数学---河南省南阳市2018届高三(上)期末试卷(理)(解析版)
2018年普通高等学校招生全国统一考试数学试题 理(全国卷1,解析版)
2018年普通高等学校招生全国统一考试数学试题理(全国卷1)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设,则A. B. C. D.【答案】C【解析】分析:首先根据复数的运算法则,将其化简得到,根据复数模的公式,得到,从而选出正确结果.详解:因为,所以,故选C.点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得结果,属于简单题目.2. 已知集合,则A. B.C. D.【答案】B【解析】分析:首先利用一元二次不等式的解法,求出的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式得,所以,所以可以求得,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.4. 设为等差数列的前项和,若,,则A. B. C. D.【答案】B详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.5. 设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D【解析】分析:利用奇函数偶此项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.详解:因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.6. 在△中,为边上的中线,为的中点,则A. B.C. D.【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.7. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N 在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.8. 设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 8【答案】D【解析】分析:首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得,最后应用向量数量积坐标公式求得结果.详解:根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.9. 已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.10. 下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p3【答案】A详解:设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.11. 已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=A. B. 3 C. D. 4【答案】B【解析】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离同时求得的值.详解:根据题意,可知其渐近线的斜率为,且右焦点为,从而得到,所以直线的倾斜角为或,根据双曲线的对称性,设其倾斜角为,可以得出直线的方程为,分别与两条渐近线和联立,求得,所以,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.12. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A. B. C. D.【答案】A【解析】分析:首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本题共4小题,每小题5分,共20分。
河南省南阳市2018届高三数学第六次考试试题理扫描版201801260262
河南省南阳市2018届高三数学第六次考试试题理(扫描版)理数参考答案一、选择题(共12小题,每小题5.0分,共60分)1. B【解析】由得Q={x|x≥2或x≤-2}.∴∁R Q=(-2,2).又P=[1,3],∴P∪∁R Q=[1,3]∪(-2,2)=(-2,3].2.C.z===-1-i,所以|z|=,p1为假命题;z2=(-1-i)2=(1+i)2=2i,p2为真命题;=-1+i,p3为假命题;p4为真命题.3A当a=1时,直线l1:x+2y-1=0与l2:x+(a+1)y+4=0平行;反之由l1∥l2可得a=1或a=-2,4D由三视图可知,该几何体的正视图显然是一个直角三角形(三个顶点坐标分别是(0,0,2),(0,2,0),(0,2,2))且内有一虚线(一锐角顶点与一直角边中点的连线),故正视图是④;俯视图是一个斜三角形,三个顶点坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②.5. C【解析】由Sm-1=-2,Sm=0,Sm+1=3,得am=Sm-Sm-1=2,am+1=Sm+1-Sm=3,所以等差数列的公差为d=am+1-am=3-2=1,由得解得6D【解析】由题意可得,所以数列{a n}是等差数列,且公差是2,{b n}是等比数列,且公比是2.又a1=1,所以a n=a1+(n﹣1)d=2n﹣1.所以=b1•22n﹣2=22n﹣2.设c n= ,所以c n=22n﹣2,所以,所以数列{c n}是等比数列,且公比为4,首项为1.由等比数列的前n项和的公式得:其前10 项的和为.故选D.7. D【解析】设双曲线方程为-=1(a>0,b>0),如图所示,双曲线的一条渐近线方程为y=x,- 5 -而k BF=-,∴·(-)=-1,整理得b2=ac.∴c2-a2-ac=0,两边同除以a2,得e2-e-1=0,解得e=或e=(舍去),故选D.8.D9. B因为x=-为f(x)的零点,x=为f(x)的图象的对称轴,所以-=+kT,即=T=·,所以ω=4k+1(k∈N*),又因为f(x)在上单调,所以-=≤=,即ω≤12,由此得ω的最大值为9,故选B.10.B椭圆的左、右顶点分别为(-2,0),(2,0),设P(x0,y0),则=·=,而,即=(4-),所以=-,所以k P A1∈11. A依题意得x 1+x2+…+x n=n ,y1+y2+…+y m=m ,x1+x2+…+x n+y1+y2+…+y m =(m+n) =(m+n)α+(m+n)(1-α),所以n +m =(m+n)α+(m+n)(1-α),所以于是有n-m=(m+n)[α-(1-α)]=(m+n)(2α-1).因为0<α<,所以2α-1<0.所以n-m<0,即n<m.12. A【解析】构造函数g(x)=e x·f(x)-e x,因为g′(x)=e x·f(x)+e x·f′(x)-e x=e x[f(x)+f′(x)]-e x>e x-e x=0,所以g(x)=e x·f(x)-e x为R上的增函数,又因为g(0)=e0·f(0)-e0=1,所以原不等式转化为g(x)>g(0),解得x>0.二、填空题(共4小题,每小题5.0分,共20分)13【答案】9【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加12次考试成绩超过90分的人数;根据茎叶图的含义可得超过90分的人数为9个14.【答案】[4,+∞)【解析】当x∈(0,1]时不等式ax3-3x+1≥0可化为a≥,设g (x)=,x∈(0,1],g′(x)==-,因此g(x)的最大值为4,则实数a的取值范围是[4,+∞).15.【答案】-1【解析】sinα+2cosα=0,∴sinα=-2cosα,∴tanα=-2,又∵2sinαcosα-cos2α==,∴原式==-1.16【答案】32【解析】当直线的斜率不存在时,直线方程为x=4,代入y2=4x,得交点为(4,4),(4,-4),∴+=16+16=32.当直线斜率存在时,设直线方程为y=k(x-4),与y2=4x联立,消去x得ky2-4y-16k=0.由题意知k≠0,则y1+y2=,y1y2=-16.∴+=(y1+y2)2-2y1y2=+32>32.三、解答题:共6小题,70分。
2018年全国高考新课标2卷理科数学考试(解析版)
2018年全国高考新课标2卷理科数学考试(解析版)作者:日期:2018年普通高等学校招生全国统一考试新课标2卷理科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要 求的。
434 3 3 4 3 4 A ・ 一 T 一 弓 B * -5 + 5i c ∙ - 5 ' 5i D * - 5 + 5i解析:选D2. 已知集合A={(x,y) ∣χ2+y2≤3,x∈Z,y∈Z },则A 中元素的个数为( ) A. 9B. 8C. 5D ・ 4解析:选A 问题为确定圆面内整点个数 3. 函数f (x)=E 2的图像大致为()-、选择题:本题共12小题, 1.l+2i F r2解析:选B f(x)为奇函数,排除 A,x>0,f (x)>0,排除 D,取 x=2,f (2) = e 2-e^24 力,故选B4. 已知向量 a, b 满足 Ial=1, a ∙ b 二-1,则 a ∙ (2a~b)=( ) A. 4B. 3C. 2D.5.双曲线= I (a>0, b>0)的离心率为\龙,则其渐近线方程为( C. y=±迟X9A. y=±j∖βxB. y 二±ι∖βx=∖β C2 二 3¥ b=∖βa C √5 歹专,BC=I,AC 二 5, B. √30C 3 解析:选 A CoSo2cos 右-I= - ~ 2 5解析:选A e-6-在ΔABC 中,COS 则 AB 二() D. y=±A. 4√2 AB^AO+BC2-2AB ∙ BC ∙ COSC=322√5 AB=4√2 D.7. ................................................... 为计算S=I- 2 + 3 ^ 4 ++^ T∞,设计了右侧的程序框图,则在空白框中应填入()A. i=i+lB. i 二i+2C. i 二i+3D. i 二i+4解析:选B8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数 可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的 概率是()3为7+23, 11+19, 13+17,共3种情形,所求概率为P=FF109. 在长方体ABCD-ABc I D I 中,AB=BC=I, AAi=W 则异面直线AD】与DBl 所成角的余弦值为(D.解析:选C 建立空间坐标系,利用向量夹角公式可得。
河南省南阳市第一中学2018届高三上学期第六次周考数学理试题12.31 含答案
数学(理) 试题(12.31) 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合(){}|lg 21x x -<,集合1|282x B x ⎧⎫=<<⎨⎬⎩⎭,则A B = ( ) A .()2,12 B .()1,3- C .()2,3 D .()1,12- 2. 设z 是纯虚数,若12iz -+是实数,则z =( ) A .2i - B .i - C .i D .2i 3. 某几何体的三视图(单位:cm )如图所示,其中侧视图是一个边长为2的正三角形,则这个几何体的体积是 ( )A .32cm B 3 C . 3 D .33cm4. 如果执行如图所示的框图,输入5N =,则输出的数等于 ( )A .54 B .45 C.65 D .565. 已知点(),M a b 在由不等式组002x y x y ≥⎧⎪≥⎨⎪+≤⎩所确定的平面区域内,则点(),N a b a b +-所在平面区域的面积是( )A .8B .4 C.2 D .16. 1nx x ⎛⎫- ⎪⎝⎭的展开式中只有第5项的二项式系数最大,则展开式中含2x 项的系数是( )A .56B .35 C.35- D .56- 7. 在ABC ∆中,内角A 、B 、C 对边分别为a 、b 、c ,()226,3c a b C π=-+=,则ABC∆的面积为( ) AC. 3 D.8. 定义行列式运算11221122a ab b b a a b =-,将函数()f x =sin cos x x 的图象向左平移()0t t >个单位,所得图象对应的函数为偶函数,则t 的最小值为( )A .6π B .3π C.56π D .23π9. 已知双曲线()222210,0x y a b a b-=>>的右焦点为F ,过F 作斜率为1-的直线交双曲线的渐近线于点P ,点P 在第一象限,O 为坐标原点,若OFP ∆的面积为228a b +,则该双曲线的离心率为( ) A.10. 已知三棱锥P ABC -的各顶点都在以O 为球心的球面上,且,,PA PB PC 两两垂直,若2PA PB PC ===, 则球心O 到平面ABC 的距离为 ( )A .B1 D11. 已知正数,,a b c 满足12,ln ln c c b a c c e a ≤≤=+,则ln ba的取值范围是( ) A .11,ln 22⎡⎤+⎢⎥⎣⎦B .[)1,+∞ C. (],1e -∞- D .[]1,1e - 12. 对于曲线C 所在平面内的点O ,若存在以O 为顶点的角θ,使得AOB θ≥∠对于曲线C 上的任意两个不同点,A B 恒成立,则称θ为曲线C 相对于O 的“界角”,并称最小的“界角”为曲线C 相对于O 的“确界角”,已知曲线10:1,0x x M y xe x -≤=+>⎪⎩(其中e 为自然对数的底数),O 为坐标原点,则曲线M 相对于O 的“确界角”为( ) A .3π B .4π C. 23π D .34π第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 从5名志愿者中选出4人,分别参加两项公益活动,每项活动2人,则不同安排方案的种数为 .(用数字作答) 14. 若函数()()sin 0,06f x A x A πωω⎛⎫=->> ⎪⎝⎭的图象如图所示,则图中的阴影部分的面积为 .15. 在数列{}n a 中,110,2n a a >=,如果1n a +是1与12214n n na a a ++-的等比中项,那么1002122...2100a a a +++= . 16. 以下四个命题:①设随机变量ξ服从正态分布()2,9N ,若()()2P c P c ξξ>=<-,则常数c 的值是3;②若命题“0x R ∃∈,使得20010x ax ++≤成立” 为真命题,则实数a 的取值范围为(][),22,-∞-+∞;③圆()2211x y -+=被直线0x y -=分成两段圆弧,则较短弧长与较长弧长之比为1:4;④已知3:,:11p x k q x ≥<+,如果p 是q 的充分不必要条件,则实数k 的取值范围为()2,+∞,其中真命题的序号是 .(把你认为真命题的序都填上) 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分10分)已知角A 、B 、C 是ABC ∆的三个内角,a 、b 、c 是各角的边对,若向量()51cos ,cos ,,cos 282A B A B m A B n --⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭,且98m n =. (1)求tan tan A B 的值; (2)求222sin ab Ca b c+-的最大值. 18. (本小题满分12分)数列{}n a 满足()13221,2,27n n n a a n N n a *-=++∈≥=.(1)求12,a a 的值; (2)已知()()12n n n b a t n N *=+∈,若数列{}n b 成等差数列,求实数t ;(3)求数列{}n a 的前n 项和n S .19. (本小题满分12分)在某次考试中,从中、乙两个班各抽取10名学生的数学成绩进行统计分析,两个班成绩的茎叶图如图所示,成绩不小于90分的为及格. (1)用样本估计总体,请根据茎叶图对甲、乙两个班级的成绩进行比较;(2)求从甲班10名学生和乙班10名学生中各抽取一个,求有人及格的条件下乙班同学不及格的概率;(3) 从甲班10人中抽取一人,乙班10人中抽取2人,3人中及格人数记为X ,求X 的分布列和期望.20. (本小题满分12分)如图,四棱锥P ABCD -的底面ABCD 是平行四边形,PA ⊥底面,90,ABCD PCD PA AB AC ∠===.(1)求证:AC CD ⊥;(2)点E 在棱PC 上,满足60DAE ∠=,求二面角B AE D --的余弦值.21. (本小题满分12分)在平面直角坐标系xOy 中,已知点()()1,0,1,0A B -,动点C 满足条件:ABC ∆的周长为2+C 的轨迹为曲线W . (1)求W 的方程;(2)已知点)(),0,1MN ,经过点(且斜率为k 的直线l 与曲线W 两个不同交点P 和Q ,是否存在常数k ,使得向量OP OQ +与MN 共线?如果存在,求出k 的值;如果不存在,请说明理由.22. (本小题满分12分)定义R 在上的函数()f x 满足()()()222'1202x f f x e x f x -=+-, ()()21124x g x f x a x a ⎛⎫=-+-+ ⎪⎝⎭.(1)求函数()f x 的解析式; (2)求函数()g x 的单调区间;(3)如果,,s t r 满足s r t r -≤-,那么称s 比t 更靠近r .当2a ≥且1x ≥时,试比较e x和1x e a -+哪个更靠近ln x ,并说明理由.河南省南阳市第一中学2018届高三上学期第六次周考数学(理)试题(12.31)参考答案一、选择题1-5: CABDB 6-10: DACCD 11-12:DB 二、填空题13.30100101 16. ① ② ④三、解答题17.解:(1)由()51cos ,cos,,cos 282A B A B m A B n --⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭,且98m n =,即()()()2591cos cos ,4cos 5cos 828A B A B A B A B --++=∴-=+⎡⎤⎣⎦,即1cos cos 9sin sin ,tan tan 9A B A B A B =∴=.(2)由余弦定理得222sin sin 1tan 2cos 2ab C ab C C a b c ab C ==+-,而()()tan tan 993tan tan tan 1tan tan 884A B A B A B A B ++==+≥⨯=-,即()t a n A B +有最小值34.又()tan tan ,tan C A B C =-+∴有最大值34-(当且仅当1tan tan 3A B ==时取等号)所以222sin ab Ca b c +-最的大值为38- .()11111,222n n n n a a n N n *--++=+∈≥()11111,222n n nn a a n N n *--++⇒-=∈≥, 令()()112n n n b a n N *=+∈,则数列{}n b 成等差数列,所以1t =.(3) {}n b 成等差数列,()()()132112111.12222n n n n n n b b n n b a ++=+-=+-==+=,得()()12121n n a n n N -*=+-∈.()21315272...212n n S n n -=⨯+⨯+⨯+++⨯- ①()232325272...2122n n S n n =⨯+⨯+⨯+++⨯- ② ①-②得()2132222...22212n n n S n n --=+⨯+⨯++⨯-+⨯+()()()()123412322 (221232122121)12n n n n n n n n n n n --=++++-+⨯+=+-+⨯+=-+⨯+--,()()2121n n S n n n N *∴=-⨯-+∈.19. 解:(1) 从茎叶图可以得到:中班的平均分为89分;乙班平均分为89分.甲班的方差>乙班的方差,所以甲乙两班平均分相同,但是乙班比甲班成绩更集中更稳定.(本小问只要学生说出两点以上正确的分析内容就可以给分)(2)事件“从甲班10名学生和乙班10名学生中各抽取一人,已知有人及格”记A ;事件从甲班10名学生和乙班10名学生中各抽取一人,乙班同学不及格“记B ,则()()()2/7P A B P B A P A ==.(3)X 的取值为0,1,2,3,分不列为期望()5E X =. 20. 解:(1)证明:因为PA ⊥底面,,90,,ABCD PA CD PCD PC CD CD ∴⊥∠=∴⊥∴⊥平面,PAC CDAC ∴⊥.(2)连接DE ,因为底面ABCD 是平行四边形,,CD AC AB AC ⊥∴⊥.又PA ⊥底面ABCD ,,,AB AC AP ∴两两垂直.如图所示,以点A 为原点,以AB 为x 轴的正方向,以AB为单位长度,建立空间直角坐标系.则()()()()1,0,0,0,1,0,0,0,1,1,1,0B C P D -.设()0,1,1PE PC λλ==-,则()0,,1AE AP PE λλ=+=-,又60DAE ∠=,则1cos ,2AE AD =12=,解得12λ=,则11110,,,1,,,cos ,2222AB ED AE ED AD AE AB ED AB ED⎛⎫⎛⎫==-=--∴==-⎪ ⎪⎝⎭⎝⎭,0,AE ED AE ED =∴⊥.又AB AE ⊥,观察可知二面角B AE D --为钝角,故二面角B AE D --的余弦值为3-.21. 解:(1)设(),,22,2,C x y AC BC AB AB AC BC ++=+=∴+=>∴由定义知,动点C 的轨迹是以,A B 为焦点,长轴长为2的椭圆除去与x 轴的两个交点.()222221,1,:102x a c b a c W y y ∴==∴=-=∴+=≠(2)设直线l 的方程为y kx =(2212x kx ++=.整理,得221102k x ⎛⎫+++= ⎪⎝⎭. ① 因为直线l 与椭圆有两个不同的交点P 和Q 等价于2221844202k k k ⎛⎫∆=-+=-> ⎪⎝⎭,解得2k <-或2k >.所以有两个交点的k 的取值范围为2,,k ⎛⎛⎫∈-∞+∞ ⎪ ⎪⎝⎭⎝⎭.设()()1122,,,P x y Q x y ,则()1212,OP OQ x x y y +=++,由①得12212x x k +=-+. ② 由()1212y y k x x +=++③ )()(),0,1,MN MN ∴=, 所以OP OQ +与MN 共线等价于)1212x x y y +=+,将②③代入上式,解得k =,所以存在常数k ,使得向量OP OQ +与MN 共线. 22. 解:(1)()()()()()()22''1220,'1'1220x f x f e x f f f f -=+-∴=+-,即()01f =.又()()()()2222'10,'12,22x f f e f e f x e x x -=∴=∴=+-.(2)()()()()222221112,112444x x x f x e x x g x f x a x a e x x x a x a⎛⎫=+-∴=-+-+=+--+-+ ⎪⎝⎭()()1,'x x e a x g x e a =--∴=-. ①当0a ≤时,()'0g x >,函数()g x 在R 上单调递增;②当0a >时,由()'0x g x e a =-=得()ln ,,ln x a x a =∴∈-∞时,()()'0,g x g x <单调递减;()ln ,x a ∈+∞时,()()'0,g x g x >单调递增,综上,当0a ≤时,函数()g x 的单调递增区间为(),-∞+∞;当0a >时,函数()g x 的单调递增区间为()ln ,a +∞,单调递减区间为(),ln a -∞.(3)设()()()()()()121ln 1,ln 1,'0,x ee p x x x q x e a x x p x p x xx x-=-≥=+-≥=--<∴,在[)1,+∞上为减函数,又()0,p e =∴当1x e ≤≤时,()0,p x ≥当x e >时,()()()()()112110.',''0,'x x p x q x e q x e q x x x--<=-=+>∴在[)1,+∞上为增函数,又()[)'10,1,q x =∴∈+∞时,()()'0,q x q x ≥∴在[)1,+∞上为增函数,()()110q x q a ∴≥=+>. ①当1x e ≤≤时,()()()()1x ep x q x p x q x e a x--=-=--,设()1x e m x e a x -=--,则()()12'0,x em x e m x x-=--<∴在[)1,+∞上为减函数,()()()()()11,2,0,,em x m e a a m x p x q x x∴≤=--≥∴<∴<∴比1x e a -+更靠近ln x .②当x e >时,()()()()112ln 2ln x x e p x q x p x q x x e a x e a x---=--=-+--<--,设()12ln x n x x e a -=--,则()()()()11222',''0,'x x n x e n x e n x x x--=-=--<∴在x e >时为减函数,()()()12''0,e n x n e e n x e-∴<=-<∴在x e >时为减函数,()()120e n x n e a e -∴<=--<,()(),e p x q x x ∴<∴比1x e a -+更靠近ln x .综上:当2a ≥且1x ≥时,ex 比1x e a -+更靠近ln x .。
南阳市2018届高三第一次考试(8月)数学试题(理)含答案(打印版)
南阳XX 中学2015级高三第一次考试数学试题一、选择题(本大题共12小题,每小题5分,在每题4个选项中,只有一项是符合题目要求的)1.若a ,b ,c 为实数,则下列命题为真命题的是( )A .若a b >,则22ac bc >B .若0a b <<,则22a ab b >>C .若0a b <<,则11a b < D .若0a b <<,则b a a b> 2.不等式|5||3|10x x -++≥的解集是( )A .[5,7]-B .[4,6]-C .(,5][7,)-∞-+∞D .(,4][6,)-∞-+∞ 3.下列不等式:①12x x +≥;②1||2x x+≥;③若01a b <<<,则log log 2a b b a +≤-;④若01a b <<<,则log log 2a b b a +≥.其中正确的是( ) A .②④B .①②C .②③D .①②④4.若,x y R ∈且满足32x y +=,则3271x y ++的最小值是( )A .B .1+D .75.若直线22221(0,0)x y a b a b+=>>过点(1,1),则a b +的最小值等于( )A .2B .3 C4 D .56.对于实数x ,y ,若|1|1x -≤,|2|1y -≤,则|21|x y -+的最大值为( ) A .1 B .2 C.4 D .57.已知,a b R +∈,且1a b +=,则2()P ax by =+与22Q ax by =+的关系是( ) A .P Q ≤ B .P Q < C.P Q ≥ D .P Q > 8.若函数()|1||2|f x x x a =+++的最小值为3,则实数a 的值为( ) A .5或8 B .-1或5 C.-1或-4 D .-4或8 9.已知a b c >>,若11na b b c a c+≥---,则n 的最大值为( ) A .3 B .4 C. 14 D .810.设1x >-,则(5)(2)1x x y x ++=+的最小值为( )A .4B .9 C.7 D .13 11.已知正数x ,y 满足1x y +=,则11()()z x y x y=++的最小值为( )A .1)B .4 C.254D .8 12.若实数x ,y 满足221x y xy ++=,则x y +的范围是( )A .)+∞B .[6,)+∞ C.[ D .3(,]4-∞ 二、填空题(本大题共4小题,每题5分,共20分.)13.设x ,y 时满足24x y +=的正数,则lg lg x y +的最大值是 . 14.已知关于x 的不等式|1|||1x x c -+-<无解,实数c 的取值范围 . 15.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围为 . 16.若正实数x ,y 满足244x y xy ++=,且不等式2(2)22340x y a a xy +++-≥恒成立,则实数a 的取值范围是 .三、解答题:本大题共6题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 设函数()||3f x x a x =-+,其中0a >. (1)当1a =时,求不等式()32f x x ≥+的解集; (2)若不等式()0f x ≤的解集为{|1}x x ≤-,求a 的值. 18. 设不等式2|1||2|0x x -<--+<的解集为M ,,a b M ∈. (1)证明:111||364a b +<; (2)比较|14|ab -与2||a b -的大小,并说明理由. 19. 已知函数()||f x x =,()|4|g x x m =--+. (1)解关于x 的不等式[()]20g f x m +->;(2)若函数()f x 的图象恒在函数()g x 图象的上方,求实数m 的取值范围.20. 已知a ,b ,c 为非零实数,且22210a b c m +++-=,222149120m a b c +++-=. (1)求证:22222214936a b c a b c++≥++; (2)求实数m 的取值范围.21.已知函数()2|1||2|f x x x =++-. (1)求()f x 的最小值m ;(2)若a ,b ,c 均为正实数,且满足a b c m ++=,求证:2223b c a a b c++≥.22.设函数()||f x x x =+--. (1)当1a =时,求不等式1()2f x ≥的解集; (2)若对任意[0,1]a ∈,不等式()f x b ≥的解集为空集,求实数b 的取值范围.南阳一中2015级高三第一次考试数学试题参考答案一、选择题1-5:BDCDC 6-10:DADBB 11、12:CC二、填空题13.lg 2 14.(,0][2,)-∞+∞ 15.(5,7) 16.5[,3][,)2-∞+∞三、解答题17.解:(1)当1a =时,()32f x x ≥+可化为|1|2x -≥,由此可得3x ≥或1x ≤-.故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-. (2)由()0f x ≤得||30x a x -+≤,此不等式化为不等式组30x ax a x ≥⎧⎨-+≤⎩或30x aa x x ≤⎧⎨-+≤⎩,即4x a a x ≥⎧⎪⎨≤⎪⎩或2x a a x ≤⎧⎪⎨≤-⎪⎩,因为0a >,所以不等式组的解集为{|}2ax x ≤-, 由题设可得12a-=-,故2a =. 18.解:(1)证明:记()|1||2|f x x x =--+=3,2,21,21,3, 1.x x x x ≤-⎧⎪---<<⎨⎪-≥⎩,由2210x -<--<,解得1122x -<<,则11(,)22M =-.所以, 1111||||||3636a b a b +≤+<1111132624⨯+⨯=. (2)由(1)得214a <,214b <.因为22|14|4||ab a b ---=2222(1816)4(2)ab a b a ab b -+--+,22(41)(41)0a b =-->,所以22|14|4||ab a b ->-,故|14|2||ab a b ->-.19.解:(1)由[()]20g f x m +->得|||4|2x -<,∴2||42x -<-<.∴2||6x <<,解集62x -<<-或26x <<,故不等式的解集为(6,2)(2,6)--⋃; (2)∵函数()f x 的图象恒在函数()g x 图象的上方,∴()()f x g x >恒成立,即|4|||m x x <-+,∵|4|||x x -+|(4)|4x x ≥--=, ∴4m <,即m 的取值范围为(,4)-∞. 20.解:(1)证明:由柯西不等式得,222222123[()()()]()a b c a b c ++++2123()a b c a b c ≥⋅+⋅+⋅, 即222222123[()()()]()36a b c a b c ++++≥.∴22222214936a b c a b c++≥++. (2)由已知得2221a b c m ++=-,22214921m a b c++=-,∴(1)(21)36m m --≥,即223350m m --≥, 解得72m ≤-或5m ≥.又22210a b c m ++=->, 222149210m a b c ++=->,∴5m ≥.即实数m 的取值范围是(5,)+∞. 21.解:(1)当1x <-时,()2(1)(2)f x x x =-+--3(3,)x =-∈+∞; 当12x -≤<时,()2(1)(2)f x x x =+--4(3,6)x =+∈; 当2x ≥时,()2(1)(2)f x x x =++-3(6,)x =∈+∞. 综上,()f x 的最小值3m =.(2)证明:a ,b ,c 均为正实数,且满足3a b c ++=,因为222()b c a a b c a b c +++++, 222()()()b c a a b c a b c=+++++,≥=2()a b c ++.(当且仅当1a b c ===时,取等号),所以222b c a a b c a b c ++≥++,即2223b c a a b c++≥. 22.解:(1)当1a =时,1()2f x ≥等价于1|1|||2x x +-≥. ①当1x <-时,不等式化为112x x --+≥,无解;②当10x -<<时,不等式化为112x x ++≥,解得104x -≤<;③当0x ≥时,不等式化为112x x +-≥,解得0x ≥.综上所述,不等式()1f x ≥的解集为1[,)4-+∞.(2)因为不等式()f x b ≥的解集为空集,所以max [()]b f x >,因为,()||f x x x =+--|x x ≤++=|=且仅当x ≥.所以,max [()]f x =因为对任意[0,1]a ∈,不等式()f x b ≥的解集为空集,所以max b >,令()g a =,所以'()1g a =+≤2212++=.当且仅当,=12a =时等号成立.所以max [()]g a =所以b 的取值范围为)+∞.。
(好卷)河南省南阳市2018届高三上学期期末考试数学(文)试题(精品解析)
2017年秋期高中三年级期终质量评估数学试题(文)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】A【解析】【详解】或,,,故选A.2.已知(为虚数单位),则复数()A. B. C. D.【答案】C【解析】,,,,故选C.3.已知双曲线的一条渐近线的方程是:,且该双曲线经过点,则双曲线的方程是()A. B. C. D.【答案】D【解析】由题可设双曲线的方程为:,将点代入,可得,整理即可得双曲线的方程为. 故选D.4.设,则()A. B. C. D.【答案】B【解析】因为,,故选B.5. 从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A. B.C. D.【答案】B【解析】试题分析:从甲乙等名学生中随机选出人,基本事件的总数为,甲被选中包含的基本事件的个数,所以甲被选中的概率,故选B.考点:古典概型及其概率的计算.6.已知实数满足,则目标函数()A. ,B. ,C. ,无最小值D. ,无最小值【答案】C【解析】画出约束条件表示的可行域,如图所示的开发区域,变形为,平移直线,由图知,到直线经过时,因为可行域是开发区域,所以无最小值,无最小值,故选C.【方法点晴】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积()A. B. C. D.【答案】C【解析】由三视图可知,该几何体为如图所示的四棱锥,图中正方体的棱长为,该多面体如图所示,外接球的半径为为,外接圆的半径,由可得,,故该多面体的外接球的表面积,故选C.8.运行如图所示的程序框图,则输出结果为()A. 2017B. 2016C. 1009D. 1008【答案】D【解析】输出结果为,选D.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9.为得到的图象,只需要将的图象()A. 向右平移个单位B. 向右平移个单位C. 向左平移个单位D. 向左平移个单位【答案】D【解析】试题分析:因为,所以为得到的图象,只需要将的图象向左平移个单位;故选D.考点:1.诱导公式;2.三角函数的图像变换.10.函数的大致图象为()A. B. C. D.【答案】C【解析】当时,,由,得,由,得,在上递增,在上递减,,即时,,只有选项C符合题意,故选C.11.设数列的通项公式,若数列的前项积为,则使成立的最小正整数为()A. 9B. 10C. 11D. 12【答案】C【解析】因为,所以,该数列的前项积为,使成立的最小正整数为,故选C.12.抛物线的焦点为,过且倾斜角为60°的直线为,,若抛物线上存在一点,使关于直线对称,则()A. 2B. 3C. 4D. 5【答案】A【解析】关于过倾斜角为的直线对称,,由抛物线定义知,等于点到准线的距离,即,由于,,,代入抛物线方程可得,,解得,故选A.【方法点睛】本题主要考查抛物线的定义和几何性质,以及点关于直线对称问题,属于难题. 与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.曲线在点处的切线方程为__________.【答案】【解析】,切线的斜率,又过所求切线方程为,即,故答案为.【方法点晴】本题主要考查利用导数求曲线切线方程,属于简单题. 求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.14.已知点,,,若,则实数的值为_______.【答案】【解析】点,,,,又,,两边平方得,解得,经检验是原方程的解,实数的值为,故答案为.15.已知的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.【答案】【解析】试题分析:,由正弦定理得.考点:解三角形,三角形外接圆.16.若不等式对任意正数恒成立,则实数的取值范围为_____.【答案】【解析】不等式对任意正数恒成立,,,当且仅当时取等号,,实数的取值范围为,故答案为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.等差数列中,已知,,且,,构成等比数列的前三项. (1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1) (2)【解析】试题分析:(1)根据等差数列的,且,,构成等比数列,列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式,进而可得的通项公式;(2)由(1)可得,利用错误相减法求和后即可得结果.试题解析:(1)设等差数列的公差为,则由已知∴又解得或(舍去)∴,∴又,∴,∴(2)∴两式相减得则.【易错点晴】本题主要等差数列、等比数列的通项公式、“错位相减法”求数列的和,属于难题. “错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以.18.经销商小王对其所经营的某一型号二手汽车的使用年数(0<≤10)与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:(Ⅰ)试求关于的回归直线方程;(附:回归方程中,(Ⅱ)已知每辆该型号汽车的收购价格为万元,根据(Ⅰ)中所求的回归方程,预测为何值时,小王销售一辆该型号汽车所获得的利润最大.【答案】(I);(II)预测当时,销售利润取得最大值.【解析】试题分析:(1)由表中数据利用平均数公式计算,根据公式求出将样本中心点坐标代入回归方程求得,即可写出回归直线方程;(2)写出利润函数,利用二次函数的图象与性质求出时取得最大值.试题解析:(1)由已知:,,,,;所以回归直线的方程为(2),所以预测当时,销售利润取得最大值.19.如图,在三棱柱中,侧面为矩形,,,是的中点,与交于点,且平面.(1)证明:;(2)若,求三棱柱的高.【答案】(1)见解析(2)【解析】试题分析:(1)在矩形中,根据相似三角形的性质可知,由平面,可得平面平面,∴;(2)设三棱柱的高为,即三棱锥的高为.又,由得,∴.试题解析:(1)在矩形中,由平面几何知识可知又平面,∴,平面平面平面,∴.(2)在矩形中,由平面几何知识可知,∵,∴,∴,设三棱柱的高为,即三棱锥的高为.又,由得,∴.20.平面直角坐标系中,已知椭圆()的左焦点为,离心率为,过点且垂直于长轴的弦长为.(1)求椭圆的标准方程;(2)若过点的直线与椭圆相交于不同两点、,求面积的最大值.【答案】(1) (2)【解析】试题分析:(1)运用椭圆的离心率公式和过焦点垂直于对称轴的弦长,结合的关系列出关于、、的方程组,求出、,可得椭圆的方程;(2)讨论直线的斜率为和不为,设方程为,代入椭圆方程,运用韦达定理与弦长公式求得弦长,求出点到直线的距离运用三角形的面积公式,化简整理,运用换元法和基本不等式,即可得到面积的最大值.试题解析:(1)由题意可得,令,可得,即有,又,所以,.所以椭圆的标准方程为;(2)设,,直线方程为,代入椭圆方程,整理得,则,所以.∴当且仅当,即.(此时适合的条件)取得等号.则面积的最大值是.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.21.已知函数(其中,为常数且)在处取得极值.(Ⅰ)当时,求的单调区间;(Ⅱ)若在上的最大值为1,求的值.【答案】(Ⅰ)单调递增区间为,;单调递减区间为; (Ⅱ)或.【解析】试题分析:(Ⅰ)由函数的解析式,可求出函数导函数的解析式,进而根据是的一个极值点,可构造关于,的方程,根据求出值;可得函数导函数的解析式,分析导函数值大于0和小于0时,的范围,可得函数的单调区间;(Ⅱ)对函数求导,写出函数的导函数等于0的的值,列表表示出在各个区间上的导函数和函数的情况,做出极值,把极值同端点处的值进行比较得到最大值,最后利用条件建立关于的方程求得结果.试题解析:(Ⅰ)因为,所以,因为函数在处取得极值,当时,,,由,得或;由,得,即函数的单调递增区间为,;单调递减区间为.(Ⅱ)因为,令,,,因为在处取得极值,所以,当时,在上单调递增,在上单调递减,所以在区间上的最大值为,令,解得,当,,当时,在上单调递增,上单调递减,上单调递增,所以最大值1可能的在或处取得,而,所以,解得;当时,在区间上单调递增,上单调递减,上单调递增,所以最大值1可能在或处取得,而,所以,解得,与矛盾.当时,在区间上单调递增,在上单调递减,所最大值1可能在处取得,而,矛盾.综上所述,或.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系中,直线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴非负半轴为极轴)中,圆的方程为.(1)求圆的直角坐标方程;(2)若点,设圆与直线交于点,求的最小值.【答案】(1) (2)【解析】试题分析:(1)由得,由,从而得解;(2)将的参数方程代入圆C的直角坐标方程,得,,。
2018届高三上学期期末联考数学(理)试题有答案-精品
2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。
河南省南阳市2018届高三上学期期末考试数学(文)试题(解析版)精选
2017年秋期高中三年级期终质量评估数学试题(文)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】A【解析】【详解】或,,,故选A.2.已知(为虚数单位),则复数()A. B. C. D.【答案】C【解析】,,,,故选C.3.已知双曲线的一条渐近线的方程是:,且该双曲线经过点,则双曲线的方程是()A. B. C. D.【答案】D【解析】由题可设双曲线的方程为:,将点代入,可得,整理即可得双曲线的方程为. 故选D.4.设,则()A. B. C. D.【答案】B【解析】因为,,故选5. 从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A. B.C. D.【答案】B【解析】试题分析:从甲乙等名学生中随机选出人,基本事件的总数为,甲被选中包含的基本事件的个数,所以甲被选中的概率,故选B.考点:古典概型及其概率的计算.6.已知实数满足,则目标函数()A. ,B. ,C. ,无最小值D. ,无最小值【答案】C【解析】画出约束条件表示的可行域,如图所示的开发区域,变形为,平移直线,由图知,到直线经过时,因为可行域是开发区域,所以无最小值,无最小值,故选C.【方法点晴】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积()A. B. C. D.【答案】C【解析】由三视图可知,该几何体为如图所示的四棱锥,图中正方体的棱长为,该多面体如图所示,外接球的半径为为,外接圆的半径,由可得,,故该多面体的外接球的表面积,故选C.8.运行如图所示的程序框图,则输出结果为()A. 2017B. 2016C. 1009D. 1008【答案】D【解析】输出结果为,选D.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9.为得到的图象,只需要将的图象()A. 向右平移个单位B. 向右平移个单位C. 向左平移个单位D. 向左平移个单位【答案】D【解析】试题分析:因为,所以为得到的图象,只需要将的图象向左平移个单位;故选D.考点:1.诱导公式;2.三角函数的图像变换.10.函数的大致图象为()A. B. C. D.【答案】C【解析】当时,,由,得,由,得,在上递增,在上递减,,即时,,只有选项C符合题意,故选C.11.设数列的通项公式,若数列的前项积为,则使成立的最小正整数为()A. 9B. 10C. 11D. 12【答案】C【解析】因为,所以,该数列的前项积为,使成立的最小正整数为,故选C.12.抛物线的焦点为,过且倾斜角为60°的直线为,,若抛物线上存在一点,使关于直线对称,则()A. 2B. 3C. 4D. 5【答案】A【解析】关于过倾斜角为的直线对称,,由抛物线定义知,等于点到准线的距离,即,由于,,,代入抛物线方程可得,,解得,故选A.【方法点睛】本题主要考查抛物线的定义和几何性质,以及点关于直线对称问题,属于难题. 与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.曲线在点处的切线方程为__________.【答案】【解析】,切线的斜率,又过所求切线方程为,即,故答案为.【方法点晴】本题主要考查利用导数求曲线切线方程,属于简单题. 求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.14.已知点,,,若,则实数的值为_______.【答案】【解析】点,,,,又,,两边平方得,解得,经检验是原方程的解,实数的值为,故答案为.15.已知的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.【答案】【解析】试题分析:,由正弦定理得.考点:解三角形,三角形外接圆.16.若不等式对任意正数恒成立,则实数的取值范围为_____.【答案】【解析】不等式对任意正数恒成立,,,当且仅当时取等号,,实数的取值范围为,故答案为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.等差数列中,已知,,且,,构成等比数列的前三项. (1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1) (2)【解析】试题分析:(1)根据等差数列的,且,,构成等比数列,列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式,进而可得的通项公式;(2)由(1)可得,利用错误相减法求和后即可得结果.试题解析:(1)设等差数列的公差为,则由已知∴又解得或(舍去)∴,∴又,∴,∴(2)∴两式相减得则.【易错点晴】本题主要等差数列、等比数列的通项公式、“错位相减法”求数列的和,属于难题. “错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以.18.经销商小王对其所经营的某一型号二手汽车的使用年数(0<≤10)与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:(Ⅰ)试求关于的回归直线方程;(附:回归方程中,(Ⅱ)已知每辆该型号汽车的收购价格为万元,根据(Ⅰ)中所求的回归方程,预测为何值时,小王销售一辆该型号汽车所获得的利润最大.【答案】(I);(II)预测当时,销售利润取得最大值.【解析】试题分析:(1)由表中数据利用平均数公式计算,根据公式求出将样本中心点坐标代入回归方程求得,即可写出回归直线方程;(2)写出利润函数,利用二次函数的图象与性质求出时取得最大值.试题解析:(1)由已知:,,,,;所以回归直线的方程为(2),所以预测当时,销售利润取得最大值.19.如图,在三棱柱中,侧面为矩形,,,是的中点,与交于点,且平面.(1)证明:;(2)若,求三棱柱的高.【答案】(1)见解析(2)【解析】试题分析:(1)在矩形中,根据相似三角形的性质可知,由平面,可得平面平面,∴;(2)设三棱柱的高为,即三棱锥的高为.又,由得,∴.试题解析:(1)在矩形中,由平面几何知识可知又平面,∴,平面平面平面,∴.(2)在矩形中,由平面几何知识可知,∵,∴,∴,设三棱柱的高为,即三棱锥的高为.又,由得,∴.20.平面直角坐标系中,已知椭圆()的左焦点为,离心率为,过点且垂直于长轴的弦长为.(1)求椭圆的标准方程;(2)若过点的直线与椭圆相交于不同两点、,求面积的最大值.【答案】(1) (2)【解析】试题分析:(1)运用椭圆的离心率公式和过焦点垂直于对称轴的弦长,结合的关系列出关于、、的方程组,求出、,可得椭圆的方程;(2)讨论直线的斜率为和不为,设方程为,代入椭圆方程,运用韦达定理与弦长公式求得弦长,求出点到直线的距离运用三角形的面积公式,化简整理,运用换元法和基本不等式,即可得到面积的最大值.试题解析:(1)由题意可得,令,可得,即有,又,所以,.所以椭圆的标准方程为;(2)设,,直线方程为,代入椭圆方程,整理得,则,所以.∴当且仅当,即.(此时适合的条件)取得等号.则面积的最大值是.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.21.已知函数(其中,为常数且)在处取得极值.(Ⅰ)当时,求的单调区间;(Ⅱ)若在上的最大值为1,求的值.【答案】(Ⅰ)单调递增区间为,;单调递减区间为; (Ⅱ)或.【解析】试题分析:(Ⅰ)由函数的解析式,可求出函数导函数的解析式,进而根据是的一个极值点,可构造关于,的方程,根据求出值;可得函数导函数的解析式,分析导函数值大于0和小于0时,的范围,可得函数的单调区间;(Ⅱ)对函数求导,写出函数的导函数等于0的的值,列表表示出在各个区间上的导函数和函数的情况,做出极值,把极值同端点处的值进行比较得到最大值,最后利用条件建立关于的方程求得结果.试题解析:(Ⅰ)因为,所以,因为函数在处取得极值,当时,,,由,得或;由,得,即函数的单调递增区间为,;单调递减区间为.(Ⅱ)因为,令,,,因为在处取得极值,所以,当时,在上单调递增,在上单调递减,所以在区间上的最大值为,令,解得,当,,当时,在上单调递增,上单调递减,上单调递增,所以最大值1可能的在或处取得,而,所以,解得;当时,在区间上单调递增,上单调递减,上单调递增,所以最大值1可能在或处取得,而,所以,解得,与矛盾.当时,在区间上单调递增,在上单调递减,所最大值1可能在处取得,而,矛盾.综上所述,或.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系中,直线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴非负半轴为极轴)中,圆的方程为.(1)求圆的直角坐标方程;(2)若点,设圆与直线交于点,求的最小值.【答案】(1) (2)【解析】试题分析:(1)由得,由,从而得解;(2)将的参数方程代入圆C的直角坐标方程,得,,。
【精品】2017-2018年河南省南阳市高三(上)期末数学试卷(理科)与答案
2017-2018学年河南省南阳市高三(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知:如图,集合U为全集,则图中阴影部分表示的集合是()A.∁U(A∩B)∩C B.∁U(B∩C)∩A C.A∩∁U(B∪C)D.∁U(A∪B)∩C2.(5分)已知1+i是关于x的方程ax2+bx+2=0(a,b∈R)的一个根,则a+b=()A.﹣1B.1C.﹣3D.33.(5分)已知双曲线C的一条渐近线的方程是:y=2x,且该双曲线C经过点,则双曲线C的方程是()A.B.C.D.4.(5分)已知:f(x)=asinx+bcosx,g,若函数f(x)和g(x)有完全相同的对称轴,则不等式g(x)>2的解集是()A.B.C.D.5.(5分)已知各项均为正数的等比数列{a n},a3•a5=2,若f(x)=x(x﹣a1)(x ﹣a2)…(x﹣a7),则f'(0)=()A.B.C.128D.﹣1286.(5分)已知:,则目标函数z=2x﹣3y()A.z max=﹣7,z min=﹣9B.,z min=﹣7C.z max=﹣7,z无最小值D.,z无最小值7.(5分)设f(x)=e1+sinx+e1﹣sinx,x1、,且f(x1)>f(x2),则下列结论必成立的是()A.x1>x2B.x1+x2>0C.x1<x2D.>8.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积S=()A.10πB.C.D.12π9.(5分)执行如图的程序框图,若输出S的值是2,则a的值可以为()A.2014B.2015C.2016D.2017 10.(5分)我们把顶角为36°的等腰三角形称为黄金三角形.其作法如下:①作一个正方形ABCD;②以AD的中点E为圆心,以EC长为半径作圆,交AD延长线于F;③以D为圆心,以DF长为半径作⊙D;④以A为圆心,以AD长为半径作⊙A交⊙D于G,则△ADG为黄金三角形.根据上述作法,可以求出cos36°=()A.B.C.D.11.(5分)已知抛物线E:y2=2px(p>0),过其焦点F的直线l交抛物线E于A、B两点(点A在第一象限),若S△OAB=﹣tan∠AOB,则p的值是()A.2B.3C.4D.512.(5分)已知:m>0,若方程有唯一的实数解,则m=()A.B.C.D.1二、填空题:13.(5分)1.028≈(小数点后保留三位小数).14.(5分)已知向量=(1,2),=(﹣2,﹣4),||=,若(+)=,则与的夹角为.15.(5分)已知:,则cos2α+cos2β的取值范围是.16.(5分)在四边形ABCD中,∠ABC=90°,,△ACD为等边三角形,则△ABC的外接圆与△ACD的内切圆的公共弦长=.三、解答题:17.(12分)已知数列{a n}的前n项和为S n,且满足a n=2S n+1(n∈N*).(1)求数列{a n}的通项公式;(2)若b n=(2n﹣1)•a n,求数列{b n}的前n项和T n.18.(12分)如图1,在平行四边形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,现把平行四边形ABB1A11沿CC1折起如图2所示,连接B1C、B1A、B1A1.(1)求证:AB1⊥CC1;(2)若,求二面角C﹣AB 1﹣A1的正弦值.19.(12分)为评估设备M生产某种零件的性能,从设备M生产零件的流水线上随机抽取100件零件最为样本,测量其直径后,整理得到下表:经计算,样本的平均值μ=65,标准差=2.2,以频率值作为概率的估计值.(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X,并根据以下不等式进行评判(p表示相应事件的频率):①p(μ﹣σ<X ≤μ+σ)≥0.6826.②P(μ﹣σ<X≤μ+2σ)≥0.9544③P(μ﹣3σ<X≤μ+3σ)≥0.9974.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断设备M的性能等级.(2)将直径小于等于μ﹣2σ或直径大于μ+2σ的零件认为是次品(i)从设备M的生产流水线上随意抽取2件零件,计算其中次品个数Y的数学期望E(Y);(ii)从样本中随意抽取2件零件,计算其中次品个数Z的数学期望E(Z).20.(12分)平面直角坐标系xOy中,已知椭圆的左焦点为F,离心率为,过点F且垂直于长轴的弦长为.(I)求椭圆C的标准方程;(Ⅱ)设点A,B分别是椭圆的左、右顶点,若过点P(﹣2,0)的直线与椭圆相交于不同两点M,N.(i)求证:∠AFM=∠BFN;(ii)求△MNF面积的最大值.21.(12分)已知函数,且函数f(x)的图象在点(1,﹣e)处的切线与直线x+(2e+1)y﹣1=0垂直.(1)求a,b;(2)求证:当x∈(0,1)时,f(x)<﹣2.[选修4-4:极坐标与参数方程选讲](本小题满分10分)22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位),且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ.(1)求圆C的直角坐标方程;(2)若点P(1,2),设圆C与直线l交于点A,B,求|PA|+|PB|的最小值.[选修4-5:不等式选讲](本小题满分0分)23.已知a>0,b>0,函数f(x)=|x﹣a|+|x+b|的最小值为2.(1)求a+b的值;(2)证明:a2+a>2与b2+b>2不可能同时成立.2017-2018学年河南省南阳市高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知:如图,集合U为全集,则图中阴影部分表示的集合是()A.∁U(A∩B)∩C B.∁U(B∩C)∩A C.A∩∁U(B∪C)D.∁U(A∪B)∩C【解答】解:阴影部分所表示的为在集合A中但不在集合B,C中的元素构成的,故阴影部分所表示的集合可表示为A∩∁U(B∪C),故选:C.2.(5分)已知1+i是关于x的方程ax2+bx+2=0(a,b∈R)的一个根,则a+b=()A.﹣1B.1C.﹣3D.3【解答】解:1+i是关于x的方程ax2+bx+2=0(a,b∈R)的一个根,一元二次方程虚根成对(互为共轭复数)..得:a=1,b=﹣2,a+b=﹣1.故选:A.3.(5分)已知双曲线C的一条渐近线的方程是:y=2x,且该双曲线C经过点,则双曲线C的方程是()A.B.C.D.【解答】解:由题可设双曲线的方程为:y2﹣4x2=λ,将点代入,可得λ=﹣4,整理即可得双曲线的方程为.故选:D.4.(5分)已知:f(x)=asinx+bcosx,g,若函数f(x)和g(x)有完全相同的对称轴,则不等式g(x)>2的解集是()A.B.C.D.【解答】解:由题意知,函数f(x)和g(x)的周期是一样的,故ω=1,不等式g(x)>2,即,解之得:.故选:B.5.(5分)已知各项均为正数的等比数列{a n},a3•a5=2,若f(x)=x(x﹣a1)(x ﹣a2)…(x﹣a7),则f'(0)=()A.B.C.128D.﹣128【解答】解:令f(x)=x•g(x),其中g(x)=(x﹣a1)(x﹣a2)…(x﹣a7),则f'(x)=g(x)+x•g'(x),故,各项均为正数的等比数列{a n},a3•a5=2,,故.故选:B.6.(5分)已知:,则目标函数z=2x﹣3y()A.z max=﹣7,z min=﹣9B.,z min=﹣7C.z max=﹣7,z无最小值D.,z无最小值【解答】解:画出的可行域,如图:A(0,3),,C(4,5),目标函数z=2x﹣3y经过C时,目标函数取得最大值,z max=﹣7,没有最小值.故选:C.7.(5分)设f(x)=e1+sinx+e1﹣sinx,x1、,且f(x1)>f(x2),则下列结论必成立的是()A.x1>x2B.x1+x2>0C.x1<x2D.>【解答】解:f(x)=f(﹣x),故f(x)是偶函数,而当时,f'(x)=cosx•e1+sinx﹣cosx•e1﹣sinx=cosx•(e1+sinx﹣e1﹣sinx)>0,即f(x)在是单调增加的.由f(x1)>f(x2),可得f(|x1|)>f(|x2|),即有|x1|>|x2|,即,故选:D.8.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积S=()A.10πB.C.D.12π【解答】解析:该多面体如图示,外接球的半径为AG,HA为△ABC外接圆的半径,HG=1,,故,∴该多面体的外接球的表面积.故选:B.9.(5分)执行如图的程序框图,若输出S的值是2,则a的值可以为()A.2014B.2015C.2016D.2017【解答】解:模拟程序的运行,可得:S=2,k=0;满足条件k<a,执行循环体,可得:S=﹣1,k=1;满足条件k<a,执行循环体,可得:,k=2;满足条件k<a,执行循环体,可得:S=2,k=3;…,∴S的值是以3为周期的函数,当k的值能被3整除时,不满足条件,输出S的值是2,a的值可以是2016.故选:C.10.(5分)我们把顶角为36°的等腰三角形称为黄金三角形.其作法如下:①作一个正方形ABCD;②以AD的中点E为圆心,以EC长为半径作圆,交AD延长线于F;③以D为圆心,以DF长为半径作⊙D;④以A为圆心,以AD长为半径作⊙A交⊙D于G,则△ADG为黄金三角形.根据上述作法,可以求出cos36°=()A.B.C.D.【解答】解:根据做法,图形如图所示,△ADG即为黄金三角形,不妨假设AD=AG=2,则,由余弦定理可得cos36°==故选:B.11.(5分)已知抛物线E:y2=2px(p>0),过其焦点F的直线l交抛物线E于A、B两点(点A在第一象限),若S△OAB=﹣tan∠AOB,则p的值是()A.2B.3C.4D.5【解答】解:,即,不妨设A(x1,y1),B(x2,y2),则x1x2+y1y2=﹣3,即有,又因为,故:p=2.故选:A.12.(5分)已知:m>0,若方程有唯一的实数解,则m=()A.B.C.D.1【解答】解:方法一:验证,当时,f(x)=lnx与g(x)=x2﹣x在点(1,0)处有共同的切线y=x﹣1.方法二:将方程整理得,设,则由题意,直线是函数f(x)的一条切线,不妨设切点为(x0,y0),则有:,解之得:x0=1,y0=1,.故选:B.二、填空题:13.(5分)1.028≈ 1.172(小数点后保留三位小数).【解答】解:1.028=(1+0.02)8=+++×0.023+…+≈=+++×0.023=1+8×0.02+28×0.0004+56×0.000008=1.172,故答案为:1.17214.(5分)已知向量=(1,2),=(﹣2,﹣4),||=,若(+)=,则与的夹角为.【解答】解:设=(x,y),由向量=(1,2),=(﹣2,﹣4),||=,且(+)=,可得﹣x﹣2y=,即有x+2y=﹣,即=﹣,设与的夹角为等于θ,则cosθ===﹣.再由0≤θ≤π,可得θ=,故答案为:.15.(5分)已知:,则cos2α+cos2β的取值范围是.【解答】解:∵,∴cos2α+cos2β=1﹣2sin2α+2cos2β﹣1=2(sinα+cosβ)(cosβ﹣sinα)=3(cosβ﹣sinα),∵由,得,,易得:,∴,∴.故答案为:.16.(5分)在四边形ABCD中,∠ABC=90°,,△ACD为等边三角形,则△ABC的外接圆与△ACD的内切圆的公共弦长=1.【解答】解:以AC为x轴,AC的中点为坐标原点建立坐标系,则A(﹣1,0),C(1,0),B(0,1),D(0,﹣),∴△ABC的外接圆的方程x2+y2=1,①△ACD的内切圆方程为,即,②联立①②可得两圆交点坐标为(,﹣),(,﹣),∴两圆的公共弦长为.故答案为:1.三、解答题:17.(12分)已知数列{a n}的前n项和为S n,且满足a n=2S n+1(n∈N*).(1)求数列{a n}的通项公式;(2)若b n=(2n﹣1)•a n,求数列{b n}的前n项和T n.【解答】解:(1)当n=1时,a1=2S1+1=2a1+1,解得a1=﹣1.当n≥2时,有:a n=2S n+1,a n﹣1=2S n﹣1+1,两式相减、化简得a n=﹣a n﹣1,所以数列{a n}是首项为﹣1,公比为﹣1的等比数列,从而.(2)由(1)得,当n为偶数时,b n+b n=2,;﹣1当n为奇数时,n+1为偶数,T n=T n+1﹣b n+1=(n+1)﹣(2n+1)=﹣n.所以数列{b n}的前n项和.18.(12分)如图1,在平行四边形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,现把平行四边形ABB1A11沿CC1折起如图2所示,连接B1C、B1A、B1A1.(1)求证:AB1⊥CC1;(2)若,求二面角C﹣AB 1﹣A1的正弦值.【解答】证明:(1)取CC1的中点O,连接OA,OB1,AC1,∵在平行四边形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,∴△ACC1,△BCC1为正三角形,则AO⊥CC1,OB1⊥CC1,又∵AO∩OB1=O,∴CC1⊥平面OAB1,∵AB1⊂平面OAB1∴AB1⊥CC1;…4分(2)∵∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,∴AC=2,,∵,则,则三角形AOB1为直角三角形,则AO⊥OB1,…6分以O为原点,以OC,OB1,OA为x,y,z轴建立空间直角坐标系,则C(1,0,0),B1(0,,0),C1(﹣1,0,0),A(0,0,),则则,=(0,,),=(1,0,),设平面AB 1C的法向量为,则,令z=1,则y=1,,则,设平面A 1B1A的法向量为,则,令z=1,则x=0,y=1,即,…8分则…10分∴二面角C﹣AB1﹣A1的正弦值是.…12分.19.(12分)为评估设备M生产某种零件的性能,从设备M生产零件的流水线上随机抽取100件零件最为样本,测量其直径后,整理得到下表:经计算,样本的平均值μ=65,标准差=2.2,以频率值作为概率的估计值.(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X,并根据以下不等式进行评判(p表示相应事件的频率):①p(μ﹣σ<X ≤μ+σ)≥0.6826.②P(μ﹣σ<X≤μ+2σ)≥0.9544③P(μ﹣3σ<X≤μ+3σ)≥0.9974.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断设备M的性能等级.(2)将直径小于等于μ﹣2σ或直径大于μ+2σ的零件认为是次品(i)从设备M的生产流水线上随意抽取2件零件,计算其中次品个数Y的数学期望E(Y);(ii)从样本中随意抽取2件零件,计算其中次品个数Z的数学期望E(Z).【解答】解:(Ⅰ)P(μ﹣σ<X≤μ+σ)=P(62.8<X≤67.2)=0.8≥0.6826,P(μ﹣2σ<X≤μ+2σ)=P(60.6<X≤69.4)=0.94≥0.9544,P(μ﹣3σ<X≤μ+3σ)=P(58.4<X≤71.6)=0.98≥0.9974,因为设备M的数据仅满足一个不等式,故其性能等级为丙;…(4分)(Ⅱ)易知样本中次品共6件,可估计设备M生产零件的次品率为0.06.(ⅰ)由题意可知Y~B(2,),于是E(Y)=2×=;…(8分)(ⅱ)由题意可知Z的分布列为故E(Z)=0×+1×+2×=.…(12分)20.(12分)平面直角坐标系xOy中,已知椭圆的左焦点为F,离心率为,过点F且垂直于长轴的弦长为.(I)求椭圆C的标准方程;(Ⅱ)设点A,B分别是椭圆的左、右顶点,若过点P(﹣2,0)的直线与椭圆相交于不同两点M,N.(i)求证:∠AFM=∠BFN;(ii)求△MNF面积的最大值.【解答】解:(1)由题意可得,令x=﹣c,可得y=±b=±,即有,又a2﹣b2=c2,所以.所以椭圆的标准方程为;(II)方法一、(i)当AB的斜率为0时,显然∠AFM=∠BFN=0,满足题意;当AB的斜率不为0时,设M(x1,y1),N(x2,y2),MN方程为x=my﹣2,代入椭圆方程,整理得(m2+2)y2﹣4my+2=0,则△=16m2﹣8(m2+2)=8m2﹣16>0,所以m2>2.,可得==.则k MF+k NF=0,即∠AFM=∠BFN;(ii)当且仅当,即m2=6.(此时适合△>0的条件)取得等号.则三角形MNF面积的最大值是.方法二(i)由题知,直线AB的斜率存在,设直线MN的方程为:y=k(x+2),设M(x1,y1),N(x2,y2),联立,整理得(1+2k2)x2+8k2x+8k2﹣2=0,则△=64k4﹣4(1+2k2)(8k2﹣2)=8﹣16k2>0,所以.,可得=∴k MF+k NF=0,即∠AFM=∠BFN;(ii),点F(﹣1,0)到直线MN的距离为,即有==.令t=1+2k2,则t∈[1,2),u(t)=,当且仅当,即(此时适合△>0的条件)时,,即,则三角形MNF面积的最大值是.21.(12分)已知函数,且函数f(x)的图象在点(1,﹣e)处的切线与直线x+(2e+1)y﹣1=0垂直.(1)求a,b;(2)求证:当x∈(0,1)时,f(x)<﹣2.【解答】解:(1)因为f(1)=﹣e,故(a﹣b)e=﹣e,故a﹣b=﹣1①;依题意,f'(1)=2e+1;又,故f'(1)=e(4a﹣b)+1=2e+1,故4a﹣b=2②,联立①②解得a=1,b=2;(2)由(1)得,要证f(x)<﹣2,即证;令g(x)=(2﹣x3)e x,,g'(x)=﹣e x(x3+3x2﹣2)=﹣e x(x+1)(x2+2x﹣2)令g'(x)=0,因为x∈(0,1),e x>0,x+1>0,故,所以g(x)在上单调递增,在单调递减.而g(0)=2,g(1)=e,当时,g(x)>g(0)=2当时,g(x)>g(1)=e故当x∈(0,1)时,g(x)>2;而当x∈(0,1)时,,故函数所以,当x∈(0,1)时,ϕ(x)<g(x),即f(x)<﹣2.[选修4-4:极坐标与参数方程选讲](本小题满分10分)22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位),且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ.(1)求圆C的直角坐标方程;(2)若点P(1,2),设圆C与直线l交于点A,B,求|PA|+|PB|的最小值.【解答】解:(Ⅰ)由ρ=6sinθ得ρ2=6ρsinθ,化为直角坐标方程为x2+y2=6y,即x2+(y﹣3)2=9.(Ⅱ)将l的参数方程代入圆C的直角坐标方程,得t2+2(cosα﹣sinα)t﹣7=0.由△=(2cosα﹣2sinα)2+4×7>0,故可设t1,t2是上述方程的两根,所以,又直线l过点(1,2),故结合t的几何意义得|PA|+|PB|=|t1|+|t2|=|t1﹣t2|====2.所以|PA|+|PB|的最小值为2.[选修4-5:不等式选讲](本小题满分0分)23.已知a>0,b>0,函数f(x)=|x﹣a|+|x+b|的最小值为2.(1)求a+b的值;(2)证明:a2+a>2与b2+b>2不可能同时成立.【解答】解:(1)∵a>0,b>0,∴f(x)=|x﹣a|+|x+b|≥|(x﹣a)﹣(x+b)|=|a+b|=a+b,∴f(x)min=a+b,由题设条件知f(x)min=2,∴a+b=2;证明:(2)∵a+b=2,而,故ab≤1.假设a2+a>2与b2+b>2同时成立.即(a+2)(a﹣1)>0与(b+2)(b﹣1)>0同时成立,∵a>0,b>0,则a>1,b>1,∴ab>1,这与ab≤1矛盾,从而a2+a>2与b2+b>2不可能同时成立.百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度百百度百度百百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度百度度百度百百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百百度百度百度百度。
2018年全国高考新课标2卷理科数学试题(解析版)
2018年全国高考新课标2卷理科数学试题(解析版)2018年普通高等学校招生全国统一考试新课标2卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知1+2i/(1-2i),则结果为:A。
--iB。
-+iC。
--iD。
-+i解析:选D。
2.已知集合A={(x,y)|x+y≤3,x∈Z,y∈Z },则A中元素的个数为:A。
9B。
8C。
5D。
4解析:选A。
问题为确定圆面内整点个数。
3.函数f(x)=2/x的图像大致为:A。
B。
C。
D。
解析:选B。
f(x)为奇函数,排除A。
当x>0时,f(x)>0,排除D。
取x=2,f(2)=1,故选B。
4.已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=:A。
4B。
3C。
2D。
2-2xy解析:选B。
a·(2a-b)=2a-a·b=2+1=3.5.双曲线a^2(x^2)-b^2(y^2)=1(a>0,b>0)的离心率为3,则其渐近线方程为:A。
y=±2xB。
y=±3xC。
y=±2x/abD。
y=±3x/ab解析:选A。
e=3,c=3ab=2a。
6.在ΔABC中,cosC=1/5,BC=1,AC=5,则AB=:A。
42B。
30C。
29D。
25解析:选A。
cosC=2cos^2(C/2)-1=-1/5,AB=AC+BC-2AB·BC·cosC=32,AB=42.7.为计算S=1-1/3+1/5-1/7+……+(-1)^n-1/(2n-1),设计了右侧的程序框图,则在空白框中应填入:开始N=0,T=1i=1是N=N+1/T=T+(-1)^N-1/(2N-1)i<100否S=N-T输出S结束A。
2018年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)
2018年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2} 2.(5分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.4.(5分)若sinα=,则cos2α=()A.B.C.﹣D.﹣5.(5分)(x2+)5的展开式中x4的系数为()A.10B.20C.40D.806.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3] 7.(5分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.<P(X=6),则p=()9.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.10.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.5411.(5分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A.B.2C.D.12.(5分)设a=log2A.a+b<ab<0B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b 二、填空题:本题共4小题,每小题5分,共20分。
河南省南阳市第一中学2018届高三上学期第三次考试数学(理)试卷及答案
南阳市第一中学2018届高三上学期第三次考试数学(理)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}22|230,|log 12A x x x B x x =--≥=-<,则()R C A B =I ( ) A .()1,3 B .()1,3- C .()3,5 D .()1,5- 2.命题“若220x y +=,则0x y ==”的否命题为( )A .若220x y +=,则0x ≠且0y ≠ B .若220x y +=,则0x ≠或0y ≠ C .若220x y +≠,则0x ≠且0y ≠ D .若220x y +≠,则0x ≠且0y ≠ 3.函数()()2ln 1f x x x=+-的零点所在的大致区间是( ) A .()0,1 B .()1,2 C . ()2,e D . ()3,44.函数()()222,1log 1,1xx f x x x ⎧-≤⎪=⎨->⎪⎩,则52f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( ) A .12-B .-1 C. -5 D .125.下列四个结论,其中正确结论的个数是( )①命题“,ln 0x R x x ∀∈->”的否定是“000,ln 0x R x x ∃∈-≤”;②命题“若sin 0x x -=,则0x =”的逆否命题为“若0x ≠,则sin 0x x -≠”; ③“命题p q ∨为真”是“命题p q ∧为真”的充分不必要条件; ④若0x >,则sin x x >恒成立.A .4个B . 3个 C. 2个 D .1个6.函数()()cos f x x ωϕ=+的部分图象如图所示,则()f x 的单调递减区间为( )A .13,,44k k k Z ππ⎛⎫-+∈ ⎪⎝⎭ B .132,2,44k k k Z ππ⎛⎫-+∈ ⎪⎝⎭ C. 13,,44k k k Z ⎛⎫-+∈ ⎪⎝⎭ D .132,2,44k k k Z ⎛⎫-+∈ ⎪⎝⎭ 7.若121ln 2,5,sin 4a b c xdx π-===⎰,则,,a b c 的大小关系( )A .a b c <<B .b a c << C. c b a << D .b c a << 8.已知1sin cos 63παα⎛⎫--= ⎪⎝⎭,则cos 23πα⎛⎫+= ⎪⎝⎭( )A .518 B .518- C. 79 D .79- 9. 已知函数()()()21sin ,02f x x ωω=->的周期为π,若将其图象沿x 轴向右平移a 个单位()0a >;所得图象关于原点对称,则实数a 的最小值为( )A . πB .34π C. 2π D .4π 10.设正实数,x y 满足1,12x y >>,不等式224121x y m y x +≥--恒成立,则m 的最大值为( ) A .2 B . 42.1611.已知函数()ln f x x x x =+,若k Z ∈,且()()1k x f x -<对任意的1x >恒成立,则k 的最大值为( )A . 2B . 3 C. 4 D .5 12.关于函数()2ln f x x x=+,下列说法错误的是( ) A .2x =是()f x 的极小值点 B .函数()y f x x =-有且只有1个零点C.存在正实数k ,使得()f x kx >恒成立D .对任意两个正实数12,x x ,且21x x >,若()()12f x f x =,则124x x +>第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,满分20分,将答案填在答题纸上13.函数()()0,0x f x a a a a =->≠的定义域和值域都是[]0,1,则548log log 65aa += . 14.定义在R 上的奇函数()f x 满足()()3,201422f x f x f ⎛⎫-=+= ⎪⎝⎭,则()1f -= . 15.若函数()1,021,20x x f x x -<≤⎧=⎨--≤≤⎩,()()[],2,2g x f x ax x =+∈-为偶函数,则实数a = .16.如图所示,已知ABC ∆中,090C ∠=,6,8,AC BC D ==为边AC 上的一点,K 为BD 上的一点,且ABC KAD AKD ∠=∠=∠,则DC = .三、解答题 :解答应写出文字说明、证明过程或演算步骤.17.已知函数()()1cos sin cos 2f x x x x =+-. (1)若02πα<<,且2sin α=()f α的值; (2)求函数()f x 的最小正周期及单调递增区间.18. 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且满足()()cos 2cos b A c a B π=+-. (1)求角B 的大小;(2)若4b =,ABC ∆ABC ∆的周长. 19. 已知(),,2m n R f x x m x n +∈=++-.(1)求()f x 的最小值;(2)若()f x 的最小值为2,求224n m +的最小值.20.已知函数()()243,52f x x x a g x mx m =-++=+-.(1)若()y f x =在[]11-,上存在零点,求实数a 的取值范围;(2)当0a =时,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使()()12f x g x =,求实数m 的取值范围.21. 已知函数()()()212ln f x a x x =---. (1)当1a =时,求()f x 的单调区间;(2)若函数()f x 在10,2⎛⎫ ⎪⎝⎭上无零点,求a 最小值. 22. 设函数()()2ln f x ax x a R =--∈.(1)若()f x 在点()(),e f e 处的切线为0x ey b -+=,求,a b 的值; (2)求()f x 的单调区间;(3)若()xg x ax e =-,求证:在0x >时,()()f x g x >.试卷答案一、选择题1-5:ADBAB 6-10:DDCDC 11、12:BC二、填空题13. 3 14. -2 15. 12-16. 73三、解答题17.解:(1)∵02πα<<,且sin 2α=,∴cos α=,∴()()111cos sin cos 222222f αααα⎛=+-=+-= ⎝⎭; (2)∵函数()()21111cos 21cos sin cos sin cos cos sin 222222x f x x x x x x x x +=+-=+-=+- ()1sin 2cos 22224x x x π⎛⎫=+=+ ⎪⎝⎭,∴()f x 的最小正周期为22T ππ==;令222,242k x k k Z πππππ-≤+≤+∈, 解得3,88k x k k Z ππππ-≤≤+∈;∴()f x 的单调增区间为3,,88k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 18.解:(1)∵()()cos 2cos b A c a B π=+-,∴()()cos 2cos b A c a B =+-, 由正弦定理可得:()sin cos 2sin sin cos B A C A B =--,∴()sin 2sin cos sin A B C B C +=-=,又角C 为ABC ∆内角,sin 0C >,∴1cos 2B =-, 又()0,B π∈,∴23B π=, (2)有1sin 2ABC S ac B ∆==4ac =, 又()222216b a c a a c ac =++=+-=,∴a c +=ABC ∆的周长为4+19.解:(1)∵()3,,23,2x m n x m n f x x m n m x n x m n x ⎧⎪--+≤-⎪⎪=-++-<<⎨⎪⎪+-≥⎪⎩,∴()f x 在,2n ⎛⎫-∞ ⎪⎝⎭是减函数,在,2n ⎛⎫+∞ ⎪⎝⎭是增函数,∴当2nx =时,()f x 取最小值22n n f m ⎛⎫=+ ⎪⎝⎭;(2)由(1)知,()f x 的最小值为2n m +,∴22nm +=, ∵2222211,,2242424n n n m n R m m m +⎛⎫⎛⎫⎛⎫∈+=+≥+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭g ,当且仅当2nm =,即1,2m n ==时,取等号.∴2244n m ⎛⎫+ ⎪⎝⎭的最小值为2.20.解:(1)∵()243f x x x a =-++的对称轴是2x =,∴()f x 在区间[]1,1-上是减函数,∵()f x 在[]1,1-上存在零点,则必有:()()1010f f ≤⎧⎪⎨-≥⎪⎩,即080a a ≤⎧⎨+≥⎩,解得:80a -≤≤,故实数a 的取值范围为[]8,0-;(2)若对任意[]11,4x ∈,总存在[]21,4x ∈,使()()12f x g x =成立,只需函数()y f x =的值域为函数()y g x =值域的子集.当0a =时,()[]243,1,4f x x x x =-+∈的值域为[]1,3-,下面求()[]52,1,4g x mx m x =+-∈的值域,①当0m =时,()5g x =,不合题意,故舍;②当0m >时,()52g x mx m =+-的值域为[]5,52m m -+, 只需要[][]1,35,52m m -⊆-+,即51523m m -≤-⎧⎨+≥⎩,解得6m ≥;③当0m <时,()52g x mx m =+-的值域为[]52,5m m +-,只需要[][]1,352,5m m -⊆+-,即52153m m +≤-⎧⎨-≥⎩,解得3m ≤-;综上实数m 的取值范围为(][),36,-∞-⋃+∞. 21.解:(1)当1a =时,()12ln f x x x =--,则()21f x x=-,由()0f x >,得2x >,由()0f x <,得02x <<, 故()f x 的单调减区为(]0,2,单调增区间为[)2,+∞. (2)因为()0f x <在区间10,2⎛⎫ ⎪⎝⎭上恒成立不可能,故要使函数()f x 在10,2⎛⎫ ⎪⎝⎭上无零点,只要对任意的10,2x ⎛⎫∈ ⎪⎝⎭,()0f x >恒成立,即对12ln 0,,221x x a x ⎛⎫∈>-⎪-⎝⎭恒成立,令()2ln 12,0,12x l x x x ⎛⎫=-∈ ⎪-⎝⎭,则()()222ln 2ln 1x x l x x +-'=-,再令()212ln 2,0,ln 2m x x x x ⎛⎫=+-∈ ⎪⎝⎭,则()()2221220x m x x x x --'=-+=<,故()m x 在10,2⎛⎫⎪⎝⎭上为减函数,于是()122ln 202m x m ⎛⎫>=->⎪⎝⎭,从而()0l x >,于是()l x 在10,2⎛⎫⎪⎝⎭上为增函数,所以()124ln 22l x l ⎛⎫<=-⎪⎝⎭,故要使2ln 21x a x >--恒成立,只要[)24ln 2,a ∈-+∞,综上,若函数()f x 在10,2⎛⎫ ⎪⎝⎭上无零点,则a 的最小值为24ln 2-. 22.解:(1)∵()()2ln f x ax x a R =--∈,∴()11ax f x a x x-'=-=, 又()f x 在点()(),e f e 的切线的斜率为1e ,∴()11ae f e e e -'==,∴2a e=,∴切点为(),1e -把切点代入切线方程得:2b e =-;(2)由(1)知:()()110ax f x a x x x-'=-=>①当0a ≤时,()0f x '<在()0,+∞上恒成立, ∴()f x 在()0,+∞上是单调减函数,②当0a >时,令()0f x '=,解得:1x a=,当x 变化时,()(),f x f x '随x 变化情况如下表:当10,x a ⎛⎫∈ ⎪⎝⎭时,()()0,f x f x '<单调减,当1,x a⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,单()f x 单调增,综上所述:当0a ≤时,()f x 的单调减区间为()0,+∞;当0a >时,()f x 的单调减区间为10,a ⎛⎫⎪⎝⎭,单调增区间为1,+a⎛⎫∞ ⎪⎝⎭.(3)当0x >时,要证()0xf x ax e -+>,即证ln 20x e x -->,令()()ln 20xh x e x x =-->,只需证()0h x >,∵()1x h x e x '=-由指数函数及幂函数的性质知:()1x h x e x'=-在()0,+∞上是增函数又()110h e '=->,131303h e ⎛⎫'=-< ⎪⎝⎭,∴()1103h h ⎛⎫''<< ⎪⎝⎭,()h x '在1,13⎛⎫⎪⎝⎭内存在唯一的零点,也即()h x '在()0,+∞上有唯一零点设()h x '的零点为t ,则()10h t e t''=-=,即1113e t t ⎛⎫'=<< ⎪⎝⎭,由()h x '的单调性知:当()0,x t ∈时,()()0h x h t ''<=,()h x 为减函数当(),x t ∈+∞时,()()0h x h t ''>=,()h x 为增函数,所以当0x >时,()()11ln 2ln 2h x h t e t t e '≥=--=--',又113t <<,等号不成立,∴()102220h x t t>=+-≥-=.。
河南省南阳市2018届高三上学期期末数学试卷理科 含解析
2018-2018学年河南省南阳市高三(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合M={1,2,3,4},则集合P={x|x∈M,且2x∉M}的子集个数为()A.2 B.3 C.4 D.82.己知复数z=cosθ+isinθ(i是虚数单位),则=()A.cosθ+isinθB.2cosθC.2sinθD.isin2θ3.直线x+(1+m)y=2﹣m和直线mx+2y+8=0平行,则m的值为()A.1 B.﹣2 C.1或﹣2 D.﹣4.已知公差不为0的等差数列{a n}满足a1,a3,a4成等比数列,S n为数列{a n}的前n项和,则的值为()A.2 B.3 C.﹣2 D.﹣35.五位同学站成一排照相留念,则在甲乙相邻的条件下,甲丙也相邻的概率为()A.B.C.D.6.若如图框图所给的程序运行结果为S=41,则图中的判断框(1)中应填入的是()A.i>6?B.i≤6?C.i>5?D.i<5?7.已知三棱锥的俯视图与左视图如图所示,俯视图是边长为2的正三角形,左视图是有一条直角边为2的直角三角形,则该三棱锥的主视图可能为()A.B.C.D.8.将函数f(x)=sin(2x﹣)的图象向右平移个单位后得到函数g(x),则g(x)具有性质()A.最大值为1,图象关于直线x=对称B.在(0,)上单调递减,为奇函数C.在(﹣,)上单调递增,为偶函数D.周期为π,图象关于点(,0)对称9.已知实数x,y满足,若目标函数z=﹣mx+y的最大值为﹣2m+10,最小值为﹣2m﹣2,则实数m的取值范围是()A.[﹣1,2]B.[﹣2,1]C.[2,3]D.[﹣1,3]10.已知函数,则关于x的不等式f(3x+1)+f(x)>1的解集为()A.B.C.(0,+∞)D.(﹣∞,0)11.过双曲线x2﹣=1的右支上一点P,分别向圆C1:(x+4)2+y2=4和圆C2:(x﹣4)2+y2=1作切线,切点分别为M,N,则|PM|2﹣|PN|2的最小值为()A.10 B.13 C.16 D.1912.定义在R上的函数f(x)满足f'(x)﹣f(x)=x•e x,且,则的最大值为()A.1 B.﹣ C.﹣1 D.0二、填空题:本大题共4小题,每小题5分,共20分.13.若命题“∃x0∈R,x18+mx0+2m﹣3<0”为假命题,则实数m的取值范围是…14.已知,则二项式的展开式中x﹣3的系数为.15.已知△ABC中,,D为边BC的中点,则=.16.在正三棱锥V﹣ABC内,有一个半球,其底面与正三棱锥的底面重合,且与正三棱锥的三个侧面都相切,若半球的半径为2,则正三棱锥的体积的最小时,其底面边长为.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(10分)设,令a1=1,a n=f(a n),又.+1(1)证明:数列为等差数列,并求数列{a n}的通项公式;(2)求数列{b n}的前n项和.18.(12分)已知△ABC的面积为S,且•=S,|﹣|=3.(Ⅰ)若f(x)=2cos(ωx+B)(ω>0)的图象与直线y=2相邻两个交点间的最短距离为2,且f()=1,求△ABC的面积S;(Ⅱ)求S+3cosBcosC的最大值.19.(12分)某校高三学生有两部分组成,应届生与复读生共2000学生,期末考试数学成绩换算为100分的成绩如图所示,从高三的学生中,利用分层抽样,抽取100名学生的成绩绘制成频率分布直方图:(1)若抽取的学生中,应届生与复读生的比为9﹕1,确定高三应届生与复读生的人数;(2)计算此次数学成绩的平均分;(3)若抽取的[80,90),[90,100]的学生中,应届生与复读生的比例关系也是9﹕1,从抽取的[80,90),[90,100]两段的复读生中,选两人进行座谈,设抽取的[80,90)的人数为随机变量ξ,求ξ的分布列与期望值.20.(12分)已知四棱锥P﹣ABCD,底面ABCD是直角梯形,AD∥BC,∠BCD=90°,PA⊥底面ABCD,△ABM是边长为2的等边三角形,.(Ⅰ)求证:平面PAM⊥平面PDM;(Ⅱ)若点E为PC中点,求二面角P﹣MD﹣E的余弦值.21.(12分)已知椭圆C: +=1(a>b>0),过椭圆的上顶点与右顶点的直线l,与圆x2+y2=相切,且椭圆C的右焦点与抛物线y2=4x的焦点重合;(1)求椭圆C的方程;(2)过点O作两条互相垂直的射线与椭圆C分别交于A,B两点,求△OAB面积的最小值.22.(12分)已知f(x)=xlnx+mx,且曲线y=f(x)在点(1,f(1))处的切线斜率为1.(1)求实数m的值;(2)设在定义域内有两个不同的极值点x1,x2,求a的取值范围;(3)已知λ>0,在(2)的条件下,若不等式恒成立,求λ的取值范围.2018-2018学年河南省南阳市高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合M={1,2,3,4},则集合P={x|x∈M,且2x∉M}的子集个数为()A.2 B.3 C.4 D.8【考点】集合中元素个数的最值.【分析】根据题意,写出集合P即可.【解答】解:根据题意,若1∈P,则2×1=2∈M,故不满足题意;若2∈P,则2×2=4∈M,故不满足题意;若3∈P,则2×3=6∉M,故满足题意;若4∈P,则2×4=8∉M,故满足题意;综上,P={3,4},所以集合P的子集有:∅,{3},{4},{3,4},故选:C.【点评】本题考查集合的定义及子集,属于基础题.2.己知复数z=cosθ+isinθ(i是虚数单位),则=()A.cosθ+isinθB.2cosθC.2sinθD.isin2θ【考点】复数代数形式的乘除运算.【分析】z=cosθ+isinθ代入,然后利用复数代数形式的乘除运算化简得答案.【解答】解:∵z=co sθ+isinθ,∴====.故选:B.【点评】本题考查复数代数形式的乘除运算,考查了三角函数的化简求值,是基础题.3.直线x+(1+m)y=2﹣m和直线mx+2y+8=0平行,则m的值为()A.1 B.﹣2 C.1或﹣2 D.﹣【考点】直线的一般式方程与直线的平行关系.【分析】由直线平行可得1×2﹣(1+m)m=0,解方程排除重合可得.【解答】解:∵直线x+(1+m)y=2﹣m和直线mx+2y+8=0平行,∴1×2﹣(1+m)m=0,解得m=1或﹣2,当m=﹣2时,两直线重合.故选:A.【点评】本题考查直线的一般式方程和平行关系,属基础题.4.已知公差不为0的等差数列{a n}满足a1,a3,a4成等比数列,S n为数列{a n}的前n项和,则的值为()A.2 B.3 C.﹣2 D.﹣3【考点】等比数列的性质;等差数列的性质.【分析】由题意可得:a3=a1+2d,a4=a1+3d.结合a1、a3、a4成等比数列,得到a1=﹣4d,进而根据等差数列的通项公式化简所求的式子即可得出答案.【解答】解:设等差数列的公差为d,首项为a1,所以a3=a1+2d,a4=a1+3d.因为a1、a3、a4成等比数列,所以(a1+2d)2=a1(a1+3d),解得:a1=﹣4d.所以==2,故选:A.【点评】解决此类问题的关键是熟练掌握等比数列与等差数列的性质,利用性质解决问题.5.五位同学站成一排照相留念,则在甲乙相邻的条件下,甲丙也相邻的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】五位同学站成一排照相留念,且甲乙相邻,先求出基本事件种数,再求出甲丙也相邻包含的基本事件个数,由此能求出甲丙也相邻的概率.【解答】解:五位同学站成一排照相留念,且甲乙相邻,基本事件种数n==48,其中甲丙也相邻包含的基本事件个数m==12,∴甲丙也相邻的概率p=.故选:A.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.6.若如图框图所给的程序运行结果为S=41,则图中的判断框(1)中应填入的是()A.i>6?B.i≤6?C.i>5?D.i<5?【考点】程序框图.【分析】模拟程序的运行,当k=5时,不满足判断框的条件,退出循环,从而到结论.【解答】解:模拟执行程序,可得i=10,S=1满足条件,执行循环体,第1次循环,S=11,K=9,满足条件,执行循环体,第2次循环,S=20,K=8,满足条件,执行循环体,第3次循环,S=28,K=7,满足条件,执行循环体,第4次循环,S=35,K=6,满足条件,执行循环体,第5次循环,S=41,K=5,此时S不满足输出结果,退出循环,所以判断框中的条件为k>5.故选:C.【点评】本题主要考查了循环结构,是当型循环,当满足条件,执行循环,同时考查了推理能力,属于基础题.7.已知三棱锥的俯视图与左视图如图所示,俯视图是边长为2的正三角形,左视图是有一条直角边为2的直角三角形,则该三棱锥的主视图可能为()A.B.C.D.【考点】简单空间图形的三视图.【分析】由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,即可得出结论.【解答】解:由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,其直观图如下所示:从而该三棱锥的主视图可能为,故选A.【点评】本题考查的知识点是三视图,解决本题的关键是得到该几何体的形状.8.将函数f(x)=sin(2x﹣)的图象向右平移个单位后得到函数g(x),则g(x)具有性质()A.最大值为1,图象关于直线x=对称B.在(0,)上单调递减,为奇函数C.在(﹣,)上单调递增,为偶函数D.周期为π,图象关于点(,0)对称【考点】函数y=Asin(ωx+φ)的图象变换.【分析】有条件利用y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数周期性、单调性,以及它的图象的对称性,得出结论.【解答】解:将函数f(x)=sin(2x﹣)的图象向右平移个单位后得到函数g(x)=sin[2(x﹣)﹣]=sin(2x﹣π)=﹣sin2x的图象,当x=时,求得g(x)=0,不是最值,故g(x)的图象不关于直线x=对称,故排除A.在(0,)上,2x∈(0,),sin2x单调递增,故g(x)单调递减,且g(x)为奇函数,故B满足条件,C不满足条件.当x=时,g(x)=﹣≠0,故g(x)的图象不关于点(,0)对称,故选:B.【点评】本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数周期性、单调性,以及它的图象的对称性,属于基础题.9.已知实数x,y满足,若目标函数z=﹣mx+y的最大值为﹣2m+10,最小值为﹣2m﹣2,则实数m的取值范围是()A.[﹣1,2]B.[﹣2,1]C.[2,3]D.[﹣1,3]【考点】简单线性规划的应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,由z=﹣mx+y 的最大值为﹣2m+10,即当目标函数经过点(2,10)时,取得最大,当经过点(2,﹣2)时,取得最小值,利用数形结合确定m的取值范围.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由目标函数z=﹣mx+y得y=mx+z,则直线的截距最大,z最大,直线的截距最小,z最小.∵目标函数z=﹣mx+y的最大值为﹣2m+10,最小值为﹣2m﹣2,∴当目标函数经过点(2,10)时,取得最大,当经过点(2,﹣2)时,取得最小值,∴目标函数z=﹣mx+y的目标函数的斜率m满足比x+y=0的斜率大,比2x﹣y+6=0的斜率小,即﹣1≤m≤2,故选:A.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,确定目标函数的斜率是解决本题的关键,利用数形结合的数学思想是解决此类问题的基本方法.10.已知函数,则关于x的不等式f(3x+1)+f(x)>1的解集为()A.B.C.(0,+∞)D.(﹣∞,0)【考点】指、对数不等式的解法.【分析】设g(x)=2018x+log2018(+x)﹣2018﹣x,判断g(x)的奇偶性及其单调性,求出g(﹣x)=﹣g(x),通过求g′(x),并判断其符号可判断其单调性,从而原不等式可变成,g(3x+1)>g(﹣x),而根据g(x)的单调性即可得到关于x的一元一次不等式,解该不等式即得原不等式的解集.【解答】解:设g(x)=2018x+log2018(+x)﹣2018﹣x,g(﹣x)=2018﹣x﹣log2018(+x)﹣2018x=﹣g(x).g′(x)=2018x ln2018++2018﹣x ln2018>0;∴g(x)在R上单调递增,∴由f(3x+1)+f(x)>1,得g(3x+1)+2+g(x)+2>4.则g(3x+1)>g(﹣x).∴3x+1>﹣x,解得x>﹣.∴原不等式的解集为(﹣,+∞).故选:A.【点评】本题考查对数的运算性质,考查奇函数的判断方法,训练了利用导数研究函数的单调性,体现了数学转化思想方法,是中档题.11.过双曲线x2﹣=1的右支上一点P,分别向圆C1:(x+4)2+y2=4和圆C2:(x﹣4)2+y2=1作切线,切点分别为M,N,则|PM|2﹣|PN|2的最小值为()A.10 B.13 C.16 D.19【考点】双曲线的简单性质.【分析】求得两圆的圆心和半径,设双曲线x2﹣=1的左右焦点为F1(﹣4,0),F2(4,0),连接PF1,PF2,F1M,F2N,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值.【解答】解:圆C1:(x+4)2+y2=4的圆心为(﹣4,0),半径为r1=2;圆C2:(x﹣4)2+y2=1的圆心为(4,0),半径为r2=1,设双曲线x2﹣=1的左右焦点为F1(﹣4,0),F2(4,0),连接PF1,PF2,F1M,F2N,可得|PM|2﹣|PN|2=(|PF1|2﹣r12)﹣(|PF2|2﹣r22)=(|PF1|2﹣4)﹣(|PF2|2﹣1)=|PF1|2﹣|PF2|2﹣3=(|PF1|﹣|PF2|)(|PF1|+|PF2|)﹣3=2a(|PF1|+|PF2|﹣3=2(|PF1|+|PF2|)﹣3≥2•2c﹣3=2•8﹣3=13.当且仅当P为右顶点时,取得等号,即最小值13.故选B.【点评】本题考查最值的求法,注意运用双曲线的定义和圆的方程,考查三点共线的性质,以及运算能力,属于中档题.12.定义在R 上的函数f (x )满足f'(x )﹣f (x )=x•e x ,且,则的最大值为( ) A .1B .﹣C .﹣1D .0【考点】导数在最大值、最小值问题中的应用;函数的最值及其几何意义.【分析】先构造函数,F (x )=,根据题意求出f (x )的解析式,即可得到=,再根据基本不等式即可求出最大值.【解答】解:令F (x )=,则F′(x )==x ,则F (x )=x 2+c ,∴f (x )=e x (x 2+c ),∵f (0)=,∴c=,∴f (x )=e x (x 2+),∴=,x >0, ==≤1,∴的最大值为1,故选:A.【点评】本题考查了导数和函数的关系以及函数的值域问题,关键是构造函数和利用基本不等式求函数的值域,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分.13.若命题“∃x0∈R,x18+mx0+2m﹣3<0”为假命题,则实数m的取值范围是…【考点】特称命题;复合命题的真假.【分析】由于命题P:“”为假命题,可得¬P:“∀x∈R,x2+mx+2m﹣3≥0”为真命题,因此△≤0,解出即可.【解答】解:∵命题P:“”为假命题,∴¬P:“∀x∈R,x2+mx+2m﹣3≥0”为真命题,∴△≤0,即m2﹣4(2m﹣3)≤0,解得2≤m≤6.∴实数m的取值范围是[2,6].故答案为:[2,6].【点评】本题考查了非命题、一元二次不等式恒成立与判别式的关系,属于基础题.14.已知,则二项式的展开式中x﹣3的系数为﹣160.【考点】二项式定理的应用.【分析】求定积分得a的值,在二项展开式的通项公式中,令x的幂指数等于﹣3,求出r的值,即可求得展开式中x﹣3的系数.【解答】解:=﹣cosx=2,=•(﹣2)r•x﹣r,则二项式=的展开式的通项公式为T r+1令﹣r=﹣3,可得r=3,故展开式中x﹣3的系数为•(﹣2)3=﹣160,故答案为:﹣160.【点评】本题主要考查求定积分,二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.15.已知△ABC中,,D为边BC的中点,则=.【考点】平面向量数量积的运算.【分析】利用数量积的性质和向量的平行四边形法则即可得出.【解答】解:如图,=,∴.∴==.∴=.故答案为:.【点评】本题考查了数量积的性质和向量的平行四边形法则,属于中档题.16.在正三棱锥V﹣ABC内,有一个半球,其底面与正三棱锥的底面重合,且与正三棱锥的三个侧面都相切,若半球的半径为2,则正三棱锥的体积的最小时,其底面边长为.【考点】棱柱、棱锥、棱台的体积.【分析】由于正三棱锥的侧面为全等的等腰三角形,故侧面与球的切点在棱锥的斜高上,利用等积法得出棱锥的高与棱锥底面边长的关系,得出棱锥的体积关于高h的函数V(h),利用导数与函数的最值得关系计算V(h)的极小值点,然后转化为底面边长得答案.【解答】解:设△ABC的中心为O,取AB中点D,连结OD,VD,VO,设OD=a,VO=h,则VD==.AB=2AD=2a.过O作OE⊥VD,则OE=2,=OD•VO=VD•OE,∴S△VOD∴ah=2,整理得a2=(h>2).•h=××a2h=a2h=.∴V(h)=S△ABC∴V′(h)=4×=4×.令V′(h)=0,得h2﹣12=0,解得h=2.当2<h<2时,V′(h)<0,当h>2时,V′(h)>0,∴当h=2,即a=,也就是AB=时,V(h)取得最小值.故答案为:.【点评】本题考查了球与外切多面体的关系,棱锥的体积计算,导数与函数的最值,属于中档题.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.=f(a n),17.(10分)(2018秋•南阳期末)设,令a1=1,a n+1又.(1)证明:数列为等差数列,并求数列{a n}的通项公式;(2)求数列{b n}的前n项和.【考点】数列的求和;等差数列的通项公式.=.将其变形可得﹣=,由等差数【分析】(1)由题意可得:a n+1列的定义进而得到答案,进而求得数列{a n}的通项公式;(2)设S n是数列{b n}的前n项和.由(1)可得b n=a n•a n+1=a2(﹣).利用“裂项求和”的方法求出答案即可.=f(a n)=,【解答】解:(1)证明:∵a n+1∴﹣=.∴是首项为1,公差为的等差数列,∴=1+(n﹣1).整理得a n=;(2)b n=a n•a n+1=•=a2(﹣).设数列{b n}的前n项和为T n,则T n=a2(﹣+﹣+…﹣)=a2(﹣)=a2(﹣)=a2•=.∴数列{b n}的前n项和为.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.18.(12分)(2018•贵阳校级模拟)已知△ABC的面积为S,且•=S,|﹣|=3.(Ⅰ)若f(x)=2cos(ωx+B)(ω>0)的图象与直线y=2相邻两个交点间的最短距离为2,且f()=1,求△ABC的面积S;(Ⅱ)求S+3cosBcosC的最大值.【考点】余弦函数的图象;平面向量数量积的运算.【分析】(Ⅰ)由条件利用余弦函数的图象特征求出ω,可得f(x)的解析式,再根据f()=1求得B,再利用条件求得A,从而△ABC是直角三角形,从而计算△ABC的面积S.(Ⅱ)利用正弦定理求得△ABC的外接圆半径R,再化减S+3cosBcosC为3 cos(B﹣C),从而求得它的最大值.【解答】解:(Ⅰ)∵f(x)=2cos(ωx+B)(ω>0)的图象与直线y=2相邻两个交点间的最短距离为T,∴T=2,即:,解得ω=π,故f(x)=2cos(πx+B).又,即:,∵B是△ABC的内角,∴,设△ABC的三个内角的对边分别为a,b,c,∵,∴,解得,,从而△ABC是直角三角形,由已知得,,从而,.(Ⅱ)由(Ⅰ)知,设△ABC的外接圆半径为R,则2R===2,解得R=,∴S+3cosBcosC=bcsinA+3cosBcosC=bc+3cosBcosC=3sinBsinC+3cosBcosC=3cos(B﹣C),故的最大值为.【点评】本题主要考查余弦函数的图象特征,正弦定理,两个向量的数量积的运算,属于中档题.19.(12分)(2018•衡阳校级模拟)某校高三学生有两部分组成,应届生与复读生共2000学生,期末考试数学成绩换算为100分的成绩如图所示,从高三的学生中,利用分层抽样,抽取100名学生的成绩绘制成频率分布直方图:(1)若抽取的学生中,应届生与复读生的比为9﹕1,确定高三应届生与复读生的人数;(2)计算此次数学成绩的平均分;(3)若抽取的[80,90),[90,100]的学生中,应届生与复读生的比例关系也是9﹕1,从抽取的[80,90),[90,100]两段的复读生中,选两人进行座谈,设抽取的[80,90)的人数为随机变量ξ,求ξ的分布列与期望值.【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【分析】(1)因为抽取的应届生与复读生的比为9﹕1,求出应届生抽取90人,复读生抽取10人,由此能确定确定高三应届生与复读生的人数.(2)由频率分布图中小矩形面积之和为1,得a=0.18,由此能求出此次数学成绩的平均分.(3)根据频率分布直方图可知抽取的复读生的人数分别为2,3人抽取的[80,90)的人数为随机变量ξ,可知ξ=0,1,2,分别求出相应的概率,由此能求出ξ的分布列与期望值.【解答】解:(1)∵抽取的应届生与复读生的比为9﹕1,∴应届生抽取90人,复读生抽取10人,应届生的人数为90×20=1800,复读生的人数为2000﹣1800=200.(2)10×(0.01+a+0.18+0.18)=1,∴a=0.18,平均分为10×(0.01×65+0.18×75+0.18×85+0.18×95)=82(3)根据频率分布直方图可知,抽取的[80,90),[90,100]的学生分别为100×0.2=20,100×0.3=30,抽取的复读生的人数分别为2,3人抽取的[80,90)的人数为随机变量ξ,可知ξ=0,1,2,可知,,,∴ξ的分布列为:∴.【点评】本题考查频率分布直方图的应用,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.20.(12分)(2018秋•南阳期末)已知四棱锥P﹣ABCD,底面ABCD是直角梯形,AD∥BC,∠BCD=90°,PA⊥底面ABCD,△ABM是边长为2的等边三角形,.(Ⅰ)求证:平面PAM⊥平面PDM;(Ⅱ)若点E为PC中点,求二面角P﹣MD﹣E的余弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(Ⅰ)证明DM⊥AM.DM⊥PA,推出DM⊥平面PAM,即可证明平面PAM⊥平面PDM.(Ⅱ)以D为原点,DC所在直线为x轴,DA所在直线为y轴,过D且与PA平行的直线为z轴,建立空间直角坐标系D﹣xyz,求出平面PMD的法向量,平面MDE的法向量,利用向量的数量积求解二面角P﹣MD﹣E的余弦值.【解答】解:(Ⅰ)证明:∵△ABM是边长为2的等边三角形,底面ABCD是直角梯形,∴,又,∴CM=3,∴AD=3+1=4,∴AD2=DM2+AM2,∴DM⊥AM.又PA⊥底面ABCD,∴DM⊥PA,∴DM⊥平面PAM,∵DM⊂平面PDM,∴平面PAM⊥平面PDM.(Ⅱ)以D为原点,DC所在直线为x轴,DA所在直线为y轴,过D且与PA平行的直线为z轴,建立空间直角坐标系D﹣xyz,则,,,设平面PMD的法向量为,则,取x1=3,∴.(8分)∵E为PC中点,则,设平面MDE的法向量为,则,取x2=3,∴.(10分)由.∴二面角P﹣MD﹣E的余弦值为.(12分)【点评】本题考查二面角的平面镜的求法,平面与平面垂直的判定定理的应用,考查空间想象能力以及计算能力.21.(12分)(2018•衡阳校级模拟)已知椭圆C: +=1(a>b>0),过椭圆的上顶点与右顶点的直线l,与圆x2+y2=相切,且椭圆C的右焦点与抛物线y2=4x的焦点重合;(1)求椭圆C的方程;(2)过点O作两条互相垂直的射线与椭圆C分别交于A,B两点,求△OAB面积的最小值.【考点】椭圆的简单性质.【分析】(1)写出过椭圆的上顶点与右顶点的直线方程,由的到直线的距离得到关于a,b的等式,由抛物线方程求出焦点坐标,得到椭圆的半焦距长,结合隐含条件联立可得a,b的值,则椭圆方程可求;(2)当两射线与坐标轴重合时,直接求出△OAB面积,不重合时,设直线AB 方程为y=kx+m,与椭圆方程联立,结合OA⊥OB得到k与m的关系,进一步由点到直线的距离得到O到AB的距离,再利用基本不等式求得AB的最小距离,代入三角形面积公式求得最小值.【解答】解:(1)过椭圆的上顶点与右顶点的直线l为,即bx+ay﹣ab=0,由直线与相切,得,①∵抛物线y2=4x的焦点为F(1,0),∴c=1.即a2﹣b2=1,代入①得7a4﹣31a2+12=0,即(7a2﹣3)(a2﹣4)=0,得(舍去),∴b2=a2﹣1=3.故椭圆C的方程为;(2)当两射线与坐标轴重合时,;当两射线不与坐标轴重合时,设直线AB的方程为y=kx+m,A(x1,y1),B(x2,y2),与椭圆联立消去y,得(3+4k2)x2+8kmx+4m2﹣12=0..∵OA⊥OB,∴x1x2+y1y2=0,∴x1x2+(kx1+m)(kx2+m)=0.即,把代入,得,整理得7m2=12(k2+1),∴O到直线AB的距离.∵OA⊥OB,∴OA2+OB2=AB2≥2OA•OB,当且仅当OA=OB时取“=”号.由d•AB=OA•OB,得,∴,即弦AB的长度的最小值是.∴三角形的最小面积为.综上,△OAB面积的最小值为.【点评】本题考查椭圆的简单性质,考查了直线与圆、圆与椭圆位置关系的应用,考查推理论证能力与计算能力,考查三角形面积最值的求法,体现了分类讨论的数学思想方法,是压轴题.22.(12分)(2018秋•南阳期末)已知f(x)=xlnx+mx,且曲线y=f(x)在点(1,f(1))处的切线斜率为1.(1)求实数m的值;(2)设在定义域内有两个不同的极值点x1,x2,求a的取值范围;(3)已知λ>0,在(2)的条件下,若不等式恒成立,求λ的取值范围.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【分析】(1)求出原函数的导函数,得到f′(1),由f′(1)=1求得m值;(2)求出函数g(x)的导数,通过讨论a的范围,结合函数的单调性确定a的具体范围即可;(3)求出g(x),求其导函数,可得lnx1=ax1,lnx2=ax2,原式等价于ln<恒成立.令t=,t∈(0,1),则不等式lnt<在t∈(0,1)上恒成立,令h(t)=lnt﹣,根据函数的单调性求出λ的范围即可.【解答】解:(1)f′(x)=1+lnx+m,由题意知,f′(1)=1,即:m+1=1,解得m=0;(2)因为g(x)在其定义域内有两个不同的极值点x1,x2,所以g′(x)=f′(x)﹣ax﹣1=lnx﹣ax=0有两个不同的根x1,x2,设ω(x)=g′(x)=lnx﹣ax,则φ′(x)=(x>0),显然当a≤0时ω′(x)>0,ω(x)单调递增,不符合题意,所以a>0,由ω′(x)=0,得:x=,当0<x<时,ω′(x)>0,ω(x)单调递增,当x>时,ω′(x)<0,ω(x)单调递减,所以ω()>0,从而得0<a<,…又当x→0时,ω(x)→﹣∞,所以ω(x)在(0,)上有一根;∵>e,∴>,取x=,ω()=﹣2lna﹣,设r(a)=﹣2lna﹣,则r′(a)=>0,r(a)在(0,)上单调递增,r(a)<r()=2﹣e<0,所以ω(x)在(,)上有一根;综上可知,当0<a<时,g′(x)=0有两个不同的根所以a的取值范围为(0,).(3)∵e1+λ<x1•x2λ 等价于1+λ<lnx1+λlnx2.g(x)=f(x)﹣x2﹣x+a=xlnx﹣x2﹣x+a,由题意可知x1,x2分别是方程g′(x)=0,即:lnx﹣ax=0的两个根,即lnx1=ax1,lnx2=ax2.∴原式等价于1+λ<ax1+λax2=a(x1+λx2),∵λ>0,0<x1<x2,∴原式等价于a>,又由lnx1=ax1,lnx2=ax2.作差得,ln =a(x1﹣x2),即a=,∴原式等价于>,∵0<x1<x2,原式恒成立,即ln<恒成立.令t=,t∈(0,1),则不等式lnt<在t∈(0,1)上恒成立.令h(t)=lnt﹣,又h′(t)=,当λ2≥1时,可得t∈(0,1)时,h′(t)>0,∴h(t)在t∈(0,1)上单调增,又h(1)=0,h(t)<0在t∈(0,1)恒成立,符合题意.当λ2<1时,可得t∈(0,λ2)时,h′(t)>0,t∈(λ2,1)时,h′(t)<0,∴h(t)在t∈(0,λ2)时单调增,在t∈(λ2,1)时单调减,又h(1)=0,∴h(t)在t∈(0,1)上不能恒小于0,不符合题意,舍去.综上所述,若不等式e1+λ<x1•x2λ 恒成立,只须λ2≥1,又λ>0,∴λ≥1.【点评】本题考查利用导数研究过曲线上某点处的切线方程,考查利用导数求函数的极值,考查数学转化思想方法,训练了学生的灵活变形能力和应用求解能力,属压轴题.。
河南省南阳市2018届高三数学上学期第三次考试试题文
河南省南阳市2018届高三数学上学期第三次考试试题 文第Ⅰ卷(选择题 共60分)一、选择题:本大题共10个小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}012,|21,A B x x x Z ==-<<∈,,,则A B =U ( )A .{}0B .{}0,1,2C .{}1,0,1,2-D .{}2,1,0,1,2--2.下列函数中,在其定义域内既是奇函数又是增函数的是( )A .1y x= B .2y x = C .3y x = D .sin y x = 3.函数2y =的值域是( )A .[)0,+∞B .[]1,2C . []0,2D . (],2-∞4.三个数112121,2,log 3a b c e -⎛⎫=== ⎪⎝⎭的大小顺序为( ) A .b c a << B .c a b << C. c b a << D .b a c <<5.函数()ln x f x x e =+的零点所在的区间都是( ) A .10,e ⎛⎫ ⎪⎝⎭ B . 1,1e ⎛⎫ ⎪⎝⎭C. ()1,e D .(),e +∞ 6.已知函数()223log ,01,0x x f x x x x +>⎧=⎨--≤⎩,则不等式()5f x ≤的解集为( ) A .[]1,1- B .(](),20,4-∞-⋃ C. []2,4- D .(][],20,4-∞-⋃7.已知m R ∈,“函数21x y m =+-有零点”是“函数log m y x =在()0,+∞上为减函数”的( )A .充分不必要条件B .必要不充分条件 C. 充要条件 D .既不充分也不必要条件8.函数()[]()cos 2,x f x x ππ=∈-的图象大致为( ) A .B . C.D .9. 若函数()323f x x tx x =-+在区间[]1,4上单调递减,则实数t 的取值范围是( )A . 51,8⎛⎤-∞ ⎥⎝⎦ B .(],3-∞ C. 51,8⎡⎤+∞⎢⎥⎣⎦D .[]3,+∞ 10.已知函数()f x 是定义在R 上的偶函数,且在区间[)0,+∞上单调递增.若实数a 满足()()212log log 21f a f a f ⎛⎫+≤ ⎪⎝⎭,则a 的取值范围是( )A .[]1,2B . 10,2⎛⎤ ⎥⎝⎦ C. 1,22⎡⎤⎢⎥⎣⎦D .(]0,2 11.设函数()f x '是奇函数()()f x x R ∈的导函数,()10f -=,当0x >时,()()0xf x f x '->,则使得()0f x >成立的x 的取值范围是( )A . ()(),10,1-∞-UB . ()()1,01,-+∞U C. ()(),11,0-∞--UD .()()011+∞U ,,12.设()f x 是定义在R 上的偶函数,且满足()()20f x f x +-=,当01x ≤≤时,()2f x x =,又()14g x k x ⎛⎫=- ⎪⎝⎭,若方程()()f x g x =恰有两解,则k 的取值范围是( ) A .44,115⎧⎫-⎨⎬⎩⎭B .441,.115⎧⎫-⎨⎬⎩⎭ C. 444,,3115⎧⎫-⎨⎬⎩⎭ D .4441,,,3115⎧⎫-⎨⎬⎩⎭ 二、填空题:本大题共4个小题,每小题5分.13.经过原点()0,0作函数()323f x x x =+图象的切线,则切线方程为 . 14.已知0,2a π⎛⎫∈ ⎪⎝⎭,tan 2α=,则cos 4πα⎛⎫-= ⎪⎝⎭ . 15.函数()sin 23f x x π⎛⎫=- ⎪⎝⎭的图像为C ,如下结论中正确的是 (写出所有正确结论的编号)._____________①图象C 关于直线1112x π=对称; ②图象C 关于点2,03π⎛⎫ ⎪⎝⎭对称; ③()f x 在区间551212π⎡⎤-,⎢⎥⎣⎦内是增函数; ④将sin 2y x =的图象向右平移3π个单位可得到图像C . 16.若函数()()2x a f x a R -=∈满足()()11f x f x +=-,且()f x 在[),m +∞上单调递增,则实数m 的最小值等于 .第II 卷(解答题共70分) 三、解答题 :解答应写出文字说明、证明过程或演算步骤.17.已知tan 2α=.(1)求tan 4πα⎛⎫+⎪⎝⎭的值; (2)求2sin 2sin sin cos cos 21ααααα+--的值. 18.求值. (1)()20.5233274920.0088925--⎛⎫⎛⎫-+⨯ ⎪ ⎪⎝⎭⎝⎭;(2)(22lg 5+. 19. 已知函数()()2251f x x ax a =-+>.(1)若函数()f x 的定义域和值域均为[]1,a ,求实数a 的值;(2)若()f x 在区间(],2-∞上是减函数,且对任意的[]12,1,1x x a ∈+,总有()()124f x f x -≤,求实数a 的取值范围.20.如图为函数()()()sin 0,0,y f x A x A ωϕωϕπ==+>><图像的一部分.(1)求函数()f x 的解析式;(2)若将函数()y f x =图像向在左平移6π的单位后,得到函数()y g x =的图像,若()2g x ≥,求x 的取值范围.21. 已知函数()2ln 1f x a x x =-+.(1)若曲线()y f x =在1x =处的切线方程为40x y b -+=,求实数a 和b 的值;(2)讨论函数()f x 的单调性.22. 设函数()()22ln ,f x x m x g x x x a =-=-+. (1)当0a =时,()()f x g x ≥在()1,+∞上恒成立,求实数m 的取值范围;(2)当2m =时,若函数()()()h x f x g x =-在[]1,3上恰有两个不同的零点,求实数a 的取值范围;试卷答案1-5 :CCCCA 6-10:CBCCC 11-12: BD13 0940y x y =+=或15 ①②③ 16.1 17解:(1)tan tan 4tan 41tan tan 4παπαπα+⎛⎫+= ⎪⎝⎭-tan 12131tan 12αα++===--- (2)原式22222sin cos sin sin cos (2cos 1)12sin cos sin sin cos 2cos 2tan 221tan tan 2222ααααααααααα=+---=+-⨯===+-+-18.解:(1)原式=22133284910002()()()279825-+⨯ 472171252932599=-+⨯=-+=(2)原式=lg5)(1+-=lg101+-19. (1)因为()225f x x ax =-+在(- ,a ]上为减函数,所以()()2251f x x ax a =-+>在[1, a ]上单调递减,即()max f x =()1f =a ,()min f x =()f a =1,所以a =2(2)因为()f x 在(- ,2]上是减函数,所以a ≥2.所以()f x 在[1,a ]上单调递减,在[a ,a +1]上单调递增,所以()min f x =()f a =5-2a ()max f x =max{()1f ,()1f a +},又()1f -()1f a +=6-2a -(6-2a )=a (a -2)≥0,所以()max f x =()1f =6-2a .因为对任意的x 1,x 2∈[1,a +1], 总有 ()1f x -()2f x ≤4,所以()max f x -()min f x ≤4,即-1≤a ≤3,又a ≥2,故2≤a ≤320. 【答案】(1) ()223f x x π⎛⎫=-⎪⎝⎭ (2) ()7412k x k k Z ππππ+≤≤+∈ 试题解析:(1)由图像可知5263A T πππ⎛⎫==-= ⎪⎝⎭22T πω∴==()()2f x x ϕ∴=+,函数图像过点712π⎛ ⎝7722212623k ππππϕϕπϕπϕ⎛⎫⨯+=+=+<∴=- ⎪⎝⎭,故()223f x x π⎛⎫=- ⎪⎝⎭(2) ()222633g x x x πππ⎡⎤⎛⎫⎛⎫=+-=-≥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,即()15sin 222232636x k x k k Z ππππππ⎛⎫-≥∴+≤-≤+∈ ⎪⎝⎭,即()7412k x k k Z ππππ+≤≤+∈ 21解:(1)1ln )(2+-=x x a x f 求导得'()2a f x x x=-在1=x 处的切线方程为04=+-b y x ,'(1)24f a =-=,得6,a =4(1)0f b -+=,b=-4.(2)2'2()2a a x f x x x x -=-=当0≤a 时,'()0f x ≤在),0(+∞恒成立,所以)(x f 在),0(+∞上是减函数.当0>a 时,'()0,f x x ==(舍负)'()00f x x >⇒>>,'()0f x x <⇒>)(x f 在)2,0(a 上是增函数,在),2(+∞a 上是减函数; 22【答案】(1)m e ≤;(2)(22ln 2,32ln3--]试题解析:(1)当0a =时,由()()0f x g x -≥得ln m x x ≤,∵1x >,∴ln 0x >,∴有ln x m x ≤在()1,+∞上恒成立, 令()()2ln 1,ln ln x x h x h x x x-'==,由()0h x '=得x e =, 当()(),0,0,00x e h x x e h ''>><<<,∴()h x 在()0,e 上为减函数,在(),e +∞上为增函数,∴()()min h x h e e ==,∴实数m 的取值范围为m e ≤;(2)当2m =时,函数()()()2ln h x f x g x x x a ===--,()h x 在[]1,3上恰有两个不同的零点,即2ln x x a -=在[]1,3上恰有两个不同的零点, 令()2ln x x x φ=-,则()221x x x xφ-'=-=, 当12x <<,()0x φ'<;当23x <<,()0x φ'>,∴()x φ在()1,2上单减,在()2,3上单增,()()min 222ln2x φφ==-,又()()11,332ln3φφ==-,()()13φφ>如图所示,--] 所以实数a的取值范围为(22ln2,32ln3。
南阳市高中2018-2019学年上学期高三数学期末模拟试卷含答案
南阳市高中2018-2019学年上学期高三数学期末模拟试卷含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设函数,其中,若存在唯一的整数,使得,则的()()21xf x e x ax a =--+1a <()0f t <取值范围是( )A .B .C .D .3,12e ⎡⎫-⎪⎢⎣⎭33,24e ⎡⎫-⎪⎢⎣⎭33,24e ⎡⎫⎪⎢⎣⎭3,12e ⎡⎫⎪⎢⎣⎭1111]2. 若函数f (x )的定义域为R ,则“函数f (x )是奇函数”是“f (0)=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。
A3B4C5D64. 已知为的三个角所对的边,若,则,,a b c ABC ∆,,A B C 3cos (13cos )b C c B =-sin :sin C A =()A .2︰3B .4︰3C .3︰1D .3︰2【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力.5. 直线l 过点P (2,﹣2),且与直线x+2y ﹣3=0垂直,则直线l 的方程为( )A .2x+y ﹣2=0B .2x ﹣y ﹣6=0C .x ﹣2y ﹣6=0D .x ﹣2y+5=06. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是()A .T 1=T 19B .T 3=T 17C .T 5=T 12D .T 8=T 117. 设集合,,则( )A BC D8. 设函数y=的定义域为M ,集合N={y|y=x 2,x ∈R},则M ∩N=()A .∅B .NC .[1,+∞)D .M 9. 已知向量||=, •=10,|+|=5,则||=()A .B .C .5D .2510.函数f (x )=xsinx 的图象大致是()A .B .C .D .11.抛物线x=﹣4y 2的准线方程为( )A .y=1B .y=C .x=1D .x=12.已知函数,则( )(5)2()e22()2xf x x f x x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩(2016)f -=A .B .C .1D .2e e 1e【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力.二、填空题13.已知圆C 1:(x ﹣2)2+(y ﹣3)2=1,圆C 2:(x ﹣3)2+(y ﹣4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值 . 14.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数的零点在区间()ln 4f x x x =+-内,则正整数的值为________.()1k k +,k 15.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .16.已知过双曲线的右焦点的直线交双曲线于两点,连结,若22221(0,0)x y a b a b-=>>2F ,A B 11,AF BF ,且,则双曲线的离心率为( )1||||AB BF =190ABF ∠=︒A .BC .D5-6-【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.17.已知点E 、F 分别在正方体的棱上,且, ,则面AEF 与面ABC 所成的二面角的正切值等于 .18.椭圆+=1上的点到直线l :x ﹣2y ﹣12=0的最大距离为 .三、解答题19.已知函数.()21ln ,2f x x ax x a R =-+∈(1)令,讨论的单调区间;()()()1g x f x ax =--()g x(2)若,正实数满足,证明.2a =-12,x x ()()12120f x f x x x ++=12x x +≥20.(本小题满分12分)在中,内角的对边为,已知ABC ∆C B A ,,c b a ,,.1cos )sin 3(cos 2cos 22=-+C B B A(I )求角的值;C(II )若,且的面积取值范围为,求的取值范围.2b =ABC ∆c 【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.21.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位得到的数据:赞同反对合计男50 150200女30 170 200合计80320400(Ⅰ)能否有能否有的把握认为对这一问题的看法与性别有关?97.5%(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出2人进行陈述发言,求事件“选出的2人中,至少有一名女士”的概率.参考公式:,22()K ()()()()n ad bc a b c d a c b d -=++++()n a b c d =+++【命题意图】本题考查统计案例、抽样方法、古典概型等基础知识,意在考查统计的思想和基本运算能力22.如图,⊙O 的半径为6,线段AB 与⊙相交于点C 、D ,AC=4,∠BOD=∠A ,OB 与⊙O 相交于点.(1)求BD 长;(2)当CE ⊥OD 时,求证:AO=AD .23.已知定义在的一次函数为单调增函数,且值域为.[]3,2-()f x []2,7(1)求的解析式;()f x (2)求函数的解析式并确定其定义域.[()]f f x 24.如图,已知五面体ABCDE ,其中△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,且DC ⊥平面ABC .(Ⅰ)证明:AD ⊥BC(Ⅱ)若AB=4,BC=2,且二面角A ﹣BD ﹣C 所成角θ的正切值是2,试求该几何体ABCDE 的体积.南阳市高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1. 【答案】D 【解析】考点:函数导数与不等式.1【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令将函数变为两个函()0f x =数,将题意中的“存在唯一整数,使得在直线的下方”,转化为()()()21,xg x e x h x ax a =-=-()g t ()h x 存在唯一的整数,使得在直线的下方.利用导数可求得函数的极值,由此可求得的取值()g t ()h x ax a =-m 范围.2. 【答案】A【解析】解:由奇函数的定义可知:若f (x )为奇函数,则任意x 都有f (﹣x )=﹣f (x ),取x=0,可得f (0)=0;而仅由f (0)=0不能推得f (x )为奇函数,比如f (x )=x 2,显然满足f (0)=0,但f (x )为偶函数.由充要条件的定义可得:“函数f (x )是奇函数”是“f (0)=0””的充分不必要条件.故选:A . 3. 【答案】B【解析】由题意知x =a +b ,a ∈A ,b ∈B ,则x 的可能取值为5,6,7,8.因此集合M 共有4个元素,故选B 4. 【答案】C【解析】由已知等式,得,由正弦定理,得,则3cos 3cos c b C c B =+sin 3(sin cos sin cos )C B C C B =+,所以,故选C .sin 3sin()3sin C B C A =+=sin :sin 3:1C A =5. 【答案】B【解析】解:∵直线x+2y ﹣3=0的斜率为﹣,∴与直线x+2y﹣3=0垂直的直线斜率为2,故直线l的方程为y﹣(﹣2)=2(x﹣2),化为一般式可得2x﹣y﹣6=0故选:B【点评】本题考查直线的一般式方程和垂直关系,属基础题.6.【答案】C【解析】解:∵a n=29﹣n,∴T n=a1•a2•…•a n=28+7+…+9﹣n=∴T1=28,T19=2﹣19,故A不正确T3=221,T17=20,故B不正确T5=230,T12=230,故C正确T8=236,T11=233,故D不正确故选C7.【答案】C【解析】送分题,直接考察补集的概念,,故选C。
河南省南阳市2018届高三上学期期末考试理综物理试题含答案
2017年秋期高中三年级期终质量评估理科综合能力测试物理试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷和草稿纸上无效。
4.考试结束,务必将试题卷和答题卡一并交回。
5.本试卷共16页。
如遇缺页、漏页、字迹不清等情况,考生须及时报告监考老师。
6.可能用到的相对原子质量:H 1 C 12 O 16 Na 23 Mg 24 S 32 K 39 Fe 56第Ι卷 选择题选择题二、二、选择题选择题(本题共8小题,小题,每小题每小题6分,共48分。
分。
在每小题给出的四个选项中,在每小题给出的四个选项中,在每小题给出的四个选项中,第第14~18题只有一项符合题目要求,题只有一项符合题目要求,第第19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
)14.下列说法正确的是下列说法正确的是A.由玻尔理论可知,当氢原子从低能级向高能级跃迁时,要吸收光子,核外电子的动能减少,原子的电势能增加能减少,原子的电势能增加B.自由核子组成原子核时,其质量亏损对应的能量大于该原子核的结合能自由核子组成原子核时,其质量亏损对应的能量大于该原子核的结合能C.库仑发现了点电荷间的相互作用规律,并通过油滴实验测定了元电荷的数值库仑发现了点电荷间的相互作用规律,并通过油滴实验测定了元电荷的数值D.伽利略猜想自由落体运动的速度与下落时间成正比,并直接用实验验证了这个猜想并直接用实验验证了这个猜想 15.如图,航天飞机在完成对哈勃空间望远镜的维修任务后,航天飞机在完成对哈勃空间望远镜的维修任务后,在在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的近地点. 关于航天飞机的运动,下列说法中正确的是飞机的运动,下列说法中正确的是A.在轨道Ⅱ上经过A 点的速度大于经过B 点的速度点的速度B.在轨道Ⅱ上经过A 点的动能大于在轨道Ⅰ上经过A 点的动能点的动能C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度的加速度 16.如图所示,由Oc Ob Oa 、、三个铝制薄板互成120°角均匀分开的Ⅰ、Ⅱ、Ⅲ三个匀强磁场区域,其磁感应强度分别用321B B B 、、表示.现有带电粒子自a 点垂直Oa 板沿逆时针方向射入磁场中,带电粒子完成一周运动,在三个磁场区域中的运动时间之比为1∶2∶3,轨迹恰好是一个以O 为圆心的圆,则其在b 、c 处穿越铝板所损失的动能之比为处穿越铝板所损失的动能之比为A .1∶1B .5∶3C .3∶2D .27∶5 17.如图所示,固定在竖直平面内的圆管形轨道的外轨光滑,内轨粗糙. 一小球从轨道的最低点以初速度v 0向右运动,球的直径略小于圆管的直径,球的直径略小于圆管的直径,球运动的轨道半径为球运动的轨道半径为R ,空气阻力不计,重力加速度大小为g ,下列说法一定正确的是,下列说法一定正确的是A.若gR v 20<,小球运动过程中机械能不可能守恒,小球运动过程中机械能不可能守恒 B.若gRv 30=,小球运动过程中机械能守恒,小球运动过程中机械能守恒 C.若gR v50<,小球不可能到达最高点,小球不可能到达最高点 D.若gRv 20=,小球恰好能到达最高点,小球恰好能到达最高点 18.一滑块在水平地面上沿直线滑行,t =0时速率为1m/s ,从此刻开始在与速度平行的方向上施加一水平作用力F ,力F 、滑块的速度v 随时间的变化规律分别如图甲、乙所示(力F 和速度v 取同一正方向),g =10m/s 2,则,则A.滑块的质量为1.0kgB.滑块与水平地面间的动摩擦因数为0.05C.第2s 内力F 的平均功率为3.0WD.第1内和第2s 内滑块的动量变化量相同内滑块的动量变化量相同19.如图甲所示,在某电场中建立x 坐标轴,A 、B 为x 轴上的两点,x A 、x B 分别为A 、B 两点在x 轴上的坐标值. 一电子仅在电场力作用下沿x 轴运动,该电子的电势能E p 随其坐标x 变化的关系如图乙所示,则下列说法中正确的是变化的关系如图乙所示,则下列说法中正确的是A.该电场一定不是孤立点电荷形成的电场该电场一定不是孤立点电荷形成的电场B.A 点的电场强度小于B 点的电场强度点的电场强度C.电子由A 点运动到B 点的过程中电场力对其所做的功W =E pA -E pB D.电子在A 点的动能小于在B 点的动能点的动能20.如图所示,为一理想变压器通过二极管给直流电动机供电的简单原理图,电动机的内阻为2W ,理想二极管具有单向导电性. 现将变压器的原线圈接入电压有效值为2220V 的正弦交变电流,变压器原、副线圈的匝数比为22∶1,理想电流表的示数为0.5A ,此时,此时A.电动机两端的电压为10 VB.理想变压器的输入功率为W 25C.电动机的热功率为5WD.电动机输出的机械功率为4.5W21.如图所示,如图所示,一充电后与电源断开的平行板电容器的两极板水平放置,一充电后与电源断开的平行板电容器的两极板水平放置,一充电后与电源断开的平行板电容器的两极板水平放置,板长为板长为L ,板间距离为d ,距板右端L 处有一竖直屏M . 一带电荷量为q 、质量为m 的质点以初速度v 0沿中线射入两板间,最后垂直打在M 上,则下列结论正确的是(已知重力加速度为g )A.两极板间电压为qmgd2B.板间电场强度大小为qmg2C.整个过程中质点的重力势能增加222v L mg D.若仅增大两极板间距,则该质点不可能垂直打在M 上第Ⅱ卷 非选择题三、非选择题(共174分。
河南省南阳市2018届高三上学期期末考试数学(文)试题(解析版)
2017年秋期高中三年级期终质量评估数学试题(文)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】A【解析】【详解】或,,,故选A.2.已知(为虚数单位),则复数()A. B. C. D.【答案】C【解析】,,,,故选C.3.已知双曲线的一条渐近线的方程是:,且该双曲线经过点,则双曲线的方程是()A. B. C. D.【答案】D【解析】由题可设双曲线的方程为:,将点代入,可得,整理即可得双曲线的方程为.故选D.4.设,则()A. B. C. D.【答案】B【解析】因为,,故选B.5. 从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A. B.C. D.【答案】B【解析】试题分析:从甲乙等名学生中随机选出人,基本事件的总数为,甲被选中包含的基本事件的个数,所以甲被选中的概率,故选B.考点:古典概型及其概率的计算.6.已知实数满足,则目标函数()A. ,B. ,C. ,无最小值D. ,无最小值【答案】C【解析】画出约束条件表示的可行域,如图所示的开发区域,变形为,平移直线,由图知,到直线经过时,因为可行域是开发区域,所以无最小值,无最小值,故选C.【方法点晴】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积()A. B. C. D.【答案】C【解析】由三视图可知,该几何体为如图所示的四棱锥,图中正方体的棱长为,该多面体如图所示,外接球的半径为为,外接圆的半径,由可得,,故该多面体的外接球的表面积,故选C.8.运行如图所示的程序框图,则输出结果为()A. 2017B. 2016C. 1009D. 1008【答案】D【解析】输出结果为,选D.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9.为得到的图象,只需要将的图象()A. 向右平移个单位B. 向右平移个单位C. 向左平移个单位D. 向左平移个单位【答案】D【解析】试题分析:因为,所以为得到的图象,只需要将的图象向左平移个单位;故选D.考点:1.诱导公式;2.三角函数的图像变换.10.函数的大致图象为()A. B. C. D.【答案】C【解析】当时,,由,得,由,得,在上递增,在上递减,,即时,,只有选项C符合题意,故选C.11.设数列的通项公式,若数列的前项积为,则使成立的最小正整数为()A. 9B. 10C. 11D. 12【答案】C【解析】因为,所以,该数列的前项积为,使成立的最小正整数为,故选C.12.抛物线的焦点为,过且倾斜角为60°的直线为,,若抛物线上存在一点,使关于直线对称,则()A. 2B. 3C. 4D. 5【答案】A【解析】关于过倾斜角为的直线对称,,由抛物线定义知,等于点到准线的距离,即,由于,,,代入抛物线方程可得,,解得,故选A.【方法点睛】本题主要考查抛物线的定义和几何性质,以及点关于直线对称问题,属于难题. 与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.曲线在点处的切线方程为__________.【答案】【解析】,切线的斜率,又过所求切线方程为,即,故答案为.【方法点晴】本题主要考查利用导数求曲线切线方程,属于简单题. 求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.14.已知点,,,若,则实数的值为_______.【答案】【解析】点,,,,又,,两边平方得,解得,经检验是原方程的解,实数的值为,故答案为.15.已知的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.【答案】【解析】试题分析:,由正弦定理得.考点:解三角形,三角形外接圆.16.若不等式对任意正数恒成立,则实数的取值范围为_____.【答案】【解析】不等式对任意正数恒成立,,,当且仅当时取等号,,实数的取值范围为,故答案为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.等差数列中,已知,,且,,构成等比数列的前三项.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1) (2)【解析】试题分析:(1)根据等差数列的,且,,构成等比数列,列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式,进而可得的通项公式;(2)由(1)可得,利用错误相减法求和后即可得结果.试题解析:(1)设等差数列的公差为,则由已知∴又解得或(舍去)∴,∴又,∴,∴(2)∴两式相减得则.【易错点晴】本题主要等差数列、等比数列的通项公式、“错位相减法”求数列的和,属于难题. “错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以.18.经销商小王对其所经营的某一型号二手汽车的使用年数(0<≤10)与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:(Ⅰ)试求关于的回归直线方程;(附:回归方程中,(Ⅱ)已知每辆该型号汽车的收购价格为万元,根据(Ⅰ)中所求的回归方程,预测为何值时,小王销售一辆该型号汽车所获得的利润最大.【答案】(I);(II)预测当时,销售利润取得最大值.【解析】试题分析:(1)由表中数据利用平均数公式计算,根据公式求出将样本中心点坐标代入回归方程求得,即可写出回归直线方程;(2)写出利润函数,利用二次函数的图象与性质求出时取得最大值.试题解析:(1)由已知:,,,,;所以回归直线的方程为(2),所以预测当时,销售利润取得最大值.19.如图,在三棱柱中,侧面为矩形,,,是的中点,与交于点,且平面.(1)证明:;(2)若,求三棱柱的高.【答案】(1)见解析(2)【解析】试题分析:(1)在矩形中,根据相似三角形的性质可知,由平面,可得平面平面,∴;(2)设三棱柱的高为,即三棱锥的高为.又,由得,∴.试题解析:(1)在矩形中,由平面几何知识可知又平面,∴,平面平面平面,∴.(2)在矩形中,由平面几何知识可知,∵,∴,∴,设三棱柱的高为,即三棱锥的高为.又,由得,∴.20.平面直角坐标系中,已知椭圆()的左焦点为,离心率为,过点且垂直于长轴的弦长为.(1)求椭圆的标准方程;(2)若过点的直线与椭圆相交于不同两点、,求面积的最大值.【答案】(1) (2)【解析】试题分析:(1)运用椭圆的离心率公式和过焦点垂直于对称轴的弦长,结合的关系列出关于、、的方程组,求出、,可得椭圆的方程;(2)讨论直线的斜率为和不为,设方程为,代入椭圆方程,运用韦达定理与弦长公式求得弦长,求出点到直线的距离运用三角形的面积公式,化简整理,运用换元法和基本不等式,即可得到面积的最大值.试题解析:(1)由题意可得,令,可得,即有,又,所以,.所以椭圆的标准方程为;(2)设,,直线方程为,代入椭圆方程,整理得,则,所以.∴当且仅当,即.(此时适合的条件)取得等号.则面积的最大值是.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.21.已知函数(其中,为常数且)在处取得极值.(Ⅰ)当时,求的单调区间;(Ⅱ)若在上的最大值为1,求的值.【答案】(Ⅰ)单调递增区间为,;单调递减区间为; (Ⅱ)或.【解析】试题分析:(Ⅰ)由函数的解析式,可求出函数导函数的解析式,进而根据是的一个极值点,可构造关于,的方程,根据求出值;可得函数导函数的解析式,分析导函数值大于0和小于0时,的范围,可得函数的单调区间;(Ⅱ)对函数求导,写出函数的导函数等于0的的值,列表表示出在各个区间上的导函数和函数的情况,做出极值,把极值同端点处的值进行比较得到最大值,最后利用条件建立关于的方程求得结果.试题解析:(Ⅰ)因为,所以,因为函数在处取得极值,当时,,,由,得或;由,得,即函数的单调递增区间为,;单调递减区间为.(Ⅱ)因为,令,,,因为在处取得极值,所以,当时,在上单调递增,在上单调递减,所以在区间上的最大值为,令,解得,当,,当时,在上单调递增,上单调递减,上单调递增,所以最大值1可能的在或处取得,而,所以,解得;当时,在区间上单调递增,上单调递减,上单调递增,所以最大值1可能在或处取得,而,所以, 解得,与矛盾.当时,在区间上单调递增,在上单调递减,所最大值1可能在处取得,而,矛盾.综上所述,或.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系中,直线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴非负半轴为极轴)中,圆的方程为.(1)求圆的直角坐标方程;(2)若点,设圆与直线交于点,求的最小值.【答案】(1) (2)【解析】试题分析:(1)由得,由,从而得解;(2)将的参数方程代入圆C 的直角坐标方程,得,,。
河南省南阳市2018届高三上学期期末考试数学(文)试题(解析版)
2017年秋期高中三年级期终质量评估数学试题(文)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】A【解析】【详解】或,,,故选A.2.已知(为虚数单位),则复数()A. B. C. D.【答案】C【解析】,,,,故选C.3.已知双曲线的一条渐近线的方程是:,且该双曲线经过点,则双曲线的方程是()A. B. C. D.【答案】D【解析】由题可设双曲线的方程为:,将点代入,可得,整理即可得双曲线的方程为.故选D.4.设,则()A. B. C. D.【答案】B【解析】因为,,故选B.5. 从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A. B.C. D.【答案】B【解析】试题分析:从甲乙等名学生中随机选出人,基本事件的总数为,甲被选中包含的基本事件的个数,所以甲被选中的概率,故选B.考点:古典概型及其概率的计算.6.已知实数满足,则目标函数()A. ,B. ,C. ,无最小值D. ,无最小值【答案】C【解析】画出约束条件表示的可行域,如图所示的开发区域,变形为,平移直线,由图知,到直线经过时,因为可行域是开发区域,所以无最小值,无最小值,故选C.【方法点晴】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积()A. B. C. D.【答案】C【解析】由三视图可知,该几何体为如图所示的四棱锥,图中正方体的棱长为,该多面体如图所示,外接球的半径为为,外接圆的半径,由可得,,故该多面体的外接球的表面积,故选C.8.运行如图所示的程序框图,则输出结果为()A. 2017B. 2016C. 1009D. 1008【答案】D【解析】输出结果为,选D.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9.为得到的图象,只需要将的图象()A. 向右平移个单位B. 向右平移个单位C. 向左平移个单位D. 向左平移个单位【答案】D【解析】试题分析:因为,所以为得到的图象,只需要将的图象向左平移个单位;故选D.考点:1.诱导公式;2.三角函数的图像变换.10.函数的大致图象为()A. B. C. D.【答案】C【解析】当时,,由,得,由,得,在上递增,在上递减,,即时,,只有选项C符合题意,故选C.11.设数列的通项公式,若数列的前项积为,则使成立的最小正整数为()A. 9B. 10C. 11D. 12【答案】C【解析】因为,所以,该数列的前项积为,使成立的最小正整数为,故选C.12.抛物线的焦点为,过且倾斜角为60°的直线为,,若抛物线上存在一点,使关于直线对称,则()A. 2B. 3C. 4D. 5【答案】A【解析】关于过倾斜角为的直线对称,,由抛物线定义知,等于点到准线的距离,即,由于,,,代入抛物线方程可得,,解得,故选A.【方法点睛】本题主要考查抛物线的定义和几何性质,以及点关于直线对称问题,属于难题. 与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.曲线在点处的切线方程为__________.【答案】【解析】,切线的斜率,又过所求切线方程为,即,故答案为.【方法点晴】本题主要考查利用导数求曲线切线方程,属于简单题. 求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.14.已知点,,,若,则实数的值为_______.【答案】【解析】点,,,,又,,两边平方得,解得,经检验是原方程的解,实数的值为,故答案为.15.已知的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.【答案】【解析】试题分析:,由正弦定理得.考点:解三角形,三角形外接圆.16.若不等式对任意正数恒成立,则实数的取值范围为_____.【答案】【解析】不等式对任意正数恒成立,,,当且仅当时取等号,,实数的取值范围为,故答案为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.等差数列中,已知,,且,,构成等比数列的前三项.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1) (2)【解析】试题分析:(1)根据等差数列的,且,,构成等比数列,列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式,进而可得的通项公式;(2)由(1)可得,利用错误相减法求和后即可得结果.试题解析:(1)设等差数列的公差为,则由已知∴又解得或(舍去)∴,∴又,∴,∴(2)∴两式相减得则.【易错点晴】本题主要等差数列、等比数列的通项公式、“错位相减法”求数列的和,属于难题. “错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以.18.经销商小王对其所经营的某一型号二手汽车的使用年数(0<≤10)与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:(Ⅰ)试求关于的回归直线方程;(附:回归方程中,(Ⅱ)已知每辆该型号汽车的收购价格为万元,根据(Ⅰ)中所求的回归方程,预测为何值时,小王销售一辆该型号汽车所获得的利润最大.【答案】(I);(II)预测当时,销售利润取得最大值.【解析】试题分析:(1)由表中数据利用平均数公式计算,根据公式求出将样本中心点坐标代入回归方程求得,即可写出回归直线方程;(2)写出利润函数,利用二次函数的图象与性质求出时取得最大值.试题解析:(1)由已知:,,,,;所以回归直线的方程为(2),所以预测当时,销售利润取得最大值.19.如图,在三棱柱中,侧面为矩形,,,是的中点,与交于点,且平面.(1)证明:;(2)若,求三棱柱的高.【答案】(1)见解析(2)【解析】试题分析:(1)在矩形中,根据相似三角形的性质可知,由平面,可得平面平面,∴;(2)设三棱柱的高为,即三棱锥的高为.又,由得,∴.试题解析:(1)在矩形中,由平面几何知识可知又平面,∴,平面平面平面,∴.(2)在矩形中,由平面几何知识可知,∵,∴,∴,设三棱柱的高为,即三棱锥的高为.又,由得,∴.20.平面直角坐标系中,已知椭圆()的左焦点为,离心率为,过点且垂直于长轴的弦长为.(1)求椭圆的标准方程;(2)若过点的直线与椭圆相交于不同两点、,求面积的最大值.【答案】(1) (2)【解析】试题分析:(1)运用椭圆的离心率公式和过焦点垂直于对称轴的弦长,结合的关系列出关于、、的方程组,求出、,可得椭圆的方程;(2)讨论直线的斜率为和不为,设方程为,代入椭圆方程,运用韦达定理与弦长公式求得弦长,求出点到直线的距离运用三角形的面积公式,化简整理,运用换元法和基本不等式,即可得到面积的最大值.试题解析:(1)由题意可得,令,可得,即有,又,所以,.所以椭圆的标准方程为;(2)设,,直线方程为,代入椭圆方程,整理得,则,所以.∴当且仅当,即.(此时适合的条件)取得等号.则面积的最大值是.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.21.已知函数(其中,为常数且)在处取得极值.(Ⅰ)当时,求的单调区间;(Ⅱ)若在上的最大值为1,求的值.【答案】(Ⅰ)单调递增区间为,;单调递减区间为; (Ⅱ)或.【解析】试题分析:(Ⅰ)由函数的解析式,可求出函数导函数的解析式,进而根据是的一个极值点,可构造关于,的方程,根据求出值;可得函数导函数的解析式,分析导函数值大于0和小于0时,的范围,可得函数的单调区间;(Ⅱ)对函数求导,写出函数的导函数等于0的的值,列表表示出在各个区间上的导函数和函数的情况,做出极值,把极值同端点处的值进行比较得到最大值,最后利用条件建立关于的方程求得结果.试题解析:(Ⅰ)因为,所以,因为函数在处取得极值,当时,,,由,得或;由,得,即函数的单调递增区间为,;单调递减区间为.(Ⅱ)因为,令,,,因为在处取得极值,所以,当时,在上单调递增,在上单调递减,所以在区间上的最大值为,令,解得,当,,当时,在上单调递增,上单调递减,上单调递增,所以最大值1可能的在或处取得,而,所以,解得;当时,在区间上单调递增,上单调递减,上单调递增,所以最大值1可能在或处取得,而,所以,解得,与矛盾.当时,在区间上单调递增,在上单调递减,所最大值1可能在处取得,而,矛盾.综上所述,或.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系中,直线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴非负半轴为极轴)中,圆的方程为.(1)求圆的直角坐标方程;(2)若点,设圆与直线交于点,求的最小值.【答案】(1) (2)【解析】试题分析:(1)由得,由,从而得解;(2)将的参数方程代入圆C 的直角坐标方程,得,,。
河南省南阳市2018届高三上学期期末考试数学(理)试题(解析版)
2017秋期高中三年级期终质量评估数学试题(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知:如图,集合为全集,则图中阴影部分表示的集合是()A. B. C. D. (【答案】C【解析】【详解】图中阴影部分表示的集合是集合A中的元素但是不包括集合B,C中的元素,所以为.故选C.2.已知是关于的方程()的一个根,则()A. -1B. 1C. -3D. 3【答案】A【解析】由是关于的方程()的一个根,,即,得,解得则-1.故选A.3.已知双曲线的一条渐近线的方程是:,且该双曲线经过点,则双曲线的方程是()A. B. C. D.【答案】D【解析】由题可设双曲线的方程为:,将点代入,可得,整理即可得双曲线的方程为.故选D.4.已知:,,若函数和有完全相同的对称轴,则不等式的解集是()A. B.C. D.【答案】B【解析】由题意知,函数和的周期是一样的,故,不等式,即,解之得:,故选B.5.已知各项均为正数的等比数列,,若,则()A. B. C. 128 D. -128【答案】B【解析】令,其中,则,且是各项均为正数的等比数列.故,由可得,,故故选B.6.已知:,则目标函数()A. ,B. ,C. ,无最小值D. ,无最小值【答案】C【解析】作出可行域如图所示,目标函数,即为.,,,当直线经过点时,,且z无最小值.故选C.点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意前面的系数为负时,截距越大,值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.7.设,、,且,则下列结论必成立的是()A. B. C. D.【答案】D【解析】,故是偶函数,而当时,,即在是单调增加的.由,可得,即有,即.故选D.8.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积()A. B. C. D.【答案】B【解析】方法一:该多面体如图示,外接球的半径为,为外接圆的半径,,,故,方法二:只考虑三棱锥的外接球即可,而此三棱锥的侧棱与底面是垂直的,故其外接球的半径:(其中是三角形外接圆的半径).故选B.点睛:本小题主要考查几何体外接球的表面积的求法,考查三角形外心的求解方法.在解决有关几何体外接球有关的问题时,主要的解题策略是找到球心,然后通过解三角形求得半径.找球心的方法是先找到一个面的外心,再找另一个面的外心,球心就在两个外心垂线的交点位置.9.执行如图的程序框图,若输出的值是,则的值可以为()A. 2014B. 2015C. 2016D. 2017【答案】C【解析】①,;②,;③,;④,;……,故必为的整数倍.故选C.10.我们把顶角为的等腰三角形称为黄金三角形.....。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省南阳市2018届高三(上)期末数学试卷(理科)一、选择题1.(5分)已知:如图,集合U为全集,则图中阴影部分表示的集合是()A.∁U(A∩B)∩C B.∁U(B∩C)∩AC.A∩∁U(B∪C)D.∁U(A∪B)∩C2.(5分)已知1+i是关于x的方程ax2+bx+2=0(a,b∈R)的一个根,则a+b=()A.﹣1 B.1 C.﹣3 D.33.(5分)已知双曲线C的一条渐近线的方程是:y=2x,且该双曲线C经过点,则双曲线C的方程是()A.B.C.D.4.(5分)已知:f(x)=a sin x+b cos x,,若函数f(x)和g(x)有完全相同的对称轴,则不等式g(x)>2的解集是()A.B.C.D.5.(5分)已知各项均为正数的等比数列{a n},a3•a5=2,若f(x)=x(x﹣a1)(x﹣a2)…(x ﹣a7),则f'(0)=()A.B.C.128 D.﹣1286.(5分)已知:,则目标函数z=2x﹣3y()A.z max=﹣7,z min=﹣9 B.,z min=﹣7C.z max=﹣7,z无最小值D.,z无最小值7.(5分)设f(x)=e1+sin x+e1﹣sin x,x1、,且f(x1)>f(x2),则下列结论必成立的是()A.x1>x2B.x1+x2>0 C.x1<x2D.>8.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积S=()A.10πB.C.D.12π9.(5分)执行如图的程序框图,若输出S的值是2,则a的值可以为()A.2014 B.2015 C.2016 D.201710.(5分)我们把顶角为36°的等腰三角形称为黄金三角形.其作法如下:①作一个正方形ABCD;②以AD的中点E为圆心,以EC长为半径作圆,交AD延长线于F;③以D为圆心,以DF长为半径作⊙D;④以A为圆心,以AD长为半径作⊙A交⊙D于G,则△ADG 为黄金三角形.根据上述作法,可以求出cos36°=()A.B.C.D.11.(5分)已知抛物线E:y2=2px(p>0),过其焦点F的直线l交抛物线E于A、B两点(点A在第一象限),若S△OAB=﹣tan∠AOB,则p的值是()A.2 B.3 C.4 D.512.(5分)已知:m>0,若方程有唯一的实数解,则m=()A.B.C.D.1二、填空题13.(5分)1.028≈(小数点后保留三位小数).14.(5分)已知向量=(1,2),=(﹣2,﹣4),||=,若(+)=,则与的夹角为.15.(5分)已知:,则cos2α+cos2β的取值范围是.16.(5分)在四边形ABCD中,∠ABC=90°,,△ACD为等边三角形,则△ABC的外接圆与△ACD的内切圆的公共弦长=.三、解答题17.(12分)已知数列{a n}的前n项和为S n,且满足a n=2S n+1(n∈N*).(1)求数列{a n}的通项公式;(2)若b n=(2n﹣1)•a n,求数列{b n}的前n项和T n.18.(12分)如图1,在平行四边形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,现把平行四边形ABB1A11沿CC1折起如图2所示,连接B1C、B1A、B1A1.(1)求证:AB1⊥CC1;(2)若,求二面角C﹣AB 1﹣A1的正弦值.19.(12分)为评估设备M生产某种零件的性能,从设备M生产零件的流水线上随机抽取100件零件最为样本,测量其直径后,整理得到下表:经计算,样本的平均值μ=65,标准差=2.2,以频率值作为概率的估计值.(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X,并根据以下不等式进行评判(p表示相应事件的频率):①p(μ﹣σ<X≤μ+σ)≥0.6826.②P(μ﹣σ<X≤μ+2σ)≥0.9544③P(μ﹣3σ<X≤μ+3σ)≥0.9974.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断设备M的性能等级.(2)将直径小于等于μ﹣2σ或直径大于μ+2σ的零件认为是次品(i)从设备M的生产流水线上随意抽取2件零件,计算其中次品个数Y的数学期望EY;(ii)从样本中随意抽取2件零件,计算其中次品个数Z的数学期望EZ.20.(12分)平面直角坐标系xOy中,已知椭圆的左焦点为F,离心率为,过点F且垂直于长轴的弦长为.(I)求椭圆C的标准方程;(Ⅱ)设点A,B分别是椭圆的左、右顶点,若过点P(﹣2,0)的直线与椭圆相交于不同两点M,N.(i)求证:∠AFM=∠BFN;(ii)求△MNF面积的最大值.21.(12分)已知函数,且函数f(x)的图象在点(1,﹣e)处的切线与直线x+(2e+1)y﹣1=0垂直.(1)求a,b;(2)求证:当x∈(0,1)时,f(x)<﹣2.[选修4-4:极坐标与参数方程选讲](本小题满分10分)22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位),且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ.(1)求圆C的直角坐标方程;(2)若点P(1,2),设圆C与直线l交于点A,B,求|P A|+|PB|的最小值.[选修4-5:不等式选讲](本小题满分10分)23.已知a>0,b>0,函数f(x)=|x﹣a|+|x+b|的最小值为2.(1)求a+b的值;(2)证明:a2+a>2与b2+b>2不可能同时成立.【参考答案】一、选择题1.C【解析】阴影部分所表示的为在集合A中但不在集合B,C中的元素构成的,故阴影部分所表示的集合可表示为A∩∁U(B∪C),故选C.2.A【解析】1+i是关于x的方程ax2+bx+2=0(a,b∈R)的一个根,一元二次方程虚根成对(互为共轭复数)..得:a=1,b=﹣2,a+b=﹣1.故选:A.3.D【解析】由题可设双曲线的方程为:y2﹣4x2=λ,将点代入,可得λ=﹣4,整理即可得双曲线的方程为.故选:D.4.B【解析】由题意知,函数f(x)和g(x)的周期是一样的,故ω=1,不等式g(x)>2,即,解之得:.故选:B.5.B【解析】令f(x)=x•g(x),其中g(x)=(x﹣a1)(x﹣a2)…(x﹣a7),则f'(x)=g(x)+x•g'(x),故,各项均为正数的等比数列{a n},a3•a5=2,,故.故选:B.6.C【解析】画出的可行域,如图:A(0,3),,C(4,5),目标函数z=2x﹣3y经过C时,目标函数取得最大值,z max=﹣7,没有最小值.故选:C.7.D【解析】f(x)=f(﹣x),故f(x)是偶函数,而当时,f'(x)=cos x•e1+sin x﹣cos x•e1﹣sin x=cos x•(e1+sin x﹣e1﹣sin x)>0,即f(x)在是单调增加的.由f(x1)>f(x2),可得f(|x1|)>f(|x2|),即有|x1|>|x2|,即,故选:D.8.B【解答】解析:该多面体如图示,外接球的半径为AG,HA为△ABC外接圆的半径,HG=1,,故,∴该多面体的外接球的表面积.故选:B.9.C【解析】模拟程序的运行,可得:S=2,k=0;满足条件k<a,执行循环体,可得:S=﹣1,k=1;满足条件k<a,执行循环体,可得:,k=2;满足条件k<a,执行循环体,可得:S=2,k=3;…,∴S的值是以3为周期的函数,当k的值能被3整除时,不满足条件,输出S的值是2,a 的值可以是2016.故选:C.10.B【解析】根据做法,图形如图所示,△ADG即为黄金三角形,不妨假设AD=AG=2,则,由余弦定理可得cos36°==故选:B11.A【解析】,即,不妨设A(x1,y1),B(x2,y2),则x1x2+y1y2=﹣3,即有,又因为,故:p=2.故选:A.12.B【解析】方法一:验证,当时,f(x)=ln x与g(x)=x2﹣x在点(1,0)处有共同的切线y=x﹣1.方法二:将方程整理得,设,则由题意,直线是函数f(x)的一条切线,不妨设切点为(x0,y0),则有:,解之得:x0=1,y0=1,.故选:B.二、填空题:13.1.172【解析】1.028=(1+0.02)8=+++×0.023+…+≈=+++×0.023=1+8×0.02+28×0.0004+56×0.000008=1.172,故答案为:1.17214.【解析】设=(x,y),由向量=(1,2),=(﹣2,﹣4),||=,且(+)=,可得﹣x﹣2y=,即有x+2y=﹣,即=﹣,设与的夹角为等于θ,则cosθ===﹣.再由0≤θ≤π,可得θ=,故答案为:.15.【解析】∵,∴cos2α+cos2β=1﹣2sin2α+2cos2β﹣1=2(sinα+cosβ)(cosβ﹣sinα)=3(cosβ﹣sinα),∵由,得,,易得:,∴,∴.故答案为:.16.1【解析】以AC为x轴,AC的中点为坐标原点建立坐标系,则A(﹣1,0),C(1,0),B(0,1),D(0,﹣),∴△ABC的外接圆的方程x2+y2=1,①△ACD的内切圆方程为,即,②联立①②可得两圆交点坐标为(,﹣),(,﹣),∴两圆的公共弦长为.故答案为:1.三、解答题17.解:(1)当n=1时,a1=2S1+1=2a1+1,解得a1=﹣1.当n≥2时,有:a n=2S n+1,a n﹣1=2S n﹣1+1,两式相减、化简得a n=﹣a n﹣1,所以数列{a n}是首项为﹣1,公比为﹣1的等比数列,从而.(2)由(1)得,当n为偶数时,b n﹣1+b n=2,;当n为奇数时,n+1为偶数,T n=T n+1﹣b n+1=(n+1)﹣(2n+1)=﹣n.所以数列{b n}的前n项和.18.证明:(1)取CC1的中点O,连接OA,OB1,AC1,∵在平行四边形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,∴△ACC1,△BCC1为正三角形,则AO⊥CC1,OB1⊥CC1,又∵AO∩OB1=O,∴CC1⊥平面OAB1,∵AB1⊂平面OAB1∴AB1⊥CC1.(2)∵∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,∴AC=2,,∵,则,则三角形AOB1为直角三角形,则AO⊥OB1,以O为原点,以OC,OB1,OA为x,y,z轴建立空间直角坐标系,则C(1,0,0),B1(0,,0),C1(﹣1,0,0),A(0,0,),则则,=(0,,),=(1,0,),设平面AB1C的法向量为,则,令z=1,则y=1,,则,设平面A1B1A的法向量为,则,令z=1,则x=0,y=1,即,则∴二面角C﹣AB1﹣A1的正弦值是.19.解:(Ⅰ)P(μ﹣σ<X≤μ+σ)=P(62.8<X≤67.2)=0.8≥0.6826,P(μ﹣2σ<X≤μ+2σ)=P(60.6<X≤69.4)=0.94≥0.9544,P(μ﹣3σ<X≤μ+3σ)=P(58.4<X≤71.6)=0.98≥0.9974,因为设备M的数据仅满足一个不等式,故其性能等级为丙;(Ⅱ)易知样本中次品共6件,可估计设备M生产零件的次品率为0.06.(ⅰ)由题意可知Y~B(2,),于是EY=2×=;(ⅱ)由题意可知Z的分布列为故EZ=0×+1×+2×=.20.解:(1)由题意可得,令x=﹣c,可得y=±b=±,即有,又a2﹣b2=c2,所以.所以椭圆的标准方程为;(II)方法一:(i)当AB的斜率为0时,显然∠AFM=∠BFN=0,满足题意;当AB的斜率不为0时,设A(x1,y1),B(x2,y2),AB方程为x=my﹣2,代入椭圆方程,整理得(m2+2)y2﹣4my+2=0,则△=16m2﹣8(m2+2)=8m2﹣16>0,所以m2>2.,可得==.则k MF+k NF=0,即∠AFM=∠BFN;(ii)当且仅当,即m2=6.(此时适合△>0的条件)取得等号.则三角形MNF面积的最大值是.方法二:(i)由题知,直线AB的斜率存在,设直线AB的方程为:y=k(x+2),设A(x1,y1),B(x2,y2),联立,整理得(1+2k2)x2+8k2x+8k2﹣2=0,则△=64k4﹣4(1+2k2)(8k2﹣2)=8﹣16k2>0,所以.,可得=∴k MF+k NF=0,即∠AFM=∠BFN;(ii),点F(﹣1,0)到直线MN的距离为,即有==.令t=1+2k2,则t∈[1,2),u(t)=,当且仅当,即(此时适合△>0的条件)时,,即,则三角形MNF面积的最大值是.21.解:(1)因为f(1)=﹣e,故(a﹣b)e=﹣e,故a﹣b=﹣1①;依题意,f'(1)=2e+1;又,故f'(1)=e(4a﹣b)+1=2e+1,故4a﹣b=2②,联立①②解得a=1,b=2;(2)由(1)得,要证f(x)<﹣2,即证;令g(x)=(2﹣x3)e x,,g'(x)=﹣e x(x3+3x2﹣2)=﹣e x(x+1)(x2+2x﹣2)令g'(x)=0,因为x∈(0,1),e x>0,x+1>0,故,所以g(x)在上单调递增,在单调递减.而g(0)=2,g(1)=e,当时,g(x)>g(0)=2当时,g(x)>g(1)=e故当x∈(0,1)时,g(x)>2;而当x∈(0,1)时,,故函数所以,当x∈(0,1)时,ϕ(x)<g(x),即f(x)<﹣2.22.解:(Ⅰ)由ρ=6sinθ得ρ2=6ρsinθ,化为直角坐标方程为x2+y2=6y,即x2+(y﹣3)2=9.(Ⅱ)将l的参数方程代入圆C的直角坐标方程,得t2+2(cosα﹣sinα)t﹣7=0.由△=(2cosα﹣2sinα)2+4×7>0,故可设t1,t2是上述方程的两根,所以,又直线l过点(1,2),故结合t的几何意义得|P A|+|PB|=|t1|+|t2|=|t1﹣t2|====2.所以|P A|+|PB|的最小值为2.23.解:(1)∵a>0,b>0,∴f(x)=|x﹣a|+|x+b|≥|(x﹣a)﹣(x+b)|=|a+b|=a+b,∴f(x)min=a+b,由题设条件知f(x)min=2,∴a+b=2;证明:(2)∵a+b=2,而,故ab≤1.假设a2+a>2与b2+b>2同时成立.即(a+2)(a﹣1)>0与(b+2)(b﹣1)>0同时成立,∵a>0,b>0,则a>1,b>1,∴ab>1,这与ab≤1矛盾,从而a2+a>2与b2+b>2不可能同时成立.。