导入_二次函数与一元二次方程
人教版九年级上数学第22章二次函数22.2二次函数与一元二次方程(教案)
3.掌握一元二次方程的多种解法,培养问题解决和数学运算的能力。
4.将二次函数和一元二次方程应用于实际问题,增强数学建模和数学应用的意识。
5.在小组讨论和问题解决过程中,培养合作交流、批判性思维和创新意识。
三、教学难点与重点
1.教学重点
-二次函数与一元二次方程的关系:理解二次函数图像与一元二次方程解的关系,掌握二次函数标准形式及其图像特征。
-举例:求解x²-5x+6=0,展示不同解法并比较各自优劣。
-实际问题中的应用:学会将实际问题抽象为二次函数与一元二次方程模型,解决最值、交点等问题。
-举例:抛物线与直线的交点问题在实际情境中的应用,如物体抛掷的最高点问题。
2.教学难点
-图像与方程关系的理解:学生往往难以将二次函数图像与一元二次方程的解直观地联系起来。
在实践活动中,学生们的分组讨论进行得相当积极。他们能够将所学的理论知识应用到解决实际问题中去,这让我感到很欣慰。然而,我也观察到,在将实际问题抽象为数学模型的过程中,一些学生仍然感到困难。这告诉我,需要在后续的教学中加强对数学建模能力的培养。
在小组讨论环节,我尝试扮演了一个引导者和启发者的角色,鼓励学生们提出自己的观点和问题。我注意到,当他们被鼓励去探索和发现时,他们的思考变得更加深入。不过,我也发现时间管理上存在一些问题,有时候讨论可能会拖沓,影响到了课堂的整体进度。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数与一元二次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
二次函数与一元二次方程,不等式教案
二次函数与一元二次方程,不等式教案
一、教学内容:
二次函数与一元二次方程及不等式的概念、特征及应用
二、教学目标:
1、掌握二次函数的定义及一般式形式;
2、掌握一元二次方程的定义及解法;
3、掌握不等式的定义及解法;
4、能够应用一元二次方程和不等式解决实际问题;
三、教学重点:
1、引出二次函数的概念,掌握一般式形式;
2、了解一元二次方程的定义,熟练掌握解题步骤;
3、理解不等式的定义和解题步骤;
4、熟练运用一元二次方程和不等式解决实际问题;
四、教学过程:
Step1. 问题引入
1. 用图像说明二次函数的特点
2. 提出求抛物线顶点坐标的问题,引出一元二次方程 Step2. 探究解题思路
1. 引入一元二次方程的概念,介绍其一般式形式和解法
2. 通过案例让学生掌握解一元二次方程的步骤
Step3. 深入学习
1. 引入不等式的概念,介绍其定义及解答
2. 通过案例让学生熟练掌握不等式的解法
Step4. 应用与练习
1. 通过实际问题让学生熟练掌握二次函数与一元二次方程、不等式的概念,特征及应用
2. 通过实际问题让学生熟练掌握求解一元二次方程、不等式的步骤
Step5. 总结
1. 总结一元二次方程及不等式的定义、特征及求解步骤
2. 总结二次函数的定义及特征。
《二次函数与一元二次方程》说课稿
《二次函数与一元二次方程(第1课时)》说课稿一、教材分析《二次函数与一元二次方程》是人教版九年级上册第22章第二节的第1课时的内容。
教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系。
这一节是反映函数与方程这两个重要数学概念之间的联系的内容。
本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。
用函数的观点看方程,可以把方程看成函数值为某个定值时的情况,所以,研究函数与方程的关系是对函数的进一步深化。
学生在一次函数时已经了解了一次函数与一元一次方程、一元一次不等式、二元一次不等式组之间的联系,本章专设一节,通过探讨二次函数与一元二次方程的联系,再次展示函数与方程之间的联系。
这样既深化学生对一元二次方程的认识,又可以运用二次函数解决一元二次方程的相关问题,体现了知识之间的联系。
二、学情分析学生已经学习了一元一次方程和一次函数,一元二次方程,二次函数的图像和性质等知识,对函数与方程的关系已有初步认识。
但是运用函数的思想解决问题的意识还不够,仍习惯于孤立地看待方程与不等式的问题。
本节学习可以帮助学生进一步建立函数与方程的联系,提升用函数思想解决问题的意识和能力。
三、教学目标1.了解一元二次方程的根的几何意义;理解抛物线与横轴的三种位置关系对应一元二次方程的根的三种情况.2.经历探索二次函数与一元二次方程关系的过程,结合图象,进一步体会函数与方程之间的联系。
3.运用函数思想解决问题,体会事物之间的转化,提升思维品质。
四、教学重难点重点:二次函数与一元二次方程的联系,利用函数解决方程的有关问题.难点:将方程问题转化为函数问题,运用函数的思想解决问题。
五、教学策略由一次函数与一元一次方程的关系说起,采用类比的方法研究二次函数与一元二次方程的关系。
以实际问题为情境从数与形两个角度理解函数与方程之间的联系。
人教版数学九年级上册教学设计22.2《二次函数与一元二次方程》
人教版数学九年级上册教学设计22.2《二次函数与一元二次方程》一. 教材分析人教版数学九年级上册第22.2节《二次函数与一元二次方程》是本册教材的重要内容,主要介绍了二次函数与一元二次方程之间的关系。
通过本节课的学习,学生能够理解二次函数的图像与一元二次方程的解法,从而更好地解决实际问题。
二. 学情分析九年级的学生已经学习了函数和方程的基础知识,对于函数的概念、图像和性质有一定的了解。
但是,对于二次函数与一元二次方程之间的联系,以及如何运用二次函数的性质解决实际问题,学生可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生理解二次函数与一元二次方程之间的关系,并通过实例演示如何运用二次函数解决实际问题。
三. 教学目标1.理解二次函数的图像与一元二次方程的解法之间的关系。
2.学会运用二次函数的性质解决实际问题。
3.提高学生的数学思维能力和解决问题的能力。
四. 教学重难点1.二次函数的图像与一元二次方程的解法之间的关系。
2.如何运用二次函数的性质解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探索、发现、总结二次函数与一元二次方程之间的关系。
2.运用多媒体课件辅助教学,直观展示二次函数的图像和一元二次方程的解法,帮助学生更好地理解知识点。
3.结合实际例子,让学生亲自动手操作,运用二次函数解决实际问题。
4.采用小组讨论、合作交流的方式,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的多媒体课件和教学素材。
2.准备一些实际问题,用于让学生运用二次函数解决。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何运用数学知识解决实际问题。
例如,假设一个物体从静止开始做匀加速直线运动,已知初速度为0,加速度为2m/s²,求物体运动5秒后的位移。
2.呈现(10分钟)呈现二次函数y=ax²+bx+c的图像,同时呈现相应的一元二次方程ax²+bx+c=0的解法。
22_2二次函数与一元二次方程(教案)
22.2 二次函数与一元二次方程【知识与技能】理解二次函数与一元二次方程之间的联系,掌握二次函数图象与x轴的位置关系可由对应的一元二次方程的根的判别式实行判别,理解用图象法确定一元二次方程的近似解的方法.【过程与方法】通过对实际问题情境的思考感受二次函数与对应的一元二次方程的联系,体会用函数的观点看一元二次方程的思想方法.【情感态度】进一步增强学生的数形结合思想方法,增强学生的综合解题水平.【教学重点】二次函数y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0之间的联系,利用二次函数的图象求一元二次方程的近似解.【教学难点】一元二次方程根的情况与二次函数图象与x轴位置关系的联系.一、情境导入,初步理解问题如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.假设不考虑空气阻力,球的飞行高度h(m)与飞行时间t(s)之间具相关系:h=20t-5t2.考虑以下问题:(1)球的飞行高度能否达到15m?如能,需要飞行多长时间?(2)球的飞行高度能否达到20m?如能,需要飞行多长时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?【教学说明】教师可通过教材的引例,引用其递进式的问题链,让学生在相互交流过程中,自不过然地感受到引用方程思想来解决函数问题的思想方法.教师巡视,即时释疑解惑,并尽量予以肯定和鼓励,激发学生的学习兴趣.二、思考探究,获取新知通过对上述问题的思考,能够看出二次函数与一元二次方程之间存有着密切联系.例如,已知二次函数y=-x2+4x的值为3,求自变量x的值,能够看作解一元二次方程-x2+4x=3;反过来,解方程x2-4x+3=0又能够看作已知二次函数y=x2-4x+3的值为0,求自变量x的值.问题1画出函数y=x2-4x+3的图象,根据图象回答以下问题:(1)图象与x轴交点的坐标是什么?(2)当x取何值时,y=0?这里x的取值与方程x2-4x+3=0有什么关系?(3)你能从中得到什么启示?问题2以下函数的图象与x轴有公共点吗?假设有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此,你能得出相对应的一元二次方程的根吗?(1)y=x2+x-2; (2)y=x2-6x+9; (3)y=x2-x+1.问题3一般地,二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?【教学说明】让学生在合作交流过程中完成问题1,2,并对问题3形成一个初步理解,达到从感性理解到理性思考的飞跃,从而理解新知.教师应巡视,对学生的交流成果给予积极评价,最后教师应在黑板上实行归纳总结.【归纳结论】一般地,从二次函数y=ax2+bx+c的图象可知:(1)假设抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标为x0.那么当x=x0时,函数的值为0,所以x=x0就是方程ax2+bx+c=0的一个根;(2)二次函数y=ax2+bx+c的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程ax2+bx+c=0的根的三种情况:没有实数根,有两个相等的实数根,有两个不相等的实数根.所以可通过方程的根的判别式Δ<0,Δ=0和Δ>0来判别抛物线与x轴的交点的个数(Δ=b2-4ac,其中a、b、c为抛物线表达式中二次项系数,一次项系数和常数项).【试一试】1.若抛物线y=x2-mx+1与x轴没有公共点,则m的取值范围是.2.求证:抛物线y=x2+ax+a-2与x轴总有两个交点.【教学说明】让学生分组完成两个小题,使他们能体验成功的喜悦,对尚有困难的学生,应给予指导.三、使用新知,深化理解1.画出函数y=x2-2x-3的图象,利用图象回答:(1)方程x2-2x-3=0的解是什么?(2)x取什么值时,函数值大于0?(3)x取什么值时,函数值小于0?2.利用函数图象求方程x2-2x-2=0的实数解.【教学说明】题1可让学生自主完成,教师予以巡视,并作指导;题2的处理建议师生共同完成,这里涉及到逼近求值思想,应作为指导.评讲此题的目的是让学生能进一步体验函数与方程的密切联系,但不要求学生掌握,只要理解即可.【答案】1.图象如下列图:(1)当x1=3,x2=-1.(2)当x<-1或x>3时函数值大于0.(3)当-1<x<3时,函数值小于0.2.解:作y=x2-2x-2的图象,它与x轴的公共点的横坐标大约是-0.7,2.7.所以方程x2-2x-2=0的实数根为x1≈-0.7,x2≈2.7.我们还能够通过持续缩小根所在的范围估计一元二次方程的根:观察函数y=x2-2x-2的图象能够发现,当自变量为2时的函数值小于0(点(2,-2)在x轴的下方),当自变量为3时的函数值大于0(点(3,1)在x轴的上方),因为抛物线y=x2-2x-2是一条连续持续的曲线,所以抛物线y=x2-2x-2在2<x<3这个段经过x轴,也就是说当自变量取2,3之间的某个值时,函数的值为0,即方程x2-2x-2=0在2,3之间有根.我们可通过取平均数的方法持续缩小根所在的范围.例如,取2,3的平均数2.5,用计算器算得自变量为2.5时的函数值为-0.75,与自变量为3时的函数值异号,所以这个根在2.5,3之间.再取2.5,3的平均数2.75,用计算器算得自变量为2.75时的函数值为0.0625,与自变量为2.5时的函数值异号,所以这个根在2.5,2.75之间.重复上述步骤,我们逐步得到:这个根在2.625,2.75之间,在2.6875,2.75之间……能够看到:根所在的范围越来越小,根所在范围的两端的值越来越接近根的值,因而能够作为根的近似值.例如,当要求根的近似值与根的准确值的差的绝对值小于0.1时,因为|2.6875-2.75|=0.0625<0.1,我们能够将2.6875作为根的近似值.四、师生互动,课堂小结1.抛物线y=ax2+bx+c与一元二次方程ax2+bx+c=0有何关联?你能不画出抛物线y=ax2+bx+c而理解此抛物线与x轴的交点情况吗?你是怎样做的?2.你能利用抛物线来确定相对应的方程的根的近似值吗?从中你有哪些体会?1.布置作业:教材习题22.2第1、2、3、4、6题.2.完成创优作业中本课时练习的“课时作业”部分.本课时教学首先通过具体情况让学生感受用方程思想方法来解决函数问题的思路,然后通过图象来探究一元二次方程的根和二次函数与x轴交点之间的关联.这样整个教学过程充分利用了学生已形成的方程、函数间的关系来类比引导挖掘、探索二次函数与一元二次方程的关系.此外,通过观察图象直观理解、解答练习以及实际观察分析都是必经的途径与方法,重在让学生自主体会.。
高中数学必修一 (教案)二次函数与一元二次方程、不等式
二次函数与一元二次方程、不等式【教材分析】三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。
【教学目标】课程目标1.通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。
2.使学生能够运用二次函数及其图像,性质解决实际问题。
3.渗透数形结合思想,进一步培养学生综合解题能力。
数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。
【教学重难点】重点:一元二次函数与一元二次方程的关系,利用二次函数图像求一元二次方程的实数根和不等式的解集;难点:一元二次方程根的情况与二次函数图像与x轴位置关系的联系,数形结合思想的运用。
【教学准备】【教学方法】以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
【教学过程】一、情景导入在初中,我们从一次函数的角度看一元一次方程、一元一次不等式,发现了三者之间的内在联系,利用这种联系可以更好地解决相关问题。
类似地,能否从二次函数的观点看一元二次方程和一元二次不等式,进而得到一元二次不等式的求解方法呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察。
研探。
二、预习课本,引入新课阅读课本,思考并完成以下问题1.二次函数与一元二次方程、不等式的解的对应关系。
2.解一元二次不等方的步骤?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.一元二次不等式与相应的一元二次函数及一元二次方程的关系如下表:判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y=ax 2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2没有实数根ax2+bx+c>0(a>0)的解集{x|x>x2或x<x1}{x|x≠−2ba}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅ab2-=2.一元二次不等式ax2+bx+c>0(a>0)的求解的算法。
初中数学《二次函数与一元二次方程》教案
教学设计如图,是二次函数y=ax2+bx+c图象的一部分,你能通过观察图象得到一元二次方程ax2+bx+c=0的解集吗?不等式ax2+bx+c<0的解集呢?探究点一:二次函数与一元二次方程 【类型一】二次函数图象与x 轴交点情况判断下列函数的图象与x 只有一个交点的是( )A .y =x 2+2x -3B .y =x 2+2x +3C .y =x 2-2x +3D .y =x 2-2x +1解析:选项A 中b 2-4ac =22-4×1×(-3)=16>0,选项B 中b 2-4ac =22-4×1×3=-8<0,选项C 中b 2-4ac =(-2)2-4×1×3=-8<0,选项D 中b 2-4ac =(-2)2-4×1×1=0,所以选项D 的函数图象与x 轴只有一个交点,故选D.【类型二】利用二次函数图象与x 轴交点坐标确定抛物线的对称轴如图,对称轴平行于y 轴的抛物线与x 轴交于(1,0),(3,0)两点,则它的对称轴为________.解析:∵点(1,0)与(3,0)是一对对称点,其对称中心是(2,0),∴对称轴的方程是x =2.方法总结:解答二次函数问题,若能利用抛物线的对称性,则可以简化计算过程.【类型三】利用函数图象与x 轴交点情况确定字母取值范围若函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点,那么m 的值为( )A .0B .0或2C .2或-2D .0,2或-2解析:若m ≠0,二次函数与x 轴只有一个交点,则可根据一元二次方程的根的判别式为零来求解;若m =0,原函数是一次函数,图象与x 轴也有一个交点.由(m +2)2-4m (12m +1)=0,解得m =2或-2,当m =0时原函数是一次函数,图象与x 轴有一个交点,所以当m =0,2或-2时,图象与x 轴只有一个交点.方法总结:二次函数y =ax 2+bx +c ,当b 2-4ac >0时,图象与x 轴有两个交点;当b 2-4ac =0时,图象与x 轴有一个交点;当b 2-4ac <0时,图象与x 轴没有交点.探究点二:二次函数y=ax2+bx+c中的不等关系【类型一】利用抛物线解一元二次不等式抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c >0的解集是( )A.x<2B.x>-3C.-3<x<1D.x<-3或x>1【类型二】确定抛物线相应位置的自变量的取值范围二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x 的取值范围是( )A.x<-1B.x>3C.-1<x<3D.x<-1或x>3解析:根据图象可知抛物线与x轴的一个交点为(-1,0)且其对称轴为x=1,则抛物线与x轴的另一个交点为(3,0).当y>0时,函数的图象在x轴的上方,由左边一段图象可知x<-1,由右边一段图象可知x>3.因此,x<-1或x>3.故选D.方法总结:利用数形结合思想来求解,抛物线与x轴的交点坐标是解题的关键.。
二次函数与一元二次方程教案
二次函数与一元二次方程教案教案标题:探索二次函数与一元二次方程教案目标:1. 了解二次函数与一元二次方程的定义和基本性质;2. 掌握解一元二次方程的方法;3. 掌握二次函数的图像特征和性质;4. 能够应用二次函数和一元二次方程解决实际问题。
教案步骤:一、引入(5分钟)1. 利用实例引出学生对于二次函数和一元二次方程的初步认识。
2. 引导学生思考二次函数与一元二次方程的联系,并提出学习的目标。
二、理论讲解(15分钟)1. 介绍二次函数的定义和一般形式,解释二次函数图像的特征。
2. 讲解一元二次方程的定义和一般形式,介绍解一元二次方程的方法。
三、解题演练(20分钟)1. 给学生提供一些简单的一元二次方程,引导学生运用所学方法解题。
2. 给学生提供一些简单的二次函数图像,要求学生根据图像特征写出函数的表达式。
四、拓展应用(15分钟)1. 提供一些实际问题,引导学生将问题转化为一元二次方程,并解答问题。
2. 提供一些实际问题,引导学生根据问题描述绘制对应的二次函数图像,并分析解决问题的方法。
五、总结归纳(10分钟)1. 学生总结二次函数与一元二次方程的基本性质和解题方法。
2. 教师对本节课的重点内容进行总结,并强调学生在课后的复习重点。
六、作业布置(5分钟)1. 布置一些练习题,要求学生巩固所学的知识和解题方法。
2. 鼓励学生积极思考,提出问题并准备下节课的讨论。
教案评估:1. 课堂参与度:观察学生在课堂上的积极参与程度;2. 练习题表现:检查学生对于二次函数和一元二次方程的掌握情况;3. 实际问题解决能力:评估学生运用所学知识解决实际问题的能力。
教案扩展:1. 可以引入二次函数的最值问题,进一步拓展学生对于二次函数的理解;2. 可以引入一元二次方程的根与系数之间的关系,加深学生对于一元二次方程的理解。
教案注意事项:1. 确保学生已经掌握一元一次方程的解法和基本概念,为学习二次函数和一元二次方程打下基础;2. 鼓励学生多做练习,加深对于二次函数和一元二次方程的理解;3. 教师要及时给予学生反馈,帮助他们纠正错误和提高解题能力。
高中数学教案《二次函数与一元二次方程、不等式》
教学计划:《二次函数与一元二次方程、不等式》一、教学目标1、知识与技能:学生能够理解并掌握二次函数、一元二次方程及一元二次不等式的概念、性质及其相互关系;能够熟练求解一元二次方程和一元二次不等式,并能根据二次函数的图像判断不等式的解集。
2、过程与方法:通过案例分析、图形辅助、探究学习等方法,培养学生的观察、分析和解决问题的能力;通过小组合作、讨论交流,提升学生的协作学习能力和语言表达能力。
3、情感态度与价值观:激发学生对数学学习的兴趣,培养探索数学规律的精神和严谨的科学态度;通过解决实际问题,让学生感受到数学在现实生活中的应用价值。
二、教学重点和难点重点:一元二次方程的求解方法(公式法、因式分解法、配方法);一元二次不等式的解法及与二次函数图像的关系;二次函数的性质(开口方向、顶点、对称轴)。
难点:一元二次不等式解法中根据判别式判断解的存在性;将一元二次不等式转化为二次函数图像下的区域问题;灵活运用二次函数的性质解决实际问题。
三、教学过程1. 导入新课(5分钟)生活实例引入:以医院中病人的病情随时间变化的例子(如体温变化、药物浓度变化),引导学生思考这些变化可能呈现出的二次函数形态,从而引出二次函数的概念。
提出问题:当病情达到某个临界点时(如体温过高或过低),医生需要采取相应措施。
这实际上涉及到一元二次方程和不等式的求解问题。
明确目标:介绍本节课将要学习的内容,即二次函数与一元二次方程、不等式的相互关系及其求解方法。
2. 讲解新知(20分钟)二次函数概念:回顾一次函数的概念,通过类比引出二次函数的一般形式及其图像特征(开口方向、顶点、对称轴)。
一元二次方程求解:详细介绍一元二次方程的三种求解方法(公式法、因式分解法、配方法),并通过实例演示每种方法的应用。
一元二次不等式:结合二次函数图像,讲解一元二次不等式的解法及其与函数图像的关系。
强调根据判别式判断不等式的解集情况,并引导学生掌握将不等式转化为图像下区域问题的方法。
二次函数与一元二次方程、不等式 教学设计
2.2.1 二次函数与一元二次方程、不等式(第1课时)教材分析本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第二章第3节《二次函数与一元二次方程、不等式》第1课时。
从内容上看它是我们初中学过的一元一次不等式的延伸,同时它也与一元二次方程、二次函数之间联系紧密,涉及的知识面较多。
从思想层面看,本节课突出体现了数形结合思想。
同时一元二次不等式是解决函数定义域、值域等问题的重要工具,因此本节课在整个中学数学中具有较重要的地位和作用。
学情分析学生在初中已经学习了一元一次不等式、一元二次方程和二次函数的相关知识,对不等式的性质有了初步了解,但因我校学生基础普遍较差,逻辑推理和抽象思维能力仍需提高,还需依赖具体形象的内容理解抽象的逻辑关系。
教学目的1. 理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;2. 经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;3.培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。
教学重点一元二次不等式的解法教学难点理解一元二次方程、一元二次不等式及二次函数三者之间的关系教学过程一、情境导入问题园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24m,围成的矩形区域的面积要大于20m2,则这个矩形的边长为多少米?设这个矩形的一条边长为xm,则另一条边长为(12-x)m.由题意,得:(12-x)x>20(0<x<12)整理得x2-12x+20<0(0<x<12)。
①求得不等式①的解集,就得到了问题的答案。
思考:类比一元一次不等式,这个不等式有什么特点?能否给这类不等式起个名字,并写出它的一般形式?由此导出课题。
一元二次不等式的定义:一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一元二次不等式的一般形式是ax2+bx+c>0 或ax2+bx+c<0 ,其中a,b,c均为常数,a≠0.思考:为什么要规定a≠0?二、探索新知探究1:回顾一次函数与一元一次方程、不等式的关系请学生画出一次函数y=2x-6的图象,并回答下列问题:1.函数y=2x-6与x轴的交点为;2.方程2x-6=0的根为;3.不等式2x-6>0的解为;4.不等式2x-6<0的解为;师生完成上述问题后小结:三个“一次”的关系。
二次函数与一元二次方程教案
二次函数与一元二次方程教案一、教学目标1.了解二次函数的概念及其图像特征;2.掌握求解一元二次方程的方法;3.培养学生的数学思维能力和解决实际问题的能力。
二、教学重点1.二次函数的概念及其图像特征;2.一元二次方程的求解方法。
三、教学难点1.理解二次函数的图像特征;2.掌握一元二次方程的求解方法。
四、教学过程1.导入新课通过例子引入二次函数的概念。
例如,以小明向上抛掷物体为例,让学生思考物体的运动轨迹是什么样的。
引导学生发现物体的运动轨迹是抛物线形状的,然后向学生提问:你们认为这个抛物线的形状可以用数学函数来表示吗?2.学习二次函数的概念及其图像特征(1)引导学生观察二次函数的图像特征,即开口方向、顶点坐标、对称轴等。
(2)通过给出一元二次方程的一些实例让学生归纳和总结出二次函数的一般形式y=ax^2+bx+c,并解释其中的含义。
(3)通过练习题巩固学生对二次函数的了解。
3.一元二次方程的求解(1)介绍一元二次方程的一般形式:ax^2+bx+c=0,其中a、b、c是已知的实数,且a≠0。
(2)通过实例引导学生掌握用配方法求解一元二次方程的方法。
(3)再通过实例引导学生掌握用公式法求解一元二次方程的方法。
(4)通过练习题巩固学生对一元二次方程求解的方法。
4.拓展应用通过一些实际问题,例如求抛物线与坐标轴的交点、求最值等问题,让学生应用所学的知识解决问题。
五、课堂小结总结本节课学到的知识要点,强调二次函数与一元二次方程的联系与应用。
六、作业布置布置课后作业,巩固所学知识。
七、板书设计二次函数与一元二次方程教学大纲八、教学反思本节课通过引入实际问题,让学生从直观上感受到二次函数的概念及其图像特征。
通过实例让学生掌握一元二次方程的求解方法,并拓展了应用环节,培养了学生的应用能力。
但在课堂上需要更多的时间让学生思考和发现,提高他们的参与度。
北师大版九年级下册2.5二次函数与一元二次方程(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数与一元二次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-举例:抛物线形状的物体运动轨迹问题,通过建立二次函数模型,利用顶点式确定物体的最高点或最低点。
2.教学难点
-理解二次函数图像与一元二次方程根的对应关系:对于初学者来说,图像与方程之间的抽象关系较难理解。
-突破方法:通过图形演示和实际操作,如绘制函数图像,让学生观察和总结图像与方程根的关系。
-二次函数顶点式的推导和运用:顶点式的推导涉及代数变换,学生可能会在此过程中感到困惑。
5.激发数学探究精神:引导学生主动探究二次函数与一元二次方程的内在联系,培养学生勇于探索、积极创新的数学精神。
三、教学难点与重点
1.教学重点
-理解二次函数与一元二次方程之间的关系:重点讲解二次函数图像上点的坐标特征与一元二次方程根之间的联系,强调图像的几何意义。
-举例:通过具体函数y = ax^2 + bx + c的图像,说明当y = 0时,方程ax^2 + bx + c = 0的解即为图像与x轴交点的横坐标。
-掌握二次函数顶点式的形式及其推导过程:让学生掌握二次函数y = a(x - h)^2 + k的顶点坐标(h, k)和开口方向与系数a的关系。
-举例:通过变换一般式y = ax^2 + bx + c到顶点式,展示顶点的求解方法,并解释顶点在图像上的位置和意义。
《二次函数与一元二次方程》优秀教案
二次函数与一元二次方程导学案1一、学习目标:1、经历探索二次函数与一元二次方程关系的过程,体会方程与函数之间的关系。
2、理解二次函数的图象与轴公共点的个数和相应的一元二次方程根的对应关 系。
3、进一步体验数形结合的数学方法。
4、重点:二次函数的图象与轴公共点的个数和相应的一元二次方程根的对应 关系。
5、难点:二次函数与一元二次方程关系的应用。
二、知识准备:1、一元二次方程的一般形式:2、怎样判断一元二次方程根的情况?当Δ=ac b 42->0时,一元二次方程a 2bc=0的根的情况是 。
当Δ=ac b 42-=0时,一元二次方程a 2bc=0的根的情况是 。
当Δ=ac b 4-<0时,一元二次方程a 2bc=0的根的情况是 。
思考:当Δ= ≥0时,一元二次方程a 2bc=0有实根。
3、二次函数的一般形式:4怎样求二次函数=a 2bc 与轴的交点坐标?如: =2-2-3三、学习过程: (一)、思考与探索:二次函数=2-2-3与一元二次方程2-2-3=0有怎样的关系?1、从关系式看二次函数=2-2-3成为一元二次方程2-2-3=0的条件是什么?2、反应在图象上:观察二次函数=2-2-3的图象,你能确定一元二次方程2-2-3=0的根吗?3、结论:二次函数=2-2-3的图象与轴有两个公共点 ,那么一元二次方程2-2-3=0有两个不相等的实数根。
(二)思考与探索:(1)观察函数= 2-69与= 2-23的图象与轴的公共点的个数。
(2)判断一元二次方程2-69=0和2-23=0的根的情况。
(3)你能利用图象解释一元二次方程的根的不同情况吗?(三)、归纳提高:一般地,二次函数=a2bc图象与一元二次方程a2bc=0的根有如下关系:1、如果二次函数=a2bc图象与轴有两个交点(m,0)、n,0,那么一元二次方程a2bc=0有实数根1= ,2= 。
2、如果二次函数=a2bc图象与轴有一个交点(m,0),那么一元二次方程a2bc=0有实数根1=2= 。
北师大版九年级数学下册:2.5《二次函数与一元二次方程》教学设计
北师大版九年级数学下册:2.5《二次函数与一元二次方程》教学设计一. 教材分析《二次函数与一元二次方程》是北师大版九年级数学下册第2.5节的内容。
这部分内容是在学生已经掌握了二次函数的图像和性质的基础上进行学习的,主要让学生了解二次函数与一元二次方程之间的关系,以及如何利用二次函数的性质来解决一元二次方程的问题。
教材中安排了丰富的例题和练习题,有助于学生巩固所学知识。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于二次函数的图像和性质有一定的了解。
但是,对于如何将二次函数与一元二次方程联系起来,以及如何运用二次函数的性质来解决实际问题,部分学生可能还存在一定的困惑。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行引导和讲解。
三. 教学目标1.理解二次函数与一元二次方程之间的关系。
2.学会利用二次函数的性质来解决一元二次方程的问题。
3.提高学生的数学思维能力和解决问题的能力。
四. 教学重难点1.二次函数与一元二次方程之间的关系。
2.如何利用二次函数的性质来解决一元二次方程的问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究二次函数与一元二次方程之间的关系。
2.通过例题和练习题,让学生在实践中掌握利用二次函数的性质解决一元二次方程的方法。
3.采用分组讨论和合作交流的方式,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备相关的练习题和答案。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,例如:“某商品的原价为200元,商家进行打折促销,折扣率为x(0≤x≤1),求打折后的价格。
”让学生思考如何用数学模型来表示这个问题。
2.呈现(10分钟)呈现二次函数的一般形式:y=ax^2+bx+c(a≠0),并引导学生回顾二次函数的图像和性质。
3.操练(10分钟)让学生尝试将实际问题转化为二次函数模型,并利用二次函数的性质来解决问题。
二次函数与一元二次方程教学设计方案
二次函数与一元二次方程教学设计方案教学目标:1. 理解二次函数的定义和性质;2. 掌握一元二次方程的求解方法;3. 能够应用二次函数和一元二次方程解决实际问题。
教学内容:1. 二次函数的定义和性质;2. 一元二次方程的基本形式和解的判别式;3. 使用二次函数和一元二次方程解决实际问题。
教学步骤:步骤一:导入新知识通过展示一张二次函数的图像,引发学生对二次函数的认识和兴趣,让学生观察并总结二次函数的特点。
步骤二:讲解二次函数的定义和性质1. 提供二次函数的定义:f(x) = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。
2. 讲解二次函数的图像特点:开口方向、顶点坐标、对称轴和单调性等。
步骤三:通过例题巩固二次函数的理解提供一些简单的例题让学生在教师的引导下计算二次函数的相关信息,并画出其图像。
步骤四:讲解一元二次方程的基本形式和解的判别式1. 提供一元二次方程的基本形式:ax^2 + bx + c = 0。
2. 讲解一元二次方程解的判别式:b^2 - 4ac,讨论不同判别式对应的解的情况。
步骤五:通过例题巩固一元二次方程的求解方法提供一些简单的一元二次方程,引导学生通过配方、因式分解或求解判别式来求解方程。
步骤六:应用二次函数和一元二次方程解决实际问题提供一些实际问题,引导学生将问题转化为二次函数或一元二次方程,然后利用所学知识解决问题。
步骤七:总结与小结请学生总结二次函数和一元二次方程的定义、性质和求解方法,检查学生对教学内容的掌握情况。
教学方法:1. 归纳法:通过展示二次函数的图像,引导学生观察总结二次函数的特点;2. 讲解法:通过对二次函数和一元二次方程的定义和性质进行讲解,帮助学生建立基本概念和解题方法;3. 实例演练法:通过例题引导学生练习计算和解题。
教具准备:1. 教师准备二次函数的图像和实际问题的例题;2. 学生准备纸笔,用于计算和画图。
评价方式:1. 学生课堂表现评价:包括学生对二次函数和一元二次方程的理解、计算和解题的准确性;2. 学生实践能力评价:通过实际问题的解答来评价学生的应用能力。
北师大版九年级数学下册:2.5《二次函数与一元二次方程》说课稿1
北师大版九年级数学下册:2.5《二次函数与一元二次方程》说课稿1一. 教材分析北师大版九年级数学下册2.5《二次函数与一元二次方程》这一节主要介绍了二次函数与一元二次方程之间的关系。
通过学习,学生能够理解二次函数的图像与一元二次方程的解法,以及如何将一元二次方程转化为二次函数的问题。
教材通过具体的例子和练习题,帮助学生掌握这一知识点。
二. 学情分析九年级的学生已经学习过一次函数和二次函数的基本概念,对函数的图像和解法有一定的了解。
然而,对于二次函数与一元二次方程之间的联系,他们可能还不太清楚。
因此,在教学过程中,我需要通过具体的例子和练习题,帮助学生理解和掌握这一知识点。
三. 说教学目标1.知识与技能目标:学生能够理解二次函数与一元二次方程之间的关系,能够将一元二次方程转化为二次函数的问题,并能够运用二次函数的知识解决实际问题。
2.过程与方法目标:通过观察、分析和解决实际问题,学生能够培养自己的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与课堂讨论,培养自己的合作意识和团队精神,增强对数学学习的兴趣和自信心。
四. 说教学重难点1.教学重点:学生能够理解二次函数与一元二次方程之间的关系,能够将一元二次方程转化为二次函数的问题,并能够运用二次函数的知识解决实际问题。
2.教学难点:学生能够理解二次函数的图像与一元二次方程的解法之间的联系,能够运用二次函数的知识解决实际问题。
五. 说教学方法与手段在教学过程中,我将采用讲授法、引导发现法、讨论法和练习法等教学方法。
同时,我还将利用多媒体课件和黑板等教学手段,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过一个实际问题,引出二次函数与一元二次方程之间的关系,激发学生的兴趣和好奇心。
2.讲解:通过讲解和示例,引导学生理解和掌握二次函数与一元二次方程之间的关系,以及如何将一元二次方程转化为二次函数的问题。
3.练习:通过课堂练习和小组讨论,巩固学生对二次函数与一元二次方程之间关系的理解,培养学生的思考能力和解决问题的能力。
(完整)《二次函数与一元二次方程》说课稿
《〈二次函数与一元二次方程〉第一课时》说课稿付家堰中小学刘家付各位领导、专家:大家好!我今天的说课内容是人教版九年级上册第22章第二节《二次函数与一元二次方程》的第一课时的教学内容,现就我对本节课的教学安排和教学思路向各位领导和专家汇报如下:一、教材分析本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。
教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系.这一节是反映函数与方程这两个重要数学概念之间的联系的内容。
二、学情分析1、知识掌握上,学生对二次函数的图象及其性质和一元二次方程的解的情况都有所了解,特别的,八年级时学生已经了解到了一次函数和一元一次方程的解之间的关系,因而,对于本节所要学习的二次函数与一元二次方程之间的关系利用类比的方法让学生在自学的基础上进行交流合作学习应该不是难题。
2、学生学习本节课的知识障碍就是建立二次函数与一元二次方程之间的联系,渗透数形结合的思想。
3、心理上,老师应抓住一元二次方程的求解方法很多,在学习了因式分解法、配方法、求根公式法等的基础上,激发学生对一元二次方程的其它解法的探求兴趣,进而由一次函数与一元一次方程的关系类比到二次函数的图象与一元二次方程的根的情况上来,顺着学生的思维逐步引导加以激发。
三、教学目标根据新课标的要求及九年级学生的认知水平特制定本节课的教学目标如下:知识与技能:掌握二次函数与一元二次方程的联系.过程与方法:经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
情感、态度与价值观:1、经历探索二次函数与一元二次方程的关系的过程,提高学生的分析能力与在探索过程中抽象概括能力.2、培养学生团结合作学习的良好意识和积极进取的精神。
3、培养学生用联系的观点看问题。
四、教学重难点重点:二次函数的图象和一元二次方程的联系.难点:培养学生的数形结合的意识和学会用数形结合的方法解决问题。
二次函数与一元二次方程、不等式(第一课时)示范教学方案
《2.3 二次函数与一元二次方程、不等式(第一课时)》教学设计◆教学目标1.经历从实际情境中抽象出一元二次不等式模型的过程,了解一元二次不等式的现实意义,提升数学抽象素养;2.能用二次函数的观点,看一元二次方程和一元二次不等式,并能求解二次方程和二次不等式问题,感悟数学知识的整体性和关联性,提升逻辑推理、几何直观和数学运算等核心素养.◆教学重难点◆教学重点:从实际问题中抽象出一元二次不等式模型,并会借助二次函数求解一元二次不等式,体会函数思想、化归思想及数形结合的思想.教学难点:理解二次函数、一元二次方程与一元二次不等式解集之间的关系.◆课前准备GEOGEBRA、PPT课件.◆教学过程一、情境引入★资源名称:【情景演示】二次函数与一元二次方程、不等式★使用说明:本资源类比一次函数与一元一次方程、不等式的联系,提出对二次函数与一元二次方程、不等式之间联系的思考,引发学生以类比的视角来学习函数、方程、不等式之间的关系.注:此图片为视频截图,如需使用资源,请于资源库调用.问题1:园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24 m ,围成的矩形区域的面积要大于20 m 2,则这个矩形的边长为多少米?师生活动:学生独立思考,把实际问题中的数量关系用数学模型表示出来. 预设的答案:1.因为学生已经学习过基本不等式,所以部分学生会令矩形的一边长为x ,另一边为y ,可以得到⎩⎨⎧>=+.20,12xy y x 此时还需要消元从而转化为一元二次不等式求解.2.部分学生用一个未知数x 即可表示问题中的不等式20)-12>x x (,但学生容易忘记自变量x 的取值范围.追问:不等式20)-12>x x (即020122<+-x x ,与我们学习过的一元一次不等式有什么不同?你能再举出一些类似的不等式吗?师生活动:学生可以回答这个问题.之后学生阅读课本获得定义,或者教师给出一元二次不等式的定义,一元二次不等式的一般形式:0022<++>++c bx ax c bx ax 或,并且强调二次项的系数a ≠0.设计意图:通过具体问题抽象出一元二次不等式的过程,明确一元二次不等式的定义和一般形式,体会一元二次不等式的现实意义.二、探究新知1.探究一元二次不等式的解法问题2:在初中,我们学习了从一次函数的观点看一元一次方程、一元一次不等式的思想方法.那么这三个“一次”之间的关系是什么?师生活动:教师引导学生回答问题,并强调从代数和几何两方面的理解,注意数形结合的思想.师生共同总结如下:设计意图:通过对三个“一次”的关系的总结,帮学生梳理函数和相应的方程、不等式之间的关系,为下面的探索做好铺垫.★资源名称: 【数学探究】二次函数与一元二次方程、不等式的关系★使用说明:本资源动态展示了二次函数的零点与一元二次方程的根、一元二次不等式的解集之间的关系,使用时可通过滑动条改变二次函数中的系数,直观观察三者之间的关系.注:此图片为动画截图,如需使用资源,请于资源库调用.问题3:类似地,能否从二次函数的观点看一元二次不等式,进而得到一元二次不等式的求解方法呢?以函数20122+-=x x y 为例.师生活动:学生类比研究,应该有一部分学生可以获得思路.教师设计追问,引导学生思考.追问1:教师用信息技术画出函数20122+-=x x y 的图象,图象与x 轴有两个交点,并在函数图象上任取一点P (x ,y ).当点P 在抛物线上移动时,请你观察:随着点P 的移动,它的纵坐标的符号怎样变化?师生活动:学生观察思考后回答.预设的答案:当点P 移动到x 轴上时,它的纵坐标等于0(即0=y );当点P 移动到x 轴上方时,它的纵坐标大于0(即0>y );当点P 移动到x 轴下方时,它的纵坐标小于0(即0<y ).追问2:当点P 的纵坐标y =0时、y >0时、y <0时所对应的横坐标x 的取值范围分别是什么?师生活动:学生独立获得答案.师生活动:学生思考并对上述方法进行了归纳、概括,获得求解一般一元二次不等式的解法.预设的答案:求解一元二次不等式的关键是利用二次函数的图象与x 轴的相关位置确定不等式对应的x 的取值范围,而确定x 的取值范围需要先求出相应一元二次方程的根.这种关系体现在下表中.Δ>0Δ=0Δ<0y =ax 2+bx +c (a >0)的图象ax 2+bx +c =0(a>0)的根有两个不相等的实数根x 1,x 2(x 1<x 2)有两个相等的实数根x 1=x 2=-b2a没有实数根ax 2+bx +c >0(a >0)的解集 {x |x <x 1,或x >x 2}{x |x ≠-b2a}Rax 2+bx +c <0(a>0)的解集{x |x 1<x <x 2}∅ ∅设计意图:通过问题引导学生从具体的“三个二次”的关系,归纳、概括、获得一般的一元二次不等式的解法.在这个过程中培养学生数学抽象概括的能力,以及从具体到抽象,从特殊到一般的研究问题的基本方法.并体会数形结合和函数思想的应用.3.应用举例例1 求下列不等式的解集:(1)0652>+-x x (2)01692>+-x x (3)03-2-2>+x x追问:求解不等式的依据是什么?步骤是什么?第(3)题与(1)(2)题有何异同?能否转化为(1)(2)题.师生活动:学生独立完成后展示交流,师生总结求解思路.对于二次项系数是负数(即0<a )的不等式,可以先把二次项系数化成正数,再求解.预设的答案:(1)解:对于方程0652=+-x x ,因为∆>0, 所以它有两个实数根,解得3,221==x x ,画出二次函数652+-=x x y 的图象(图2.3-2)结合图象得不等式0652>+-x x 的解集为}{3,2><x x x 或.(2)解:对于方程01692=+-x x ,因为∆=0,所以它有两个相等的实数根,解得3121==x x ,画出二次函数169y 2+-=x x 的图象(图2.3-3),结合图象得不等式01692>+-x x 的解集为}31|{≠x x .(3)解:不等式可化为032-2<+x x ,因为∆=-8<0,所以方程032-2=+x x 无实数根,画出二次函数32y 2+-=x x 的图象(图2.3-4),结合图象得不等式032-2<+x x 的解集为∅.因此原不等式的解集为∅.追问:通过这三道题的学习,请你试着总结一下:解一元二次不等式的一般步骤是什么?师生活动:学生总结,教师完善.预设的答案:步骤是:(1)先把二次项系数化为正数;(2)求判别式的值;(3)求相应方程的实数根;(4)结合函数图象写出一元二次不等式的解集.设计意图:这三道例题对应的三个二次函数的图象分别与x 轴有两个交点、有一个交点和没有交点,再次巩固了利用二次函数解二次不等式的方法.并要注重代数问题的求解程序的提炼总结,以便学生有序地思考,规范地求解,提升学生的数学运算素养.注重数形结合思想方法的应用,培养学生思维的严谨性.例 2 已知一元二次不等式02<++c bx ax 的解集为{}53-><x x x ,或,则02<+-c bx ax 的解集为________.追问:如何利用“三个二次”的关系求解?能大致画出不等式对应的函数的草图吗? 师生活动:学生先独立思考,画出函数的草图,从而可以确定a 0<.并利用方程的根与函数零点的关系,及韦达定理求出a ,b ,c 之间的关系(而不是具体的值),再化简求值.预设的答案:解:根据题意可知a 0<.图2-3-5令)0(02≠=++a c bx ax .由根与系数的关系得⎪⎪⎩⎪⎪⎨⎧⨯-=+-=,53,53-ac a b解得⎩⎨⎧-=-=.15,2a c a b 代入所求不等式得01522<-+a ax ax .①又∵0<a ,∴①化为01522>-+x x . 对于方程015-22=+x x ,因为∆>0,所以它有两个实数根,解得3,-521==x x ,画出二次函数15-22x x y +=的图象(图2-3-5),结合图象得不等式15-22>+x x 的解集为}{53-<>x x x ,或.设计意图:进一步理解三个“二次”之间的关系,在较复杂的情境中应用新知识,提高学生分析问题的能力.三、归纳小结,布置作业★资源名称: 【知识点解析】二次函数与一元二次方程、不等式★使用说明:本资源为二次函数与一元二次方程、不等式的知识讲解视频,主要以二次函数为视角讨论了三个“二次”之间的关系,让学生明确二次函数的零点、一元二次方程的根和一元二次不等式的解集之间的统一性.注:此图片为微课截图,如需使用资源,请于资源库调用.问题4:这节课我们学习了解一元二次不等式,那么我们是如何去研究一元二次不等式。