6历年真题题型分布及知识点考点分值分布

合集下载

初中物理各章中考考点题型分值

初中物理各章中考考点题型分值

初中物理各章中考考点明细表考察的知识点共73个,具体分布如下:一、声现象(4个考点)3%1 声音的产生与传播是声音的产生及其传播选择题2 声音的特性区分音调、响度与音色3 噪声的危害和控制防治噪声4 声的利用声的利用二、光学(两大块)10%(一)、光现象(5个考点)1 光的传播光沿直线传播及其应用选择填空作图实验2 光的反射光的反射规律及其光的反射现象3 平面镜成像平面镜的成像特点、原理、现象及其平面镜成像的实验方案4 光的折射光的折射规律及其光的折射现象5 光的色散、看不见的光光与颜料的三原色及其物体的颜色(二)、透镜及其应用(2个考点)1 透镜成像规律凸透镜的成像规律及应用。

重点2 眼睛和眼镜远近视眼的成因及其矫正选择填空作图实验三、物态变化(4个考点)7%1 温度与温度计原理和正确使用方法选择填空简答2 熔化和凝固熔化和凝固的温度—时间图象,并能从中筛选出有用的信息来区分是晶体还是非晶体及其熔点温度3 汽化和液化区别蒸发和沸腾,且对水的沸腾实验中的器材、步骤、观察到的现象及评估与交流及其汽化和液化的方法、措施4 升华和凝华四、电与磁(五大块)40%(一)、电路、电流、电压和电阻(7个考点)1 电路电路的组成;能从能量的角度认识电源和用电器的作用选择填空2 串联和并联电路串联电路和并联电路连接的特点3 电流生活中有关用电器工作的电流值;正确使用电流表,正确读出电流表的示数4 串、并联电路的电流规律正确使用电流表测量串联电路和并联电路中的电流;在电路图中利用其电流规律来分析做题5 电压电压表的使用方法及读数;区分电压表在电路中测谁的电压6 串、并联电路的电压规律利用串联电路和并联电路的电压规律来分析电路,判断故障7 电阻理解电阻是导体本身的一种属性(二)、欧姆定律(2个)1 电流与电压、电阻的关系通过实验、分析和探索电流与电压、电阻的关系实验计算2 测定小灯泡的电阻测定小灯泡电阻实验的整个探究过程重点(三)、电功率、家庭电路(5个)1 电能电能的单位换算;电能表参数的理解及其电能的求法重点实验计算2 电功率电功率的计算;估计一些家用电器的功率;区分电功与电功率3 测量小灯泡的电功率实验的方案设计、实验原理、电路图的画法、数据的处理及其得出实验结论4 电与热利用焦耳定律的知识来解释相关现象5 家庭电路家庭电路的连接方式;安全用电及其排除家庭中一些常见的电路故障(四)、电与磁:(6个考点)1 磁现象判断物体是否有磁性,及其磁在日常生活中的应用简答作图选择填空2 磁场各种磁体周围的磁场分布情况3 电生磁电磁铁磁性强弱与什么因素有关及有什么关系”的实验探究;奥斯特实验的做法及其结论4 电磁继电器电磁继电器的工作原理的解释5 磁生电产生感应电流的条件6 电动机和发电机工作原理及其能量转化(五)、信息的传递:[考点提示]1 知道光是电磁波,电磁波在真空中的传播速度;知道波长、频率和波速的关系2 常识性了解卫星通信、光纤通信和网络通信五、力学40%(一)多彩的物质世界(5个考点)1 宇宙和微观世界宇宙是由物质组成,物质由分子和原子组成,微观角度看物质三种状态,纳米技术的应用和前景中考热点实验计算2 物质的物理属性3 质量质量是物体本身的一种属性,质量的单位,托盘天平的使用方法以及用托盘天平测量固体和液体的质量4 密度5 测量物质的密度测量固体和液体的密度(二)运动和力(6个考点)1 机械运动机械运动、参照物、运动和静止的相对性的解释易考点填空简答2 运动的快慢变速运动及平均速度3 长度、时间及其测量利用刻度尺测量长度资料收集于网络,如有侵权 请联系网站删除 4 力 力的理解、力的单位、力的作用效果、力的三要素、力的示意图 重点:是能结合日常生活事例理解解释力的作用效果,能用示意图表示力。

一近六年历史高考必修分值分布情况

一近六年历史高考必修分值分布情况

考点16开辟新航路 、殖民扩张 必修2 考点17第一次工业 革命和第二次工业 革命 考点18近代中国经 济结构的变动和资 本主义的曲折发展 考点19近现代中国 社会生活的变迁
无 2009年(31题)垄断(4分) 2010年(40题2问)19世纪中期以前英国工业发展 阶段及阶段性特征(16分) 2012年(40题)第一次工业革命(25分) 2008年(30题)年近代民族工业的发展(4分) 2012年(30题)张謇“实业救国”(4分) 2008年(29题)“慈禧坐车”(4分) 2008年(32题)“元旦 形成和“罢黜百家,独尊儒术”

考点27宋明理学和明清之际活跃的 2008年(27题)李贽思想(4分)2010年(26题)“心学 儒家思想 ”(心外无物)(4分)2011年(26题)黄宗羲思想主张 (4分)2012年(27题)王明阳思想(4分) 2013年(25题)儒学发展变化的阶段特征(4分Ⅰ卷) 考点28古代中国的科技和文艺 2012年(26题)许仙与白娘子的故事(宋代市民价值取向 )(4分)2013年(27题)小说(清朝世俗文化发展)(4 分,全国Ⅱ卷)2013年(28题)京剧(4分,全国Ⅱ卷) 2010年(28题)亚里士多德“平等”(4分) 2011年(27题)苏格拉底(4分)
考点35 19世纪以来世界文学艺术

综合考查
2013年(40题)近代中国与世界文化科学的进步 (爱因斯坦热) (25分,全国Ⅱ卷)
近年历史学科命题趋势
1、与教材的知识联系紧密,紧扣教材 , 回归教材
近几年高考历史试题基本上是以新材 料、新情景、新问题作为命题切入点的, 命题结果让考生感觉历史高考脱离课本, 远离课堂;2013年高考历史试题发生了明 显的转折性的变化,初步的感觉是,由“ 脱离课本”走向“回归课本”。

考研数学十年考点分值分布

考研数学十年考点分值分布

第一部分高等数学1、10年考题总数: 17题2、总分值:764分3、占三部分题量之比重:53%4、占三部分分值之比重:60%第一章函数、极限、连续1、10年考题总数:15题2、总分值:69分3、占第一部分题量之比重:12%4、占第一部分分值之比重:9%题型1 求1∞型极限(一(1),2003)题型2 求0/0型极限(一(1),1998;一(1),2006)题型3 求∞-∞型极限(一(1),1999)题型 4 求分段函数的极限(二(2),1999;三,2000)题型5 函数性质(奇偶性,周期性,单调性,有界性)的判断(二(1),1999;二(8),2004)题型6 无穷小的比较或确定无穷小的阶(二(7),2004)题型7 数列极限的判定或求解(二(2),2003;六(1),1997;四,2002;三(16),2006)题型8 求n项和的数列极限(七,1998)题型9 函数在某点连续性的判断(含分段函数)(二(2),1999)第二章一元函数微分学1 10年考题总数:26题2总分值:136分3占第一部分题量之比重:22%题型1 与函数导数或微分概念和性质相关的命题(二(7),2006)题型2 函数可导性及导函数的连续性的判定(五,1997;二(3),2001;二(7),2005)题型3 求函数或复合函数的导数(七(1),2002)题型4 求反函数的导数(七(1),2003)题型5 求隐函数的导数(一(2),2002)题型6 函数极值点、拐点的判定或求解(二(7),2003)题型7 函数与其导函数的图形关系或其他性质的判定(二(1),2001;二(3),2002)题型8 函数在某点可导的判断(含分段函数在分段点的可导性的判断)(二(2),1999)题型9 求一元函数在一点的切线方程或法线方程(一(3),1997;四,2002;一(1),2004)题型10 函数单调性的判断或讨论(八(1),2003;二(8),2004)题型11 不等式的证明或判定(二(2),1997;九,1998;六,1999;二(1),2000;八(2),2003;三(15),2004)题型12 在某一区间至少存在一个点或两个不同的点使某个式子成立的证明(九,2000;七(1),2001;三(18),2005)题型13 方程根的判定或唯一性证明(三(18),2004)题型14 曲线的渐近线的求解或判定(一(1),2005)第三章一元函数积分学1 10年考题总数:12题2总分值:67分3占第一部分题量之比重:10%4占第一部分分值之比重:8%题型1 求不定积分或原函数(三,2001;一(2),2004)题型2 函数与其原函数性质的比较(二(8),2005)题型3 求函数的定积分(二(3),1997;一(1),2000;三(17),2005)题型4 求变上限积分的导数(一(2),1999;二(10),2004)题型5 求广义积分(一(1),2002)题型6 定积分的应用(曲线的弧长,面积,旋转体的体积,变力做功等)(七,1999;三,2003;六,2003)第四章向量代数和空间解析几何1 10年考题总数:3题2总分值:15分4占第一部分分值之比重:1%题型1 求直线方程或直线方程中的参数(四(1),1997)题型2求点到平面的距离(一(4),2006)题型3 求直线在平面上的投影直线方程(三,1998)题型4 求直线绕坐标轴的旋转曲面方程(三,1998)第五章多元函数微分学1 10年考题总数:19题2总分值:98分3占第一部分题量之比重:16%4占第一部分分值之比重:12%题型1 多元函数或多元复合函数的偏导的存在的判定或求解(二(1),1997;一(2),1998;四,2000;四,2001;二(9),2005;三(18(Ⅰ)),2006)题型2 多元隐函数的导数或偏导的求解或判定(三,1999;三(19),2004;二(10),2005)题型3 多元函数连续、可导与可微的关系(二(2),2001;二(1),2002)题型4 求曲面的切平面或法线方程(一(2),2000;一(2),2003)题型5 多元函数极值的判定或求解(八(2),2002;二(3),2003;三(19),2004;二(10),2006)题型6 求函数的方向导数或梯度或相关问题(八(1),2002;一(3),2005)题型7 已知一二元函数的梯度,求二元函数表达式(四,1998)第六章多元函数积分学1 10年考题总数:27题2总分值:170分3占第一部分题量之比重:23%4占第一部分分值之比重:22%题型1 求二重积分(五,2002;三(15),2005;三(15),2006)题型2 交换二重积分的积分次序(一(3),2001;二(10),2004;二(8),2006)题型3 求三重积分(三(1),1997)题型4 求对弧长的曲线积分(一(3),1998)题型5 求对坐标的曲线积分(三(2),1997;六,1998;四,1999;五,2000;六,2001;六(2),2002;一(3),2004;三(19),2006)题型6 求对面积的曲面积分(八,1999)题型7 求对坐标的曲面积分(三(17),2004;一(4),2005;一(3),2006)题型8 曲面积分的比较(二(2),2000)题型9 与曲线积分相关的判定或证明(六(1),2002;五,2003;三(19(Ⅰ)),2005)题型10 已知曲线积分的值,求曲线积分中被积函数中的未知函数的表达式(六,2000;三(19(Ⅱ)),2005题型11 求函数的梯度、散度或旋度(一(2),2001)题型12 重积分的物理应用题(转动惯量,重心等)(八,2000)第七章无穷级数1 10年考题总数:20题2总分值:129分3占第一部分题量之比重:17%4占第一部分分值之比重:16%题型1 无穷级数敛散性的判定(六,1997;八,1998;九(2),1999;二(3),2000;二(2),2002;二(9),2004;三(18),2004;二(9),2006)题型2 求无穷级数的和(九(1),1999;五,2001;七(2),2002;四,2003;三(16),2005)题型3 求函数的幂级数展开或收敛域或判断其在端点的敛散性(一(2),1997;七,2000;五,2001;四,2003;三(16),2005;三(17),2006)题型 4 求函数的傅里叶系数或函数在某点的展开的傅里叶级数的值(二(3),1999;一(3);2003)第八章常微分方程1 10年考题总数:15题2总分值:80分3占第一部分题量之比重:1%4占第一部分分值之比重:10%题型1 求一阶线性微分方程的通解或特解(六,2000;一(2),2005;一(2),2006;三(18(Ⅱ)),2006)题型2 二阶可降阶微分方程的求解(一(3),2000;一(3),2002)题型3 求二阶齐次或非齐次线性微分方程的通解或特解(一(3),1999)题型4 已知二阶线性齐次或非齐次微分方程的通解或特解,反求微分方程(一(1),2001)题型5 求欧拉方程的通解或特解(一(4),2004)题型6 常微分方程的物理应用(三(3),1997;五,1998;八,2001;三(16),2004)题型7 通过求导建立微分方程求解函数表达式或曲线方程(四(2),1997;五,1999)第二部分线性代数1 10年考题总数:51题2总分值:256分3占三部分题量之比重:23%4占三部分分值之比重:20%第一章行列式1 10年考题总数:5题2总分值:18分3占第二部分题量之比重:9%4占第二部分分值之比重:7%题型 1 求矩阵的行列式(十(2),2001;一(5),2004;一(5),2005;一(5),2006)题型2判断矩阵的行列式是否为零(二(4),1999)第二章矩阵1 10年考题总数:8题2总分值:35分3占第二部分题量之比重:15%4占第二部分分值之比重:13%题型1 判断矩阵是否可逆或求逆矩阵(八,1997)题型2 解矩阵方程或求矩阵中的参数(一(4),1997;十,2000;一(4),2001)题型3 求矩阵的n次幂(十一(3),2000)题型4 初等矩阵与初等变换的关系的判定(二(11),2004;二(12),2006)题型5 矩阵关系的判定(二(12),2005)第三章向量1 10年考题总数:9题2总分值:33分3占第二部分题量之比重:17%4占第二部分分值之比重:12%)题型1 向量组线性相关性的判定或证明(十一,1998;二(4),2000;十一(2),2000;二(4),2003;二(12),2004;二(11),2005;二(11),2006)题型2 根据向量的线性相关性判断空间位置关系或逆问题(二(4),1997;二(4),2002)第四章线性方程组共考过约11题, 约67分题型1 齐次线性方程组基础解系的求解或判定(七(1),1997;九,2001)题型2 求线性方程组的通解(十二,1998;九,2002;三(20(Ⅲ)),2005)题型3 讨论含参数的线性方程组的解的情况,如果方程组有解时求出通解(三(20),2004;三(21),2005)题型4根据含参数的方程组的解的情况,反求参数或其他(一(4),2000;三(20),2006)题型5 两个线性方程组的解的情况和它们的系数矩阵的关系的判定(一(5),2003)题型6 直线的方程和位置关系的判定(十,2003)第五章矩阵的特征值和特征向量1 10年考题总数:13题2总分值:76分3占第二部分题量之比重:25%4占第二部分分值之比重:29%题型 1 求矩阵的特征值或特征向量(一(4),1999;十一(2),2000;九,2003;三(21(Ⅰ)),2006)题型2 已知含参数矩阵的特征向量或特征值或特征方程的情况,求参数(七(2),1997;三(21),2004)题型 3 已知伴随矩阵的特征值或特征向量,求矩阵的特征值或参数或逆问题(一(4),1998;十,1999)题型4 将矩阵对角化或判断矩阵是否可对角化(七(2),1997;三(21),2004;三(21(Ⅱ)),2006)题型5 矩阵相似的判定或证明或求一个矩阵的相似矩阵(二(4),2001;十(1),2001)题型6 矩阵相似和特征多项式的关系的证明或判定(十,2002)第六章二次型1 10年考题总数:5题2总分值:27分3占第二部分题量之比重:9%4占第二部分分值之比重:10%题型1 化实二次型为标准二次型或求相应的正交变换(三(20(Ⅱ)),2005)题型2 已知一含参数的二次型化为标准形的正交变换,反求参数或正交矩阵(十,1998;一(4),2002)题型3 已知二次型的秩,求二次型中的参数和二次型所对应矩阵的表达式(三(20(Ⅰ)),2005)题型4 矩阵关系合同的判定或证明(二(4),2001)题型5 矩阵正定的证明(十一,1999)第三部分概率论与数理统计1 10年考题总数:52题2总分值:249分3占三部分题量之比重:23%4占三部分分值之比重:19%第一章随机事件和概率1 10年考题总数:7题2总分值:31分3占第三部分题量之比重:13%4占第三部分分值之比重:12%题型1 求随机事件的概率(一(5),1997;一(5),1999;一(5),2000;十一(2),2003;一(6);2005;三(22),2005)题型2随机事件的运算(二(13),2006)第二章随机变量及其分布1 10年考题总数:6题2总分值:25分3占第三部分题量之比重:11%4占第三部分分值之比重:10%题型1 求一维离散型随机变量的分布律或分布函数(九,1997)题型2 根据概率反求或判定分布中的参数(一(5),2002;二(14),2006)题型3一个函数为某一随机变量的分布函数或分布密度的判定(一(5),2002)题型4 求一维随机变量在某一区间的概率(一(6),2004)题型5求一维随机变量函数的分布(三(22(Ⅰ),2006)第三章二维随机变量及其分布1 10年考题总数:13题2总分值:59分3占第三部分题量之比重:25%4占第三部分分值之比重:23%题型1 求二维离散型随机变量的联合分布律或分布函数或边缘概率分布(十一(2),2001;三(22(Ⅱ)),2004;三(22),2005)题型2 已知部分边缘分布,求联合分布律(十二,1999;二(13),2005)题型3 求二维连续型随机变量的分布或分布密度或边缘密度函数(一(5),1998;三(22(Ⅱ)),2006)题型4 求两个随机变量的条件概率或条件密度函数(十一(1),2001)题型5 两个随机变量的独立性或相关性的判定或证明(二(5),2000)题型6 求两个随机变量的相关系数(三(22(Ⅰ)),2004)题型7 求二维随机变量在某一区域的概率(二(5),1999;一(5),2003;一(6),2006)第四章随机变量的数字特征1 10年考题总数:8题2总分值:43分3占第三部分题量之比重:15%4占第三部分分值之比重:17%题型1 求随机变量的数学期望或方差(九,1997;十二,2000,十一(1),2003)题型2 求随机变量函数的数学期望或方差(二(5),1997;十三,1998;十一,2002)题型3 两个随机变量的协方差或相关系数的求解或判定(二(5),2001;二(14),2004)第五章大数定律和中心极限定理1 10年考题总数:1题2总分值:3分3占第三部分题量之比重:1%4占第三部分分值之比重:1%题型1 利用切比雪夫不等式估计概率(一(5),2001)第六章数理统计的基本概念1 10年考题总数:17题2总分值:88分3占第三部分题量之比重:32%4占第三部分分值之比重:35%)题型1 求样本容量(十四,1998)题型2 分位数的求解或判定(二(13),2004)题型3 求参数的矩估计量或矩估计值或估计量的数字特征(十,1997;十三,2000;十二,2002;三(23(Ⅰ)),2004)题型4 求参数的最大似然估计量或估计值或估计量的数字特征(十,1997;十三,1999;十二,2002;三(23(Ⅱ)),2004;三(23),2006)题型5 总体或统计量的分布函数的判定或求解(二(6),2003;十二(1),2003;二(14),2005)题型6 讨论统计量的无偏性,一致性或有效性(十二(3),2003)题型7 求统计量的数学期望或方差或两个统计量的协方差(十二,2001;三(23),2005)题型8 求单个正态总体均值的置信区间(一(6),2003)题型9 显著性检验的判定(十五,1998)整理自人人网唐水林,本人不承担法律责任。

全国卷高考数学各知识点分值分布(2012-2018)

全国卷高考数学各知识点分值分布(2012-2018)

1 )
选修方4-程5 不
等式选讲
24
24
24
24
24
23
23
5 5分
10+12 10分
8+19(1) 8分 9 5分
27分
17分 15 5分 27分
32分
30分
16 5分 (18%) 12 5分 (11.3%) 12 5分 (18%) 12+21 17分 (21.3%) 12+21 17分
导 极值(最值) 20(2) 7分 数 几何意义 13 5分
20(1) 5分
分布类别
全国新课标1卷2012~2018年文科数学各考点分值分布表
2012
2013
2014
2015
2016
2017
题号 分值 占比 题号 分值 总分 题号 分值 总分 题号 分值 总分 题号 分值 总分 题号 分值 总分
2018 题号 分值 总分
函数性质
函数图像 函 数 函数零点
函数运算
综合应用
11 5分

5分 15分 7 5分 15分
(10%)
(10%)
8
5分 17分 (11.3%)
6
数 解三角形 17 12分
10 5分
16 5分
17 12分
4
5分 5分 5分 5分 15分 5分
9 8
21(2)
14 21(1)
7 15 11
5分 5分
13
5分
27分
27分
6分
12+21(2) 11分
5分
6分 5分
6分
13 5分
13
5分
7

2023年考研各考试科目试题内容及题型分值占比

2023年考研各考试科目试题内容及题型分值占比

2023年考研各考试科目试题内容及题型分值占比一、政治①试卷总分值及考试时间共38题,总分值100分,考试时间为180分钟,第一天上午8:30-11:30考。

答题方式为闭卷、笔试。

②各科目分数占比马克思根本原理概论〔约24分〕毛____思想和中国特色社会理论体系概论〔约30分〕中国近现代史纲要〔约14分〕思想道德修养与法律根底〔约16分〕形势与政策以及当代世界经济与政治〔约16分〕③题型及分值单项选择题 16分〔16小题,每题1分,题号1-16〕多项选择题 34分〔17小题,每题2分,题号17-33〕材料分析^p 题 50分〔5题,每题10分,题号34-38〕二、英语①试卷总分值及考试时间英语分为英语一和英语二,总分值均为100分,考试时间为180分钟,第一天下午14:00-17:00考。

答题方式为闭卷、笔试。

②英语一题型分数占比〔共52题〕第一局部:完型填空,共20小题,每题0.5分,共10分第二局部:阅读理解,4篇文章,每篇文章设5题,共20小题,每题2分,共40分第三局部:新题型,1篇文章,设5小题,每题2分,共10分第四局部:翻译英译汉,5小题,共10分第五局部:写作,共2题,分为大小作文,大作文20分〔图画类〕,小作文10分〔书信通知类〕,共30分③英语二题型分数占比〔共48题〕第一局部:完型填空,共20小题,每题0.5分,共10分第二局部:阅读理解,4篇文章,每篇文章设5题,共20小题,每题2分,共40分第三局部:新题型,1篇文章,设5小题,每题2分,共10分第四局部:翻译英译汉,1题,共15分第五局部:写作,共2题,分为大小作文,大作文15分〔图表类〕,小作文10分〔书信通知类〕,共25分三、数学①试卷总分值及考试时间数学分为数学一、数学二和数学三,总分值均为150分,考试时间为180分钟,第二天上午8:30-11:30考。

答题方式为闭卷、笔试。

不允许使用计算器。

②题型分值〔共23题〕单项选择题:10题〔每题5分〕,共50分填空题:6题〔每题5分〕,共30分解答证明题〔下称为大题〕:6题,共70分③考试内容数学一/三:高等数学,90分,占比60%;4道选择题,4道填空题,5道大题线性代数,30分,占比20%;2道选择题,1道填空题,2道大题概率论与数理统计,30分,占比20%;2道选择题,1道填空题,2道大题数学二:高等数学,120分,占比80%;6道选择题,5道填空题,7道大题线性代数,30分,占比20%;2道选择题,1道填空题,2道大题四、管综管理类联考综合,简称:管综,科目代码199。

初中物理各章中考考点题型分值

初中物理各章中考考点题型分值

初中物理各章中考考点明细表考察的知识点共73个,具体分布如下:一、声现象(4个考点)3%1 声音的产生与传播是声音的产生及其传播选择题2 声音的特性区分音调、响度与音色3 噪声的危害和控制防治噪声4 声的利用声的利用二、光学(两大块)10%(一)、光现象(5个考点)1 光的传播光沿直线传播及其应用选择填空作图实验2 光的反射光的反射规律及其光的反射现象3 平面镜成像平面镜的成像特点、原理、现象及其平面镜成像的实验方案4 光的折射光的折射规律及其光的折射现象光与颜料的三原色及其物体的颜色5 光的色散、看不见的光(二)、透镜及其应用(2个考点)1 透镜成像规律凸透镜的成像规律及应用。

重点2 眼睛和眼镜远近视眼的成因及其矫正选择填空作图实验三、物态变化(4个考点)7%1 温度与温度计原理和正确使用方法选择填空简答2 熔化和凝固熔化和凝固的温度—时间图象,并能从中筛选出有用的信息来区分是晶体还是非晶体及其熔点温度3 汽化和液化区别蒸发和沸腾,且对水的沸腾实验中的器材、步骤、观察到的现象及评估与交流及其汽化和液化的方法、措施4 升华和凝华四、电与磁(五大块)40%(一)、电路、电流、电压和电阻(7个考点)选择填空1 电路电路的组成;能从能量的角度认识电源和用电器的作用2 串联和并联电路串联电路和并联电路连接的特点3 电流生活中有关用电器工作的电流值;正确使用电流表,正确读出电流表的示数4 串、并联电路的电流规律正确使用电流表测量串联电路和并联电路中的电流;在电路图中利用其电流规律来分析做题5 电压电压表的使用方法及读数;区分电压表在电路中测谁的电压6 串、并联电路的电压规律利用串联电路和并联电路的电压规律来分析电路,判断故障7 电阻理解电阻是导体本身的一种属性(二)、欧姆定律(2个)1 电流与电压、电阻的关系通过实验、分析和探索电流与电压、电阻的关系实验计算2 测定小灯泡的电阻测定小灯泡电阻实验的整个探究过程重点(三)、电功率、家庭电路(5个)1 电能电能的单位换算;电能表参数的理解及其电能的求法重点实验计算2 电功率电功率的计算;估计一些家用电器的功率;区分电功与电功率3 测量小灯泡的电功率实验的方案设计、实验原理、电路图的画法、数据的处理及其得出实验结论4 电与热利用焦耳定律的知识来解释相关现象5 家庭电路家庭电路的连接方式;安全用电及其排除家庭中一些常见的电路故障(四)、电与磁:(6个考点)1 磁现象判断物体是否有磁性,及其磁在日常生活中的应用简答作图选择填空2 磁场各种磁体周围的磁场分布情况3 电生磁电磁铁磁性强弱与什么因素有关及有什么关系”的实验探究;奥斯特实验的做法及其结论4 电磁继电器电磁继电器的工作原理的解释5 磁生电产生感应电流的条件6 电动机和发电机工作原理及其能量转化(五)、信息的传递:[考点提示]1 知道光是电磁波,电磁波在真空中的传播速度;知道波长、频率和波速的关系2 常识性了解卫星通信、光纤通信和网络通信五、力学40%(一)多彩的物质世界(5个考点)1 宇宙和微观世界宇宙是由物质组成,物质由分子和原子组成,微观角度看物质三种状态,纳米技术的应用和前景中考热点实验计算2 物质的物理属性3 质量质量是物体本身的一种属性,质量的单位,托盘天平的使用方法以及用托盘天平测量固体和液体的质量4 密度5 测量物质的密度测量固体和液体的密度(二)运动和力(6个考点)1 机械运动机械运动、参照物、运动和静止的相对性的解释易考点填空简答2 运动的快慢变速运动及平均速度3 长度、时间及其测量利用刻度尺测量长度.4 力 力的理解、力的单位、力的作用效果、力的三要素、力的示意图重点:是能结合日常生活事例理解解释力的作用效果,能用示意图表示力。

初中的考试题型和所占的分值

初中的考试题型和所占的分值

初中数学试卷构造内容比率:数与代数60 分左右,约占50%左右;空间与图形45 分左右,约占38%左右;统计与概率 15 分左右,约占12%左右。

3题型比率:选择题共15 个题,每题 3 分,计 45 分,约占总分的37.5%;填空题共 6 个题,每题分,计 18 分,占总分的15%;解答题共7 个题 , 共 57 分,约占总分的47.5%。

合计 28 个题。

一.选择题:共15 小题,每题 3 分,共 45 分1、考点:有理数的乘法。

2、考点:简单几何体的三视图。

3、考点:科学记数法―表示较大的数。

4、考点:中位数。

5、考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;负整数指数幂。

6、考点:解一元一次不等式组;不等式的性质;解一元一次不等式。

7、考点:菱形的性质。

8、考点:分式的加减法。

9、考点:用样本预计整体.10、考点:一次函数图象与系数的关系。

11、考点:等腰梯形的性质。

12、考点:圆周角定理;坐标与图形性质;勾股定理;锐角三角函数的定义。

13、考点:二次函数的应用。

14、考点:规律型:数字的变化类。

专题:应用题。

15、考点:解直角三角形;三角形的面积。

二、填空题(共 6 小题,每题 3 分,共 18 分.)16、考点:绝对值。

17、考点:因式分解- 运用公式法。

18、考点:解一元二次方程- 因式分解法;解一元一次方程。

19、考点:平行线的性质。

20、考点:反比率函数图像上点的坐标特点。

21、考点:直线与圆的地点关系,等边三角形的性质。

三、解答题22、考点:解分式方程,整式的混淆运算。

7 分23、考点:正方形的性质,三角形内角和定理,全等三角形的判断与性质。

7 分24、考点:二元一次方程组的运用。

8 分25、考点:列表发与树状图法。

8 分26、考点:解直角三角形,待定系数法求一次函数分析式。

9 分27、考点:二次函数综合题。

9 分28、考点:相像三角形、全等三角形、等腰三角形的判断与性质。

重庆市高考政治近六年考点分布统计表(姜游)精编

重庆市高考政治近六年考点分布统计表(姜游)精编

题型 选择 主观
分值
难度
题型 选择 主观
分值
难度
题型 选择 主观
分值
难度
题型 选择 主观
分值
(1)财政收 入与支出 8. 国 家收 入的 分配
(2)财政的 作用

10
II

4
II
9. 征 税与 纳税
(1)税收及 其种类

4
II

4
II
(2)依法纳 税

10. 社 会主 义市 场经 济
(1)市场经 济基本原理

4
II
经 济 生 活
(3)融资 生产决定 分配 按劳分配 (1)分配制 及其作用 度 我国多种 分配方式 并存 收入分配 方式对效 率、公平 (2)效率与 的影响 公平

4
II
7. 个 人收 入的 分配
7. 个 人收 入的 一级 分配
重庆市近六年政治高考考点统计表
2008年 二级考纲
(2)效率与 公平 2009年 2010 2011年
2008年 一级 3. 发 考纲 展社
会主 义民 主政 治 2009年 2010 2011年
2012年 难度 题型 选择 4 I 主观 分值 难度 选择 题型
20
二级考纲
三级考纲
题型 选择 主观 √
分值
难度
题型 选择 主观
分值
难度
题型 选择 主观
分值
难度
题型 选择 √ 主观
分值
(2)我国的 政党制度 不断完善 中国共产 党的领导 方式和执 政方式 中国特色 的政党制 度 我国是统 一的多民 族国家 我国处理 民族关系 的基本原 则 我国民族 (3)我国的 区域自治 民族区域自治 的法制化 进程 制度及宗教政 策 我国的民 族区域自 治制度 我国民族 区域自治 制度的优 越性 我国的宗 教政策 主权国家 (1)国际社 国际组织 会的成员 联合国 国际关系 及其决定 (2)处理国 因素 际关系的决定 维护我国 性因素 的国家利 益 时代的主 题 世界多极 (3)世界政 化在曲折 治经济发展的 中发展 4. 当 基本趋势 中国政府 代国 关于建立 际社 国际新秩 会 序的主张

近三年高考文理科数学试卷考点及其分值分析

近三年高考文理科数学试卷考点及其分值分析

近三年高考文科数学试卷考点及其分值分析一.选择题1.复数代数形式的混合运算分值:52. 交、并、补集的混合运算分值:53.命题的否定分值:54.函数奇偶性的判断分值:55.等比数列的通项公式及其性质分值:56.古典概型及其概率计算公式分值:57.分段函数的应用分值:58.余弦定理;正弦定理分值:59.命题的真假判断与应用分值:510.三角函数中的恒等变换应用分值:511.独立性检验的应用, 概率与统计, 程序框图分值:512.程序框图, 计算题;算法和程序框图分值:513.双曲线的简单性质, 计算题, 圆锥曲线的定义、性质与方程分值:514.函数的图象及其变换, 函数的性质及应用分值:515.由三视图求面积, 体积分值:5二.填空题1.利用导数研究曲线上某点切线方程分值:52.向量的模分值:53.线性回归方程分值:54.平面向量数量积的运算分值:55.简单线性规划, 有理数指数幂的化简求值分值:56.等差数列的性质, 点列、递归数列与数学归纳法分值:57.椭圆的简单性质, 圆锥曲线的定义、性质与方程分值:58.绝对值不等式分值:5三.解答题1.三角函数中的恒等变换应用, 正弦函数图像, 函数奇偶性的性质分值:122.类比推理, 双曲线的简单性质分值:123.等比关系的确定, 数列递推式, 等差数列与等比数列分值:124.空间几何综合问题分值:125.二次不等式与实际问题分值:126.利用导数求闭区间上函数的最值, 利用导数研究函数的单调性分值:127.空间中直线与直线之间的位置关系, 棱柱、棱锥、棱台的体积分值:128.直线与圆锥曲线的综合问题分值:139.排列、组合的实际应用分值:14近三年江西省理科高考数学试卷考点及其分值分析一.选择题1.集合运算、解一元二次不等式分值:52.复数模的概念、四则运算分值:53.诱导公式与和差角分值:54.抽象函数奇偶性分值:55.全称与特称命题分值:56.相互独立事件的概率分值:57.三视图与直观图分值:58.含参数不等式与零点分值:59.古典概型分值:510.双曲线几何性质与数量积分值:511.三角函数图像性质分值:512.圆锥体积分值:513.程序框图分值:514.平面向量基本定理分值:515.二倍角公式和同角三角函数基本关系式分值:516.线性约束条件、全称与特称命题分值:517.直线与抛物线、向量运算分值:518.二项式通项分值:519.导数、函数零点与参数范围分值:520.组合体三视图与表面积分值:5二.填空题1.函数奇偶性分值:52.椭圆与圆的方程分值:53.推理与证明分值:54.线性规划与斜率分值:55.向量的和与数量积分值:56.正弦定理、和差角公式、三角形面积分值:5三.解答题1.正弦定理、和差角公式、三角形面积分值:122.递推公式与等差数列、裂项相消法求和分值:123.等差数列通项与求和分值:124.频率分布直方图中的平均数与方差、正态分布分值:125.线面垂直与线线垂直分值:126.三棱柱中的线线关系、二面角分值:127.散点图、函数模拟与线性回归分值:128.求轨迹方程、直线与椭圆相交弦长与面积最值分值:129.导数几何意义、直线与抛物线, 导数与单调性与最值, 参数与零点问题分值:10.平面几何直线与圆分值:1211.解含绝对值不等式与三角形面积分值:1212.均值不等式、解不定方程分值:1213.方程互化与函数(三角形面积, 线段长)最值分值:12以活活被整死;堂堂大元帅受辱骂;……这哪里还有什么尊重可言!3、用在设问句后。

高考数学总复习考点及分值分配

高考数学总复习考点及分值分配

与高考有关的所有数学问题(二)题型分析1、选择题部分单选的总评和总结:本套选择题中第1~5题比较简单,第6题考查学生的归纳能力,第8题是一个应用性问题,第9题是以新增的概率统计为素材的比较大小题,但要求学生熟悉公式的变形推导,方可解决。

第10题图形题是江西试卷的一大特点。

2、填空题部分填空题的总评和总结:填空题考生容易下手,其中第15题是对选修的考查,基本上是一学就会的题3、解答题部分解答题的总评和总结:解答题第16、17题只要学生运算细心,基本上能顺利拿下,第18题是以立几体积计算为背景的古典概型题,要求学生有较强计数能力。

第19题立几题回归到往年的中档题位置,传统方法,向量法都容易解决。

第20题解析几何第1问学生容易拿分,第2问是开放性问题,要求学生有较强的运算能力和计算技巧及很强的推理能力才可得到最终结论的题。

第21题是定义型的题,比较抽象,要求学生有很强的理解能力和扎实的基本功,相对较难一点,但没有偏难题。

(三)分析与总结通过对今年我省数学高考试卷的分析,我感到今年的江西高考数学试卷在命制中,本试卷的知识覆盖面广,基本把每个知识点都涉及到。

题目数量、难度安排适宜,题目立意新颖,试卷难、中、易比例恰当。

达到了考基础、考能力、考素质、考潜能的考试目标。

编辑启示我们组稿时主要主要以下几点:1.基础能力,即基本的计算能力。

2.图形处理能力,包括两点,第一点,通过数字变成图形,第二点,通过图形读出数字的规律。

3.归纳猜想能力,归纳猜想并不指的我们前面讲过的数学归纳法问题,归纳和猜想意思是我们通过一些题目信息去提炼出最关键的问题,让我们知道那个是题眼,了解到这个题目本质之后,去代入一些特殊的、极限的值。

4.知识联系,如能否把函数与其他知识结合起来,比如说复习到后面的解析几何的时候,能不能把后面的解析几何起来。

高中数学必修1知识点第一章集合与函数概念(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N表示自然数集,N*或N表示正整数集,Z表示整数集,Q表示有理数集,R表示+实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x |x 具有的性质},其中x 为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.(8)交集、并集、补集【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(2)一元二次不等式的解法〖1.2〗函数及其表示(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数()f x和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作:f A B→.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x的定义域为[,]a b,其复合函数[()]f g x的定义域应由不等式()a g x b≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x=可以化成一个系数含有y的关于x的二次方程2++=,则在()0()()()0a y xb y xc ya y≠时,由于,x y为实数,故必须有2()4()()0∆=-⋅≥,从而确定函数的值域或最值.b y a yc y④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作:f A B→.②给定一个集合A到集合B的映射,且,∈∈.如果元素a和元素b对应,那么我a Ab B们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质(1)函数的单调性①定义及判定方法如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x.1.< x..2.时,都有f(x...1.)>f(x.....2.).,那么就说f(x)在这个区间上是减函数....(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x=,令()u g x=,若()y f u=为增,()u g x=为增,则[()]y f g x=为增;若()y f u=为减,()u g x=为减,则[()]y f g x=为增;若()y f u=为增,()u g x=减.为减,则[()]y f g x=为减;若()y f u=为减,()u g x=为增,则[()]y f g x=为(2)打“√”函数()(0)af x x ax=+>的图象与性质()f x分别在(,a-∞-、[,)a+∞上为增函数,分别在[,0)a-、]a上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换②伸缩变换③对称变换(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数(1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n n 是偶数时,正数a 的正的n的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.②式子n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r r ab a b a b r R =>>∈(4)指数函数〖2.2〗对数函数(1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-=③数乘:log log ()n a a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 (5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则qpy x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba-+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=(4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号.①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.(Ⅰ)当0a >时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2bm f a=- ③若2b q a ->,则()m f q =(f q (f =) 2a ()2ba - ③若2b q a ->,则()M f q =)q)第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

近三年高考文理科数学试卷考点及其分值分析

近三年高考文理科数学试卷考点及其分值分析

近三年高考文科数学试卷考点及其分值分析一.选择题1.复数代数形式的混合运算分值:52. 交、并、补集的混合运算分值:53.命题的否定分值:54.函数奇偶性的判断分值:55.等比数列的通项公式及其性质分值:56.古典概型及其概率计算公式分值:57.分段函数的应用分值:58.余弦定理;正弦定理分值:59.命题的真假判断与应用分值:510.三角函数中的恒等变换应用分值:511.独立性检验的应用,概率与统计,程序框图分值:512.程序框图,计算题;算法和程序框图分值:513.双曲线的简单性质,计算题,圆锥曲线的定义、性质与方程分值:514.函数的图象及其变换,函数的性质及应用分值:515.由三视图求面积,体积分值:5二.填空题1.利用导数研究曲线上某点切线方程分值:52.向量的模分值:53.线性回归方程分值:54.平面向量数量积的运算分值:55.简单线性规划,有理数指数幂的化简求值分值:56.等差数列的性质,点列、递归数列与数学归纳法分值:57.椭圆的简单性质,圆锥曲线的定义、性质与方程分值:58.绝对值不等式分值:5三.解答题1.三角函数中的恒等变换应用,正弦函数图像,函数奇偶性的性质分值:122.类比推理,双曲线的简单性质分值:123.等比关系的确定,数列递推式,等差数列与等比数列分值:124.空间几何综合问题分值:125.二次不等式与实际问题分值:126.利用导数求闭区间上函数的最值,利用导数研究函数的单调性分值:127.空间中直线与直线之间的位置关系,棱柱、棱锥、棱台的体积分值:128.直线与圆锥曲线的综合问题分值:139.排列、组合的实际应用分值:14近三年江西省理科高考数学试卷考点及其分值分析一.选择题1.集合运算、解一元二次不等式分值:52.复数模的概念、四则运算分值:53.诱导公式与和差角分值:54.抽象函数奇偶性分值:55.全称与特称命题分值:56.相互独立事件的概率分值:57.三视图与直观图分值:58.含参数不等式与零点分值:59.古典概型分值:510.双曲线几何性质与数量积分值:511.三角函数图像性质分值:512.圆锥体积分值:513.程序框图分值:514.平面向量基本定理分值:515.二倍角公式和同角三角函数基本关系式分值:516.线性约束条件、全称与特称命题分值:517.直线与抛物线、向量运算分值:518.二项式通项分值:519.导数、函数零点与参数范围分值:520.组合体三视图与表面积分值:5二.填空题1.函数奇偶性分值:52.椭圆与圆的方程分值:53.推理与证明分值:54.线性规划与斜率分值:55.向量的和与数量积分值:56.正弦定理、和差角公式、三角形面积分值:5三.解答题1.正弦定理、和差角公式、三角形面积分值:122.递推公式与等差数列、裂项相消法求和分值:123.等差数列通项与求和分值:124.频率分布直方图中的平均数与方差、正态分布分值:125.线面垂直与线线垂直分值:126.三棱柱中的线线关系、二面角分值:127.散点图、函数模拟与线性回归分值:128.求轨迹方程、直线与椭圆相交弦长与面积最值分值:129.导数几何意义、直线与抛物线,导数与单调性与最值,参数与零点问题分值:10.平面几何直线与圆分值:1211.解含绝对值不等式与三角形面积分值:1212.均值不等式、解不定方程分值:1213.方程互化与函数(三角形面积,线段长)最值分值:12以活活被整死;堂堂大元帅受辱骂;……这哪里还有什么尊重可言!3、用在设问句后。

高考各知识点占分值

高考各知识点占分值

高考各知识点占分值高考是每个中国学生都要面临的一场考试,它决定着他们未来的道路。

在高考中,不同的知识点所占的分值也不尽相同。

本文将探讨高考中各知识点的分值分配情况,并分析其中的原因。

首先,语文是高考中最为重要的学科之一,它的占分值相对较高。

语文考试中,常见的题型包括阅读理解、作文、诗歌鉴赏等。

传统阅读与现代阅读材料各占50%的比例,并且每篇材料的分值都不相同。

作文题一般占10%~15%的分值,考察学生的写作能力和思维逻辑能力。

诗歌鉴赏一般占5%的分值,通过对古代诗歌的理解考察学生对文学艺术的欣赏能力。

数学是高考中另一个重要的学科,其占分值范围在30%~40%之间。

数学考试中,常见的题型包括选择题、填空题、解答题等。

选择题占比较高的30%左右,题量较大。

填空题占比较低的10%左右,考察学生对数学知识点的掌握程度。

解答题占的分值相对较高,考察学生的解题能力和思维能力。

英语也是高考的一门重要科目,其占分值在卷面总分的15%~25%之间。

英语考试中,常见的题型包括阅读理解、完形填空、单项选择等。

阅读理解题一般占比较高的15%,通过对英文文章的理解考察学生的阅读能力。

完形填空题和单项选择题的比例相对较低,分别占比5%和10%左右。

理科类知识点在高考中的分值比例相对较高。

物理、化学、生物三门学科的总分一般在卷面总分的60%左右。

这是因为理科类学科的知识点相对较多,且涉及到实验操作和应用能力。

物理、化学和生物的占分值比例一般在20%~25%之间,其中物理和化学都有实验题型,占比均为5%~10%。

文科类知识点在高考中的分值比例相对较低。

历史、地理、政治三门学科的总分一般在卷面总分的20%左右。

这是因为文科类学科的知识点相对较少,且大部分考点都是基础性的知识点。

历史、地理和政治的占分值比例一般在5%~10%之间,其中历史和地理都有图表题型,占比均为5%左右。

总的来说,高考中各知识点的占分值是根据科目的学科特点和学科难度来确定的。

高考数学总复习考点及分值分配

高考数学总复习考点及分值分配

与高考有关的所有数学问题(二)题型分析单选的总评和总结:本套选择题中第1~5题比较简单,第6题考查学生的归纳能力,第8题是一个应用性问题,第9题是以新增的概率统计为素材的比较大小题,但要求学生熟悉公式的变形推导,方可解决。

第10题图形题是江西试卷的一大特点。

填空题考生容易下手,其中第15题是对选修的考查,基本上是一学就会的题解答题的总评和总结:解答题第16、17题只要学生运算细心,基本上能顺利拿下,第18题是以立几体积计算为背景的古典概型题,要求学生有较强计数能力。

第19题立几题回归到往年的中档题位置,传统方法,向量法都容易解决。

第20题解析几何第1问学生容易拿分,第2问是开放性问题,要求学生有较强的运算能力和计算技巧及很强的推理能力才可得到最终结论的题。

第21题是定义型的题,比较抽象,要求学生有很强的理解能力和扎实的基本功,相对较难一点,但没有偏难题。

(三)分析与总结通过对今年我省数学高考试卷的分析,我感到今年的江西高考数学试卷在命制中,本试卷的知识覆盖面广,基本把每个知识点都涉及到。

题目数量、难度安排适宜,题目立意新颖,试卷难、中、易比例恰当。

达到了考基础、考能力、考素质、考潜能的考试目标。

编辑启示我们组稿时主要主要以下几点: 1. 基础能力,即基本的计算能力。

2. 图形处理能力,包括两点,第一点,通过数字变成图形,第二点,通过图形读出数字的规律。

3. 归纳猜想能力,归纳猜想并不指的我们前面讲过的数学归纳法问题,归纳和猜想意思是我们通过一些题目信息去提炼出最关键的问题,让我们知道那个是题眼,了解到这个题目本质之后,去代入一些特殊的、极限的值。

4. 知识联系,如能否把函数与其他知识结合起来,比如说复习到后面的解析几何的时候,能不能把后面的解析几何起来。

高中数学 必修1知识点 第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N*或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集B{x A A = ∅=∅ B A ⊆ B B ⊆B{x A A = A ∅= B A ⊇ B B ⊇()U A =∅ð 2()U A U =ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法()()()U U A B A B =痧?()()()U U A B A B =痧?(2)一元二次不等式的解法0)〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f)叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且ab <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f)叫做集合A到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.yxo③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()ug x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点 1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的nn 是偶数时,正数a 的正的nn 次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a=;当n为奇数时,a=;当n为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)rr r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数 【2.2.1】对数与对数运算(1)对数的定义 ①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a xN =,其中a 叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x ax N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N,即log eN (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()aa a M N MN += ②减法:log log log a a aM M N N-=③数乘:log log ()n aa n M M n R =∈ ④log a N a N =⑤loglog (0,)bn a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且【2.2.2】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()xy ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x=是奇函数,若p 为奇数q 为偶数时,则q py x=是偶函数,若p 为偶数q 为奇数时,则qpy x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质 ①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--.②当0a>时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,2min 4()4ac b f x a-=;当0a<时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba-+∞上递减,当2bx a =-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||M x M x M M x x =-. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2b x a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出. (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a>时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =02a )q ()f p )M = ②若p q ≤≤ ③若2b q a->,则xxxx 0x x(q)0x()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

高考数学考点解析及分值分布

高考数学考点解析及分值分布

高考数学考点解析及分值分布1.集合与简易逻辑.分值在5~10分左右(一道或两道选择题),考查的重点是抽象思维能力,主要考查集合与集合的运算关系,将加强对集合的计算与化简的考查,并有可能从有限集合向无限集合发展.简易逻辑多为考查“充分与必要条件”及命题真伪的判别.2.函数与导数,函数是高中数学的主要内容,它把中学数学的各个分支紧密地联系在一起,是中学数学全部内容的主线.在高考中,至少三个小题一个大题,分值在30分左右.以指数函数、对数函数、生成性函数为载体结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)、反函数问题常常是选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势.函数与导数的结合是高考的热点题型,文科以三次(或四次)函数为命题载体,理科以生成性函数(对数函数、指数函数及分式函数)为命题载体,以切线问题、极值最值问题、单调性问题、恒成立问题为设置条件,与不等式、数列综合成题,是解答题试题的主要特点.3.不等式;一般不会单独命题,会在其他题型中“隐蔽”出现,分值一般在10左右.不等式作为一种工具广泛地应用在涉及函数、数列、解几等知识的考查中,不等式重点考五种题型:解不等式(组);证明不等式;比较大小;不等式的应用;不等式的综合性问题.选择题和填空题主要考查不等式性质、解法及均值不等式.解答题会与其它知识的交汇中考查,如含参量不等式的解法(确定取值范围)、数列通项或前n项和的有界性证明、由函数的导数确定最值型的不等式证明等.4.数列:数列是高中数学的重要内容,又是初等数学与高等数学的重要衔接点,所以在历年的高考解答题中都占有重要的地位.题量一般是一个小题一个大题,有时还有一个与其它知识的综合题.分值在20分左右,文科以应用等差、等比数列的概念、性质求通项公式、前n 项和为主;理科以应用Sn或an之间的递推关系求通项、求和、证明有关性质为主.数列是特殊的函数,而不等式是深刻认识函数与数列的工具,三者综合的求解题与求证题是对基础知识和基础能力的双重检验,是高考命题的新热点.5.三角函数:分值在20分左右(两小一大).三角函数考题大致为以下几类:一是三角函数的恒等变形,即应用同角变换和诱导公式,两角和差公式,二倍角公式,求三角函数值及化简、证明等问题;二是三角函数的图象和性质,即图像的平移、伸缩变换与对称变换、画图与视图,与单调性、周期性和对称性、最值有关的问题;三是三角形中的三角问题.高考对这部分内容的命题有如下趋势:⑴降低了对三角变形的要求,加强了对三角函数的图象和性质的考察.⑵多是基础题,难度属中档偏易.⑶强调三角函数的工具性,加强了三角函数与其他知识的综合,如与向量知识、三角形问题、解析几何、立体几何的综合.以三角形为载体,以三角函数为核心,以正余弦公式为主体,考查三角变换及其应用的能力,已成为考试热点.6.向量:分值在10分左右,一般有一道小题的纯向量题,另外在函数、三角、解析几何与立体几何中均可能结合出题.向量是新增的重点内容,它融代数特征和几何特征于一体,能与三角函数、函数、解析几何、立体几何自然交汇、亲密接触.在处理位置关系、长度、夹角计算上都有优势,向量作为代数与几何的纽带,理应发挥其坐标运算与动点轨迹、曲线方程等综合方面的工具性功能,因此加大对向量的考查力度,充分体现向量的工具价值和思维价值,应该是今后高考命题的发展趋势.向量和平面几何的结合是高考选择、填空题的命题亮点,向量不再停留在问题的直接表达水平上,而与解析几何、函数、三角等知识有机结合将成为一种趋势,会逐渐增加其综合程度.7.立体几何:分值在22分左右(两小一大),两小题以基本位置关系的判定与柱、锥、球的角、距离、体积计算为主,一大题以证明空间线面的位置关系和有关数量关系计算为主,诸如空间线面平行、垂直的判定与证明,线面角和距离的计算.试题的命制载体可能趋向于不规则几何体,但仍以“方便建系”为原则.8.解析几何:课本第七章直线与圆的方程、第八章圆锥曲线统称为解析几何,高考对解析几何的考查一般是三个小题一个大题,所占分值约30分.其规律是线性规划、直线与圆各一个小题,涉及圆锥曲线的图形、定义或简单几何性质的问题一个小题,直线与圆锥曲线的综合问题一个大题.解析几何的重点仍然是圆锥曲线的性质,包括:直线的倾斜角、斜率、距离、平行垂直、点对称、直线对称、线性规划有关问题等等.直线和圆锥曲线的位置关系以及轨迹问题,仍然以考查方程思想及用韦达定理处理弦长和弦中点为重点.坐标法使平面向量与平面解析几何自然地联系并有机结合起来.相关交汇试题应运而生,涉及圆锥曲线参数的取值范围问题也是命题亮点.9.排列、组合、二项式定理、概率统计:分值在22分左右两小一大,排列组合与二项式定理一般各一个小题,大题理科以概率统计、文科以求概率的应用题为主,分值超过其所占课时的比重.这部分考查内容包括:二项式定理及运用;排列与组合;概率与统计.在解答题中,排列、组合与概率是重点.其考查方式以排列组合为基础,着重考查学生应用概率知识解决实际问题的能力.理科考查重点为随机变量的分布列及数学期望;文科以等可能事件、互斥事件、相互独立事件的概率求法为主.特别要引起注意是以“正态分布”相关内容为题材,文科卷以“抽样”相关内容为题材设计试题。

高考数学考点解析及分值分布

高考数学考点解析及分值分布

高考数学考点解析及分值分布1.集合与简易逻辑;分值在5~10分左右一道或两道选择题,考查的重点是抽象思维能力,主要考查集合与集合的运算关系,将加强对集合的计算与化简的考查,并有可能从有限集合向无限集合发展;简易逻辑多为考查“充分与必要条件”及命题真伪的判别;2.函数与导数,函数是高中数学的主要内容,它把中学数学的各个分支紧密地联系在一起,是中学数学全部内容的主线;在高考中,至少三个小题一个大题,分值在30分左右;以指数函数、对数函数、生成性函数为载体结合图象的变换平移、伸缩、对称变换、四性问题单调性、奇偶性、周期性、对称性、反函数问题常常是选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势;函数与导数的结合是高考的热点题型,文科以三次或四次函数为命题载体,理科以生成性函数对数函数、指数函数及分式函数为命题载体,以切线问题、极值最值问题、单调性问题、恒成立问题为设置条件,与不等式、数列综合成题,是解答题试题的主要特点;3.不等式;一般不会单独命题,会在其他题型中“隐蔽”出现,分值一般在10左右;不等式作为一种工具广泛地应用在涉及函数、数列、解几等知识的考查中,不等式重点考五种题型:解不等式组;证明不等式;比较大小;不等式的应用;不等式的综合性问题;选择题和填空题主要考查不等式性质、解法及均值不等式;解答题会与其它知识的交汇中考查,如含参量不等式的解法确定取值范围、数列通项或前n项和的有界性证明、由函数的导数确定最值型的不等式证明等;4.数列:数列是高中数学的重要内容,又是初等数学与高等数学的重要衔接点,所以在历年的高考解答题中都占有重要的地位.题量一般是一个小题一个大题,有时还有一个与其它知识的综合题;分值在20分左右,文科以应用等差、等比数列的概念、性质求通项公式、前n 项和为主;理科以应用Sn或an之间的递推关系求通项、求和、证明有关性质为主;数列是特殊的函数,而不等式是深刻认识函数与数列的工具,三者综合的求解题与求证题是对基础知识和基础能力的双重检验,是高考命题的新热点;5.三角函数:分值在20分左右两小一大;三角函数考题大致为以下几类:一是三角函数的恒等变形,即应用同角变换和诱导公式,两角和差公式,二倍角公式,求三角函数值及化简、证明等问题;二是三角函数的图象和性质,即图像的平移、伸缩变换与对称变换、画图与视图,与单调性、周期性和对称性、最值有关的问题;三是三角形中的三角问题.高考对这部分内容的命题有如下趋势:⑴降低了对三角变形的要求,加强了对三角函数的图象和性质的考察.⑵多是基础题,难度属中档偏易.⑶强调三角函数的工具性,加强了三角函数与其他知识的综合,如与向量知识、三角形问题、解析几何、立体几何的综合;以三角形为载体,以三角函数为核心,以正余弦公式为主体,考查三角变换及其应用的能力,已成为考试热点;6.向量:分值在10分左右,一般有一道小题的纯向量题,另外在函数、三角、解析几何与立体几何中均可能结合出题;向量是新增的重点内容,它融代数特征和几何特征于一体,能与三角函数、函数、解析几何、立体几何自然交汇、亲密接触;在处理位置关系、长度、夹角计算上都有优势,向量作为代数与几何的纽带,理应发挥其坐标运算与动点轨迹、曲线方程等综合方面的工具性功能,因此加大对向量的考查力度,充分体现向量的工具价值和思维价值,应该是今后高考命题的发展趋势;向量和平面几何的结合是高考选择、填空题的命题亮点,向量不再停留在问题的直接表达水平上,而与解析几何、函数、三角等知识有机结合将成为一种趋势,会逐渐增加其综合程度;7.立体几何:分值在22分左右两小一大,两小题以基本位置关系的判定与柱、锥、球的角、距离、体积计算为主,一大题以证明空间线面的位置关系和有关数量关系计算为主,诸如空间线面平行、垂直的判定与证明,线面角和距离的计算;试题的命制载体可能趋向于不规则几何体,但仍以“方便建系”为原则;8.解析几何:课本第七章直线与圆的方程、第八章圆锥曲线统称为解析几何,高考对解析几何的考查一般是三个小题一个大题,所占分值约30分;其规律是线性规划、直线与圆各一个小题,涉及圆锥曲线的图形、定义或简单几何性质的问题一个小题,直线与圆锥曲线的综合问题一个大题;解析几何的重点仍然是圆锥曲线的性质,包括:直线的倾斜角、斜率、距离、平行垂直、点对称、直线对称、线性规划有关问题等等;直线和圆锥曲线的位置关系以及轨迹问题,仍然以考查方程思想及用韦达定理处理弦长和弦中点为重点;坐标法使平面向量与平面解析几何自然地联系并有机结合起来;相关交汇试题应运而生,涉及圆锥曲线参数的取值范围问题也是命题亮点;9.排列、组合、二项式定理、概率统计:分值在22分左右两小一大,排列组合与二项式定理一般各一个小题,大题理科以概率统计、文科以求概率的应用题为主,分值超过其所占课时的比重;这部分考查内容包括:二项式定理及运用;排列与组合;概率与统计;在解答题中,排列、组合与概率是重点;其考查方式以排列组合为基础,着重考查学生应用概率知识解决实际问题的能力;理科考查重点为随机变量的分布列及数学期望;文科以等可能事件、互斥事件、相互独立事件的概率求法为主;特别要引起注意是以“正态分布”相关内容为题材,文科卷以“抽样”相关内容为题材设计试题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档