八年级(上)数学第一次月考1
八年级数学第一次月考卷01(考试版:八年级上册第十一章~第十二章】人教版-25年初中上学期第一次月考
2024-2025学年八年级数学上学期第一次月考卷01(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版八年级上册第十一章~第十二章。
5.难度系数:0.85。
一、选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列长度的三条线段能组成三角形的是()A.6,2,3B.3,3,3C.4,3,8D.4,3,72.如图,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的()A.全等形B.稳定性C.灵活性D.对称性3.如图,CM是△ABC的中线,AB=10cm,则BM的长为()A.7cm B.6cm C.5cm D.4cm4.画△ABC的BC边上的高AD,下列画法中正确的是()A.B.C.D.5.一个多边形的内角和等于540°,则它的边数为()A.4B.5C.6D.86.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS7.如图,△ABE≌△ACF,若AB=5,AE=2,则EC的长度是( )A.2B.3C.4D.58.如图,若要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充条件()A.∠BAC=∠BAD B.∠C=∠D C.AC=AD D.BC=AD9.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,CD=3,则点D到AB的距离是()A.6B.2C.3D.410.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2的度数为()A.210°B.250°C.270°D.300°11.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去12.如图1,∠DEF=20°,将长方形纸片ABCD沿直线EF折叠成图2,再沿折痕为BF折叠成图3,则∠CFE 的度数为()A.100°B.120°C.140°D.160°二、填空题(本题共6小题,每小题2分,共12分.)13.在Rt△ABC中,∠C=90°,∠A=40°,则∠B= .14.如图,CD是△ABC的高,∠ACB=90°.若∠A=35°,则∠BCD的度数是.15.如图所示的两个三角形全等,则∠1的度数是.16.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.17.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=15°,∠ACP=50°,则∠P=°.18.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1、B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A2023B2023O=.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:|―2|―6×―+(―4)2+8.20.(6分)解不等式组2x+1>x―123x―1≤5,并写出它的所有正整数解.21.(8分)如图,AC和BD相交于点0,OA=OC,OB=OD,求证:DC//AB.22.(8分)如图△ABC中,∠A=40°,∠ABC=∠C.(1)作∠ABC的平分线,交AC于点D(用直尺和圆规按照要求作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求∠BDC的大小.23.(10分)某校学生处为了了解全校1200名学生每天在上学路上所用的时间,随机调查了30名学生,下面是某一天这30名学生上学所用时间(单位:分钟):20,20,30,15,20,25,5,15,20,10,15,35,45,10,20,25,30,20,15,20,20,10,20,5,15,20,20,20,5,15.通过整理和分析数据,得到如下不完全的统计图.根据所给信息,解答下列问题:(1)补全条形统计图;(2)这30名学生上学所用时间的中位数为______ 分钟,众数为______ 分钟;(3)若随机问这30名同学中其中一名学生的时间,最有可能得到的回答是______ 分钟;(4)估计全校学生上学所用时间在20分钟及以下的人数.24.(10分)中央大街工艺品店销售冰墩墩徽章和冰墩墩摆件,若购买4个冰墩墩徽章和2个冰墩墩摆件需要130元,购买3个冰墩墩徽章和5个冰墩墩摆件需要220元.(1)求每个冰墩墩徽章和每个冰墩墩摆件各需要多少钱?(2)若某旅游团计划买冰墩墩徽章和冰墩墩摆件共50个,所用钱数不超过1150元,则该旅游团至少买多少个冰墩墩徽章?25.(12分)如图,已知△ABC中,AC=CB=20cm,AB=16cm,点D为AC的中点.(1)如果点P在线段AB上以6cm/s的速度由A点向B点运动,同时,点Q在线段BC上由点B向C点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△APD与△BQP是否全等?说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△APD与△BQP全等?(2)若点Q以②中的运动速度从点B出发,点P以原来的运动速度从点A同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?26.(12分)如图,在△ABC中,∠BAC=90°,AB=AC,点D为BC的中点.点E是直线AB上的一动点,连接DE,作DF⊥DE交直线AC于点F.(1)如图1,若点E与点A重合时,请你直接写出线段DE与DF的数量关系;(2)如图2,若点E在线段AB上(不与A、B重合)时,请判断线段DE与DF的数量关系并说明理由;(3)若点E在AB的延长线上时,线段DE与DF的数量关系是否仍然满足上面(2)中的结论?请利用图3画图并说明理由.。
人教版八年级上册数学第一次月考试题
AB C DEFO八年级上册第一次月考一.选择题(正确答案唯一,将其标号填入第二张的答题卡中。
每小题3分,共30分)1.在△ABC 和△A ’B ’C ’中, AB=A ’B ’, ∠B=∠B ’, 补充一个条件后仍不一定能 保证△ABC ≌△A ’B ’C ’, 则补充的这个条件是( )A .BC=B ’C ’ B .∠A=∠A ’ C .AC=A ’C ’D .∠C=∠C ’2。
如右图,AB ∥CD ,AD ∥BC,OE=OF ,则图中全等三角形的组数是( )A. 3B. 4C. 5D. 63。
已知下列各条件中,不能作出惟一三角形的是( )A. 两角和一边B. 两边及一角 C 。
两角夹边 D 。
三条边 4.下面4个汽车标志图案中,不是轴对称图形的是( )A B C D5.如右图,要测量河两岸相对两点A ,B 的距离,先在AB 的垂线B F 上 取两点C ,D ,使CD =BC ,再定出B F 的垂线DE ,使A ,C ,E 在 同一条直线上,可以得到⊿EDC ≌⊿ABC ,所以ED =AB ,因此测得 ED 的长就是AB 的长,判定⊿EDC ≌⊿ABC 的理由是( ) A .SAS B .ASA C .SSS D .HL6。
如右图所示,亮亮书上的三角形被墨迹污染了一部分,很快他 就根据所学知识画出一个与书上完全一样的三角形,那么这两个 三角形完全一样的依据是( )A .SSSB 。
SASC .AASD .ASA7.如右图,从下列四个条件:①BC =B ′C , ②AC =A ′C , ③∠A ′CA =∠B ′CB ④AB =A ′B ′中,任取三个为条件, 余下的一个为结论,则最多可以构成正确的结论的个( ) A .1个 B .2个 C .3个 D .4个8. 某地为了发展旅游业,要在三条公路围成的一块平地上修建一个度假村,使度假村到三条公路的距离相等,这个度假村的选址地点共有( )处 A 1 B 2 C 3 D 49。
八年级上学期第一次月考数学模拟试卷(一)(人教版)(含答案)
八年级上学期第一次月考数学模拟试卷(一)(人教版)(满分100分,考试时间100分钟) 一、选择题(每小题3分,共30分)1. 王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?( ) A .0根 B .1根 C .2根 D .3根2. 在下列条件中:①∠A +∠B =∠C ;②∠A :∠B :∠C =1:2:3;③∠A =90°-∠B ;④∠A =∠B =12∠C 中,能确定△ABC 是直角三角形的条件有( )A .1个B .2个C .3个D .4个3. 小明要从长度分别为5 cm ,6 cm ,11 cm ,16 cm 的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒形成的三角形的周长为( ) A .22 cm B .27 cm C .33 cm D .32 cm4. 已知:如图,在△ABC 中,AD 是∠BAC 的平分线,E 为AD 上一点,且EF⊥BC 于点F .若∠C =35°,∠DEF =20°,则∠B 的度数为( ) A .60° B .65° C .75° D .85°F EDC B A 5. 请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB 的依据是( ) A .SSS B .SAS C .ASA D .AASD′O′C A′B′DC B AO 6. 如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交边AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D .若CD =4,AB =15,则△ABD 的面积是( ) A .15 B .30C . 45D .60ABCDM NP7. 将一个多边形截去一角(截去部分为一个三角形)得到一个新多边形的内角和为1 800°,则原多边形的边数是( ) A .11 B .12 C .13 D .以上都是8. 如图,将△ABC 纸片沿DE 折叠,使点A 落在四边形BCDE 外点A′的位置,则下列结论正确的是( ) A . ∠1-∠2=2∠A B .∠1+∠2=2∠A C .∠1-∠2=∠A D .∠1+∠2=∠AA'EDCBA12 9. 如图,在△ABC 中,点D ,E ,F 分别为BC ,AD ,CE 的中点.若S △BCF =2,则△ABC 的面积是( ) A .4 B .6 C .8 D .10FED CBA10. 如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,DH ⊥BC 于H 交BE 于G .下列结论:①BD =CD ;②AD +CF =BD ;③CE =12BF ;④AE =BG .其中正确的有( )A .1个B .2个C .3个D .4个HA BD EFG二、填空题(每小题3分,共15分)11. 一个多边形的内角和是它外角和的4倍,则这个多边形是_________边形. 12. 如图,BP 是△ABC 中∠ABC 的平分线,CP 是△ACB 的外角的平分线,如果∠ABP =20°,∠ACP =50°,则∠A -∠P =_______.50°20°CBAPM13. 如图,在平面直角坐标系中,已知点A (0,4),B (10,0),且∠ACB =90°,CA =CB ,则点C 的坐标为_________.14. 等腰三角形一腰上的高与另一腰的所夹锐角的度数为40°,则这个等腰三角形的顶角的度数是______.15. 如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下五个结论:①AD =BE ;②PQ ∥AE ;③AP =BQ ;④DE =DP ;⑤∠AOB =60°.恒成立的有_____________(把你认为正确的序号都填上).QPO ED C BA三、解答题(本大题共8小题,共55分) 16. (6分)若一个等腰三角形的周长为50 cm ,一边长为12 cm ,求另两边的长.17. (6分)小芳同学绘制了一幅学校地图,地图上点A ,B ,C 分别代表教室、操场、餐厅所在位置,不巧的是点C 被墨污染了(如图),但知道 ∠BAC =α,∠ABC =β,请用尺规帮她在地图上确定餐厅C 的具体位置.(不写作法,保留作图痕迹)Cαβ18. (6分)如图,△ABC 中,∠B =34°,∠ACB =104°,AD 是BC 边上的高,AE是∠BAC 的平分线,求∠DAE 的度数.ED C B A19. (6分)如图,在△ABE 中,AB =AE ,AD =AC ,∠BAD =∠EAC ,BC ,DE 交于点O .在不添加字母和辅助线的情况下,请你在图中找出一对全等三角形并写出证明它们全等的过程.OEDCBA20. (7分)如图,在△ABC 中,有AB =5,AC =7,点D 为边BC 的中点,求AD的取值范围.AB CD21. (7分)已知:如图,∠AOB =90°,OD 是∠AOB 的平分线,P 是OD 上一点,PE ⊥PF ,PE 交OB 于E ,PF 交AO 于F ,求证:PE =PF .ABE FPD O22. (8分)已知:如图,在长方形ABCD 中,AB =4 cm ,BC =6 cm ,点E 为AB中点,如果点P 在线段BC 上以2 cm/s 的速度由点B 向点C 运动,同时,点Q 在线段CD 上由点C 向点D 运动.设点P 运动时间为t 秒,若某一时刻 △BPE 与△CQP 全等,求此时t 的值及点Q 的运动速度.E D CBA PQ备用图23. (9分)问题提出:(1)如图1,在正方形ABCD 中,M 是BC 边(不含端点B ,C )上任意一点,P 是BC 延长线上一点,N 是∠DCP 的平分线上一点.若∠AMN =90°,求证:AM =MN .下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明. 证明:在边AB 上截取AE =MC ,连接ME .正方形ABCD 中,∠B = ∠BCD =90°,AB =BC . ∴∠NMC =180°-∠AMN -∠AMB =180°-∠B -∠AMB =∠MAB =∠MAE , 即∠NMC =∠MAE .(下面请你完成余下的证明过程) 问题探究:(2)若将(1)中的“正方形ABCD ”改为“正三角形ABC ”(如图2),N 是∠ACP 的平分线上一点,则∠AMN =60°时,结论AM =MN 是否还成立?请说明理由.A BC DEM NP 图1AB C M NP图2八年级上学期第一次月考数学模拟试卷(一)(人教版)参考答案二、填空题11.十12.30°13.(7,7)14.50°或130°15.①②③⑤三、解答题16.(1)19,19.17.作图略.18.35°.19.△ABC≌△AED(SAS),证明略20.1<AD<621.证明略22.当t=2时,Q的运动速度为2 cm/s;当t=32时,Q的运动速度为43cm/s.23.(1)证明略;(2)成立,理由略.。
八上第一次月考试卷1
壮志初中八年级上数学第一次月考试卷2006.9.28 一、填空(每题2分,共20分) 1、函数1-=x y 的自变量x 的取值范围是 。
2、如果点(1,3)在直线1-=ax y 上,则a = 。
3、一段导线,在0℃时电阻为2Ω,温度每增加1℃,电阻增加0.008Ω,那么电阻R (Ω)表示为温度t (℃)的函数关系式为 。
4、若函数32)2(--=m x m y 是正比例函数,则常数m 的值是 。
5、已知一次函数1+=kx y ,请你补充一个你喜爱的k 的值为 ,使y 随x 的增大而减小。
6、下面是简单的数值运算程序,当输入x 的值为1时,输出值为 。
7、请阅读一小段约翰·斯特劳斯作品,根据乐谱中的信息确定最后一个音符的时值的长应为 。
8、直线421+-=+=x y x y 与直线的交点坐标为 。
9、某图书出租店有一种图书的租金y (元)与出租的天数x (天) 之间函数关系如图所示,则两天后每过一天累计租金增加 元。
10、某人乘出租车从A 地前往B 地,出租车的起步价为3元(即2公里内收费3元),以后每超过1公里加收1元,若出租车行驶的路程x (公里),则需付费用y (元)与x (公里)之间的函数关系式为 。
二、选择(每题3分,共30分) ( )11、直线x y 2=向上平移两个单位,所得到直线是 A 、22+=x y B 、22-=x y C 、)2(2+=x y D 、)2(2-=x y ( )12、下列曲线中不能表示x y 是的函数是 A B C D ( )13、点(2,a )、(1-,b )在函数1+-=x y 的图象上,则 A 、a >b B 、a <b C 、a ≥b D 、a ≤b ( )14、函数k kx y kx y +==与的图象分别为l 1、l 2,则在同一坐标系中正确的是 A B C D ( )15、已知一次函数23-=+=x y b kx y 与直线平行,与直线32+=x y 相交于y 轴上一点,则k 、b 的值分别为 A 、k =3,b =2 B 、k =3,b =3 C 、k =2-,b =3 D 、k =2,b =3 ( )16、葡萄熟了,从葡萄架上垂直落下来,下面图象可以大致反映葡萄下落过程中速度v 随时间变化的情况的是A B C D( )17、函数35-=x y 的图象不经过第 象限。
八年级(上)第一次月考数学试卷(含答案) (1)
八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个2.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形3.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)5.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm6.六边形共有几条对角线()A.6B.7C.8D.97.下列图形具有稳定性的是()A.B.C.D.8.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°9.如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度10.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°二、填空题(本大题共6小题,每小题4分,共24分)11.要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加根木条才能固定.12.若等腰三角形的两边长分别为3cm和8cm,则它的周长是.13.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.14.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.15.一个多边形的内角和是1800°,这个多边形是边形.16.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A =.三、画图题17.(7分)作BC边上的中线AD,作∠B的角平分线线BE.四、解答题18.(7分)如果直角三角形的一个锐角是另一个锐角的4倍,求这个直角三角形中这两个锐角的度数.19.(7分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.20.(7分)如图,AC=AD,BC=BD,AB是∠CAD的平分线吗?请说明理由.21.(7分)如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.22.(7分)如图所示,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高;(2)若△ABC的面积为10,求△ADC的面积;23.(8分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD =10°,∠B=50°,求∠C的度数.24.(8分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.25.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.【点评】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.2.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形【分析】根据全等三角形的性质得出AB=DE,AC=DF,BC=EF,即可判断A;根据全等三角形的性质得出△ABC和△DEF放在一起,能够完全重合,即可判断B、C;根据图形即可判断D.【解答】解:A、∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴AB+AC+BC=DE+DF+EF,故本选项错误;B、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,即两三角形的面积相等,故本选项错误;C、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,故本选项错误;D、如图△ABC和DEF不是等边三角形,但两三角形全等,故本选项正确;故选:D.【点评】本题考查了全等三角形的定义和性质的应用,能运用全等三角形的有关性质进行说理是解此题的关键,题目较好,但是一道比较容易出错的题目.3.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线【分析】根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.【解答】解:根据等底等高可得,能将三角形面积平分的是三角形的中线.故选C.【点评】注意:三角形的中线能将三角形的面积分成相等的两部分.4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)【分析】可根据n边形从一个顶点引出的对角线与边的关系:n﹣3,可分成(n﹣2)个三角形直接判断.【解答】解:从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是(n﹣2).故选:C.【点评】多边形有n条边,则经过多边形的一个顶点的所有对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.5.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<7,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.【点评】本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键.6.六边形共有几条对角线()A.6B.7C.8D.9【分析】根据对角线公式计算即可得到结果.【解答】解:根据题意得:=9,则六边形共有9条对角线,故选:D.【点评】此题考查了多边形的对角线,n边形对角线公式为.7.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【解答】解:三角形具有稳定性.故选:A.【点评】此题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键.8.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°【分析】先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.【解答】解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选:B.【点评】此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.9.如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度【分析】根据多边形的外角和等于360°即可得到结论.【解答】解:∵∠1+∠2+∠3+∠4=360°,∠2+∠3+∠4=320°,∴∠1=40°.故选:B.【点评】本题考查了多边形的内角和外角,熟记多边形的外角和等于360°是解题的关键.10.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD 中,AB =AD ,∠B =80°,∴∠B =∠ADB =80°,∴∠ADC =180°﹣∠ADB =100°,∵AD =CD ,∴∠C ===40°.故选:B .【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.二、填空题(本大题共6小题,每小题4分,共24分)11.要想使一个六边形活动支架ABCDEF 稳固且不变形,至少需要增加 3 根木条才能固定.【分析】首先根据三角形的稳定性,把六边形活动支架ABCDEF 分成三角形,然后根据从同一个顶点出发可以作出的对角线的条数解答即可.【解答】解:如图,,要想使一个六边形活动支架ABCDEF 稳固且不变形,至少需要增加3根木条才能固定.故答案为:3.【点评】此题主要考查了三角形的稳定性,要熟练掌握,解答此题的关键是熟记三角形具有稳定性.12.若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 19cm .【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【解答】解:当3cm 是腰时,3+3<8,不符合三角形三边关系,故舍去;当8cm 是腰时,周长=8+8+3=19cm .故它的周长为19cm .故答案为:19cm .【点评】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.三角形三边长分别为3,2a﹣1,4.则a的取值范围是1<a<4.【分析】根据三角形的三边关系为两边之和大于第三边,两边之差小于第三边,列出不等式即可求出a的取值范围.【解答】解:∵三角形的三边长分别为3,2a﹣1,4,∴4﹣3<2a﹣1<4+3,即1<a<4.故答案为:1<a<4.【点评】考查了三角形的三边关系,解题的关键是熟练掌握三角形三边关系的性质.14.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是6.【分析】根据正多边形的每一个外角都相等,多边形的边数=360°÷60°,计算即可求解.【解答】解:这个正多边形的边数:360°÷60°=6.故答案为:6.【点评】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.15.一个多边形的内角和是1800°,这个多边形是12边形.【分析】首先设这个多边形是n边形,然后根据题意得:(n﹣2)×180=1800,解此方程即可求得答案.【解答】解:设这个多边形是n边形,根据题意得:(n﹣2)×180=1800,解得:n=12.∴这个多边形是12边形.故答案为:12.【点评】此题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.16.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A =40°.【分析】先根据角平分线的定义得到∠OBC =∠ABC ,∠OCB =∠ACB ,再根据三角形内角和定理得∠BOC +∠OBC +∠OCB =180°,则∠BOC =180°﹣(∠ABC +∠ACB ),由于∠ABC +∠ACB =180°﹣∠A ,所以∠BOC =90°+∠A ,然后把∠BOC =110°代入计算可得到∠A 的度数.【解答】解:∵BO 、CO 分别平分∠ABC 、∠ACB ,∴∠OBC =∠ABC ,∠OCB =∠ACB ,而∠BOC +∠OBC +∠OCB =180°,∴∠BOC =180°﹣(∠OBC +∠OCB )=180°﹣(∠ABC +∠ACB ),∵∠A +∠ABC +∠ACB =180°,∴∠ABC +∠ACB =180°﹣∠A ,∴∠BOC =180°﹣(180°﹣∠A )=90°+∠A ,而∠BOC =110°,∴90°+∠A =110°∴∠A =40°.故答案为40°.【点评】本题考查了三角形内角和定理:三角形内角和是180°.三、画图题17.(7分)作BC 边上的中线AD ,作∠B 的角平分线线BE .【分析】根据尺规作图的要求作出中线AD ,角平分线BE 即可.【解答】解:如图,△ABC 的中线AD ,角平分线BE 即为所求.【点评】本题考查作图﹣复杂作图,三角形的中线,角平分线等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.四、解答题18.(7分)如果直角三角形的一个锐角是另一个锐角的4倍,求这个直角三角形中这两个锐角的度数.【分析】根据直角三角形的两个角互余构建方程即可解决问题.【解答】解:设较小的锐角是x度,则另一角是4x度.则x+4x=90,解得:x=18°.答:这个直角三角形中这两个锐角的度数分别为18°和72°.【点评】本题主要考查了直角三角形的性质,两锐角互余,解题的关键是学会利用参数构建方程解决问题.19.(7分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.【分析】多边形的外角和是360度,根据多边形的内角和比它的外角和的3倍少180°,即可得到多边形的内角和的度数.根据多边形的内角和定理即可求得多边形的边数.【解答】解:设这个多边形的边数是n,依题意得(n﹣2)×180°=3×360°﹣180°,n﹣2=6﹣1,n=7.∴这个多边形的边数是7.【点评】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.20.(7分)如图,AC=AD,BC=BD,AB是∠CAD的平分线吗?请说明理由.【分析】根据全等三角形的判定定理SSS证得△ACB≌△ADB,则其对应角相等:∠CAB =∠DAB,即AB是∠CAD的平分线.【解答】解:AB是∠CAD的平分线.理由如下:在△ACB与△ADB中,,∴△ACB≌△ADB(SSS),∴∠CAB=∠DAB,即AB是∠CAD的平分线.【点评】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.21.(7分)如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.【分析】由角平分线的定义,结合平行线的性质,易求∠EDC的度数.【解答】解:∵DE∥BC,∴∠ACB=∠AED=70°.∵CD平分∠ACB,∴∠BCD=∠ACB=35°.又∵DE ∥BC ,∴∠EDC =∠BCD =35°.【点评】本题考查了平行线的性质和角平分线定义的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.22.(7分)如图所示,已知AD 是△ABC 的边BC 上的中线.(1)作出△ABD 的边BD 上的高;(2)若△ABC 的面积为10,求△ADC 的面积;【分析】(1)利用尺规作AE ⊥BC ,垂足为E ,线段AE 即为所求;(2)利用三角形的中线把三角形分成两个面积相等的三角形即可;【解答】解:(1)如图线段AE 即为所求;(2)∵AD 是△ABC 的中线,∵S △ABD =S △ADC ,∵S △ABC =10,∴S △ADC =•S △ABC =5.【点评】本题考查作图﹣复杂作图,三角形的面积等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.23.(8分)如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠EAD =10°,∠B =50°,求∠C 的度数.【分析】根据直角三角形两锐角互余求出∠AED,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BAE,然后根据角平分线的定义求出∠BAC,再利用三角形的内角和定理列式计算即可得解.【解答】解:∵AD是BC边上的高,∠EAD=10°,∴∠AED=80°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°.【点评】本题考查了三角形的角平分线、中线和高,主要利用了直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图是解题的关键.24.(8分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.【分析】连接AD并延长AD至点E,根据三角形的外角性质求出∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C,即可求出答案.【解答】解:如图,连接AD并延长AD至点E,∵∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C∴∠BDC=∠BDE+∠CDE=∠CAD+∠C+∠BAD+∠B=∠BAC+∠B+∠C∵∠A=90°,∠B=21°,∠C=32°,∴∠BDC=90°+21°+32°=143°.【点评】本题考查了三角形的外角性质的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.25.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?【分析】(1)第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形,求得边数,即可求解;(2)根据多边形的内角和公式即可得到结论.【解答】解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.【点评】本题考查了正多边形的外角的计算以及多边形的内角和,第一次回到出发点A 时,所经过的路线正好构成一个外角是20度的正多边形是关键.。
2024-2025学年北师大版八年级数学上册第一次月考综合测试卷(含答案)
八年级上学期第一次月考综合测试卷时间:100分钟 满分:120分 考试范围:北师大版八年级上册第一章~第二章一、选择题(每小题3分,共30分)1.下列是无理数的是( )A.-13B.4C.3.141 592 6D.-π2.下列几组数中,是勾股数的是( )A.1,2,3B.0.3,0.4,0.5C.15,8,17D.35,45,13.下列各式中正确的是( )A.16=±4B.3-27=-9C.(-3)2=-3D.94=324.已知下列各式:23,0.1,35,12,6,其中不是最简二次根式的有( )A.2个B.3个C.4个D.5个5.在如图所示的数轴上,表示数3-7的点应在( )A.A ,O 之间B.O ,B 之间C.B ,C 之间D.C ,D 之间6.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A 处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6km 处往东拐,仅走了1 km,就找到了宝藏,则门口A 到藏宝点B 的直线距离是( )A.20 kmB.14 kmC.11 kmD.10 km7.如图,一场暴雨过后,垂直于地面的一棵大树在距地面5米的C 处折断,树尖B 恰好碰到地面,经测量树尖B 与树桩A 相距12米,则大树折断前高为( )A.13米 B.17米 C.18米 D.22米8.如图,是一种筷子的收纳盒,长、宽、高分别为4 cm,3 cm,12 cm,现有一长为16 cm 的筷子插入到盒的底部,则筷子露在盒外的部分h (cm)的取值范围( )A.3<h<4 B.3≤h ≤4 C.2≤h ≤4 D.5≤h ≤69.把两块同样大小的含45°角的直角三角尺按如图所示放置,其中一块的锐角顶点与另一块的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上,若AC=22,则CD的长是( )A.3B.5C.25+2D.23+210.如图,有一根高为2.1 m的木柱,它的底面周长为40 cm,在准备元旦联欢晚会时,为了营造喜庆的氛围,小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,小明需要准备的这根彩带的长至少为( ) A.1 400 cm B.350 cm C.840 cm D.300 cm二、填空题(每小题3分,共15分)11. 写出一个在3和4之间的无理数:12.如图,每个小正方形的边长为1,可通过“剪一剪”“拼一拼”,将五个小正方形拼成一个面积一样的大正方形,则这个大正方形的边长是 .13.若m,n为实数,且m=1―n+n-1+8,则mn的立方根为 .14 .如图,有一块一边长为24 m的长方形绿地,在绿地旁边B处有健身器材.由于居住在A处的居民践踏了绿地,小颖想在A处立一个标牌“少走 步,踏草何忍”,但小颖不知应填什么数,请你帮她填上.(假设2步为1 m)15.有一个边长为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,且这3个正方形所围成的三角形是直角三角形.再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”.请你算出“生长”了2 021次后形成的图形中所有的正方形的面积和是 .三、解答题(共8小题,共75分)16.(8分)把下列各数填入相应的集合内:227,π5,0,3.14,-5,0.313 131…,38,-64,7.151 551…(相邻两个1之间5的个数逐次加1).有理数集合{ …};无理数集合{ …};正数集合{ …};负数集合{ …}.17.(每小题3分,共12分)解答下列各题.(1)(x+5)2=16(2)8(x-1)3=-1258(3)48-27+13 (4)(-2+6)(-2-6)-(3-13)2.18.(8分)如图,一个梯子AB,顶端A 靠在墙AC 上,这时梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米到E 点,底端则水平滑动8米到D 点,求滑动前梯子底端与墙的距离CB 是多少.19.(8分)如图,在四边形ABDC中,∠A=90°,AB=6,AC=8,BD=5,CD2=125.(1)连接BC,求BC的长;(2)求△BCD的面积.20.(8分)已知a-2的平方根是±2,a-3b-3的立方根是3,整数c满足c<12<c+1.(1)求a,b,c的值;(2)求a2+b2+c3+17的算术平方根.21.(10分)为了积极响应国家新农村建设,某镇政府采用了移动宣讲的广播形式进行宣传.如图,笔直公路MN的一侧有一报亭A,报亭A到公路MN的距离AB 为600米,且宣讲车P周围1 000米以内能听到广播宣传,宣讲车P在公路MN 上沿PN方向行驶.(1)请问报亭的人能否听到广播宣传,并说明理由;(2)如果能听到广播宣传,已知宣讲车的速度是200米/分,那么报亭的人总共能听到多长时间的广播宣传?22.(10分)八年级某班开展了手工制作比赛,每个同学都在规定时间内完成一件手工作品.陈莉同学制作手工作品的前两个步骤如下:①如图,先裁下一张长20 cm,宽16 cm 的长方形纸片ABCD;②将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处.请你根据①②步骤分别计算FC,EC 的长.23.(11分)小明在解决问题:已知a=12+3,求2a 2-8a+1的值.他是这样分析与解答的:因为a=12+3=2―3(2+3)(2-3)=2-3,所以a-2=-3.所以(a-2)2=3,即a 2-4a+4=3.所以a 2-4a=-1.所以2a 2-8a+1=2(a 2-4a)+1=2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题:(1)计算:12+1= .(2)计算:12+1+13+2+14+3+…+1100+99.(3)若a=12-1,求4a 2-8a+1的值.参考答案12345678910DCDBBDCB DB11.1112.513.214.1615.2022解析:6.D 如图,过点B 作BC⊥AC ,垂足为C,过点N 作NM⊥AC ,垂足为M.由题意可知AC=AF-MF+MC=8-3+1=6(km),BC=2+6=8(km),在Rt△ACB中,AB=AC 2+BC 2=62+82=10(km).解析:9.D 如图,作AF⊥BC 于点F,∵△AED 和△ACB 是一样的等腰直角三角形,AC=22,∴BC=AD=4,∴AF=12BC=2,BF=CF=2,∴DF=AD 2-AF 2=42-22=23,∴CD=DF+CF=23+2.三、解答题16.有理数集合{227,0,3.14,0.313 131…,38,-64,…};无理数集合{π5,-5,7.151 551…(相邻两个1之间5的个数逐次加1),…};正数集合{227,π5,3.14,0.313 131…,38,7.151 551…(相邻两个1之间5的个数逐次加1),…};负数集合{-5,-64,…}.17.(1)x=-1或x=-9.(2)因为8(x-1)3=-1258,所以(x-1)3=-12564,所以x-1=-54,所以x=1-54,所以x=-14(3)原式=43-33+33=433.(4)原式=4-6-(3-2+13)=-2-43=-103.18.∵AC⊥BC ,∴AC 2+CB 2=AB 2,CE 2+CD 2=DE 2,由题意知AB=DE ,AC=24米,AE=4米,BD=8米,∴CE=24-4=20(米),CD=CB+8,∴242+CB 2=202+(CB+8)2,解得CB=7(米).答:滑动前梯子底端与墙的距离CB 是7米.19.(1)∵在△ABC 中,∠A=90°,AB=6,AC=8,∴BC 2=AB 2+AC 2=100,∴BC=10.(2)在△BCD 中,BC=10,BD=5,CD 2=125,∵BC 2+BD 2=102+52=125=CD 2,∴△BCD 是直角三角形,且∠CBD=90°,∴△BCD 的面积为12BD·BC=12×5×10=25. 20.(1)根据题意,得a-2=4,a-3b-3=27,所以a=6,b=-8.12=23≈3.46,所以3<12<4,所以c=3.(2)由(1)知a=6,b=-8,c=3,所以a 2+b 2+c 3+17=62+(-8)2+33+17=144.因为122=144,所以a 2+b 2+c 3+17的算术平方根为12.21.(1)报亭的人能听到广播宣传.理由:∵600米<1 000米,∴报亭的人能听到广播宣传.(2)如图,假设当宣讲车P 行驶到P 1点时,报亭的人开始听到广播宣传,当宣讲车P 行驶过P 2点时,报亭的人开始听不到广播宣传,连接AP 1,AP 2.易知AP 1=AP 2=1 000米,AB=600米,AB ⊥MN ,∴BP 1=BP 2=1 0002-6002=800(米),∴P 1P 2=1 600米.∵1 600÷200=8(分),∴报亭的人总共能听到8分钟的广播宣传.22.∵ 将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处,∴DE=FE ,AF=AD.在Rt△ABF 中,由勾股定理,得BF 2=AF 2-AB 2=202-162=144,∴BF=12 cm .∴FC=20-12=8(cm).设CE=x cm,则EF=DE=(16-x )cm .在Rt△CEF 中,由勾股定理,得EF 2=FC 2+CE 2,即(16-x )2=82+x 2,解得x=6,∴EC=6 cm .23.(1)2-1 解法提示:12+1=2-1(2+1)(2-1)=2-1.(2)原式=(2-1)+(3-2)+(4-3)+…+(100-99)=100-1=10-1=9.(3)因为a=12-1=2+1(2-1)(2+1)=2+1,所以a-1=2.所以(a-1)2=2,即a 2-2a +1=2.所以a 2-2a=1.所以4a 2-8a +1=4(a 2-2a )+1=4×1+1=5.。
人教版八年级上册数学第一次月考试卷(含答案解析)
人教版八年级上册数学第一次月考试卷一.选择题(每小题3分,共30分)1.若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5B.6C.7D.82.下列说法正确的是()A.在一个三角形中至少有一个直角B.三角形的中线是射线C.三角形的高是线段D.一个三角形的三条高的交点一定在三角形的外部3.下列各图中,正确画出△ABC中AC边上的高的是()A.①B.②C.③D.④4.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC,这样就有∠QAE=∠P AE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS5.如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC =6,则CD的长为()A.2B.4C.4.5D.36.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7B.10C.35D.707.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE =2,则AC的长是()A.4B.3C.6D.58.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF ≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个9.如图,点B、E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=ED B.∠A=∠DEF,AC=EDC.AC=ED,AB=EF D.∠ABC=∠EFD,BC=FD10.如图,已知AB=AC,AE=AF,BE与CF交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是()。
八年级数学第一次月考试卷(上)
八年级数学第一次月考试卷一.选择题(每题3分,共30分)1.一个三角形的两边长分别为3cm 和7cm,则此三角形第三边长可能是( ) A .3cm B.4 cm C. 7 cm D.11cm2.不一定在三角形内部的线段是( )A..三角形的角平分线B.三角形的中线C.三角形的高D.以上皆不对 3.在△ABC 中,∠A=2∠B=3∠C,则此三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4如图1,△ABC ≌△FED ,则下列结论错误的是( )A.EC=BD B .EF ∥ABC .DF=BD D .AC ∥FD5、下列各条件中,不能作出唯一三角形的是( ) A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边 6.下面四个图形中,线段BE 是⊿ABC 的高的图是( )7.内角和等于外角和2倍的多边形是( )A .五边形B .六边形C .七边形D .八边形 8.三角形的一个外角是锐角,则此三角形的形状是( )BA.锐角三角形B.钝角三角形C.直角三角形D.无法确定9.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( )CA.5B.6C.7D.810.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤ 三角形的三条角平分线交于一点,且这点在三角形内。
正确的命题有( ) BA.1个B.2个C.3个D.4个二、填空题(每小题3分,共30分)1.已知△ABC 的一个外角为50°,则△ABC 一定是________三角形2.如图3,在△ABC 中,BD 是角平分线,BE 是中线,若AC=24cm ,则AE= cm ,若∠ABC=72°,则∠ABD=_____度.4.若一个多边形的每个外角都为36°,则这个多边形的对角线共有__________条. 6.如图,△ABC ≌△BAD , AC 与BD 是对应边,AC=8cm ,AD=10cm ,DE=CE=2cm ,那么AE 的长是______7、图示,点B 在AE 上,∠CBE=∠DBE,要使ΔABC ≌ΔABD, 还需添加一个条件是__________.(填上你认为适当的一个条件即可) ∠C=∠D 或∠CAB=∠DAB ,或CB=DB ,10.如图,有两个长度相同的滑梯(即BC=EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则∠ABC+∠DFE= 90度.11.如图所示,AB=AC ,AD=AE ,∠BAC=∠DAE ,∠1=25°,∠2=30°,则∠3= 55.13.如图,若∠A =70°,∠ABD =120°,则∠ACE = 130°E DCB A图314.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =10cm ,AC =4cm ,则DE 的长为 . 4cm15.下列命题中 ①全等三角形的高相等。
01【人教版】八年级上册第一次月考数学试卷(含答案)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!八年级(上)第一次月考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有( )A.1个B.2个C.3个D.4个2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系( )A.平行B.垂直C.平行或垂直D.不确定3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有( )A.5个B.3个C.4个D.6个4.在下列给出的条件中,不能判定两个三角形全等的是( )A.两边一角分别相等B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为( )....三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P 到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.为圆心,以大于DE,则∠ 八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有( )A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:第1,2个图形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故轴对称图形一共有2个.故选:B.【点评】此题主要考查了轴对称图形,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系( )A.平行B.垂直C.平行或垂直D.不确定【考点】轴对称的性质.【分析】点P与点Q关于直线m成轴对称,即线段PQ关于直线m成轴对称;根据轴对称的性质,有直线m垂直平分PQ.【解答】解:点P和点Q关于直线m成轴对称,则直线m和线段QP的位置关系是:直线m垂直平分PQ.故选:B.【点评】此题考查了对称轴的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有( )A.5个B.3个C.4个D.6个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念可知:①两个点;②线段;③角;④长方形;⑤两条相交直线一定是轴对称图形;⑥三角形不一定是轴对称图形.故选A.【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.在下列给出的条件中,不能判定两个三角形全等的是( )A.两边一角分别相等B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等【考点】全等三角形的判定.【分析】根据判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL分别进行分析.【解答】解:A、两边一角分别相等的两个三角形不一定全等,故此选项符合题意;B、两角一边分别相等可用AAS、ASA定理判定全等,故此选项不合题意;C、两角一边对应相等,可用SAS或AAS定理判定全等,故此选项不合题意;D、三边分别相等可用SSS定理判定全等,故此选项不合题意;故选:A.【点评】本题考查三角形全等的判定方法,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,,∴Rt△BCE≌Rt△DCE(HL),故选:C.【点评】此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为( )A.5B.10C.15D.20【考点】轴对称的性质.【分析】根据题意,观察可得:△ABC关于AD轴对称,且图中阴影部分的面积为△ABC面积的一半,先求出△ABC的面积,阴影部分的面积就可以得到.【解答】解:根据题意,阴影部分的面积为三角形面积的一半,∵S=×BC•AD=×4×5=10,△ABC∴阴影部分面积=×10=5.故选A.【点评】考查了轴对称的性质,根据轴对称得到阴影部分面积是解题的关键.8.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的( )A.B.C.D.【考点】剪纸问题.【专题】压轴题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右对折,向上对折,从正方形的上面那个边剪去一个长方形,左下角剪去一个正方形,展开后实际是从大的正方形的中心处剪去一个较小的正方形,从相对的两条边上各剪去两个小正方形得到结论.故选:B.【点评】本题主要考查学生的动手能力及空间想象能力.二、填空题(本大题共有10小题,每小题2分,共20分.)9.已知△ABC与△A′B′C′关于直线L对称,∠A=40°,∠B′=50°,则∠C= 90° .【考点】轴对称的性质.【分析】根据成轴对称的两个图形全等求得未知角即可.【解答】解:∵△ABC与△A′B′C′关于直线L对称,∴△ABC≌△A′B′C′,∴∠B=∠B′=50°,∵∠A=40°,∴∠C=180°﹣∠B﹣∠A=180°﹣50°﹣40°=90°,故答案为:90°.【点评】本题考查轴对称的性质,属于基础题,注意掌握如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.10.△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= 3 .【考点】全等三角形的性质.【分析】根据全等三角形对应边相等可得BC=EF,再根据三角形的周长的定义列式计算即可得解.【解答】解:∵△ABC≌△DEF,∴BC=EF=4,∵△ABC的周长为12,AB=5,∴AC=12﹣5﹣4=3.故答案为:3.【点评】本题考查了全等三角形的性质,三角形的周长的定义,熟记性质是解题的关键.中,,∵,,故答案为:5或10.【点评】本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,A AS,SAS,SSS,HL.三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.【考点】作图-轴对称变换.【分析】过点B作BD⊥AC于点D,延长BD至点B′,使DB′=DB,连接AB′,CB′即可.【解答】解:如图,△A′B′C′即为所求.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P 到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)【考点】作图—应用与设计作图.【分析】根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.【解答】解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和P都是所求的点.1【点评】此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】求出BC=EF,根据平行线性质求出∠B=∠E,∠ACB=∠DFE,根据ASA推出△ABC≌△DEF即可.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.【点评】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力. 22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.【考点】全等三角形的判定与性质.【分析】根据HL推出Rt△BDE≌Rt△ADC,推出∠C=∠BED=75°,根据等腰三角形的性质和三角形的内角和定理求出∠ABD=∠BAD=45°,∠EBD=15°,即可求出答案.【解答】解:∵AD是△ABC一边上的高,∴∠BDE=∠ADC=90°,在Rt△BDE和Rt△ADC中,,∴Rt△BDE≌Rt△ADC(HL),∴∠C=∠BED=75°,∵∠BDE=90°,AD=BD,∴∠ABD=∠BAD=45°,∠EBD=15°,∴∠ABE=∠ABD﹣∠EBD=45°﹣15°=30°.【点评】本题考查了全等三角形的性质和判定,三角形内角和定理,等腰三角形的性质的应用,解此题的关键是推出△BDE≌△ADC,注意:全等三角形的对应边相等,对应角相等.23.已知:AB=AD,BC=DE,AC=AE,(1)试说明:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)利用“边边边”求出△ABC和△ADE全等,根据全等三角形对应角相等可得∠BAC=∠D AE,然后都减去∠CAD即可得证;(2)根据全等三角形对应角相等可得∠B=∠ADE,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EDC=∠BAD,从而得解.【解答】(1)证明:在△ABC和△ADE中,,∴△ABC≌△ADE(SSS),∴∠BAC=∠DAE,∴∠DAE﹣∠CAD=∠BAC﹣∠CAD,即:∠EAC=∠BAD;(2)解:∵△ABC≌△ADE,∴∠B=∠ADE,由三角形的外角性质得,∠ADE+∠EDC=∠BAD+∠B,∴∠EDC=∠BAD,∵∠BAD=42°,∴∠EDC=42°.【点评】本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.24.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线(如图1),方法如下:为圆心,以大于DE ,∴∠MOP=∠NOP,∴OP平分∠AOB.【点评】本题考查了用刻度尺作角平分线的方法,全等三角形的判定与性质,难度不大.25.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【考点】全等三角形的判定与性质.【分析】(1)在△CBF和△DBG中,利用SAS即可证得两个三角形全等,利用全等三角形的对应边相等即可证得;(2)根据全等三角形的对应角相等,以及三角形的内角和定理,即可证得∠DHF=∠CBF=60°,从而求解.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.【点评】本题考查了全等三角形的判定与性质,正确证明三角形全等是关键.26.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得∠HFB=∠HEC,由得对顶角相等得∠BHF=∠CHE,所以∠ABD=∠ACG.再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,,则∠ 中,,中,,【考点】四边形综合题.【分析】(1)①根据正方形边长为10cm和点P在线段BC上的速度为4cm/秒即可求出CP的长;②分△BPE≌△CPQ和△BPE≌△CQP两种情况进行解答;(2)根据题意列出方程,解方程即可得到答案.【解答】解:(1)①PC=BC﹣BP=10﹣4t;②当△BPE≌△CPQ时,BP=PC,BE=CQ,即4t=10﹣4t,at=6,解得a=4.8;当△BPE≌△CQP时,BP=CQ,BE=PC,即4t=at,10﹣4t=6,解得a=4;(2)当a=4.8时,由题意得,4.8t﹣4t=30,解得t=37.5,∴点P共运动了37.5×4=150cm,∴点P与点Q在点A相遇,当a=4时,点P与点Q的速度相等,∴点P与点Q不会相遇.∴经过37.5秒点P与点Q第一次在点A相遇.【点评】本题考查的是正方形的性质和全等三角形的判定和性质,正确运用数形结合思想和分类讨论思想是解题的关键.。
人教版八年级(上)第一次月考数学试卷及答案
人教版八年级(上)第一次月考数学试卷及答案人教版八年级(上)第一次月考数学试卷一、选择题(共12小题,每小题4分,满分48分)1.以下长度的三条线段中,能够组成三角形的是()。
A。
2cm,3cm,4cmB。
1cm,4cm,2cmC。
1cm,2cm,3cmD。
6cm,2cm,3cm2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()。
A。
带①去B。
带②去C。
带③去D。
带①和②去3.能够把一个任意三角形分成面积相等的两部分的是()。
A。
角平分线B。
中线C。
高D。
A、B、C都可以4.下面四个图形中,线段BE是△ABC的高的图形是()。
A。
B。
C。
D。
5.适合条件∠A=∠B=∠C的△ABC是()。
A。
锐角三角形B。
直角三角形C。
钝角三角形D。
等边三角形6.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()。
A。
5B。
6C。
7D。
87.下列命题正确的是()。
A。
三角形的角平分线,中线,高均在三角形内部B。
三角形中至少有一个内角不小于60°C。
直角三角形仅有一条高D。
直角三角形斜边上的高等于斜边的一半8.如图,在△ABC中,AB=AC,∠BAD=∠CAD,则下列结论:①△ABD≌△ACD,②∠B=∠C,③BD=CD,④AD⊥BC。
其中正确的个数有()。
A。
1个B。
2个C。
3个D。
4个9.如图,在△ABC中,AD平分∠XXX于D,XXX于E,∠B=40°,∠BAC=82°,则∠DAE=()。
A。
7°B。
8°C。
9°D。
10°10.已知,如图AB=CD,BC=AD,∠B=23°,则∠D=()。
A。
67°B。
46°C。
23°D。
不能确定11.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()。
A。
AB=CDB。
人教版初中数学八年级上册第一次月考试卷1
宁津县实验中学-第一学期第一次月考八年级数学试题 .9一.选择题1.已知三角形的两边长分别为2 cm和7 cm,周长是偶数,则这个三角形是()A.不等边三角形.B.等腰三角形.C.等边三角形.D.直角三角形.2.如图,王师傅用4根木条钉成一个四边形木架,要使这个木架不变形,他至少要再订上木条的根数是()A.0.B.1.C.2. D3.3.将一副常规的三角尺如图放置,则图中∠AOB的度数是()A.75°.B. 95°.C. 105°.D.120°4.下列说法错误的是()A.一个三角形中至少有一个角不少于60°B.三角形的中线不可能在三角形的外部. .C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高.5.如果一个多边形的每一个外角都是45°,那么这个多边形的内角和是()A.540°.B.720°.C. 1080°.D.1260°.6.下列说法:①全等三角形的形状相同、大小相等②全等三角形的对应边相等、对应角相等③面积相等的两个三角形全等④全等三角形的周长相等其中正确的说法为()A.①②③④B. ①②③C. ②③④D. ①②④7.在ΔABC和ΔDEF中,已知∠C =∠D, ∠B=∠E,要判断这两个三角形全等,还需添加条件( )A. AB=ED.B.AB=FD.C.AC=FD. D. ∠A =∠F.8.如图,点P 是AB 上任一点,∠ABC=∠AB D,从下列各条件中补充一个条件, 不一定能推出ΔAPC ≌ΔAPD.的是( )A. BC=BD.B. ∠ACB=∠ADB.C.AC=AD. D. ∠CAB=∠DAB9.已知ΔABC 是等边三角形,点D 、E 分别在AC 、BC 边上,且AD=CE,AE 与BD 交于点F,则∠AFD 的度数为( )A.60°B.45°C.75°D. 70°10.如图ΔABC 中,∠B =∠C,BD=CF,BE=CD, ∠EDF=α,则下列结论正确的是( )A.2α+∠A=90°B. .2α+∠A=180° C .α+∠A=90° D.α+∠A=180 11、一个数的平方根与它的立方根相等,则这个数是( )A .0B .1C .0或1D .0或±112、我国国土面积约为9.6×106m 2,由四舍五入得到的近似数9.6×106( )A .有三个有效数字,精确到百分位B .有三个有效数字,精确到百万分位C .有两个有效数字,精确到十分位D .有两个有效数字,精确到十万位二、填空题(本大题共10小题,共30分)13、等腰三角形一边长为8,一边长为4,则它的周长为 。
2023年10月北师大版八年级数学上月考数学试题(1)
八年级数学第一次月考试卷(满分120分120分钟)一、选择题(每题3分,共36分)1.在下列各数0,0.2,3π,227,6.1010010001…(1之间逐次增加一个0),13111,2中,无理数的个数是()A.1B.2C.3D.42.ABC ∆中,A ∠,B ∠,C ∠的对边分别记为a ,b ,c ,由下列不能判定ABC ∆为直角三角形的是()A.A B C ∠∠=∠+B.::3:4:5A B C ∠∠∠=C.()()2c b c b a +-= D.111345a b c ==3.下列运算中正确的是()A.5=B.5=±C.2=D.122=4.下列二次根式是最简二次根式的是()A.B.C.D.5.若(m -1)2=0,则m +n 的值是()A.-1B.0C.1D.26.x 是9的平方根,y 是64的立方根,则x +y 的值为()A .3B.7C.3,7D.1,77.最接近的数是A.2B.3C.4D.58.若x <0等于()A .xB.2xC.0D.﹣2x9.如图,从一个大正方形中裁去面积为30cm 2和48cm 2的两个小正方形,则余下部分的面积为()9题10题11题12题A.78cm 2B.(330+cm 2C.10cm 2D.10cm 210.如图所示,1,90CD BCD =∠=︒,若数轴上点A 所表示的数为a ,则a 的值为()A.5- B.15C.15- D.15-+11.如图,在2×2的网格中,有一个格点△ABC ,若每个小正方形的边长为1,则△ABC 的边AB 上的高为()A.55B.22C.510D.112.如图,一只蚂蚁从长、宽都是3cm ,高是8cm 的长方体纸盒的A 点沿纸盒面爬到B 点,那么它所行的最短路线的长是()A.2+8)cmB.10cmC.14cmD.无法确定二、填空题(每题4分,共24分)13.5-______,倒数是______14的算术平方根是______.14.已知ABC 中,13AB =,20AC =,BC 边上的高12AD =,则BC 的长为______.15.比较大小:512______12.16.如图是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A ,B 是这个台阶上两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿台阶面爬行到B 点最短路程是_____米.17题18题17.在直线l 上依次摆放着七个正方形(如图).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是1S ,2S ,3S ,4S ,则14S S +=______.18.我们赋予“※”一个实际含义,规定a b =※,试求54=※______.三、简答题(共60分)19.计算:(1)⎛ ⎝(2))()20111123π-⎛⎫-+--+-+ ⎪⎝⎭20.解方程(1)291028x -=(2)()32180x --=.21.如图是一块地,已知8cm AD =,6cm CD =,90D Ð=°,26cm AB =,24cm BC =,求这块地的面积.22.如图,某住宅社区在相邻两楼之间修建一个上方是以AB 为直径的半圆,下方是长方形的仿古通道,已知AD =2.3米,CD =2米;现有一辆卡车装满家具后,高2.5米,宽1.6米,请问这辆送家具的卡车能否通过这个通道?请说出你的理由.23.如图,在长方形ABCD 中,AB CD ∥,AD BC ∥,3AB =,4BC =,将矩形纸片沿BD 折叠,使点A 落在点E 处,设DE 与BC 相交于点F .(1)判断BDF ∆的形状,并说明理由;(2)求DF 的长.24.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2=(1)2,善于思考的小明进行了以下探索:设a +=(m +)2(其中a 、b 、m 、n 均为整数),则有a +=m 2+2n 2+2.∴a =m 2+2n 2,b =2mn .这样小明就找到了一种把部分a +的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若a +(m +2,用含m 、n 的式子分别表示a 、b ,得a =________,b =________;(2)试着把化成一个完全平方式.(3。
八年级数学上册第一次月考试卷【含答案】
八年级数学上册第一次月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3,b = 5,那么 a + b 等于多少?A. 6B. 8C. 9D. 103. 下列哪个数是质数?A. 12B. 13C. 15D. 184. 如果一个三角形的两边分别是3和4,那么第三边的长度可能是多少?A. 1B. 2C. 5D. 65. 下列哪个数是负数?A. -3B. 0C. 3D. 6二、判断题(每题1分,共5分)1. 2的平方等于4。
()2. 0是最小的自然数。
()3. 1是最大的质数。
()4. 两条对角线相等的四边形一定是矩形。
()5. 任何两个奇数相加的和都是偶数。
()三、填空题(每题1分,共5分)1. 一个数的平方是9,这个数是______。
2. 两个质数相乘的积是35,这两个质数是______和______。
3. 如果一个等腰三角形的底边长是8,腰长是10,那么这个三角形的周长是______。
4. 下列各数中,最大的合数是______。
5. 下列各数中,最小的负整数是______。
四、简答题(每题2分,共10分)1. 请写出2的所有因数。
2. 请写出3的所有倍数,不超过20。
3. 请写出5的所有质因数。
4. 请解释什么是等腰三角形。
5. 请解释什么是因数分解。
五、应用题(每题2分,共10分)1. 一个长方形的长是10,宽是5,请计算这个长方形的面积。
2. 一个正方形的边长是6,请计算这个正方形的周长。
3. 如果一个数的平方是16,请计算这个数的立方。
4. 请计算下列各数的和:2 + 3 + 4 + 5 + 6。
5. 请计算下列各数的差:10 3 2 1。
六、分析题(每题5分,共10分)1. 请分析下列各数中,哪些是偶数,哪些是奇数:1, 2, 3, 4, 5, 6, 7, 8, 9, 10。
2. 请分析下列各数中,哪些是质数,哪些是合数:2, 3, 4, 5, 6, 7, 8, 9, 10, 11。
人教版八年级上册数学《第一次月考》考试题及答案一
人教版八年级上册数学《第一次月考》考试题及答案一 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.估计101+的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .03.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030xx -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x--=2 5.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-6.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A .0B .1C .2D .37.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A .(32﹣2x )(20﹣x )=570B .32x+2×20x=32×20﹣570C .(32﹣x )(20﹣x )=32×20﹣570D .32x+2×20x ﹣2x 2=5708.如图,在△ABC 中,AB=AC ,∠BAC=100°,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则∠BAE=( )A .80°B .60°C .50°D .40°9.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为1-,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .1B .3C .3(1)m -D .3(2)2m - 10.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__________. 3.将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为_________.4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________. 5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解下列分式方程(1)42122x x x x++=-- (2)()()21112x x x x =+++-2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 是13的整数部分.(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.4.如图,点A 、D 、C 、F 在同一条直线上,AD=CF ,AB=DE ,BC=EF.(1)求证:ΔABC ≌△DEF ;(2)若∠A=55°,∠B=88°,求∠F 的度数.5.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°,求∠DAC 的度数.6.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.(1)求出2018至2020年五一长假期间游客人次的年平均增长率;(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、A5、C6、D7、A8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1a 4<<2、-1或5或13-3、如果两条直线平行于同一条直线,那么这两条直线平行.4、20°.5、96、6三、解答题(本大题共6小题,共72分)1、(1)3x =;(2)0x =.2、112x -;15.3、(1)a=5,b=2,c=3 ;(2)±4.4、(1)略;(2)37°5、24°.6、(1)年平均增长率为20%;(2)每碗售价定为20元时,每天利润为6300元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级(上)数学第一次月考
一、选择题(3分╳11=33分)
1如图(1)字母B 所代表的正方形的面积是 ( )
A. 12
B. 13
C. 144
D. 194
2. 观察下列几组数据:(1) 8, 15, 17; (2) 7, 12, 15; (3)12, 15, 20; (4) 7, 24,
25. 其中能作为直角三角形三边长的有( )组 A. 1 B. 2 C. 3 D. 4 3. 如图(2)小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) A. 25 B. 12.5 C. 9 D. 8.5
4. 如果梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是 ( )
A. 12米
B. 13
C. 14米
D. 15米
5、01960.的算术平方根是……………………………………………………………( ) A 、140. B 、0140. C 、140.± D 、0140.±
6、2
6)(-的平方根是…………………………………………………………………( ) A 、-6 B 、36 C 、±6 D 、±6 7、下列计算或命题:(1) ±3都是27的立方根; (2)
a a =3
3;(3)64的立方根是2;
(4) 4832
±=±)(,其中正确的个数有………………………………… ( )
A 、1个
B 、2个
C 、3个
D 、4个
8、在下列各式子中,正确的是……………………………………………………( )
A 、2233
=-)( B 、4006403..-=- C 、222
±=±)( D 、022332=+-)()(
9、下列说法正确的是 ( ) (A ) 有理数只是有限小数 (B ) 无理数是无限小数 (C )无限小数是无理数 (D )
3
π
是分数 10、下列说法错误的是 ( )
(A )1)1(2
=- (B )
()113
3
-=-
(C ) 2的平方根是2± (D )
()232)3(-⨯-=-⨯-
11.一个长方形的长与宽分别时6、3,它的对角线的长可能是 ( )
B 169
25
D
(A) 整数 (B) 分数 (C) 有理数 (D) 无理数
二.填空题(每题3分共30分)
12.已知一个Rt △的两边长分别为3和4,则第三边长的平方是 13. 若
a a -=-2)2(2
,则a 的取值范围
是 ;
14.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方
形A ,B ,C ,D 的面积之和为___________cm 2。
15、 各数:⑴ 3.141、⑵0.33333……、⑶75-
、⑷π、⑸252.±、⑹3
2
-
、⑺0.3030003000003……(相邻两个3之间0的个数逐次增加2)、⑻ 0 中。
其中是有理数的有_____________;是无理数的有____________。
(填序号) 16、
9
4
的平方根是____;0.216的立方根是____。
17、算术平方根等于它本身的数是____;立方根等于它本身的数是____。
18、6的相反数是 ;绝对值等于2的数是 .
19、一个圆柱状的杯子,由内部测得其底面直径为4cm ,高为10cm ,现有一支12cm 的吸管任意斜放于杯中,则吸管 _露出杯口外. (填“能”或“不能”)
20、一个正方体的体积变为原来的27倍,则它的棱长变为原来的____倍。
21.图中是第七届国际数学教育大会的会徽,其图案 是由图(2)所示的一连串直角三角形演化而成的。
其中OA 1=A 1A 2=A 2A 3=…=1,记S 1,S 2,S 3,…为相应三角形的面积。
则S 21+S 22+S 23+…+S 210=
三、解答题:(本题57分)
S 4 A 3A 2A 1O A 7A 6A 5A 4
A 8S 2 S 1 S 3 S 7 S 6 S 5
22、化简 (10分) 2
8321-)( (2)
123
1
27+-
23.(10分)2. 如果2-x +(x+y-3)2
=0,求x,y 的值。
3. 已知322+-+-=x x y ,
求x y 的平方根.
24、(7分)小明从家出发向正东方向走了160千米,然后又向正北出发走到离家200千米远的地方。
小明向正北方向走了多远? 25、(7分)如图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段。
请在图中画出1352===
EF CD AB 、、这样的线段,并选择其
中的一个说明这样画的道理。
26.如图,在边长为c 的正方形中,有四个斜边为c 的全等直角三角形,已知其直角边长为a ,b.利用这个图试说明勾股定理?
C
F 27. (8分)如图,将图案向左平移10个单位长度,在向下平移3个单位长度,
请你做出平移后的图案,观察平移后的图案,你得到什么感悟?
28.(8分)如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB
为8cm ,长BC 为10cm 。
当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ),想一想,此时EC 有多长?用你学过的方法进行解释.
A
D
E
B F
C
C B
D
A。