CE∥AB交AD的延长于点E,AB=5,AC=7,则AD的取值可能是()A.3B.6C.8D.12二.填空题(共6小题,满分24分)7.如图,AC=DB,AO=DO,CD=200m,则A,B两点间的距离为m.8.如图,AC,BD相交于点O,OB=OD,要使△AOB≌△COD,添加一个条件是.(只写一个)9.如图,△ACE≌△DBF,若∠A=66°,∠E=78°,则∠FBD的度数为.10.如图,已知点A、D、C、F在同一条直线上,∠B=∠E=90°,AB=DE,若添加一个条件后,能用“HL”的方法判定Rt△ABC≌Rt△DEF,添加的条件可以是(只需写一个,不添加辅助线).11.如图,在4×4的正方形网格中,求α+β=度.12.如图,在△ABC中,E是AC边的中点,过点A作∠ABC平分线BD的垂线,垂足为D,连接DE,若DE=2,BC=8,则AB=.三.解答题(共6小题,满分72分)13.找出图中的全等图形.14.如图,已知△DEF的顶点E在△ABC的边BC上,F在BC的延长线上,且BE=CF,∠ABC=∠DEF,请你再添加一个条件,使得△ABC≌△DEF,并说明理由(不再添加其他线条和字母).15.如图2,是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=2.5m.乐乐在荡秋千过程中,当秋千摆动到最高点A时,过点A作AC⊥BD 于C,点A到地面的距离AE=1.5m(AE=CD),当他从A处摆动到A′处时,A′B=AB,若A′B⊥AB,作A′F⊥BD,垂足为F.求A′到BD的距离A′F.16.如图,已知△ABC≌△AEF中,∠EAB=26°,∠F=54°.(1)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(2)求∠AMB的度数.17.求证:一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等.要求:根据给出的Rt△ABC和Rt△A′B′C′(∠C=∠C′=90°,AC=A′C′),(1)在此图形上用尺规作出BC与B′C′边上的中线,不写作法,保留作图痕迹,(2)写出已知、求证和证明过程.18.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.参考答案与试题解析一.选择题(共6小题,满分24分)1.解:由图形可知,③有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形,所以,最省事的做法是带③去.故选:C.2.解:①周长相等的两个图形不一定重合,所以这两个图形不一定全等;②面积相同而形状不同的两个图形不全等;③两个图形能够完全重合,则这两个图形全等.所以只有1个结论正确.故选B.3.解:∵△OAB≌△OCD,∠A=80°,OB=3,∴∠C=∠A=80°,OD=OB=3.所以选项ABC说法错误,选项D说法正确.故选:D.4.解:A、加上AM=CN不能证明△ABM≌△CDN,故此选项符合题意;B、加上AC=BD可得出AB=CD,可利用SAS定理证明△ABM≌△CDN,故此选项不合题意;C、加上AB=CD,可利用SAS定理证明△ABM≌△CDN,故此选项不合题意;D、加上AM∥CN可证明∠A=∠NCB,可利用AAS定理证明△ABM≌△CDN,故此选项不合题意;故选:A.5.解:∵∠B=∠E=90°,AB=DE,∴当添加AC=DF或AD=CF时,根据“HL”可判定Rt△ABC≌Rt△DEF.故选:D.6.解:∵AD是△ABC的中线,∴CD=BD,∵CE∥AB,∴∠DCE=∠DBA,在△CDE和△BDA中,,∴△CDE≌△BDA(SAS),∴EC=AB=5,∵7﹣5<AE<7+5,∴2<2AD<12,∴1<AD<6,故选:A.二.填空题(共6小题,满分24分)7.解:∵AC=DB,AO=DO,∴BO=CO,在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴AB=DC,∵CD=200m,∴AB=200m,即A,B两点间的距离是200m,故答案为:200.8.解:∵OB=OD,∠AOB=∠COD,OA=OC,∴△AOB≌△COD(SAS),∴要使△AOB≌△COD,添加一个条件是OA=OC,故答案为:OA=OC(答案不唯一).9.解:∵△ACE≌△DBF,∠A=66°,∠E=78°,∴∠D=∠A=66°,∠F=∠E=78°,∴∠FBD=180°﹣∠D﹣∠F=36°,故答案为:36°.10.解:∵∠B=∠E=90°,AB=DE,∴当添加AD=CF或AC=DF时,根据“HL”可判定Rt△ABC≌Rt△DEF.故答案为:AD=CF(或AC=DF).11.解:连接BC,∵AB=BC==,AC==,∴AB2+BC2=AC2,∴∠ABC=90°,∴∠BAC=∠ACB=45°,∵AB=BC=,AE=BD=1,BE=CD=2,∴△ABE≌△BCD,∴∠ACD=∠ABE=α,∵AE∥CD,∴∠DCA=∠CAE=β,∴α+β=∠BCA=45°,故答案为:45.12.解:如图,延长AD交BC于点F,∵BD平分∠ABC,∴∠ABD=∠FBD,∵AD⊥BD,∴∠ADB=∠FDB=90°,在△ABD与△FBD中,,∴△ABD≌△FBD(ASA),∴AD=DF,AB=BF,∴点D是AF的中点,∵E是AC的中点,∴DE是△AFC的中位线,∴CF=2DE=4,∴AB=BF=BC﹣CF=8﹣4=4,故答案为:4.三.解答题(共6小题,满分72分)13.解:②与⑦是全等图形.14.证明:添加条件:∠A=∠D;理由如下:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS).15.解:∵A′B⊥AB,作A′F⊥BD,∴∠ACB=∠A'FB=90°,∵∠1+∠3=90°,∠1+∠2=90°,∴∠2=∠3,在△ACB和△BFA'中,,∴△ACB≌△BFA'(AAS),∴A'F=BC,∴BC=BD﹣CD=2.5﹣1.5=1(m),∴A'F=1m,16.解:(1)∵△ABC≌△AEF,∠EAB=26°,∴△ABC绕点A顺时针旋转26°得到△AEF.(2)∵△ABC≌△AEF,∠F=54°,∴∠C=∠F=54°,∠EAF=∠BAC,∴∠FAC=∠EAB=26°,∴∠AMB=∠C+∠FAC=54°+26°=80°.17.解:(1)所作的图形如图所示:(2)已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AC=A′C′,AD 与A′D′分别为BC与B′C′边上的中线,且AD=A′D′,求证:Rt△ABC≌Rt△A′B′C′.证明:∵∠C=∠C′=90°,在Rt△ADC和Rt△A′D′C′中,,∴Rt△ADC≌Rt△A′D′C′(HL),∴CD=C′D′,∵AD与A′D′分别为BC与B′C′边上的中线,∴BC=2CD,B′C′=2C′D′,∴BC=B′C′,在Rt△ABC和Rt△A′B′C′中,,∴Rt△ABC≌Rt△A′B′C′(SAS).18.(1)证明:∵CD∥AB,CD=CB,CE=AB,∴∠ABC=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS).(2)解:∵∠A=90°,∴∠CED=∠A=90°,∴∠BED=180°﹣∠CED=90°,设BE=x,∵EC=AB=3,BD=2,∴CD=BC=3+x,∵BD2﹣BE2=CD2﹣EC2=DE2,∴(2)2﹣x2=(3+x)2﹣32,整理得x2+3x﹣10=0,解得x1=2,x2=﹣5(不符合题意,舍去),∴BE=2,BC=3+2=5,∴DE===4,∴S=BC•DE=×5×4=10,△BCD∴△BCD的面积为10.。
苏科版八年级数学上册《第一章 全等三角形》单元检测卷(带答案)
苏科版八年级数学上册《第一章全等三角形》单元检测卷(带答案)一、选择题1.已知图中的两个三角形全等,则∠α的度数为A. 1050B. 750C. 600D. 4502.根据下列已知条件,能唯一画出△ABC的是( )A. AB=3,BC=4,CA=8B. ∠A=60°C. AB=4,BC=3,∠A=30°D. ∠C=90°3.小明同学有一块玻璃的三角板,不小心掉到地上碎成了三块,现要去文具店买一块同样的三角板,最省事的是( )A. 带②去B. 带①去C. 带③去D. 三块都带去4.如图,已知AB=AC,点D、E分别在线段AB、AC上,BE与CD相交于点O,添加以下哪个条件仍不能判定△ABE≌△ACD( )A. ∠B=∠CB. AE=ADC. BD=CED. BE=CD5.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M、N重合,过角尺顶点C作射线OC,由此作法便可得△NOC≌△MOC其依据是( )A. SSSB. SASC. ASAD. AAS6.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,BC=EF,∠B=∠E;③∠B=∠E,∠C=∠F,BC=EF;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有A. 1组B. 2组C. 3组D. 4组7.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是( )A. 50B. 62C. 65D. 688.尺规作图作∠AOB的平分线方法如下:如图,以点O为圆心,任意长为半径画弧分别交OA,OB于点C,D再CD长为半径画弧,两弧交于点P,作射线OP,由作法得△OCP≌△ODP的根分别以点C,D为圆心,以大于12据是( )A. SASB. ASAC. AASD. SSS9.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b则斜边BD的长是( )A. √ a2−b22B. √a2+b22C. a+bD. a−b二、填空题10.如图,已知AB=DE,∠B=∠E,请你添加一个适当的条件(填写一个即可),使得△ABC≌△DEC.11.如图△ABC≌△ADE,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC的度数为______.12.如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D②AC=DB③AB=DC其中不能确定△ABC≌△DCB的是_____(只填序号).13.如图,在△ABC中D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C是____度.14.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直).已知DC=3,CE=4.则两条凳子的高度之和为___________.15.如图,两根旗杆间相距20米,某人从点B沿BA走向点A,一段时间后他到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆BD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是秒.三、解答题16.已知:如图,E是BC上一点AB=EC,AB//CD,BC=CD求证:AC=ED.17.如图AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.18.如图,已知∠A=∠D=90°,E,F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF求证:△ABF≌△DCE.19.如图,在△ABC中AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足AE=CF,求证:∠ACB=90°.20.如图(1)AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm点P在线段AB上以1cm/s的速度由点A向点B 运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】【分析】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.根据全等三角形对应角相等可得∠D=∠A=60°,再根据三角形内角和定理可得答案.【解答】解:∵△ABC≌△DEF∴∠D=∠A=60°∴∠α=180°−60°−45°=75°故选:B.2.【答案】B【解析】解:A、错误∵3+4<8,不能构成三角形;B、正确.已知两角夹边,三角形就确定了;C、错误.边边角不能确定三角形;D、错误.一角一边不能确定三角形.故选:B.分析:根据三角形的三边关系以及确定三角形的条件有SAS、AAS、ASA、SSS、HL,即可判断.本题考查全等三角形的判定和性质、三角形的三边关系等知识,解题的关键是灵活运用所学知识解决问题,属于基础题.3.【答案】C【解析】解:带③去,符合“角边角”可以配一块同样大小的三角板.故选:C.根据全等三角形的判定方法ASA即可得出结果.本题考查了全等三角形判定的应用,熟练掌握三角形全等的判定方法是解决问题的关键.4.【答案】D【解析】解:A、当∠B=∠C时,利用ASA定理可以判定△ABE≌△ACD;B、当AE=AD时,利用SAS定理可以判定△ABE≌△ACD;C、当BD=CE时,得到AD=AE,利用SAS定理可以判定△ABE≌△ACD;D、当BE=CD时,不能判定△ABE≌△ACD;故选:D.根据全等三角形的判定定理判断.本题考查的是全等三角形的判定,掌握全等三角形的判定定理是解题的关键.5.【答案】A【解析】【分析】此题主要考查学生对全等三角形判定定理的理解和掌握此题难度不大属于基础题.利用全等三角形判定定理AAS SAS ASA SSS对△MOC和△NOC进行分析即可作出正确选择.【解答】解:由题意可知OM=ON在△MOC和△NOC中{OM=ON CM=CN OC=OC,∴△MOC≌△NOC(SSS).故选A.6.【答案】C【解析】【分析】本题考查了全等三角形的判定熟记全等三角形的判定是解题关键.根据全等三角形判定的条件可得答案.【解答】解:①AB=DE BC=EF AC=DF;②AB=DE BC=EF∠B=∠E;③∠B=∠E∠C=∠F BC=EF;故选C.7.【答案】A【解析】【分析】本题考查的是全等三角形的判定的相关知识由AE⊥AB EF⊥FH BG⊥AG可以得到∠EAF=∠ABG而AE=AB∠EFA=∠AGB由此可以证明△EFA≌△ABG所以AF=BG AG=EF;同理证得△BGC≌△DHC GC=DH CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16然后利用面积的割补法和面积公式即可求出图形的面积.【解答】解:∵AE⊥AB且AE=AB EF⊥FH∠EAF+∠BAG=90°∴AE=AB∠EFA=∠AGB∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG AG=EF.同理证得△BGC≌△DHC得GC=DH CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=12(6+4)×16−3×4−6×3=50.故选A.8.【答案】D【解析】【分析】本题考查三角形全等的判定方法判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL.注意:AAA SSA不能判定两个三角形全等判定两个三角形全等时必须有边的参与若有两边一角对应相等时角必须是两边的夹角.认真阅读作法从角平分线的作法得出△OCP与△ODP的两边分别相等加上公共边相等于是两个三角形符合SSS判定方法要求的条件答案可得.【解答】解:∵以O为圆心任意长为半径画弧交OA OB于C D即OC=OD;以点C D为圆心以大于12CD长为半径画弧两弧交于点P即CP=DP;∴在△OCP和△ODP中{C=ODOP=OPCP=DP,∴△OCP≌△ODP(SSS).故选D.9.【答案】B【解析】【分析】本题主要考查正方形的面积公式以及全等三角形的判定和性质深入理解题意是解决问题的关键.过A作AN⊥CB交CB的延长线于N作AM⊥EF交EF的延长线于M过D作DR⊥BH交BH于R延长FG 交DR 于Q 则四边形CEMN 是正方形 四边形QGHR 是正方形 四边形ABDF 是正方形 利用这三个正方形之间的面积关系即可求出BD 2 进一步可求BD 的长.【解答】解:如图所示 过A 作AN ⊥CB 交CB 的延长线于N作AM ⊥EF 交EF 的延长线于M 过D 作DR ⊥BH 交BH 于R 延长FG 交DR 于Q∴△ABH △BCD △DEF △AGF 是四个全等的直角三角形∴四边形CEMN 是正方形 四边形QGHR 是正方形 四边形ABDF 是正方形∵CE =a HG =b∴正方形CEMN 的面积为a 2 正方形QGHR 的面积为b 2 正方形ABDF 的面积为BD 2故S △ABH +S △BDR +S △DFQ +S AGF =BD 2−b 2又a 2−b 2=2(S △ABH +S △BDR +S △DFQ +S AGF )即a 2−b 2=2(BD 2−b 2)得BD 2=a 2+b 22∴BD =√ a 2+b 22. 故选B10.【答案】BC =EC 或∠ACB =∠DCE 或∠A =∠D(本题答案不唯一)【解析】【分析】此题主要考查学生对全等三角形的判定这一知识点的理解和掌握 此题难度不大 属于基础题.本题要判定△ABC≌△DEC 已知AB =DE ∠B =∠E 具备了一组对边和一组对角对应相等 利用SAS 或者AAS 或ASA 即可判定两三角形全等了.【解答】解:①添加条件是:BC=EC在△ABC与△DEC中∴△ABC≌△DEC(SAS).故答案为BC=EC.②添加条件是:∠ACB=∠DCE在△ABC与△DEC中∴△ABC≌△DEC(AAS).故答案为∠ACB=∠DCE.③添加条件是:∠A=∠D在△ABC与△DEC中∴△ABC≌△DEC(ASA).故答案为∠A=∠D..故答案为:BC=ECE或∠ACB=∠DCE或∠A=∠D(本题答案不唯一三个答案任选一个) 11.【答案】45°【解析】解:∵∠B=70°∴∠BAC=180°−∠B−∠C=180°−70°−30°=80°∵△ABC≌△ADE∴∠EAD=∠BAC=80°∴∠EAC=∠EAD−∠DAC=80°−35°=45°故答案为:45°由全等三角形的性质可得到∠BAC=∠EAD在△ABC中可求得∠BAC则可求得∠EAC.本题主要考查全等三角形的性质掌握全等三角形的对应边相等对应角相等是解题的关键.12.【答案】②【解析】解:∵已知∠ABC=∠DCB且BC=CB∴若添加①∠A=∠D则可由AAS判定△ABC≌△DCB;若添加②AC=DB则属于边边角的顺序不能判定△ABC≌△DCB;若添加③AB=DC则属于边角边的顺序可以判定△ABC≌△DCB.故答案为:②.一般三角形全等的判定方法有SSS SAS AAS ASA HL据此可逐个对比求解.本题考查全等三角形的几种基本判定方法只要判定方法掌握得牢固此题不难判断.13.【答案】30【解析】【分析】本题主要考查全等三角形的性质以及三角形内角和定理发现并利用∠ADB=∠EDB=∠EDC=60°∠DEC=∠DEB=∠A=90°是正确解决本题的关键.因为三个三角形为全等三角形则对应角相等从而得到∠ADB=∠EDB=∠EDC∠DEC=∠DEB=∠A再利用三角形内角和定理得到∠ADB=∠EDB=∠EDC=60°∠DEC=∠DEB=∠A=90°最后在△DEC中利用三角形内角和定理求得∠C的度数.【解答】解:∵△ADB≌△EDB≌△EDC∴∠ADB=∠EDB=∠EDC又∵∠ADB+∠EDB+∠EDC=180°∴∠ADB=∠EDB=∠EDC=60°在△DEC中∴∠C=30°.故答案为30.14.【答案】7【解析】【分析】此题主要考查了全等三角形的判定与性质得出△ACD≌△CBE是解题关键.利用等腰三角形的性质结合全等三角形的判定方法得出即可.【解答】解:由题意可得:∠ACD+∠BCE=90°则∠DAC=∠ECB在△ACD和△CBE中{∠CDA=∠BEC ∠DAC=∠ECB AC=CB,∴△ACD≌△CBE(AAS)故DC=BE=3则两条凳子的高度之和为:3+4=7.故答案为7.15.【答案】4【解析】【分析】本题考查了全等三角形的应用;解答本题的关键是利用互余关系找三角形全等的条件 对应角相等 并巧妙地借助两个三角形全等 寻找所求线段与已知线段之间的等量关系.本题的关键是求得Rt △ACM≌Rt △BMD .根据题意证明∠C =∠DMB 利用AAS 证明△ACM≌△BMD 根据全等三角形的性质得到BD =AM =12米 再利用时间=路程÷速度即可.【解答】解:∵∠CMD =90°∴∠CMA +∠DMB =90°又∵∠CAM =90°∴∠CMA +∠C =90°∴∠C =∠DMB .在Rt △ACM 和Rt △BMD 中{∠A =∠B ∠C =∠DMB CM =MD∴Rt △ACM≌Rt △BMD(AAS)∴BD =AM =12米∴BM =20−12=8(米)∵该人的运动速度为2m/s∴他到达点M 时 运动时间为8÷2=4(s).故答案为4.16.【答案】证明:因为AB//CD所以∠B =∠DCE .在△ABC 和△ECD 中{AB =EC ∠B =∠DCE BC =CD所以△ABC ≌△ECD(SAS).所以AC =ED .【解析】本题考查了三角形全等的判定与性质平行线的性质比较简单求出∠B=∠DCE是证明三角形全等的关键.根据两直线平行内错角相等可得∠B=∠DCE然后利用“边角边”证明△ABC和△ECD全等再根据全等三角形对应边相等即可得证.17.【答案】(1)证明:∵∠DAE=∠BAC∴∠DAE−∠DAC=∠BAC−∠DAC∴∠1=∠CAE在△ABD和△ACE中∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE∴∠DBA=∠2∵∠2=30°∴∠DBA=30°∵∠1=25°∴∠3=∠1+∠DBA=25°+30°=55°.【解析】本题考查的是全等三角形的判定和性质以及三角形的外角性质掌握全等三角形的判定方法和适当运用三角形的外角定理是关键.(1)由∠BAC=∠DAE可得∠1=∠CAE利用SAS可证明结论;(2)由△ABD≌△ACE得到由∠DBA=∠2最后利用三角形的外角的性质即可解答.18.【答案】证明:∵BE=CF∴BE+EF=CF+EF即BF=CE∵∠A=∠D=90°∴△ABF与△DCE都为直角三角形在Rt△ABF和Rt△DCE中{BF=CE,AB=DC∴Rt△ABF≌Rt△DCE(HL).【解析】此题考查了直角三角形全等的判定解题关键是由BE=CF通过等量代换得到BF=CE.由BE=CF通过等量代换得到BF=CE结合AB=CD根据直角三角形全等的判定的方法即可证明.19.【答案】证明:如图在Rt △ACE 和Rt △CBF 中{AC =BC AE =CF∴Rt △ACE≌Rt △CBF(HL)∴∠EAC =∠BCF∵∠EAC +∠ACE =90°∴∠ACE +∠BCF =90°∴∠ACB =180°−90°=90°.【解析】先利用HL 定理证明△ACE 和△CBF 全等 再根据全等三角形对应角相等可以得到∠EAC =∠BCF 因为∠EAC +ACE =90° 所以∠ACE +∠BCF =90° 根据平角定义可得∠ACB =90°.本题主要考查全等三角形的判定 全等三角形对应角相等的性质 熟练掌握性质是解题的关键. 20.【答案】解:(1)当t =1时 AP =BQ =1又∵∠A =∠B =90°在△ACP 和△BPQ 中AP =BQ ∠A =∠B∴△ACP≌△BPQ(SAS).∴∠ACP =∠BPQ∴∠APC +∠BPQ =∠APC +∠ACP =90°.∴∠CPQ =90°即线段PC 与线段PQ 垂直.(2)①若△ACP≌△BPQ则AC =BP{3=4−t t =xt解得{t =1x =1②若△ACP≌△BQP则AC =BQ{3=xt t =4−t解得{t =2x =32综上所述 存在{t=1x=1或{t=2 x=32使得△ACP与△BPQ全等.【解析】本题主要考查了全等三角形的判定与性质注意分类讨论思想的渗透.(1)利用SAS证得△ACP≌△BPQ得出∠ACP=∠BPQ进一步得出∠APC+∠BPQ=∠APC+∠ACP= 90°得出结论即可;(2)由△ACP≌△BPQ分两种情况:①AC=BP AP=BQ②AC=BQ AP=BP建立方程组求得答案即可.。
八年级数学上册《全等三角形》单元测试含答案
八年级数学上册《全等三角形》单元测试含答案全等三角形单元测试一、单项选择题(共10 题;共 30 分)1.如图,已知AE=CF,∠ AFD=∠ CEB,那么增添以下一个条件后,仍没法判断△ADF≌△ CBE的是()A、∠ A=∠ CB、 AD=CBC、 BE='DF'D、 AD∥ BC2.如图, D 在AB 上, E 在AC 上,且∠B=∠ C,那么增补以下条件后,不可以判断△ABE≌△ ACD的是()A、 AD=AEB、 BE=CDC、∠ AEB=∠ADCD、 AB=AC3.以下图,△ABD≌△ CDB,下边四个结论中,不正确的选项是()A.△ ABD 和△ CDB的面积相等B.△ ABD 和△ CDB的周长相等C.∠ A+∠ ABD=∠ C+∠ CBD∥ BC,且AD=BC4.如图,在以下条件中,不可以证明△ABD≌△ ACD的是()A.BD=DC, AB=ACB.∠ ADB=∠ ADC, BD=DCC.∠ B=∠ C,∠ BAD=∠ CADD.∠ B=∠C, BD=DC5.已知图中的两个三角形全等,则∠ 1 等于()°° C.50 ° D.58 °6.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,此中AD=CD,AB=CB,在研究筝形的性质时,获得以下结论:①△ABD≌△ CBD;② AC⊥ BD;③四边形ABCD的面积=12AC?BD,此中正确的结论有()A.0 个B.1 个C.2 个D.3 个7.如图,已知△ ABE≌△ ACD,∠ 1=∠ 2,∠ B=∠ C,不正确的等式是()A.AB=ACB.∠ BAE=∠ CADC.BE=DCD.AD=DE8.如图,已知MB=ND,∠ MBA=∠ NDC,以下条件中不可以判断△ABM≌△ CDN的是()A.∠ M=∠ NB.AM=CNC.AB=CDD.AM ∥ CN9.已知△ ABC≌△ DEF,∠ A=50°,∠ B=75°,则∠ F 的大小为()°° C.65 ° D.75 °10.如图,在△ ABC和△ DEF中,给出以下六个条件中,以此中三个作为已知条件,不可以判断△ABC和△ DEF 全等的是()①AB=DE ;② BC=EF;③ AC=DF;④∠ A=∠ D;⑤∠B=∠ E;⑥∠ C=∠ F.A、①⑤②B、①②③C、④⑥①D、②③④二、填空题(共8 题;共 27 分)11.如图,△ ABC≌△ ADE,∠ B=100 °,∠ BAC= 30°,那么∠ AED= ________ °.12.以下图,已知△ABC≌△ ADE,∠ C=∠ E,AB=AD,则此外两组对应边为________,此外两组对应角为________.13.如图,△ ACE≌△ DBF,点 A、 B、C、 D 共线,若 AC=5, BC=2,则 CD的长度等于 ________.14.如图, AB=AD,只需增添一个条件________,就能够判断△ABC≌△ ADE.B=∠ C, BC=8厘米,点 D 为AB 的中点.假如点P 在线段BC 上以 2 厘米15.△ ABC中, AB=AC=12厘米,∠/ 秒的速度由 B 点向 C 点运动,同时,点Q 在线段CA 上由 C 点向A 点运动.若点Q 的运动速度为v 厘米 /秒,则当△ BPD 与△ CQP全等时, v 的值为 ________.16.如图,已知△ABC≌△ DCB,∠ BDC=35°,∠ DBC=50°,则∠ ABD=________.17.如图,△ ABC≌△ DEF,点 F 在 BC边上, AB 与 EF订交于点P.若∠ DEF=40°, PB=PF,则∠APF=________ .°18.如图,在△ ABC与△ ADC 中,已知 AD=AB,在不增添任何协助线的前提下,要使△ABC≌△ ADC,只需再增添的一个条件能够是________.三、解答题(共 5 题;共 37 分)19.如图,已知△ABC≌△ BAD, AC 与 BD 订交于点O,求证: OC=OD.20.图中所示的是两个全等的五边形,∠β=115°,d=5,指出它们的对应极点?对应边与对应角,并说出图中标的 a,b ,c, e,α各字母所表示的值.21.如图, AB=CB, BE=BF,∠ 1=∠ 2,证明:△ ABE≌△ CBF.22.已知命题:如图,点A, D, B, E 在同一条直线上,且AD=BE,∠ A=∠ FDE,则△ ABC≌△ DEF.判断这个命题是真命题仍是假命题,假如是真命题,请给出证明;假如是假命题,请增添一个适合条件使它成为真命题,并加以证明.23.如图,已知点 C 是线段 AB 上一点,直线AM⊥ AB,射线 CN⊥ AB, AC=3, CB=2.分别在直线AM 上取一点 D,在射线CN上取一点 E,使得△ ABD 与△ BDE全等,求2的CE值.四、综合题(共 1 题;共 10 分)24.定义:我们把三角形被一边中线分红的两个三角形叫做“朋友三角形”.性质:“朋友三角形”的面积相等.如图 1,在△ ABC中, CD是 AB 边上的中线.那么△ ACD和△ BCD是“朋友三角形”,而且 S△ACD=S△BCD.应用:如图 2,在直角梯形 ABCD中,∠ ABC=90°, AD∥ BC, AB=AD=4, BC=6,点 E 在 BC 上,点 F 在AD 上, BE=AF, AE 与 BF交于点 O.(1)求证:△ AOB 和△ AOF是“朋友三角形”;(2)连结 OD,若△ AOF 和△ DOF是“朋友三角形”,求四边形CDOE的面积.拓展:如图3,在△ ABC中,∠ A=30°, AB=8,点 D 在线段 AB 上,连结 CD,△ ACD和△ BCD是“朋友三角形”,将△ ACD 沿 CD 所在直线翻折,获得△ A′CD,若△ A′CD与△ ABC重合部分的面积等于△ABC 面积的,则△ ABC的面积是 ________(请直接写出答案).答案分析一、单项选择题1、【答案】 B【考点】全等三角形的判断【分析】【剖析】由 AE=CF可得 AF=CE,再有∠ AFD=∠ CEB,依据全等三角形的判断方法挨次剖析各选项即可 .【解答】∵ AE=CF∴AE+EF=CF+EF,即 AF=CE,∵∠ A=∠ C, AF=CE,∠ AFD=∠ CEB,∴△ ADF≌△ CBE( ASA)∵BE=DF,∠ AFD=∠ CEB, AF=CE,∴△ ADF≌△ CBE(SAS)∵AD∥ BC,∴∠ A=∠ C,∵∠ A=∠ C, AF=CE,∠ AFD=∠ CEB,∴△ ADF≌△ CBE( ASA)故 A、 C、D 均能够判断△ ADF≌△ CBE,不切合题意B、 AF=CE, AD=CB,∠ AFD=∠ CEB没法判断△ ADF≌△ CBE,本选项切合题意.【评论】全等三角形的判断和性质是初中数学的要点,贯串于整个初中数学的学习,是中考取比较常有的知识点,一般难度不大,需娴熟掌握.2、【答案】 C【考点】全等三角形的判断【分析】【剖析】 A、依据 AAS(∠ A=∠ A,∠ C=∠B, AD=AE)能推出△ ABE≌△ ACD,正确,故本选项错误;B、依据 AAS(∠ A=∠ A,∠ B=∠ C, BE=CD)能推出△ ABE≌△ ACD,正确,故本选项错误;C、三角对应相等的两三角形不必定全等,错误,故本选项正确;D、依据 ASA(∠ A=∠ A, AB=AC,∠ B=∠ C)能推出△ ABE≌△ ACD,正确,故本选项错误;应选 C.3、【答案】 C【考点】全等三角形的性质【分析】【解答】解: A、∵△ ABD≌△ CDB,∴△ ABD 和△ CDB的面积相等,故本选项错误;B、∵△ ABD≌△ CDB,∴△ ABD 和△ CDB的周长相等,故本选项错误;C、∵△ ABD≌△ CDB,∴∠ A=∠ C,∠ ABD=∠ CDB,∴∠ A+∠ ABD=∠ C+∠ CDB≠∠ C+∠ CBD,故本选项正确;D、∵△ ABD≌△ CDB,∴AD=BC,∠ ADB=∠ CBD,∴AD∥BC,故本选项错误;应选 C.【剖析】依据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐一判断即可.4、【答案】 D【考点】全等三角形的判断【分析】【解答】解: A、∵在△ ABD 和△ ACD中∴△ ABD≌△ ACD( SSS),故本选项错误;B、∵在△ ABD 和△ ACD 中∴△ ABD≌△ ACD( SAS),故本选项错误;C、∵在△ ABD 和△ ACD 中∴△ ABD≌△ ACD( AAS),故本选项错误;D、不切合全等三角形的判断定理,不可以推出△ABD≌△ ACD,故本选项正确;应选 D.【剖析】全等三角形的判断定理有SAS, ASA,AAS, SSS,依据全等三角形的判断定理逐一判断即可.5、【答案】 D【考点】全等三角形的性质【分析】【解答】解:如图,由三角形内角和定理获得:∠2=180°﹣ 50°﹣72°=58°.∵图中的两个三角形全等,∴∠ 1=∠ 2=58°.应选: D.【剖析】依据三角形内角和定理求得∠2=58°;而后由全等三角形是性质获得∠1=∠ 2=58°.6、【答案】 D【考点】全等三角形的判断【分析】【解答】解:在△ABD 与△ CBD中,AD=CDAB=BCDB=DB ,∴△ ABD≌△ CBD( SSS),故①正确;∴∠ ADB=∠ CDB,在△ AOD 与△ COD中,,∴△ AOD≌△ COD( SAS),∴∠ AOD=∠ COD=90°,AO=OC,∴AC⊥ DB,故②正确;四边形 ABCD的面积 =S△ ADB+S△ BDC=12DB×OA+12DB×OC=12AC· BD故③正确;应选 D.【剖析】先证明△ABD 与△ CBD 全等,再证明△AOD 与△ COD 全等即可判断.7、【答案】 D【考点】全等三角形的性质【分析】【解答】解:∵△ABE≌△ ACD,∠ 1=∠ 2,∠B=∠ C,∴ AB=AC,∠ BAE=∠ CAD,BE=DC,AD=AE,故 A、 B、C 正确;AD 的对应边是AE 而非 DE,因此 D 错误.应选 D.【剖析】依据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.8、【答案】 B【考点】全等三角形的判断【分析】【解答】解: A、∠ M= ∠ N,切合 ASA,能判断△ ABM≌△ CDN,故 A 选项不切合题意;B、根据条件 AM=CN, MB=ND,∠ MBA=∠ NDC,不可以判断△ ABM≌△ CDN,故 B 选项切合题意;C、 AB=CD,切合 SAS,能判断△ ABM≌△ CDN,故 C 选项不切合题意;D、 AM∥CN,得出∠ MAB=∠ NCD,切合 AAS,能判断△ ABM≌△ CDN,故 D 选项不切合题意.应选: B.【剖析】依据一般三角形全等的判断定理,有9、【答案】 B【考点】全等三角形的性质【分析】【解答】解:∵∠A=50°,∠ B=75°,∴∠ C=55°,AAS、 SSS、 ASA、 SAS四种.逐条考证.又∵∠ A+∠ B+C=180°,∵△ ABC≌△ DEF,∴∠ F=∠ C,即:∠ F=55°.应选 B.【剖析】由∠A=50°,∠ B=75°,依据三角形的内角和定理求出∠全等三角形的性质获得∠F=∠ C,即可获得答案.C的度数,依据已知△ABC≌△ DEF,利用10、【答案】 D【考点】全等三角形的判断【分析】【解答】解:在△ABC 和△ DEF中,,∴△ ABC≌△ DEF( SAS);∴A 不切合题意;在△ ABC和△ DEF中,,∴△ ABC≌△ DEF( SSS);∴ B 不切合题意;在△ ABC和△ DEF中,,∴△ ABC≌△ DEF( AAS),∴C 不切合题意;在△ ABC和△ DEF中,D②③④不可以判断△ ABC和△ DEF全等,应选 D.【剖析】依据全等三角形的判断方法对组合进行判断即可.二、填空题11、【答案】 50【考点】全等三角形的性质【分析】【解答】由于∠B= 100°,∠ BAC= 30°因此∠ ACB= 50°;又由于△ ABC≌△ ADE,因此∠ ACB=∠AED = 50°;【剖析】第一依据全等三角形性质可得对应角相等,再联合图形找到全等三角形的那两个角对应相等,根据题意达成填空.12、【答案】 BC=DE、 AC=AE;∠ B=∠ ADE、∠ BAC=∠DAE 【考点】全等三角形的性质【分析】【解答】∵△ ABC≌△ ADE,∠ C=∠ E, AB=AD,∴AC=AE, BC=DE;∴∠ BAC=∠ DAE,∠ B=∠ ADE.【剖析】由已知△ ABC≌△ ADE,∠ C=∠ E, AB=AD 得 C 点与点 E,点 B 与点 D 为对应点,而后依据全等三角形的性质可得答案.13、【答案】 3【考点】全等三角形的性质【分析】【解答】解:∵△ACE≌△ DBF,∴AC=BD=5,∴CD=BD﹣BC=5﹣ 2=3.故答案为: 3.【剖析】依据全等三角形对应边相等可得AC=BD,而后依据 CD=BD﹣ BC计算即可得解.14、【答案】∠ B=∠ D【考点】全等三角形的判断【分析】【解答】解:增添条件∠B=∠ D,∵在△ ABC和△ ADE 中,∴△ ABC≌△ ADE( ASA),故答案为:∠B=∠D.【剖析】增添条件∠B=∠ D,再由条件∠A=∠A,AB=AD,可利用ASA定理证明△ ABC≌△ ADE,答案不惟一.15、【答案】 2 或 3【考点】全等三角形的判断【分析】【解答】解:当BD=PC时,△ BPD 与△ CQP全等,∵点 D 为 AB 的中点,∴BD= 12 AB=6cm,∵ BD=PC,∴BP=8﹣ 6=2(cm),∵点 P 在线段 BC上以 2 厘米 / 秒的速度由 B 点向 C 点运动,∴运动时间时1s,∵△ DBP≌△ PCQ,∴BP=CQ=2cm,∴v=2÷1=2;当BD=CQ时,△BDP≌△QCP,∵ BD=6cm,PB=PC,∴QC=6cm,∵BC=8cm,∴ BP=4cm,∴运动时间为 4÷2=2( s),∴ v=6÷2=3( m/s ),故答案为: 2 或 3.【剖析】本题要分两种状况:①当BD=PC时,△ BPD 与△ CQP全等,计算出BP的长,从而可得运动时间,BDP≌△ QCP,计算出BP 的长,从而可得运动时间,而后再求v.而后再求v;②当BD=CQ时,△16、【答案】 45°【考点】全等三角形的性质【分析】【解答】解:∵∠ BDC=35°,∠ DBC=50°,∴∠ BCD=180°﹣∠ BDC﹣∠ DBC=180°﹣35°﹣50°=95°,∵△ ABC≌△ DCB,∴∠ ABC=∠ BCD=95°,∴∠ ABD=∠ ABC﹣∠ DBC=95°﹣50°=45°.故答案为: 45°.【剖析】依据三角形的内角和等于180°求出∠BCD,再依据全等三角形对应角相等可得∠ABC=∠ BCD,然后列式进行计算即可得解.17、【答案】 80【考点】全等三角形的性质【分析】【解答】解:∵△ ABC≌△ DEF,∴∠ B=∠DEF=40°,∵PB=PF,∴∠ PFB=∠ B=40°,∴∠ APF=∠ B+∠PFB=80°,故答案为: 80.【剖析】由全等三角形的性质可求得∠B,再利用等腰三角形和外角的性质可求得∠APF.18、【答案】 DC=BC或∠ DAC=∠BAC【考点】全等三角形的判断【分析】【解答】解:增添条件为DC=BC,在△ ABC和△ ADC中,,∴△ ABC≌△ ADC( SSS);若增添条件为∠DAC=∠ BAC,在△ ABC和△ ADC 中,,∴△ ABC≌△ ADC( SAS).故答案为: DC=BC或∠ DAC=∠BAC【剖析】增添 DC=BC,利用 SSS即可获得两三角形全等;增添∠ DAC=∠ BAC,利用 SAS即可获得两三角形全等.三、解答题19、【答案】证明:∵△ ABC≌△ BAD,∴∠ CAB=∠ DBA, AC=BD,∴OA=OB,∴AC﹣OA=BD﹣OB,即: OC=OD.【考点】全等三角形的性质【分析】【剖析】由△ ABC≌△ BAD,依据全等三角形的性质得出∠CAB=∠ DBA, AC=BD,利用等角平等边获得 OA=OB,那么 AC﹣ OA=BD﹣OB,即: OC=OD.20、【答案】解:对应极点: A 和 G, E 和 F,D 和 J,C 和 I, B 和 H,对应边: AB 和 GH,AE 和 GF, ED 和 FJ, CD 和 JI,BC 和 HI;对应角:∠ A 和∠ G,∠ B 和∠ H,∠ C 和∠ I,∠ D 和∠ J,∠ E和∠ F;∵两个五边形全等,∴a=12,c=8, b=10, e=11,α=90°.【考点】全等图形【分析】【剖析】依据能够完整重合的两个图形叫做全等形,重合的极点叫做对应极点;重合的边叫做对应边;重合的角叫做对应角可得对应极点,对应边与对应角,从而可得a,b,c,e,α各字母所表示的值.21、【答案】证明:∵∠ 1=∠ 2,∴∠ 1+∠ FBE=∠ 2+∠ FBE,即∠ ABE=∠ CBF,在△ ABE与△ CBF中,AB=CB∠ ABE=∠ CBFBE=BF,∴△ ABE≌△ CBF( SAS).【考点】全等三角形的判断【分析】【剖析】利用∠1=∠ 2,即可得出∠ABE=∠ CBF,再利用全等三角形的判断SAS得出即可.22、【答案】解:是假命题.以下任一方法均可:①增添条件:AC=DF.证明:∵ AD=BE,∴AD+BD=BE+BD,即 AB=DE.在△ ABC和△ DEF中,AB=DE,∠A=∠ FDE,AC=DF,∴△ ABC≌△ DEF( SAS);②增添条件:∠CBA=∠ E.证明:∵ AD=BE,∴AD+BD=BE+BD,即 AB=DE.在△ABC和△DEF中,∠ A=∠ FDE,AB=DE,∠CBA=∠ E,∴△ ABC≌△ DEF( ASA);③增添条件:∠C=∠ F.证明:∵ AD=BE,∴AD+BD=BE+BD,即 AB=DE.在△ ABC和△ DEF中,∠ A=∠ FDE,∠ C=∠F,AB=DE,∴△ ABC≌△ DEF( AAS)【考点】全等三角形的判断【分析】【剖析】本题中要证△ABC≌△ DEF,已知的条件有一组对应边AB=DE( AD=BE),一组对应角∠ASA),或许是一组A=∠FDE.要想证得全等,依据全等三角形的判断,缺乏的条件是一组对应角( AAS或对应边AC=EF( SAS).只需有这两种状况就能证得三角形全等.23、【答案】解:如图,当△ ABD≌△ EBD时,BE=AB=5,∴CE2=BE2﹣ BC2=25﹣ 4=21.【考点】全等三角形的判断【分析】【剖析】由题意可知只好是△ABD≌△ EBD,则可求得BE,再利用勾股定理可求得CE2四、综合题24、【答案】( 1)证明:∵ AD∥ BC,∴∠ OAF=∠ OEB,在△ AOF 和△ EOB 中,,∴△ AOF≌△ EOB( AAS),∴OF=OB,则 AO 是△ ABF 的中线.∴△ AOB 和△ AOF是“朋友三角形”(2) 8 或 8【考点】全等三角形的判断【分析】【解答】( 2)解:∵△ AOF 和△ DOF 是“朋友三角形”,∴S△AOF=S△DOF,∵△ AOF≌△ EOB,∴S△AOB=S△EOB,∵△ AOB 和△ AOF是“朋友三角形”∴S△AOB=S△AOF,=S =S =S, =× 4× 2=4,∴ S△AOF△DOF△AOB△EOB∴四边形CDOE 的面积 =S 梯形ABCD﹣ 2S△ABE=×(4+6)×4﹣2× 4=12;拓展:解:分为两种状况:①如图 1 所示:∵S△ACD=S△BCD.∴AD=BD= AB=4,∵沿 CD 折叠 A 和 A′重合,∴AD=A′D= AB= ×8=4,∵△ A′CD与△ ABC重合部分的面积等于△ABC面积的,=S =S =S =S,∴ S△DOC△ ABC△ BDC△ ADC△ A′DC∴ DO=OB, A′O=CO,∴四边形 A′DCB是平行四边形,∴ BC=A′D=4,过 B 作 BM⊥ AC 于 M,∵ AB=8,∠ BAC=30°,∴ BM=AB=4=BC,即 C 和 M 重合,∴∠ ACB=90°,由勾股定理得:AC==4,∴△ ABC的面积 =×BC×AC= ×4×4=8;②如图 2 所示:∵S△ACD=S△BCD.∴AD=BD= AB,∵沿 CD 折叠 A 和 A′重合,∴AD=A′D= AB= ×8=4,∵△ A′CD与△ ABC重合部分的面积等于△ABC 面积的,∴ S△DOC=△△△△ ′S ABC=S BDC=S ADC=S A DC,∴DO=OA′, BO=CO,∴四边形 A′BDC是平行四边形,∴A′C=BD=4,过 C 作 CQ⊥ A′D于 Q,∵A′C=4,∠ DA′C=∠BAC=30°,∴ CQ= A′C=2,=2S=2S=2×× A′ D× CQ=2× 4 × 2=8;∴ S△ABC△ADC△ A′DC即△ ABC的面积是8 或 8;故答案为:8 或 8.【剖析】应用:(1)由 AAS 证明△ AOF≌△ EOB,得出 OF=OB, AO 是△ ABF的中线,即可得出结论;( 2)△ AOE和△ DOE 是“友善三角形”,即可获得 E 是 AD 的中点,则能够求得△ ABE和梯形 ABCD的面积的面积,依据 S 四边形CDOF=S矩形ABCD﹣ 2S△ABF即可求解.拓展:画出切合条件的两种状况:①求出四边形A′DCB是平行四边形,求出BC和 A′D推出∠ ACB=90°,依据三角形面积公式求出即可;②求出高CQ,求出△ A′DC的面积.即可求出△ABC的面积。
八年级数学上册《第一章 全等三角形》单元测试题及答案
八年级数学上册《第一章 全等三角形》单元测试题及答案一.填空题(每题3分,共30分)1.如图(1),△ABC ≌△DBC,且∠A 和∠D,∠ABC 和∠DBC 是对应角,其对应边:_______.(1) (2) (3)2.如图(2),△ABD ≌△ACE,且∠BAD 和∠CAE,∠ABD 和∠ACE,∠ADB 和∠AEC 是对应角,则对应边_________.3. 已知:如图(3),△ABC ≌△FED,且BC=DE.则∠A=__________,A D=_______.4. 如图(4),△ABD ≌△ACE,则AB 的对应边是_________,∠BAD 的对应角是______.(4) (5) (6)5. 已知:如图(5),△ABE ≌△ACD,∠B=∠C,则∠AEB=_______,AE=________.6.已知:如图(6) , AC ⊥BC 于C , DE ⊥AC 于E , AD ⊥AB 于A , BC=AE .若AB=5 , 则AD=___________.7.已知:△ABC ≌△A’B’C’, △A’B’C’的周长为12cm ,则△ABC的周长为 . 8.如图(7), 已知:∠1=∠2 , ∠3=∠4 , 要证BD=CD , 需先证△AEB ≌△A EC , 根据是_________再证△BDE ≌△______ , 根据是__________.(7) (8) (9)4321EDCBAA B CD12AA'BCC'9.如图(8),∠1=∠2,由AAS判定△ABD≌△ACD,则需添加的条件是____________. 10.如图(9),在平面上将△ABC绕B点旋转到△A’BC’的位置时,AA’∥BC,∠ABC=70°,则∠CBC’为________度.二.选择题(每题3分,共30分)11、下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和一角对应相等C.两角的其中一角的对边对应相等D.两角和它们的夹边对应相等12. 如果两个三角形全等,则不正确的是()A.它们的最小角相等B.它们的对应外角相等C.它们是直角三角形D.它们的最长边相等13. 如图,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE14. 图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ15. 下列说法中不正确的是()A.全等三角形的对应高相等B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等16. AD=AE , AB=AC , BE、CD交于F , 则图中相等的角共有(除去∠DFE=∠BFC)( )A.5对B.4对C.3对D.2对17.如图,OA=OB,OC=OD, ∠O=60°, ∠C=25°则∠BED 的度数是 ( )A.70°B. 85°C. 65°D. 以上都不对18. 已知:如图(18),△ABC ≌△DEF,AC ∥DF,BC ∥EF.则不正确的等式是 ( )A.AC=DFB.AD=BEC.DF=EFD.BC=EF(18) (19) (20)19.如图(19) , ∠A=∠D , OA=OD , ∠DOC=50°, 求∠DBC 的度数为 ( )A.50°B.30°C.45°D.25°20. 如图(20) , ∠ABC=∠DCB=70°, ∠ABD=40°, AB=DC , 则∠BAC= ( )A.70°B.80°C.100°D.90° 三.解答题(每题8分,共40分)21. 已知:如图 , 四边形ABCD 中 , AB ∥CD , AD ∥BC .求证:△ABD ≌△CDB.CEDBOA22. 如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使EC=CB,连结DE,量出DE的长,就是A、B 的距离.写出你的证明.23. 已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.24. 如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.25.如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF.求证:AC=EF.FGE D CB A参考答案1.BC和BC,CD和CA,BD和AB2.AB和AC,AD和AE,BD和CE3. ∠F,CF4.AC, ∠CAE5. ∠ADC,AD6.57.128.ASA DEC SAS9. ∠B=∠C10.40℃11.B 12.C 13.D 14.D 15.D 16.B 17. A 18.C 19.D 20.B21.由ASA可证22. 因为AC=CD EC=BC ∠ACB=∠ECD 所以△ABC≌△CED AB=ED23.证△ABC≌△FED得∠ACB=∠F 所以AC∥DF24.证△BED≌△CFD得∠E=∠CFD 所以CF∥BE25.由AAS证△ABC≌△CED AC=EF.。
八年级上册数学《全等三角形》单元综合检测(含答案)
10.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是()
A.AD+BC=ABB.与∠CBO互余的角有两个
C.∠AOB=90°D.点O是CD的中点
【答案】B
【解析】
故FH=FA+AG+GC+CH=3+6+4+3=16
故S= (6+4)×16−3×4−6×3=50.
故选A.
【点睛】此题考查全等三角形的性质与判定,解题关键在于证明△EFA≌△AGB和△BGC≌△CHD.
9.已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是()
①②④为条件,根据SSS,可判定 ;可得结论③;
①③④为条件,SSA不能证明 ,
②③④为条件,SSA不能证明 ,
最多可以构成正确结论2个,故选B.
【点睛】本题考查的是全等三角形的判定,可根据全等三角形的判定定理和性质进行求解.
6.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=()
A.60°B.55°C.50°D. 无法计算
【答案】B
【解析】
试题解析:∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC,
∴∠1=∠EAC,
在△BAD和△EAC中,
,
∴△BAD≌△EAC(SAS),
∴∠2=∠ABD=30°,
∵∠1=25°,
∴∠3=∠1+∠ABD=25°+30°=55°,
B. 两个角是β,它们的夹边为4
八年级数学上第一章全等三角形单元测试题
1全等三角形单元测试题一、填空(每空1分计26分)1、 (1)全等三角形的_________和_________相等;(2)两个三角形全等的判定方法有:______________________________; 另外两个直角三角形全等的判定方法还可以用:_______; (3)如右图,已知AB=DE ,∠B =∠E ,若要使△AB C ≌△DEF ,那么还要需要一个条件,这个条件可以是:_____________, 理由是:_____________; 这个条件也可以是:_____________, 理由是:_____________; 2.如图5,⊿ABC ≌⊿ADE ,若∠B=40°,∠EAB=80°,∠C=45°,则∠EAC= ,∠D= ,∠DAC= 。
3。
4.如图7,已知∠1=∠2,AB ⊥AC ,BD ⊥CD ,则图中全等三角形有 _____________; ,∠1=∠2,加上条件 ,则有ΔAOC ≌ΔBOC 。
ABCDEF2图6D图7FE6.如图9,AE=BF ,AD ∥BC ,AD=BC ,则有ΔADF ≌ ,且DF= 。
7.如图10,在ΔABC 与ΔDEF 中,如果AB=DE ,BE=CF ,只要加上∠ =∠ 或 ∥ ,就可证明ΔABC ≌ΔDEF 。
8、已知如图,∠B=∠DEF ,AB=DE ,要说明△ABC ≌△DEF , (1)若以“ASA ”为依据,还缺条件 . (2)若以“AAS ”为依据,还缺条件 . (3)若以“SAS ”为依据,还缺条件 . 二、选择题(每题4分级28分) 1.下列命题中正确的是( )①全等三角形对应边相等; ②三个角对应相等的两个三角形全等; ③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。
A .4个B 、3个C 、2个D 、1个2. 具备下列条件的两个三角形中,不一定全等的是 ( )(A) 有两边一角对应相等 (B) 三边对应相等(C) 两角一边对应相等 (D )有两边对应相等的两个直角三角形 3.能使两个直角三角形全等的条件( )(A ) 两直角边对应相等 (B ) 一锐角对应相等 (C ) 两锐角对应相等 (D ) 斜边相等4.已知△ABC ≌△DEF ,∠A=70°,∠E=30°,则∠F 的度数为 ( )(A ) 80° (B ) 70° (C ) 30° (D ) 100°5.对于下列各组条件,不能判定△ABC ≌△C B A '''的一组是 ( ) (A ) ∠A=∠A ′,∠B=∠B ′,AB=A ′B ′ (B ) ∠A=∠A ′,AB=A ′B ′,AC=A ′C ′ (C ) ∠A=∠A ′,AB=A ′B ′,BC=B ′C ′ (D ) AB=A ′B ′,AC=A ′C ′,BC=B ′C ′6.如图,△ABC ≌△CDA ,并且AB=CD ,那么下列结论错误的是 ( ) (A )∠DAC=∠BCA (B )AC=CA(C )∠D=∠B (D )AC=BCFED CBA37.如图,D 在AB 上,E 在AC 上,且∠B=∠C ,则在下列条件中,无法判定△ABE ≌△ACD 的是( ) (A )AD=AE (B )AB=AC (C )BE=CD (D )∠AEB=∠ADC三、作图: 1、用圆规与直尺复制以下三角形(须保留作图痕迹)四、证明题1、如右图,已知AB=AD ,且AC 平分∠BAD ,求证:BC=DC2.已知:点 A 、C 、B 、D 在同一条直线,AC=BD ,∠M=∠N=90°,AM=CN求证: MB ∥ND3、如右图,AB =AD ,∠BAD =∠C AE ,AC=AE ,求证:AB=ADABCD E DEFABCD第2题A BCDE44、已知:如图,AB =CD ,AB ∥DC.求证:,AD∥BC, AD =BC5.已知:如图,AB=AC ,DB=DC .F 是AD 的延长线上一点. 求证: (1) ∠ABD =∠ACD (2)BF=CF6、已知:如图, AO 平分∠EAD 和∠EOD 求证:① △A OE ≌△A OD ②EB=DC7、 如图,在一小水库的两测有A 、B 两点,A 、B 间的距离不能直接测得,采用方法如下:取一点可以同时到达A 、B 的点C ,连结AC 并延长到D ,使AC=DC ;同法,连结BC 并延长到E ,使BC=EC ;这样,只要测量CD 的长度,就可以得到A 、B 的距离了,这是为什么呢?根据以上的描述,请画出图形, 并写出已知、求证、证明。
八年级数学上册《全等三角形》单元测试卷(有答案)
八年级数学上册《全等三角形》单元测试卷(有答案)一.选择题1.下列各组图形中不是全等形的是()A.B.C.D.2.两个全等图形中可以不同的是()A.位置B.长度C.角度D.面积3.下列图形是全等图形的是()A.B.C.D.4.如图线段AB、DC相交于点O,已知OC=OB,添加一个条件使△OCA≌△OBD,下列添加条件中,不正确的是()A.AC=DB B.∠C=∠B C.OA=OD D.∠A=∠D5.如图所示,H是△ABC的高AD,BE的交点,且DH=DC,则下列结论:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正确的有()A.1个B.2个C.3个D.4个6.在△ABC和△ADC中,有下列三个论断:(1)AB=AD,(2)∠BAC=∠DAC,(3)BC=DC.将两个论断作为条件,另一个论断作为结论构成三个命题:(1)若AB=AD,∠BAC=∠DAC,则BC=DC;(2)若AB=AD,BC=DC,则∠BAC=∠DAC;(3)若∠BAC=∠DAC,BC=DC,则AB=AD.其中,正确命题的个数为()A.1个B.2个C.3个D.0个7.△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,点D为AB的中点.如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为()A.2.5 B.3 C.2.25或3 D.1或58.如图,AC与BD相交于点O,∠D=∠C.添加下列哪个条件后,仍不能使△ADO≌△BCO的是()A.AD=BC B.AC=BD C.OD=OC D.∠ABD=∠BAC9.一块三角形玻璃,被摔成如图所示的四块,小敏想去店里买一块形状、大小与原来一样的玻璃,借助“全等三角形”的相关知识,小敏只带了一块去,则这块玻璃的编号是()A.①B.②C.③D.④10.下列画图语句中,正确的是()A.画射线OP=3cm B.画出A、B两点的距离C.延长射线OA D.连接A、B两点二.填空题11.如图,已知∠CAE=∠DAB,AC=AD.给出下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件为.(注:把你认为正确的答案序号都填上)12.如图,在正方形网格中,∠1+∠2+∠3=.13.要测量河岸相对两点A,B的距离,已知AB垂直于河岸BF,先在BF上取两点C,D,使CD=CB,再过点D作BF的垂线段DE,使点A,C,E在一条直线上,如图,测出DE=20米,则AB的长是米.14.下列说法:其中正确的是.(填序号)①用圆规在已知直线上截取一条线段等于已知线段属于尺规作图;②射线AB与射线BA表示同一条射线;③若AC=BC,则点C是线段AB的中点;④钟表在8:30时,时针与分针的夹角是60°.15.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=.16.如图所示,尺规作图作∠AOB的平分线,方法如下:以O为圆心,任意长为半径画弧交OA,OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法得到△OCP≌△ODP的根据是.17.如图,△ABC与△ADC中,∠B=∠D=90°,要使△ABC≌△ADC,还需添加的一个条件是(写一个即可).18.在△ABC中,AB=6,AC=2,AD是BC边上的中线,则AD的取值范围是.19.如图,图中由实线围成的图形与①是全等形的有.(填序号)20.如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为.三.解答题21.已知:如图,点A、E、F、C在同一条直线上,AD∥CB,∠1=∠2,AE=CF.求证:△ADF ≌△CBE.22.如图,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.23.如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.24.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,求∠ADC的度数.25.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.26.如图,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E,且BD>CE.求证:BD=EC+ED.参考答案与解析一.选择题1.解:观察发现,A、C、D选项的两个图形都可以完全重合,∴是全等图形,B选项中圆与椭圆不可能完全重合,∴不是全等形.故选:B.2.解:两个全等图形中对应边的长度,对应角的角度,图形的面积相等,可以不同的是位置.故选:A.3.解:A、两个图形相似,错误;B、两个图形全等,正确;C、两个图形相似,错误;D、两个图形不全等,错误;故选:B.4.解:根据题意,已知OC=OB,∠AOC=∠COB,∴只需添加对顶角的邻边,即OA=OD,或任意一组对应角,即∠C=∠B,∠A=∠D;所以,选项A错误;故选:A.5.解:①∵BE⊥AC,AD⊥BC∴∠AEH=∠ADB=90°∵∠HBD+∠BHD=90°,∠EAH+∠AHE=90°,∠BHD=∠AHE∴∠HBD=∠EAH∵DH=DC∴△BDH≌△ADC(AAS)∴BD=AD,BH=AC②:∵BC=AC∴∠BAC=∠ABC∵由①知,在Rt△ABD中,BD=AD∴∠ABC=45°∴∠BAC=45°∴∠ACB=90°∵∠ACB+∠DAC=90°,∠ACB<90°∴结论②为错误结论.③:由①证明知,△BDH≌△ADC∴BH=AC④:∵CE=CD∵∠ACB=∠ACB;∠ADC=∠BEC=90°∴△BEC≌△ADC由于缺乏条件,无法证得△BEC≌△ADC∴结论④为错误结论综上所述,结论①,③为正确结论,结论②,④为错误结论,根据题意故选B.故选:B.6.解:∵AB=AD,∠BAC=∠DAC,AC=AC,∴△ABC≌△ADC,∴BC=DC,故(1)正确;∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC,∴∠BAC=∠DAC,故(2)正确;由CB=CD,∠BAC=∠DAC,AC=AC,不能证明△ABC≌△ADC,故(3)不正确.故选:B.7.解:∵△ABC中,AB=AC=12厘米,点D为AB的中点,∴BD=6厘米,若△BPD≌△CPQ,则需BD=CQ=6厘米,BP=CP=BC=×9=4.5(厘米),∵点Q的运动速度为3厘米/秒,∴点Q的运动时间为:6÷3=2(s),∴v=4.5÷2=2.25(厘米/秒);若△BPD≌△CQP,则需CP=BD=6厘米,BP=CQ,∴,解得:v=3;∴v的值为:2.25或3,故选:C.8.解:添加AD=CB,根据AAS判定△ADO≌△BCO,添加OD=OC,根据ASA判定△ADO≌△BCO,添加∠ABD=∠CAB得OA=OB,可根据AAS判定△ADO≌△BCO,故选:B.9.解:因为第③块中有完整的两个角以及他们的夹边,利用ASA易证三角形全等,故应带第3块.故选:C.10.解:A、射线OP无限长,所以A选项不符合题意;B、量出A、B点的距离,所以B选项不符合题意;C、射线OA不需要延长,只能反向延长射线OA,所以C选项不符合题意;D、用直尺可以连接A、B两点,所以D选项符合题意.故选:D.二.填空题11.解:∵∠CAE=∠DAB,∴∠CAE+∠EAB=∠DAB+∠EAB,即∠CAB=∠DAE;又AC=AD;所以要判定△ABC≌△AED,需添加的条件为:①AB=AE(SAS);③∠C=∠D(ASA);④∠B=∠E(AAS).故填①、③、④.12.解:∵在△ABC和△ADE中,∴△ABC≌△ADE(SAS),∴∠4=∠3,∵∠1+∠4=90°,∴∠3+∠1=90°,∵∠2=45°,∴∠1+∠2+∠3=135°,故答案为:135°.13.解:∵AB⊥BD,ED⊥AB,∴∠ABC=∠EDC=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=ED=20.故答案为:20.14.解:①用圆规在已知直线上截取一条线段等于已知线段属于尺规作图,所以本说法正确;②射线AB与射线BA表示同一条射线,射线有方向,所以本说法错误;③若AC=BC,则点C是线段AB的中点,A,B,C不一定在一条直线上,所以本说法错误;④钟表在8:30时,时针与分针的夹角是75°,所以本说法错误.故答案为:①.15.解:∵在△ABC和△DBE中,∴△ABC≌△DBE(SAS),∴∠3=∠ACB,∵∠ACB+∠1=90°,∴∠1+∠3=90°,∴∠1+∠2+∠3=90°+45°=135°,故答案为:135°.16.解:∵OC=OD,PC=PD(同圆或等圆的半径相等),OP=OP(公共边),∴△OCP≌△ODP(SSS).故填SSS.17.解:已知∠B=∠D,AC是公共边,故添加CB=CD、AB=AD、∠1=∠2、∠3=∠4后可分别根据HL,AAS,AAS能判定△ABC≌△ADC.18.解:延长AD至E,使DE=AD,连接CE.在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即4<2AD<8,2<AD<4.故答案为:2<AD<4.19.解:由图可知,图上由实线围成的图形与①是全等形的有②,③,故答案为:②③.20.解:∵△ABC≌△DCB,∴DB=AC=7,∴DE=BD﹣BE=7﹣5=2,故答案为:2.三.解答题21.证明:∵AD∥CB,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ADF和△CBE中,∴△ADF≌△CBE(ASA).22.解:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF(SSS).23.证明:∵△ABC≌△DEC,∴∠B=∠DEC,BC=EC,∴∠B=∠BEC,∴∠BEC=∠DEC,∴CE平分∠BED.24.解:∵△ABD≌△CBD,∴∠C=∠A=80°,∴∠ADC=360°﹣∠A﹣∠ABC﹣∠C=360°﹣80°﹣80°﹣70°=130°.25.解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∵∠BCD=∠B′C′D′,∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,∴∠ACD=∠A′C′D′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.26.证明:∵∠BAC=90°,CE⊥AE,BD⊥AE,∴∠ABD+∠BAD=90°,∠BAD+∠DAC=90°,∠ADB=∠AEC=90°.∴∠ABD=∠DAC.∵在△ABD和△CAE中,∴△ABD≌△CAE(AAS).∴BD=AE,EC=AD.∵AE=AD+DE,∴BD=EC+ED.。
人教版数学八年级上册《全等三角形》单元测试题附答案
∴∠DFB=180°-∠D-∠FMD=180°-95°-25°=60°.
故选D.
【点睛】本题考查了全等三角形的性质,由已知条件,联想到所学的定理,充分挖掘题目中的结论是解题的关键.
5.如图为 个边长相等的正方形的组合图形,则
A. B. C. D.
【答案】B
【解析】
【分析】
故选B.
【点睛】本体考查了全等三角形的判定、直角三角形全等的判定,解题的关键是知道直角三角形也可用判定一般三角形的全等方法进行判定.
7.不能使两个直角三角形全等的条件()
A. 一条直角边及其对角对应相等
B. 斜边和一条直角边对应相等
C. 斜边和一锐角对应相等
D. 两个锐角对应相等
【答案】D
【解析】
【分析】
人教版数学八年级上学期
《全等三角形》单元测试
(时间:120分钟 满分:150分)
卷I(选择题)
一、选择题(共12小题,每小题3分,共36分)
1.在下列各组图形中,是全等的图形是()
A. B. C. D.
2.如图, , ,则 的对应边是()
A. B. C. D.
3.如图,用 , 直接判定 理由是()
A. B. C. D.
故选C.
点评:本题考查的是全等形的识别,属于较容易的基础题.
2.如图, , ,则 的对应边是()
A. B. C. D.
【答案】C
【解析】
【分析】
根据全等三角形中对应角所对的边是对应边,可知BC=DA.
【详解】∵ABC≌△CDA,∠BAC=∠DCA,
∴∠BAC与∠DCA是对应角,
∴BC与DA是对应边(对应角对的边是对应边).
苏科版八年级数学上册第1章《全等三角形》单元测试附答案
苏科版八年级数学上册第1章《全等三角形》单元测试一、选择题t1.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是()hA.∠A B.∠B C.∠C D.∠D Y2.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()6A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°O3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()5A.SSS B.SAS C.AAS D.ASA I4.如图,已知AB∥DC,AD∥BC,BE=DF,则图中全等的三角形有()aA.3对B.4对C.5对D.6对h5.在△ABC和△DEF中,已知AB=DE,∠A=∠D,若补充下列条件中的任意一条,就能判定△ABC≌△DEF的是()P①AC=DF②BC=EF③∠B=∠E④∠C=∠F.6A.①②③B.②③④C.①③④D.①②④y6.在△ABC中,∠A=90°,CD平分∠ACB,DE⊥BC于点E,若AB=6,则DE+DB=()6A.4B.5C.6D.787.根据下列已知条件,能唯一画出△ABC的是()ZA.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°kC.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=648.如图是人字型金属屋架的示意图,该屋架由BC、AC、BA、AD四段金属材料焊接而成,其中A、B、C、D四点均为焊接点,且AB=AC,D为BC的中点,假设焊接所需的四段金属材料已截好,并已标出BC段的中点D,那么,如果焊接工身边只有可检验直角的角尺,而又为了准确快速地焊接,他应该首先选取的两段金属材料及焊接点是()0A.AD和BC,点D B.AB和AC,点A C.AC和BC,点C D.AB和AD,点A A9.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()fA.PM>PN B.PM<PN C.PM=PN D.不能确定A10.如图,已知点C是∠AOB的平分线上一点,点P、P′分别在边OA、OB上.如果要得到OP=OP′,需要添加以下条件中的某一个即可,请你写出所有可能的结果的序号为()=①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.=A.①②B.④③C.①②④D.①④③二、填空题11.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=度.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).13.如图,AE=BF,AD∥BC,AD=BC,则有△ADF≌,且DF=.14.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件,若加条件∠B=∠C,则可用判定.15.把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为米.16.如图,AD=AE,BE=CD,∠1=∠2=100°,∠BAE=60°,那么∠CAE=.17.如图,∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4,则AC=.18.如图,∠C=90°,AC=10,BC=5,AM⊥AC,点P和点Q从A点出发,分别在射线AC和射线AM上运动,且Q点运动的速度是P点运动速度的2倍,当点P运动至处时,△ABC与△APQ全等.19.AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC的取值范围是;中线AD的取值范围是.20.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE= cm.三、解答题21.已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.22.两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O 为边AC和DF的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?23.如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B.求证:AD+AB=BE.24.如图,是一个用六根竹条连接而成的凸六边形风筝骨架,考虑到骨架的稳定性、对称性、实用性等因素,请再加三根竹条与其顶点连接.要求:在图(1)、(2)中分别加三根竹条,设计出两种不同的连接方案.(用直尺连接)25.已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°(1)求证:①AC=BD;②∠APB=50°;(2)如图②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系为,∠APB的大小为26.如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD.(1)图①中有对全等三角形,并把它们写出来;(2)求证:BD与EF互相平分于G;(3)若将△ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立,如果成立,请予证明.《第1章全等三角形》参考答案与试题解析一、选择题1.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是()A.∠A B.∠B C.∠C D.∠D【考点】全等三角形的性质.【分析】只要牢记三角形只能有一个钝角就易解了.【解答】解:∵一个三角形中只能有一个钝角.∴100°的角只能是等腰三角形中的顶角.∴∠B=∠C是底角,∠A是顶角∴△ABC中与这个角对应的角是∠A.故选A.【点评】本题考查的知识点为:全等的三角形的对应角相等,知道一个三角形中只能有一个钝角是解决本题的关键.2.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【考点】全等三角形的判定.【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA 后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.4.如图,已知AB∥DC,AD∥BC,BE=DF,则图中全等的三角形有()A.3对B.4对C.5对D.6对【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行判断.全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.【解答】解:∵AB∥DC,AD∥BC,∴∠DAC=∠BCA,∠CDB=∠ABD,∠DCA=∠BAC,∠ADB=∠CBD,又∵BE=DF,∴由∠ADB=∠CBD,DB=BD,∠ABD=∠CDB,可得△ABD≌△CDB;由∠DAC=∠BCA,AC=CA,∠DCA=∠BAC,可得△ACD≌△CAB;∴AO=CO,DO=BO,由∠DAO=∠BCO,AO=CO,∠AOD=∠COB,可得△AOD≌△COB;由∠CDB=∠ABD,∠COD=∠AOB,CO=AO,可得△COD≌△AOB;由∠DCA=∠BAC,∠COF=∠AOE,CO=AO,可得△AOE≌△COF;由∠CDB=∠ABD,∠DOF=∠BOE,DO=BO,可得△DOF≌△BOE;故选(D)【点评】本题主要考查了全等三角形的判定与性质的运用,解题时注意:若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,或者是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.5.在△ABC和△DEF中,已知AB=DE,∠A=∠D,若补充下列条件中的任意一条,就能判定△ABC≌△DEF的是()①AC=DF②BC=EF③∠B=∠E④∠C=∠F.A.①②③B.②③④C.①③④D.①②④【考点】全等三角形的判定.【分析】根据已知条件,已知一角和一边,所以要证两三角形全等,可以根据角边角、角角边、边角边判定定理添加条件,再根据选项选取答案.【解答】解:如图,∵AB=DE,∠A=∠D,∴根据“边角边”可添加AC=DF,根据“角边角”可添加∠B=∠E,根据“角角边”可添加∠C=∠F.所以补充①③④可判定△ABC≌△DEF.故选C.【点评】本题主要考查三角形全等的判定,根据不同的判定方法可选择不同的条件,所以对三角形全等的判定定理要熟练掌握并归纳总结.6.在△ABC中,∠A=90°,CD平分∠ACB,DE⊥BC于点E,若AB=6,则DE+DB=()A.4B.5C.6D.7【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得AD=DE,然后根据AD+DB=AB等量代换即可得解.【解答】解:∵∠A=90°,CD平分∠ACB,DE⊥BC,∴AD=DE,∵AD+DB=AB,∴DE+DB=AB=6.故选C.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.7.根据下列已知条件,能唯一画出△ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=6【考点】全等三角形的判定.【专题】作图题;压轴题.【分析】要满足唯一画出△ABC,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一,而各选项中只有C选项符合ASA,是满足题目要求的,于是答案可得.【解答】解:A、因为AB+BC<AC,所以这三边不能构成三角形;B、因为∠A不是已知两边的夹角,无法确定其他角的度数与边的长度;C、已知两角可得到第三个角的度数,已知一边,则可以根据ASA来画一个三角形;D、只有一个角和一个边无法根据此作出一个三角形.故选C.【点评】此题主要考查了全等三角形的判定及三角形的作图方法等知识点;能画出唯一三角形的条件一定要满足三角形全等的判定方法,不符合判定方法的画出的三角形不确定,当然不唯一.8.如图是人字型金属屋架的示意图,该屋架由BC、AC、BA、AD四段金属材料焊接而成,其中A、B、C、D四点均为焊接点,且AB=AC,D为BC的中点,假设焊接所需的四段金属材料已截好,并已标出BC段的中点D,那么,如果焊接工身边只有可检验直角的角尺,而又为了准确快速地焊接,他应该首先选取的两段金属材料及焊接点是()A.AD和BC,点D B.AB和AC,点A C.AC和BC,点C D.AB和AD,点A【考点】全等三角形的应用.【分析】根据全等三角形的判定定理SSS推知△ABD≌△ACD,则∠ADB=∠ADC=90°.【解答】解:根据题意知,∵在△ABD与△ACD中,,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC=90°,∴AD⊥BC,根据焊接工身边的工具,显然是AD和BC焊接点D.故选:A.【点评】本题考查了全等三角形的应用.巧妙地借助两个三角形全等,寻找角与角间是数量关系.9.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()A.PM>PN B.PM<PN C.PM=PN D.不能确定【考点】角平分线的性质;全等三角形的判定与性质.【分析】作PE⊥OB于E,PF⊥OA于F,根据角平分线的性质定理证明PE=PF,根据三角形全等的判定定理证明△PFN≌△PEM,得到答案.【解答】解:作PE⊥OB于E,PF⊥OA于F,∵OQ平分∠AOB,∴PE=PF,∵∠PNO+∠PNA=180°,∠PNO+∠PMO=180°,∴∠PNA=∠PMO,在△PFN和△PEM中,,∴△PFN≌△PEM,∴PM=PN.故选:C.【点评】本题考查的是角平分线的性质和全等三角形的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.如图,已知点C是∠AOB的平分线上一点,点P、P′分别在边OA、OB上.如果要得到OP=OP′,需要添加以下条件中的某一个即可,请你写出所有可能的结果的序号为()①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.A.①②B.④③C.①②④D.①④③【考点】全等三角形的判定与性质.【分析】根据所加条件,结合已知条件,能够证明OP和OP′所在的三角形全等即可.【解答】解:①若加∠OCP=∠OCP′,则根据ASA可证明△OPC≌△OP′C,得OP=OP′;②若加∠OPC=∠OP′C,则根据AAS可证明△OPC≌△OP′C,得OP=OP′;③若加PC=P′C,则不能证明△OPC≌△OP′C,不能得到OP=OP′;④若加PP′⊥OC,则根据ASA可证明△OPC≌△OP′C,得OP=OP′.故选C.【点评】此题考查全等三角形的判定和性质,熟练掌握判定方法是关键.二、填空题11.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=50度.【考点】全等三角形的性质.【分析】先运用三角形内角和定理求出∠C,再运用全等三角形的对应角相等来求∠AED.【解答】解:∵在△ABC中,∠C=180﹣∠B﹣∠BAC=50°,又∵△ABC≌△ADE,∴∠AED=∠C=50°,∴∠AED=50度.故填50【点评】本题考查的是全等三角形的性质,全等三角形的对应边相等,对应角相等.是需要识记的内容.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是∠B=∠C(填上你认为适当的一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】根据题意,易得∠AEB=∠AEC,又AE公共,所以根据全等三角形的判定方法容易寻找添加条件.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).【点评】此题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.如图,AE=BF,AD∥BC,AD=BC,则有△ADF≌△BCE,且DF=CE.【考点】全等三角形的判定与性质.【专题】常规题型.【分析】由题中条件可由ASA判定△ADF≌△BCE,进而得出DF=CE.【解答】解:∵AE=BF,∴AF=BE,∵AD∥BC,∴∠A=∠D,又AD=BC,∴△ADF≌△BCE,∴DF=CE.故答案为:△BCE,CE.【点评】本题主要考查了全等三角形的判定及性质,能够熟练掌握.14.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件AB=AC,若加条件∠B=∠C,则可用AAS判定.【考点】直角三角形全等的判定.【分析】要使△ABD≌△ACD,且利用HL,已知AD是直边,则要添加对应斜边;已知两角及一对应边相等,显然根据的判定为AAS.【解答】解:添加AB=AC∵AD⊥BC,AD=AD,AB=AC∴△ABD≌△ACD已知AD⊥BC于D,AD=AD,若加条件∠B=∠C,显然根据的判定为AAS.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为0.05米.【考点】全等三角形的应用.【专题】计算题.【分析】连接AB,A′B′,根据O为AB′和BA′的中点,且∠A′OB′=∠AOB即可判定△OA′B′≌△OAB,即可求得A′B′的长度.【解答】解:连接AB,A′B′,O为AB′和BA′的中点,∴OA′=OB,OA=OB′,∵∠A′OB′=∠AOB∴△OA′B′≌△OAB,即A′B′=AB,故A′B′=5cm,5cm=0.05m.故答案为0.05.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形的证明和对应边相等的性质,本题中求证△OA′B′≌△OAB是解题的关键.16.如图,AD=AE,BE=CD,∠1=∠2=100°,∠BAE=60°,那么∠CAE=40°.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】求出BD=CE和∠B的度数,根据SAS推出△ADB≌△AEC,推出∠C=∠B=40°,根据三角形内角和定理求出即可.【解答】解:∵BE=CD,∴BE﹣DE=CD﹣DE,∴BD=CE,∵∠2=100°,∠BAE=60°,∴∠B=∠2﹣∠BAE=40°,∵在△ADB和△AEC中∴△ADB≌△AEC,∴∠C=∠B=40°,∵∠2+∠C+∠CAE=180°,∴∠CAE=180°﹣100°﹣40°=40°,故答案为:40°.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质,三角形内角和定理的应用,解此题的关键是求出△ADB≌△AEC,注意:全等三角形的对应边相等,对应角相等.17.如图,∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4,则AC=6.【考点】全等三角形的判定与性质.【分析】由AAS证明△ABC≌△EFC,得出对应边相等AC=EC,BC=CF=4,求出EC,即可得出AC的长.【解答】解:∵AC⊥BE,∴∠ACB=∠ECF=90°,在△ABC和△EFC中,,∴△ABC≌△EFC(AAS),∴AC=EC,BC=CF=4,∵EC=BE﹣BC=10﹣4=6,∴AC=EC=6;故答案为:6.【点评】本题考查了全等三角形的判定与性质;证明三角形全等得出对应边相等是解决问题的关键.18.如图,∠C=90°,AC=10,BC=5,AM⊥AC,点P和点Q从A点出发,分别在射线AC和射线AM上运动,且Q点运动的速度是P点运动速度的2倍,当点P运动至P点运动到AC中点处时,△ABC 与△APQ全等.【考点】全等三角形的判定.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置.②Rt △QAP≌Rt△BCA,此时AP=AC,P、C重合.【解答】解:根据三角形全等的判定方法HL可知:①当P运动到AP=BC时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5,即P点运动到AC中点;故答案为:P点运动到AC中点.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.19.AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC的取值范围是4<BC<20;中线AD的取值范围是2<AD<10.【考点】全等三角形的判定与性质;三角形三边关系.【专题】计算题.【分析】BC边的取值范围可在△ABC中利用三角形的三边关系进行求解,而对于中线AD的取值范围可延长AD至点E,使AD=DE,得出△ACD≌△EBD,进而在△ABE中利用三角形三边关系求解.【解答】解:如图所示,在△ABC中,则AB﹣AC<BC<AB+AC,即12﹣8<BC<12+8,4<BC<20,延长AD至点E,使AD=DE,连接BE,∵AD是△ABC的边BC上的中线,∴BD=CD,又∠ADC=∠BDE,AD=DE∴△ACD≌△EBD,∴BE=AC,在△ABE中,AB﹣BE<AE<AB+BE,即AB﹣AC<AE<AB+AC,12﹣8<AE<12+8,即4<AE<20,∴2<AD<10.故此题的答案为4<BC<20,2<AD<10.【点评】本题主要考查了全等三角形的判定及性质以及三角形的三边关系问题,能够理解掌握并熟练运用.20.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE= 2cm.【考点】角平分线的性质.【分析】过点D,作DF⊥BC,垂足为点F,根据BD是∠ABC的角平分线,得DE=DF,根据等高的三角形的面积之比等于其底边长之比,得△BDC与△BDA的面积之比,再求出△BDA的面积,进而求出DE.【解答】解:如图,过点D,作DF⊥BC,垂足为点F∵BD是∠ABC的角平分线,DE⊥AB,∴DE=DF∵△ABC的面积是30cm2,AB=18cm,BC=12cm,∴S=•DE•AB+•DF•BC,即×18×DE+×12×DE=30,△ABC∴DE=2(cm).故填2.【点评】本题考查了角平分线的性质;解题中利用了“角的平分线上的点到角的两边的距离相等”、等高的三角形的面积之比等于其底边长之比,三角形的面积计算公式等知识.三、解答题21.已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据角平分线性质和已知求出∠ACB=∠DBC,根据ASA推出△ABC≌△DCB,根据全等三角形的性质推出即可.【解答】证明:∵AC平分∠BCD,BD平分∠ABC,∴∠DBC=∠ABC,∠ACB=∠DCB,∵∠ABC=∠DCB,∴∠ACB=∠DBC,∵在△ABC与△DCB中,,∴△ABC≌△DCB(ASA),∴AB=DC.【点评】本题考查了全等三角形的性质和判定和角平分线性质的应用,关键是推出△ABC≌△DCB,题目比较好,难度适中.22.两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O 为边AC和DF的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?【考点】全等三角形的判定.【专题】证明题.【分析】根据题意AB=BD,AC=DF,∠A=∠D,AB=BD,AC=DF可得AF=DC,利用AAS即可判定△AOF≌△DOC.【解答】答:△AOF≌△DOC.证明:∵两块完全相同的三角形纸板ABC和DEF,∴AB=DB,BF=BC,∴AB﹣BF=BD﹣BC,∴AF=DC∵∠A=∠D,∠AOF=∠DOC,即,∴△AOF≌△DOC(AAS).【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,解答此题的关键是根据题意得出AF=DC,AO=DO.23.如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B.求证:AD+AB=BE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】利用同角的余角相等得到一对角相等,再由一对直角相等,CD=CE,利用AAS得到三角形ECB与三角形CDA全等,利用全等三角形对应边相等得到BC=AD,BE=AC,由AB+BC=AC=BE,等量代换即可得证.【解答】证明:∵∠ECB+∠DCA=90°,∠DCA+∠D=90°,∴∠ECB=∠D,在△ECB和△CDA中,,∴△ECB≌△CDA(AAS),∴BC=AD,BE=AC,∴AD+AB=AB+BC=AC=BE.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.24.如图,是一个用六根竹条连接而成的凸六边形风筝骨架,考虑到骨架的稳定性、对称性、实用性等因素,请再加三根竹条与其顶点连接.要求:在图(1)、(2)中分别加三根竹条,设计出两种不同的连接方案.(用直尺连接)【考点】利用轴对称设计图案.【专题】方案型.【分析】本题主要是利用轴对称图形的性质来画,本题为开放题答案不唯一.【解答】解:.【点评】本题主要考查了轴对称图形的性质.25.已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°(1)求证:①AC=BD;②∠APB=50°;(2)如图②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系为AC=BD,∠APB的大小为α【考点】全等三角形的判定与性质.【分析】(1)根据∠AOB=∠COD=50°求出∠AOC=∠BOD,根据SAS推出△AOC≌△BOD,根据全等三角形的性质得出AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,推出∠APB=∠AOB即可.(2)根据∠AOB=∠COD=50°求出∠AOC=∠BOD,根据SAS推出△AOC≌△BOD,根据全等三角形的性质得出AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,推出∠APB=∠AOB即可.【解答】证明:(1)∵∠AOB=∠COD=50°,∴∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD,∴AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,∴∠APB=∠AOB=50°.(2)解:AC=BD,∠APB=α,理由是:)∵∠AOB=∠COD=50°,∴∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD,∴AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,∴∠APB=∠AOB=α,故答案为:AC=BD,α.【点评】本题考查了全等三角形的性质和判定的应用,解此题的关键是求出△AOC≌△BOD,注意:全等三角形的对应边相等,对应角相等.26.如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD.(1)图①中有3对全等三角形,并把它们写出来△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CGD;(2)求证:BD与EF互相平分于G;(3)若将△ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立,如果成立,请予证明.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)利用A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD 可判断全等三角形的个数.(2)先根据DE⊥AC,B F⊥AC,AE=CF,求证△ABF≌△CDE,再求证△DEG≌△BFG,即可.(3)先根据DE⊥AC,B F⊥AC,AE=CF,求证△ABF≌△CED,再求证△BFG≌△DEG,即可得出结论.【解答】解:(1)图①中有3对全等三角形,它们是△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CGD.(2)∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CED(HL),∴ED=BF.由∠AFB=∠CED=90°得DE∥BF,∴∠EDG=∠GBF,∵∠EGD和∠FGB是对顶角,ED=BF,△DEG≌△BFG,∴EG=FG,DG=BG,所以BD与EF互相平分于G;(3)第(2)题中的结论成立,理由:∵AE=CF,∴AE﹣EF=CF﹣EF,即AF=CE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CED(HL),∴BF=ED.∵∠BFG=∠DEG=90°,∴BF∥ED,∴∠FBG=∠EDG,∴△BFG≌△DEG,∴FG=GE,BG=GD,即第(2)题中的结论仍然成立.【点评】此题主要考查学生对全等三角形的判定与性质的理解和掌握,此题难度并不大,但是需要证明多次全等,步骤繁琐,是一道综合性较强的中档题.。
八年级数学上册《第一章 全等三角形》单元测试卷及答案
八年级数学上册《第一章全等三角形》单元测试卷及答案一.选择题(共8小题,满分32分)1.如图所示,△ABC≌△AEF,在下列结论中,不正确的是()A.∠EAB=∠FAC B.BC=EFC.∠BAC=∠CAF D.CA平分∠BCF2.如图所示,在△ABC中,按下列步骤作图:第一步:在AB、AC上分别截取AD、AE,使AD=AE;第二步:分别以点D和点E为圆心、适当长(大于DE的一半)为半径作圆弧,两弧交于点F;第三步:作射线AF交BC于点M;第四步:过点M作MN⊥AB于点N.下列结论一定成立的是()A.CM=MN B.AC=AN C.∠CAM=∠BAM D.∠CMA=∠NMA3.如图,在3×3的正方形方格中,每个小正方形方格的边长都为1,则∠1和∠2的关系是()A.∠1=∠2 B.∠2=2∠1 C.∠2=90°+∠1 D.∠1+∠2=180°4.如图,点E、F在BC上,BE=FC,∠B=∠C.添加下列条件不能使得△ABF≌△DCE的是()A.AB=DC B.∠A=∠D C.AF=DE D.∠AFB=∠DEC5.如图,AD是△ABC的高,AD=BD,DE=DC,∠BAC=65°,则∠ABE的度数是()A.20°B.25°C.30°D.35°6.如图,要测量河两岸相对的两点A,B之间的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再作出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长就是AB的长,则上述操作,判定△EDC≌△ABC的理由是()A.SSS B.ASA C.AAS D.SAS7.如图,Rt△ABC中,∠C=90°,∠B=30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是()A.B.C.D.8.如图,已知∠AOB与∠EO'F,分别以O,O'为圆心,以同样长为半径画弧,分别交OA,OB于点A',B',交O'E,O'F于点E',F'.以B'为圆心,以E'F'长为半径画弧,交弧A'B'于点H.下列结论不正确的是()A.∠AOB=2∠EO'F B.∠AOB>∠EO'FC.∠HOB=∠EO'F D.∠AOH=∠AOB﹣∠EO'F二.填空题(共8小题,满分32分)9.如图所示的图案是由全等的图形拼成的,其中AD=0.5,BC=1,则AF=.10.如图所示是用直尺画平行线的方法,画图原理是.11.下列语句:①作∠AOB=3∠α;②以点O为圆心作弧;③以点A为圆心,线段a的长为半径作弧;④作∠ABC,使∠ABC=∠α+∠β.其中错误的为.(填序号即可)12.如图,AC=DB,AO=DO,CD=200m,则A,B两点间的距离为m.13.如图,已知∠C=∠D,再添加一个条件能判定△ABC≌△BAD.14.∠AOB=50°,以O为圆心,任意长为半径画弧,交OA,OB于M,N;分别以M,N为圆心,大于的长为半径画弧,两弧交于P;作射线OP.则∠AOP=°.15.如图,锐角△ABC中,D,E分别是AB,AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′,BE,CD交于点F.若∠BAC=40°,则∠BFC的度数为.16.如图,在△ABC中,D,E是BC边上的两点,AD=AE,BE=CD,∠1=∠2=110°,∠BAE=60°,则∠BAC的度数为.三.解答题(共6小题,满分56分)17.将4×4的棋盘沿格线划分成两个全等图形,参考图例补全另外几种.18.如图,在四边形ABCD中,AB=CB,AD=CD,连接BD,试说明△ABD≌△CBD.19.如图,小明站在堤岸的A点处,正对他的S点停有一艘游艇.他想知道这艘游艇距离他有多远,于是他沿着堤岸走到电线杆B旁,接着再往前走相同的距离,达到C点.然后他向左直行,当看到电线杆与游艇在一条直线上时停下来,此时他位于D点,量得CD的距离是35米.你知道在点A处小明与游艇的距离吗?请说出他这样做的理由.20.如图,已知Rt△ABC和射线CM,∠A=90°,∠ACB=65°,请用尺规作图法,在CM上作一点P,使得∠CBP=25°.(保留作图痕迹,不写作法)21.如图,点F、G分别在正五边形ABCDE的边BC、CD上,连结AF、BG相交于H,△ABF≌△BCG.(1)求∠ABC的度数;(2)求∠AHG的度数.22.已知:如图,DB⊥AB,DC⊥AC,∠1=∠2.求证:AD平分∠BAC.参考答案与试题解析一.选择题(共8小题,满分32分)1.解:∵△ABC≌△AEF,∴BC=EF,AC=AF,∠B=∠E,∠BAC=∠EAF,∠BCA=∠F,故B正确,不符合题意;C错误,符合题意;∴∠BAC﹣∠EAC=∠EAF﹣∠EAC,即∠EAB=∠FAC,故A正确,不符合题意;∵AC=AF,∴∠ACF=∠F,∴∠BCA=∠ACF,∴CA平分∠BCF,故D正确,不符合题意;故选:C.2.解:由题意可知,AM平分∠CAB,∵∠C不一定等于90°,∴CM≥MN,因此A选项不符合题意;∵∠C不一定等于90°,∴AC不一定等于AN,因此B选项不符合题意;∵AM平分∠CAB,∴∠CAM=∠BAM,因此C选项符合题意;∵∠C不一定等于90°,∴∠CMA不一定等于∠NMA,因此D选项不符合题意.故选:C.3.解:如图,在△ABC与△EDF中,,∴△ABC≌△EDF(SAS),∴∠1=∠ABC.∵∠ABC+∠2=180°,∴∠1+∠2=180°.故选:D.4.解:∵BE=CF,∴BF=CE,若AB=DC,∠B=∠C,由“SAS”可证△ABF≌△DCE;若∠A=∠D,∠B=∠C,由“AAS”可证△ABF≌△DCE;若AF=DE,∠B=∠C,不能证明△ABF≌△DCE;若∠AFB=∠DEC,∠B=∠C,由“ASA”可证△ABF≌△DCE;故选:C.5.解:∵AD是△ABC的高,∴∠ADB=∠ADC=90°,在△BDE和△ADC中,,∴△BDE≌△ADC(SAS),∴∠DAC=∠DBE,∵∠DAC=∠BAC﹣∠BAD=65°﹣45°=20°,∴∠DBE=20°,∴∠ABE=∠ABD﹣∠DBE=25°,故选:B.6.解:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选:B.7.解:A.由作法知AD=AC,∴△ACD是等腰三角形,故选项A不符合题意;B.由作法知所作图形是线段BC的垂直平分线,∴不能推出△ACD和△ABD是等腰三角形,故选项B符合题意;C由作法知,所作图形是线段AB的垂直平分线,∴DA=DB,∴△ABD是等腰三角形,故选项C不符合题意;D.∠C=90°,∠B=30°,∠BAC=60°,由作法知AD是∠BAC的平分线,∴∠BAD=30°=∠B,∴DB=DA,∴△ABD是等腰三角形,故选项D不符合题意;故选B.8.解:由作图可知,∠EO′F=∠HOB′,∠AOB>∠EO′F,∠AOH=∠AOB﹣∠EO′F,故选项B,C,D正确,故选:A.二.填空题(共8小题,满分32分)9.解:由题可知,图中有8个全等的梯形,所以AF=4AD+4BC=4×0.5+4×1=6,故答案为:6.10.解:由作图得到∠1=∠BAC,则根据同位角相等,两直线平行可判断a∥b.故答案为:同位角相等,两直线平行.11.解:作∠AOB=3∠α,所以①正确;以点O为圆心,线段a的长为半径作弧,所以②错误;以点A为圆心,线段a的长为半径作弧,所以③正确;作∠ABC,使∠ABC=∠α+∠β,所以④正确.故答案为:②.12.解:∵AC=DB,AO=DO,∴BO=CO,在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴AB=DC,∵CD=200m,∴AB=200m,即A,B两点间的距离是200m,故答案为:200.13.解:∵∠C=∠D,AB=AB根据AAS判定△ABC≌△BAD,可以添加∠DAB=∠CBA或者∠DBA=∠CAB;故答案为:∠DAB=∠CBA(答案不唯一).14.解:由基本作图可知,OP是∠AOB的平分线,∴∠AOP=∠AOB=×50°=25°,故答案为:25.15.解:延长C′D交AB′于H.∵△AEB≌△AEB′,∴∠ABE=∠AB′E,∵C′H∥EB′,∴∠AHC′=∠AB′E,∴∠ABE=∠AHC′,∵△ADC≌△ADC′,∴∠C′=∠ACD,∵∠BFC=∠DBF+∠BDF,∠BDF=∠CAD+∠ACD,∴∠BFC=∠AHC′+∠C′+∠DAC,∵∠DAC=∠DAC′=∠CAB′=40°,∴∠C′AH=120°,∴∠C′+∠AHC′=60°,∴∠BFC=60°+40°=100°,故答案为:100°.16.解:∵AD=AE,∴∠ADC=∠AEB,在△ACD和△ABE中,,∴△ACD≌△ABE(SAS),∴AC=AB,∠CAD=∠BAE=60°,∴∠B=∠C,∵∠C=∠1﹣∠CAD=110°﹣60°=50°,∴∠B=50°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣50°=80°,故答案为:80°.三.解答题(共6小题,满分56分)17.解:如图所示,(答案不唯一)18.证明:在△ABD和△CBD中,,∴△ABD≌△CBD(SSS).19.解:在A点处小明与游艇的距离为35米,理由:在△ABS与△CBD中,,∴△ABS≌△CBD(ASA),∴AS=CD,∵CD=35米,∴AS=CD=35米,答:在A点处小明与游艇的距离为35米,20.解:如图,点P为所作.21.解:(1)∵正五边形的内角和为:(5﹣2)×180°=540°,∴∠ABC=×540°=108°;(2)∵△ABF≌△BCG,∴∠BAF=∠CBG,∵∠BAF+∠ABH=∠AHG,∴∠CBH+∠ABH=∠AHG=∠ABC=×540°=108°,∴∠AHG=108°.22.证明:∵DB⊥AB,DC⊥AC,∴∠ABD=∠ACD=90°.∵∠1=∠2,∴DB=DC,∵AD=AD,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL).∴∠BAD=∠CAD,∴AD平分∠BAC.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《全等三角形》测试题一、选择题1.如图1, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( )A .1个B .2个C .3个D .4个2.如图2,AD AE =,= = =100 =70BD CE ADB AEC BAE ︒︒,,∠∠∠,下列结论错误的是( )A .△ABE ≌△ACDB .△ABD ≌△ACEC .∠DAE =40°D .∠C =30°3.已知:如图3,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F ,则图中共有全等三角形( )A .5对B .4对C .3对D .2对4.将一张长方形纸片按如图4所示的方式折叠,BC BD , 为折痕,则CBD ∠的度数为( )A .60°B .75°C .90°D .95° 5.根据下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =6 6.下列命题中正确的是( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等7.如图5,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC , 则∠BCM :∠BCN 等于( )A .1:2B .1:3C .2:3D .1:48. 如图6,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条角平分线将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO 等于( )A .1︰1︰1B .1︰2︰3C .2︰3︰4D .3︰4︰5AD CB图1EF A D OCB图2AD ECB图 3F GAEC 图4B A ′ E ′D9.如图7,从下列四个条件:①BC =B ′C , ②AC =A ′C ,③∠A ′CB =∠B ′CB ,④AB =A ′B ′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是( )A .1个B .2个C .3个D .4个10.如图8所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为( )A .80°B .100°C .60°D .45°.二、填空题11.如图9,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______________________________。
12.如图10,AC ,BD 相交于点O ,AC =BD ,AB =CD ,写出图中两对相等的角______。
13.如图11,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______。
14.如图12,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △的面积为______。
15. 在△ABC 中,∠C =90°,BC =4CM ,∠BAC 的平分线交BC 于D ,且BD ︰DC =5︰3,则D 到AB 的距离为_____________。
16. 如图13,△ABC 是不等边三角形,DE =BC ,以D ,E 为两个顶点作位置不同的三角 形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个。
A D OCB 图9ADOC B图10ADCB图11ADC B图12E17. 如图14,AD A D '',分别是锐角三角形ABC 和锐角三角形A B C '''中,BC B C ''边上的高,且AB A B AD A D ''''==,.若使ABC A B C '''△≌△,请你补充条件___________。
(填写一个你认为适当的条件即可)18. 如图14,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________。
图14 图1519. 如图15,已知在ABC ∆中,90,,A AB AC CD ∠=︒=平分ACB ∠,DE BC ⊥于E ,若15cm BC =,则DEB △的周长为 cm 。
20.在数学活动课上,小明提出这样一个问题:∠B =∠C =900,E 是BC 的中点,DE 平分∠ADC ,∠CED =350,如图16,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______。
图16 三、用心想一想21.请你用三角板、圆规或量角器等工具,画∠POQ =60°,在它的边OP 上截取OA =50mm ,OQ 上截取OB =70mm ,连结AB ,画∠AOB 的平分线与AB 交于点C ,并量出AC 和OC 的长 .(结果精确到1mm ,不要求写画法)。
22.如图17,ABC △中,∠B =∠C ,D ,E ,F 分别在AB ,BC ,AC 上,且BD CE =,=DEF B ∠∠ 。
BCADEABCD'A 'B 'D'CD CBAE求证:=ED EF .证明:∵∠DEC =∠B +∠BDE ( ),又∵∠DEF =∠B (已知),∴∠______=∠______(等式性质). 在△EBD 与△FCE 中,∠______=∠______(已证), ______=______(已知), ∠B =∠C (已知), ∴EBD FCE △≌△( ). ∴ED =EF ( ).23.如图18,O 为码头,A ,B 两个灯塔与码头的距离相等,OA ,OB 为海岸线,一轮船从码头开出,计划沿∠AOB 的平分线航行,航行途中,测得轮船与灯塔A ,B 的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由。
24.如图19,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时, (1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设AED ∠的度数为x ,∠ADE 的度数为y ,那么∠1,∠2的度数分别是多少?(用含有x 或y 的代数式表示)(3)∠A 与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律。
ADE CB图17FAB 图18OADECB图19A ′2125.如图20,公园有一条“Z ”字形道路ABCD ,其中AB ∥CD ,在,,E M F 处各有一个小石凳,且BE CF =,M 为BC 的中点,请问三个小石凳是否在一条直线上?说出你推断的理由。
图2026.如图21,给出五个等量关系:①AD BC = ②AC BD = ③CE DE = ④D C ∠=∠ ⑤DAB CBA ∠=∠.请你以其中两个为条件,另三个中的一个为结论,推出一个正确 的结论(只需写出一种情况),并加以证明。
已知: 求证:证明: 图21D ACBEMF A BCED27.如图22,在∠AOB 的两边OA ,OB 上分别取OM =ON ,OD =OE ,DN 和EM 相交于点C . 求证:点C 在∠AOB 的平分线上。
图2228. (1)如图23(1),以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并说明理由。
(2)园林小路,曲径通幽,如图23(2)所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和 是b 平方米,这条小路一共占地多少平方米?ABDCEOM NAGFC BD E(图1)图23《全等三角形》测试题答案 一、耐心填一填 题号 1 2 3 4 5 6 7 8 9 10 答案DCACCDDCBA二、耐心填一填11.略(答案不惟一) 12.略(答案不惟一) 13.5 14.8 15.1.5cm 16.4 17.略 18. 互补或相等 19.15 20.350三、用心想一想21.略. 22.三角形的一个外角等于与它不相邻两个内角的和,BDE ,CEF ,BDE ,CEF ,BD ,CE ,ASA ,全等三角形对应边相等.23.此时轮船没有偏离航线.画图及说理略.24.(1)△EAD ≌△EA D ',其中∠EAD =∠EA D ',AED A ED ADE A DE ''=∠=,∠∠∠; (2)118022180-2x y ∠=︒-=︒,∠; (3)规律为:∠1+∠2=2∠A .25.在一条直线上.连结EM 并延长交CD 于'F 证'CF CF =.26.情况一:已知:AD BC AC BD ==,求证:CE DE =(或D C ∠=∠或DAB CBA ∠=∠) 证明:在△ABD 和△BAC 中AD BC AC BD ==∵, AB BA =∴△ABD ≌△BAC∴CAB DBA ∠=∠ AE BE =∴ ∴AC AE BD BE -=- 即CE ED =情况二:已知:D C DAB CBA ∠=∠∠=∠,求证:AD BC =(或AC BD =或CE DE =) 证明:在△ABD 和△BAC 中 D C ∠=∠,DAB CBA ∠=∠ AB AB =∵∴△ABD ≌△BAC ∴AD BC =27.提示:OM =ON ,OE =OD ,∠MOE =∠NOD ,∴△MOE ≌△NOD ,∴∠OME =∠OND ,又DM =EN ,∠DCM =∠ECN ,∴△MDC ≌△NEC ,∴MC =NC ,易得△OMC ≌△ONC (SSS )∴∠MOC =∠NOC ,∴点C 在∠AOB 的平分线上. 28. (1)解:ABC △与AEG △面积相等过点C 作CM AB ⊥于M ,过点G 作GN EA ⊥交EA 延长线于N ,则AMC ∠=90ANG ∠=四边形ABDE 和四边形ACFG 都是正方形 90180BAE CAG AB AE AC AG BAC EAG ∴∠=∠===∴∠+∠=,, 180EAG GAN BAC GAN ∠+∠=∴∠=∠ACM AGN ∴△≌△1122ABC AEG CM GNS AB CM S AE GN∴=== △△, ABC AEG S S ∴=△△(2)解:由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和∴这条小路的面积为(2)a b +平方米.FAGCBDEMN。