初中数学解直角三角形练习题及答案

合集下载

解直角三角形大题及答案

解直角三角形大题及答案

解直角三角形大题及答案直角三角形是初中数学中比较基础而重要的知识点,下面给出几道解直角三角形的大题及答案。

大题一已知直角三角形的一条直角边为6cm,另一条直角边为8cm,求斜边长。

解析:根据勾股定理可以求出斜边长,即$c=\sqrt{a^2+b^2}$。

带入数据得$c=\sqrt{6^2+8^2}=10$,所以斜边长为10cm。

答案:10cm大题二如图,直角边AC长为12cm,BC长为16cm,连接AB并延长线段交CD于点D,且CE垂直于BD,求CE的长。

解析:首先要求出BD的长度。

由$AC^2+BC^2=BD^2$可得$BD=\sqrt{12^2+16^2}=20$。

然后根据相似三角形CC’E、B’BD可以列出比例$\frac{CE}{BD}=\frac{BC}{B'D}$,即$\frac{CE}{20}=\frac{16}{28}$,解之得$CE=\frac{80}{7}$。

答案:$\frac{80}{7}$cm大题三已知一艘轮船从岸边出发,航向为东北偏东,速度为20km/h,船行了300km到达目的地。

试画出向量图,并求出船行的时间。

解析:如图所示,$\vec{v}=(20\cos45\degree,20\sin45\degree)=(10\sqrt{2},10\sqrt{2})$。

由船行了300km可得船行时间为$\frac{300}{\|\vec{v}\|}=\frac{300}{20}=15$小时。

答案:15小时大题四如图,正方形ABCD中,P点在BC边上,$\anglePAD=45\degree$,PD=2,BP=4,则AP长为多少?解析:如图所示,由正方形ABCD的对称性可得$\angle PAD=\angle BCA=45\degree$,则$\triangle PAD$与$\triangle PBC$相似。

设$AP=x$,则$\frac{x}{4}=\frac{2}{x}$,解之得$x=2\sqrt{2}$。

(完整版)初中解直角三角形练习题

(完整版)初中解直角三角形练习题

解直角三角形练习题一、 真空题: 1、 在Rt △ABC 中,∠B =900,AB =3,BC =4,则sinA= 2、在Rt △ABC 中,∠C =900,AB =,35cm BC cm=则SinA= cosA= 3、Rt △ABC 中,∠C =900,SinA=54,AB=10,则BC =4、α是锐角,若sin α=cos150,则α= 若sin53018\=0.8018,则cos36042\=5、 ∠B 为锐角,且2cosB -1=0则∠B =6、在△ABC 中,∠C =900,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,a =9,b =12,则sinA= sinB=7、 Rt △ABC 中,∠C =900,tanA=0.5,则cotA= 8、 在Rt △ABC 中,∠C =900,若b a 32=则tanA= 9.等腰三角形中,腰长为5cm ,底边长8cm ,则它的底角的正切值是10、若∠A 为锐角,且tan 2A+2tanA -3=0则∠A = 11、Rt △ABC 中,∠A =600,c=8,则a = ,b = 12、在△ABC 中,若32=c ,b =3,则tanB= ,面积S = 13、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC = 14、在△ABC 中,∠B =900,AC 边上的中线BD =5,AB =8,则tanACB=二、选择题1、在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦、余弦值 ( )A 、都扩大2倍B 、都扩大4倍C 、没有变化D 、都缩小一半2、若∠A 为锐角,且cotA <3,则∠A ( )A 、小于300B 、大于300C 、大于450且小于600D 、大于600 3、在Rt △ABC 中,已知a 边及∠A ,则斜边应为 ( ) A 、asinA B 、A a sin C 、acosA D 、Aa cos 4、等腰三角形底边与底边上的高的比是2:3,则顶角为( ) A 、600 B 、900 C 、1200 D 、15005、在△ABC 中,A ,B 为锐角,且有sinA =cosB ,则这个三角形是( )A 、等腰三角形B 、直角三角形C 、钝角三角形D 、锐角三角形6、有一个角是300的直角三角形,斜边为1cm ,则斜边上的高为( )A 、41cmB 、21cmC 、43cmD 、23cm三、求下列各式的值1、sin 2600+cos 26002、sin600-2sin300cos3003. sin300-cos 24504. 2cos450+|32-|5. 0045cos 360sin 2+ 6. 130sin 560cos 300-7. 2sin 2300·tan300+cos600·cot300 8. sin 2450-tan 2300四、解答下列各题1、在Rt △ABC 中,∠C =900,,AB =13,BC =5, 求sinA, cosA, tanA, cotA2. 在Rt △ABC 中,∠C =900,若1312sin =A 求cosA, sinB, cosB3. 在Rt △ABC 中,∠C =900,b=17, ∠B=450,求a, c 与∠A四、根据下列条件解直角三角形。

初三数学解直角三角形试题答案及解析

初三数学解直角三角形试题答案及解析

初三数学解直角三角形试题答案及解析1.一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值:,)【答案】53米.【解析】首先利用三角形的外角的性质求得∠BAD的度数,得到AD的长度,然后在直角△ADC 中,利用三角函数即可求解.试题解析:∵∠ADC=∠B+∠BAD,∴∠BAD=∠ADC-∠B=60°-30°=30°,∴∠B=∠BAD,∴AD=BD=62(米).在直角△ACD中,AC=AD•sin∠ADC=62×=31≈31×1.7=52.7≈53(米).答:小岛的高度约为53米.【考点】解直角三角形的应用-仰角俯角问题.2.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;(3)求cos36°-cos72°的值.【答案】(1)证明见解析;(2);(3).【解析】(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=36°,∵∠CBD=∠A=36°,∠C=∠C,∴△ABC∽△BCD;(2)∵∠A=∠ABD=36°,∴AD=BD,∵BD=BC,∴AD=BD=CD=1,设CD=x,则有AB=AC=x+1,∵△ABC∽△BCD,∴,即,整理得:x2+x-1=0,解得:x1=,x2=(负值,舍去),则x=;(3)过B作BE⊥AC,交AC于点E,∵BD=CD,∴E为CD中点,即DE=CE=,在Rt△ABE中,cosA=cos36°=,在Rt△BCE中,cosC=cos72°=,则cos36°-cos72°=-=.【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.3.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,AD=3,cosB=3/5,则AC等于()A.4B.5C.6D.7【答案】B.【解析】∵∠BAC=90°,AD⊥BC于D,∴∠BAD+∠CAD=90°,∠BAD+∠B=90°,∴∠CAD=∠B,∴cos∠CAD=cosB=,在直角△ACD中,∵∠ADC=90°,AD=3,∴cos∠CAD=,∴AC=5.故选B.【考点】解直角三角形.4.在△ACB中,∠C=90°,AB=10,,,.则BC的长为()A.6B.7.5C.8D.12.5【答案】A.【解析】∵∠C=90°,∴.又∵AB=10,∴.故选A.【考点】1.解直角三角形;2.锐角三角函数定义.5.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【答案】(1)10米;(2)19米.【解析】(1)过点A作AH⊥PQ,垂足为点H,利用斜坡AP的坡度为1:2.4,得出AH,PH,AH的关系求出即可;(2)利用矩形性质求出设BC=x,则x+10=24+DH,再利用tan76°=,求出即可.试题解析::(1)过点A作AH⊥PQ,垂足为点H.∵斜坡AP的坡度为1:2.4,∴,设AH=5k,则PH=12k,由勾股定理,得AP=13k.∴13k=26.解得k=2.∴AH=10.答:坡顶A到地面PQ的距离为10米.(2)延长BC交PQ于点D.∵BC⊥AC,AC∥PQ,∴BD⊥PQ.∴四边形AHDC是矩形,CD=AH=10,AC=DH.∵∠BPD=45°,∴PD=BD.设BC=x,则x+10=24+DH.∴AC=DH=x-14.在Rt△ABC中,tan76°=,即,解得x=,即x≈19,答:古塔BC的高度约为19米.【考点】1.解直角三角形的应用-坡度坡角问题;2.解直角三角形的应用-仰角俯角问题.6.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin 75°≈0.965 9,cos 75°≈0.258 8,tan 75°≈3.732,≈1.732,60千米/小时≈16.7米/秒)【答案】(1)112(米) (2)此车没有超过限制速度【解析】解:(1)在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC·tan ∠BAC=30×tan 75°≈30×3.732≈112(米).(2)∵此车速度=112÷8=14(米/秒)<16.7(米/秒)=60(千米/小时)∴此车没有超过限制速度.7.在△ABC中,若∠A、∠B满足|cos A-|+=0,则∠C=________.【答案】75°【解析】∵|cos A-|+=0,∴cos A-=0,sin B-=0,∴cos A=,sin B=,∴∠A=60°,∠B=45°,则∠C=180°-∠A-∠B=180°-60°-45°=75°.8.在△ABC中,∠C=90°,,则().A.B.C.D.【答案】D.【解析】由sin A=,设∠A的对边是3k,则斜边是5k,∠A的邻边是4k.再根据正切值的定义,得tanA=.故选D.【考点】锐角三角函数.9.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】2.7【解析】过点B作BD⊥OA于D,过点C作CE⊥OA于E.在△BOD中,∠BDO=90°,∠DOB=45°,∴BD=OD=2cm,∴CE=BD=2cm.在△COE中,∠CEO=90°,∠COE=37°,∵tan37°=≈0.75,∴OE≈2.7cm.∴OC与尺上沿的交点C在尺上的读数约为2.7 cm.10.如图,一段河坝的横截面为梯形ABCD,试根据图中数据,求出坝底宽AD.(i=CE∶ED,单位:m)【答案】(7.5+4)m【解析】解:作BF⊥AD于点F.则BF=CE=4m,在直角△ABF中,AF===3m,在直角△CED中,根据i=,则ED===4m.则AD=AF+EF+ED=3+4.5+4=(7.5+4)m.11.如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)【答案】(5+5-5)千米【解析】解:过C作CD⊥AB于D,在Rt△ACD中,∵AC=10,∠A=30°,∴DC=ACsin30°=5,AD=ACcos30°=5,在Rt△BCD中,∵∠B=45°,∴BD=CD=5,BC=5,则用AC+BC-(AD+BD)=10+5-(5+5)=5+5-5(千米).答:汽车从A地到B地比原来少走(5+5-5)千米.12.在Rt△ABC中,若∠C=90°,cosA=,则sinA的值为()A.B.C.D.【答案】A.【解析】先根据特殊角的三角函数值求出∠A的值,再求出sinA的值即可.∵Rt△ABC中,∠C=90°,∴∠A是锐角,∵cosA==,∴设AB=25x,BC=7x,由勾股定理得:AC=24x,∴sinA=.故选A.考点:同角三角函数的关系.13.如图,在△中,,,则△的面积是()A.B.12C.14D.21【答案】A【解析】如图,作因为,所以.由勾股定理得.又,所以所以所以所以14.计算下列各题:(1);(2).【答案】(1)2 (2)【解析】解:(1)(2)15.在Rt△ABC中,∠C=90°,sinA=,则cosB的值为()A.B.C.D.【答案】C.【解析】在Rt△ABC中,∠C=90°,sinA=,设BC=3x,则AB=5x,∴AC=4x.∴cosB=.故选C.考点: 互余两角三角函数的关系.16.计算:【答案】-2.【解析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、负整数指数幂以及绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:考点: 实数的混合运算.17.若(为锐角),则=【答案】1.【解析】因为所以得,代入可得值为1【考点】正切和正、余弦函数的关系.18.如图所示,直角三角形纸片的两直角边长分别为6,8,现将如图那样折叠,使点与点重合,折痕为,则的值是________【答案】.【解析】折叠后形成的图形相互全等,利用三角函数的定义可求出.根据题意,BE=AE.设CE=x,则BE=AE=8-x.在Rt△BCE中,根据勾股定理得:BE2=BC2+CE2,即(8-x)2=62+x2解得x=,∴tan∠CBE==考点:(1)锐角三角函数的定义;(2)勾股定理;(3)翻折变换(折叠问题).19.(1)一个人由山底爬到山顶,需先爬450的山坡200m,再爬300的山坡300m,求山的高度(结果可保留根号)。

历年初三数学中考解直角三角形练习题及答案

历年初三数学中考解直角三角形练习题及答案
所以 DC=DB+BC=2+
在Rt∆ADC中tanD=tan150=
评注: 利用含300角的直角三角形巧妙地构造出含150角的直角三角形,从而求出150角的三角函数值。利用此图还可以求出750的各三角函数值。
强化训练
一、填空题:
⒈ 在∆ABC中,若AC= 。BC= AB=3,则cosA=____________.
∴AB=4BD
在Rt∆ABD中,AD=
∴ sinB=
cosB=
tanB=
cotB=
[例4]计算
分析:本题主要是考察特殊角的三角函数值和分母有理化知识
解:原式= .
= =
=
[例5] 要求tan300的值.可构造如图19-5所示的直角三角形进行计算,作Rt∆ABC,使C=900,斜边AB=2,直角边AC=1,那么BC= ∠ABC=300,所以 tan300=
在此图的基础上,通过添加适当的辅助线,可求出tan150的值。请你就此图添加辅助线,并求出tan150的值。
分析:只需找出一个150的角,并放入一个可求出各边长的直角三角形中。
解:延长CB至D,使BD=AB。连结AD,如图19-6
A A
2 1
2 1
300
B C D B C
图19-5 图19-6
则BD=2,D=150
6、用计算器计算:sin56050/+cos39030/-tan46010/=_______
分析会用计算器求任意一个锐角的三角函数值,然后进行计算。原式=0.5671.
7、已知方程4x2-2(m+1)x+m=0的两根恰为一个直角三角形两锐角的余弦,则m=______
分析设这个直角三角形的两个锐角分别为α、β,且α+β=900。cosβ=sinα.由一元二次方程根与系数的关系得:cosα+cosβ= ,cosαcosβ=

解直角三角形测试题与答案

解直角三角形测试题与答案

解直角三角形测试题与答案一、选择题(每小题 5 分,共 25 分)1、在直角三角形中,若一个锐角为 30°,斜边与较小直角边的和为 12,则斜边的长为()A 4B 6C 8D 10答案:C解析:设较小直角边为 x,则斜边为 2x,由题意得 2x + x = 12,解得 x = 4,所以斜边为 8。

2、在 Rt△ABC 中,∠C = 90°,sinA =,则 tanB 的值为()A B C D答案:D解析:因为 sinA =,设 BC = 4x,AB = 5x,则 AC = 3x,所以tanB =。

3、如图,在△ABC 中,∠C = 90°,AC = 8,∠A 的平分线 AD =,则 BC 的长为()A 12B 10C 8D 6答案:B解析:因为 AD 是∠A 的平分线,所以∠CAD =∠BAC。

在Rt△ACD 中,cos∠CAD =,即,解得 CD = 6。

在 Rt△ABC 中,BC =。

4、已知在 Rt△ABC 中,∠C = 90°,tanA =,则 sinA 的值为()A B C D答案:B解析:设 BC = 3x,AC = 4x,则 AB = 5x,所以 sinA =。

5、如图,在菱形 ABCD 中,DE⊥AB,cosA =,BE = 2,则tan∠DBE 的值是()A B 2C D答案:C解析:因为 cosA =,设 AD = 5x,AE = 3x,则 DE = 4x。

因为BE = 2,所以 5x 3x = 2,解得 x = 1,所以 DE = 4。

在 Rt△BDE 中,tan∠DBE =。

二、填空题(每小题 5 分,共 25 分)1、在 Rt△ABC 中,∠C = 90°,若 sinA =,AB = 10,则 BC=________。

答案:6解析:因为 sinA =,所以,设 BC = 3x,AB = 5x,因为 AB =10,所以 5x = 10,解得 x = 2,所以 BC = 6。

解直角三角形测试题与答案

解直角三角形测试题与答案

解直角三角形测试题与答案一、选择题(每小题 3 分,共 30 分)1、在直角三角形中,若一个锐角为 30°,斜边与较小直角边的和为 12,则斜边的长为()A 4B 6C 8D 10答案:C解析:在直角三角形中,30°角所对的直角边等于斜边的一半。

设较小直角边为 x,则斜边为 2x,由题意得 2x + x = 12,解得 x = 4,所以斜边为 8。

2、已知在 Rt△ABC 中,∠C = 90°,sinA =,则 tanB 的值为()A B C D答案:A解析:因为 sinA =,所以设 BC = 3x,AB = 5x,则 AC = 4x。

所以 tanB =。

3、在△ABC 中,∠C = 90°,AB = 15,sinA =,则 BC 等于()A 9B 12C 10D 6答案:B解析:因为 sinA =,所以 BC = AB×sinA = 15×= 9。

4、如图,在 Rt△ABC 中,∠C = 90°,AC = 4,AB = 5,则cosB 的值是()A B C D答案:A解析:因为在 Rt△ABC 中,∠C = 90°,AC = 4,AB = 5,所以BC = 3。

所以 cosB =。

5、一个直角三角形的两条直角边分别为 6 和 8,则其斜边上的高为()A 48B 5C 3D 10答案:A解析:根据勾股定理可得斜边为 10,设斜边上的高为 h,根据面积相等可得 ×6×8 = ×10×h,解得 h = 48。

6、在 Rt△ABC 中,∠C = 90°,若 sinA =,则 cosA 的值为()A B C D答案:B解析:因为 sin²A + cos²A = 1,sinA =,所以 cosA =。

7、如图,在 Rt△ABC 中,∠ACB = 90°,CD⊥AB 于点 D,若AC =,BC = 2,则 sin∠ACD 的值为()A B C D答案:A解析:因为∠ACB = 90°,AC =,BC = 2,所以 AB = 3。

第一章 解直角三角形单元测试卷(标准难度 含答案)

第一章 解直角三角形单元测试卷(标准难度 含答案)

浙教版初中数学九年级下册第一单元《解直角三角形》(标准难度)(含答案解析)考试范围:第一单元;   考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1. 如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是( )A. sinA=√32B. tanA=12C. cosB=√32D. tanB=√32. 如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=35,DF=5,则BC的长为( )A. 8B. 10C. 12D. 163. 如图,在Rt△BAD中,延长斜边BD到点C,使DC=12BD,连接AC,若tan B=53,则tan∠CAD的值为( )A. √33B. √35C. 13D. 154. 在实数π,13,√2,sin30°中,无理数的个数为( )A. 1B. 2C. 3D. 45. 如图,△ABC的三个顶点分别在正方形网格的格点上,下列三角函数值错误的是( )A. sinB=35B. cosB=45C. tanB=34D. tanA=436. 如图,CD是平面镜,光线从点A出发,经CD上点E反射后照射到点B.若入射角为α,AC⊥CD,BD⊥CD,垂足分别为点C,D,且AC=3,BD=6,CD=11,则tanα的值为( )A. 113B. 311C. 911D. 1197. 在Rt△ABC中,∠C=90∘,cosA=√32,∠B的平分线BD交AC于点D,若AD=16,则BC的长为( )A. 6B. 8C. 8√3D. 128. 如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为( )A. ①②;B. ②③;C. ①②③;D. ①③;9. 某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为( )A. 95sinα米B. 95cosα米C. 59sinα米D. 59cosα米10. 如图,在△ABC中,∠B=45°,∠C=60°,AD⊥BC于点D,BD=√3.若E,F分别为AB,BC的中点,则EF的长为( )A. √33B. √32C. 1D. √6211. 如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=α,则点A到OC的距离等于( )A. a⋅sinα+b⋅sinαB. a⋅cosα+b⋅cosαC. a⋅sinα+b⋅cosαD. a⋅cosα+b⋅sinα12. 如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸点A处,测得河的北岸边点B在其北偏东45∘方向然后向西走80米到达C点,测得点B在点C的北偏东60∘方向,则这段河的宽度为( )A. 80(√3+1)米B. 40(√3+1)米C. (120−40√3)米D. 40(√3−1)米第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 在Rt△ABC中,∠C=90°,AB=3,BC=2,则cosA的值是.14. 在菱形ABCD中,DE⊥AB,垂足是E,DE=6,sin A=3,则菱形ABCD的周长是.515. 若锐角α满足cosα<√2且tanα<√3,则α的范围是.216. 如图,在△ABC中,AB=AC=5cm,cosB=3.如果⊙O的半径为√10cm,且经过点B,5C,那么线段AO=cm.三、解答题(本大题共9小题,共72分。

解直角三角形测试题与答案

解直角三角形测试题与答案

解直角三角形测试题与答案一.选择题〔共12小题〕1.〔2021•义乌市〕如图,点A〔t,3〕在第一象限,OA与x轴所夹的锐角为α,tanα=,那么t的值是〔〕A.1B.C.2D.32.〔2021•巴中〕在Rt△ABC中,∠C=90°,sinA=,那么tanB的值为〔〕A.B.C.D.3.〔2021•凉山州〕在△ABC中,假设|cosA﹣|+〔1﹣tanB〕2=0,那么∠C的度数是〔〕A.45°B.60°C.75°D.105°4.〔2021•随州〕如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,那么B点到河岸AD的距离为〔〕A.100米B.50米C.D.50米米5.〔2021•凉山州〕拦水坝横断面如下图,迎水坡AB的坡比是1:,坝高BC=10m,那么坡面AB的长度是〔〕A.15m B.20m C.10m D.20m6.〔2021•百色〕从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,两栋楼之间的水平距离为6米,那么教学楼的高CD是〔〕A.〔6+6〕米B.〔6+3〕米C.〔6+2〕米D.12米7.〔2021•苏州〕如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,那么该船航行的距离〔即AB的长〕为〔〕A.4km B.2km C.2km D.〔+1〕km 8.〔2021•路北区二模〕如图,△ABC的项点都在正方形网格的格点上,那么cosC的值为〔〕A.B.C.D.9.〔2021•长宁区一模〕如图,在△ABC中,∠ACB=90°,CD⊥AB于D,下边各组边的比不能表示sinB的〔〕A.B.C.D.10.〔2021•工业园区一模〕假设tan〔α+10°〕=1,那么锐角α的度数是〔〕A.20°B.30°C.40°D.50°11.〔2021•鄂州四月调考〕在△ABC中,∠A=120°,AB=4,AC=2,那么sinB的值是〔〕A.B.C.D.12.〔2021•邢台一模〕在Rt△ABC中,∠C=90°,假设AB=4,sinA=,那么斜边上的高等于〔〕A.B.C.D.二.填空题〔共6小题〕13.〔2021•济宁〕如图,在△ABC中,∠A=30°,∠B=45°,AC=,那么AB的长为_________.14.〔2021•徐汇区一模〕如图,梯形ABCD中,AB∥CD,AB⊥BC,且AD⊥BD,假设CD=1,BC=3,那么∠A的正切值为_________.15.〔2021•虹口区一模〕计算:cos45°+sin260°=_________.16.〔2021•武威模拟〕某人沿坡度为i=3:4斜坡前进100米,那么它上升的高度是_________米.17.〔2021•海门市模拟〕某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB的高度.如图,他们先在点C处测得建筑物AB的顶点A的仰角为30°,然后向建筑物AB前进20m到达点D处,又测得点A 的仰角为60°,那么建筑物AB的高度是_________m.18.〔2021•扬州〕在△ABC中,AB=AC=5,sin∠ABC=0.8,那么BC=_________.三.解答题〔共6小题〕19.〔2021•盘锦〕如图,用一根6米长的笔直钢管弯折成如下图的路灯杆ABC,AB垂直于地面,线段AB与线段BC所成的角∠ABC=120°,假设路灯杆顶端C到地面的距离CD=,求AB长.20.〔2021•遵义〕如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.〔注:坡度i是指坡面的铅直高度与水平宽度的比〕21.〔2021•哈尔滨〕如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.〔1〕求两建筑物底部之间水平距离BD的长度;〔2〕求建筑物CD的高度〔结果保存根号〕.22.〔2021•邵阳〕一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.〔温馨提示:sin53°≈0.8,cos53°≈0.6〕23.〔2021•射阳县三模〕小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.斜坡的坡度为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,求树的高度.24.〔2021•崇川区一模〕如图,某登山队在山脚A处测得山顶B处的仰角为45°,沿坡角30°的斜坡AD前进1000m 后到达D处,又测得山顶B处的仰角为60°.求山的高度BC.参考答案与试题解析一.选择题〔共12小题〕1.〔2021•义乌市〕如图,点A〔t,3〕在第一象限,OA与x轴所夹的锐角为α,tanα=,那么t的值是〔〕A.1B.C.2D.3考点:锐角三角函数的定义;坐标与图形性质.专题:数形结合.分析:根据正切的定义即可求解.解答:解:∵点A〔t,3〕在第一象限,∴AB=3,OB=t,又∵tanα==,∴t=2.应选:C.点评:此题考察锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2.〔2021•巴中〕在Rt△ABC中,∠C=90°,sinA=,那么tanB的值为〔〕A.B.C.D.考点:互余两角三角函数的关系.专题:计算题.分析:根据题意作出直角△ABC,然后根据sinA=,设一条直角边BC为5x,斜边AB为13x,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出tan∠B.解答:解:∵sinA=,∴设BC=5x,AB=13x,那么AC==12x,故tan∠B==.应选:D.点评:此题考察了互余两角三角函数的关系,属于根底题,解题的关键是掌握三角函数的定义和勾股定理的运用.3.〔2021•凉山州〕在△ABC中,假设|cosA﹣|+〔1﹣tanB〕2=0,那么∠C的度数是〔〕A.45°B.60°C.75°D.105°考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.专题:计算题.分析:根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C 的度数.解答:解:由题意,得cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°.应选:C.点评:此题考察了特殊角的三角形函数值及绝对值、偶次方的非负性,属于根底题,关键是熟记一些特殊角的三角形函数值,也要注意运用三角形的内角和定理.4.〔2021•随州〕如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,那么B点到河岸AD的距离为〔〕A.100米B.50米C.D.50米米考点:解直角三角形的应用.专题:几何图形问题.分析:过B作BM⊥AD,根据三角形内角与外角的关系可得∠ABC=30°,再根据等角对等边可得BC=AC,然后再计算出∠CBM的度数,进而得到CM长,最后利用勾股定理可得答案.解答:解:过B作BM⊥AD,∵∠BAD=30°,∠BCD=60°,∴∠ABC=30°,∴AC=CB=100米,∵BM⊥AD,∴∠BMC=90°,∴∠CBM=30°,∴CM=BC=50米,∴BM=CM=50米,应选:B.点评:此题主要考察了解直角三角形的应用,关键是证明AC=BC,掌握直角三角形的性质:30°角所对直角边等于斜边的一半.5.〔2021•凉山州〕拦水坝横断面如下图,迎水坡AB的坡比是1:,坝高BC=10m,那么坡面AB的长度是〔〕A.15m B.20m C.10m D.20m考点:解直角三角形的应用-坡度坡角问题.专题:计算题.分析:在Rt△ABC中,坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.解答:解:Rt△ABC中,BC=10m,tanA=1:;∴AC=BC÷tanA=10m,∴AB==20m.应选:D.点评:此题主要考察学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答此题的关键.6.〔2021•百色〕从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,两栋楼之间的水平距离为6米,那么教学楼的高CD是〔〕A.〔6+6〕米B.〔6+3〕米C.〔6+2〕米D.12米考点:解直角三角形的应用-仰角俯角问题.专题:几何图形问题.分析:在Rt△ABC求出CB,在Rt△ABD中求出BD,继而可求出CD.解答:解:在Rt△ACB中,∠CAB=45°,AB⊥DC,AB=6米,∴BC=6米,在Rt△ABD中,∵tan∠BAD=,∴BD=AB•tan∠BAD=6米,∴DC=CB+BD=6+6〔米〕.应选:A.点评:此题考察仰角俯角的定义,要求学生能借助仰角俯角构造直角三角形并解直角三角形,难度一般.7.〔2021•苏州〕如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,那么该船航行的距离〔即AB的长〕为〔〕A.4km B.2km C.2km D.〔+1〕km考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2,再由△ABD是等腰直角三角形,得出BD=AD=2,那么AB=AD=2.解答:解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离〔即AB的长〕为2km.应选:C.点评:此题考察了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.8.〔2021•路北区二模〕如图,△ABC的项点都在正方形网格的格点上,那么cosC的值为〔〕A.B.C.D.考点:锐角三角函数的定义;勾股定理.专题:网格型.分析:先构建格点三角形ADC,那么AD=2,CD=4,根据勾股定理可计算出AC,然后根据余弦的定义求解.解答:解:在格点三角形ADC中,AD=2,CD=4,∴AC===2,∴cosC===.应选B.点评:此题考察了锐角三角函数的定义:在直角三角形中,一锐角的余弦等于它的邻边与斜边的比值.也考察了勾股定理.9.〔2021•长宁区一模〕如图,在△ABC中,∠ACB=90°,CD⊥AB于D,下边各组边的比不能表示sinB的〔〕A.B.C.D.考点:锐角三角函数的定义.分析:利用两角互余关系得出∠B=∠ACD,进而利用锐角三角函数关系得出即可.解答:解:∵在△ABC中,∠ACB=90°,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠B=∠ACD,∴sinB===,故不能表示sinB的是.应选:B.点评:此题主要考察了锐角三角函数的定义,正确把握锐角三角函数关系是解题关键.10.〔2021•工业园区一模〕假设tan〔α+10°〕=1,那么锐角α的度数是〔〕A.20°B.30°C.40°D.50°考点:特殊角的三角函数值.分析:根据tan30°=解答即可.解答:解:∵tan〔α+10°〕=1,∴tan〔α+10°〕=.∴α+10°=30°.∴α=20°.应选A.点评:熟记特殊角的三角函数值是解答此题的关键.11.〔2021•鄂州四月调考〕在△ABC中,∠A=120°,AB=4,AC=2,那么sinB的值是〔〕A.B.C.D.考点:解直角三角形.分析:首先延长BA过点C作CD⊥BA延长线于点D,进而得出AD,CD,BC的长,再利用锐角三角函数关系求出即可.解答:解:延长BA过点C作CD⊥BA延长线于点D,∵∠CAB=120°,∴∠DAC=60°,∴∠ACD=30°,∵AB=4,AC=2,∴AD=1,CD=,BD=5,∴BC==2,∴sinB===.应选:B.点评:此题主要考察了解直角三角形,作出正确辅助线构造直角三角形是解题关键.12.〔2021•邢台一模〕在Rt△ABC中,∠C=90°,假设AB=4,sinA=,那么斜边上的高等于〔〕A.B.C.D.考点:解直角三角形.分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.解答:解:根据题意画出图形,如下图,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC•BC=AB•CD,∴CD==.应选C.点评:此题考察了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法那么是解此题的关键.二.填空题〔共6小题〕13.〔2021•济宁〕如图,在△ABC中,∠A=30°,∠B=45°,AC=,那么AB的长为3+.考点:解直角三角形.专题:几何图形问题.分析:过C作CD⊥AB于D,求出∠BCD=∠B,推出BD=CD,根据含30度角的直角三角形求出CD,根据勾股定理求出AD,相加即可求出答案.解答:解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+.故答案为:3+.点评:此题考察了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比拟好的题目.14.〔2021•徐汇区一模〕如图,梯形ABCD中,AB∥CD,AB⊥BC,且AD⊥BD,假设CD=1,BC=3,那么∠A的正切值为.考点:锐角三角函数的定义.分析:求出∠ABC=∠ADB=90°,根据三角形内角和定理求出∠A=∠DBC,解直角三角形求出即可.解答:解:∵AB∥CD,AB⊥BC,∴DC⊥BC,∠ABC=90°,∴∠C=90°,∵AD⊥BD,∴∠ADB=90°,∴∠DBC+∠ABD=∠A+∠ABD=90°,∴∠A=∠DBC,∵CD=1,BC=3,∴∠A的正切值为tanA=tan∠DBC==,故答案为:3.点评:此题考察了锐角三角函数的定义,三角形内角和定理的应用,关键是求出∠A=∠DBC和求出tan∠DBC=.15.〔2021•虹口区一模〕计算:cos45°+sin260°=.考点:特殊角的三角函数值.分析:将cos45°=,sin60°=代入求解.解答:解:原式=×+〔〕2=1+=.故答案为:.点评:此题考察了特殊角的三角函数值,解答此题的关键是熟记几个特殊角的三角函数值.16.〔2021•武威模拟〕某人沿坡度为i=3:4斜坡前进100米,那么它上升的高度是60米.考点:解直角三角形的应用-坡度坡角问题.分析:根据坡度的定义可以求得AC、BC的比值,根据AC、BC的比值和AB的长度即可求得AC的值,即可解题.解答:解:由题意得,AB=100米,tanB==3:4,设AC=3x,那么BC=4x,那么〔3x〕2+〔4x〕2=1002,解得:x=20,那么AC=3×20=60〔米〕.故答案为:60.点评:此题考察了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于根底题.17.〔2021•海门市模拟〕某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB的高度.如图,他们先在点C处测得建筑物AB的顶点A的仰角为30°,然后向建筑物AB前进20m到达点D处,又测得点A 的仰角为60°,那么建筑物AB的高度是m.考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:设AB=x,在Rt△ABC中表示出BC,在Rt△ABD中表示出BD,再由CD=20米,可得关于x的方程,解出即可得出答案.解答:解:设AB=x,在Rt△ABC中,∠C=30°,那么BC==x,在Rt△ABD中,∠ADB=60°,那么BD==x,由题意得,x﹣x=20,解得:x=10.即建筑物AB的高度是10m.故答案为:10.点评:此题考察了解直角三角形的应用,解答此题的关键是熟练掌握三角函数的定义,利用三角函数的知识表示出相关线段的长度.18.〔2021•扬州〕在△ABC中,AB=AC=5,sin∠ABC=0.8,那么BC=6.考点:解直角三角形;等腰三角形的性质.分析:根据题意做出图形,过点A作AD⊥BC于D,根据AB=AC=5,sin∠ABC=0.8,可求出AD的长度,然后根据勾股定理求出BD的长度,继而可求出BC的长度.解答:解:过点A作AD⊥BC于D,∵AB=AC,∴BD=CD,在Rt△ABD中,∵sin∠ABC==0.8,∴AD=5×0.8=4,那么BD==3,∴BC=BD+CD=3+3=6.故答案为:6.点评:此题考察了解直角三角形的知识,难度一般,解答此题的关键是构造直角三角形并解直角三角形以及勾股定理的应用.三.解答题〔共6小题〕19.〔2021•盘锦〕如图,用一根6米长的笔直钢管弯折成如下图的路灯杆ABC,AB垂直于地面,线段AB与线段BC所成的角∠ABC=120°,假设路灯杆顶端C到地面的距离CD=,求AB长.考点:解直角三角形的应用.专题:几何图形问题.分析:过B作BE⊥DC于E,设AB=x米,那么CE=5.5﹣x,BC=6﹣x,根据30°角的正弦值即可求出x,那么AB 求出.解答:解:过B作BE⊥DC于E,设AB=x米,∴CE=5.5﹣x,BC=6﹣x,∵∠ABC=120°,∴∠CBE=30°,∴sin30°==,解得:x=5,答:AB的长度为5米.点评:考察了解直角三角形,解直角三角形的一般过程是:①将实际问题抽象为数学问题〔画出平面图形,构造出直角三角形转化为解直角三角形问题〕.②根据题目特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.20.〔2021•遵义〕如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.〔注:坡度i是指坡面的铅直高度与水平宽度的比〕考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.专题:应用题.分析:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.解答:解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵i===tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=〔25+10〕米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=〔25+10〕米,∴AB=AH+HB=〔35+10〕米.答:楼房AB的高为〔35+10〕米.点评:此题考察了解直角三角形的应用,涉及仰角俯角及坡度坡角的知识,构造直角三角形是解题关键.21.〔2021•哈尔滨〕如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.〔1〕求两建筑物底部之间水平距离BD的长度;〔2〕求建筑物CD的高度〔结果保存根号〕.考点:解直角三角形的应用-仰角俯角问题.专题:几何图形问题.分析:〔1〕根据题意得:BD∥AE,从而得到∠BAD=∠ADB=45°,利用BD=AB=60,求得两建筑物底部之间水平距离BD的长度为60米;〔2〕延长AE、DC交于点F,根据题意得四边形ABDF为正方形,根据AF=BD=DF=60,在Rt△AFC中利用∠FAC=30°求得CF,然后即可求得CD的长.解答:解:〔1〕根据题意得:BD∥AE,∴∠ADB=∠EAD=45°,∵∠ABD=90°,∴∠BAD=∠ADB=45°,∴BD=AB=60,∴两建筑物底部之间水平距离BD的长度为60米;〔2〕延长AE、DC交于点F,根据题意得四边形ABDF为正方形,∴AF=BD=DF=60,在Rt△AFC中,∠FAC=30°,∴CF=AF•tan∠FAC=60×=20,又∵FD=60,∴CD=60﹣20,∴建筑物CD的高度为〔60﹣20〕米.点评:考察解直角三角形的应用;得到以AF为公共边的2个直角三角形是解决此题的突破点.22.〔2021•邵阳〕一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.〔温馨提示:sin53°≈0.8,cos53°≈0.6〕考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.解答:解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50〔海里〕,∴海警船到大事故船C处所需的时间大约为:50÷40=〔小时〕.点评:此题考察了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.23.〔2021•射阳县三模〕小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.斜坡的坡度为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,求树的高度.考点:解直角三角形的应用-坡度坡角问题.分析:延长AC交BF延长线于D点,那么BD即为AB的影长,然后根据物长和影长的比值计算即可.解答:解:延长AC交BF延长线于D点,那么∠CFE=30°,作CE⊥BD于E,在Rt△CFE中,∠CFE=30°,CF=4m,∴CE=2〔米〕,EF=4cos30°=2〔米〕,在Rt△CED中,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,CE=2〔米〕,CE:DE=1:2,∴DE=4〔米〕,∴BD=BF+EF+ED=12+2〔米〕在Rt△ABD中,AB=BD=〔12+2〕=〔6+〕〔米〕.答:树的高度为:〔6+〕〔米〕.点评:此题考察了解直角三角形的应用以及相似三角形的性质.解决此题的关键是作出辅助线得到AB的影长.24.〔2021•崇川区一模〕如图,某登山队在山脚A处测得山顶B处的仰角为45°,沿坡角30°的斜坡AD前进1000m 后到达D处,又测得山顶B处的仰角为60°.求山的高度BC.考点:解直角三角形的应用-仰角俯角问题.分析:过点D作DE⊥AC,△ACB是等腰直角三角形,直角△ADE中满足解直角三角形的条件.在直角△BDF 中,根据三角函数可得BF,进一步得到BC,即可求出山高.解答:解:过D分别作DE⊥AC与E,DF⊥BC于F.∵在Rt△ADE中,AD=1000m,∠DAE=30°,∴DE=AD=500m.∵∠BAC=45°,∴∠DAB=45°﹣30°=15°,∠ABC=90°﹣45°=45°.∵在Rt△BDF中,∠BDF=60°,∴∠DBF=90°﹣60°=30°,∴∠DBA=45°﹣30°=15°,∵∠DAB=15°,∴∠DBA=∠DAB,∴BD=AD=1000m,∴在Rt△BDF中,BF=BD=500m,∴山的高度BC为〔500+500〕m.点评:此题考察了解直角三角形的应用﹣仰角俯角问题的应用,根据得出FC,BF的长是解题关键.。

九年级数学下册《解直角三角形》典型例题(含答案)

九年级数学下册《解直角三角形》典型例题(含答案)

《解直角三角形》典型例题例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形.分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决.解 (1); (2)由ab B =tan ,知 ; (3)由c a B =cos ,知860cos 4cos =︒==B a c . 说明 此题还可用其他方法求b 和c .例 2 在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形.解法一 ∵∴设,则由勾股定理,得 ∴ .∴. 解法二 133330tan =⨯=︒=b a说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题.例 3 设中, 于D ,若 ,解三角形ABC .分析“解三角形ABC”就是求出的全部未知元素.本题CD不是的边,所以应先从Rt入手.解在Rt中,有:∴在Rt中,有说明(1)应熟练使用三角函数基本关系式的变形,如:(2)平面几何中有关直角三角形的定理也可以结合使用,本例中“”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值:所以解直角三角形问题,应开阔思路,运用多种工具.例4在中,,求.分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差;(2)不是直角三角形,可构造直角三角形求解.解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有,且有;在中,,且,∴;于是,有,则有说明还可以这样求:例5 如图,在电线杆上离地面高度5m 的C 点处引两根拉线固定电线杆,一根拉线AC 和地面成60°角,另一根拉线BC 和地面成45°角.求两根拉线的总长度(结果用带根号的数的形式表示).分析 分别在两个直角三角形ADC 和BDC 中,利用正弦函数的定义,求出AC 和BC .解: 在Rt △ADC 中,331023560sin ==︒=DCAC在Rt △BDC 中,221022545sin ==︒=DC BC说明 本题考查正弦的定义,对于锐角三角函数的定义,要熟练掌握.。

九年级解直角三角形经典习题汇编附答案(超经典)

九年级解直角三角形经典习题汇编附答案(超经典)

解直角三角形命题人:申老师1、已知:如图,在ΔABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠B =30°,CD =6,求AB 的长.2、我国为了维护队钓鱼岛P 的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP ∥BD ),当轮船航行到距钓鱼岛20km 的A 处时,飞机在B 处测得轮船的俯角是45°;当轮船航行到C 处时,飞机在轮船正上方的E 处,此时EC =5km .轮船到达钓鱼岛P 时,测得D 处的飞机的仰角为30°.试求飞机的飞行距离BD (结果保留根号).3、如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为10米,坡角为︒55,路基高度为5.8米,求路基下底宽(精确到0.1米).C AD B4、为申办2010年冬奥会,须改变哈尔滨市的交通状况。

在大直街拓宽工程中,要伐掉一棵树AB ,在地面上事先划定以B 为圆心,半径与AB 等长的圆形危险区,现在某工人站在离B 点3米远的D 处,从C 点测得树的顶端A 点的仰角为60°,树的底部B 点的俯角为30°.问:距离B 点8米远的保护物是否在危险区内?5、如图,某一水库大坝的横断面是梯形ABCD ,坝顶宽CD =5米,斜坡AD =16米,坝高 6米,斜坡BC 的坡度3:1=i .求斜坡AD 的坡角∠A (精确到1分)和坝底宽AB .(精确到0.1米)6. 在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下的方案(如图1所示):(1) 在测点A 处安置测倾器,测得旗杆顶部M 的仰角∠MCE =α ; (2) 量出测点A 到旗杆底部N 的水平距离AN =m; (3) 量出测倾器的高度AC =h 。

根据上述测量数据,即可求出旗杆的高度MN 。

如果测量工具不变,请参照上述过程,重新设计一个方案测量某小山高度(如图2)1)在图2中,画出你测量小山高度MN 的示意图2)写出你的设计方案。

初二数学解直角三角形试题答案及解析

初二数学解直角三角形试题答案及解析

初二数学解直角三角形试题答案及解析1.为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图。

按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入。

(其中AB=9m,BC=0.5m)为标明限高,请你根据该图计算CE。

(精确到0.1m)(参考数值,,)【答案】2.3m【解析】根据锐角三角函数的定义,可在Rt△ACD中解得BD的值,进而求得CD的大小;在Rt△CDE中,利用正弦的定义,即可求得CE的值.解:在Rt△ABD中,∠BAD=18°,AB=9m,∴BD=AB×tan18°≈2.92m,∴CD=BD-BC=2.92-0.5=2.42m,在Rt△CDE中,∠CDE=72°,CD≈2.42m,∴CE=CD×sin72°≈2.3m.答:CE的高为2.3m.【考点】解直角三角形的应用点评:解直角三角形的应用是中考必考题,一般难度不大,正确作出辅助线构造直角三角形是解题关键.2.阳光明媚的一天,郑州某中学数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),可以提供的测量工具:皮尺、标杆、一副三角尺、小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:__________;(2)请画出测量示意图;(3)设树高为x,请用所测数据(用小写字母表示)求出x.【答案】(1)皮尺、标杆;(2)如下图;(3)【解析】根据题意特征可以构造相似三角形,根据相似三角形的性质求解即可.(1)所需的测量工具是:皮尺、标杆;(2)测量示意图如图所示:(3)如图,测得标杆DE=a,树和标杆的影长分别为AC=b,EF=c,由△DEF∽△BAC,得∴,∴.【考点】相似三角形的应用点评:相似三角形的应用是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.3.如图,由于台风的影响,一棵树在离地面处折断,树顶落在离树干底部处,则这棵树在折断前(不包括树根)长度是 m.【答案】16【解析】由题意分析可知,折断后的上面树的高度是,所以折断前的树德高度是16【考点】勾股定理点评:本题属于对勾股定理的基本知识的理解和运用4.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,•A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是()A.15 dm B.20dm C.25dm D.30dm【答案】C【解析】依题意知作楼梯平面图。

初二数学解直角三角形试题答案及解析

初二数学解直角三角形试题答案及解析

初二数学解直角三角形试题答案及解析1.如图,某河堤的横断面是梯形ABCD,BC∥AD,已知背水坡CD的坡度i=1:2.4,CD长为13米,则河堤的高BE为米.【答案】5【解析】过点C作CF⊥AD于点F,由背水坡CD的坡度i=1:2.4可设CF=x,DF=2.4x,再由CD长为13米根据勾股定理即可列方程求得结果.解:过点C作CF⊥AD于点F∵CD长为13米∴,解得∴米.【考点】解直角三角形的应用点评:解直角三角形的应用是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.2.已知:在锐角△ABC中,AC=a,AB与BC所在直线成45°角,AC与BC所在直线形成的夹角的余弦值为(即cosC=),则AC边上的中线长是.【答案】【解析】首先作△ABC的高AD,解直角△ACD与直角△ABD,得到BC的长,再利用余弦定理求解.解:作△ABC的高AD,BE为AC边的中线∵在直角△ACD中,AC=a,cosC=,∴CD=,AD=.∵在直角△ABD中,∠ABD=45°,∴BD=AD=,∴BC=BD+CD=.在△BCE中,由余弦定理,得BE2=BC2+EC2-2BC•EC•cosC【考点】解直角三角形点评:解直角三角形是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.3.如图,小明站在离树20m的处测得树顶的仰角为,已知小明的眼睛(点)离地面约1.6m,求树的高度.(精确到0.1m)【答案】16.1m【解析】利用36°的正切值可得HB的长度,加上1.6即为树的高度.在Rt△ABH中,∠HAB=36°,AB=20,∴tan∠HAB=,∴HB=AB•tan∠HAB=20×tan36°≈14.53,∴HD=HB+AC=14.53+1.6≈16.1答:树的高度约为16.1m.【考点】解直角三角形的应用点评:解直角三角形的应用的判定和性质是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.4.下列各组数中,以a、b、c为边的三角形不是直角三角形的是()A.B.C.D.【答案】A【解析】直角三角形的边必须满足勾股定理,本题中根据题意分析可知,在本题中A因为构不成三角形,所以不符合题意;B中,C中D中,故不符合题意的是A【考点】勾股定理点评:本题属于对勾股定理的基本知识的理解和运用以及分析5.观察右面几组勾股数,并寻找规律:① 3, 4, 5 ;② 5,12,13 ;③ 7,24,25 ;④ 9,40,41 ;请你写出有以上规律的第⑤组勾股数: .【答案】11,60,61【解析】分析以上4组数据可知第一个数为3,5,7,9……为奇数递增。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学解直角三角形练习题及答案直角三角形是初中数学中的重要内容,解直角三角形的练习题能够帮助学生巩固知识并提高解题能力。

以下是一些常见的直角三角形练习题及答案供参考:
1. 问题:已知直角三角形ABC中,∠C为直角,∠A=30°,斜边AB的长度为10单位。

求∠B和边BC的长度。

解答:由直角三角形的性质可知,∠A + ∠B + ∠C = 180°,且∠C = 90°。

代入已知条件可得∠B + 30° + 90° = 180°,化简得∠B = 60°。

根据正弦定理,可以得出
sin 30°/10 = sin 60°/BC。

化简运算可得BC = 10√3 单位。

答案:∠B = 60°,BC = 10√3 单位。

2. 问题:在直角三角形ABC中,∠C为直角,AB = 5单位,AC = 12单位。

求∠A和∠B的大小。

解答:根据勾股定理可得 AC^2 = AB^2 + BC^2,代入已知条件可得 12^2 = 5^2 + BC^2。

化简运算可得BC = √119 单位。

由正弦定理可得 sin A/5 = sin 90°/12,化简运算可得 sin A = 5/12。

通过查表或计算器可以得到∠A 的近似值为 24.6°。

∠B = 90° - ∠A - ∠C = 90° - 24.6° - 90° = 65.4°。

答案:∠A 约等于 24.6°,∠B 约等于 65.4°。

3. 问题:在直角三角形ABC中,AC = 8单位,BC = 15单位。

求∠A和边AB的长度。

解答:根据勾股定理可得 AC^2 + BC^2 = AB^2,代入已知条件可得 8^2 + 15^2 = AB^2。

化简运算可得AB = √289 = 17 单位。

由正弦定理可得 sin A/8 = sin 90°/15,化简运算可得 sin A = 8/15。

通过查表或计算器可以得到∠A 的近似值为 33.6°。

答案:∠A 约等于 33.6°,AB = 17 单位。

通过解直角三角形的练习题,可以帮助学生熟悉直角三角形的性质和解题方法,提高数学解题能力。

在解题过程中,学生需要运用勾股定理和正弦定理等数学工具,灵活运用知识,合理推理,最终得出正确的答案。

希望以上练习题及答案能够帮助到学生们更好地理解和掌握直角三角形的知识。

相关文档
最新文档