2015春七年级下册数学期末试题(华师版)
【名师制作】2014-2015学年华师大版七年级数学下册 第九章 多边形 章末测试三(含详细解析)

第九章多边形章末测试(三)总分120分120分钟一.选择题(共8小题,每题3分)1.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A. 50°B. 30°C. 20°D. 15°1题2题2.如图,l1∥l2,∠1=120°,∠2=100°,则∠3=()A. 20°B. 40°C. 50°D. 60°3.在数学课上,同学们在练习画边AC上的高时,有一部分同学画出下列四种图形,请你判断一下,正确的是()A B C D4.如图,AD是△ABC的中线,已知△ABD的周长为25cm,AB比AC长6cm,则△ACD的周长为()A. 19cm B. 22cm C. 25cm D. 31cm4题5题5.如图所示,在△ABC中,AB=8,AC=6,AD是△ABC的中线,则△ABD与△ADC的周长之差为()A. 14 B. 1 C. 2 D. 7 6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形7.一幅美丽的图案,在某个顶点处由三个边长相等的正多边形镶嵌而成,其中两个分别为正十二边形、正方形,则另一个为()A.正三角形B.正四边形C.正五边形D.正六边形8.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A. 5 B. 5或6 C. 5或7 D. 5或6或7二.填空题(共6小题,每题3分)9.如图,∠1,∠2,∠3,∠4是四边形ABCD的外角,若∠1+∠2+∠3=250°,则∠4的度数为_________.9题10题11题10.如图,平面上两个正方形与正五边形都有一条公共边,则∠α等于_________度.11.一副三角板,如图叠放在一起,∠1的度数是_________度.12.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=_______度.12题13题14题13.如图,已知AE∥BD,∠1=130°,∠2=30°,则∠C=_________度.14.在如图所示的四边形中,若去掉一个50°的角得到一个五边形,则∠1+∠2=________度.三.解答题(共10小题)15.(6分)如图,在△ABC中,∠ABC=50°,∠ACB=60°,BO、CO分别平分∠ABC、∠ACB,EF是经过点O且平行于BC的直线.求∠BOC的度数.16.(6分)将一副三角板的直角顶点重合放置,如图所示:(1)写出图中以O为顶点的相等的角;(2)若∠AOD=125°,求∠BOC的度数;(3)判断∠AOD与∠BOC之间具有何种数量关系当三角板AOB绕O点旋转时,这种关系是否有变化?请说明理由.17.(6分)如图,在△ABC中,∠C>∠B,AD、AE分别是△ABC的高和角平分线.(1)若∠B=30°,∠C=50°,求∠DAE的度数;(2)若∠B=x°,∠C=y°,求∠DAE的度数.18(8分).如图,在△ABC中,已知∠ACB=67°,BE是AC上的高,CD是AB上的高,F是BE和CD的交点,∠DCB=45°,求∠ABE和∠BFC的度数.19.(8分)如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,∠ECD=30°,求∠FDC的度数.20.(8分)(1)若一个凸多边形的内角和是2340°,求这个多边形的边数;(2)一个凸多边形去掉一个内角后,其余所有内角的和为2008°,求这个多边形的边数和去掉的那个内角的度数.21.(8分)如图,D是△ABC的BC边上的一点,AD=BD,∠ADC=80°(1)求∠B的度数;(2)若∠BAC=70°,判断△ABC的形状,并说明理由.22.(8分)如图,∠B=60°,∠BAC=80°,AD⊥BC,AE平分∠BAC,求∠DAE的度数.23.(10分)在小学我们知道“三角形的内角和等于180°”,现在把一块含30°角的直角三角板AOB的直角顶点O放置在水平线l上,如图1所示.(1)填空:∠1+∠2=_________度;(2)若把三角板AOB绕着点O按逆时针方向旋转,①填空:当∠1=_________度时,AB∥l.理由:_________.②在三角板AOB绕着点O按逆时针方向旋转的过程中,作AC⊥l于点C,BD⊥l于点D,图2中是否存在相等的角(图2中所有的直角相等不加以考虑,不能再随意添加字母或作出其它线条)?若有,试找出图中所有相等的角,并说明理由;若无,请举例说明.24.(10分)某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,△ABC两内角∠ABC与∠ACB的平分线交于点E.则∠BEC=90°+∠A.(阅读下面证明过程,并填空.)证明:∵BE、CE分别平分∠ABC和∠ACB,∴∠EBC=∠ABC,∠ECB=∠ACB(角平分线的定义)∴∠BEC=180°﹣(∠EBC+∠ECB)(_________)=180°﹣()=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=_________=90°+(2)如图2,△ABC的内角∠ABC的平分线与△ABC的外角∠ACM的平分线交于点E.请你写出∠BEC与∠A的数量关系,并证明.答:∠BEC与∠A的数量关系式:_________.证明:_________.(3)如图3,△ABC的两外角∠CBD与∠BCF的平分线交于点E,请你直接写出∠BEC与∠A 的数量关系,不需证明.参考答案与试题解析一.选择题(共8小题)1.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50°B.30°C.20°D.15°考点:平行线的性质;三角形的外角性质..专题:计算题;压轴题.分析:首先根据平行线的性质得到∠2的同位角∠4的度数,再根据三角形的外角的性质进行求解.解答:解:根据平行线的性质,得∠4=∠2=50°.∴∠3=∠4﹣∠1=50°﹣30°=20°.故选C.点评:本题应用的知识点为:三角形的外角等于与它不相邻的两个内角的和.两直线平行,同位角相等.2.如图,l1∥l2,∠1=120°,∠2=100°,则∠3=()A.20°B.40°C.50°D.60°考点:三角形的外角性质;平行线的性质..专题:计算题;压轴题.分析:先延长∠1和∠2的公共边交l1于一点,利用两直线平行,同旁内角互补求出∠4的度数,再利用外角性质求解.解答:解:如图,延长∠1和∠2的公共边交l1于一点,∵l1∥l2,∠1=120°,∴∠4=180°﹣∠1=180°﹣120°=60°,∴∠3=∠2﹣∠4=100°﹣60°=40°.故选B.点评:本题主要考查作辅助线构造三角形,然后再利用平行线的性质和外角性质求解.3.在数学课上,同学们在练习画边AC上的高时,有一部分同学画出下列四种图形,请你判断一下,正确的是()A.B.C.D.考点:三角形的角平分线、中线和高..分析:根据三角形的高的概念直接观察图形进行判断即可得出答案.解答:解:AC边上的高应该是过B作垂线段AC,符合这个条件的是C;A,B,D都不过B点,故错误;故选C.点评:本题主要考查了利用基本作图做三角形高的方法,比较简单.4.如图,AD是△ABC的中线,已知△ABD的周长为25cm,AB比AC长6cm,则△ACD的周长为()A.19cm B.22cm C.25cm D.31cm 考点:三角形的角平分线、中线和高..分析:根据三角形中线的定义可得BD=CD,再表示出△ABD和△ACD的周长的差就是AB、AC的差,然后计算即可.解答:解:∵AD是BC边上的中线,∴BD=CD,∴△ABD和△ACD周长的差=(AB+BD+AD)﹣(AC+BD+CD)=AB﹣AC,∵△ABD的周长为25cm,AB比AC长6cm,∴△ACD周长为:25﹣6=19cm.故选A.点评:本题主要考查了三角形的中线的定义,把三角形的周长的差转化为已知两边AB、AC 的长度的差是解题的关键.5.如图所示,在△ABC中,AB=8,AC=6,AD是△ABC的中线,则△ABD与△ADC的周长之差为()A.14 B.1C.2D.7考点:三角形的角平分线、中线和高..分析:由三角形中线的定义推知BD=DC;然后根据三角形的周长的定义知△ABD与△ADC 的周长之差为(AB﹣AC).解答:解:∵如图,在△ABC中,AD是△ABC的中线,∴BD=C D.∵△ABD的周长=AB+AD+BD,△ADC的周长=AC+AD+CD=AC+AD+BD,∴△ABD与△ADC的周长之差为:AB﹣AC=8﹣6=2.故选C.点评:本题考查了三角形的中线的定义,三角形周长的计算.解题时,根据三角形的周长的计算方法得到:△ABD的周长和△ADC的周长的差就是AB与AC的差.6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形考点:多边形内角与外角..分析:首先求得外角的度数,然后利用360除以外角的度数即可求解.解答:解:外角的度数是:180﹣108=72°,则这个多边形的边数是:360÷72=5.故选C.点评:本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理7.一幅美丽的图案,在某个顶点处由三个边长相等的正多边形镶嵌而成,其中两个分别为正十二边形、正方形,则另一个为()A.正三角形B.正四边形C.正五边形D.正六边形考点:平面镶嵌(密铺)..分析:正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.解答:解:∵正十二边形和正方形内角分别为150°,90°,又∵360°﹣150°﹣90°=120°,∴另一个为正六边形.故选D.点评:几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.解决此类题,可以记住几个常用正多边形的内角.8.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或7考点:多边形内角与外角..分析:首先求得内角和为720°的多边形的边数,即可确定原多边形的边数.解答:解:设内角和为720°的多边形的边数是n,则(n﹣2)•180=720,解得:n=6.则原多边形的边数为5或6或7.故选D.点评:本题考查了多边形的内角和定理,理解分三种情况是关键.二.填空题(共6小题)9.如图,∠1,∠2,∠3,∠4是四边形ABCD的外角,若∠1+∠2+∠3=250°,则∠4的度数为110°.考点:多边形内角与外角..分析:根据多边形的外角和定理即可求解.解答:解:∵∠1+∠2+∠3+∠4=360°,∴∠4=360°﹣(∠1+∠2+∠3)=360°﹣250°=110°.故答案是:110°点评:本题考查了多边形的外角和定理,理解定理是关键.10.如图,平面上两个正方形与正五边形都有一条公共边,则∠α等于72度.考点:多边形内角与外角..分析:先分别求出正五边形的一个内角为108°,正方形的每个内角是90°,再根据圆周角是360度求解即可.解答:解:正五边形的一个内角为108°,正方形的每个内角是90°,所以∠α=360°﹣108°﹣90°﹣90°=72°.点评:主要考查了多边形的内角和.多边形内角和公式:(n﹣2)•180°.11.一副三角板,如图叠放在一起,∠1的度数是75度.考点:三角形的外角性质..分析:由三角形的一个外角等于与它不相邻的两个内角的和,可得∠1=30°+45°=75°.解答:解:由图示知,∠1=30°+45°=75°.(三角形的一个外角等于与它不相邻的两个内角的和)点评:本题利用三角形外角的性质直接求解即可.12.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=270度.考点:三角形内角和定理;多边形内角与外角..专题:应用题.分析:根据三角形的内角和与平角定义可求解.解答:解:如图,根据题意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°﹣(∠3+∠4)=360°﹣90°=270°.点评:本题主要考查了三角形的内角和定理和内角与外角之间的关系.要会熟练运用内角和定理求角的度数.13.如图,已知AE∥BD,∠1=130°,∠2=30°,则∠C=20度.考点:三角形内角和定理;平行线的性质..专题:计算题;压轴题.分析:根据平行线的性质和三角形的内角和定理求得.解答:解:∵AE∥BD,∠1=130°,∠2=30°,∴∠CBD=∠1=130°.∵∠BDC=∠2,∴∠BDC=30°.在△BCD中,∠CBD=130°,∠BDC=30°,∴∠C=180°﹣130°﹣30°=20°.点评:本题应用的知识点为:三角形的外角与内角的关系及两直线平行,同位角相等.14.在如图所示的四边形中,若去掉一个50°的角得到一个五边形,则∠1+∠2=230度.考点:三角形的外角性质;三角形内角和定理..分析:利用三角形内角和外角的关系计算.解答:解:由于∠1和∠2是三角形的外角,所以∠1=∠4+50°,∠2=∠3+50°,所以∠1+∠2=∠4+50°+∠3+50°=(∠4+50°+∠3)+50°=180°+50°=230°.点评:此题利用了三角形内角和外角的关系,属于基础题,比较简单.三.解答题(共10小题)15.如图,在△ABC中,∠ABC=50°,∠ACB=60°,BO、CO分别平分∠ABC、∠ACB,EF 是经过点O且平行于BC的直线.求∠BOC的度数.考点:平行线的性质;三角形内角和定理..分析:由在△ABC中,∠ABC=50°,∠ACB=60°,BO、CO分别平分∠ABC、∠ACB,根据角平分线的性质,即可求得∠OBC与∠OCB的度数,继而求得答案.解答:解:∵在△ABC中,∠ABC=50°,∠ACB=60°,BO、CO分别平分∠ABC、∠ACB,∴∠OBC=∠OBC=×50°=25°,∠OCB=∠ACB=30°,∴∠BOC=180°﹣∠OBC﹣∠OCB=125°.点评:此题考查了角平分线的定义与三角形内角和定理.此题比较简单,注意掌握数形结合思想的应用.16.将一副三角板的直角顶点重合放置,如图所示:(1)写出图中以O为顶点的相等的角;(2)若∠AOD=125°,求∠BOC的度数;(3)判断∠AOD与∠BOC之间具有何种数量关系当三角板AOB绕O点旋转时,这种关系是否有变化?请说明理由.考点:三角形内角和定理..分析:(1)图中有两个直角,再根据同角的余角相等即可找出;(2)若∠AOD=125°,则∠AOC或∠BOD即可求出,然后根据余角的性质即可求出∠BOC;(3)根据三角形内角和外角的关系解答.解答:解:(1)∵∠AOB与∠COD为直角,∴∠AOB=∠COD∵∠AOB=∠COD,∴∠AOB﹣∠COB=∠COD﹣∠COB,即∠AOC=∠BOD;(2)∵∠AOB+∠BOD=∠AOD,又∵∠AOB=90°,∠AOD=125°,∴∠BOD=35°,∵∠BOD+∠BOC=90°,∴∠BOC=55°;(3)∠BOC与∠AOD互补.当三角板AOB绕O点旋转时,这种互补关系没有变化,理由如下:当∠BOC在∠AOD内部时∠AOD+∠BOC=∠AOB+∠BOD+∠BOC=∠COD+∠AOB=90°+90°=180°当∠BOC在∠AOD外部时,如下图∠AOD+∠BOC=360°﹣∠AOB﹣∠COD=180°∴∠BOC与∠AOD互补.点评:①几何计算题中,如果依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程的思想;②求角的度数常常要用到“三角形的内角和是180°这一隐含的条件;③三角形的外角通常情况下是转化为内角来解决.17.如图,在△ABC中,∠C>∠B,AD、AE分别是△ABC的高和角平分线.(1)若∠B=30°,∠C=50°,求∠DAE的度数;(2)若∠B=x°,∠C=y°,求∠DAE的度数.考点:三角形内角和定理;三角形的角平分线、中线和高..分析:(1)在直角△ACD中,求得∠CAD,然后利用角平分线的定义求得∠CAE的度数,根据∠DAE=∠CAE﹣∠CAD可以求解;(2)与(1)的解法相同.解答:解:(1)∵AD是高线,∴在直角△ACD中,∠CAD=90°﹣∠C=90°﹣50°=40°;∵在△ABC中,∠CAB=180°﹣∠B﹣∠C=180°﹣30°﹣50°=100°,∵AE是角的平分线,∴∠CAE=∠CAB=50°,∴∠DAE=∠CAE﹣∠CAD=50°﹣40°=10°;(2)根据(1)可以得到:∠CAD=(90﹣y)°,∠CAE=∠CAB=(180﹣x﹣y)°.∴∠DAE=∠CAE﹣∠CAD=(180﹣x﹣y)﹣(90﹣y)°=(y﹣x)°.点评:本题考查了三角形的内角和等于180°,以及角平分线的定义,是基础题.18.如图,在△ABC中,已知∠ACB=67°,BE是AC上的高,CD是AB上的高,F是BE和CD的交点,∠DCB=45°,求∠ABE和∠BFC的度数.考点:三角形内角和定理;三角形的角平分线、中线和高..专题:计算题.分析:根据三角形高的定义得到∠CDB=90°,∠BEC=90°,先利用三角形内角和定理得∠DBC=180°﹣90°﹣45°=45°,∠EBC=180°﹣∠ECB﹣∠BEC=180°﹣67°﹣90°=23°,则∠ABE=∠ABC﹣∠EBC=45°﹣23°=22°,然后利用三角形外角性质可计算∠BFC=22°+90°=112°.解答:解:∵CD是AB上的高,∴∠CDB=90°,∵∠CDB+∠DBC+∠DCB=180°,∴∠DBC=180°﹣90°﹣45°=45°,∵BE是AC上的高,∴∠BEC=90°,∴∠EBC=180°﹣∠ECB﹣∠BEC=180°﹣67°﹣90°=23°,∴∠ABE=∠ABC﹣∠EBC=45°﹣23°=22°;∵∠BFC=∠FDB+∠DBF,∴∠BFC=22°+90°=112°.点评:本题考查了三角形内角和定理:三角形内角和为180°.也考查了三角形外角性质以及三角形的高.19.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,∠ECD=30°,求∠FDC的度数.考点:三角形的外角性质;角平分线的定义..分析:根据∠ECD=30°,结合已知和角平分线的定义,可求∠DBC,∠F和∠BCD的度数;根据三角形的外角的性质可得∠FDC的度数.解答:解:∵CE平分∠ACB,且∠ECD=30°,∴∠ACB=∠ABC=2∠ECD=60°,∵BD平分∠ABC,∴∠DBF=∠ABC=30°,即∠DBF=∠F=30°,∴∠FDC=∠ACB﹣∠F=60°﹣30°=30°.点评:根据角平分线定义得出所求角与已知角的关系的转化再求解.20.(1)若一个凸多边形的内角和是2340°,求这个多边形的边数;(2)一个凸多边形去掉一个内角后,其余所有内角的和为2008°,求这个多边形的边数和去掉的那个内角的度数.考点:多边形内角与外角..分析:(1)n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.(2)n边形的内角和是(n﹣2)•180°,因而内角和一定是180度的倍数,而多边形的内角一定大于0,并且小于180度.因而内角和去掉一个内角的值,这个值除以180度,所得数值比边数n﹣2要大,大的值小于1.则用内角和于内角的和除以180所得值,加上2,比这个数大的最小的整数就是多边形的边数.解答:解:(1)设这个多边形的边数是n.由题意得:(n﹣2)×180°=2340°,解得n=15.所以这个多边形的边数是15.(2)设这个多边形的边数是m,去掉的那个内角为α.则(m﹣2)×180°=2008°+α,由于0°<α<180°,所以0°<(m﹣2)×180°﹣2008°<180°,整理得2008<(m﹣2)×180<2008+180,即<n﹣2<+1,11<m﹣2<12.因为m是正整数,所以m﹣2=12,m=14,所以这个多边形的边数为14,去掉的那个内角为α=(14﹣2)×180°﹣2008°=152°.点评:本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.21.如图,D是△ABC的BC边上的一点,AD=BD,∠ADC=80°(1)求∠B的度数;(2)若∠BAC=70°,判断△ABC的形状,并说明理由.考点:三角形的外角性质;三角形内角和定理..分析:(1)由AD=BD,根据等边对等角的性质,可得∠B=∠BAD,又由三角形外角的性质,即可求得∠B的度数;(2)由∠BAC=70°,易求得∠C=∠BAC=70°,根据等角对等边的性质,可证得△ABC是等腰三角形.解答:解:(1)∵在△ABD中,AD=BD,∴∠B=∠BAD,∵∠ADC=∠B+∠BAD,∠ADC=80°,∴∠B=∠ADC=40°;(2)△ABC是等腰三角形.理由:∵∠B=40°,∠BAC=70°,∴∠C=180°﹣∠B﹣∠BAC=70°,∴∠C=∠BAC,∴BA=BC,∴△ABC是等腰三角形.点评:此题考查了等腰三角形的性质与判定以及三角形外角的性质.此题难度不大,注意掌握数形结合思想的应用.22.如图,∠B=60°,∠BAC=80°,AD⊥BC,AE平分∠BAC,求∠DAE的度数.考点:三角形的外角性质..分析:根据角平分线的定义可得∠BAE=∠BAC,根据垂直的定义可得∠ADE=90°,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式表示出∠AEC即可得解.解答:解:∵AE平分∠BAC,∴∠BAE=∠BAC=×80°=40°,∵AD⊥BC,∴∠ADE=90°,∴∠AEC=∠ADE+∠DAE=∠B+∠BAE,即90°+∠DAE=60°+40°,解得∠DAE=10°.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,垂直的定义,熟记性质与概念是解题的关键.23.在小学我们知道“三角形的内角和等于180°”,现在把一块含30°角的直角三角板AOB的直角顶点O放置在水平线l上,如图1所示.(1)填空:∠1+∠2=90度;(2)若把三角板AOB绕着点O按逆时针方向旋转,①填空:当∠1=60度时,AB∥l.理由:内错角相等,两直线平行.②在三角板AOB绕着点O按逆时针方向旋转的过程中,作AC⊥l于点C,BD⊥l于点D,图2中是否存在相等的角(图2中所有的直角相等不加以考虑,不能再随意添加字母或作出其它线条)?若有,试找出图中所有相等的角,并说明理由;若无,请举例说明.考点:三角形内角和定理;平行线的性质..分析:(1)根据平角的定义即可求解;(2)①根据平行线的判定即可求解;②根据同角的余角相等即可求解.解答:解:(1)∠1+∠2=180°﹣90°=90°;(2)①当∠1=60°时,AB∥l.理由:内错角相等,两直线平行.②图中所有相等的角分别为:∠1=∠OBD,∠2=∠OA C.理由如下:∵AC⊥l,BD⊥l∴∠ACO=90°,∠BDO=90°,在三角形ACO中,∠ACO+∠1+∠OAC=180°,在三角形OBD中,∠BDO+∠2+∠OBD=180°∴∠1+∠OAC=90°,∠2+∠OBD=90°,又∵∠1+∠2=90°,∴∠1=∠OBD,∠2=∠OA C.故答案为:90;60,内错角相等,两直线平行.点评:考查了平角的定义,平行线的判定和性质,同角的余角相等,三角形内角和定理,有一定的综合性.24.某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,△ABC两内角∠ABC与∠ACB的平分线交于点E.则∠BEC=90°+∠A.(阅读下面证明过程,并填空.)证明:∵BE、CE分别平分∠ABC和∠ACB,∴∠EBC=∠ABC,∠ECB=∠ACB(角平分线的定义)∴∠BEC=180°﹣(∠EBC+∠ECB)(三角形内角和定理)=180°﹣()=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=180°﹣90°+∠A=90°+(2)如图2,△ABC的内角∠ABC的平分线与△ABC的外角∠ACM的平分线交于点E.请你写出∠BEC与∠A的数量关系,并证明.答:∠BEC与∠A的数量关系式:∠BEC=∠A.证明:如下.(3)如图3,△ABC的两外角∠CBD与∠BCF的平分线交于点E,请你直接写出∠BEC与∠A 的数量关系,不需证明.考点:三角形内角和定理;三角形的角平分线、中线和高..分析:(1)根据题目解答过程填写即可;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠E与∠1表示出∠2,然后整理即可得到∠BEC与∠E的关系;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠EBC与∠ECB,然后再根据三角形的内角和定理列式整理即可得解.解答:(1)证明:∵BE、CE分别平分∠ABC和∠ACB,∴∠EBC=∠ABC,∠ECB=∠ACB(角平分线的定义)∴∠BEC=180°﹣(∠EBC+∠ECB)(三角形内角和定理)=180°﹣(),=180°﹣(∠ABC+∠ACB),=180°﹣(180°﹣∠A),=180°﹣90°+∠A,=90°+;(2)探究2结论:∠BEC=∠A,理由如下:∵BE和CE分别是∠ABC和∠ACM的角平分线,∴∠1=∠ABC,∠2=∠ACM,又∵∠ACM是△ABC的一外角,∴∠ACM=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BEC的一外角,∴∠BEC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(3)探究3:∠EBC=(∠A+∠ACB),∠ECB=(∠A+∠ABC),∠BEC=180°﹣∠EBC﹣∠ECB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BEC=90°﹣∠A.点评:本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.。
2015-2016学年广东省广州市华师附中七年级(下)期末数学试卷

2015-2016学年广东省广州市华师附中七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下面四个图形中,∠1与∠2是邻补角的是()A.B.C.D.2.(3分)下列说法中正确的有()个.①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1 B.2 C.3 D.43.(3分)在下列图形中,∠1与∠2不是同旁内角的是()A.B. C.D.4.(3分)三条直线a、b、c,若a∥c,b∥c,则a与b的位置关系是()A.a⊥b B.a∥b C.a⊥b或a∥b D.无法确定5.(3分)如图,△ABC经过怎样的平移得到△DEF()A.把△ABC向左平移4个单位,再向下平移2个单位B.把△ABC向右平移4个单位,再向下平移2个单位C.把△ABC向右平移4个单位,再向上平移2个单位D.把△ABC向左平移4个单位,再向上平移2个单位6.(3分)下列说法不正确的是()A.是2的平方根B.是2的平方根C.2的平方根是 D.2的算术平方根是7.(3分)若|x+2|+,则xy的值为()A.﹣8 B.﹣6 C.5 D.68.(3分)的立方根是()A.8 B.±2 C.4 D.29.(3分)估算的值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间10.(3分)下列计算正确的是()A.+=B.﹣=0 C.•=9 D.二、填空题(共6小题,每空2分,满分16分)11.(4分)如图,已知AC⊥BC,CD⊥AB,AC=3,BC=4,则点B到直线AC的距离等于;点C到直线AB的垂线段是线段.12.(2分)把命题改成“如果…,那么…”的形式:邻补角相等..13.(2分)如图,想在河堤两岸搭建一座桥,图中搭建方式中,最短的是PB,理由.14.(4分)如果2a﹣18=0,则a的算术平方根是;|1﹣|=.15.(2分)已知2x﹣y=﹣3,用含x的式子表示y,则.16.(2分)若不等式(m﹣2)x>m﹣2的解集是x<1,则m的取值范围是.三、解答题(共4小题,满分20分)17.(4分).18.(6分)解方程:==1.19.(4分)解不等式:5x+15>4x﹣1.20.(6分)解不等式:x﹣<2x+.四、解答题(共5小题,满分34分)21.(5分)已知代数式x2+px+q,当x=2时,它的值为3,当x=﹣3时,它的值是4,求p﹣q的值.22.(5分)如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面,如果正方体相对两个面上的代数式的值相等,求x、y的值.23.(8分)x取哪些整数值时,不等式5x+2>3(x﹣1)与x﹣1≤7﹣都成立?24.(8分)某中学计划在学校公共场所安装温馨提示牌和垃圾箱.已知安装5个温馨提示牌和6个垃圾箱需要730元,安装7个温馨提示牌和12个垃圾箱需要1310元.那么安装8个温馨提示牌和15个垃圾箱共需要多少钱?25.(8分)已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.2015-2016学年广东省广州市华师附中七年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下面四个图形中,∠1与∠2是邻补角的是()A.B.C.D.【解答】解:A、B选项,∠1与∠2没有公共顶点且不相邻,不是邻补角;C选项∠1与∠2不互补,不是邻补角;D选项互补且相邻,是邻补角.故选:D.【点评】本题考查邻补角的定义,是一个需要熟记的内容.2.(3分)下列说法中正确的有()个.①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1 B.2 C.3 D.4【解答】解:②对顶角要符合两直线相交构成的没有公共边的两个相对的角是对顶角,但相等的角不一定是对顶角;④例如30°与30°的角不一定是对顶角,但这两个角一定相等,故②④错误;正确的有①③两个.故选:B.【点评】本题考查对顶角的性质以及定义,是一个需要熟记的内容.3.(3分)在下列图形中,∠1与∠2不是同旁内角的是()A.B. C.D.【解答】解:根据同旁内角的定义可知:第四个图形中的∠1与∠2不是同旁内角,故选:D.【点评】本题是同旁内角的判别,在两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角;熟练掌握定义是做好本题的关键.4.(3分)三条直线a、b、c,若a∥c,b∥c,则a与b的位置关系是()A.a⊥b B.a∥b C.a⊥b或a∥b D.无法确定【解答】解:由于直线a、b都与直线c平行,依据平行公理的推论,可推出a ∥b.故选:B.【点评】本题考查的重点是平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线平行.5.(3分)如图,△ABC经过怎样的平移得到△DEF()A.把△ABC向左平移4个单位,再向下平移2个单位B.把△ABC向右平移4个单位,再向下平移2个单位C.把△ABC向右平移4个单位,再向上平移2个单位D.把△ABC向左平移4个单位,再向上平移2个单位【解答】解:由题意可知把△ABC向右平移4个单位,再向上平移2个单位得到△DEF.故选:C.【点评】本题主要考查了平移的性质,观察图象,分析对应线段作答.6.(3分)下列说法不正确的是()A.是2的平方根B.是2的平方根C.2的平方根是 D.2的算术平方根是【解答】解:A、2的平方根为±,所以是2的平方根,故本选项正确;B、2的平方根为±,所以是2的平方根,故本选项正确;C、2的平方根为±,故本选项错误;D、2的算术平方根为,故本选项正确;所以说法不正确的是C.故选:C.【点评】本题考查平方根和算术平方根的知识,属于基础题,注意掌握一个正数的平方根有两个,算术平方根为正数.7.(3分)若|x+2|+,则xy的值为()A.﹣8 B.﹣6 C.5 D.6【解答】解:∵|x+2|≥0,≥0,而|x+2|+=0,∴x+2=0且y﹣3=0,∴x=﹣2,y=3,∴xy=(﹣2)×3=﹣6.故选:B.【点评】本题考查的是非负数的性质,一元一次方程的解法及代数式的求值.题目注重基础,比较简单.8.(3分)的立方根是()A.8 B.±2 C.4 D.2【解答】解:∵=8而8的立方根等于2,∴的立方根是2.故选:D.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.9.(3分)估算的值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间【解答】解:∵4=<<=5,∴在4和5之间.故选:C.【点评】本题考查估算无理数大小的知识,难度不大,注意夹逼法的运用.10.(3分)下列计算正确的是()A.+=B.﹣=0 C.•=9 D.【解答】解:A、+=2,故选项错误;B、﹣=0,故选项正确;C、•=3,故选项错误;D、=3,故选项错误.故选:B.【点评】此题主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.在进行根式的运算时要先化简再计算可使计算简便.二、填空题(共6小题,每空2分,满分16分)11.(4分)如图,已知AC⊥BC,CD⊥AB,AC=3,BC=4,则点B到直线AC的距离等于4;点C到直线AB的垂线段是线段CD.【解答】解:根据垂线段、点到直线距离的定义可知,点B到直线AC的距离等于BC的长度,即为4.点C到直线AB的垂线段是线段CD.故填4,CD.【点评】此题主要考查了垂线段、点到直线距离的定义.12.(2分)把命题改成“如果…,那么…”的形式:邻补角相等.如果两个角是邻补角,那么这两个角相等.【解答】解:把命题“邻补角相等”改写为“如果…那么…”的形式是:如果两个角是邻补角,那么这两个角相等.故答案是:如果两个角是邻补角,那么这两个角相等.【点评】本题主要考查了命题的定义,正确理解定义是关键.13.(2分)如图,想在河堤两岸搭建一座桥,图中搭建方式中,最短的是PB,理由垂线段最短.【解答】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∵PB⊥AD,∴PB最短.故答案为:垂线段最短.【点评】此题主要考查了从直线外一点到这条直线上各点所连的线段中,垂线段最短在生活中的应用.14.(4分)如果2a﹣18=0,则a的算术平方根是3;|1﹣|=﹣1.【解答】解:2a﹣18=0,解,得a=9,∴=±3,故答案为:±3.:|1﹣|=﹣1,故答案为:﹣1.【点评】本题考查了平方根和实数的性质,注意一个正数的平方根有两个,它们互为相反数;差的绝对值是大数减小数.15.(2分)已知2x﹣y=﹣3,用含x的式子表示y,则y=2x+3.【解答】解:由2x﹣y=﹣3,解得:y=2x+3,故答案为:y=2x+3【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.16.(2分)若不等式(m﹣2)x>m﹣2的解集是x<1,则m的取值范围是m <2.【解答】解:原不等式系数化1得,x>,又∵不等式的解集为x<1,∴m﹣2<0,即m<2.【点评】当未知数的系数是负数时,两边同除以未知数的系数需改变不等号的方向.同理,当不等号的方向改变后,也可以知道不等式两边除以的是一个负数.三、解答题(共4小题,满分20分)17.(4分).【解答】解:,①+②得:9μ=18,即μ=2,把μ=2代入①得:t=,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(6分)解方程:==1.【解答】解:由原方程可得,①+②,得:4x=8,解得:x=2,①﹣②,得:2y=﹣2,解得:y=﹣1,∴方程组的解为:.【点评】本题主要考查解二元一次方程组的能力,熟练掌握解二元一次方程组的代入消元法和加减消元法是解题的关键.19.(4分)解不等式:5x+15>4x﹣1.【解答】解:移项,得:5x﹣4x>﹣1﹣15,合并同类项,得:x>﹣16.【点评】本题主要考查解一元一次不等式的能力,熟练掌握解不等式的基本步骤是解题关键.20.(6分)解不等式:x﹣<2x+.【解答】解:去分母得,21x﹣3<42x+35,移项得,21x﹣42x<35+3,合并同类项得,﹣21x<38,x的系数化为1得,x>﹣.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.四、解答题(共5小题,满分34分)21.(5分)已知代数式x2+px+q,当x=2时,它的值为3,当x=﹣3时,它的值是4,求p﹣q的值.【解答】解:根据题意得:,解得:,则p﹣q=.【点评】本题考查二元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.22.(5分)如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面,如果正方体相对两个面上的代数式的值相等,求x、y的值.【解答】解:根据题意,得(4分)解方程组,得x=3,y=1.(6分)【点评】注意运用空间想象能力,找出正方体的每个面相对的面23.(8分)x取哪些整数值时,不等式5x+2>3(x﹣1)与x﹣1≤7﹣都成立?【解答】解:,解①得x>﹣,解②得x≤4,所以不等式组的解集为﹣<x≤4,所以不等式组的整数解为﹣2,﹣1,0,1,2,3,4,即x取整数﹣2,﹣1,0,1,2,3,4时,不等式5x+2>3(x﹣1)与x﹣1≤7﹣都成立.【点评】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.24.(8分)某中学计划在学校公共场所安装温馨提示牌和垃圾箱.已知安装5个温馨提示牌和6个垃圾箱需要730元,安装7个温馨提示牌和12个垃圾箱需要1310元.那么安装8个温馨提示牌和15个垃圾箱共需要多少钱?【解答】解:设安装一个温馨提示牌需要x元,安装一个垃圾箱需要y元,根据题意可得:,解得:,故8×50+15×80=1600(元),答:安装8个温馨提示牌和15个垃圾箱共需要1600元.【点评】本题考查了二元一次方程组的应用,关键是读懂题意,找出题目中的数量关系,根据数量关系列出方程组.25.(8分)已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.【解答】证明:(1)∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.【点评】此题主要考查了角平分线的性质以及平行线的判定,难度不大.。
华师大版七年级下册数学期末考试试卷附答案

华师大版七年级下册数学期末考试试题一、单选题1.若代数式x+3的值为2,则x 等于A .1B .1-C .5D .5-2.观察下边的图案,既是中心对称图形又是轴对称图形的是( )A .B .C .D .3.下列不等式一定成立的是( )A .26x <B .0x ->C .10x +>D .20x > 4.小育到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是( ) A .正八边形 B .正六边形 C .正方形 D .正三角形5.三元一次方程组3210x y z x y z x y -+=-⎧⎪+-=⎨⎪+=⎩的解是( )A .112x y z =-⎧⎪=⎨⎪=⎩B .124x y z =-⎧⎪=-⎨⎪=-⎩C .221x y z =-⎧⎪=⎨⎪=⎩D .227x y y =⎧⎪=-⎨⎪=-⎩6.下列说法中不正确的是( )A .内角和是1080°的多边形是八边形B .六边形的对角线一共有8条C .三角形任一边的中线把原三角形分成两个面积相等的三角形D .一个多边形的边数每增加一条,这个多边形的内角和就增加180°7.如图所示,8块相同的小长方形地砖拼成一个大长方形,若其中每一个小长方形的长为x ,宽为y ,则依据题意可得二元一次方程组为( )A.153x yx y+=⎧⎨=⎩B.1523x yx y+=⎧⎨=⎩C.1523x yx x y-=⎧⎨=+⎩D.21523x yx x y-=⎧⎨=+⎩8.已知x2y4k{2x y2k1+=+=+,且1x y0-<-<,则k的取值范围为A.11k2-<<-B.10k2<<C.0k1<<D.1k12<<9.在道路两旁种树,每隔3米一棵,还剩3棵;每隔2.5米一棵,到头还缺77棵,则这条道路()A.长为600米,共有405棵树B.长为600米,共有403棵树C.长为300米,共有403棵树D.长为300米,共有405棵树10.如图,∠ABC=∠ACB,BD、CD分别平分△ABC的内角∠ABC、外角∠ACP,BE平分外角∠MBC交DC的延长线于点E,以下结论:①∠BDE=12∠BAC;②DB⊥BE;③∠BDC+∠ABC=90°;④∠BAC+2∠BEC=180°.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题11.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值等于_________ .12.如果等腰三角形一边长是5cm,另一边长是8cm,则这个等腰三角形的周长是______________.13.如图,将△ABC沿BC方向向右平移2cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为________cm.14.若关于x 的不等式组25322x a x b -≥⎧⎨-<⎩的解集为3≤x <4,则a -2b=________. 15.如图,四边形ABCD 中,∠A=100°,∠C=70°,将△BMN 沿MN 翻折,得到△FMN ,若MF ∥AD ,FN ∥DC ,则∠D=________.16.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种袋装粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种袋装粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A 、B 、C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为71.5元,利润率为30%,乙种粗粮利润率为20%,则乙种粗粮每袋的售价为________元.(利润率=-100%⨯售价成本成本)三、解答题17.解下列方程(组):(1) ()()371323x x x --=-+(2)516213410x y x y -=⎧⎨++=⎩18.解不等式组523(2)121123x x x x +<+⎧⎪+-⎨≤+⎪⎩,把解集在数轴上表示出来,并求不等式组的整数解.19.如图,方格纸中每个小方格都是边长为1个单位的正方形,△ABC 的顶点均在格点上.(1)画出与△ABC关于直线MN成轴对称的△A1B1C1;(2)画出将△ABC绕点O逆时针旋转90°所得的△A2B2C2;(3)△A1B1C1与△A2B2C2成轴对称吗?若成轴对称,请画出对称轴.20.若关于x的方程1123x k k--=+与方程()315x x x--=-的解互为相反数,求k的值.21.如图,在△ABC中,∠B=32°,∠C=70°,AD⊥BC于点D,AE平分∠BAC交BC于点E,DF⊥AE于点F.(1)求∠BAE的度数;(2)求∠ADF的度数.22.如图,在△ABC中,点D是∠ACB与∠ABC的角平分线的交点,BD的延长线交AC于点E.(1)若∠A=80°,求∠BDC的度数;(2)若∠EDC=40°,求∠A的度数;(3)请直接写出∠A与∠BDC之间的数量关系(不必说明理由).23.某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?24.对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数” .将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123) =6.(1)计算:F(315),F(746);(2)若s、t都是“相异数”,其中s=100x+42,t=160+y(1≤x≤9,1≤y≤9,x、y都是正整数),当F(s)+F(t)=17时,求x、y的值.25.将两块全等的含30°角的直角三角板按图1的方式放置,已知∠BAC=∠B1A1C=30°,AB=2BC.(1)固定三角板A1B1C,然后将三角板ABC绕点C顺时针方向旋转至图2的位置,AB与A1C、A1B1分别交于点D、E,AC与A1B1交于点F.①填空:当旋转角等于20°时,∠BCB1= 度;②当旋转角等于多少度时,AB与A1B1垂直?请说明理由.(2)将图2中的三角板ABC绕点C顺时针方向旋转至图3的位置,使AB∥CB1,AB与A1C交于点D,试说明A1D=CD.参考答案1.B【解析】试题分析:根据题意,列出关于x的一元一次方程x+3=2,通过解该方程可以求得x的值:由题意,得x+3=2,解得x=﹣1.故选B.2.D【解析】【分析】根据中心对称图形和轴对称图形的定义逐个判断即可.【详解】A 选项是轴对称图形但不是中心对称图形;B 选项是既不是轴对称图形也不是中心对称图形;C选项是既不是轴对称图形也不是中心对称图形;D 选项既是中心对称图形也是轴对称图形;故选D.【点睛】本题主要考查中心对称图形和轴对称图形的概念,注意两者的区别.3.C【解析】【分析】根据绝对值的意义和一个数的平方大于等于0,逐个判断即可.【详解】A 选项不一定成立;B选项不一定成立;C选项一定成立;D选项不一定成立,还有可能等于0.故选C.【点睛】本题主要考查绝对值大于等于0,一个数的平方大于等于0,这是重点知识,必须掌握.4.A【解析】【分析】根据圆周角的性质,首先计算每个选项中正多边形的的内角,再计算是否能够无缝铺砖,即可得到答案.【详解】A 正八边形的内角为: (82)180=1358︒︒-⨯,因为360135︒︒不能整除,所以不能无缝铺砖; B 正六边形的内角为: (62)180=1206︒︒-⨯,因为360=3120︒︒ 所以能无缝铺砖;C 正方形的内角为:90︒,因为360=490︒︒ 所以能无缝铺砖;D 正三角形的内角为:60︒,因为360=660︒︒ 所以能无缝铺砖;故选A.【点睛】本题主要考查正多边形的内角和的计算公式,这个是重点知识必须掌握.5.C【解析】【分析】采用加减消元法计算即可.【详解】解:3(1)21(2)0(3)x y z x y z x y -+=-⎧⎪+-=⎨⎪+=⎩将(1)+(2)可得:22(4)x y +=-将(4)-(3)可得:2x =-(5)将(5)代入(3)可得:2y =(6)将(5)和(6)代入(1)可得:1z =所以可得221x y z =-⎧⎪=⎨⎪=⎩故选C.【点睛】本题主要考查三元一次方程的消元法,这是解决方程的最重要的方法,必须掌握. 6.B【解析】【分析】根据各选项逐个判断说法是否正确即可.【详解】A 根据正多边形的内角和计算公式可得:(82)1801080︒︒-⨯=,因此A 说法正确;B 选项说法不正确,六边形的对角线有18条;C 正确,因为每个边上的高是相等的,只要边上的中线则分成的两个三角形的面积相等;D 正确,根据多边形的内角和的计算公式可得每增加一条边,正多边形的内角增加180°. 故选B.【点睛】本题主要考查正多边形的性质,这些选项都是基本性质,必须掌握.7.A【解析】【分析】设每一个小长方形的长为x ,宽为y ,根据大长方形的宽为15及小长方形的长与宽之间的关系,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】解:设每一个小长方形的长为x ,宽为y ,依题意,得:153x y x y +=⎧⎨=⎩. 故选A .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.D【解析】【详解】∵x+2y=4k 2x+y=2k+1⎧⎨⎩①②∴②-①,得x y 2k 1-=-+将x y 2k 1-=-+代入1x y 0-<-<,得:112k 1022k 1k 12-<-+<⇒-<-<-⇒<<故选D9.A【解析】【分析】根据题意首先设这条道路长x m,;列出一元一次方程求解即可.【详解】解:设这条道路长x m22232773 2.5xx++=+-解得:600x = 所以一共有树:2600234053⨯++=故选A.【点睛】本题主要考查一元一次方程的应用题,注意这类题一定要末端要多种一颗树. 10.D【解析】【分析】根据角平分线的性质,逐个判断结论是否正确即可.【详解】①正确,180BDE DBC DCB ︒∠=-∠-∠12DBC ABC ∠=∠; DCB ACD ACB ∠=∠+∠1()2DCB BAC ABC ACB ∴∠=∠+∠+∠ 11180()22BDE ABC BAC ABC ACB ︒∴∠=-∠-∠+∠-∠即: 12BDE BAC ∠=∠ 故正确;②正确, BD 、BE 分别平分△ABC 的内角∠ABC 、外角∠MBC ,11,22DBC ABC CBE MBC ∴∠=∠∠=∠ 111()90222DBC CBE ABC MBC ABC MBC ︒∴∠+∠=∠+∠=∠+∠= BD BE ∴⊥故正确;③正确,ABC ACB ∠∠=由①可得∠BDC=12BAC ∠ 所以可得∠BDC+∠ABC =90°故正确;④正确, ∠BEC=11180180909022DBE BDE BAC BAC ︒︒︒︒-∠-∠=--∠=-∠ 122(90)1802BAC BEC BAC BAC ︒︒∴∠+∠=∠+⨯-∠= 故正确.故选D.【点睛】本题主要考查平分线的性质,结合三角形的内角和的性质,应用等量替换的方法,这个换算即可.11.﹣1【解析】试题分析:把x=2代入得到4+3m-1=0,所以m=-1考点:一元一次方程,代入求值点评:本题考查代入求值,比较简单,细心就可.12.21或18【解析】【分析】根据题意要根据腰的情况分类讨论,第一当腰为5cm是计算周长;第二当腰为8cm计算周长.【详解】解:根据题意可得第一当腰为5cm时,周长为:5+5+8=18;当腰为8cm时,周长为:8+8+5=21故答案为:21或18【点睛】本题主要考查等腰三角形的腰的分类讨论,这是数学中最常用的思想,必须掌握理解. 13.24【解析】【分析】根据四边形ABFD的周长为:AB+BF+DF+AD,而△ABC的周长为:AB+BC+AC=20cm,采用等量替换的方法计算即可.【详解】解:△ABC的周长为:AB+BC+AC=20cm根据题意可得四边形ABFD的周长为:AB+BF+DF+AD=AB+BC+CF+AC+AD=AB+BC+AC+CF+AD=20+2+2=24故答案为24.【点睛】本题主要考查四边形的周长计算,关键在于利用等量替换的方法计算,等量替换是解决几何问题最重要的方法,必须熟练掌握.14.-9【解析】【分析】首先求解不等式组,再根据解集求出未知数的值,代入计算即可.【详解】解:根据题意可得:52223a x b x +⎧≥⎪⎪⎨+⎪<⎪⎩即:52223a b x ++≤< 所以可得2243532b a +⎧=⎪⎪⎨+⎪=⎪⎩ 解得15a b =⎧⎨=⎩ 所以a -2b=1259-⨯=-故答案为-9【点睛】本题主要考查不等式中参数的求解,关键在于根据不等式的解集求解参数.15.95︒【解析】【分析】首先根据MF ∥AD ,FN ∥DC ,可得100,70BMF BNF ︒︒∠=∠=,由于△FMN 是△BMN沿MN 翻折得到的,所以可得,BMN FMN BNM FNM ∠=∠∠=∠,故可得MFN ∠ 的度数,进而可得∠D 的度数.【详解】 解: MF ∥AD ,FN ∥DC100,70,BMF BNF D MFN ︒︒∴∠=∠=∠=∠△FMN 是△BMN 沿MN 翻折得到的∴ ,BMN FMN BNM FNM ∠=∠∠=∠100701809522MFN ︒︒︒︒∴∠=--= 95D ︒∴∠=故答案为95︒【点睛】本题主要考查折叠图形的性质,关键在于折叠后的图形的性质与原图形全等.16.96【解析】【分析】首先根据甲种粗粮的售价和利润率,列方程求得B 和C 的成本价,再计算乙种粗粮的的成本价,根据利润率的公式即可计算的乙种粗粮每袋的售价.【详解】解:根据=100%⨯售价-成本利润率成本 可得:甲种粗粮的成本为:71.5=551+30%所以可得1千克B 和1千克C 的成本价为:553637-⨯=因此可得2千克B 和2千克C 的成本价为:23774⨯=则乙种粗粮的的成本价为:67480+=故乙种粗粮每袋的售价为:808020%96+⨯=故答案为96【点睛】本题主要考查利润率的计算,这是应用题中的一个重要的类型,必须掌握.17.(1)5x = (2)11x y =⎧⎨=-⎩【解析】【分析】(1)根据等式的性质求解即可.(2)采用加减消元法计算即可.【详解】解:(1)原式可化为:210x -=-解得5x =(2)原式可化为:51621(1)12164(2)x y x y -=⎧⎨+=-⎩将(1)+(2)可得:1717x = 解得:1x =将1x =代入(1)可得:1y =-所以可得:11 xy=⎧⎨=-⎩【点睛】本题主要考查方程的解法,注意二元一次方程组中加减消元法的计算. 18.-1,0,1【解析】【分析】首先根据不等式的性质求解不等式组,然后在数轴上表示,写出整数解即可. 【详解】解:原式可化为:24-1xx<⎧⎨≥⎩即-12x≤<在数轴上表示如下:所以可得不等式的整数解集为:-1,0,1【点睛】本题主要考查不等式的解法,关键在于根据数轴写出不等式的解集. 19.(1)见解析(2)见解析(3)是对称图形,对称轴见解析. 【解析】【分析】(1)首先画出对称点,在连接对称点即可;(2)首先画出逆时针旋转的点,在连接点即可;(3)根据图形观察即可,画出对称轴即可.【详解】(1)首先画出A、B、C点的对称点如下图所示:(2)首先画出逆时针旋转的点如下图所示:(3)是对称图形,对称轴如图所示:【点睛】本题主要考查直角坐标系中点的坐标的绘制,关键在于根据点来绘制图形.20.-2【解析】【分析】首先根据未含参数的方程求解出未知数,在代入参数方程求解参数即可.【详解】解:根据()315x x x --=- 可得2x =- 因为方程1123x k k --=+ 与方程()315x x x --=-的解互为相反数 所以可得1123x k k --=+的解为2x = 代入可得:21123k k --=+ 解得2k =-【点睛】本题主要考查方程参数的计算,关键在于计算参数方程的解.21.(1)20︒ (2)71︒【解析】【分析】(1)根据三角形的内角和,首先计算出BAC ∠的度数,再根据AE 平分∠BAC 可得∠BAE 的度数;(2)在ACD ∆中,根据C ∠首先计算出CAD ∠的度数,再结合ADF ∆和DAF ∠便可计算出∠ADF 的度数.【详解】解:(1)在ABC ∆中∠B=32°,∠C=70°根据三角形的内角和为180︒可得180327078BAC ∠=︒-︒-︒=︒AE 平分∠BAC78392BAE ︒∴∠==︒ (2)在ACD ∆中,∠C=70° AD ⊥BC907020DAC ︒︒︒∴∠=-=由(1)可得39CAE ︒∠=19DAF ∴∠=︒DF ⊥AE90901971ADF DAF ∴∠=︒-∠=︒-︒=︒【点睛】本题主要考查三角形的内角和、角平分线的性质,关键在于根据角的计算求解.22.(1)130︒ (2)100︒ (3)∠BDC=1902A ︒+∠ 【解析】【分析】(1)首先根据∠A=80°,便可计算出ABC ACB ∠+∠的度数,再根据BD 、CD 平分ABC ∠和ACB ∠,再结合BCD ∆便可计算的∠BDC 的度数;(2)根据∠EDC=40°,可计算的BDC ∠的度数,再结合BCD ∆可得DBC DCB ∠+∠,再根据BD 、CD 平分ABC ∠和ACB ∠,在△ABC 中便可计算出∠A 的度数;(3)根据(1)和(2)中的计算可直接写出∠A 与∠BDC 之间的数量关系【详解】(1)在△ABC 中∠A=80°∴ 180********ABC ACB A ∠+∠=︒-∠=︒-︒=︒BD 、CD 平分ABC ∠和ACB ∠∴ 11()1005022DBC DCB ABC ACB ∠+∠=∠+∠=⨯︒=︒ 在BCD ∆中,∠BDC=180********DBC DCB ︒-∠-∠=︒-︒=︒(2)在BCD ∆中∠EDC=40°∴ 18040140BDC ∠=︒-︒=︒∴ 18014040DBC DCB ∠+∠=︒-︒=︒BD 、CD 平分ABC ∠和ACB ∠∴ 2()24080ABC ACB DBC DCB ∠+∠=∠+∠=⨯︒=︒在△ABC 中180********A ABC ACB ∠=︒-∠-∠=︒-︒=︒(3)根据(1)和(2)可得∠BDC=1902A ︒+∠ 【点睛】本题主要考查三角形的内角和的定理和角平分线的性质,关键在于要结合三角形进行计算. 23.(1)甲、乙两种材料每千克分别是15、25元(2)生产方案有3种:第一种:A 产品20件,B 产品30件第二种:A 产品21件,B 产品29件第三种:A 产品22件,B 产品28件【解析】【分析】(1)首先根据题意设甲、乙两种材料每千克分别是x ,y 元,根据题意列方程求解即可; (2)首先根据题意设A 两种产品分别为m 件,根据题意列出不等式求解正整数解即可.【详解】(1)解:设甲、乙两种材料每千克分别是x ,y 元 根据题意可得:4023105x y x y +=⎧⎨+=⎩解得1525x y =⎧⎨=⎩(2)设A 两种产品分别为m 件,则B 中产品为50m -根据题意可得:5028301510252015(50)2025(50)38000m m m m m -≥⎧⎨⨯+⨯+⨯-+⨯⨯-≤⎩ 解得:2220m m ≤⎧⎨≥⎩即:2022m ≤≤ 故m 的取值为:20、21、22所以可得生产方案有3种:第一种:A 产品20件,B 产品30件第二种:A 产品21件,B 产品29件第三种:A 产品22件,B 产品28件【点睛】本题主要考查二元一次方程的应用和不等式的应用,关键在于根据题意列出方程和不等式. 24.(1)9 17 (2)13x y =⎧⎨=⎩【解析】【分析】(1)根据相异数的概念首先写出对调的三个数,再求和,计算F(315),F(746)即可; (2)首先根据题意计算F (s )和F (t ),求解x 和y 的值即可.【详解】(1)根据题意可得315的三个数的和为:315+531+153=999所以999÷111=9 故F(315)=9746的三个三位数的和为:746+674+467=1887所以1887÷111=17 故F(746)=17(2) s 、t 都是相异数,s=100x+42, t=160+y ∴ F(s)=(100x+42+420+x+204+10x )÷111=x+6F(t)=(160+y+601+10y+100y+16) ÷111=y+7F(s)+F(t)=17∴6717x y +++=∴x+y=41≤x≤9,1≤y≤9,x 、y 都是正整数13x y =⎧∴⎨=⎩ 或22x y =⎧⎨=⎩ 或31x y =⎧⎨=⎩ s 和t 都是相异数42x x ∴≠≠、,16y y ≠≠、13x y =⎧∴⎨=⎩ 【点睛】本题主要考查新概念的理解,根据新概念列方程,采用分类讨论的思想求解. 25.(1)①160°,②30°;(2)证明见解析.【解析】分析:(1)①根据旋转的性质可得120ACA ∠=︒,再根据直角三角形两锐角互余求出BCD ∠,然后根据111BCB BCD ACB ∠=∠+∠进行计算即可得解;②根据直角三角形两锐角互余求出1A DE ∠,再根据三角形的一个外角等于与它不相邻的两个内角的和求出1ACA ∠,即为旋转角的度数;(2)根据两直线平行,同旁内角互补求出90ADC ∠=︒,再根据直角三角形30°角所对的直角边等于斜边的一半可得12CD AC ,=根据旋转的性质可得1A C AC ,=然后求出解即可. 详解:(1)①由旋转的性质得,120ACA ∠=︒,∴1902070BCD ACB ACA ∠=∠-∠=-=,∴1117090160.BCB BCD A CB ∠=∠+∠=+=②∵AB ⊥11A B ,∴11190903060A DE B AC ∠=︒-∠=︒-︒=︒, ∴11603030ACA A DE BAC ∠=∠-∠=︒-︒=︒,∴旋转角为30;(2)∵AB ∥CB 1,第 21 页 ∴111801809090ADC ACB ∠=︒-∠=︒-︒=︒,∵30BAC ,∠= ∴12CD AC ,= 又∵由旋转的性质得,1A C AC ,= ∴1.A D CD =点睛:考查了旋转的性质,三角形外角的性质,平行线的性质,熟记和运用各性质是解题的关键.。
华师版七年级下期数学期末试卷(3)

2015年春期义务教育阶段教学质量监测七年级数学本试题卷共4页.考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效.满分120分,考试时间120分钟. 考试结束,将本试题卷和答题卡一并交回.注意事项:1.答题前,考生在答题卷上务必将自己的姓名、学校、班级、考号填写清楚,并贴好条形码.请认真核准条形码上的考号、姓名和科目.2.解答选择题时,每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.3.解答填空题、解答题时,请在答题卷上各题的答题区域内作答.一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的. (注意..:在试题卷上作答无效.........) 1.下列图形中既是轴对称图形又是中心对称图形的是( ▲ )A B C D2.不等式312≥+x 的解集在数轴上表示正确的是( ▲ )A B C D3.把方程831412xx --=-去分母后,正确的结果是( ▲ ) A .)3(112x x --=- B .)3(1)12(2x x --=-C .x x --=-38)12(2D .)3(8)12(2x x --=- 4.下列正多边形的组合中,不能..够铺满地面的是( ▲ ) A .正三角形和正方形 B .正三角形和正六边形 C .正方形和正六边形 D .正八边形和正方形 5. 如图所示,画△ABC 的AC 边上的高,下列画法正确的是( ▲ )A. B. C. D.6. 如图,将10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意列方程组正确的是( ▲ )ACBBACB CABACA .⎩⎨⎧==+x y y x 3752B .⎩⎨⎧==+y x y x 3752C .⎩⎨⎧==-x y y x 3752D .⎩⎨⎧==+y x y x 37527. 将一副直角三角板如图放置,已知AE //BC ,则∠AFD 的度数是( ▲ ) A . 75° B . 50° C . 60° D . 45°8. 下列不等式的变形中,正确的结论有( ▲ )个①若,b a >则33->-b a ②若,b a >则b a 33->-③若,b a >则b m a m )1()1(22+>+ ④若b a >且)0≠m (,则mb ma -<- A .1个 B .2个 C .3个 D .4个二、 填空题:本大题共8个小题,每小题3分,共24分.请把答案直接填在答题卡对应题中横线上.(注.意.: 在试题卷上作答.......无效..) 9.木工师傅在做完门框后,为防止变形,常常像图中所示的那样钉上两根斜拉的木板条(即图中的AB 、CD 两根木条),这样做的数学道理是 ▲ .10.已知方程02)21=---a x a (是关于x 的一元一次方程,则=a ▲ .11.等腰三角形的两边分别为cm 5和cm 2,则它的周长为 ▲ .cm12.已知⎩⎨⎧==1-1y x 是二元一次方程组⎩⎨⎧=-=+17my nx ny mx 的解,则=+n m 2 ▲ .13. 一个多边形的外角和是内角和的72,则这个多边形是 ▲ 边形.14. 如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在点D ′,C ′的位置.若∠AED ′ =40°,则∠EFB 的度数为 ▲ .15.一次智力测试,有20道题.评分标准为:对一题给5分,错一题扣2分,不答题不给分也不扣分.小明有3道题未答,则他至少要答对 ▲ 道题,总分才不会低于60分.16.对任意有理数x ,用[]x 表示不大于x 的最大整数.例如:[][][].35.23313.1-=-==,,① []414.3-=-;② [][]x x =--; ③ [][]x x 22=; ④ 若4232-=⎥⎦⎤⎢⎣⎡-x ,则x 的取值范围是25-≤x <23-; 以上结论正确的是 ▲ .(把你认为正确结论的序号都填上)(第6题图)(第7题图)ABCDED ′C ′(第14题图) FDABCEF(第9题图) A B CD三、解答题:本大题共8个题,共72分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题8分)(注意..: 在试题卷上作答无效.........) 在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形.按要求画出下列图形: (1)将△ABC 向右平移5个单位得到△A ′B ′C ′; (2)将△A ′B ′C ′绕点A ′顺时针旋转90°得到△A ′DE ; (3)连结E C ′,则△A ′E C ′是 三角形.18.(每小题6分,共12分)(注意..: 在试题卷上作答无效.........) (1)解方程:1)1(234+-=+x x(2)解方程组:⎩⎨⎧=+=-1732623y x y x19. (本小题8分)(注意..: 在试题卷上作答无效.........) 解不等式组⎪⎩⎪⎨⎧-<--+-x x x 8)1(31323, 先把解集在数轴上表示出来,并求出不等式组的所有整数解.20.(本小题8分)(注意..: 在试题卷上作答无效.........) 已知方程组⎩⎨⎧+=+=+3222m y x m y x是一个关于x 、y 的二元一次方程组,其中x 与y 的和是负数,求m 的取值范围.21.(本小题8分)列方程解应用题(注意..: 在试题卷上作答无效.........) 某市电力公司对全市用户采用分段计费的方式计算电费,收费标准如下表所示:A(第17题图) ① ② ① ② ① ②≥ 1+x22.(本小题8分)(注意..: 在试题卷上作答无效.........) 如图:△ABC 绕点A 逆时针方向旋转得到△ADE ,其中∠B =50°,∠C =60°. (1)若AD 平分∠BAC 时,求∠BAD 的度数.(2)若DE AC 时,AC 与DE 交于点F ,求旋转角的度数.23.(本小题10分)(注意..: 在试题卷上作答无效.........) 关爱贫困留守儿童,“冬日暖阳”节目组准备走进某农村小学,为了帮助同学们,节目组计划用“全城齐跳小苹果”活动中筹集的部分资金用于购买A 、B 两种型号的学习用品共100件,已知A 型学习用品的单价为20元,B 型学习用品的单价为30元.(1)若购买这批学习用品共用了2600元,则购买A 、B 两种学习用品各多少件? (2)若购买这批学习用品的费用不超过2800元,则最多购买B 型学习用品多少件?24.(本小题10分)(注意..: 在试题卷上作答无效.........) (1)如图①在△ABC 中,点D 是BC 边上的一点,将△ABD 沿AD 折叠,得到△AED ,AE 与BC 交于点F .已知∠B =50°,∠BAD =15°,求∠AFC 的度数.(2)如图②,将△ABC 纸片沿DE 折叠,使点A 落在四边形BCED 的内部点A ′的位置,∠1、∠2与∠A 之间存在一定的数量关系,请判断它们之间的关系,并说明理由.(3)如图③,将△ABC 纸片沿DE 折叠,使点A 落在四边形BCED 的外部点A′的位置,此时∠1、∠2与∠A 之间也存在一定的数量关系,请直接写出它们之间的关系,无需说明理由.图①BCAEDF(第24题图)图② BCA12A ′DEA ′图③A BCDE12ABCDE(第22题图)F为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,下表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分:已知小张家2012年4月份用水20吨,交水费41元;5月份用水25吨,交水费53.5元.(水费=自来水费+污水处理费)⑴求a、b的值;⑵随着夏天的到来用水量将增加,为了节约开支,小张计划把6月份水费控制在家庭月收入的1%,若小张家月收入为9800元,则小张家6月份最多能用水多少吨?。
华师版初中数学七年级下册期末测试题及答案(3套)

华师版初中数学七年级下册期末测试题(一)一、选择题:本大题共小题,在每小题给出的四个选项中,只有一项是符合题目要求的.下列方程中,解为x=的是()A x=B x﹣=C x﹣=D x-=不等式x£在数轴上表示正确的是()A B C D小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状可以是()A正五边形B正六边形C正八边形D正十边形下列图形分别是等边三角形、正方形、正五边形、等腰直角三角形,其中既是轴对称又是中心对称图形的是()A. B.C D.一个三角形的两边长分别是和,则它的第三边长可能是()A B C D下列不等式组中,无解的是()Axx<ìí<-îBxx<ìí>-îCxx>ìí>-îDxx>ìí<-î若xy=-ìí=î是关于x,y的二元一次方程k=x y的一个解,则k的值()A B C D明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注:明代时斤=两,故有“半斤八两”这个成语).设总共有x两银子,根据题意所列方程正确的是()A x﹣=x﹣B x x+-=C x=x Dx x-+=如右图,五边形A B C D E的一个内角∠A D,则∠∠∠∠等于A DB DCD D D若关于x,y的二元一次方程组a xb ya xb y+=-ìí-=î的解为xy=-ìí=î则方程组a xb ya xb y+=-ìí-=î的解为()Axy=-ìí=îBxy=-ìí=îCxyì=ïïíï=ïîDxyì=-ïïíï=ïî二、填空题:本大题共个小题已知a>b,则﹣a___﹣b(填“>”、“<”或“=”号).由x y=,得到用x表示y的式子为y=________.为建设书香校园,某中学的图书馆藏书量增加后达到万册,则该校图书馆原来图书有_____万册.如图,A B C E D C△≌△,∠C=D,点D在线段A C上,点E在线段C B延长线上,则∠∠E=_____D.如图,A B C沿着射线B C的方向平移到D E F的位置,若点E是B C的中点,B F=c m,则平移的距离为___c m.如图,在A B C中,点D在B C边上,∠B A C=D,∠A B C=D,射线D C绕点D逆时针旋转一定角度α,交A C于点E,∠A B C的平分线与∠A D E的平分线交于点P.下列结论:①∠C=D;②∠P=∠B A D;③α=∠P﹣∠B A D;④若∠A D E=∠A E D,则∠B A D=α.其中正确的是______.(写出所有正确结论的序号)三、解答题:本大题共个小题,解答应写出文字说明、证明过程或演算步骤.解方程组:x yx y+=ìí+=î.解不等式组:xx x->-ìï+-í-£ïî.若代数式x﹣与x﹣的值互为相反数,求x的值.作图:在如图所示的方格纸中,每个小方格都是边长为个单位的正方形.按要求画出下列图形:()将△A B C向右平移个单位得到△A′B′C′;()将△A′B′C′绕点A′顺时针旋转D得到△A′D E;()连结E C′,则△A′E C′是三角形.如图,在A B C中,∠A=D,∠A B C=D.()求∠C的度数;()若B D是A C边上的高,D E∥B C交A B于点E,求∠B D E的度数.如图,在四边形A B C D中,∠D=D,E是B C边上一点,E F⊥A E,交C D于点F.()若∠E A D=D,求∠D F E的度数;()若∠A E B=∠C E F,A E平分∠B A D,试说明:∠B=∠C.红星商场购进A,B两种型号空调,A型空调每台进价为m元,B型空调每台进价为n元,月份购进台A型空调和台B型空调共元;月份购进台A型空调和台B型空调共元.()求m,n的值;()月份该商场计划购进这两种型号空调共元,其中B型空调的数量不少于台,试问有哪几种进货方案?已知x,y同时满足x y=﹣a,x﹣y=a.()当a=时,求x﹣y的值;()试说明对于任意给定的数a,x y的值始终不变;()若y>﹣m,x﹣6m,且x只能取两个整数,求m的取值范围.阅读理解:如图,在A B C 中,D 是B C 边上一点,且B D m D C n=,试说明A B D A C D S m S n =△△.解:过点A 作B C 边上的高A H ,∵A B D S B D A H =×△,A C D S D C A H =×△,∴A B D A C D B D A HS B DS C D D C A H×==×△△,又∵B D m D C n=,∴A B D A C D Sm S n =△△.根据以上结论解决下列问题:如图,在A B C 中,D 是A B 边上一点,且C D ⊥A B ,将A C D 沿直线A C 翻折得到A C E ,点D 的对应点为E ,A E ,B C 的延长线交于点F ,A B =,A F =.()若C D =,求A C F 的面积;()设△A B F 的面积为m ,点P ,M 分别在线段A C ,A F 上.①求P F P M 的最小值(用含m 的代数式表示);②已知A M M F =,当P F P M 取得最小值时,求四边形P C F M 的面积(用含m 的代数式表示).参考答案一、选择题:C D B B C:D A D B D二、填空题<﹣x ①③④三、解答题x y x y +=ìí+=î①②,①﹣②,得y =,把y =代入②,得x =,解得x =﹣,故方程组的解为:x y =-ìí=î.xx x ->-ìïí+--£ïî①②,解不等式①,得x >﹣,解不等式②,得x 5,故不等式组的解集为:﹣<x 5.根据题意得:x ﹣x ﹣=,移项合并得:x =,解得:x =.()如图,将A 、B 、C 三点向右平移个单位,得到A ′、B ′、C ′,连接A ′、B ′、C ′,△A ′B ′C ′为所作;()如图,将△A′B′C′绕点A′顺时针旋转D得到△A′D E,△A′D E为所作;()连结E C′,如图,∵△A′B′C′绕点A′顺时针旋转D得到△A′D E,∴A′E=A′C′,∠E A′C′=D,∴△A′E C′是等腰直角三角形.故答案为:等腰直角()∵∠A∠A B C∠C=D,∴∠C=D﹣D﹣D=D.()∵B D⊥A C,∴∠B D C=D,∴∠D B C=D﹣∠C=D,∵D E∥B C,∴∠B D E=∠C B D=D.()解:∵E F⊥A E,∴∠A E F=°,四边形A E F D的内角和是°,∵∠D=°,∠E A D=°,∴∠D F E=°﹣∠D﹣∠E A D﹣∠A E F=°;()证明:∵四边形A E F D的内角和是°,∠A E F=°,∠D=°,∴∠E A D∠D F E=°,∵∠D F E∠C F E=°,∴∠E A D=∠C F E,∵A E平分∠B A D,∴∠B A E=∠E A D,∴∠B A E=∠C F E,∵∠B∠B A E∠A E B=°,∠C∠C F E∠C E F=°,∠A E B=∠C E F,∴∠B=∠C.()依题意得:m nm n+=ìí+=î,解得:mn=ìí=î.答:m的值为,n的值为.()设购进B型空调x台,则购进A型空调x-=(﹣x)台,依题意得:xx³ìïí->ïî,解得:5x<.又∵x,(﹣x)均为整数,∴x为的倍数,∴x可以取,,,∴该商场共有种进货方案,方案:购进A型空调台,B型空调台;方案:购进A型空调台,B型空调台;方案:购进A型空调台,B型空调台.()∵x,y同时满足x y=﹣a,x﹣y=a.∴两式相加得:x﹣y=+a,∴x﹣y=+a,当a=时,x﹣y的值为;()若x y=﹣a①,x﹣y=a②.则①’②得到:x y=,∴x y=,∴不论a取什么实数,x y的值始终不变.()∵x y=,∴y=﹣x,∵y>﹣m,x﹣6m,∴x mx m->-ìí->î整理得x mmx+ìï+í³ïî<,∵x只能取两个整数,故令整数的值为n,n,有:n﹣<m+5n,n<m5n.故n m nn m n-£ìí-£-î<<,∴n﹣<n﹣且n﹣<n,∴<n<,∴n=,∴mm£ìí£î<<,∴<m5.()∵C D⊥A B,∴∠A D C=D,由翻折得,C E=C D=,∠A E C=∠A D C=D,∴C E⊥A F,∵A F=,∴S△A C F=A F•C E=’’=.()①如图,作M N⊥A C于点O,交A B于点N,连接F N、P N ,,由翻折得,∠O A M=∠O A N,∵A O =A O ,∠A O M =∠A O N =D ,∴△A O M ≌△A O N (A S A ),∴O M =O N ,A M =A N ,∴A C 垂直平分M N ,∴P M =P N ,∴P F P M =P F P N 6F N ,∴当点P 落在F N 上且F N ⊥A B 时,P F P M 的值最小,为此时F N 的长;如图,F N ⊥A B 于点N ,交A C 于点P ,P M ⊥A F,由S △A B F =A B •F N =m ,得’F N =m ,解得,F N =m ,此时P F P M =F N =m ,∴P F P M 的最小值为m .②如图,当P F P M 取最小值时,F N ⊥A B 于点N ,交A C 于点P ,P M ⊥A F,设C D =C E =a ,P M =P N =x ,∵A B =,A F =,∴A B C A F Ca S Sa´==´,∴S △A F C =S △A B F =m ;∵A M M F =,∴A M =A F =’=,∴A N =A M =,∴B N ===,∴A F NB F NS S==,∴S △A F N =S △A B F =m ,由S △A P M =’x ,S △A P N =’x ,得S △A P M =S △A P N ,设S △A P M =S △A P N =n ,∵A P M F P MS A M SM F ==,∴S △F P M =n ,由S △A P N S △A P M S △F P M =S △A F N =m ,得n n n =m ,∴n =m ,∴S △A P M =n =m ,∴S 四边形P C F M =m m =m .华师版初中数学七年级下册期末测试题(二)一、选择题(每小题只有一个正确答案,请将你所选择的答案所对应的序号填入下面答题表内.本大题共个小题,每小题分,共分)下列方程中,是一元一次方程的是()A x +B a b +=C x x-=D x -=下列交通标志中,既是轴对称图形,又是中心对称图形的是()A B C D 若方程(a )x y 是二元一次方程,则a 必须满足()A a ¹B a ¹-C a =D a ¹语句“x 的与x 的和不超过”可以表示为()A xx +£B xx +³C x £+D xx +=已知三条线段长分别为c m 、c m 、a ,若这三条线段首尾顺次联结能围成一个三角形,那么a 的取值可以是()A c mB c mC c mD c m一份数学试卷共道选择题,每道题都给出了个答案,其中只有一个正确选项,每道题选对得分,不选或错选倒扣分,已知小丽得了分,设小丽做对了x 道题,则下列所列方程正确的是.()A x x --=B x x +-=C x x+-=D x x-+=已知x y x y +=ìí+=î,则x y +等于()AB C D 已知实数a ,b 满足a +>b +,则下列选项错误的为()A a >bB a +>b +C ﹣a <﹣bD a >b《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文为:现有一些人共同购买一个物品,每人出元,还盈余元;每人出元,还差元,问共有多少人?这个物品的价格是多少?设共同购买物品的有x 人,该物品的价格为y 元,则根据题意,列出的方程组为()Ax yx y-=ìí-=-îBx yx y-=ìí-=îCy xy x-=ìí-=îDy xy x-=-ìí-=-î如图,已知△A B C≌△C D E,其中A B=C D,那么下列结论中,不正确的是()A A C=C E B∠B A C=∠EC DC∠A C B=∠E C D D∠B=∠D小明要从甲地到乙地,两地相距千米.已知他步行的平均速度为米分,跑步的平均速度为米分,若他要在不超过分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A x(﹣x)6B x(﹣x)5C x(﹣x)6D x(﹣x)5如图,∠A B C=∠A C B,B D、C D分别平分△A B C的内角∠A B C、外角∠A C P,B E平分外角∠M B C 交D C的延长线于点E.以下结论:①∠B D E=∠B A C;②D B⊥B E;③∠B D C+∠A B C=D;④∠B A C +∠B E C=D.其中正确的结论有()A个B个C个D个二、填空题(本大题共个小题,每小题分,共分)若单项式x m﹣y与单项式x y n是同类项,则m﹣n=___.已知xy=ìí=î是关于x,y的二元一次方程m x y+=-的一个解,则m的值为__________.内角和为°的多边形是__________边形.大桥钢架、索道支架、人字梁等为了坚固,都采用三角形结构,这是根据____.若一个正多边形的每个外角都等于D,则用这种多边形能铺满地面吗?(填“能”或“不能”)答:________.关于x的不等式组x b ax a b-ìí-î><的解集为﹣<x<,则a b=___.三、解答题(本大题共个小题,共分)解方程:x x---=-.解方程组:x y x y-=ìí+=î解不等式组:xx x-£ìï-íïî<,把它的解集在数轴上表示出来,并求出它的所有整数解的和.按下列要求在网格中作图:()将图①中的图形先向右平移格,再向上平移格,画出两次平移后的图形;()将图②中的图形绕点O旋转D,画出旋转后的图形;()画出图③关于直线A B的轴对称图形.列一元一次方程解应用题:随着天气寒冷,为预防新冠病毒卷土重来,某社区组织志愿者到各个街道进行“少出门,少聚集”的安全知识宣传.原计划在甲街道安排个志愿者,在乙街道安排个志愿者,但到现场后发现任务较重,决定增派名志愿者去支援两个街道,增派后甲街道的志愿者人数是乙街道志愿者人数的倍,请问新增派的志愿者中有多少名去支援甲街道?如图,A D为△A B C的中线,B E为△A B D的中线,过点E作E F⊥B C,垂足为点F.()∠A B C=D,∠E B D=D,∠B A D=D,求∠B E D的度数;()若△A B C的面积为,E F=,求C D.某商店需要购进甲、乙两种商品共件其进价和售价如表:(注:获利售价进价)()若商店计划销售完这批商品后能获利元,问甲、乙两种商品应分别购进多少件?()若商店计划投入资金少于元,且销售完这批商品后获利多于元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案已知A B∥C D,点E、F分别在直线A B、C D上,P F交A B于点G.()如图,直接写出∠P、∠P E B与∠P F D之间的数量关系:;()如图,E Q、F Q分别为∠P E B与∠P F D的平分线,且交于点Q,试说明∠P=∠Q;()如图,若∠Q E B=∠P E B,∠Q F D=∠P F D,()中的结论还成立吗?若成立,请说明理由;若不成立,请求出∠P与∠Q的数量关系;()在()的条件下,若∠C F P=D,当点E在A、B之间运动时,是否存在P E∥F Q?若存在,请求出∠Q的度数;若不存在,请说明理由.参考答案一、选择题:D D A A CA B D A CA D二、填空题七三角形具有稳定性不能三、解答题去分母,得:(x ﹣)﹣(x ﹣)﹣,去括号:x ﹣﹣x ﹣,移项、合并,得:﹣x ﹣,解得:x ,∴原方程的解为x .x y x y -=ìí+=î①②由①得:x y =+③把③代入②得:()y y ++=y \=-y \=-把y =-代入③得:x =所以方程组的解是:x y =ìí=-î.不等式组x x x -£ìïí-ïî①<②,解①得:x ≤,解②得:x >,∴不等式组的解集为<x ≤,解集表示在数轴上为:它的整数解为和,所有整数解的和为.()如图①即为两次平移后的图形;()如图②即为旋转后的图形;()如图③即为关于直线A B的轴对称图形.设新增派的志愿者中有x 名去支援甲街道,则有(x 名去支援乙街道.根据题意可列方程:x x+=´+-,解得:x =.故新增派的志愿者中有名去支援甲街道.()∵∠A B C =D ,∠B A D =D ,∠A B C ∠B A D ∠A D B =D ,∴∠A D B D ﹣D ﹣D D ,∵∠E B D ∠A D B ∠B E D °,∠E B D D ,∴∠B E D D ﹣D ﹣D D ;()∵A D 为△A B C 的中线,B E 为△A B D 的中线,△A B C 的面积为,∴A B DS=´=,B D ES =,B D C D ,∵E F ⊥B C ,E F ,∴B D E S B D =´×,解得:B D ,即C D .()设甲种商品应购进x 件,乙种商品应购进y 件根据题意得:x y x y +=ìí+=î,解得:x y=ìí=î答:甲种商品购进件,乙种商品购进件;()设甲种商品购进a 件,则乙种商品购进()a -件根据题意得:a a a a +-<ìí+->î解不等式组,得:a <<∵a 为非负整数,∴a 取,,∴a -相应取,,方案一:甲种商品购进件,乙种商品购进件方案二:甲种商品购进件,乙种商品购进件方案三:甲种商品购进件,乙种商品购进件答:有三种购货方案,其中获利最大的是方案一故答案为()甲种商品购进件,乙种商品购进件()有三种购货方案,见解析,其中获利最大的是方案一()如图,∵A B ∥C D ,∴∠P F D ∠A G F ,∵∠A G F ∠P ∠P E B ,∴∠P ∠P E B ∠P F D ;()如图,∵A B ∥C D ,∴∠Q F D ∠A K F ,∵∠A K F ∠Q ∠Q E B ,∴∠Q ∠Q E B ∠Q F D ,∵E Q 、F Q 分别为∠P E B 与∠P F D 的平分线,∴∠Q E B =∠P E B ,∠Q F D =∠P F D∴∠Q∠P E B∠P F D,即∠Q∠P E B∠P F D,由()知,∠P∠P E B∠P F D,∴∠P∠Q;()()中的结论不成立,∠P∠Q,理由为:由()中知,∠Q∠Q E B∠Q F D,∵∠Q E B=∠P E B,∠Q F D=∠P F D,∴∠Q∠P E B∠P F D,即∠Q∠P E B∠P F D,由()知∠P∠P E B∠P F D,∴∠P∠Q;()存在P E F Q,此时∠P∠P F Q,∵∠C F P D,∴∠P F D D﹣∠C F P D﹣D D,∵∠D F Q=∠P F D,∴∠D F Q’D D,∴∠P F Q∠P F D﹣∠D F Q D﹣D°,∴∠P D,由()知∠P∠Q,∴∠Q’D D.华师版初中数学七年级下册期末测试题(三)一、选择题(每小题分,共分)若x y =ìí=î是方程a x y -=的一个解,则a 的值是()A B C -D -我国已经进入G 时代,自动驾驶技术和远程外科手术技术得以进一步发展.下列通信公司标志中,是中心对称图形,但不是轴对称图形的是()A BC D 若a >b ,则下列不等式变形不正确的是()A ﹣a <﹣b B a m <b mC a ﹣>b ﹣D a >b 方程x y =有几组正整数解?()A 组B 组C 组D 组《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《磁不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四,问人数、物价各几何?”译文:“今有人合伙购物,每人出钱,会多出钱;每人出钱,又差钱,问人数,物价各多少?”设人数为x 人,物价为y 钱,根据题意,下面所列方程组正确的是()A.xy x y +=ìí-=î B.xy x y -=ìí+=î C.xy x y +=ìí+=î D.xy x y-=ìí-=î如图,将△A O B绕点O按逆时针方向旋转D后得到△C O D,若∠A O B=D,则∠A O D的度数是()A DB DCD D D若关于x的不等式x﹣a5只有个正整数解,则a的取值范围是()A<a<B5a<C5a5D<a5多边形的边数由增加到时,其外角和的度数()A增加B减少C不变D不能确定商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.种B.种C.种D.种如图,△A B C的面积为.第一次操作:分别延长A B,B C,C A至点A,B,C,使A B=A B,B C=B C,C A=C A,顺次连接A,B,C,得到△A B C.第二次操作:分别延长A B,B C,C A至点A,B,C;使A B=A B,B C=B C,C A=C A,顺次连接A,B,C,得到△A B C,…按此规律,要使得到的三角形的面积超过,最少经过()次操作.A. B. C. D.二、填空题(每小题分,共分)三角形三边长分别为,a,,则a的取值范围是_____.如果一个多边形的内角和等于它的外角和的倍,那么这个多边形是___边形.如图,将透明直尺叠放在正五边形之上,若正五边形有两个顶点在直尺的边上,且有一边与直尺的边垂直.则a Ð=_______°.规定一种新运算:a b =a ﹣b ,若[(﹣x )]=,则x 的值为_____.在一个三角形中,如果一个角是另一个角的倍,这样的三角形我们称之为“灵动三角形”.例如,三个内角分别为D ,D ,D 的三角形是“灵动三角形”.如图,∠M O N =D ,在射线O M 上找一点A ,过点A 作A B ⊥O M 交O N 于点B ,以A 为端点作射线A D ,交线段O B 于点C (规定D <∠O A C <D ).当△A B C 为“灵动三角形”时,则∠O A C的度数为____________.三、解答题(共个小题,满分分)解不等式组x x x x -£-ìí>-î①②,请按照下列步骤完成解答:()解不等式①,得;()解不等式②,得;()把不等式①和②的解集在数轴上表示出来;()原不等式组的解集为.如图,已知△A B C≌△D E F,∠A=D,∠B=D,B F=.求∠D F E的度数和E C的长.如图,在正方形网格中,△A B C是格点三角形.()画出△A B C,使得△A B C和△A B C关于直线l对称;()过点C画线段C D,使得C D A B,且C D=A B;()直接写出以A、B、C、D为顶点的四边形的面积为.整式m x n的值随x的取值不同而不同,下表是当x取不同值时对应的整式的值:x﹣﹣m x n﹣﹣﹣求关于x的方程﹣m x n=的解.已知关于x、y的二元一次方程组x y mx y m-=ìí+=-+î的解满足x y>﹣,求m的取值范围.如图,在A B C 中,A D 是角平分线,E 为边A B 上一点,连接D E ,E A D E D A Ð=Ð,过点E 作E F B C ^,垂足为F .()D E 与A C 平行吗?请说明理由;()若B A C Ð=°,B Ð=°,求D E F Ð的度数.为进一步提升摩托车、电动自行车骑乘人员和汽车驾乘人员安全防护水平,公安部交通管理局部署在全国开展“一盔一带”安全守护行动.某商店销售A ,B 两种头盔,批发价和零售价格如表所示,请解答下列问题.名称A 种头盔B 种头盔批发价(元个)零售价(元个)()第一次,该商店批发A ,B 两种头盔共个,用去元钱,求A ,B 两种头盔各批发了多少个?()第二次,该商店用元钱仍然批发这两种头盔(批发价和零售价不变),要想将第二次批发的两种头盔全部售完后,所获利润不低于元,则该超市第二次至少批发A 种头盔多少个?如图,将一副直角三角板放在同一条直线A B上,其中∠O N M=D,∠O C D=D()观察猜想将图中的三角尺O C D沿A B的方向平移至图②的位置,使得点O与点N重合,C D与M N相交于点E,则∠C E N=度.()操作探究将图中的三角尺O C D绕点O按顺时针方向旋转,使一边O D在∠M O N的内部,如图,且O D恰好平分∠M O N,C D与N M相交于点E,求∠C E N的度数;()深化拓展将图中的三角尺O C D绕点O按沿顺时针方向旋转一周,在旋转的过程中,若边C D恰好与边M N平行,请你求出此时旋转的角度.参考答案一、选择题:B C B B B:B B C C C二、填空题<a<六DD或D三、解答题-£-()解不等式①,x x-£-去括号:x x移项,合并同类项:x£得:x5;>-()解不等式②,x x移项,合并同类项得:x>﹣得:x>﹣;()把不等式①和②的解集在数轴上表示出来;()原不等式组的解集为﹣<x5.故答案为:x5,x>﹣,﹣<x5.∵∠A=D,∠B=D,∴∠A C B=D﹣∠A﹣∠B=D﹣D﹣D=D,∵△A B C≌△D E F,∴∠D F E=∠A C B=D,E F=B C,∴E F﹣C F=B C﹣C F,即E C=B F=.()如图,△A B C为所作;()如图,C D或C D′为所作;()以A、B、C、D为顶点的四边形的面积=´-´´-´´-´´-´´=.故答案为.由题意可得:当x=时,m x n=﹣,∴m’n=﹣,解得:n=﹣,当x=时,m x n=,∴m’﹣=,解得:m=,∴关于x的方程﹣m x n=为﹣x﹣=,解得:x=﹣.方程组x y mx y m-=ìí+=-+î①②,①②得:x=m,解得:x=m,把x=m代入①得:m﹣y=m,解得:y=﹣m,∴方程组的解为x my m=+ìí=-+î,代入x y>﹣得:﹣m>﹣,解得:m<.()D E A C,理由如下:A D 是B AC Ð的角平分线B A DC A D\Ð=ÐE A D E D AÐ=Ð E D A C A D\Ð=ÐD E A C \;(2) B A C Ð=°,B Ð=°C B A C B \Ð=°-Ð-Ð=°D E A CE DF C \Ð=Ð=°E F B C^ D E F E D F \Ð=°-Ð=°.()设第一次A 种头盔批发了x 个,B 种头盔批发了y 个.根据题意,得x y x y +ìí+î==,解得:x yìíî==,答:第一次A 种头盔批发了个,B 种头盔批发了个.()设第二次批发A 种头盔a 个,则批发B 种头盔a -个.由题意,得()()a a --+-´³,解得:a ³,答:第二次该商店至少批发个A 种头盔.()∵∠E C N =D ,∠E N C =D ,∴∠C E N =o o D .故答案为D .()∵O D 平分∠M O N ,∴∠D O N =∠M P N =’D =D ,∴∠D O N =∠D =D ,∴C D ∥A B ,∴∠C E N =D ﹣∠M N O =D ﹣D =D ;()如图,C D在A B上方时,设O M与C D相交于F,∵C D∥M N,∴∠O F D=∠M=D,在△O D F中,∠M O D=D﹣∠D﹣∠O F D,=D﹣D﹣D,=D,当C D在A B的下方时,设直线O M与C D相交于F,∵C D∥M N,∴∠D F O=∠M=D,在△D O F中,∠D O F=D﹣∠D﹣∠D F O=D﹣D﹣D=D,∴旋转角为D D=D,综上所述,旋转的角度为D或D时,边C D恰好与边M N平行.故答案为o或o.。
2015-2016学年第二学期期末考试(初一数学)试题

华南师大附中2015-2016学年度第二学期期末考试试题初一数学本试卷共100分,考试时间120分钟一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中, 只有一项是符合题目要求的,请将正确答案的编号用铅笔涂在答题卡上...................1.在实数..,,⋅⋅⋅3141591010010001.∙∙421,,π227中,是无理数的有( *** )A . 1个B .2个C .3个D .4个 2.已知071=++-b a ,则=-3b a ( *** )A .36B .36- C .2 D .2-3.已知点P (a +1,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是( *** )A .-1<a <32B .a <-1C .-32 <a <1D .a >324.若k x x x ---13223有一个因式为2x + 1,则k 的值为( *** )A .-1B .1C .-6D .65.设b>a ,将一次函数y=bx+a 与y=ax+b 的图象画在同一平面直角坐标系内,•则有一组a ,b 的取值,使得下列4个图中的一个为正确的是( *** )6.如图所示,已知△ABC 中,AB=6,AC=9,AD⊥BC 于D ,M 为AD 上任一点,则MC 2-MB 2等于( *** )A .49B .35C .45D .无法计算7.如图所示,ABC ∆是等边三角形,,AQ PQ PR AB R PS AS S =⊥⊥于点,于点,PR PS =,则四个结论:①P A ∠点在的平分线上;②AS AR =;③//QP AR ;④BRP ∆≌QSP ∆。
正确的结论是( *** )A. ①②③④B. 只有①②C. 只有②③D. 只有①③8.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与快车行驶时间t (小时)之间的函数图象是( *** )A .B .C .D .9.如图,在四边形ABCD 中,090=∠BAD ,32==BC AB ,6=AC ,3=AD ,则CD 的长为( *** ) A .4B .2C .23D .3310.如右图,在凸四边形ABCD 中,AC 平分BAD ∠,过点C 作AB CE ⊥于E ,且=AE 2AD AB +,则下列关系正确的是( *** )A .DCA ABC ∠=∠B .0180=∠+∠ADC ABC C .0150=∠+∠ADC ABC D . 090=∠+∠CAB ABC二、填空题:本大题共10小题,每小题2分,共20分.请把答案填在答题卡相应题号上.............. 11.111++-=x x y 自变量x 的取值范围是 ▲ . 12.计算:=----322736)21( ▲ .13.无论k 取何值,一次函数2--=k kx y 的图像恒过定点 ▲ . 14.已知一次函数b ax y +=的图象如图所示,则关于x 的不等式0<+b ax 的解集为 ▲ .15.将正比例函数x y 2-=的图像向右平移1个单位,再向上平移2个单位,得到的函数解析式是 ▲ .16.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 ▲ .C EBA17.正数c b a ,,满足3=++=++=++a c ca c b bc b a ab ,则=+++)1)(1)(1(c b a ▲ .18.已知a ,b ,c 是直角三角形的三条边,且a <b <c ,斜边上的高为h ,则下列说法中正确的是 ▲ .(只填序号) ①a 2b 2+h 4=(a 2+b 2+1)h 2; ②b 4+c 2h 2=b 2c 2; ③以为边长一定能构成三角形;④直角三角形的面积的最大值是.19.如图,以OA 为斜边作等腰直角三角形OAB ,再以OB 为斜边在OAB ∆外侧作等腰直角三角形OBC ,如此继续,得到8个等腰直角三角形,则图中OAB ∆与OHI ∆的面积的比值是 ▲ .20.如图,△ABC 是边长为10的正三角形,△BDC 是顶角为120°的等腰三角形,以D 为顶点作一个60°的∠MDN ,点M,N 分别在AB,AC 上,则△AMN 的周长是 ▲ .三、解答题(本大题共有8小题,共60分,解答应写出文字说明或演算步骤.) 21.因式分解:(每小题2分,满分8分) (1)32222)()(x a a a x a-+-(2)16383222++-+)()(m m m m(3)x y x y +--2229(4)65223--+x x x22.(本小题满分6分)如图,在方格纸上建立平面直角坐标系,线段AB 的两个端点都在格点上,直线MN 经过坐标原点.(1)求线段AB 所在直线对应的函数关系式; (2)利用尺规作出线段AB 关于直线MN 的对称图形''B A(保留作图痕迹,不写作法). 23.(本小题满分6分)如图,△BAD 和△BDC 都是等边三角形,且边长为2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由。
华师大版七年级数学第二学期期末学业检测试卷及答案

2015-2016学年华师大版七年级数学第二学期期末学业检测试卷及答案2015-2016学年度第二学期七年级期末学业检测数学试题一、选择题:(每小题2分,共14分) 1. 下列方程的根是.的是( ).A.2. 一个不等式组的解集在数轴上表示如图1,则这个不等式组可能是( ).,,< 2> 2-3 -2 -1,<,>0 1(图1)2 33. 在下列学习用具(刻度上的数字可忽略不计)中,不是轴对称图形的是( ). ..A.B.D.C.4. 如图2,若是由经过平移后得到的,则平移的距离是( ).A.线段BC的长度 B.线段BE的长度 C.线段EC的长度D.线段EF的长度 5. 如图3,在正方形网格中,将绕点A旋转后得到(图2),则在下列旋转方式中,符合题意的是( ).A. 顺时针旋转90° C. 顺时针旋转45° 6. 已知B. 逆时针旋转90°D. 逆时针旋转45°(图3),则等于( ).8C. 3D. 1 3A. 2B.7. 若满足下列某个条件,则它不是直角三角形的是( ). .......二、填空题:(每小题3分,共30分)8. 一元一次方程的解是9. 若,则(用含x的式子表示).10. 不等式组的解集是(图4) 11. 如图4所示,该图形是_____对称图形.12. 正六形的每个外角是13. 用同一种规格的正多边形地砖铺满地面,这种地砖的形状可能是.(写出一种即可)14. 把一块含的三角板与一把直尺按如图5方式放置,则度.三元一次方程组的解是___________.16. 若等腰三角形的一个外角是,则该等腰三角形的顶角是_________度.(图5)18.(6分)解方程:19.(6分)解方程组:20.(6分)解不等式>10. ()<分)解不等式组22. (6分) 如图7,点D是的边BC上的一点,,试求的度数.D (图7) C。
2015-2016学年广州市华师附中七下期末数学试卷

2016年广东广州华师附中七年级下学期人教版数学期末考试试卷一、选择题(共10小题;共50分)1. 下面四个图形中,∠1与∠2是邻补角的是 A. B.C. D.2. 下列说法中正确的有 个.①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A. 1B. 2C. 3D. 43. 在下列图形中,∠1与∠2不是同旁内角的是 A. B.C. D.4. 三条直线a,b,c,若a∥c,b∥c,则a与b的位置关系是 A. a⊥bB. a∥bC. a⊥b或a∥bD. 无法确定5. 如图,△ABC经过怎样的平移得到△DEF A. 把△ABC向左平移4个单位,再向下平移2个单位B. 把△ABC向右平移4个单位,再向下平移2个单位C. 把△ABC向右平移4个单位,再向上平移2个单位D. 把△ABC向左平移4个单位,再向上平移2个单位6. 下列说法不正确的是 A. −2是2的平方根B. 2是2的平方根C. 2的平方根是2D. 2的算术平方根是27. 若∣x+2∣+=0,则xy的值为 A. −8B. −6C. 5D. 68. 的立方根是 A. 8B. ±2C. 4D. 29. 估算的值是 A. 在2和3之间B. 在3和4之间C. 在4和5之间D. 在5和6之间10. 下列计算正确的是 A. 3+3=6B. 3−3=0C. ⋅=9D. −32=−3二、填空题(共6小题;共30分)11. 如图,已知AC⊥BC,CD⊥AB,AC=3,BC=4,则点B到直线AC的距离等于;点C到直线AB的距离是线段的长度.12. 把命题改成“如果⋯,那么⋯”的形式:邻补角相等..13. 如图,想在河堤两岸搭建一座桥,图中搭建方式中,最短的是PB,理由是.14. 如果2a−18=0,则a的算术平方根是;∣∣1−3∣∣=.15. 已知2x−y=−3,用含x的式子表示y,则.16. 若不等式m−2x>m−2的解集是x<1,则m的取值范围是.三、解答题(共9小题;共117分)17. 3μ+2t=7, 6μ−2t=11.18. 解方程:2x+y3=2x−y5=1.19. 解不等式:5x+15>4x−1.20. 解不等式:x−17<2x+53.21. 已知代数式x2+px+q,当x=2时,它的值为3,当x=−3时,它的值是4,求p−q的值.22. 如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面,如果正方体相对两个面上的代数式的值相等,求x,y的值.23. x取哪些整数值时,不等式5x+2>3x−1与12x−1≤7−32x都成立?24. 某中学计划在学校公共场所安装温馨提示牌和垃圾箱.已知安装5个温馨提示牌和6个垃圾箱需要730元,安装7个温馨提示牌和12个垃圾箱需要1310元.那么安装8个温馨提示牌和15个垃圾箱共需要多少钱?25. 已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90∘.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.答案第一部分 1. D 2. B 3. D 4. B 5. C 6. C 7. B8. D9. C10. B第二部分 11. 4;CD12. 如果两个角是邻补角,那么这两个角相等 13. 垂线段最短 14. 3; 3−1 15. y =2x +3 16. m <2 第三部分 17.3μ+2t =7, ⋯⋯①6μ−2t =11. ⋯⋯②①+② 得:9μ=18.即μ=2.把 μ=2 代入 ① 得:t =12.则方程组的解为μ=2,t =1.18. 由原方程可得2x +y =3, ⋯⋯①2x −y =5, ⋯⋯②①+②,得:4x =8,解得:x =2,①−②,得:2y =−2,解得:y =−1,∴解为:x=2, y=−1.19. 移项,得:5x−4x>−1−15,合并同类项,得:x>−16.∴不等式的解为x>−16.20. 去分母得,21x−3<42x+35,移项得,21x−42x<35+3,合并同类项得,−21x<38,x的系数化为1得,x>−38 .21. 由题意可知:当x=2时,它的值为3,∴4+2p+q=3,即2p+q=−1 .当x=−3时,它的值是4,∴9−3p+q=4,即−3p+q=−5 .联立2p+q=−1,①−3p+q=−5②由①得q=−1−2p ③把③代入②中,得−3p−1−2p=−5 . 解得p=45.把p=45代入③中,得q=−135.∴p−q=175.22. 根据题意,得2x−5=y,5−x=y+1,解方程组,得x=3,y=1.23.5x+2>3x−1, ⋯⋯①1 2x−1≤7−32x, ⋯⋯②解①得x>−5 2 ,解②得x≤4.∴不等式组的解集为−52<x≤4,∴不等式组的整数解为−2,−1,0,1,2,3,4,即x取整数−2,−1,0,1,2,3,4时,不等式5x+2>3x−1与12x−1≤7−32x都成立.24. 设安装一个温馨提示牌需要x元,安装一个垃圾箱需要y元,根据题意可得:5x+6y=730,7x+12y=1310,解得:x=50,y=80,故8×50+15×80=1600(元),答:安装8个温馨提示牌和15个垃圾箱共需要1600元.25. (1)∵BE,DE平分∠ABD,∠BDC,∴∠1=12∠ABD,∠2=12∠BDC;∵∠1+∠2=90∘,∴∠ABD+∠BDC=180∘;∴AB∥CD(同旁内角互补,两直线平行).(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90∘,∴∠BED=∠DEF=90∘;∴∠3+∠FDE=90∘;∴∠2+∠3=90∘.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丁庄中学八年级数学单元测试题第2页共8页12015年春华师大版八年级下册期终测试题一、选择题:(30分)1、下列是二元一次方程的是()A、3x—6=xB、32x y=C、x—y2=0 D、23x y xy-=2、关于x的不等式组321x ax-≥⎧⎨->-⎩的整数解共有5个,则a的取值范围()A、a=—3B、—4<a<—3C、—4≤a<—3D、—4<a≤—33、下列标志中,是旋转对称图形但不是轴对称的有()A 2个B 3个C 4个D 5个4、根据不等式的性质,下列变形正确的是()A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由-12a>2得a<2 D.由2x+1>x得x>15、已知等腰三角形的两边长分別为a、b,且a、b满足2a3b5-++(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或106、为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是().A.⎩⎨⎧=⨯+⨯=-10000%5.0%5.222yxyxB.⎪⎩⎪⎨⎧=+=-10000%5.0%5.222yxyxC.⎩⎨⎧=⨯-⨯=+22%5.0%5.210000yxyxD.⎪⎩⎪⎨⎧=-=+22%5.0%5.210000yxyx7、如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.168、如图,在△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则A DB'∠的度数为()A、40 B.30°C.20°D.10°9、在等腰ABC∆中,AB AC=,中线BD将这个三角形的周长分成15和18两部分,则这个三角形底边的长为()A.9 B.13 C.9或13 D.10或1210、今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有()A.2种B.3种C.4种D.5种二、填空题:(18分)11、服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多元.12、不等式(a-1)x<1-a的解集是x>-1,则a的取值范围是.13、关于x的方程组⎩⎨⎧=+=nmyxmx y-3的解是⎩⎨⎧==11yx,则|m-n|的值是.14、我们知道,无限循环小数都可以转化为分数.例如:将0.3转化为分数时,可设0.3=x,则x=0.3+x,解得x=13,即0.3=13.仿此方法,将0.45化成分数是.15、如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数为°.16、将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1与∠2的度数和为°.三、解答题:17、解下列方程(组):(本题共9分,其中(1)题4分,(2)题5分)A'BD丁庄中学八年级数学单元测试题第1页共8页丁庄中学八年级数学单元测试题 第3页 共8页 丁庄中学八年级数学单元测试题 第4页 共8页 2 (1)2﹣=(2)⎩⎪⎨⎪⎧3x +4z =7,①2x +3y +z =9, ②5x -9y +7z =8. ③18、(6分)在等式b kx y +=(b k ,为常数)中,当1=x 时,2-=y ;当1-=x 时,4=y . (1)求k 、b 的值.(4分)(2)问当1-=y 时,x 的值等于多少? (2分)19、(6分)已知a 是不等于3的常数,解关于x 不等式组,并依据a 的取值情况写出其解集.20、(6分)如图,在△ABC 中,∠B =46°,∠C =54°,AD 平分∠BAC ,交BC 于D ,DE ∥AB ,交AC 于E ,EF 是△ADE 的高.求∠DEF 的度数.21、(8分)如图,点P 关于OA 、OB 的对称点分别为C 、D ,连结CD ,交OA 于M ,交OB于N .(1)若CD 的长为18厘米,求∆PMN 的周长;(4分)(2)若∠AOB=28°,求∠MPN .(4分)22、(7分)在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L ,例如,图中三角形ABC 是格点三角形,其中S=2,N=0,L=6. (1)图中格点多边形DEFGHI 所对应的S= ,N= ,L= .(3分)(2)经探究发现,任意格点多边形的面积S 可表示为S=aN+bL+c ,其中a ,b ,c 为常数,求当N=5,L=14时,S 的值. (4分)(4分) (2)小王每天工作8个小时,每月工作25天.如果小王四月份生产甲种产品a 件(a 为正整数). ①用含a 的代数式表示小王四月份生产乙种产品的件数;(2分)②已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a 的取值范围.(4分)丁庄中学八年级数学单元测试题 第5页 共8页 丁庄中学八年级数学单元测试题 第6页 共8页 3 附答案: 1 2 34 5 6 7 8 9 10 B D ABACBDCB11、120 12、a <1 13、1 14、15、65 16、70三、解答题: 17、(1)解:(1)去分母得:12﹣2(2x +1)=3(1+x ), 去括号得:12﹣4x ﹣2=3+3x , 移项合并得:﹣7x =﹣7,解得:x =1 (2)解:②×3+③,得11x +10z =35,④解由①,④组成的方程组⎩⎪⎨⎪⎧ 3x +4z =7,11x +10z =35.解得⎩⎪⎨⎪⎧x =5,z =-2.⑤ 把⑤代入②,得y =13,所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =13,z =-2.18、(1)k=-3,b=1;(2)x=2319、解:,解①得:x ≤3, 解②得:x <a ,∵实数a 是不等于3的常数,∴当a >3时,不等式组的解集为x ≤3, 当a <3时,不等式组的解集为x <a . 20、解:∵∠B =46°,∠C =54°,∴∠BAC =180°﹣∠B ﹣∠C =180°﹣46°﹣54°=80°, ∵AD 平分∠BAC ,∴∠BAD =∠BAC =×80°=40°,∵DE ∥AB ,∴∠ADE =∠BAD =40°.∵EF 是△ADE 的高 ∴∠DFE=90°,∴∠DEF=180°-∠ADE -∠DFE=180°-40°-90°=50°21、(1)∵点P 关于OA ,OB 的对称点分别为C 、D ,连接CD ,交OA 于M ,交OB 于N , ∴PM=CM ,ND=NP ,∵△PMN 的周长=PN+PM+MN=PN+PM+MN=CD=18cm , ∴△PMN 的周长=18cm .(2)∵点P 与点C 关于OA 对称,且点M 在对称轴OA 上 ∴∠MPC=∠C 同理:∠NPD=∠D如图,设PC 、PD 分别与OA 、OB 交于点E 、F 则∠OEP=∠OFP=90° 在四边形OEPF 中,∠CPD=360°-∠AOB -∠OEP -∠OFP =360°-28°-90°-90° =152°在△PCD 中,∠C+∠D=180°-∠CPD=180°-152°=28° ∴∠MPC+∠NPD=28°∴∠MPN=∠CPD -(∠MPC+∠NPD)=152°-28°=124°.22、解:(1)观察图形,可得S=7,N=3,L=10;(2)不妨设某个格点四边形由四个小正方形组成,此时,S=4,N=1,L=8, ∵格点多边形的面积S=aN+bL+c ,∴结合图中的格点三角形ABC 及格点四边形DEFG 可得丁庄中学八年级数学单元测试题 第7页 共8页 丁庄中学八年级数学单元测试题 第8页 共8页4 ,解得,∴S=N+L ﹣1,将N=5,L=14代入可得S=5+14×﹣1=11.23、解:(1)设生产一件甲种产品需x 分钟,生产一件乙种产品需y 分钟,由题意得:,解这个方程组得:;(2)①∵生产一件甲种产品需15分钟,生产一件乙种产品需20分钟, ∴一小时生产甲产品4件,生产,乙产品3件, 3(25×8﹣)=,②依题意:,1680﹣0.6a≥1500 解得:a≤300.。