95年建模A题PPT

合集下载

1999年全国大学生数学建模竞赛赛题

1999年全国大学生数学建模竞赛赛题

'99创维杯全国大学生数学建模竞赛题目A题自动化车床管理一道工序用自动化车床连续加工某种零件,由于刀具损坏等原因该工序会出现故障,其中刀具损坏故障占95%, 其它故障仅占5%。

工序出现故障是完全随机的, 假定在生产任一零件时出现故障的机会均相同。

工作人员通过检查零件来确定工序是否出现故障。

现积累有100次刀具故障记录,故障出现时该刀具完成的零件数如附表。

现计划在刀具加工一定件数后定期更换新刀具。

已知生产工序的费用参数如下:故障时产出的零件损失费用 f=200元/件;进行检查的费用 t=10元/次;发现故障进行调节使恢复正常的平均费用 d=3000元/次(包括刀具费);未发现故障时更换一把新刀具的费用 k=1000元/次。

1)假定工序故障时产出的零件均为不合格品,正常时产出的零件均为合格品, 试对该工序设计效益最好的检查间隔(生产多少零件检查一次)和刀具更换策略。

2)如果该工序正常时产出的零件不全是合格品,有2%为不合格品;而工序故障时产出的零件有40%为合格品,60%为不合格品。

工序正常而误认有故障仃机产生的损失费用为1500元/次。

对该工序设计效益最好的检查间隔和刀具更换策略。

3)在2)的情况, 可否改进检查方式获得更高的效益。

附:100次刀具故障记录(完成的零件数)459 362 624 542 509 584 433 748 815 505 612 452 434 982 640 742 565 706 593 680 926 653 164 487 734 608 428 1153 593 844 527 552 513 781 474 388 824 538 862 659 775 859 755 649 697 515 628 954 771 609 402 960 885 610 292 837 473 677 358 638699 634 555 570 84 416 606 1062 484 120 447 654 564 339 280 246 687 539 790 581 621 724 531 512 577 496 468 499 544 645 764 558 378 765 666 763 217 715 310 851B题钻井布局勘探部门在某地区找矿。

数学建模中常见的十大模型讲课稿

数学建模中常见的十大模型讲课稿

数学建模中常见的十大模型数学建模常用的十大算法==转(2011-07-24 16:13:14)转载▼1. 蒙特卡罗算法。

该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。

2. 数据拟合、参数估计、插值等数据处理算法。

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。

3. 线性规划、整数规划、多元规划、二次规划等规划类算法。

建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。

4. 图论算法。

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。

这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。

6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。

这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7. 网格算法和穷举法。

两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。

很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9. 数值分析算法。

如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10. 图象处理算法。

赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。

数学建模A题解析PPT课件

数学建模A题解析PPT课件
为什么设第一部分?实验数据多余?还是误导?
第12页/共39页
二、问题的立意与背景
实际中产生误差的原因主要有三个方面: (1)在进/出油的过程中会造成少量的挥发耗散; (2)加油机本身的计量精度误差; (3)环境温度变化造成的误差。
根据经验,在常温下汽油的挥发率大约0.1%; 国家有关规定(国标JJG443-2006)加油机的最大 允许误差为±0.3%,重复性误差最大不超过0.15%。 问题:实际中那么大的误差究竟是怎么造成的?
r2
arccos
h
h
r, r]
3
r
z
2 r (R2 z2) arccos
R 1
dz,
hr
R2 z2
h r.
y
o
h
x
其中 r 1.5, L 8, R r2 1 1.625(单位 m), 2
第21页/共39页
四、实际油罐的变位识别与标定方法
表 1:正常情况下油罐的罐容表 油位高度 h(m) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 油量值 V(L) 590.71 1682.06 3101.87 4783.00 6682.45 8767.91 11012.93 13394.65 15892.57 18487.88 油位高度 h(m) 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 油量值 V(L) 21162.92 23900.88 26685.57 29501.18 32332.19 35163.15 37978.76 40763.45 43501.41 46176.46 油位高度 h(m) 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 油量值 V(L) 48771.78 51269.71 53651.43 55896.45 57981.93 59881.39 61562.53 62982.36 64073.72 64664.45

数学建模竞赛论文写作方法

数学建模竞赛论文写作方法
数学建模竞赛论文 写作方法
1
数学建模竞赛论文的一般结构 数学建模竞赛论文的评判
2
一、数学建模论文的一般结构
摘要 问题重述与分析 问题假设 符号说明 模型建立与求解 模型检验 结果分析 模型的进一步讨论 模型优缺点
3
☻摘要 主要理解 主要方法 主要结果 主要特点 ☻问题重述与分析 —向导
1. 先要对问题进行全面分析,简明建模的依据。 2. 尽量采用成熟的数学方法和已有的模型。 3. 有时针对问题的具体情况,可以先建立简单的、 基本的模型,再作改进或修正。 4. 当然,也要注意应用新方法。”
—— 数模竞赛中建好数学模型之研究
7
☻模型检验
稳定性检验 敏感性检验 误差分析
仿真检验
算法复杂度分析
4. 参加各种类型的数学建模竞赛或模拟赛 (校内赛,地区赛,全国赛,美国赛,…)
25
11
CMCM—96A(最优捕鱼策略) 有的队假设产卵的过程服从正态分布,这样的假 设是可以的,但大大增加了问题的难度。在不失生 物学的真实的前提下,使模型的分析尽量简单的假 设应该是假设鱼群的个体在后四个月的第一天集中 一次产卵。
12
结果的正确性 模型的正确性。
计算的正确性(方法、结果)。 例一:99年“自动化车床”,在计算刀具 发 生故障后的损失时未考虑条件概率,导致计算 错误。 例二:98年“投资组合策略”,使用均方风险 函数,违背题义要求。
好方法的结果一般比较好;但不一定是最好的
清晰性:摘要应理解为详细摘要,提纲挈领 表达严谨、简捷,思路清新 格式符合规范,严禁暴露身份
21
CUMCM评阅标准: 一些常见问题
数学模型最好明确、合理、简洁: 有些论文不给出明确的模型,只是根据赛题的情况, 实际上是用“凑”的方法给出结果,虽然结果大致是 对 的,没有一般性,不是数学建模的正确思路。 有的论文过于简单,该交代的内容省略了,难以看懂

【习题】数学建模题目

【习题】数学建模题目

数学建模题目题目:A-K为个人单独完成题(一个人完成)1-4题为三人共同完成题目B题食品厂用三种原料生产两种糖果,糖果的成分要求和销售价见表1。

表1糖果有关数据原料A原料B原料C价格(元/kg)高级奶糖≥50%≥25%≤10%24水果糖≤40%≤40%≥15%15各种原料的可供量和成本见表2。

表2各种原料数据原料可供量(公斤)成本(员/公斤)A50020B75012该厂根据订单至少需要生产600公斤高级奶糖,800公斤水果糖,为求最大利润,试建立线性规划模型并求解。

C 题:某商业公司计划开办5家新商店。

为了尽早建成营业,商业公司决定由5家建筑公司分别承建。

已知建筑公司i A (5,4,3,2,1=i)对新商店j B (5,4,3,2,1=j )的建造费用的报价(万元)为ij c (5,4,3,2,1,=j i ),见表3。

商业公司应当对5家建筑公司怎样分配建造任务,才能使总的建造费用最少?表3各建筑公司的建筑费用数据1B 2B 3B 4B 5B 1A 48715122A 791714103A 6912874A 67146105A 6912106D 题上海医科大学病理生理教研室曾做过小鼠肉瘤的增长实验,并得到了如表4所示的数据。

表4小鼠肉瘤的实验数据时间069111315171921232527体积0.0040.0310.0610.0740.1030.1520.2100.3390.5200.8131.269 1.558(1)若t 时刻肿瘤的体积)(t v 满足指数模型⎪⎩⎪⎨⎧==0)0(v v rv dt dv 请拟合参数r 。

(2)若t 时刻肿瘤的体积)(t v 满足Logistic 模型⎪⎩⎪⎨⎧=−=02)0(v v v v dt dv βα请拟合参数βα,。

E 题已知数据见表5。

试求y 对321,,x x x 的线性回归方程并检验回归效果,能否剔除一个变量?表5回归分析数据序号1x 2x 3x y序号1x 2x 3x y10.453158641012.6581125120.423163601110.937111763 3.11937711223.1461149640.634157611323.150134775 4.72459541421.64473936 1.765123771523.1561689579.444468116 1.93614354810.131117931726.858202168911.629173931829.95112499F 题:炼钢厂出钢时所用的盛钢水的钢包,由于钢水对耐火材料的侵蚀作用,随着使用次数的增加,容积不断增大,实测得到15组数据如表6。

建模案例飞行管理问题

建模案例飞行管理问题

立即 判断
实时
实时 调 整
幅度尽量小 方 向 角
相对
距离
条件
算法 优化问题










问题的初步理解和想法
飞行管理问题是优化问题,在调整方向角的幅度尽量小的同时,还必须注意调 整方案及算法的实时性.
2. 问题探究
(1)优化问题的目标函数为何?
方向角调整的尽量小 方向角如何表示
方向角的概念是什么

幅度
尽ii量0 小i0
,题目中就是要求 , 因i (此i 有1, 化2, 的,目6) 的

(1)
6
| i |2.
i 1
为了建立这个问题的优化模型,只需要明确约束条件 就可以了。一个简单的约束是飞机飞行方向角调整的 幅度不应超过30°,即

(2)
| | 30.
题目中要求进入该区域的飞机在到达该区域边缘 时,与区域内的飞机的距离应在60km以上。这个 条件是个初始条件,很容易验证目前所给的数据 是满足的,因此本模型中可以不予考虑。剩下的 关键是 要满足题目中描述的任意两架位于该区域 内的飞机的距离应该大于8km。但这个问题的难点 在于飞机是动态的,这个约束不好直接描述,为 此我们首先需要描述每架飞机的飞行轨迹。
1. 问题的前期分析 * 对问题仔细阅读, 首先抓住题目中的关键词“管理”进行联想.
• 抓住诸如“碰撞”、“调整”、“避免碰撞”、“立即”、“判断”等等词语. * 联系解决问题的方案,不加约束继续联想,再将关键词搭配起来.
飞行位置示意图
160km
V
III
I
II IV
VI

2005-2015高教社杯全国大学生数学建模竞赛A、B题评阅要点

2005-2015高教社杯全国大学生数学建模竞赛A、B题评阅要点

水质排序最差的地区不一定是污染源最严重的地区。 用长江干流上的 7 个观测站点将长江分 为 6 个江段,逐段计算各江段的排污量,找出主要污染源所在的区域。 首先研究每个江段中污染物浓度 C (mg/L) 的变化规律。由于题目中给出了污染物的降 解系数,附件 3 给出了每个月的污染物浓度、流量、流速等数据,若忽略污染物的局部扩散 (研究的是总体污染) ,在考虑固定时段(月)的污染物浓度时,可利用一般一维水质模型 的近似解 C = C 0 e
2008 A 题评阅要点 ............................................................................................................. 28 2008B 题 高等教育学费标准探讨 .................................................................................... 29
2009 B 题评阅要点 ............................................................................................................. 40
CUMCM-2009, A 题:第 1 页 / 共 42 页
2005A 题: 长江水质的评价和预测
水是人类赖以生存的资源,保护水资源就是保护我们自己,对于我国大江大河水资源 的保护和治理应是重中之重。专家们呼吁: “以人为本,建设文明和谐社会,改善人与自然 的环境,减少污染。 ” 长江是我国第一、世界第三大河流,长江水质的污染程度日趋严重,已引起了相关政府 部门和专家们的高度重视。2004 年 10 月,由全国政协与中国发展研究院联合组成“保护长 江万里行”考察团,从长江上游宜宾到下游上海,对沿线 21 个重点城市做了实地考察,揭 示了一幅长江污染的真实画面,其污染程度让人触目惊心。为此,专家们提出“若不及时拯 救,长江生态 10 年内将濒临崩溃” (附件1) ,并发出了“拿什么拯救癌变长江”的呼唤(附 件 2) 。 附件 3 给出了长江沿线 17 个观测站(地区)近两年多主要水质指标的检测数据,以及 干流上7个观测站近一年多的基本数据(站点距离、水流量和水流速) 。通常认为一个观测 站(地区)的水质污染主要来自于本地区的排污和上游的污水。一般说来,江河自身对污染 物都有一定的自然净化能力, 即污染物在水环境中通过物理降解、 化学降解和生物降解等使 水中污染物的浓度降低。反映江河自然净化能力的指标称为降解系数。事实上,长江干流的 自然净化能力可以认为是近似均匀的, 根据检测可知, 主要污染物高锰酸盐指数和氨氮的降 解系数通常介于 0.1~0.5 之间,比如可以考虑取 0.2 (单位:1/天)。附件 4 是“1995~2004 年 长江流域水质报告”给出的主要统计数据。下面的附表是国标(GB3838-2002) 给出的《地表 水环境质量标准》中 4 个主要项目标准限值,其中Ⅰ、Ⅱ、Ⅲ类为可饮用水。 请你们研究下列问题: (1)对长江近两年多的水质情况做出定量的综合评价,并分析各地区水质的污染 状况。 (2)研究、分析长江干流近一年多主要污染物高锰酸盐指数和氨氮的污染源主要在哪 些地区? (3)假如不采取更有效的治理措施,依照过去 10 年的主要统计数据,对长江未来水 质污染的发展趋势做出预测分析,比如研究未来 10 年的情况。 (4)根据你的预测分析,如果未来 10 年内每年都要求长江干流的Ⅳ类和Ⅴ类水的比 例控制在 20%以内,且没有劣Ⅴ类水,那么每年需要处理多少污水? (5)你对解决长江水质污染问题有什么切实可行的建议和意见。

数学建模知识

数学建模知识
上述的内容有些同学完全没有学过,也有些同学只学过一点概率与数理统计,微分方程的知识怎么办呢?一个词“自学”,记得数模评卷的负责教师曾经说过“能用最简单浅易的数学方法解决了别人用高深理论才能解决的答卷是更优秀的答卷”。
第二方面:计算机的运用能力
一般来说凡参加过数模竞赛的同学都能熟练地应用字处理软件“Word”,掌握电子表格“Excel”的使用;“Mathematica”软件的使用,最好还具备语言能力。这些知识大部分都是学生自己利用课余时间学习的。
1)根据问题的背景和建模的目的做出假设(本题隐含假设鸡兔是正常的,畸形的鸡兔除外)
2)用字母表示要求的未知量
3)根据已知的常识列出数学式子或图形(本题中常识为鸡兔都有一个头且鸡有2只脚,兔有4只脚)
4)求出数学式子的解答
5)验证所得结果的正确性
这就是数学建模的一般步骤
三、数模竞赛出题的指导思想
传统的数学竞赛一般偏重理论知识,它要考查的内容单一,数据简单明确,不允许用计算器完成。对此而言,数模竞赛题是一个“课题”,大部分都源于生产实际或者科学研究的过程中,它是一个综合性的问题,数据庞大,需要用计算机来完成。其答案往往不是唯一的(数学模型是实际的模拟,是实际问题的近似表达,它的完成是在某种合理的假设下,因此其只能是较优的,不唯一的),呈报的成果是一篇论文。由此可见“数模竞赛”偏重于应用,它是以数学知识为引导计算机运用能力及文章的写作能力为辅的综合能力的竞赛。
四、竞赛中的常见题型
赛题题型结构形式有三个基本组成部分:
1.实际问题背景
涉及面宽——有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。一般都有一个比较确切的现实问题。
2.若干假设条件
有如下几种情况:

全国大学生数学建模竞赛赛题综合评析

全国大学生数学建模竞赛赛题综合评析
B题:高等教育学费标准探讨
社会热点
叶其孝、周义仓
开放性强、社会关注性强,突出数据来源的可靠性、结论解释的合理性
数据收集与处理、问题的分析与假设,初等数学方法、一般统计方法、多目标规划、回归分析、综合评价方法、灰色预测
2009年
A题:制动器试验台的控制方法分析
工业问题
方沛辰、刘笑羽
问题具体、专业性强,要花时间读懂、理解清楚问题
出版社的资源配置
孟大志
艾滋病疗法的评价及疗效的预测
边馥萍
易拉罐形状和尺寸的最优设计(C题)
叶其孝
煤矿瓦斯和煤尘的监测与控制(D题)
韩中庚
2007年
中国人口增长预测
唐云
乘公交,看奥运
方沛辰、吴孟达
手机“套餐”优惠几何(C题)
韩中庚
体能测试时间安排(D题)
刘雨林
2008年
数码相机定位
谭永基
高等教育学费标准探讨
叶其孝、周义仓
地面搜索(C题)
肖华勇
NBA赛程的分析与评价(D题)
姜启源
2009年
制动器试验台的控制方法分析
方沛辰、刘笑羽
眼科病床的合理安排
吴孟达、毛紫阳
卫星和飞船的跟踪测控(C题)
周义仓
会议筹备(D题)
王宏健
2010年
储油罐的变位识别与罐容表标定
韩中庚
2010年上海世博会影响力的定量评估
杨力平
输油管的布置(C题)
1
6
8
付鹂
重庆大学
1
6
9
姜启源
清华大学
4
3
10
陈叔平
浙江大学、贵州大学
2
5
11

优化模型举例

优化模型举例
2020/7/1
一单位实物 行走时间(分钟) 捕获时间(分钟) 热量(焦耳)
X
2
2
25
Y
3
1
30
假设捕食者每天能得到 x 单位的食物 X 和
y 单位的食物 Y ,则每天获得的热量值为
max u 25x 30 y 2x 3y 120
s.t 2x y 80 x 0, y 0.
2020/7/1
2020/7/1
收点
发点
B1
B2
…. Bn
A1X11 X12….. X1na1
A2
X21 X22
…. X2n
a2
….. …..
Am
Xm1
Xm2 ….. Xmn
am
b1 b2
….
bn
2020/7/1
A1的总费用
A1 ~ B j
n
C11x11 C12 x12 ... C1n x1n C1 j x1 j j 1
2020/7/1
03年B题:“露天矿生产的车辆安排”,非线性 规划模型。 04年B题:“电力市场的输电阻塞管理”,双目
标线性规划模型。 05年B题:“DVD在现租赁”,0-1规划模型。 06年A题:“出版社的资源优化配置”,线性规 划模型。
2020/7/1
(一)优化模型的数学描述
将一个优化问题用数学式子来描述,即求函数
2.根据设计变量的性质 静态问题和动态问题。
3.根据目标函数和约束条件表达式的性质 线性规划,非线性规划,二次规划,多目标规划等。
2020/7/1
(1)非线性规划
目标函数和约束条件中,至少有一个非线性函数。
min u f (x) x
s. t. hi ( x) 0,i 1,2,..., m. gi ( x) 0(gi ( x) 0), i 1,2,..., p.

建模教程 数学建模讲义

建模教程 数学建模讲义

机械零件或部件的最优化设计(?轮轴颈,凸轮设计)
化工设备最优设计(单件或连锁设备优化设计) 电力网络和水力网络的优化设计(平衡条件)
22 2018/9/19
(3)竞争理论。 即研究战争,投资,商业竞争等 问题主要内容是对策论和决策论分析。
1928 年 Von.Neumann 证 明 了 对 策 论 的 基 本 定 理 , 1944年Von.Neumann 和经济学家O.Morgonsterm合作发表 了专著《竞争与经济行为》,该书奠定了对策论的基础。 上个世纪五十年代后对策论与统计决策相结合,进一步 发展为决策分析。
7 2018/9/19
2、系统科学(工程)的观点
模型化技术为系统分析和系统设计的实施提 供了重要手段。
抽象
System 逼近 Model
IM(Image Model)
AM(Abstract Model) MM(Mamth Model)
信息反馈(数值模拟、仿真)
8 2018/9/19
M是S的一种映射(映象),M源于S但又高于S;
计算代价的估计,计算精度的估计,算法的可靠性, 稳定性的评价等。
15 2018/9/19
2、从线性到非线性的变化
事物的运动和变化一般都是非线性的,但在局部范 围和平缓变化情况下,往往又可以近似地看成是线性的, 因此线性化的数学模型一直得到广泛和充分的研究,在 十九世纪,数、理、化、力等学科都是线性的世界,20 世纪以来,科技和工程技术的迅速发展,出现了大范围、 大变形、大扰动、高速、高温、高能、高精度等涉及非 线性现象的问题,因此,非线性问题的研究已成为当前 科学和数学中研究的主题。
主要约束是空间限制和压力限制限制和压力限制由于空间限制由于空间限制桁架高度不应超过桁架高度不应超过bb11管的直径同管的厚度之比不应超过管的直径同管的厚度之比不应超过bb22钢管的压应力不应超过钢管的屈服压力钢管的压应力不应超过钢管的屈服压力即即其中其中bb33是常数是常数桁架的高度桁架的高度管的直径和厚度的选取必须使得管的直径和厚度的选取必须使得在该载荷下不发生弯曲在该载荷下不发生弯曲即压应力不超过临界压力即压应力不超过临界压力其中其中bb44为常数为常数201052683综上所述该桁架的优化设计问题可表达为下述综上所述该桁架的优化设计问题可表达为下述非线性规划

数学建模期末考试A试的题目与答案

数学建模期末考试A试的题目与答案

数学建模期末考试A试的题目与答案LEKIBM standardization office【IBM5AB- LEKIBMK08-华南农业大学期末考试试卷(A卷)2012-2013学年第二学期考试科目:数学建模考试类型:(闭卷)考试考试时间:120 分钟学号姓名年级专业一、(满分12分) 一人摆渡希望用一条船将一只狼,一只羊,一篮白菜从河岸一边带到河岸对面,由于船的限制,一次只能带一样东西过河,绝不能在无人看守的情况下将狼和羊放在一起;羊和白菜放在一起,怎样才能将它们安全的带到河对岸去建立多步决策模型,将人、狼、羊、白菜分别记为i = 1,2,3,4,当i在此岸时记x i = 1,否则为0;此岸的状态下用s =(x1,x2,x3,x4)表示。

该问题中决策为乘船方案,记为d = (u1, u2, u3, u4),当i在船上时记u i = 1,否则记u i = 0。

(1) 写出该问题的所有允许状态集合;(3分)(2) 写出该问题的所有允许决策集合;(3分)(3) 写出该问题的状态转移率。

(3分)(4) 利用图解法给出渡河方案. (3分)解:(1) S={(1,1,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (1,0,1,0)}及他们的5个反状(3分)(2) D = {(1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)} (6分)(3) s k+1 = s k + (-1) k d k (9分)(4)方法:人先带羊,然后回来,带狼过河,然后把羊带回来,放下羊,带白菜过去,然后再回来把羊带过去。

或: 人先带羊过河,然后自己回来,带白菜过去,放下白菜,带着羊回来,然后放下羊,把狼带过去,最后再回转来,带羊过去。

(12分)1、二、(满分12分) 在举重比赛中,运动员在高度和体重方面差别很大,请就下面两种假设,建立一个举重能力和体重之间关系的模型:(1) 假设肌肉的强度和其横截面的面积成比例。

历年全国数学建模试题及解法归纳

历年全国数学建模试题及解法归纳

历年全国数学建模试题及解法归纳赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建赛题解法01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A出版社书号问题整数规划、数据处理、优化06B Hiv病毒问题线性规划、回归分析07A 人口问题微分方程、数据处理、优化07B 公交车问题多目标规划、动态规划、图论、0-1规划08A 照相机问题非线性方程组、优化08B 大学学费问题数据收集和处理、统计分析、回归分析2009年A题制动器试验台的控制方法分析工程控制2009年B题眼科病床的合理安排排队论,优化,仿真,综合评价2009年C题卫星监控几何问题,搜集数据2009年D题会议筹备优化赛题发展的特点: 1. 对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B,某些问题需要使用计算机软件,01A。

历年赛题

历年赛题

图1给出了比赛主场馆 的规划图。作为真实地 图的简化,在图2中仅保 留了与本问题有关的地 区及相关部分:道路 (白色为人行道)、公 交车站、地铁站、出租 车站、私车停车场、餐 饮部门等,其中标有A1A10、B1-B6、C1-C4的 黄色区域是规定的设计 MS网点的20个商区。
图1 (A:国家体育场(鸟巢), B:国家体育馆,C: 国家游泳中心(水立方))
4龄鱼的产卵量为1.109×105个,3龄鱼的产卵 量为这个数的一半,2龄鱼和1龄鱼不产卵,产 卵和孵化期为每年的最后4个月,卵孵化并成 活为1龄鱼,成活率(1龄鱼条数与产卵总量n 之比)为1.22×1011/(1.22×1011+n)。 渔业管理部门规定,每年只允许在产卵孵 化期前的8个月内进行捕捞作业。如果每年投 入的捕捞能力(如渔船数、下网次数等)固定 不变,这时单位时间捕捞量将与各年龄组鱼群 条数成正比,比例系数不妨称捕捞强度系数。
数学建模历年赛题
1995年A题:一个飞行管理模型
在约10,000米高空的某边长160公里的正 方形区域内,经常有若干架飞机作水平飞行。 区域内每架飞机的位置和速度均由计算机记录 其数据,以便进行飞行管理。 当一架欲进入该区域的飞机到达区域边缘, 记录其数据后,要立即计算并判断是否会与区 域内的飞机发生碰撞。如果会碰撞,则应计算 如何调整各架(包括新进入的)飞机飞行方向 角,以避免碰撞。

1.
2. 3. 4. 5.
6.
现假定条件如下: 不碰撞的标准为任意两架飞机的距离大于8 公里; 对飞机飞行方向角调整的幅度不应超过30度; 所有飞机飞行速度均为每小时800公里; 进入该区域的飞机在到达区域边缘时,与区 域内飞机的距离应在60公里以上; 最多需考虑6架飞机; 不必考虑飞机离开此区域后的状况。

历年全国数学建模试题及解法

历年全国数学建模试题及解法

一、历年全国数学建模试题及解法赛题解法93A 非线性交调的频率设计拟合、规划93B 足球队排名图论、层次分析、整数规划94A 逢山开路图论、插值、动态规划94B 锁具装箱问题图论、组合数学95A 飞行管理问题非线性规划、线性规划95B 天车与冶炼炉的作业调度动态规划、排队论、图论96A 最优捕鱼策略微分方程、优化96B 节水洗衣机非线性规划97A 零件的参数设计非线性规划97B 截断切割的最优排列随机模拟、图论98A 一类投资组合问题多目标优化、非线性规划98B 灾情巡视的最灾情巡视的最佳佳路线图论、组合优化99A 自动化车动化车床床管理随机优化、计随机优化、计算算机模拟99B 钻井布局0-1规划、图论00A DNA 序列分类模式识别式识别、、Fisher 判别判别、、人工神经网络00B 钢管订购和运输组合优化、组合优化、运输运输运输问题问题01A 血管三维重建曲线拟合、线拟合、曲面重建曲面重建01B 工交车调度问题多目标规划02A 车灯线光源光源的优化的优化非线性规划02B 彩票彩票问题问题问题 单目标目标决决策 03A SARS 的传播传播 微分方程、微分方程、差差分方程分方程03B 露天矿生产矿生产的车的车的车辆安辆安辆安排排 整数规划、整数规划、运输运输运输问题问题问题 04A 奥运会临时超市网点奥运会临时超市网点设计设计设计 统计分析、数计分析、数据处据处据处理、优化理、优化理、优化 04B 电力市场电力市场的的输电阻塞输电阻塞管理管理管理 数据拟合、优化拟合、优化 05A 长江长江水水质的评价和预测评价和预测 预测评价预测评价、数、数、数据处据处据处理理 05B DVD 在线租赁租赁 随机规划、整数规划随机规划、整数规划二、赛题发展的特点1.对选手对选手的计的计的计算算机能力提出了更高能力提出了更高的的要求:要求:赛题的解赛题的解赛题的解决依赖决依赖决依赖计计算机,题目的数题目的数据较据较据较多多,手工,手工计计算不能完成,如03B ,某些,某些问题问题问题需要需要需要使用使用使用计计算机软件,01A 。

数学建模美国赛1995AB.docx

数学建模美国赛1995AB.docx

AMCM-95问题・A单一螺旋线问题为向小型微主物工程公司提供帮助。

设计出“实时”求一条螺旋线与空间屮位于一般位置的平面(见图95A-1)所有交点的方法,证明方法的正确性并编程对算法进行数值检验。

图95A-1在计算机辅助几何设计(CAGD)中用类似程序可使工程人员观察到他们所设计物体的截面,例如,飞机引擎,汽车缓冲装置或者医疗器材等。

而且工程设计人员也许述能显示出诸如气流、压力、温度以及用颜色或水平线的编码。

进一步地,工程人员可以运过对整个物体的截面部分进行快速扫描以得到物体的三维视觉及其运动、受压和受热时的反应。

为达此目的,所用的计算机程序必须以尽可能快的速度和尽可能高的精度找出所需观察平面与所给物体每一部分的所有交点,一般所指的“问题求解”即为求此类点,但对特殊问题而言,特殊方法或许比通用方法更高效更准确。

特别地,通用的计算机辅助几何设计软件或许会由于速度太慢而不能完成实时计算,或者软件适用范围虽然广泛但并不适合公司所提出的医疗服务要求,基于上述考虑,公司捉岀下列问题。

问题设计、判断、编程并检验给定平面与螺旋线在空间小任意位置和方向上的交点。

例如,在化学或医疗器械屮,-•段螺旋线可表示为直立悬挂的弹簧或一小段纲管。

算法理论上的证明需要通过几种不同的角度來进行,例如,对算法进行数学上的证明并用已知例子的编程进行检验,另外,从事医疗服务的当事人进行检验和证实也是必要的。

AMCM95 题・B Aluacha Balaclava 学院Aluacha Balaclava学院聘用了一个新院长。

而任院长是由于教员工资问题而被迫辞职的,因此,新院长需要制定一个公平台理的工资系统方案,以树立其权威。

作为第一步,她聘请你们队作为顾问,设计一个能够反映以下背景及原则的工资系统。

背景教员共分四级:助教、讲师、副教授、教授。

博士毕业后任教的教员被聘为讲师。

在读的博士生被聘为助教,并且当毕业时门动升为讲师。

副教授通常须满七年后才能申报教授。

2018年全国大学生数学建模比赛题目(课堂PPT)

2018年全国大学生数学建模比赛题目(课堂PPT)

• (c)颜色为黄或红的汽车必须与颜色为银、灰、棕、金中的一种颜色的汽车 间隔排列;
• (d)蓝色汽车必须与白色汽车间隔排列;
• (e)金色汽车要求与颜色为黄或红的汽车间隔排列;若无法满足要求,也可 以与颜色为灰、棕、银中的一种颜色的汽车间隔排列;
• (f)颜色为灰或银的汽车可以连续排列,也可以与颜色为黄、红、金中的一 种颜色的汽车间隔排列;
2020/4/26
12
请建立数学模型解决以下问题:
• 附件中的数据给出了某大型百货商场会员的相关信息:附件1是会 员信息数据;附件2是近几年的销售流水表;附件3是会员消费明细 表;附件4是商品信息表,一般来说,商品价格越高,盈利越高; 附件5是数据字典。
• 1) 分析该商场会员的消费特征,比较会员与非会员群体的差异,并 说明会员群体给商场带来的价值。
• (2)两道工序的物料加工作业情况,每个物料的第一和第二道 工序分别由两台不同的CNC依次加工完成;
• (3)CNC在加工过程中可能发生故障(据统计:故障的发生概 率约为1%)的情况,每次故障排除(人工处理,未完成的物料报 废)时间介于10~20分钟之间,故障排除后即刻加入作业序列。 要求分别考虑一道工序和两道工序的物料加工作业情况。
• (2) 针对会员的消费情况建立能够刻画每一位会员购买力的数学模 型,以便能够对每个会员的价值进行识别。
2020/4/26
13
Hale Waihona Puke • (3) 作为零售行业的重要资源,会员具有生命周期(会员从入会到 退出的整个过程),会员的状态(比如活跃和非活跃)也会发生变 化。试在某个时间窗口,建立会员生命周期和状态划分的数学模 型,使商场管理者能够更有效地对会员进行管理。
• (4) 建立数学模型计算会员生命周期中非活跃会员的激活率,即从 非活跃会员转化为活跃会员的可能性,并从实际销售数据出发, 确定激活率和商场促销活动之间的关系模型。

数学建模竞赛案例选讲省名师优质课赛课获奖课件市赛课一等奖课件

数学建模竞赛案例选讲省名师优质课赛课获奖课件市赛课一等奖课件

A(eii ei j )
cos(i i ) i sin(i i ) cos( j j ) i sin( j j ) cos i i sin i cos j i sin j
2 sin i i j j (sin i i j j i cos i i j j )
因为Δθi可正可负,为使各变量均非负,引入新变量:
1i , i2使i 1i i2
min
模型 化为
iijj
0时,1i 0时,1i
i2 i2
1j 1j
2j 2j
2ij 2ij
2ij 2ij
s.t.
1i i2 30 1i i2 30
1i i2
1i i2
30
1i , i2 , 0
模型求解
αij旳计算
model:
ij
arcsin( |
xi
8 xj
) |
sets:
plane/1..6/:x0,y0;
link(plane,plane):alpha,sin2;
endsets
@for(link(i,j)|i#ne#j:
sin2(i,j)=64/((x0(i)-x0(j))^2+(y0(i)-y0(j))^2);
ALPHA( 4, 2) ALPHA( 4, 3) ALPHA( 4, 4) ALPHA( 4, 5) ALPHA( 4, 6) ALPHA( 5, 1) ALPHA( 5, 2) ALPHA( 5, 3) ALPHA( 5, 4) ALPHA( 5, 5) ALPHA( 5, 6) ALPHA( 6, 1) ALPHA( 6, 2) ALPHA( 6, 3) ALPHA( 6, 4) ALPHA( 6, 5) ALPHA( 6, 6)

PAGE95模型翻译

PAGE95模型翻译

Chris hope的PAGE模型霍普博士是英国上议院经济事务特别委员会探究气候变化的专业顾问,也是斯特恩报告气候变化经济学PAGE模型的顾问。

他已经出版了大量书籍和同行评议的期刊。

他最近完成了PAGE09 模型,是PAGE模型的最新版本。

在公共政策的数值信息,温室效应的政策分析,气候变化的综合评估模型方面都有深入的研究。

气候变化专门委员会(IPCC,2007年共享诺贝尔和平奖)第三次和第四次评估报告的主要作者和审查编辑。

2007年获得欧洲科学院和阿斯本(Aspen)研究所终身成就奖。

PAGE(Policy Analysis for the Greenhouse Effect)模型是在1992年开发的为全球气候变暖问题进行政策分析的计算机模拟模型。

在应对全球气候变暖问题上,决策者有三种可能采取的行动:什么也不做,防止温室气体的排放量(例如,通过征收能源税),或适应气候变化(例如,通过建立保护海堤或培育抗旱抗性作物)。

一个理想的政策是协调自适应和预防措施,以此来最小化气候变化的干预总成本和导致的损害。

模型版本有PAGE95,PAGE2002,PAGE2009。

PAGE模型采用相对简单的方程来表示复杂的气候现象。

PAGE95PAGE模型使用最少的计算来表示全球变暖问题,模型中气候现象的模拟如下描述:GHGS的人为排放,如大气中CO2,CH4,CFC(氟氯烃),N2O的积聚。

虽然化学和生物过程可以消除部分温室气体,但是大部分在大气中保持几十年。

GHGS在大气中吸热导致更少的太阳辐射反射到太空。

这增加了辐射强迫和地球能量的净流入,导致全球气温上升。

温度的缓慢上升是由于地球巨大的热容量,特别是涉及到大气到海洋中的热传输。

全球温度的上升通过多种反馈机制激发自然产生的温室气体发生变化。

例如,海洋溶解二氧化碳的量随温度和冻土解冻释放甲烷而减少。

PAGE模型也采用了全球气候变暖问题的基本经济要素,如下描述:如果不采取行动防止全球变暖,随着时间的推移,温室气体排放量仍然会由于人口变化,经济增长,科技发展和政策措施而变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档