江西省宜春市奉新一中2015届高考数学模拟试卷(理科)
江西省宜春市奉新县第一中学2015届高三模拟考试理综试题 Word版含答案
2015届奉新一中高三模拟高考理科综合能力测试卷命题人: 邓新华刘贤淼余春生第I卷所需相对原子质量:H-1 C-12 N-14 O-16 Na-23 Al-27 S -32 Cl -35.5 P-31 Ca-40 Fe-56一、选择题:本题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列关于叶绿体和线粒体的叙述,正确的是A.线粒体能将葡萄糖氧化分解为CO2和H2OB.含有叶绿体的细胞都含有线粒体C.只有含叶绿体的细胞才能将无机物转化为有机物D.线粒体是细胞的“能量转换站”,能为各种生命活动提供能量3.已知甲、乙两种遗传病按自由组合定律遗传,已计算出后代患甲病的概率为m,患乙病的概率为n,则后代表现型的种类和概率的表示方法正确的是( )4.关于在自然条件下,某随机交配种群中等位基因A、a频率的叙述,错误的是()。
A.该种群基因频率的变化只与环境的选择作用有关B.一般来说,频率高的基因所控制的性状更适应环境C.在某种条件下两种基因的频率可以相等D.持续选择条件下,一种基因的频率可以降为零5.下图中甲、乙、丙表示生物个体或结构,①~③表示相应过程,下列叙述与图示不符的是( )A.若甲为二倍体植株,乙为花粉粒,丙为单倍体,则③过程需要用秋水仙素处理B.若甲为植物体一部分,乙为愈伤组织,丙为胚状体,则①过程通常在避光的条件下进行C.若甲为成熟哺乳动物个体,乙为配子,丙为受精卵,则基因重组发生在②过程中D.若甲为成年母羊,乙为去核的卵母细胞,丙为重组细胞(胚胎),则③过程的核心技术是胚胎移植6.近期气温骤降,感冒频发。
某同学感冒发热至39°C,并伴有轻度腹泻,与病前相比,此时该同学的生理状况是()A.呼吸、心跳加快,心肌细胞中ATP大量积累B.汗液分泌增多,尿量减少,血浆Na+浓度降低C.糖原合成增强,脂肪分解加快,尿素合成增多D.甲状腺激素分泌增多,代谢增强,产热量增加7.下列物质在给定条件下同分异构体数目正确的是()A. C4H10属于烷烃的同分异构体有3种B. 结构为的一溴代物有5种C.分子组成是C4H80属于醛类的同分异构体有3种D. 分子组成是C5H10O2属于羧酸的同分异构体有5种8.下列实验不合理的是()A.证明非金属性强弱 S>C>Si B.四氯化碳萃取碘水中的碘C.制备并收集少量NO气体 D.制备少量氧气9.下列选项中,离子方程式书写正确的是 ( )A. 向Fe(NO3)2和KI混合溶液中加入少量稀盐酸:3F e2++4H++NO3-= 3Fe3++ 2H2O+NO↑B.泡沫灭火器的灭火原理:2Al3+ +3CO32-+3H2O = 2Al(OH)3↓+ 3CO2↑C.用足量的氨水处理硫酸工业的尾气:SO2+ NH3·H2O = NH4+ + HSO3-D.向硝酸银溶液中加入足量的氨水:Ag+ +2NH3·H2O = Ag(NH3)2+ + 2H2O10.在不同温度下,水溶液中c(H+)与c(OH-)有如图所示关系。
2015届高考模拟试卷数学试题(理科)附答案
2015届高考模拟试卷数学试题(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页。
全卷满分150分,考试时间120分钟。
第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.1. 若复数z 满足i i z -=+1)1((i 是虚数单位),则z 的共轭复数z = A .i -B .i 2-C .iD .i 22.某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的表面积为( )A.32π B .π+ 3 C.32π+ 3 D.52π+ 33.在极坐标系中,过点(2,)6π且垂直于极轴的直线的极坐标方程是( )A.ρθ=B.ρθ=C.sin ρθ=D.cos ρθ=4.图(1)是某高三学生进入高中三年来 的数学考试成绩茎叶图,第1次到第 14次的考试成绩依次记为A 1,A 2,…, A 14.图(2)是统计茎叶图中成绩在一定 范围内考试次数的一个算法流程图. 那么算法流程图输出的结果是( )A .7B .8C .9D .105.已知“命题p :∃x ∈R ,使得ax 2+2x +1<0成立”为真命题,则实数a 满足( ) A .[0,1) B .(-∞,1) C .[1,+∞) D .(-∞,1]6.若函数f (x )=(k -1)·a x -a -x (a >0且a ≠1) 在R 上既是奇函数,又是减函数, 则g (x )=log a (x +k )的图象是( )7.等比数列{}n a 的首项为1,公比为q ,前n 项和记为S,由原数列各项的倒数组成一个新数列1{}n a ,则1{}na 的前n 项之和'S 是( )A.1SB.1n q SC.n q SD. 1n S q -8. 若实数,x y 满足1000x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则23x yz +=的最小值是( )A .9. 若二项式*(2)()n x n N -∈的展开式中所有项的系数的绝对值之和是a ,所有项的二项式系数之和是b ,则b aa b+的最小值是( ) A.2 B.136 C.73 D.15610.有7张卡片分别写有数字1,1,1,2,2,3,4,从中任取4张,可排出的四位数有( )个A.78B. 102C.114D.120第Ⅱ卷(非选择题共100分)请用0 5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效。
2015年高考数学模拟试题及答案(理科)
理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 复数111-++-=iiz ,在复平面内z 所对应的点在(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 2.如图,一个简单空间几何体的三视图其主视图与左视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是 (A(B )(C(D ) 833.下列命题错误的是(A )命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠” (B )若命题2:,10p x R x x ∃∈++=,则2:,10p x R x x ⌝∀∈++≠ (C )若p q ∧为假命题,则p 、q 均为假命题(D ) “2x >”是“2320x x -+>”的充分不必要条件4.如图,该程序运行后输出的结果为(A )1 (B )2 (C )4 (D )165.设γβα,,为两两不重合的平面,,,l m n 为两两不重合的直线,给出下列四个命题:①若γβγα⊥⊥,,则βα//;②若ββαα//,//,,n m n m ⊂⊂,则βα//; ③若βα//,α⊂l ,则β//l ;④若γαγγββα//,,,l n m l === ,则n m //. 其中真命题的个数为(A )1(B )2(C )3(D )46.已知n S 是等差数列}{n a 的前n 项和,若12852=++a a a ,则9S 等于(A )18 (B )36 (C )72 (D )无法确定俯视图7. P 是ABC ∆所在平面内一点,若+=λ,其中R ∈λ,则P 点一定在(A )ABC ∆内部 (B )AC 边所在直线上 (C )AB 边所在直线上 (D )BC 边所在直线上8. 抛物线212y x =-的准线与双曲线22193x y -=的两条渐近线所围成的三角形的面积等于(A ) (B ) (C )2 (D 9. 定义行列式运算12212121b a b a b b a a -=,将函数xx x f cos 1sin 3)(=的图象向左平移)0(>t t 个单位,所得图象对应的函数为偶函数,则t 的最小值为 (A )6π (B )3π(C )65π (D )32π10. 设方程|)lg(|3x x-=的两个根为21,x x ,则(A ) 021<x x (B )021=x x (C ) 121>x x (D ) 1021<<x x 11. 王先生购买了一部手机,欲使用中国移动“神州行”卡或加入联通的130网,经调查其收费标准见下表:(注:本地电话费以分为计费单位,长途话费以秒为计费单位.)若王先生每月拨打本地电话的时间是拨打长途电话时间的5倍,若要用联通130应最少打多长时间的长途电话才合算.(A )300秒 (B )400秒 (C )500秒 (D )600秒12. 两个三口之家,共4个大人,2个小孩,约定星期日乘“奥迪”、“捷达”两辆轿车结伴郊游,每辆车最多只能乘坐4人,其中两个小孩不能独坐一辆车,则不同的乘车方法种数是(A )40 (B )48 (C )60 (D )68第Ⅱ卷二.填空题:本大题共4小题,每小题4分,共16分.13.在棱长为a 的正方体1111ABCD A B C D -内任取一点P ,则点P 到点A 的距离小于a 的概率为 . 14.若等比数列}{n a 的首项为32,且⎰+=4 1 4)21(dx x a ,则公比q 等于 .15. 已知)(x f 为奇函数,且当x >0时, 0)('>x f ,0)3(=f ,则不等式0)(<x xf 的解集为____________.16. 数列 ,,,,,,,,,,1423324113223112211,则98是该数列的第 项. 三.解答题:本大题共6小题,共74分.17. (本小题满分12分)已知角C B A 、、是ABC ∆的三个内角,c b a 、、是各角的对边,若向量⎪⎭⎫⎝⎛-+-=2cos),cos(1B A B A , ⎪⎭⎫ ⎝⎛-=2cos ,85B A n ,且89=⋅n m .(Ⅰ)求B A tan tan ⋅的值; (Ⅱ)求222sin cb a Cab -+的最大值.18. (本小题满分12分)正ABC ∆的边长为4,CD 是AB 边上的高,E 、F 分别是AC 和BC 的中点(如图(1)).现将ABC ∆沿CD 翻折成直二面角A -DC -B (如图(2)). 在图形(2)中:(Ⅰ)试判断直线AB 与平面DEF 的位置关系,并说明理由; (Ⅱ)求二面角E -DF -C 的余弦值;(Ⅲ)在线段BC 上是否存在一点P ,使DE AP ⊥?证明你的结论.19. (本小题满分12分)张明要参加某单位组织的招聘面试.面试要求应聘者有7次选题答题的机会(选一题答一题),若答对4题即终止答题,直接进入下一轮,否则则被淘汰.已知张明答对每一道题的概率都为21. (Ⅰ)求张明进入下一轮的概率;(Ⅱ)设张明在本次面试中答题的个数为ξ,试写出ξ的分布列,并求ξ的数学期望.20.(本小题满分12分)数列}{n a 满足)2,(122*1≥∈++=-n N n a a n n n ,273=a .(Ⅰ)求21,a a 的值; (Ⅱ)已知))((21*N n t a b n n n ∈+=,若数列}{n b 成等差数列,求实数t ; (Ⅲ)求数列}{n a 的前n 项和n S .21. (本小题满分12分)已知A 为椭圆)0(12222>>=+b a by a x 上的一个动点,弦AB 、AC 分别过焦点F 1、F 2,当AC 垂直于x 轴时,恰好有13||||21::=.(Ⅰ)求椭圆离心率;(Ⅱ)设F AF B F AF 222111λλ==,试判断21λλ+是否为定值?若是定值,求出该定值并证明;若不是定值,请说明理由.22. (本小题满分14分)已知0>a ,)1ln(12)(2+++-=x x ax x f ,l 是曲线)(x f y =在点))0(,0(f P 处的切线.(Ⅰ)求l 的方程;(Ⅱ)若切线l 与曲线)(x f y =有且只有一个公共点,求a 的值;(Ⅲ)证明对任意的n a =)(*N n ∈,函数)(x f y =总有单调递减区间,并求出)(x f 单调递减区间的长度的取值范围.(区间],[21x x 的长度=12x x -)附:答案及评分标准:一.选择题: BCCCB BBACD BB1.解析:B. 21(1)1111(1)(1)i i z i i i i -+--=-=-=-++-,故选B.2. 解析:C.该几何体为正四棱锥,底面边长为2,高为22⨯=,其体积12233V =⨯⨯=. 3. 解析:C .由“且”命题的真假性知,p 、q 中至少有一个为假命题,则p q ∧为假,故选项C 错误. 4. 解析:D.每次循环对应的b a ,的值依次为11,1,2,112a b b a ====+=;22,24,213a b a ====+=;43,4,216,314a b b a =====+=. 5. 解析:B.根据面面平行的判定可知①是假命题;②是假命题; ③是真命题;④是真命题. 6. 解析:B. 2585312a a a a ++==,∴54a =,19592993622a a aS +=⨯=⨯=. 7. 解析:B. CB PA PB CB BP PA λλ=+⇒+=CP PA λ⇒=,∴C 、P 、A 三点共线.8. 解析:A. 抛物线212y x =-的准线方程为3x =,双曲线22193x y -=的渐近线为y x =,如图,它们相交得OAB ∆,则(3,A B ,∴132OAB S ∆=⨯=.9. 解析:C. 1sin ()sin sin )2cos xf x x x x x x==-=-2cos()6x π=+.函数()f x 向左平移65π后为55()2cos()2cos()2cos 666f x x x x ππππ+=++=+=-,所以5()2c o s 6f x x π+=-为偶函数. 10. 解析:D. 如图,易知231x x =,3120x x x <<<,∴1201x x <<.11. 解析:B. 设王先生每月拨打长途x 秒,拨打本地电话5x 秒,根据题意应满足50.3650.60120.060.076060x x x x ⋅⋅++≤+,解得400x ≥. 12. 解析:B. 只需选出乘坐奥迪车的人员,剩余的可乘坐捷达.若奥迪车上没有小孩,则有2344C C +=10种;若有一个小孩,则有11232444()C C C C ++=28种;若有两个小孩,则有1244C C +=10种.故不同的乘车方法种数为10+28+10=48种.二.填空题13.6π;14.3;15. {|033x 0}x x <<-<<或;16.128. 13. 解析:6π.易知,在正方体内到点A 的距离小于a 的点分布在以A 为球心,以a 为半径的球的18部分内.故所求概率即为体积之比3341386a P a ππ⋅==. 14. 解析:3. 42224 14(12)()44(11)181a x dx x x =+=+=+-+=⎰;123a =,341a a q =⋅得公比3q =.15. 解析:{|033x 0}x x <<-<<或.根据题意,函数()f x 的图象如图,可得0)(<x xf 的解集为{|033x 0}x x <<-<<或.16. 解析:128.分子、分母之和为2的有1项,为3的有2项,…,为16的有15项.而98是分子、分母之和为17的第8项.故共有1511581282+⨯+=项. 三.解答题17. (本题小满分12分)已知角C B A 、、是ABC ∆的三个内角,c b a 、、是各角的对边,若向量⎪⎭⎫⎝⎛-+-=2cos),cos(1B A B A , ⎪⎭⎫ ⎝⎛-=2cos ,85B A n ,且89=⋅n m .(Ⅰ)求B A tan tan ⋅的值; (Ⅱ)求222sin cb a Cab -+的最大值. 解:(Ⅰ)由(1cos(),cos )2A B m A B -=-+,5(,cos )82A B n -=,且98m n ⋅=, 即259[1cos()]cos828A B A B --++=.---------------------------------------------------------------------------2分 ∴4cos()5cos()A B A B -=+,-------------------------------------------------------------------------------------4分即cos cos 9sin sin A B A B =,∴1tan tan 9A B =.--------------------------------------------------------------6分 (Ⅱ)由余弦定理得222sin sin 1tan 2cos 2ab C ab C C a b c ab C ==+-,-------------------------------------------------8分而∵tan tan 9tan()(tan tan )1tan tan 8A B A B A B A B ++==+-9384≥⨯=,即tan()A B +有最小值34.-----------------------------------------------------------------------------------------10分又tan tan()C A B =-+,∴tan C 有最大值34-(当且仅当1tan tan 3A B ==时取等号),所以222sin ab C a b c +-的最大值为38-.-------------------------------------------------------------------------------12分18. (本题小满分12分)正ABC ∆的边长为4,CD 是AB 边上的高,E 、F 分别是AC 和BC 的中点(如图(1)).现将ABC ∆沿CD 翻折成直二面角A -DC -B (如图(2)). 在图形(2)中:(Ⅰ)试判断直线AB 与平面DEF 的位置关系,并说明理由; (Ⅱ)求二面角E -DF -C 的余弦值;(Ⅲ)在线段BC 上是否存在一点P ,使DE AP ⊥?证明你的结论.解法一:(Ⅰ)如图(2):在ABC ∆中,由EF 分别是AC 、BC 的中点,得EF//AB ,又⊄AB 平面DEF ,⊂EF 平面DEF . ∴//AB 平面DEF.-----------------------------------------------------------------------3分(Ⅱ)CD BD CD AD ⊥⊥,,∴ADB ∠是二面角A -CD -B 的平面角.-------------------------------------------------------------------------------------4分∴BD AD ⊥,∴⊥AD 平面BCD .取CD 的中点M ,则EM //AD ,∴EM ⊥平面BCD .过M 作MN ⊥DF 于点N ,连结EN ,则EN ⊥DF ,MNE ∠是二面角E -DF -C 的平面角.----------------------------------------------------6分在EMN Rt ∆中,EM =1,MN =23,∴721cos =∠MNE .----------------------------------8分(Ⅲ)在线段BC 上取点P ,使BP =BC 31,过P 作PQ ⊥CD 于点Q ,∴⊥PQ 平面ACD .-----------------11分 ∵,33231==DC DQ ∴ADQ Rt ∆中,33tan =∠DAQ .在等边ADE ∆中,,30 =∠DAQ ∴DE AP DE AQ ⊥⊥,.------------------------------------------------------12分解法二:(Ⅱ)以点D 为坐标原点,以直线DB 、DC 、DA 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则)0,3,1(),1,3,0(),0,32,0(002(),2,0,0(F E C B A ),,,------------------------------------------4分平面CDF 的法向量)2,0,0(=DA .设平面EDF 的法向量为n =(x ,y ,z ).则⎪⎩⎪⎨⎧=⋅=⋅0DE ,即⎩⎨⎧=+=+0303z y y x ,取)3,3,3(-=------------------------------------------6分 721||||cos =⋅>=⋅<n DA .二面角E -DF -C 的平面角的余弦值为721.------------------------------------8分(Ⅲ)在平面坐标系x D y 中,直线BC 的方程为323+-=x y ,设)0,332,(x x P -,则)2,332,(--=x x AP .--------------------------------------------------------------------------------------------------------10分∵x DE AP 31340=⇒=⇒=⋅⇒⊥. ∴在线段BC 上存在点P ,使AP ⊥DE .---------------------------------------------------------------12分.19. (本题小满分12分)张明要参加某单位组织的招聘面试.面试要求应聘者有7次选题答题的机会(选一题答一题),若答对4题即终止答题,直接进入下一轮,否则则被淘汰.已知张明答对每一道题的概率都为21. (Ⅰ)求张明进入下一轮的概率;(Ⅱ)设张明在本次面试中答题的个数为ξ,试写出ξ的分布列,并求ξ的数学期望.解法一:(Ⅰ)张明答4道题进入下一轮的概率为161)21(4=;----------------------------------------------------1分 答5道题进入下一轮的概率为812121)21(334=⋅⋅C ;--------------------------------------------------------------------2分答6道题进入下一轮的概率为32521)21()21(2335=⋅⋅C ;--------------------------------------------------------------3分答7道题进入下一轮的概率为32521)21()21(3336=⋅⋅C ;-------------------------------------------------------------5分张明进入下一轮的概率为1155116832322P =+++=.---------------------------------------------------------------6分(Ⅱ)依题意,ξ的可能取值为4,5,6,7.当ξ=4时可能答对4道题进入下一轮,也可能打错4道题被淘汰.81)21()21()4(44=+==ξP ;类似有4121)21()21(21)21()21()5(334334=⋅⋅+⋅⋅==C C P ξ;)6(=ξP =+⋅⋅21)21()21(2335C 16521)21()21(2335=⋅⋅C ; )7(=ξP =+⋅⋅21)21()21(3336C 16521)21()21(3336=⋅⋅C .----------------------------------------------10分 于是ξ的分布列为161671664584=⨯+⨯+⨯+⨯=ξE ---------------------------------------------------------------------12分解法二:(Ⅱ)设张明进入下一轮的概率为1P ,被淘汰的概率为2P ,则121=+P P ,又因为张明答对每一道题的概率都为21,答错的概率也都为21.所以张明答对4题进入下一轮与答错4题被淘汰的概率是相等的.即21P P =. 所以张明进入下一轮的概率为21.--------------------------------------------------------------------------------------6分20.(本小题满分12分)数列}{n a 满足)2,(122*1≥∈++=-n N n a a n n n ,273=a .(Ⅰ)求21,a a 的值;(Ⅱ)已知))((21*N n t a b n n n ∈+=,若数列}{n b 成等差数列,求实数t ; (Ⅲ)求数列}{n a 的前n 项和n S .解法一:(Ⅰ)由)2,(122*1≥∈++=-n N n a a n n n ,得33222127a a =++=29a ⇒=.2212219a a =++=12a ⇒=.--------------------------------------------------------------3分(Ⅱ)*11221(,2)(1)2(1)2n n n n n n a a n N n a a --=++∈≥⇒+=++*(,2)n N n ∈≥1111122n n nn a a --++⇒=+*(,2)n N n ∈≥---------------------------------------------------------5分 1111122n n n n a a --++⇒-=*(,2)n N n ∈≥,令*1(1)()2n n nb a n N =+∈,则数列}{n b 成等差数列,所以1t =. ---------------------------------------------------------------------------------------------7分(Ⅲ))}{n b 成等差数列,1(1)n b b n d =+-321(1)22n n +=+-=.121(1)22n n n n b a +=+=; 得1(21)21n n a n -=+⋅-*()n N ∈.--------------------------------------------------------------8分n S =21315272(21)2n n n -⋅+⋅+⋅+++⋅------------①2n S =23325272(21)22n n n ⋅+⋅+⋅+++⋅---------------------②① - ② 得213222222(21)2n n n S n n --=+⋅+⋅++⋅-+⋅+233222(21)2nnn n =++++-+⋅+14(12)3(21)212n n n n --=+-+⋅+-=(21)21nn n -+⋅+-.所以(21)21n n S n n =-⋅-+*()n N ∈-------------------------------------------------------------12分.解法二:(Ⅱ)))((21*N n t a b n nn ∈+=且数列}{n b 成等差数列,所以有1()n n b b +-*()n N ∈为常数. 11111()()22n n n n n n b b a t a t +++-=+-+*()n N ∈1111(221)()22n n n n n a t a t ++=+++-+*()n N ∈111112222n n n n n n t ta a ++=++--*()n N ∈ 1112n t+-=+*()n N ∈,要使1()n n b b +-*()n N ∈为常数.需1t =.---------------------------------7分21. (本题小满分12分)已知A 为椭圆)0(12222>>=+b a by a x 上的一个动点,弦AB 、AC分别过焦点F 1、F 2,当AC 垂直于x 轴时,恰好有13||||21::=. (Ⅰ)求椭圆离心率;(Ⅱ)设F AF B F 222111λλ==,试判断21λλ+是否为定值?若是定值,求出该定值并证明;若不是定值,请说明理由.解:(Ⅰ)当AC 垂直于x 轴时,a b 22||=,13||||21::=AF AF ,∴ab 213||=∴a ab 242=,∴222b a =,∴22c b =,故22=e .-----------------------------------------3分(Ⅱ)由(Ⅰ)得椭圆的方程为22222b y x =+,焦点坐标为)0,(),0,(21b F b F -.①当弦AC 、AB 的斜率都存在时,设),(),,(),,(221100y x C y x B y x A ,则AC 所在的直线方程为)(00b x bx y y --=, 代入椭圆方程得0)(2)23(20200202=--+-y b y b x by y bx b .∴02222023bx b y b y y --=,--------------------------------------------------------------5分F AF 222λ=,bx b y y 020223-=-=λ.--------------------------------------------------7分 同理bx b 0123+=λ,∴621=+λλ------------------------------------------------------9分 ②当AC 垂直于x 轴时,则bbb 23,112+==λλ,这时621=+λλ; 当AB 垂直于x 轴时,则5,121==λλ,这时621=+λλ.综上可知21λλ+是定值 6.---------------------------------------------------------------12分22. (本题小满分14分)已知0>a ,)1ln(12)(2+++-=x x ax x f ,l 是曲线)(x f y =在点))0(,0(f P 处的切线.(Ⅰ)求l 的方程;(Ⅱ)若切线l 与曲线)(x f y =有且只有一个公共点,求a 的值;(Ⅲ)证明对任意的n a =)(*N n ∈,函数)(x f y =总有单调递减区间,并求出)(x f 单调递减区间的长度的取值范围.(区间],[21x x 的长度=12x x -)解:(Ⅰ)1)0(),1ln(12)(2=+++-=f x x ax x f ,11)22(21122)(2'+--+=++-=x x a ax x ax x f , 1)0('=f ,切点)1,0(P ,l 斜率为1-.∴切线l 的方程:1+-=x y ------------------------------------------------------3分(Ⅱ)切线l 与曲线)(x f y =有且只有一个公共点等价于方程1)1ln(122+-=+++-x x x ax 有且只有一个实数解.令)1ln()(2++-=x x ax x h ,则0)(=x h 有且只有一个实数解.---------------------------4分 ∵0)0(=h ,∴0)(=x h 有一解0=x .------------------------------------------------------5分1)]121([21)12(21112)(2'+--=+-+=++-=x a x ax x xa ax x ax x h --------------------------------6分 ①)(),1(01)(,212'x h x x x x h a ->≥+==在),1(+∞-上单调递增, ∴0=x 是方程0)(=x h 的唯一解;------------------------------------------------------7分 ②0)(,210'=<<x h a ,0121,021>-==a x x∴0)11ln(11)1(,0)0()121(2>++-⨯==<-a a aa a h h a h , ∴方程0)(=x h 在),121(+∞-a上还有一解.故方程0)(=x h 的解不唯一;--------------------8分③当0)(,21'=>x h a ,)0,1(121,021-∈-==a x x∴0)0()121(=>-h ah ,而当1->x 且x 趋向-1时,)1ln(,12++<-x a x ax 趋向∞-,)(x h 趋向∞-. ∴方程0)(=x h 在)1211(--a,上还有一解.故方程0)(=x h 的解不唯一.综上,当l 与曲线)(x f y =有且只有一个公共点时,21=a .-------------------------10分(Ⅲ)11)22(2)(2'+--+=x x a ax x f ;∵,1->x ∴0)('<x f 等价于01)22(2)(2<--+=x a ax x k .∵0)1(48)22(22>+=+-=∆a a a ,对称轴12121422->+-=--=aa a x ,011202(2)1(>=---=-a a k ,∴0)(=x k 有解21,x x ,其中211x x <<-.∴当),(21x x x ∈时,0)('<x f .所以)(x f y =的减区间为],[21x x22122121211214)222(4)(aa a a x x x x x x +=⨯+--=-+=---------------------------12分 当)(*N n n a ∈=时,区间长度21211n x x +=-21112=+≤ ∴减区间长度12x x -的取值范围为)2,1(--------------------------------------------------14分。
2015高考数学模拟试卷及答案解析-理科
2015高考数学模拟试卷及答案解析(理科)本试卷满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数321i i -(i 为虚数单位)的虚部是A .15iB .15C .15i -D .15-2.设全集U=R ,A={x|2x (x-2)<1},B={x|y=1n (l -x )},则右图中阴影部分表示的集合为 A .{x |x≥1} B .{x |x≤1} C .{x|0<x≤1} D .{x |1≤x<2}3.等比数列{a n }的各项均为正数,且564718a a a a +=,则log 3 a 1+log 3a 2+…+log 3 a l0= A .12 B .10C .8D .2+log 3 54.若x=6π是f (x )=3sin x ω+cos x ω的图象的一条对称轴,则ω可以是 A .4 B .8 C .2 D .15.己知某几何体的三视图如图所示,则该几何体的体积是 A .233π+ B .2323π+ C .232π+ D .23π+6.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有’5架舰载机准备着舰.如果甲乙2机必须相邻着舰,而丙丁不能相邻着舰,那么不同的着舰方法有( )种 A .12 B .18 C .24 D .487.已知M=3(,)|3,{(,)|20}2y x y N x y ax y a x -⎧⎫==++=⎨⎬-⎩⎭且M N =∅I ,则a= A .-6或-2 B .-6 C .2或-6 D .-28.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.己知在过滤过程中废气中的污染物数量尸(单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为:P= P 0e -kt ,(k ,P 0均为正的常数).若在前5个小时的过滤过程中污染物被排除了90%.那么,至少还需( )时间过滤才可以排放.A .12小时 B .59小时 c .5小时 D .10小时9.己知抛物线22(0)y px p =>的焦点F 恰好是双曲线22221(0,0)x y a b a b-=>>的右焦点,且两条曲线的交点的连线过点F ,则该双曲线的离心率为 A .2+1B .2C .2D .2-110.实数a i (i =1,2,3,4,5,6)满足(a 2-a 1)2+(a 3-a 2)2+(a 4-a 3)2+(a 5-a 4)2+(a 6-a 5)2=1则(a 5+a 6)-(a 1+a 4)的最大值为A .3B .22C .6D .1二、填空题(本大题共6小题,考生共需作答5小题.每小题5分,共25分,请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.)(一)必考题.(11-14题) 11.己知0(sin cos )xa t t dt =+⎰,则(1x ax-)6的展开式中的常数项为 。
2015年高考数学模拟试题及答案
(1)求数列 a n 的通项公式; (2)设 bn
1 ,数列 bn 的前 n 项和为 Tn ,求证: Tn 2 . 2 an
20. (本小题共 13 分) 若双曲线 E :
x2 y 2 1(a 0, b 0) 的离心率等于 2 ,焦点到渐近线的距离为 1,直线 y kx 1 与双 a 2 b2
D C
A.
3 10 10
B.
10 10
C.
5 10
D.
5 15
E
B A 7. 已知正四棱柱 ABCD A1B1C1D1 中,AB 2, CC1 2 2 ,E 为 CC1 的中点, 则直线 AC1 与平面 BED
的距离为 A.2 B.
3
C. 2
D.1
8.将甲、乙、丙等六人分配到高中三个年级,每个年级 2 人,要求甲必须在高一年级,乙和丙均不能在高 三年级,则不同的安排种数为
(2)由(1)可知 bn 20. (本小题共 13 分)
c a 2 1 2 解: (1)由 a 得 b2 1 b 1
设 A x1 , y1 , B x2 , y2 , 由
故双曲线 E 的方程为 x y 1
2 2
y kx 1 得 1 k 2 x 2 2kx 2 0 2 2 x y 1
x 1 0 , 则 A B x 3
2 3
D. (, 1)
A. (3, )
B. (1, )
2 3
C. ( ,3)
2
2. 设 x R , i 是虚数单位,则“ x 3 ”是“复数 z ( x 2 x 3) ( x 1)i 为纯虚数” 的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 3.某几何体的正视图和侧视图均如图 1 所示,则该几何体的俯视图不可能是
奉新一中2015届高一下学期期末考试数学试卷
奉新一中2015届高一下学期期末考试数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.垂直于同一条直线的两条直线一定 ( )A 、平行B 、相交C 、异面D 、以上都有可能2.甲、乙两中学各选出7名高一学生参加数学竞赛,他们取得的成绩的茎叶图如图,其中甲校学生成绩的众数是80,乙校学生成绩的中位数是86,则x +y 的值为A. 6 B .7 C . 8 D .93.如图是一个空间几何体的正视图、侧视图、俯视图,如果正视图、侧视图所对应的三角形皆为边长为2的正三角形,俯视图对应的四边形为正方形,那么这个几何体的体积为( ) A.324 B .354 C.334 D .3324.已知{}n a 是等差数列,713+a =20a ,则91011+a +a =a ( )A.36B.30C.24D.185.若0,0,a b >>且4=+b a ,则下列不等式恒成立的是 ( ) A .211>ab B .111≤+b aC .2≥abD .228a b +≥ 6.若对满足条件3x +3y +8=2xy (x >0,y>0) 的任意x 、y , 016)()(2≥++-+y x a y x 恒成立, 则实数a 的取值范围是A. ]10,(-∞B. ),8[∞+C. ]8,(-∞D. ),10[∞+7.某单位200名职工的年龄分布情况如图, 现要从中抽取40名职工作样本, 用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号, 6-10号, ···, 196-200号). 若第6组抽出的号码为28, 则第8组抽出的号码应是a ; 若用分层抽样方法, 则50岁以下年龄段应抽取b 人. 那么a+b 等于A. 46B.45C.70D.698、在△ABC 中,︒=∠︒=︒=70,50sin 2,10sin 4C b a ,则△ABC 的面积为 ( )A. 81 B. 41C. 21D. 19.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A .2a πB .273a πC .2113a π D .25a π10.已知,a > 1,b > 1,则2211a b b a +--的最小值为( ) A .2B .4C .6D .8二、填空题:本大题共5小题,每小题5分,共25分.11.为了了解我校今年准备报考飞行员的学生的体重情况, 将所得的数据整理后,画出了频率分布直方图(如图),已 知图中从左到右的前3个小组的频率之比为1:2:3,第 2小组的频数为12,则抽取的学生人数是 .12.如果用半径为R =的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高是 . 13.在△ABC 中,a =x ,b =2,B =45,若△ABC 有两解,则x 的取值范围是_________. 14.已知等差数列{}n a 中,26a a 与的等差中项为5,37a a 与的等差中项为7,则n a = .15.若a ,b 是正常数,a ≠b ,x ,y ∈(0,+∞),则a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =by时取等号.利用以上结论,可以得到函数f (x )=2x +91-2x (x ∈⎝ ⎛⎭⎪⎫0,12)的最小值为______,取最小值时x 的值为_____.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.如图四边形ABCD 中,2,4,AB BC CD ===60,150B C ∠=︒∠=︒,求边AD 的长.17.已知等差数列{}n a 的前n 项和为n S ,且3152,105.a S ==(1)求数列{}n a 的通项n a ;(2)设32n an b n =+,求数列{}n b 的前n 项和n T .18.已知函数2()2f x ax bx a =+-+.(1) 若关于x 的不等式()0f x >的解集是(– 1,3),求实数a ,b 的值; (2) 若b = 2,a > 0,解关于x 的不等式()0f x >.19.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目. 根据预测,甲、乙 项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?20.已知四棱锥P-ABCD ,底面ABCD 是60=∠A 、边长为a 的菱形,又ABCD PD 底⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ; (2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.21.已知数列{}n a 的前n 项和为n S ,11a =,且2122(1)n n nS n S n n +-+=+(n N +∈).(3) 求数列{}n a 的通项公式; (4) 设2(3)n nnb n S =+,求数列{}n b 的前n 项和n T ;(5) 证明:2n ≥时,3333234111114n a a a a ++++< . .2015届高一下学期期末考试数学参考答案及评分标准一、选择题:DACBD ACCBD 二、填空题:11.48 12.3 13.(2, 14.23n - 15. 25 15三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16. 解析:连接AC ,则可知90,30,BAC ACB ∠=︒∠=︒AC =(4分)在ACD ∆中,由余弦定理2222cos AD AC CD AC CD ACD =+-⨯⨯∠(8分)得212272cos12057AD =+-⨯︒=,故AD =(12分)17.(1)设等差数列{}n a 首项为1a ,公差为d ,由题得 3CA解得101a d =⎧⎨=⎩1n a n ∴=-; (6)(2)13232n a n n b n n-=+=+ (7)023112(3333)2(123)n n n T b b b n -∴=+++=+++++++++ (12)18.解:(1) 由题1-=x ,3是方程022=+-+a bx ax 的二根.代入有⎩⎨⎧=++=02382b a b ,∴⎩⎨⎧=-=21b a ………………..4’(2) )1)(2(22)(22++-=+-+==x a ax a x ax x f b 时,………………………6’ ∵0>a ∴0)1)(20)(>+-->x aa x x f 化为( ①当⎭⎬⎫⎩⎨⎧->-<≥-≥-a a x x x a a a 211,12或时,解集为即………………9’ ②⎭⎬⎫⎩⎨⎧->-<<<-<-1210,12x a a x x a a a 或时,解集为即………………12’ 19、解:设投资人分别用x 万元、y 万元投资甲、乙两个项目. 则:⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+008.11.03.010y x y x y x , 目标函数为:y x z 5.0+=。
江西省2015届高三高考适应性测试数学(理)试题及答案
理科数学、第I 卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{|05}A x x =<<,2{|230}B x x x =-->,则AB =R ðA . (0,3)B . (3,5)C . (1,0)-D .(0,3]2.复数1i (0)z a a a a=+∈≠R 且对应的点在复平面内位于A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限 3.命题“2,x x x ∀∈≠R ”的否定是A .2,x x x ∀∉≠R B .2,x x x ∀∈=R C . 2,x x x ∃∉≠R D .2,x x x ∃∈=R 4.已知函数2()f x x -=,3()tan g x x x =+,那么 A. ()()f x g x ⋅是奇函数 B. ()()f x g x ⋅是偶函数 C. ()()f x g x +是奇函数 D. ()()f x g x +是偶函数 5.已知等比数列{}n a 中,2109a a =,则57a a +A. 有最小值6B. 有最大值6C. 有最小值6或最大值6-D.有最大值6- 6.下列程序框图中,则输出的A 值是A .128 B .129 C .131 D .1347.已知函数()sin()f x x ωϕ=+(0,2πωϕ><)的部分图像如图所示,则()y f x = 的图象可由cos 2y x = 的图象A .向右平移3π个长度单位 B .向左平移3π个长度单位 C .向右平移6π个长度单位 D .向左平移6π个长度单位8.已知抛物线:C 24y x =,那么过抛物线C 的焦点,长度为不超过 2015的整数的弦条数是A . 4024B . 4023C .2012D .20159.学校组织同学参加社会调查,某小组共有5名男同学,4名女同学。
现从该小组中选出3位同学分别到,,A B C 三地进行社会调查,若选出的同学中男女均有,则不同安排方法有 A. 70种 B. 140种 C. 840种 D. 420种10.已知函数1()ln 2xf x x =-(),若实数x 0满足01188()log sin log cos88f x ππ>+,则0x 的取值范围是A .(,1)-∞B .(0,1)C .(1,)+∞D .1(,)2+∞11.已知函数22,20()1ln,021x x x f x x x ⎧-+-≤≤⎪=⎨<≤⎪+⎩,若()|()|g x f x ax a =--的图像与x 轴有3个不同的交点,则实数a 的取值范围是 A. 1(0,)e B. 1(0,)2e C. ln 31[,)3e D. ln 31[,)32e12.某几何体三视图如图所示,则该几何体的体积为 A .23 B .1 C .43 D .32第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22-第24题为选考题,考生根据要求作答.二.填空题:本大题共4小题,每小题5分.13. 41(2)x x-+展开式中的常数项为 .14. 已知向量(2,1)=a ,(1,3)=-b ,若存在向量c ,使得6⋅=a c ,4⋅=b c ,则c = .15.若变量y x ,满足约束条件1,,3215x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则42x yw =⋅的最大值是 .16.对椭圆有结论一:椭圆2222:1(0)x y C a b a b +=>>的右焦点为(,0)F c ,过点2(,0)a P c的直线l 交椭圆于,M N 两点,点M 关于x 轴的对称点为'M ,则直线'M N 过点F 。
2015年高考理科数学模拟试题
2015年普通高等学校招生考试数学模拟试题(理工类)第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的。
1、已知集合{|(1)(2)0}A x x x =+-≤,集合B 为整数集,则AB =( )A 、{1,0}-B 、{0,1}C 、{2,1,0,1}--D 、{1,0,1,2}-2、在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。
在这个问题中,5000名居民的阅读时间的全体是( )A 、总体B 、个体C 、样本的容量D 、从总体中抽取的一个样本3、为了得到函数sin(1)y x =+的图象,只需把函数sin y x =的图象上所有的点( ) A 、向左平行移动1个单位长度 B 、向右平行移动1个单位长度 C 、向左平行移动π个单位长度 D 、向右平行移动π个单位长度4、某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( )(锥体体积公式:13V Sh =,其中S 为底面面积,h 为高)A 、3B 、2C 、3D 、15、若0a b >>,0c d <<,则一定有( )A 、a b d c > B 、a b d c < C 、a b c d > D 、a b c d<6、执行如图的程序框图,如果输入的,x y R ∈,那么输出的S 的最大值为( )A 、0B 、1C 、2D 、37、已知0b >,5log b a =,lg b c =,510d=,则下列等式一定成立的是( )侧视图俯视图11222211A 、d ac =B 、a cd =C 、c ad =D 、d a c =+ 8、如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75,30,此时气球的高是60cm ,则河流的宽度BC 等于( ) A、1)m B、1)mC、1)m D、1)m9、设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是( )A、 B、 C、 D、10、已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( ) A 、2 B 、3 C、8D第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2015年普通高考仿真模拟理科数学试卷(一)
准考证号 姓名(在此卷上答题无效)保密★启用前2015年普通高考仿真模拟校际协作试卷(一)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),第Ⅱ卷第21题为选考题,其它题为必考题.本试卷共6页,满分150分.考试时间120分钟.注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑.5.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回. 参考公式:样本数据1x 、2x 、…、n x 的标准差:s =x 为样本平均数; 柱体体积公式:V Sh =,其中S 为底面面积,h 为高; 锥体体积公式:13V Sh =,其中S 为底面面积,h 为高; 球的表面积、体积公式:24S R π=,343V R π=,其中R 为球的半径.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2A x x =∈≥R ,{}220B x x x =∈--<R ,且R 为实数集,则下列结论正确的A .AB =R B .A B ≠∅C .()A B ⊆R ðD .()A B ⊇R ð2.如果随机变量2~(0,)N ξσ,且()200.4P -<ξ≤= ,则(2)P ξ≤等于A .0.1B .0.4C .0.8D .0.93.某程序框图如图所示. 若执行相应的程序,输出的y 值为1,则输入的整数x 的值应等于A .-1或0B .0或2C .-1或2D .-1或0或24.校庆期间,某同学手上有校庆画册2本,校庆纪念章3个,从中取出4件送给4位校友,每位校友1样礼品,则不同的赠送方法共有A .7种B .10种C .50种D .120种5.若实数α满足下列两个条件p :1cos()23πα+=,q :7cos 29α=,则p 是q 的 A .充要条件 B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件6.设,m n 是两条不同的直线,,,αβγ是三个不同的平面,有以下四个命题:①αββγαγ⎫⇒⎬⎭ ; ②m m αββα⊥⎫⇒⊥⎬⎭; ③m m ααββ⊥⎫⇒⊥⎬⎭ ; ④m n m n αα⎫⇒⎬⊂⎭ . 其中正确的命题的序号是A .①③B .②③C .①④D .②④7.设D 是∆ABC 中AC 边上满足||3||=AC AD 的点,E 是线段BD 上满足||2||=BD BE 的点,P 是满足(,)R =+∈AP xAB yAD x y 的点. 若CP 与AE 共线,则A .=y xB .2=y xC .3=-+y xD .3=+y x8.设点P 在函数()x f x e =的图象上运动,点Q 在函数()f x 的反函数的图象上运动,则PQ的最小值为ABCD.9.设不等式组0,3,≥⎧⎪≤⎨⎪≥⎩x x y kx 所表示的平面区域为Ω.若平面区域Ω内的所有点都在圆223x y +=的内部(包括边界),则实数k 取值范围是 A.(-∞ B .[3, C.[,)3+∞ D.)+∞ 10.在平面直角坐标系xOy 中,点F 为双曲线2222:1(0,0)x y a b a b Γ-=>>的左焦点,分别过点,O F 作斜率为1的直线12,l l ,直线1l 与双曲线Γ的左、右支交于点,M N ,2l 与双曲线Γ的左支交于点K ,若KM KN =,则该双曲线的离心率e 等于A2 B.3 C.12 D12第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.请将答案填在答题卡的相应位置.11.若2i i(,)1ia b a b +=+∈-R ,其中i 是虚数单位,则a b +=________. 12.某学校高一、高二、高三年级的学生人数之比为244::,为开展某项调查,采用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则样本中高二年级的学生有 _______名.13.一个空间几何体的三视图如图所示,则该几何体的表面积为 .14.已知数列{}n a 的首项123a =-,其前n 项和n S 与通项n a 满足12(2)n n nS a n S ++=≥,则2015S =_______. 15.已知函数()ln f x x x =. 对于满足12≤<a x x 的任意实数12,x x ,给出下列判断:①恒有1212()[()()]0-->x x f x f x ; ②恒有1212()()1f x f x x x -<-; ③恒有1221()()f x x f x x +<+; ④恒有2112()()x f x x f x ⋅<⋅;⑤恒有112221()()2()x f x x f x x f x +>. 上述判断中,对1[,)+∞e内的任意实数a 恒正确的是__________.(写出所有恒正确的判断的序号)三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分13分)为提高居民节约用水的意识,某县物价局出台了自来水阶梯定价方案:以户为单位,按月收缴;每月用水量不超过10吨部分每吨2元,超过10吨不超过20吨部分每吨4元,超过20吨部分每吨6元. 随机抽取该地100户家庭去年的月平均用水量,经数据处理后得到如图所示的频率分布直方图.(Ⅰ)请写出每月水费y (元)与用水量x (吨)之间的函数关系式;(Ⅱ)若视题中样本的频率为该县居民每户月平均用水量在相应用水量区间内的概率,试解答:(ⅰ)从该县居民中任选一户,求该户月平均水费恰在[20,40)内的概率;(ⅱ)从该县居民中任选4户,求月平均水费在[20,40)内的用户数ξ的分布列和数学期望.17.(本小题满分13分)在平面直角坐标系xOy 中,()cos ,sin OA x x = ,3(,22OB =- . (Ⅰ)若56AOB ∠=π,求向量AB 的模; (Ⅱ)将函数()f x OA OB =⋅ 的图象向左平移3π个单位得到函数()g x 的图象,试求函数()()()F x f x g x =+在[]0,π上的值域.18.(本小题满分13分)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,122AA AC AB ===,11BC AC ⊥.(Ⅰ)求证:AB ⊥平面1AC ;(Ⅱ)试探究线段1AA 上的点D 的位置,使得平面1ABC与平面11B C D所成的二面角的余弦值为2.19.(本小题满分13分) 已知:抛物线2:2C y px =的焦点为F ,点11(,)A x y ,22(,)B x y ,33(,)D x y 在抛物线C 上,且1232+==x x x ,3=DF .(Ⅰ)求抛物线C 的标准方程;(Ⅱ)若线段AB 的中垂线交x 轴于点M ,求AMB ∆的面积的最大值及此时直线AB 的方程.20.(本小题满分14分)已知函数()cos sin f x ax x x =+,其中a ∈R .(Ⅰ)当1a =-时,试判断函数()f x 的奇偶性和函数()f x 在区间[,]-ππ上的单调性; (Ⅱ)若对任意非零实数x ,都有()20+≤f x a x ,试探求实数a 的取值范围.21.本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2个小题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.(1)(本小题满分7分)选修4-2:矩阵与变换已知矩阵a b c d ⎛⎫= ⎪⎝⎭A 对应的变换把曲线sin y x =变为曲线sin 2y x =. (Ⅰ)求矩阵A ;(Ⅱ)若矩阵2211-⎛⎫= ⎪⎝⎭B ,求AB 的逆矩阵.(2)(本小题满分7分)选修4-4:坐标系与参数方程在直角坐标平面内,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.点,A B的极坐标分别为51,)3π,1,)6π,曲线C 的参数方程为2sin ,11cos 2=⎧⎪⎨=+⎪⎩x y αα(α为参数). (Ⅰ)求AB ;(Ⅱ)若P 为曲线C 上的点,求APB ∆面积的取值范围.(3)(本小题满分7分)选修4-5:不等式选讲 已知函数2()log (15)f x x x a =-+--.(Ⅰ)当5a =时,求函数()f x 的定义域;(Ⅱ)当函数()f x 的定义域为R 时,求实数a 的取值范围.(以下空白部分可作为草稿纸使用)草 稿 纸。
2015年高考模拟考试数学(理科)试卷附答案
2015年高考模拟考试数学(理科)试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷一.选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合}log ,3{2a P =,{}b a Q ,=,若}0{=Q P ,则=Q P ( ) A.{}0,3 B.{}2,0,3 C.{}1,0,3 D.{}2,1,0,3 2.若复数(21a -)+(1a -)i (i 为虚数单位)是纯虚数,则实数a = ( ) A .±1 B .-1 C .0 D .1 3.有下列关于三角函数的命题:1:,()2P x x k k ∀∈≠+∈R Z ππ,若tan 0x >,则sin 20x >;23:sin()2P y x π=-函数与函数cos y x =的图象相同;300:,2cos 3P x x ∃∈=R ;4:|cos |P y x =函数()x ∈R 的最小正周期为2π.其中的真命题是( )A .1P ,4PB .2P ,4PC .2P ,3PD .1P ,2P4.若某程序框图如图所示,则输出的n 的值是 ( )A. 3B. 4C. 5D. 65.已知函数 y = 2sin x 的定义域为[a,b] ,值域为[-2,1] ,则 b-a 的值不可能是( ) A.56π B.π C. 76π D. 2π(第4题图)6.某校通过随机询问100名性别不同的学生是否能做到“光盘”行动,得到如下联表:附:22112212211212()n n n n n K n n n n ++++-=,则下列结论正确的是( )A .在犯错误的概率不超过1%的前提下,认为“该校学生能否做到…光盘‟与性别无关”B .有99%以上的把握认为“该校学生能否做到…光盘‟与性别有关”C .在犯错误的概率不超过10%的前提下,认为“该校学生能否做到…光盘‟与性别有关”D .有90%以上的把握认为“该校学生能否做到…光盘‟与性别无关”7.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x=-的最小值为-2,则k 的值为( ) A. 1 B.-1 C. 2 D. --2 8. 已知菱形ABCD 的边长为3,060B?,沿对角线AD 折成一个四面体,使得平面ACD ^平面ABD ,则经过这个四面体所有顶点的球的表面积为( )A. 15pB. 154pC. D. 6p9.定义在(0,)+∞上的单调递减函数()f x ,若()f x 的导函数存在且满足'()()f x x f x >,则下列不等式成立的是( )A .3(2)2(3)f f <B .3(4)4(3)f f <C .2(3)3(4)f f <D .(2)2(1)f f <10. 已知12F F 、分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过点2F 与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段12F F 为直径的圆外,则双曲线离心率的取值范围是( )A.B.)+∞C. D. (2,)+∞11. 如图,长方形ABCD 的长2AD x =,宽(1)AB x x =≥,线段MN 的长度为1,端点N M ,在长方形ABCD 的四边上滑动,当N M ,沿长方形的四边滑动一周时,线段MN 的中点P 所形成的轨迹为G ,记G 的周长与G 围成的面积数值的差为y ,则函数()y f x =的图象大致为( )12.已知函数1ln 1)(-+=x xx f ,*)()(N k x k x g ∈=,若对任意的1c >,存在实数b a ,满足0a b <<c <,使得)()()(b g a f c f ==,则k 的最大值为( )A. 2B. 3C. 4D. 5第Ⅱ卷本卷包括必考题和选考题两部分。
2015年江西省高考数学模拟试卷(理科)
2015年江西省高考数学模拟试卷(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|0<x<5},B={x|x2-2x-3>0},则A∩∁R B()A.(0,3)B.(3,5)C.(-1,0)D.(0,3]【答案】D【解析】解:由B中不等式变形得:(x-3)(x+1)>0,解得:x>3或x<-1,即B=(-∞,-1)∪(3,+∞),∵全集为R,A=(0,5),∴∁R B=[-1,3],则A∩(∁R B)=(0,3],故选:D.求出B中不等式的解集确定出B,根据全集R求出B的补集,找出A与B补集的交集即可.此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.复数z=+ai(a∈R且a≠0)对应的点在复平面内位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【答案】B【解析】解:复数z=+ai(a∈R且a≠0)对应的点,的横坐标与纵坐标的符号相同,因此对应的点在复平面内位于第一、三象限.故选:B.利用复数的运算法则、几何意义即可得出.本题考查了复数的运算法则、几何意义,属于基础题.3.命题“∀x∈R,x2≠x”的否定是()A.∀x∉R,x2≠xB.∀x∈R,x2=xC.∃x∉R,x2≠xD.∃x∈R,x2=x【答案】D【解析】解:根据全称命题的否定是特称命题,∴命题的否定是:∃x0∈R,=x0.故选:D.根据全称命题的否定是特称命题,利用特称命题写出命题的否定命题.本题考查了全称命题的否定,要注意命题的否定与命题的否命题是两个完全不同的命题,全称命题的否定是特称命题.4.已知函数f(x)=x-2,g(x)=x3+tanx,那么()A.f(x)•g(x)是奇函数B.f(x)•g(x)是偶函数C.f(x)+g(x)是奇函数D.f(x)+g(x)是偶函数【答案】A【解析】解:函数f(x)•g(x)=x-2(x3+tanx),函数的定义域为{x|x≠0且x≠kπ+},则f(-x)•g(-x)=x-2(-x3-tanx)=-x-2(x3+tanx)=-f(x)•g(x),则f(x)•g(x)是奇函数.函数f(x)+g(x)=x-2+(x3+tanx),函数的定义域为{x|x≠0且x≠kπ+},f(-x)+g(-x)=x-2-x3-tanx≠-f(x)•g(x),f(-x)+g(-x)≠f(x)+g(x),即f(x)+g(x)是非奇非偶函数,故选:A根据函数奇偶性的定义进行判断即可.本题主要考查函数的奇偶性的判断,根据定义是解决本题的关键.注意要先判断定义域是否关于原点对称.5.已知等比数列{a n}中,a2a10=9,则a5+a7()A.有最小值6B.有最大值6C.有最小值6或最大值-6D.有最大值-6【答案】C【解析】解:由等比数列的性质可得a5a7=a2a10=9,当a5和a7均为正数时,由基本不等式可得a5+a7≥2=6,当且仅当a5=a7=3时,a5+a7取最小值6;当a5和a7均为负数时,由基本不等式可得a5+a7=-(-a5-a7)≤-2=-6,当且仅当a5=a7=-3时,a5+a7取最大值-6;综上可得:a5+a7有最小值6或最大值-6故选:C由等比数列的性质可得a5a7=9,分类讨论,当a5和a7均为正、负数时,由基本不等式可得相应的最值.本题考查等比数列的通项公式和性质,涉及基本不等式和分类讨论的思想,属中档题.6.下列程序框图中,输出的A值是()A. B. C. D.【答案】C【解析】解:由程序框图知:A i第一次循环后=2第二次循环后=3第三次循环后=4…第十次循环后11不满足条件i≤10,跳出循环.则输出的A为.故选:C.此框图为循环结构,故可运行几次寻找规律求解.本题主要考查了循环结构的程序框图、归纳推理等知识.属于基础题.7.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则y=f(x)的图象可由y=cos2x图象()A.向右平移个长度单位B.向左平移个长度单位C.向右平移个长度单位 D.向左平移个长度单位【答案】A【解析】解:由函数f(x)=sin(ωx+φ)(ω>0,|ω|<)的部分图象可得=•=-,求得ω=2.再把点(,0)代入函数的解析式可得sin(2×+φ)=0,∴2×+φ=kπ,k∈z,求得φ=kπ-,∴φ=-,f(x)=sin(2x-).故把y=cos2x=sin(2x+)的图象向右平移个长度单位,即可得到y=sin[2(x-)+]=sin(2x-)的图象,故选:A.由条件利用诱导公式,函数y=A sin(ωx+φ)的图象变换规律,可得结论.本题主要考查诱导公式的应用,函数y=A sin(ωx+φ)的图象变换规律,属于基础题.8.已知抛物线C:y2=4x,那么过抛物线C的焦点,长度为整数且不超过2015的弦的条数是()A.4024B.4023C.2012D.2015【答案】B【解析】解:抛物线C:y2=4x的焦点为(1,0),由抛物线的性质可得过焦点的最小值为垂直于x轴的弦,且为2p=4,再由抛物线的对称性,可得弦长在5到2015之间的共有2011×2=4022条,综上可得长度为整数且不超过2015的弦的条数是4023.故选:B.求出抛物线过焦点的弦的最小值,再由抛物线的对称性,即可得到所求弦的条数为4023.本题考查抛物线的方程和性质,主要考查弦的最小值和对称性的运用,考查运算能力,属于中档题和易错题.9.学校组织同学参加社会调查,某小组共有5名男同学,4名女同学.现从该小组中选出3位同学分别到A,B,C三地进行社会调查,若选出的同学中男女均有,则不同安排方法有()A.70种B.140种C.840种D.420种【答案】B【解析】解:由题意,满足条件的事件是选出的3位同学中男女都有,包括两种情况,一是一男两女,二是一女两男,共有C41C52+C51C42=70分别到A,B,C三地进行社会调查,有=6,故共有70×6=420种.故选:D.满足条件的事件是选出的3位同学中男女都有,包括两种情况,①一男两女,②一女两男,用组合数写出事件数,分别到A,B,C三地进行社会调查,有=6,利用乘法原理可得结论.本题考查利用排列组合解决实际问题,考查分类求满足条件的组合数,是一个基础题.10.已知函数f(x)=()x-lnx,若实数x0满足f(x0)>sin+cos,则x0的取值范围是()A.(-∞,1)B.(0,1)C.(1,+∞)D.(,+∞)【答案】B【解析】解:已知函数f(x)=()x-lnx,所以:函数自变量x的定义域为:x∈(0,+∞)故排除A.由于存在实数x0满足f(x0)>sin+cos,又由于:==,即:>>当x=e时,<<,lne=1所以:<与>矛盾,故排除:C和D故选:B.首先利用函数的定义域排除A,进一步求出的值,最后利用特殊值法排除C和D,最后求出结果.本题考查的知识要点:利用排除法和特殊值法解决一些复杂的函数问题,对数的值得求法和特殊的三角函数值.11.已知函数f(x)=,,<,若g(x)=|f(x)|-ax-a的图象与x轴有3个不同的交点,则实数a的取值范围是()A.(0,)B.(0,)C.[,)D.[,)【答案】C【解析】解:g(x)=|f(x)|-ax-a的图象与x轴有3个不同的交点,则|f(x)|=a(x+1)有3个不同的实根,即有函数y=|f(x)|与y=a(x+1)的图象有3个交点,作出函数y=|f(x)|与y=a(x+1)的图象,当直线经过点(2,ln3)两图象有3个交点,即有a=;当直线与y=ln(x+1)(0<x≤2)相切时,两图象有2个交点.设切点为(m,n),则切线的斜率为=a,又n=a(m+1),n=ln(m+1).解得a=,m=e-1<2,则图象与x轴有3个不同的交点,即有a的取值范围是[,).故选C.由题意可得|f(x)|=a(x+1)有3个不同的实根,即有函数y=|f(x)|与y=a(x+1)的图象有3个交点,作出函数y=|f(x)|与y=a(x+1)的图象,考虑直线经过点(2,ln3)和y=ln(x+1)(0<x≤2)相切的情况,求得a,运用导数的几何意义,即可得到a,进而通过图象观察即可得到所求范围.本题考查分段函数的运用,主要考查分段函数的图象,以及函数方程的转化,运用数形结合的思想方法是解题的关键.12.某几何体三视图如图所示,则该几何体的体积为()A. B.1 C. D.【答案】C【解析】解:根据几何体的三视图,得;该几何体是长方体,去掉两个全等的四棱锥A-A1B1MN和D-D1C1MN,且长方体的长为2,宽为1,高为1,四棱锥的底面为边长是2和,高为1;如图所示:∴该几何体的体积为:V几何体=V长方体-2V四棱锥=2×1×1-2××2××1=.故选:C.根据几何体的三视图,得出该几何体是长方体,去掉两个全等的四棱锥,由此计算它的体积即可.本题考查了利用空间几何体的三视图求体积的应用问题,是基础题目.二、填空题(本大题共4小题,共20.0分)13.(x-2+)4展开式中的常数项为______ .【答案】70【解析】解:二项式(x-2+)4可化为(-)8,展开式的通项公式为T r+1=•(-1)r•x4-r.令x的幂指数4-r=0,解得r=4,故展开式中的常数项为=70,故答案为:70.先求出二项式展开式的通项公式,再令x的系数等于0,求得r的值,即可求得展开式中的常数项的值.本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.14.已知向量=(2,1),=(-1,3),若存在向量,使得•=6,•=4,则= ______ .【答案】(2,2)【解析】解:设=(x,y),∵•=6,•=4,∴2x+y=6,-x+3y=4,联立解得x=y=2.∴=(2,2),故答案为:(2,2).利用数量积的坐标运算即可得出.本题考查了数量积运算性质,考查了计算能力,属于基础题.15.若变量x,y满足约束条件,则w=4x•2y的最大值是______ .【答案】512【解析】解:由约束条件,作出可行域如图,联立,解得B(3,3),而w=4x•2y=22x+y,令z=2x+y,则y=-2x+z,当直线y=-2x+z过B(3,3)时,z最大,Z max=9,∴w=29=512,故答案为:512.由约束条件作出可行域,化目标函数,根据数形结合得到最优解,求得最优解的坐标,代入目标函数得答案.本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题16.对椭圆有结论一:椭圆C:+=1(a>b>0)的右焦点为F(c,0),过点P(,0)的直线l交椭圆于M,N两点,点M关于x轴的对称点为M′,则直线M′N过点F.类比该结论,对双曲线有结论二,根据结论二知道:双曲线C′:-y2=1的右焦点为F,过点P(,0)的直线与双曲线C′右支有两交点M,N,若点N的坐标是(3,),则在直线NF与双曲线的另一个交点坐标是______ .【答案】,【解析】解:由结论一类比得到结论二为:双曲线>,>的右焦点为F(c,0),过点P(,0)的直线l交双曲线于M,N两点,点M关于x轴的对称点为M′,则直线M′N过点F.由双曲线C′:-y2=1,得a2=3,b2=1,∴c2=a2+b2=4,c=2.∴右准线与x轴交点P(,0),则过N(3,)、P的直线方程为,即.联立,解得:或.∴M(,),M关于x轴的对称点为,.故答案为:,.由已知结论一类比得到结论二,然后求出过点P、N的直线方程,再和双曲线方程联立求得M的坐标,找关于x轴的对称点得答案.本题考查了类比推理,考查了双曲线的简单几何性质,考查了计算能力,是中档题.三、解答题(本大题共8小题,共94.0分)17.已知数列{a n}的前n项和为S n,且a1=2,a2=8,a3=24,{a n+1-2a n}为等比数列.(1)求证:{}是等差数列(2)求的取值范围.【答案】(1)证明:∵{a n+1-2a n}为等比数列,a1=2,a2=8,a3=24,∴a3-2a2=2(a2-2a1),即{a n+1-2a n}为2,∴a n+1-2a n=4×2n-1=2n+1,∴-=1,∴{}是等差数列.(2)解:由(1)知,=1+(n-1)=n∴a n=n•2n,∴S n=1×2+2×22+3×23+…+n•2n∴2S n=1×22+2×23+3×24…+(n-1)•2n+n•2n+1两式相减得-S n=2+22+23+…+2n-n•2n+1=-n•2n+1=(1-n)•2n+1-2∴S n=(n-1)•2n+1+2,∴=∈(0,].【解析】(1)利用a1=2,a2=8,a3=24,{a n+1-2a n}为等比数列,可得a n+1-2a n=4×2n-1=2n+1,从而-=1,即可证明结论;(2)由于数列的通项是一个等差数列与等比数列的积构成的新数列,利用错位相减法求出数列的和即可.求数列的前n项和一般先求出通项,根据通项的特点选择合适的求和方法,常用的求和方法有:公式法、倒序相加法、错位相减法、裂项相消法、分组法.18.某校进行教工趣味运动会,其中一项目是投篮比赛,规则是:每位教师投二分球四次,投中三个可以再投三分球一次,投中四个可以再投三分球三次,投中球数小于3则没有机会投三分球,所有参加的老师都可以获得一个小奖品,每投中一个三分球可以再获得一个小奖品.某位教师二分球的命中率是,三分球的命中率是.(Ⅰ)求该教师恰好投中四个球的概率;(Ⅱ)记该教师获得奖品数为ξ,求随机变量ξ的分布列和数学期望.【答案】解:(Ⅰ)该位教师投中四个球可以分为两个互斥事件,投中三个二分球一个三分球、投中四个二分球,∴概率是=;(Ⅱ)ξ可能取值有1,2,3,4,=,=,=,P(ξ=1)=1-P(ξ=2)-P(ξ=3)-P(ξ=4)=.∴ξ的分布列是数学期望是=.【解析】(Ⅰ)该位教师投中四个球可以分为两个互斥事件,投中三个二分球一个三分球、投中四个二分球,利用相互独立与互斥事件的概率计算公式即可得出;(Ⅱ)ξ可能取值有1,2,3,4,P(ξ=1)=1-P(ξ=2)-P(ξ=3)-P(ξ=4),P(ξ=2)表示投中三个二分球一个三分球、投中四个二分球与投三次3分球只投中一次三分球,P(ξ=3)表示投中四个二分球两个三分球,P(ξ=4)表示投中四个二分球与3个三分球,可得ξ的分布列,利用数学期望计算公式即可得出.本题考查了随机变量的分布列与数学期望、相互独立与互斥事件的概率计算公式、组合数的计算公式,考查了推理能力与计算能力,属于中档题.19.如图,已知在直三棱柱ABC-A1B1C1中,AB=AA1=2,∠ACB=,点D是线段BC的中点.(Ⅰ)求证:A1C∥平面AB1D;(Ⅱ)当三棱柱ABC-A1B1C1的体积最大时,求三棱锥A1-AB1D的体积.【答案】(Ⅰ)证明:设A1B∩AB1=O,连接OD,则OD为三角形A1BC的中位线,∴A1C∥OD,OD⊆平面AB1D,A1C⊄平面AB1D,∴A1C∥平面AB1D.(Ⅱ)解:当三棱柱ABC-A1B1C1的底面积最大时,体积最大,≥,当AC=BC,三角形ABC为正三角形时取最大值,∵A1C∥平面AB1D,∴点A1和C到平面AB1D的距离相等,∴.【解析】(Ⅰ)设A1B∩AB1=O,连接OD,利用三角形的中位线定理可得:A1C∥OD,利用线面平行的判定定理即可证明;(Ⅱ)当三棱柱ABC-A1B1C1的底面积最大时,体积最大,利用余弦定理与基本不等式的性质可得:当AC=BC,三角形ABC为正三角形时取最大值.由于A1C∥平面AB1D,可得点A1和C到平面AB1D的距离相等,利用三棱锥的体积计算公式即可得出.本题考查了线面面面垂直与平行的判定与性质定理、三角形的中位线定理、余弦定理、三棱锥的体积计算公式,考查了推理能力与计算能力,考查了空间想象能力,属于中档题.20.已知椭圆C:+=1(a>b>0)的左右焦点分别是F1(-1,0),F2(1,0),直线l的方程是x=4,点P是椭圆C上动点(不在x轴上),过点F2作直线PF2的垂线交直线l于点Q,当PF1垂直x轴时,点Q的坐标是(4,4).(Ⅰ)求椭圆C的方程;(Ⅱ)判断点P运动时,直线PQ与椭圆C的公共点个数,并证明你的结论.【答案】解:(Ⅰ)由已知得c=1,当PF1⊥x轴时,点,,由,∴,∴2b2-3a=0,b2=a2-1,∴2a2-3a-2=0,解得a=2,,∴椭圆C的方程是;(Ⅱ)设点P(x0,y0),则,化为,设点Q(4,t),由得:(x0-1)(4-1)+y0t=0,∴,∴直线PQ的方程为:,即,即,化简得:,代入椭圆方程得:,化简得:,判别式△=,∴直线PQ与椭圆有一个公共点.【解析】(Ⅰ)由已知得c=1,当PF1⊥x轴时,点,,利用,及其b2=a2-1,解出即可.(II)设点P(x0,y0),代入椭圆方程可得,设点Q(4,t),利用,可得直线PQ的方程,代入椭圆方程,计算△与0比较即可得出.本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到△与0的关系、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.21.已知函数f(x)=(其中a≤2且a≠0),函数f(x)在点(1,f(1))处的切线过点(3,0).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数f(x)与函数g(x)=a+2-x-的图象在(0,2]有且只有一个交点,求实数a的取值范围.【答案】解:(1),∴f(1)=b,′=a-b,∴y-b=(a-b)(x-1),∵切线过点(3,0),∴b=2a,∴′,①当a∈(0,2]时,,单调递增,,∞单调递减,②当a∈(-∞,0)时,,单调递减,,∞单调递增.(2)等价方程在(0,2]只有一个根,即x2-(a+2)x+alnx+2a+2=0在(0,2]只有一个根,令h(x)=x2-(a+2)x+alnx+2a+2,等价函数h(x)在(0,2]与x轴只有唯一的交点,∴′①当a<0时,h(x)在x∈(0,1)递减,x∈(1,2]的递增,当x→0时,h(x)→+∞,要函数h(x)在(0,2]与x轴只有唯一的交点,∴h(1)=0或h(2)<0,∴a=-1或<.②当a∈(0,2)时,h(x)在,递增,,的递减,x∈(1,2]递增,∵> >,当x→0时,h(x)→-∞,∵h(e-4)=e-8-e-4-2<0,∴h(x)在,与x轴只有唯一的交点,③当a=2,h(x)在x∈(0,2]的递增,∵h(e-4)=e-8-e-4-2<0,或f(2)=2+ln2>0,∴h(x)在x∈(0,2]与x轴只有唯一的交点,故a的取值范围是a=-1或<或0<a≤2.【解析】(1)利用导数的几何意义可得切线方程,对a分类讨论、利用导数研究函数的单调性即可;(2)等价方程在(0,2]只有一个根,即x2-(a+2)x+alnx+2a+2=0在(0,2]只有一个根,令h(x)=x2-(a+2)x+alnx+2a+2,等价函数h(x)在(0,2]与x轴只有唯一的交点.由′,对a分类讨论、结合图象即可得出.本题考查了利用导数研究函数的单调性极值与最值、导数的几何意义,考查了恒成立问题的等价转化方法,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题.22.如图,圆内接四边形ABCD的边BC与AD的延长线交于点E,点F在BA的延长线上.(Ⅰ)若=,=,求的值;(Ⅱ)若EF∥CD,证明:EF2=FA•FB.【答案】(Ⅰ)解:∵A,B,C,D四点共圆,∴∠EDC=∠EBF,又∵∠CED=∠AEB,∴△CED∽△AEB,∴,∵,,∴.…(5分)(Ⅱ)证明:∵EF∥CD,∴∠FEA=∠EDC,又∵A,B,C,D四点共圆,∴∠EDC=∠EBF,∴∠FEA=∠EBF,又∵∠EFA=∠BFE,∴△FAE∽△FEB,∴,∴EF2=FA•FB…(10分)【解析】(Ⅰ)由四点共圆得∠EDC=∠EBF,从而△CED∽△AEB,由此能求出的值.(Ⅱ)由平行线性质得∠FEA=∠EDC,由四点共圆得∠EDC=∠EBF,从而△FAE∽△FEB,由此能证明EF2=FA•FB.本题考查的值的求法,考查EF2=FA•FB的证明,解题时要认真审题,注意四点共圆的性质的合理运用.23.在直角坐标系x O y中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知某圆的极坐标方程为:p2-4pcosθ+2=0(1)将极坐标方程化为普通方程(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.【答案】解:(1)ρ2-4ρcosθ+2=0,化为直角直角坐标方程:x2+y2-4x+2=0;(2)由x2+y2-4x+2=0化为(x-2)2+y2=2,令x-2=cosα,y=sinα,α∈[0,2π).则x+y=+2+=2+2,∵∈[-1,1],∴(x+y)∈[0,4].其最大值、最小值分别为4,0.【解析】(1)ρ2-4ρcosθ+2=0,利用即可化为直角直角坐标方程;(2)由x2+y2-4x+2=0化为(x-2)2+y2=2,令x-2=cosα,y=sinα,α∈[0,2π).可得x+y=+2+=2+2,利用正弦函数的单调性即可得出.本题考查了把极坐标方程化为直角坐标方程、圆的参数方程、三角函数的单调性,考查了计算能力,属于基础题.24.已知函数f(x)=|x|,g(x)=-|x-4|+m(Ⅰ)解关于x的不等式g[f(x)]+2-m>0;(Ⅱ)若函数f(x)的图象恒在函数g(x)图象的上方,求实数m的取值范围.【答案】解:(Ⅰ)把函数f(x)=|x|代入g[f(x)]+2-m>0并化简得||x|-4|<2,∴-2<|x|-4<2,∴2<|x|<6,故不等式的解集为(-6,-2)∪(2,6);(Ⅱ)∵函数f(x)的图象恒在函数g(x)图象的上方,∴f(x)>g(x)恒成立,即m<|x-4|+|x|恒成立,∵|x-4|+|x|≥|(x-4)-x|=4,∴m的取值范围为m<4.【解析】(Ⅰ)把函数f(x)=|x|代入g[f(x)]+2-m>0可得不等式||x|-4|<2,解此不等式可得解集;(Ⅱ)函数f(x)的图象恒在函数g(x)图象的上方,则f(x)>g(x)恒成立,即m <|x-4|+|x|恒成立,只要求|x-4|+|x|的最小值即可.本题只要考查函数的性质,同时考查不等式的解法,函数与不等式结合时,要注意转化数学思想的运用.。
2015年江西省高考模拟试题_江西省奉新一中高三上学期第一次阶段性测试数学(理)卷
2015届江西省奉新一中高三上学期第一次阶段性测试数学(理)试题一、选择题(本大题共10小题,每小题5分,共50分,每小题只有一个选项是正确) 1.若集合{}(,)cos ,A x y y x x R ==∈,{}ln B x y x ==,则A B =( )A .{}|11x x -≤≤B .{}|0x x ≥C .{}01x x <≤D .∅2.设集合20{|(3106)0,0}xP x t t dt x =-+=>⎰,则集合P 的非空子集个数是( )A .1B .3C .7D .83.已知,a b R Î,则33log log a b >是 11()()22a b <的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知命题p :函数()sin 2f x x =的最小正周期为π;命题q :若函数)1(+x f 为偶函数,则)(x f 关于1=x 对称.则下列命题是真命题的是( ) A.q p ∧B.)q (p ⌝∨C.()()p q ⌝∧⌝D.q p ∨5.若函数()sin ()f x x x x R ωω=+∈,又()2,()0f f αβ=-=,且βα-的最小值为34π,则正数ω的值是( ) A .13B .23C .43D .326.将函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图像经怎样平移后所得的图像关于点,012π⎛⎫-⎪⎝⎭中心对称( ) A 。
向左平移12πB 。
向左平移6π C 。
向右平移12π D 。
向右平移6π7.已知1()x f x a =,2()a f x x =,3()log a f x x =,(0a >且1a ≠),在同一坐标系中画出其中两个函数在第Ⅰ象限的图象,正确的是( )A B C D8.已知函数()()()sin 0,0,0f x A x A ωϕωϕπ=+>><<,其导函数()f x '的部分图像如图所示,则函数()f x 的解析式为( )A .1()2sin 24f x x π⎛⎫=+ ⎪⎝⎭B .1()4sin 24f x x π⎛⎫=+ ⎪⎝⎭C .()4sin 4f x x π⎛⎫=+ ⎪⎝⎭D .13()4sin 24f x x π⎛⎫=+⎪⎝⎭9.已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤|f (π6)|对x ∈R 恒成立,且f (π2)>f (π),则f (x )的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z )B .[k π,k π+π2](k ∈Z )C .[k π+π6,k π+2π3](k ∈Z )D .[k π-π2,k π](k ∈Z )10.已知定义在R 上的奇函数()f x 满足()()4f x f x -=-,且[]0,2x ∈时,()()2log 1f x x =+,甲,乙,丙,丁四位同学有下列结论:甲:()31f =;乙:函数()f x 在[]6,2--上是增函数;丙:函数()f x 关于直线4x =对称;丁:若()0,1m ∈,则关于x 的方程()0f x m -=在[]8,8-上所有根之和为8-,其中正确的是( )A.甲,乙,丁B.乙,丙C.甲,乙,丙D.甲,丁 二、填空题(本大题共5小题,每小题5分,共25分) 11.设()f x =lg ,0,10,0,xx x x >⎧⎨≤⎩ 则((2))f f -= .12.如图,A 、B 是单位圆O 上的点,C 是圆O 与x 轴正半轴的交点,点A 的坐标为54,53(,三角形AOB 为直角三角形. 则COB ∠cos 的值是 .13.已知函数()|1|2(0xf x a a a =-->,且1a ≠)有两个零点,则a 的取值范围是 .14.已知0ω>,函数π()sin 4f x x ω⎛⎫=+⎪⎝⎭在π,π2⎛⎫⎪⎝⎭上单调递减,则ω的取值范围是 .15.已知函数(1)y f x =-的图象关于点(1,0)对称,且当(,0)x ∈-∞时,()'()0f x xf x +< 成立,若0.30.3(3)(3),(log 3)(log 3)af b f ππ=⋅=⋅,3311(log )(log )99c f =⋅,则a ,b ,c 的从大到小排列是17.已知关于x 的不等式的解集为M . (1)当1=a 时,求集合M ;(2)当M M ∉∈53且时,求实数a 的范围.18.已知函数()()()sin 0,0f x A x B A ωϕω=++>>的一系列对应值如下表:(1)根据表格提供的数据求函数()f x 的一个解析式;(2)根据(1)的结果,若函数()()0y f kx k =>周期为23π,当[0,]3x π∈时,方程()f kx m= 恰有两个不同的解,求实数m 的取值范围.19.设函数()2ln .af x ax x x =--(1)若()f x 在2x =时有极值,求实数a 的值和()f x 的单调区间; (2)若()f x 在定义域上是增函数,求实数a 的取值范围.20.已知()()mf x x m R x=+∈ , (1)若函数()12log 2y f x =+⎡⎤⎣⎦在区间[1,)+∞上是减函数,求实数m 的取值范围。
江西省奉新一中高三数学上学期第一次周考试题 理 新人
奉新一中2015届高三上学期第一次周考数学理科试题一、选择题(本大题共10小题,每小题5分,共50分)1、命题p:“11,2≥+∈∀x R x ”,则p ⌝是( )A. 11,2<+∈∀x R xB. 11,2≤+∈∃x R xC. 11,2<+∈∃x R xD.11,2≥+∈∃x R x 2、设}{}2,1{2a N M ==,,则”“M N ⊆是”“1=a 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件3.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是( )(A )(M ∩P )∩S (B )(M ∩P )∪S(C )(M ∩P )∩CIS (D )(M ∩P )∪CIS4.如果函数y=f(x)的图象如右图,那么导函数图象可能是( )5、下列函数中,在其定义域内,既是奇函数又是减函数的是( ) A.x x f 1)(= B.x x f -=)( C. x x f tan )(-= D. x x x f 22)(-=-6. 已知函数⎪⎩⎪⎨⎧<+=>=)0(1)0()0(0)(2x x x x f ππ,则)))1(((-f f f 的值等于( ) A. π B.12+π C. 12-π D.07.函数x x x f ln )1()(+=的零点有( )A.0个B.1个C.2个D.3个8. 函数23)(3+-=x x x f 的零点为( ) A.1,2 B. ±1,-2 C.1,-2 D.±1, 2班级姓名学号________________装订线内不要答题◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ 9.若a>0,b>0,且函数224)(23---=bx ax x x f 在x=1处有极值,则ab 的最大值( ) A.2 B.3 C.6 D.9 10.已知二次函数c bx ax x f ++=2)(的导数0)0('),('>f x f ,且)(x f 的值域为),0[+∞,则)0(')1(f f 的最小值为( ) A.2 B.25 C.5 D.23 二、填空题(共5小题,每小题5分,共25分) 11.若直线a y 2=与函数|1|-=x a y ()10≠>a a 且的图像有两个公共点, 则a 的取值范围是 . 12. 设1011,e x m e dx n dx x ==⎰⎰,则m+n= 。
江西省宜春市奉新一中2015届高三模拟考试数学(理)试卷
奉新一中2015届高三模拟考试数学试卷(理)2015.5.24一、选择题:(本大题共12个小题,每小题5分,共60分). 1.若集合{0}A x x =≥,且AB B =,则集合B 可能是( )(A )R (B ){}1,2 (C ){1,0,1}- (D ){1}x x ≤ 2.若复数z 满足()()z 32i 5--= (i 为虚数单位),则z 为( ) (A )2i -(B )2i +(C )5i - (D )5i +3.已知m R ∈,“函数21xy m =+-有零点”是“函数log m y x =在0+∞(,)上为减函数”的( )(A )必要不充分条件 (B )充分不必要条件 (C )充要条件 (D )既不充分也不必要条件4.已知数列}{},{n n b a 满足n n a b 2log =,*N n ∈,其中}{n b 是等差数列,且8200814a a ⋅=,则1232015b b b b ++++= ( )(A )2log 2015 (B )2015 (C )2015- (D )1008 5.已知1122log log a b <,则下列不等式一定成立的是( )(A )11a b > (B )11()()43a b < (C )ln()0a b -> (D )31a b -< 6.某工厂对一批新产品的长度(单位:mm )进行检测,如图是检测结果的频率分布直方图,据此估计这批产品的中位数为( )(A )20 (B )22.5 (C )22.75 (D )25 7.函数)sin()(ϕω+=x x f (其中2||πϕ<)的图象如图所示,为了得到sin y x ω=的图象,只需把()y f x =的图象上所有点( ) (A )向右平移6π个单位长度 (B )向左平移6π个单位长度 (C )向右平移12π个单位长度 (D )向左平移12π个单位长度8.已知实数y x ,满足⎪⎩⎪⎨⎧≤≥+≥+-20062x y x y x ,若目标函数y mx z +-=的最大值为102+-m ,最小值为22--m ,则实数m 的取值范围是( )(A )[]2,1- (B )[]1,2- (C )[]3,2 (D ) []3,1-9.椭圆M: 22221(0)x y a b a b+=>>左右焦点分别为1F ,2F ,P 为椭圆M 上任一点且1PF ∙2PF 最大值取值范围是222,3c c ⎡⎤⎣⎦,其中c =e 取值范围为( )(A )⎫⎪⎪⎭ (B )11,32⎡⎫⎪⎢⎣⎭ (C )⎫⎪⎪⎭ (D )10.若G 是ABC ∆的重心,且30aGbG cGC A +B +=,则角=A ((A )30 (B )45 (C )60 (D )9011.某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为( )(A (B )23 (C (D12.已知函数52log (1)(1)()(2)2(1)x x f x x x ⎧-<=⎨--+≥⎩,则关于x 的方程1(2)f x a x+-=的实根个数不可能...为( ) (A )5个 (B )6个 (C )7个 (D )8个二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上. 13.有4名优秀学生A ,B ,C ,D 全部被保送到北京大学,清华大学,复旦大学,每所学校至少去一名,则不同的保送方案共有 种.14.如图(第11题右图),若输入a 的值为二项式94119x ⎫⎪⎭展开式的常数项,则输出的k 值是 .15.已知矩形ABCD 的周长为18,把它沿图中的虚线折成正六棱柱,当这个正六棱柱体积最大时,它的 外接球的表面积为 .16.我们把离心率215+=e 的双曲线()0,012222>>=-b a b y a x 称为黄金双曲线.给出以下几个说法:)1(双曲线115222=+-y x 是黄金双曲线; )2(若ac b =2,则该双曲线是黄金双曲线;)3(若MN 经过右焦点2F 且21F F MN ⊥,090=∠MON ,则该双曲线是黄金双曲线;)4(若21,F F 为左右焦点,21,A A 为左右顶点,1B (0,b ),2B (0,﹣b )且021190=∠A B F ,则该双曲线是黄金双曲线. 其中正确命题的序号为 _________ .三、解答题:解答应写出文字说明、证明过程或演算步骤. (本大题共6小题,满分70分. ) 17.在ABC ∆中,角C B A 、、的对边分别是c b a 、、满足222a bc c b +=+. (1)求角A 的大小;(2)若等差数列{}n a 的公差不为零,且1cos 1=A a ,且842a a a 、、成等比数列,求⎭⎬⎫⎩⎨⎧+14n n a a 的 前n 项和n S .18.第117届中国进出品商品交易会(简称2015年春季广交会)将于2015年6月15日在广州举行,为了搞好接待工作,组委会在广州某大学分别招募8名男志愿者和12名女志愿者,现将这20名志愿者的身高组成茎叶图(单位:cm )(第15题右图),若身高在175cm 以上(包括175cm )定义为“高个子”,身高在175cm 以下(不包括175cm )定义为“非高个子”。
高考专题奉新一中高三模拟考试数学试卷(理)
奉新一中2015届高三模拟考试数学试卷(理)2015.5.24一、选择题:(本大题共12个小题,每小题5分,共60分). 1.若集合{0}A x x =≥,且AB B =,则集合B 可能是()(A )R (B ){}1,2(C ){1,0,1}-(D ){1}x x ≤2.若复数z 满足()()z 32i 5--=(i 为虚数单位),则z 为( ) (A )2i -(B )2i +(C )5i -(D )5i +3.已知m R ∈,“函数21x y m =+-有零点”是“函数log m y x =在0+∞(,)上为减函数”的() (A )必要不充分条件(B )充分不必要条件(C )充要条件(D )既不充分也不必要条件4.已知数列}{},{n n b a 满足n n a b 2log =,*N n ∈,其中}{n b 是等差数列,且8200814a a ⋅=,则1232015b b b b ++++=()(A )2log 2015(B )2015(C )2015-(D )10085.已知1122log log a b <,则下列不等式一定成立的是()(A )11a b >(B )11()()43a b <(C )ln()0a b ->(D )31a b -< 6.某工厂对一批新产品的长度(单位:mm )进行检测,如图是检测结果的频率分布直方图,据此估计这批 产品的中位数为()开始a输入1,0k S ==1(21)(21)S S k k =+-+1k k =+?S a >是否(A )20(B )22.5(C )22.75(D )25 7.函数)sin()(ϕω+=x x f (其中2||πϕ<)的图象如图所示,为了得到sin y x ω=的图象,只需把()y f x =的图象上所有点()(A )向右平移6π个单位长度(B )向左平移6π个单位长度 (C )向右平移12π个单位长度(D )向左平移12π个单位长度8.已知实数y x ,满足⎪⎩⎪⎨⎧≤≥+≥+-20062x y x y x ,若目标函数y mx z +-=的最大值为102+-m ,最小值为22--m ,则实数m 的取值范围是()(A )[]2,1- (B )[]1,2- (C )[]3,2 (D )[]3,1-9.椭圆M:22221(0)x y a b a b+=>>左右焦点分别为1F ,2F ,P 为椭圆M 上任一点且1PF •2PF 最大值取值范围是222,3c c ⎡⎤⎣⎦,其中22c a b =-e 取值范围为()(A )2,12⎫⎪⎪⎣⎭(B )11,32⎡⎫⎪⎢⎣⎭(C )3⎫⎪⎪⎣⎭(D )322⎣⎦10.若G 是ABC ∆的重心,且30aG bG cGC A +B +=,则角=A () (A )30(B )45(C )60(D )9011.某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为()(A )2(B )23(C )5(D )612.已知函数52log (1)(1)()(2)2(1)x x f x x x ⎧-<=⎨--+≥⎩,则关于x 的方程1(2)f x a x +-=的实根个数不可能...为() (A )5个(B )6个(C )7个(D )8个二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.13.有4名优秀学生A ,B ,C ,D 全部被保送到北京大学,清华大学,复旦大学,每所学校至少去一名,则不同的保送方案共有 种.14.如图(第11题右图),若输入a 的值为二项式94119x x ⎛⎫+ ⎪⎝⎭展开式的常数项,则输出的k 值是 . 15.已知矩形ABCD 的周长为18,把它沿图中的虚线折成正六棱柱,当这个正六棱柱体积最大时,它的 外接球的表面积为 .16.我们把离心率215+=e 的双曲线()0,012222>>=-b a by a x 称为黄金双曲线.给出以下几个说法:)1(双曲线115222=+-y x 是黄金双曲线;)2(若ac b =2,则该双曲线是黄金双曲线;)3(若MN 经过右焦点2F 且21F F MN ⊥,090=∠MON ,则该双曲线是黄金双曲线;)4(若21,F F 为左右焦点,21,A A 为左右顶点,1B (0,b ),2B (0,﹣b )且021190=∠A B F ,则 该双曲线是黄金双曲线.其中正确命题的序号为_________ .三、解答题:解答应写出文字说明、证明过程或演算步骤. (本大题共6小题,满分70分.) 17.在ABC ∆中,角C B A 、、的对边分别是c b a 、、满足222a bc cb +=+.(1)求角A 的大小; (2)若等差数列{}n a 的公差不为零,且1cos 1=A a ,且842a a a 、、成等比数列,求⎭⎬⎫⎩⎨⎧+14n n a a 的前n 项和n S .18.第117届中国进出品商品交易会(简称2015年春季广交会)将于2015年6月15日在广州举行,为了 搞好接待工作,组委会在广州某大学分别招募8名男志愿者和12名女志愿者,现将这20名志愿者的 身高组成茎叶图(单位:cm )(第15题右图),若身高在175cm 以上(包括175cm )定义为“高个子”, 身高在175cm 以下(不包括175cm )定义为“非高个子”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省宜春市奉新一中2015届高考数学模拟试卷(理科)一、选择题:(本大题共12个小题,每小题5分,共60分).1.(5分)若集合A={x|x≥0},且A∩B=B,则集合B可能是()A.R B.{1,2} C.{﹣1,0,1} D.{x|x≤1}2.(5分)若复数z满足(z﹣3)(2﹣i)=5(i为虚数单位),则z为()A.2﹣i B.2+i C.5﹣i D.5+i3.(5分)已知m∈R,“函数y=2x+m﹣1有零点”是“函数y=log m x在(0,+∞)上为减函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)已知数列{a n},{b n}满足b n=log2a n,n∈N*,其中{b n}是等差数列,且a8•a2008=,则b1+b2+b3+…+b2015=()A.l og22015 B.2015 C.﹣2015 D.10085.(5分)已知,则下列不等式一定成立的是()A.B.C.l n(a﹣b)>0 D.3a﹣b<16.(5分)如图是某工厂对一批新产品长度(单位:mm)检测结果的频率分布直方图.估计这批产品的中位数为()A.20 B.25 C.22.5 D.22.757.(5分)函数f(x)=sin(ωx+φ)(其中|φ|<)的图象如图所示,为了得到y=sinωx的图象,只需把y=f(x)的图象上所有点()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度8.(5分)已知实数x,y满足,若目标函数z=﹣mx+y的最大值为﹣2m+10,最小值为﹣2m﹣2,则实数m的取值范围是()A.B.C.D.9.(5分)已知椭圆+=1(a>b>0)的左右焦点为F1,F2,P为椭圆上一点,且|PF1|•|PF2|的最大值的取值范围是,其中c=,则椭圆的离心率的取值范围是()A.B.10.(5分)若G是△ABC的重心,且,则角A=()A.30°B.45°C.60°D.90°11.(5分)某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为()A.B.C.D.312.(5分)已知函数f(x)=,则关于x的方程f(x+﹣2)=a的实根个数不可能为()A.5个B.6个C.7个D.8个二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上. 13.(5分)有4名优秀学生A,B,C,D全部被保送到北京大学,清华大学,复旦大学,每所学校至少去一名,则不同的保送方案共有种.14.(5分)阅读如图所示的程序框图,若输入a的值为二项(+)9展开式的常数项,则输出的k值为.15.(5分)已知矩形A BCD的周长为18,把它沿图中的虚线折成正六棱柱,当这个正六棱柱的体积最大时,它的外接球的表面积为.16.(5分)我们把离心率e=的双曲线称为黄金双曲线.给出以下几个说法:(1)双曲线x2﹣=1是黄金双曲线;(2)若b2=ac,则该双曲线是黄金双曲线;(3)若MN经过右焦点F2且MN⊥F1F2,∠MON=90°,则该双曲线是黄金双曲线;(4)若F1,F2为左右焦点,A1,A2为左右顶点,B1(0,b),B2(0,﹣b)且∠F1B1A2=90°,则该双曲线是黄金双曲线.其中正确命题的序号为.三、解答题:解答应写出文字说明、证明过程或演算步骤.(本大题共5小题,满分58分.)17.(10分)在△ABC中,角A,B,C的对应边分别是a,b,c满足b2+c2=bc+a2.(Ⅰ)求角A的大小;(Ⅱ)已知等差数列{a n}的公差不为零,若a1cosA=1,且a2,a4,a8成等比数列,求{}的前n项和S n.18.(12分)第117届中国进出口商品交易会(简称春季交广会)将于4月15日在广州市举行,为了搞好接待工作,组委会在广州某大学分别招募8名男志愿者和12名女志愿者,现将这20名志愿者的身高组成如下茎叶图(单位:m),若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”.(1)计算男志愿者的平均身高和女志愿者身高的中位数(保留一位小数);(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中为女志愿者的人数,试写出ξ的分布列,并求ξ的数学期望.19.(12分)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.(Ⅰ)求证:AM∥平面PCD;(Ⅱ)设点N是线段CD上一动点,且DN=λDC,当直线MN与平面PAB所成的角最大时,求λ的值.20.(12分)如图,F1,F2为椭圆C:(a>b>0)的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率e=,.若点M(x0,y0)在椭圆C上,则点N (,)称为点M的一个“椭点”.直线l与椭圆交于A,B两点,A,B两点的“椭点”分别为P,Q,已知以PQ为直径的圆经过坐标原点O.(1)求椭圆C的标准方程;(2)△AOB的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.21.(12分)函数f(x)=x2+mln(x+1).(1)若函数f(x)是定义域上的单调函数,求实数m的取值范围;(2)若m=﹣1,试比较当x∈(0,+∞)时,f(x)与x3的大小;(3)证明:对任意的正整数n,不等式e0+e﹣1×4+e﹣2×9+…+e<成立.【选修4-4:坐标系与参数方程】(共1小题,满分12分)22.(12分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=.(1)写出直线l的极坐标方程与曲线C的普通方程;(2)若点P是曲线C上的动点,求P到直线l的距离的最小值,并求出P点的坐标.【选修4-5:不等式选讲】(共1小题,满分0分)23.已知函数f(x)=m﹣|x﹣1|﹣2|x+1|.(Ⅰ)当m=5时,求不等式f(x)>2的解集;(Ⅱ)若二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,求实数m的取值范围.江西省宜春市奉新一中2015届高考数学模拟试卷(理科)参考答案与试题解析一、选择题:(本大题共12个小题,每小题5分,共60分).1.(5分)若集合A={x|x≥0},且A∩B=B,则集合B可能是()A.R B.{1,2} C.{﹣1,0,1} D.{x|x≤1}考点:交集及其运算.专题:集合.分析:根据A,以及A与B的交集为B,得到B中元素大于等于0,即可做出判断.解答:解:∵A={x|x≥0},且A∩B=B,∴B可能为{1,2},故选:B.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)若复数z满足(z﹣3)(2﹣i)=5(i为虚数单位),则z为()A.2﹣i B.2+i C.5﹣i D.5+i考点:复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:直接利用复数的运算法则化简求解即可.解答:解:复数z满足(z﹣3)(2﹣i)=5,则z===5+i.故选:D.点评:本题考查复数的代数形式的混合运算,复数的除法运算,基本知识的考查.3.(5分)已知m∈R,“函数y=2x+m﹣1有零点”是“函数y=log m x在(0,+∞)上为减函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据函数的性质求出m的等价条件,结合充分条件和必要条件的定义进行判断即可.解答:解:若函数y=f(x)=2x+m﹣1有零点,则f(0)=1+m﹣1=m<1,当m≤0时,函数y=log m x在(0,+∞)上为减函数不成立,即充分性不成立,若y=log m x在(0,+∞)上为减函数,则0<m<1,此时函数y=2x+m﹣1有零点成立,即必要性成立,故“函数y=2x+m﹣1有零点”是“函数y=log m x在(0,+∞)上为减函数”的必要不充分条件,故选:B点评:本题主要考查充分条件和必要条件的判断,根据函数零点和对数函数的性质求出等价条件是解决本题的关键.4.(5分)已知数列{a n},{b n}满足b n=log2a n,n∈N*,其中{b n}是等差数列,且a8•a2008=,则b1+b2+b3+…+b2015=()A.l og22015 B.2015 C.﹣2015 D.1008考点:数列的求和.专题:等差数列与等比数列.分析:由于数列{a n},{b n}满足b n=log2a n,n∈N*,其中{b n}是等差数列,可得数列{a n}是等比数列,由等比数列的性质可得a1•a2015=a2•a2014=…=a1007•a1009=a10082=,再利用对数的运算性质即可得出.解答:解:∵数列{a n},{b n}满足b n=log2a n,n∈N*,其中{b n}是等差数列,∴数列{a n}是等比数列,由a8•a2008=,可得a10082=,即a1008=,∴a1•a2015=a2•a2014=…=a1007•a1009=a10082=,∴b1+b2+b3+…+b2015=log2(a1•a2•…•a2015)=log2()2015=﹣2015.故选:C.点评:本题考查了等差数列与等比数列的通项公式及其性质、对数的运算法则,考查了推理能力与计算能力,属于中档题.5.(5分)已知,则下列不等式一定成立的是()A.B.C.l n(a﹣b)>0 D.3a﹣b<1考点:对数值大小的比较.专题:函数的性质及应用.分析:根据题意得出a>b>0;利用指数函数y=与幂函数y=x b的单调性判断A正确,利用作差法判断B错误,利用分类讨论法判断C错误,根据指数函数的性质判断D错误.解答:解:∵y=x是定义域上的减函数,且,∴a>b>0;又∵y=是定义域R上的减函数,∴<;又∵y=x b在(0,+∞)上是增函数,∴<;∴<,A正确;∵﹣=<0,∴<,B错误;当1>a﹣b>0时,ln(a﹣b)>0,当a﹣b≥1时,ln(a﹣b)≤0,∴C错误;∵a﹣b>0,∴3a﹣b>1,D错误.故选:A.点评:本题考查了指数函数与对数函数以及幂函数的图象与性质的应用问题,也考查了作差法与分类讨论思想的应用问题,是基础题目.6.(5分)如图是某工厂对一批新产品长度(单位:mm)检测结果的频率分布直方图.估计这批产品的中位数为()A.20 B.25 C.22.5 D.22.75考点:频率分布直方图.专题:概率与统计.分析:根据频率分布直方图中,中位数的左右两边频率相等,列出等式,求出中位数即可.解答:解:根据频率分布直方图,得;∵0.02×5+0.04×5=0.3<0.5,0.3+0.08×5=0.7>0.5;∴中位数应在20~25内,设中位数为x,则0.3+(x﹣20)×0.08=0.5,解得x=22.5;∴这批产品的中位数是22.5.故选:C.点评:本题考查了利用频率分布直方图求数据的中位数的应用问题,是基础题目.7.(5分)函数f(x)=sin(ωx+φ)(其中|φ|<)的图象如图所示,为了得到y=sinωx的图象,只需把y=f(x)的图象上所有点()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的求值;三角函数的图像与性质.分析:首先根据函数图象求出函数的周期,进一步利用函数经过的点的坐标求出函数的解析式,进一步利用函数的图象变换求出结果.解答:解:根据函数的图象,所以:T=π,,当x=时,函数f()=0,即:f()=sin(2φ)=0.解得:φ=,所以:f(x)=sin(2x+).要得到y=sin2x的图象只需将函数f(x)=sin(2x+)向右平移个单位,即y=sin(2x﹣+)=sin2x.故选:D.点评:本题考查的知识要点:三角函数解析式的求法,函数图象的平移变换问题.8.(5分)已知实数x,y满足,若目标函数z=﹣mx+y的最大值为﹣2m+10,最小值为﹣2m﹣2,则实数m的取值范围是()A.B.C.D.考点:简单线性规划的应用.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,由z=﹣mx+y的最大值为﹣2m+10,即当目标函数经过点(2,10)时,取得最大,当经过点(2,﹣2)时,取得最小值,利用数形结合确定m的取值范围.解答:解:作出不等式组对应的平面区域如图:(阴影部分ABC).由目标函数z=﹣mx+y得y=mx+z,则直线的截距最大,z最大,直线的截距最小,z最小.∵目标函数z=﹣mx+y的最大值为﹣2m+10,最小值为﹣2m﹣2,∴当目标函数经过点(2,10)时,取得最大,当经过点(2,﹣2)时,取得最小值,∴目标函数z=﹣mx+y的目标函数的斜率m满足比x+y=0的斜率大,比2x﹣y+6=0的斜率小,即﹣1≤m≤2,故选:A.点评:本题主要考查线性规划的应用,结合目标函数的几何意义,确定目标函数的斜率是解决本题的关键,利用数形结合的数学思想是解决此类问题的基本方法.9.(5分)已知椭圆+=1(a>b>0)的左右焦点为F1,F2,P为椭圆上一点,且|PF1|•|PF2|的最大值的取值范围是,其中c=,则椭圆的离心率的取值范围是()A.B.考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据题意,|PF1|•|PF2|的最大值为a2,则由题意知2c2≤a2≤3c2,由此能够导出椭圆m 的离心率e的取值范围.解答:解:∵|PF1|+|PF2|=2a∴|PF1|•|PF2|≤a2,∴|PF1|•|PF2|max=a2,∴由题意知2c2≤a2≤3c2,∴c≤a≤c,∴.故椭圆m的离心率e的取值范围.故选:D.点评:本题考查椭圆的方程与性质,确定|PF1|•|PF2|的最大值=a2是正确解题的关键.10.(5分)若G是△ABC的重心,且,则角A=()A.30°B.45°C.60°D.90°考点:向量在几何中的应用.专题:综合题;平面向量及应用.分析:根据重心性质可知:++=,由,知(a﹣c)+(b﹣c)=.因为,不共线,所以a=b=c,由余弦定理可得:cosA=,由此能求出∠A.解答:解:根据重心性质可知:++=,∵,∴(a﹣c)+(b﹣c)=.∵,不共线,∴a=b=c,由余弦定理可得:cosA=,∴A=30°.故选A.点评:本题考查了三角形重心对应的向量条件的应用,即把几何问题转化为向量问题,利用和角的正切公式,属于中档题.11.(5分)某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为()A.B.C.D.3考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A﹣BCDE 的高为1,四边形BCDE是边长为1的正方形,分别计算侧面积,即可得出结论.解答:解:由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A ﹣BCDE的高为1,四边形BCDE是边长为1的正方形,则S△AED==,S△ABC=S△ADE==,S△ACD==,故选:B.点评:本题考查三视图与几何体的关系,几何体的侧面积的求法,考查计算能力.12.(5分)已知函数f(x)=,则关于x的方程f(x+﹣2)=a的实根个数不可能为()A.5个B.6个C.7个D.8个考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:以f(x)=1的特殊情形为突破口,解出x=1或3或或﹣4,将x+﹣2是为整体,利用换元的思想方法进一步讨论,解答:解:因为f(x)=1时,x=1或3或或﹣4,则当a=1时,x+﹣2=1或3或或﹣4,又因为,x+﹣2≥0或≤﹣4,所以当,x+﹣2=﹣4时只有一个x=﹣2与之对应.其它情况都有2个x值与之对应,故此时所求的方程有7个根.当1<a<2时,y=f(x)与y=a有4个交点,故有8个根;当a=2时,y=f(x)与y=a有3个交点,故有6个根;综上:不可能有5个根,故选A.其图象如下图所示:故选:A.点评:本题重点考查了分段函数、函数的零点等知识,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上. 13.(5分)有4名优秀学生A,B,C,D全部被保送到北京大学,清华大学,复旦大学,每所学校至少去一名,则不同的保送方案共有36种.考点:排列、组合及简单计数问题.专题:排列组合.分析:每所学校至少去一名,那就是有两名一定到同一所学校,先选择这两名同学,再排列问题得以解决解答:解:第一步从4名优秀学生选出2个组成复合元素共有C42,在把3个元素(包含一个复合元素)保送到甲、乙、丙3所学校有A33,根据分步计数原理不同保送方案共有C42A33=36种.故答案为:36.点评:本题考查了排列组合的混合问题,先选后排是最最基本的指导思想,属于中档题.14.(5分)阅读如图所示的程序框图,若输入a的值为二项(+)9展开式的常数项,则输出的k值为9.考点:二项式定理.专题:二项式定理.分析:根据二项式的通项公式求得a=,由程序框图可得,S表示+++…+=,再由S=≤,求得k的最大值,可得答案.解答:解:二项(+)9展开式的通项公式为T r+1=•19﹣r•,令=0,求得r=1,可得常数项为a=.而由程序框图可得,S表示+++…+==(1﹣)=,k为正整数.由S=≤,求得k≤9,故答案为:9.点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,程序框图,属于基础题.15.(5分)已知矩形A BCD的周长为18,把它沿图中的虚线折成正六棱柱,当这个正六棱柱的体积最大时,它的外接球的表面积为13π.考点:棱柱、棱锥、棱台的侧面积和表面积.专题:计算题;空间位置关系与距离.分析:正六棱柱的底面边长为x,高为y,则6x+y=9,0<x<1.5,表示正六棱柱的体积,利用基本不等式求最值,求出正六棱柱的外接球的半径,即可求出外接球的表面积.解答:解:设正六棱柱的底面边长为x,高为y,则6x+y=9,0<x<1.5,正六棱柱的体积V==≤=,当且仅当x=1时,等号成立,此时y=3,可知正六棱柱的外接球的球心是其上下底面中心连线的中点,则半径为=,∴外接球的表面积为=13π.故答案为:13π.点评:本题考查外接球的表面积,考查基本不等式的运用,确定正六棱柱的外接球的半径是关键.16.(5分)我们把离心率e=的双曲线称为黄金双曲线.给出以下几个说法:(1)双曲线x2﹣=1是黄金双曲线;(2)若b2=ac,则该双曲线是黄金双曲线;(3)若MN经过右焦点F2且MN⊥F1F2,∠MON=90°,则该双曲线是黄金双曲线;(4)若F1,F2为左右焦点,A1,A2为左右顶点,B1(0,b),B2(0,﹣b)且∠F1B1A2=90°,则该双曲线是黄金双曲线.其中正确命题的序号为(1)(2)(3)(4).考点:命题的真假判断与应用.专题:简易逻辑.分析:(1)利用双曲线的简单性质分别求出离心率,再利用黄金双曲线的定义求解.(2)求出双曲线的定义求出离心率,根据黄金双曲线的定义求解.(3)根据条件求出双曲线的定义求出(2)的结论.(4)根据条件求出离心率求出(2)的结论.解答:解:(1)双曲线x2﹣=1中,∴双曲线x2﹣=1是黄金双曲线,故(1)正确;对于(2)∵e对于(2)b2=ac,则e=∴e2﹣e﹣1=0解得或e=(舍)∴该双曲线是黄金双曲线,故(2)正确;对于(3)如图,MN经过右焦点F2且MN⊥F1F2,∠MON=90°,∴NF2=OF2,∴=c,∴b2=ac,由(2)知该双曲线是黄金双曲线,故(3)正确.对于(4)如图,F1,F2为左右焦点,A1,A2为左右顶点,B1(0,b),B2(0,﹣b),且∠F1B1A2=90°,∴B1F12+B1A22=A2F12,即b2+2c2=(a+c)2,整理,得b2=ac,由(2)知该双曲线是黄金双曲线,故(4)正确;故答案为:(1)(2)(3)(4).点评:本题考查黄金双曲线的判断,是中档题,解题时要认真审题,注意双曲线的性质的灵活运用.三、解答题:解答应写出文字说明、证明过程或演算步骤.(本大题共5小题,满分58分.)17.(10分)在△ABC中,角A,B,C的对应边分别是a,b,c满足b2+c2=bc+a2.(Ⅰ)求角A的大小;(Ⅱ)已知等差数列{a n}的公差不为零,若a1cosA=1,且a2,a4,a8成等比数列,求{}的前n项和S n.考点:数列的求和;等比数列的性质;余弦定理.专题:等差数列与等比数列.分析:(Ⅰ)由已知条件推导出=,所以cosA=,由此能求出A=.(Ⅱ)由已知条件推导出(a1+3d)2=(a1+d)(a1+7d),且d≠0,由此能求出a n=2n,从而得以==,进而能求出{}的前n项和S n.解答:解:(Ⅰ)∵b2+c2﹣a2=bc,∴=,∴cosA=,∵A∈(0,π),∴A=.(Ⅱ)设{a n}的公差为d,∵a1cosA=1,且a2,a4,a8成等比数列,∴a1==2,且=a2•a8,∴(a1+3d)2=(a1+d)(a1+7d),且d≠0,解得d=2,∴a n=2n,∴==,∴S n=(1﹣)+()+()+…+()=1﹣=.点评:本题考查角的大小的求法,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.18.(12分)第117届中国进出口商品交易会(简称春季交广会)将于4月15日在广州市举行,为了搞好接待工作,组委会在广州某大学分别招募8名男志愿者和12名女志愿者,现将这20名志愿者的身高组成如下茎叶图(单位:m),若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”.(1)计算男志愿者的平均身高和女志愿者身高的中位数(保留一位小数);(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中为女志愿者的人数,试写出ξ的分布列,并求ξ的数学期望.考点:离散型随机变量的期望与方差;茎叶图;离散型随机变量及其分布列.专题:概率与统计.分析:(1)根据茎叶图,利用平均数公式和中位数定义能求出男志愿者的平均身高和女志愿者身高的中位数.(2)由茎叶图知“高个子”有8人,“非高个子”有12人,而男志愿者的“高个子”有5人,女志愿者的高个子有3人,从而ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和数学期望.解答:解:(1)根据茎叶图,得:男志愿者的平均身高为:≈176.1(cm),女志愿都身高的中位数为:=168.5(cm).(2)由茎叶图知“高个子”有8人,“非高个子”有12人,而男志愿者的“高个子”有5人,女志愿者的高个子有3人,∴ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ的分布列为:ξ0 1 2 3P∴Eξ==.点评:本题考查平均数、中位数的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.19.(12分)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.(Ⅰ)求证:AM∥平面PCD;(Ⅱ)设点N是线段CD上一动点,且DN=λDC,当直线MN与平面PAB所成的角最大时,求λ的值.考点:直线与平面所成的角;直线与平面平行的判定.专题:综合题;空间位置关系与距离.分析:(Ⅰ)以点A为原点建立如图所示的空间直角坐标系,求出的坐标,再求出平面平面PCD的一个法向量,即可证明AM∥平面PCD;(Ⅱ)利用空间向量求出使直线MN与平面PAB所成的角最大时N的位置即可,得出λ的值.解答:(Ⅰ)证明:以点A为原点建立如图所示的空间直角坐标系,则A(0,0,0),B (0,2,0),C(2,2,0),D(1,0,0),P(0,0,2),M(0,1,1),∴=(0,1,1),=(1,0,﹣2),=(﹣1,﹣2,0)设平面PCD的法向量是=(x,y,z),则令z=1,则x=2,y=﹣1,于是∵,∴,∴AM∥平面PCD …(6分)(Ⅱ)解:由点N是线段CD上的一点,可设又面PAB的法向量为=(1,0,0)设MN与平面PAB所成的角为θ则===∴时,即时,sinθ最大,∴MN与平面PAB所成的角最大时…(13分)点评:本题考查了运用空间向量求证线面的平行关系,考查了利用空间向量求解直线与平面所成角,关键是建立正确的空间直角坐标系,是中档题.20.(12分)如图,F1,F2为椭圆C:(a>b>0)的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率e=,.若点M(x0,y0)在椭圆C上,则点N (,)称为点M的一个“椭点”.直线l与椭圆交于A,B两点,A,B两点的“椭点”分别为P,Q,已知以PQ为直径的圆经过坐标原点O.(1)求椭圆C的标准方程;(2)△AOB的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)由离心率e=,,可得=,(a﹣c)b=1﹣,又a2=b2+c2.联立解得即可.(2)设A(x1,y1),B(x2,y2),则P,Q.由,可得=.(*)设直线l的方程为my+t=x,与椭圆方程联立可得根与系数的关系,代入(*)可得m,t的关系,利用两点间的距离公式可得|AB|,利用点的直线距离公式可得点O到直线AB的距离,利用三角形的面积计算公式即可得出定值.解答:解:(1)∵椭圆C:(a>b>0)的离心率e=,,∴=①,(a﹣c)b=1﹣②,又a2=b2+c2③.由①②③组成方程组,解得a2=4,b2=1.∴椭圆C的标准方程为.(2)设A(x1,y1),B(x2,y2),则P,Q.∵,∴=.(*)设直线l的方程为my+t=x,联立,化为(4+m2)y2+2mty+t2﹣4=0,∵直线l与椭圆相交于两点,∴△=4m2t2﹣4(4+m2)(t2﹣4)>0,化为m2+4>t2.(**)∴,,∴x1x2=(my1+t)(my2+t)=,代入(*)可得.∴,∴,代入(**)知成立.|AB|===.点O到直线AB的距离d=.又S△AOB==1为定值.点评:本题考查了直线与椭圆相交问题转化为方程联立可得根与系数的关系、两点间的距离公式、点的直线距离公式、三角形的面积计算公式、新定义、向量垂直与数量积的关系等基础知识与基本技能方法,考查了推理能力和计算能力,考查了分析问题和解决问题的能力,属于难题.21.(12分)函数f(x)=x2+mln(x+1).(1)若函数f(x)是定义域上的单调函数,求实数m的取值范围;(2)若m=﹣1,试比较当x∈(0,+∞)时,f(x)与x3的大小;(3)证明:对任意的正整数n,不等式e0+e﹣1×4+e﹣2×9+…+e<成立.考点:利用导数研究函数的单调性;不等式的证明.专题:函数的性质及应用;导数的概念及应用.分析:(1)分f′(x)≥0或f′(x)≤0在(﹣1,+∞)上恒成立两种情况;(2)令m=﹣1,通过求导,得g(x)=f(x)﹣x3在(0,+∞)上单调递减,从而得证;(3)由(2)可知x2﹣x3<ln(x+1)(x∈(0,+∞)),变形为(x∈(0,+∞)),相加计算即可.解答:解:(1)根据题意,由=,可知f′(x)≥0或f′(x)≤0在(﹣1,+∞)上恒成立.下面分两种情况讨论:①当f′(x)=≥0在(﹣1,+∞)上恒成立时,有m≥在(﹣1,+∞)上恒成立,故m≥;②当f′(x)=≤0在(﹣1,+∞)上恒成立时,有m≤在(﹣1,+∞)上恒成立.∵在(﹣1,+∞)上没有最小值,∴不存在实数m使f′(x)<0在(﹣1,+∞)上恒成立.综上所述,实数m的取值范围是[);(2)当m=﹣1时,即函数f(x)=x2﹣ln(x+1).令g(x)=f(x)﹣x3=﹣x3+x2﹣ln(x+1),则=,显然,当x∈(0,+∞)时,g′(x)<0,即函数g(x)在(0,+∞)上单调递减,又因为g(0)=0,所以当x∈(0,+∞)时,恒有g(x)<g(0)=0,即f(x)﹣x3<0恒成立,故当x∈(0,+∞)时,有f(x)<x3.(3)由(2)可知x2﹣x3<ln(x+1)(x∈(0,+∞)),所以,即(x∈(0,+∞)),当x取自然数时,有(n∈N*),所以e0+e﹣1×4+e﹣2×9+…+e<(1+1)+(2+1)+(3+1)+…+(n+1)=1×n+1+2+3+4+…+n==.点评:本题考查利用导数研究函数的单调性,以及函数单调区间等有关基础知识,应用导数研究函数单调性的方法及推理和运算能力.【选修4-4:坐标系与参数方程】(共1小题,满分12分)22.(12分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=.(1)写出直线l的极坐标方程与曲线C的普通方程;(2)若点P是曲线C上的动点,求P到直线l的距离的最小值,并求出P点的坐标.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:坐标系和参数方程.分析:本题(1)可以先消参数,求出直线l的普通方程,再利用公式将曲线C的极坐标方程化成平面直角坐标方程,(2)利用点到直线的距离公式,求出P到直线l的距离的最小值,再根据函数取最值的情况求出P点的坐标,得到本题结论.解答:解:(1)∵,∴x﹣y=1.∴直线的极坐标方程为:ρcosθ﹣ρsinθ=1.即,即.∵,∴,∴ρcos2θ=sinθ,∴(ρcosθ)2=ρsinθ即曲线C的普通方程为y=x2.(2)设P(x0,y0),,∴P到直线的距离:.∴当时,,∴此时,∴当P点为时,P到直线的距离最小,最小值为.点评:本题考查了参数方程化为普通方程、极坐标方程化为平面直角坐标方程、点到直线的距离公式,本题难度不大,属于基础题.【选修4-5:不等式选讲】(共1小题,满分0分)23.已知函数f(x)=m﹣|x﹣1|﹣2|x+1|.(Ⅰ)当m=5时,求不等式f(x)>2的解集;(Ⅱ)若二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,求实数m的取值范围.考点:绝对值不等式的解法;二次函数的性质.专题:不等式的解法及应用.分析:(Ⅰ)当m=5时,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(Ⅱ)由二次函数y=x2+2x+3=(x+1)2+2在x=﹣1取得最小值2,f(x)在x=﹣1处取得最大值m﹣2,故有m﹣2≥2,由此求得m的范围.解答:解:(Ⅰ)当m=5时,,由f(x)>2可得①,或②,或③.解①求得﹣<x<﹣1,解②求得﹣1≤x<0,解③求得x∈∅,易得不等式即4﹣3x>2 解集为.(2)由二次函数y=x2+2x+3=(x+1)2+2,该函数在x=﹣1取得最小值2,因为在x=﹣1处取得最大值m﹣2,所以要使二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,只需m﹣2≥2,求得m≥4..点评:本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解;还考查了函数的恒成立问题,体现了转化的数学思想,属于中档题.。