原子吸收分光光度法第四节
第四章 原子吸收分光光度法
优点:温度高,且可控;试样用量少(μg 或μl级),可直接测固体样; 原子化效率高;灵敏度高。 缺点:精度差,分析速度慢,共存化合物分子吸收,干扰较大。
低温原子化法
汞蒸汽原子化(测汞仪) 试样中汞化合物用还原剂(SnCl2)还原为汞蒸汽,并通过Ar 或N2 将其带入 吸收池进行测定。 Hg2++Sn2+ 氢化物原子化 AsCl3+4NaBH4+HCl+8H2O = AsH3+4NaCl+4HBO2+13H2 主要用于As、Bi、Ge、Sb、Se、Te的测定。 特点: 可将待测物从大量基体中分离出来,检测限比火焰法低1-3个数量级,选 择性好,且干扰小。 Sn4++Hg
3)该法可消除基体效应带来的影响,但不能消除背景吸收。
4)加入标准溶液的浓度应适当,曲线斜率太大或太小都会引起较大误差。
1. 原子吸收光谱法测定元素M,由未知试样溶液得到的吸光度为 0.435,而在9mL 未知液中加入1mL溶液为100mg/L的M标准溶液后,混合溶液在相同条件下测得的 吸光度为0.835。计算未知试样溶液中M的浓度? 2. 采用原子吸收分光光度法分析尿样中的铜,测定结果见下表。试计算样品中铜的含 量?
操作简便、分析速度快 准确度高:火焰法误差<1% ,石墨炉法3%-5%
第二节 原子吸收分光光度法基本原理
一、基本概念
共振吸收线:原子外层电子从基态跃迁至能量最低的激发态所产生的吸收谱线 第一共振线:元素最灵敏线,通常用作元素分析线
二、基态与激发态原子分配
Ni gi e N0 g0
Ax Cx As Ax Cs
2)作图法
1
0406 原子吸收分光光度法
0406 原子吸收分光光度法❶原子吸收分光光度法的测量对象是呈原子状态的金属元素和部分非金属元素,是基于测量蒸气中原子对特征电磁辐射的吸收强度进行定量分析的一种仪器分析方法㊂原子吸收分光光度法遵循分光光度法的吸收定律,一般通过比较对照品溶液和供试品溶液的吸光度,计算供试品中待测元素的含量㊂对仪器的一般要求所用仪器为原子吸收分光光度计,它由光源㊁原子化❶药典一部和二部共有的附录,目前仅有一处修改㊂❷‘原子吸收光谱分析法通则“(G B /T15337-2008)明确规定, 采用标准曲线法时,在仪器可能的条件下,需配制五个以上不同浓度的校准溶液,以保证校准曲线误差符合分析要求㊂器㊁单色器㊁背景校正系统㊁自动进样系统和检测系统等组成㊂1.光源 常用待测元素作为阴极的空心阴极灯㊂2.原子化器 主要有四种类型:火焰原子化器㊁石墨炉原子化器㊁氢化物发生原子化器及冷蒸气发生原子化器㊂(1)火焰原子化器 由雾化器及燃烧灯头等主要部件组成㊂其功能是将供试品溶液雾化成气溶胶后,再与燃气混合,进入燃烧灯头产生的火焰中,以干燥㊁蒸发㊁离解供试品,使待测元素形成基态原子㊂燃烧火焰由不同种类的气体混合物产生,常用乙炔-空气火焰㊂改变燃气和助燃气的种类及比例可控制火焰的温度,以获得较好的火焰稳定性和测定灵敏度㊂(2)石墨炉原子化器 由电热石墨炉及电源等部件组成㊂其功能是将供试品溶液干燥㊁灰化,再经高温原子化使待测元素形成基态原子㊂一般以石墨作为发热体,炉中通入保护气,以防氧化并能输送试样蒸气㊂(3)氢化物发生原子化器 由氢化物发生器和原子吸收池组成,可用于砷㊁锗㊁铅㊁镉㊁硒㊁锡㊁锑等元素的测定㊂其功能是将待测元素在酸性介质中还原成低沸点㊁易受热分解的氢化物,再由载气导入由石英管㊁加热器等组成的原子吸收池,在吸收池中氢化物被加热分解,并形成基态原子㊂(4)冷蒸气发生原子化器 由汞蒸气发生器和原子吸收池组成,专门用于汞的测定㊂其功能是将供试品溶液中的汞离子还原成汞蒸气,再由载气导入石英原子吸收池进行测定㊂3.单色器 其功能是从光源发射的电磁辐射中分离出所需要的电磁辐射,仪器光路应能保证有良好的光谱分辨率和在相当窄的光谱带(0.2n m )下正常工作的能力,波长范围一般为190.0~900.0n m ㊂4.背景校正系统 背景干扰是原子吸收测定中的常见现象㊂背景吸收通常来源于样品中的共存组分及其在原子化过程中形成的次生分子或原子的热发射㊁光吸收和光散射等㊂这些干扰在仪器设计时应设法予以克服㊂常用的背景校正法有以下四种:连续光源(在紫外区通常用氘灯)㊁塞曼效应㊁自吸效应㊁非吸收线等㊂在原子吸收分光光度分析中,必须注意背景以及其他原因等对测定的干扰㊂仪器某些工作条件(如波长㊁狭缝㊁原子化条件等)的变化可影响灵敏度㊁稳定程度和干扰情况㊂在火焰法原子吸收测定中可采用选择适宜的测定谱线和狭缝㊁改变火焰温度㊁加入络合剂或释放剂㊁采用标准加入法等方法消除干扰;在石墨炉原子吸收测定中可采用选择适宜的背景校正系统㊁加入适宜的基体改进剂等方法消除干扰㊂具体方法应按各品种项下的规定选用㊂5.检测系统 由检测器㊁信号处理器和指示记录器组成,应具有较高的灵敏度和较好的稳定性,并能及时跟踪吸收信号的急速变化㊂测定法第一法(标准曲线法) 在仪器推荐的浓度范围内,除另有规定外,制备含待测元素不同浓度的对照品溶液至少5份❷,浓度依次递增,并分别加入各品种项下制备供试品溶液的相应试剂,同时以相应试剂制备空白对照溶液㊂将仪器按规定启动后,依次测定空白对照溶液和各浓度对照品溶液的吸光度,记录读数㊂以每一浓度3次吸光度读数的平均值为纵坐标㊁相应浓度为横坐标,绘制标准曲线㊂按各品种项下的规定制备供试品溶液,使待测元素的估计浓度在标准曲线浓度范围内,测定吸光度,取3次读数的平均值,从标准曲线上查得相应的浓度,计算被测元素含量㊂绘制标准曲线时,一般采用线性回归,也可采用非线性拟合方法回归㊂第二法(标准加入法) 取同体积按各品种项下规定制备的供试品溶液4份,分别置4个同体积的量瓶中,除(1)号量瓶外,其他量瓶分别精密加入不同浓度的待测元素对照品溶液,分别用去离子水稀释至刻度,制成从零开始递增的一系列溶液㊂按上述标准曲线法自 将仪器按规定启动后 操作,测定吸光度,记录读数;将吸光度读数与相应的待测元素加入量作图,延长此直线至与含量轴的延长线相交,此交点与原点间的距离即相当于供试品溶液取用量中待测元素的含量(如图),再以此计算供试品中待测元素的含量㊂㊃56㊃0406 原子吸收分光光度法图 标准加入法测定图示当用于杂质限量检查时,取供试品,按各品种项下的规定,制备供试品溶液;另取等量的供试品,加入限度量的待测元素溶液,制成对照品溶液㊂照上述标准曲线法操作,设对照品溶液的读数为a ,供试品溶液的读数为b ,b 值应小于(a -b )㊂㊃66㊃0406 原子吸收分光光度法。
原子吸收分光光度法
四、单色器
monochromators
五、检测器
detector
20:17:18
单色器在火焰与 检测器之间 (3)原子化系统
20:17:18
二、光源
1.作用
(动画)
提供待测元素的特征光谱。获得较高的灵敏度和准确度。 光源应满足如下要求; (1)能发射待测元素的共振线; (2)能发射锐线; (3)辐射光强度大,稳定性好。
20:17:18
二、定量分析方法
标准曲线法
(动画)
配制一系列不同浓度的标准试样,由低到高依次分析, 将获得的吸光度A数据对应于浓度作标准曲线,在相同条件下 测定试样的吸光度A数据,在标准曲线上查出对应的浓度值; 或由标准试样数据获得线性方程, 将测定试样的吸光度A数据带入计算。 注意在高浓度时,标准曲线易发生 弯曲,压力变宽影响所致;
孰先孰后呢? (动画)
20:17:18
二、原子吸收光谱仪的使用与调校—以Cu为例
1.初步固定的测量条件 波长:324.75nm,灯电流:2mA,狭缝宽度:0.4mm,空气流量: 50L/min,压力:0.2MPa,C2H2流量:1.6L/min,压力:0.08MPa, 燃烧头高度,高压 2. 波长的调节 微调,使信号值达最大 3.空心阴极灯 预热15min; 灯位置的调节:使信号值最大
20:17:18
第四章 原子吸收光谱 分析法
atomic absorption spectrometry,AAS
一、分析条件选择 二、原子吸收光谱仪的 使用与调校 三、定量分析方法
第三节 分析条件的选择 与应用
choice of analytical condition and application
20:17:18
实验四原子吸收光谱法测铜的含量
实验四火焰原子吸收光谱法测定铜的含量一、目的要求1.掌握原子吸收分光光度法的基本原理2.了解原子吸收分光光度计的主要结构及操作方法3.学习火焰原子吸收光谱法测定铜的含量的方法二、实验原理溶液中的铜离子在火焰温度下变成基态铜原子,由光源(铜空心阴极灯)辐射出的铜原子特征谱线(铜特征共振线波长为324.8nm)在通过原子化系统铜原子蒸汽时被强烈吸收,其吸收的程度与火焰中铜原子蒸汽浓度的关系是符合比耳定律的,即:A=log(1/T)=KNL(其中:A—吸光度,T—透光度,L—铜原子蒸汽的厚度,K—吸光系数,N—单位体积铜原子蒸汽中吸收辐射共振线的基态原子数),铜原子蒸汽浓度N是与溶液中离子的浓度成正比的,当测定条件一定时A=KC(C—溶液中铜离子的浓度,K—与测定条件有关的比例系数。
)在既定条件下,测一系列不同铜含量的标准溶液的A值,得A—C的标准曲线,再根据铜未知溶液的吸光度值即可求出未知液中铜的浓度。
三、仪器与药品AA-6300C型原子吸收分光光度计,铜空心阴极灯,乙炔钢瓶(空气—乙炔火焰原子化),空气压缩机,容量瓶,移液管,洗瓶。
铜标准溶液100mg/L储备液,去离子水。
四、实验步骤1.仪器操作条件的设置(计算机操作)在工作站上设置分析条件:如波长,狭缝,标样个数及浓度,样品数等参数。
仪器的工作条件元素(Element)波长(nm)光谱带宽(nm)灯电流(mA)乙炔流量(L/min)燃烧头高度(mm)铜(Cu)324.7 0.7 4.0 1.6 11.02.曲线的绘制在5只50ml容量瓶中,分别加入一定量的100 mg/L铜标准溶液,以去离水定容至刻度线,摇匀,得到0.5mg/L 、1.0mg/L、2.0mg/L、4.0mg/L和6.0mg/L 标液浓度,然后去离子水为空白分别测其A值,得A—C标准曲线。
五、数据处理1、记录实验条件:仪器型号、吸收线波长、狭缝宽度、乙炔流量、空气流量。
2、记录实验结果表铜浓度与吸光度关系未知液的测定将铜待测液在同样条件下测定,根据测得的吸光度在标准曲线图上查出其浓度。
土壤矿质全量元素的测定—原子吸收分光光度法
土壤矿质全量元素的测定—原子吸收分光光度法
一、概述
矿质全量元素是指土壤中的各种元素,它们主要包括氧、碳、氢、氮、磷、钾、钙、镁、铁等十多种元素。
其中,铁是土壤中的一种金属元素,
是植物生长发育的必需元素。
为了检测土壤中的铁含量,可以采用原子吸
收分光光度法(AAS)来进行测定。
二、原理
原子吸收光度是一种大量测定元素含量的有效方法,它能够测定各种
溶液中的金属元素含量。
原子吸收光度法是基于原子的能量吸取原理的一
种光谱分析技术,根据金属原子分子对其中一特定波长的光能的吸收能力
来测定元素含量。
当原子吸取光谱线的外加光能量时,原子内部的一些电
子会因量子跃迁而由原子内的低层跃迁到高层,吸取特定波长的光能,这
对原子的表征,比如测定其中的金属元素含量就至关重要。
三、仪器器材
原子吸收分光光度法用于测定土壤中的铁含量,需要准备一下仪器器材。
1.原子吸收光度仪,其中仪器有发射源、检测枪、检测头等,仪器可
以根据检测需要使用不同的发射源,比如氩光发射源,火焰发射源,检测
枪和检测头是仪器测定金属元素含量的重要组成部分。
2.分离器,分离器是指土壤样品中多种元素的分离,以便于原子吸收
分光光度测定其中一种元素。
原子吸收分光光度法
解:已测得 s'(Cu2) 0.08mg/ L,s'(Mg2) 0.06mg/ L
原子吸收的适宜吸光度A: 0.15-0.6
c1
s' 0.15 0.0044
34 s'
2.72mg / L
s' 0.6 c2 0.0044 136 s' 10.88mg/ L
Cu2+较适宜的测定范围c:2.7-10.9mg/L,上述所得
第十三章 原子吸收分光光度法
第一节 概述 第二节 原子吸收分光光度法的基本原理 第三节 原子吸收分光光度计 第四节 实验方法
第一节 概述(generalization)
原子吸收分光光度法: 基于气态的基态原子在某特定波长光的辐射 下,原子外层电子对光的特征吸收的现象所 建立的方法 。
特点: (1) 检出限低,10-9-10-12 g·mL-1; (2) 准确度高,1%-5%; (3) 选择性高,一般情况下共存元素不干扰; (4) 应用广,可测定70多个元素(各种样品中)
单位mg/L
检出限越低,仪器的性能越好,对元素的检出能 力越强。
四、 定量分析方法
1.校准曲线法 配制一系列不同浓度的标
准溶液,由低到高依次测定 ,将获得的吸光度A对应于浓 度作校准曲线,在相同条件 下测定试样的吸光度A,从校 标准曲线上查出对应的浓度 值。
或由标准溶液吸光度和浓度计算出 线性方程,将测定试样的吸光度A数 据带入方程中计算。
消除:加入大量易电离的一种缓冲剂以抑制 待测元素的电离。 例:加入足量的铯盐,抑制K、Na的电离。
(三)、化学干扰
通过在标准溶液和试液中加入某种光谱化学 缓冲剂来抑制或减少化学干扰: (1)释放剂—与干扰元素生成更稳定化合物使 待测元素释放出来。
原子吸收分光光度法(精)
N0 = a c
(4.10)
式中a为比例常数 代入式(4.10)中,则
A0.432 ln2πe2 flac4.11) vD π mc
实验条件一定,各有关的参数都是常数,吸光度 为
A= kc
(4.12)
式中k为常数。(4.12)式为原子吸收测量的基本 关系式。
4 基态原子数与原子吸收定量基础
在通常的原子吸收测定条件下,原子蒸气中基态
cDL=3Sb/Sc
单位:μgml-1
(2)石墨炉法
mDL=3Sb/Sm
Sb:标准偏差 Sc(Sm):待测元素的灵敏度,即工作曲线的斜率。
三、测定条件的选择
1.分析线 一般选待测元素的共振线作为分析线,测量高浓度时,也 可选次灵敏线 2.通带(可调节狭缝宽度改变)
无邻近干扰线(如测碱及碱土金属)时,选较大的通带, 反之(如测过渡及稀土金属),宜选较小通带。 3.空心阴极灯电流
Kv
K0exp2(vvv0D )
ln22
(4.3)
积分式(4.3),得
0Kvdv12 ln2K0vD
将式(4.2)代入,得
K0
2 vD
ln2me2cN0f
(4.4) (4.45)
峰值吸收系数与原子浓度成正比,只要能测出K0 就可得到N0。
3、 锐线光源
峰值吸收的测定是至关重要的,在分子光谱中光源 都是使用连续光谱,连续光谱的光源很难测准峰值吸 收,Walsh还提出用锐线光源测量峰值吸收,从而解决 了原子吸收的实用测量问题。
原子的平均电子数,它正比于原子对特定波长辐射的吸收几率。
式(4.2)是原子吸收光谱法的重要理论依据
2、 峰值吸收
1955年Walsh A提出,在温度不太高的稳定火焰条 件下,峰值吸收系数与火焰中被测元素的原子浓度也成正 比。吸收线中心波长处的吸收系数K0为峰值吸收系数,简 称峰值吸收。前面指出,在通常原子吸收测定条件下,原 子吸收线轮廓取决于Doppler宽度,吸收系数为
实验四原子吸收分光光度法测定金属元素含量
兰州理工大学现代生物仪器分析实验指导书(四年制生物工程、食品科学与工程专业)王永刚编写生命科学与工程学院二零一二年十月目录实验一、紫外吸收光谱法同时测定Vc和VE (3)实验二气相色谱法测定酒或酊中C2H5OH含量 (5)实验三高效液相色谱法测定维生素B1含量 (7)实验四原子吸收分光光度法测定金属元素含量 (10)实验一、紫外吸收光谱法同时测定Vc和VE一、实验目的1.掌握Cary 50紫外可见分光光度计的使用;2.学会用解联立方程组的方法,定量测定吸收曲线相互重叠的二元混合物。
二、方法原理维生素C(抗坏血酸)和维生素E(生育酚)起抗氧剂作用,即它们在一定时间内能防止油酯变酪。
两者结合在一起比单独使用的效果更佳,因为它们在抗氧剂性能方面是“协同的”。
因此,它们作为一种有用的组合试剂用于各种食品中。
抗坏血酸是水溶性的,生育酚是酯溶性的,但它们都能溶于无水乙醇,因此,能用在同一溶液中测定双组分的原理来测定它们。
根据朗伯—比尔定律,用紫外—可见分光光度法很容易定量测定在此光谱区内有吸收的单一成分。
由两种组分组成的混合物中,若彼此都不影响另一种物质的光吸收性质,可根据相互间光谱重叠的程度,采用相对应的方法来进行定量测定。
如:当两组分吸收峰部分重叠时,选择适当的波长,仍可按测定单一组分的方法处理;当两组分吸收峰大部分重叠时,则宜采用解联立方程组或双波长法等方法进行测定。
解联立方程组的方法是以朗伯—比尔定律及吸光度的加合性为基础,同时测定吸收光谱曲线相互重叠的二元组分的一种方法。
从图中可以看出,混合组分在λ1的吸收A组分和B 组分分别在λ1的吸光度之和Aλ1A+B,即Aλ1A+B=κλ1A bc A+κλ1B bc B同理,混合组分在λ2的吸光度之和Aλ2A+B应为Aλ2A+B=κλ2A bc A+κλ2B bc B若首先用A,B组分的标样,分别测得A,B两组分在λ1和λ2处的摩尔吸收系数κλ1A,κλ2A 和κλ1B,κλ2B,当测得未知试样在λ1和λ2的吸光度Aλ1和Aλ2后,解下列二元一次方程组:Aλ1=κλ1A bc A+κλ1B bc BAλ2=κλ2A bc A+κλ2B bc B即可求得A,B两组分各自的浓度c A和c B。
六章节原子吸收分光光度法
K0
K0/2 I0
I K
0
I~ (吸收强度与频率的关系)
吸收线轮廓
K~ (谱 线0 轮廓) 吸收系数轮廓
图中:
K—吸收系数;K0—最大吸收系数; 0,0—中心频率或波长
(由原子能级决定);
,—谱线轮廓半宽度(K0/2处的宽度);
第六章 原子吸收分光光度法
A∝ c
第六章 原子吸收分光光度法
锐线光源:能发射出半宽 度很窄的谱线的光源。其 发射线的半宽度比吸收谱 线的半宽度小得多,约为 吸收谱线宽度的1/5。
第六章 原子吸收分光光度法
第二节原子吸收光谱仪器及其组成
AAS仪器由光源、原子化系统(类似样品容器)、分光系统及检测 系统。
原子化器 空心阴极灯
六章节原子吸收分光光度法
第六章 原子吸收分光光度法
第六章 原子吸收分光光度法
概述:原子吸收分光光度法(atomic absorption spectro-photometry, AAS)
1.AAS概念:通过测量样品蒸气中基态原子对特征谱 线吸收程度建立的定量分析方法
2.AAS的发展:20世纪50年代提出由walsh创立 。 3. AAS与UV-Vis的比较:
缺点:原子化效率低、用样量多。
第六章 原子吸收分光光度法
2.结构:组成:雾化器、雾化室、燃烧器。 (1)雾化器:试样雾化。要求:喷雾稳定/雾滴
小、雾化效率高。 原理:影响雾滴形成因素:样液物理性质、助燃气
压力、流速等 (2)雾化室:雾滴、燃气、助燃气混合;雾滴排除
,减小记忆。 (3)燃烧器:形成火焰,试液燃烧、蒸发、原子化 3.火焰状态:贫燃、化学计量性、富燃。
原子吸收分光光度法
第一节 原子吸收分光光度法的基本原理
n M LJ
主量子数 (价电子所处电子层)
总角量子数 (电子的轨道形状,相应的符号: S、P、D等)
内量子数(光谱支项)
火焰原子化法 (flame atomization)
由化学火焰提供能量,使被测元素原子化。常用的是预混合型原子化器,它包括雾化器、雾化室和燃烧器三部分。
雾化器(nebulizer) 将试液雾化。并使雾滴均匀化。雾滴越小,火焰中生成的基态原子就越多。 雾化室的作用,一是使较大雾粒沉降,凝聚从废液口排除;二是使雾粒与燃气,助燃气均匀混合形成气溶胶,再进入火焰原子化;三是起缓冲稳定混合气气压的作用,以便使燃烧气产生稳定的火焰。 燃烧器(burner)的作用是产生火焰,使进入火焰的试样气溶胶蒸发和原子化,常用的是单缝燃烧器。
01
试样在处理、转移、蒸发和原子化过程中,由于试样物理特性的变化引起吸光度下降。
现象:
02
可通过控制试液与标准溶液的组成尽量一致的方法来抑制。
消除方法:
原子光谱对分析线的干扰。包括光谱线干扰和非吸收线干扰。 现象 光谱线干扰是试样中共存元素的吸收线与待测元素的分析线相近(吸收线重叠)而产生的干扰。 消除方法: 另选波长或用化学方法分离干扰元素。
外推作图法
cx+0, cx+cs , cx +2cs , cx +3cs , cx +4cs…… 分别测得吸光度为:A0,A1,A2,A3,A4……。 如将直线外推至与横坐标相交,此时浓度cx即为试样中被测元素的浓度。
相同点: 两种方法都遵循朗伯-比耳定律。
第十五章原子吸收分光光度法(54)
29
30
3. 氢化物发生器:硼、碳、氮、氟等主族中多种元素 可与氢形成正常氧化态的共价氢化物,通常情况下为气体或 挥发性液体。主要能测定11种元素。
方法的灵敏度可达10-10~10-9g;选择性好;基体干扰和 化学干扰少。冷原子吸收法测汞。
31
32
(三)分光系统 光栅,600条/mm~2800条/mm。
简化后得:
A KN 0 L A K 'C
16
第三节 原子吸收分光光度计
17
一、仪器主要部件 (一)光源
要求: 1.发射共振线,不受惰性气体或其它杂质元素线的干扰。 2.锐线。发射线的半宽度明显小于吸收吸收线的半宽度。 3.辐射强度大,稳定,背景低于特征谱线强度的1%。
18
符合上述要求的有:空心阴极灯(hollow cathode lamp,HCL)、蒸气放电灯、无极放电灯。常用的是空心阴 极灯,绕有钽丝或钛丝的钨棒制成阳极,待测元素的纯金属 制成阴极,两极施加300V~500V电压。一般为单元素灯。目 前已研制了多元素空心阴极灯,但发射强度不如单元素灯, 且易产生干扰。
(四)检测系统 光电倍增管。
二、原子吸收分光光度计 (一)单道单光束原子吸收分光光度计
结构简单,性能较好,价格低,但不能消除光源波动所 引起的基线漂移。
33
34
(二)单道双光束原子吸收分光光度计
35
36
第四节 定量分析方法
(一)标准曲线法 (二)直接比较法
37
(三)标准加入法
标准加入法只能消除基体干扰,不能消除化学干扰、电 离干扰和背景干扰,也不适用于测量灵敏度低的元素。
53
1 CL S KS 0
CL
KS 0 S
原子吸收分光光度法
谱线具有一定的宽度,主要有两方面的因素:一类 是由原子性质所决定的,例如,自然宽度;另一类是外 界影响所引起的,例如,热变宽、碰撞变宽等。
整理课件
5
第一节 基本原理
• 二、原子吸收光谱的测量 1,积分吸收 在吸收线轮廓内,吸收系数的积分称为积分吸 收系数,简称为积分吸收,它表示吸收的全部能 量。若能测定积分吸收,则可求出原子浓度。但 是,测定谱线宽度仅为10-3nm的积分吸收,需要分 辨率非常高的色散仪器。
最强共振线都低于 600 nm, Ni / N0值绝大部分在10-3以下, 激发态和基态原子数之比小于千分之一,激发态原子数可以
忽略。因此。基态原子数N0可以近似等于总原子数N。
一、原子吸收光谱轮廓
原子吸收光谱线有一定宽度。一束不同频率强度为I0的
整理课件
3
第一节 基本原理
平行光通过厚度为l的原子蒸气,一部分光被吸收,透过
(一)火焰原子化器
火焰原子化法中,常用的是预混合型原子化器,它是由雾化器、 雾化室和燃烧器三部分组成。用火焰使试样原子化是目前广泛应用 的一种方式。它是将液体试样经喷雾器形成雾粒,这些雾粒在雾化 室中与气体(燃气与助燃气)均匀混合,除去大液滴后,再进入燃 烧器形成火焰。此时,试液在火焰中产生原子蒸气。
整理课件
13
第二节 原子吸收分光光度计
(二)非火焰原子化器
非火焰原子化器常用的是石墨炉原子化器。 石墨炉原子化法的过程是将试样注入石墨管中间 位置,用大电流通过石墨管以产生高达2000 ~ 3000℃的高温使试样经过干燥、蒸发和原子化。
与火焰原子化法相比,石墨炉原子化法主要 具有如下特点:
原子吸收光谱法
结构 工作原理
《仪器分析》第四章原子吸收光谱法
石墨炉原子化系统
基本原理:利用大电流(数百安培)通过高阻值的石墨管所产 生的高温,使管中少量试液或固体试样蒸发和原子化。
电源:12~24V 0~500 A 直流电
《仪器分析》第四章原子吸收光谱法
石墨炉原子化步骤
四个阶段: 1.干燥 (去除溶剂) 2.灰化(去除基体) 3.原子化 4.净化(去除残渣),
石墨炉升温示意图
《仪器分析》第四章原子吸收光谱法
元 最 高 灰 化 最高原子化温 线性范围 推荐的改进剂
素 温 度 度(℃)
( ppb )
(℃)
Ag 800 Al 1200 As 1200
1500
1-15 0.005mgPd+0.03mgMg(NO3)2
反2230应0000物和产5物5--的1800熔0 沸0同.点0A1g5或mgSMe g(NO3)2
• f-----振子强度, N0----单位体积内的基态原子数, • e----为电子电荷, m--- -个电子的质量.
《仪器分析》第四章原子吸收光谱法
积分吸收的限制
要对半宽度(∆v)约为10-3 nm的吸收谱线进行积分, 需要极高分辨率的光学系统和极高灵敏度的检测器, 目前还难以做到。 这就是早在19世纪初就发现了原子吸收的现象, 却难以用于分析化学的原因。
Kv~v曲线反映出原子核外层电子 对不同频率的光辐射具有选择性
吸收特性。
《仪器分析》第四章原子吸收光谱法
影响原子谱线宽度的因素
由原子本身性质决定 由外界影响决定
①. 自然宽度ΔλN( Δ υ N)
它与原子发生能级间跃迁时激发态原子的有限寿命
有关。 一般情况下约相当于10-4 Å (10-5nm)
原子吸收分光光度法
原子吸收分光光度法原子吸收分光光度法是化学分析中常用的一种技术手段,用于测定物质中某种特定元素的含量。
它利用分光光度计测量样品溶液中特定元素在特定波长下吸收的光的强度,从而计算出该元素的浓度。
下面将介绍原子吸收分光光度法的基本原理、仪器设备以及实验步骤。
基本原理:原子吸收分光光度法基于化学元素的特性:元素在特定波长下可吸收辐射能,其吸光度与元素浓度呈线性关系。
该方法通过将待测元素转化为原子态,并根据原子态对特定波长的光吸收的特征来确定元素的含量。
仪器设备:1.分光光度计:用于测量样品溶液对特定波长光的吸收强度,因此需要选择适当的波长设置。
2.电源:用于为设备供电。
3.空气或氢气源:提供燃料和燃烧的气体。
4.分析样品:待测元素所在的样品溶液。
实验步骤:1.选择合适的波长:根据待测元素的特性和吸收峰的位置,选择适当的波长设置在分光光度计上。
2.预备样品:将待测样品加入溶剂中,使其制备成溶液。
3.校准仪器:用已知浓度的标准样品溶液进行校准,确定仪器的灵敏度和线性范围。
4.调整光路:调节分光光度计的光路和基线,确保测量的准确性和稳定性。
5.测量样品溶液:用分光光度计将待测样品溶液放入样品池中,测量样品溶液对特定波长光的吸收强度。
6.计算浓度:通过样品溶液对光的吸收强度和校准曲线,计算出待测元素的浓度。
原子吸收分光光度法的优点:1.高灵敏度:该方法可以测量样品中极小浓度的元素,通常可达到ppb(10的负9次方)或更低的浓度级别。
2.高选择性:通过选择适当的波长进行测量,可以减少其他物质对测量结果的影响,提高分析的准确性和精确性。
3.广泛应用:原子吸收分光光度法广泛应用于环境监测、冶金、食品安全、生物医学等领域,能够分析多种元素的含量。
需要注意的是,进行原子吸收分光光度法实验时需要注意保持实验环境的洁净、准确校准仪器,以及严格按照实验步骤操作,以确保实验结果的准确性和重现性。
总而言之,原子吸收分光光度法是一种常用且可靠的测定物质中某种特定元素含量的方法,其基本原理、仪器设备以及实验步骤都需要严格控制与操作,以保证准确性和重现性。
原子吸收分光光度法ppt
原子吸收分光光度计的安装与调试
安装
按照说明书和实验室要求,正确安装原子吸收分光光度计,确保仪器稳定、 安全。
调试
在安装完成后,对仪器进行调试,确保仪器各项功能正常,测量结果准确可 靠。
原子吸收分光光度计的维护与保养
日常维护
定期检查仪器的工作状态,如光源是否稳定、光 学系统是否清洁等。
定期保养
按照厂家推荐的保养计划,对仪器进行定期保养 ,如清洗光学系统、更换消耗铅、汞、砷等。
详细描述
首先,采集一定量的食品样品,经过化学处理后,加入特定的原子吸收剂, 通过测定吸光度,可以计算出食品中重金属离子的浓度。该方法具有准确度 高、灵敏度高等优点,能够满足食品安全检测的需求。
案例四:大气中污染物的测定
总结词
原子吸收分光光度法可用于大气中污染物的测定,如二氧化硫、氮氧化物等。
原子吸收分光光度法
xx年xx月xx日
目录
• 原子吸收分光光度法简介 • 原子吸收分光光度法实验技术 • 原子吸收分光光度法仪器设备 • 原子吸收分光光度法样品处理 • 原子吸收分光光度法应用案例
01
原子吸收分光光度法简介
原子吸收分光光度法的基本原理
1 2
原子能级
原子吸收分光光度法的基础是原子能级,原子 能级是原子能吸收特定波长光子的能量,从低 能级跃迁到高能级的过程。
案例二:土壤中重金属离子的测定
总结词
原子吸收分光光度法可用于土壤中重金属离子的测定,如镉 、铬、汞等。
详细描述
首先,采集一定量的土壤样品,经过化学处理后,加入特定 的原子吸收剂,通过测定吸光度,可以计算出土壤中重金属 离子的浓度。该方法操作简便,能够满足土壤质量检测的需 求。
案例三:食品中重金属离子的测定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、应用
1.头发中微量元素的测定 2.水中微量元素的测定 3.水果、蔬菜中微量元素的测定 水果、
三、定量分析方法
1.标准曲线法
(略)
2.标准加入法 2.标准加入法
取若干份体积相同的试液( 取若干份体积相同的试液 ( cX), 依次按比例加入不 同量的待测物的标准溶液( 定容后浓度依次为: 同量的待测物的标准溶液(cO),定容后浓度依次为: cX , cX +cO , cX +2cO , cX +3cO , cX +4 cO …… 分别测得吸光度为: 分别测得吸光度为: AX,A1,A2,A3,A4……。 。
对浓度c 以A对浓度 做图得一 对浓度 直线, 图中c 直线 , 图中 X 点即待测溶 液浓度。 液浓度。
内容选择: 内容选择:
第一节 基本原理 第二节 原子吸收光谱仪 第三节 测定条件选择与定量分析方法 第四节 干扰及其消除
Байду номын сангаас结束
单位:µg⋅ml-1
3.测定条件的选择 3.测定条件的选择
(1) 分析线 一般选待测元素的共振线作为分析线,测量高浓度时, 也可选次灵敏线 通带(调节狭缝宽度) (2) 通带(调节狭缝宽度) 无邻近干扰线(如测碱及碱土金属)时,选较大的通带 ,反之(如测过渡及稀土金属),宜选较小通带。 (3) 空心阴极灯电流 在保证有稳定和足够的辐射光通量的情况下,尽量选较 低的电流。 (4) 火焰 依据不同试样元素选择不同火焰类型。 (5) 观测高度 调节观测高度(燃烧器高度),可使元素通过自由原子 浓度最大的火焰区,灵敏度高,观测稳定性好。
2.检出极限 2.检出极限
在适当置信度下,能检测出的待测元素的最小浓度或最 小量。用接近于空白的溶液,经若干次(10-20次)重复测 定所得吸光度的标准偏差的3倍求得。
(1)火焰法 火焰法 cDL=3Sb/Sc (2)石墨炉法 石墨炉法 mDL=3Sb/Sm
Sb:标准偏差 Sc(Sm):待测元素的灵敏度,即工作曲线的斜率。
第六章 原子吸收分光 光度分析法
第四节 分析条件的选择 与定量分析方法
一、分析条件的选择 二、应用 三、定量分析方法
一、分析条件的选择
1. 灵敏度
(1) 灵敏度(S)——指在一定浓度时,测定值(吸光度)的 灵敏度( ) 增量(∆A)与相应的待测元素浓度(或质量)的增量(∆c或 ∆m)的比值: Sc=∆A/∆c 或 Sm=∆A/∆m (2)特征浓度 特征浓度——指对应与1%净吸收( IT -IS)/IT=1/100的待测 特征浓度 物浓度(cc),或对应与0.0044吸光度的待测元素浓度. cc=0.0044∆c/∆A ( 3) 特征质量 mc=0.0044∆m/∆A 单位: g ⋅ (mol 1%)-1 单位: µg⋅(mol 1%)-1