解直角三角形教案设计

合集下载

解直角三角形教案(完美版)

解直角三角形教案(完美版)

解直角三角形一、教育目标(一)知识与技能使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)过程与方法 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. (三)情感态度与价值观 渗透数形结合的数学思想,培养学生良好的学习习惯. 二、重、难点重点:直角三角形的解法. 难点:三角函数在解直角三角形中的灵活运用. 三、教学过程(一)明确目标1.在三角形中共有几个元素? 2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系 sin ;cos ;t an ;cot b a b a B B B B c c a b ====; sin ;cos ;tan ;cot a b a bA A A A c c b a====如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成.的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=∠∠=∠=∠=cot tan cos sin(2)三边之间关系 a 2 +b 2 =c 2 (勾股定理) (3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二)整体感知教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习巩固.同时,本课又为以后的应用举例打下基础,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.(三)重点、难点的学习与目标完成过程1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形). 3.例题例1 在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且c=287.4,∠B=42°6′,解这个三角形.分析:解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.解:(1)∠A=90°-∠B =90°-42°6′=47°54′,(2)cos ,aB c=∴a=c . cosB=28.74×0.7420≈213.3.(3) sin bB c=,∴b=c·sinB=287.4×0.6704≈192.7.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例2 在Rt △ABC 中,a=104.0,b=20.49,解这个三角形. 在学生独立完成之后,选出最好方法,教师板书.(1)104.0tan 5.07620.49a b α=≈≈查表得A=78°51′;(2)∠B=90°-78°51′=11°9′(3)104.0sin ,.sin 0.9812106a a A c c A =∴==≈ .注意:例1中的b 和例2中的c 都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便一些.但先后要查两次表,并作一次加法(或减法).4.巩固练习解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.(四)总结与扩展1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.2.出示图表,请学生完成注:上表中“√”表示已知。

《解直角三角形》教案

《解直角三角形》教案

《解直角三角形》教案一、教学目标1、知识与技能目标(1)理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。

(2)能够将实际问题转化为数学问题,建立解直角三角形的数学模型,并运用解直角三角形的方法解决实际问题。

2、过程与方法目标(1)通过对解直角三角形的学习,培养学生分析问题和解决问题的能力,以及数学建模的思想。

(2)通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,提高学生的运算能力和逻辑推理能力。

3、情感态度与价值观目标(1)让学生在学习过程中体会数学与实际生活的紧密联系,激发学生学习数学的兴趣。

(2)通过解决实际问题,培养学生的应用意识和创新精神,让学生在成功中获得自信,在挫折中锻炼意志。

二、教学重难点1、教学重点(1)直角三角形中五个元素之间的关系。

(2)解直角三角形的方法。

2、教学难点(1)将实际问题转化为数学问题,建立解直角三角形的数学模型。

(2)正确选择合适的锐角三角函数关系式解直角三角形。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过展示一些与直角三角形相关的实际问题,如测量建筑物的高度、计算斜坡的长度等,引出解直角三角形的概念,激发学生的学习兴趣。

2、知识讲解(1)直角三角形的五个元素直角三角形有三条边和两个锐角,共五个元素,分别是两条直角边a、b 和斜边 c,以及两个锐角 A 和 B。

(2)五个元素之间的关系①三边关系(勾股定理):a²+ b²= c²②锐角关系:∠A +∠B = 90°③边角关系:sin A = a/c,cos A = b/c,tan A = a/b(3)解直角三角形由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三角形。

3、例题讲解例 1:在 Rt△ABC 中,∠C = 90°,a = 3,c = 5,求 b 和∠A、∠B 的度数。

解直角三角形单元教学设计

解直角三角形单元教学设计

解直角三角形单元教学设计
一、教学目标
1. 理解解直角三角形的概念,掌握解直角三角形的方法,能运用解直角三角形的方法解决实际问题。

2. 通过解直角三角形的学习,进一步感受数学与生活的密切联系,体会数学在解决实际问题中的作用。

二、教学内容
1. 解直角三角形的有关概念。

2. 解直角三角形的方法。

3. 运用解直角三角形解决实际问题。

三、教学重点与难点
重点:掌握解直角三角形的方法。

难点:运用解直角三角形解决实际问题。

四、教学准备
1. 教师准备教学课件、三角板等教具。

2. 学生准备直尺、计算器等学习工具。

五、教学过程
1. 导入新课
教师通过复习旧知或引入实际生活情境,引导学生进入新课学习。

2. 探索新知
教师引导学生通过观察、思考、小组合作等方式,探究解直角三角形的概念和方法,并进行适当讲解和补充。

学生要认真听讲,积极思考,勇于表达自己的想法和意见。

3. 练习巩固
教师布置相关练习题,学生独立或小组合作完成,并进行交流和展示。

教师对学生的练习进行点评和指导,帮助学生巩固所学知识。

4. 归纳小结
教师对本节课所学内容进行归纳总结,强调重点和难点,帮助学生形成完整的知识体系。

学生要认真听讲,积极思考,做好笔记。

5. 布置作业
教师布置适量作业,要求学生按时完成,并进行检查和批改。

学生要认真完成作业,积极思考,勇于挑战自己。

解直角三角形方位角、坡度角讲课教案

解直角三角形方位角、坡度角讲课教案

解直角三角形方位角、坡度角讲课教案一、教学内容本节课的内容选自《初中数学》八年级下册第九章“勾股定理及其应用”的第三节“解直角三角形”。

具体包括:直角三角形的定义及性质,解直角三角形的概念,利用三角函数解直角三角形,以及方位角和坡度角的实际应用。

二、教学目标1. 知识目标:学生能够理解并掌握解直角三角形的基本概念,熟练运用三角函数求解直角三角形的未知边和角。

2. 技能目标:培养学生运用数学知识解决实际问题的能力,提高学生的空间想象力和逻辑思维能力。

3. 情感目标:激发学生学习数学的兴趣,培养学生合作交流、积极参与的学习态度。

三、教学难点与重点教学难点:解直角三角形的实际应用,特别是方位角和坡度角的计算。

教学重点:熟练运用三角函数解直角三角形,以及在实际问题中求解方位角和坡度角。

四、教具与学具准备教具:三角板、直尺、量角器、多媒体课件。

学具:直角三角形模型、计算器、练习本。

五、教学过程1. 导入:通过实际情景引入,如建筑工地上的方位角和坡度角问题,让学生了解解直角三角形在实际生活中的应用。

2. 新课导入:讲解直角三角形的定义及性质,引导学生回顾勾股定理,为解直角三角形打下基础。

3. 新知讲解:(1)介绍解直角三角形的定义及方法,如正弦、余弦、正切函数的定义和应用。

(2)通过例题讲解,让学生掌握解直角三角形的方法。

(3)讲解方位角和坡度角的概念,以及在实际问题中的应用。

4. 随堂练习:布置相关练习题,让学生独立完成,巩固所学知识。

5. 小组讨论:针对练习题中的问题,组织学生进行小组讨论,互相交流解题思路。

六、板书设计1. 直角三角形的定义及性质2. 解直角三角形的方法:(1)正弦函数:sin A = 对边/斜边(2)余弦函数:cos A = 邻边/斜边(3)正切函数:tan A = 对边/邻边3. 方位角和坡度角的计算方法七、作业设计1. 作业题目:(1)已知直角三角形的两个角和一条边,求其他未知边和角。

《解直角三角形》教案

《解直角三角形》教案

课程目标与要求
01
02
03
知识目标
掌握直角三角形的定义、 性质及解法,理解勾股定 理及其应用。
能力目标
能够运用所学知识解决与 直角三角形相关的问题, 培养分析问题、解决问题 的能力。
情感目标
激发学生学习数学的兴趣 和热情,培养探索精神和 创新意识。
教学方法与手段
教学方法
采用讲解、示范、讨论、练习等多种教学方法相结合的方式。
挑战数学难题
03
鼓励学生参加数学竞赛和挑战更高难度的数学问题,可以锻炼
他们的数学思维和解决问题的能力。
THANK YOU
感谢观看
03
面积公式
通过海伦公式或底乘高的一半等方法,可以求解任意三角形的面积。
鼓励学生探索更多数学奥秘
深入研究三角函数
01
除了基本的正弦、余弦和正切函数外,还可以学习其他三角函
数,如余切、正割和余割等,以及它们的性质和应用。
探索复数领域
02
复数是一种扩展了实数范围的数,包括实数和虚数部分。学习
复数可以帮助学生理解更高级的数学概念和应用。
《解直角三角形》 教案
contents
目录
• 课程介绍与目标 • 基础知识回顾 • 解直角三角形的原理与方法 • 典型例题解析 • 学生自主练习与讨论 • 课程总结与拓展延伸
01
课程介绍与目标
直角三角形的定义与性质
直角三角形的定义
有一个角为90度的三角形称为直角 三角形。
直角三角形的性质
直角三角形两直角边互相垂直,斜 边为最长边,满足勾股定理等。
$tan D=frac{EF}{DE}=frac{12}{5}
$,查表或使用计算器可得 ∠D≈68.19°。

解直角三角形初中三年级教案

解直角三角形初中三年级教案

教学目标:1.了解直角三角形的定义和性质;2.掌握直角三角形的判别方法;3.能够应用直角三角形的性质解决实际问题。

教学重点:1.直角三角形的定义和性质;2.直角三角形的判别方法。

教学难点:1.直角三角形的应用。

教学准备:教师:直角三角形的示意图、直角三角形的定义和性质的板书。

学生:直尺、量角器等。

教学过程:一、导入(10分钟)1.老师出示一张直角三角形的示意图,让学生观察并回答问题:你们看到这个图形有什么特点?2.学生回答后,教师引导学生总结:这个图形有一个直角和其他两个锐角。

3.教师板书直角三角形的定义:“一个三角形有一个角是直角,就叫做直角三角形。

”二、讲解直角三角形的性质(15分钟)1.教师出示直角三角形的定义的板书,解释直角三角形的性质:直角三角形的两条边相互垂直。

2.教师提问:在一个直角三角形中,直角和两条边的关系是什么?3.学生回答后,教师解释:直角和两条边的关系是直角三角形的基本性质之一,直角所对的边叫做斜边,其他两条边叫做直角边。

4.教师出示直角三角形的示意图,引导学生观察,总结直角边和斜边的关系。

三、直角三角形的判别方法(15分钟)1.教师出示几个图形,让学生观察并判断哪些是直角三角形。

2.学生回答后,教师引导学生总结直角三角形的判别方法:通过角的大小来判断。

3.教师出示两条边并标注角的示意图,解释判断直角三角形的方法:如果两条直角边的平方和等于斜边的平方,那么这个三角形就是直角三角形。

四、应用直角三角形的性质解决实际问题(30分钟)1.教师出示一些实际问题,让学生运用直角三角形的性质解决。

2.学生分小组或个人解答,并在黑板上展示答案。

3.教师对答案进行点评和讲解。

五、小结(10分钟)1.教师带领学生复习直角三角形的定义和性质。

2.教师总结本节课的重点和难点。

教学反思:通过本节课的教学,学生能够了解直角三角形的定义和性质,并掌握判断直角三角形的方法;同时,通过解决实际问题,学生能够应用直角三角形的性质解决实际问题。

解直角三角形优秀教案

解直角三角形优秀教案

余弦(cosine)
余弦是邻边与斜边的比值,即 cos(θ) = 邻边 / 斜边。
三角函数诱导公式
和差公式
用于计算两个角的和或差的三角 函数值,如 sin(A + B)、cos(A -
B) 等。
倍角公式
用于计算一个角的两倍或一半的三 角函数值,如 sin(2A)、cos(A/2) 等。
辅助角公式
用于将某些复杂的三角函数表达式 转化为简单的形式,如 sin(A)cos(B) + cos(A)sin(B) = sin(A + B) 等。
提问环节,老师答疑解惑
在小组讨论的基础上,鼓励学生提出 问题和疑惑,老师进行针对性的解答 和指导。
通过老师的答疑解惑,帮助学生解决在 解直角三角形过程中遇到的实际问题, 提高解题能力。
05
课堂总结与拓展延伸
回顾本节课重点内容
直角三角形的定义和性质
01
直角三角形是一个角为90度的三角形,具有一些特殊的性质和
增加实例分析
通过引入更多实际问题的例子,让学生更好地理解解直角三角形的 应用,提高学生的学习兴趣和积极性。
强化练习和辅导
针对部分学习困难的学生,应加强课后辅导和练习,通过一对一或小 组辅导的形式,帮助学生解决学习中遇到的问题。
分享成功经验和优秀案例
成功经验
本次教学中,通过引入实际问题、组织学生进行小组讨论和合作学习等方式,有效 地提高了学生的学习兴趣和参与度。
注意事项
在解题前要认真审题,明确已知条件和 未知量;在解题过程中要注意单位换算 和精确度问题;在解题后要及时检验结 果的合理性。
布置课后作业及预习任务
课后作业
布置与本节课内容相关的练习题, 要求学生独立完成,并按时提交。

初中数学初三数学上册《解直角三角形》教案、教学设计

初中数学初三数学上册《解直角三角形》教案、教学设计
3.小组讨论题需在小组内进行充分讨论,形成统一的解题方案。
4.请家长协助监督,确保学生按时完成作业,养成良好的学习习惯。
6.差异化教学,关注个体:针对学生的个体差异,设计不同难度的练习题,使每位学生都能在原有基础上得到提高。
7.课堂小结,巩固知识:在每个知识点讲解结束后,进行课堂小结,帮助学生梳理所学知识,巩固记忆。
8.作业布置,拓展提高:布置适量的课后作业,包括基础知识和拓展提高题目。让学生在课后巩固所学知识,提高解题能力。
(二)讲授新知
1.首先,我会带领学生回顾直角三角形的基本概念,如直角三角形的定义、特点以及勾股定理等。
2.接着,引入锐角三角函数(正弦、余弦、正切)的概念,通过具体的例子让学生理解它们在直角三角形中的应用。
3.讲解锐角三角函数的表示方法,以及如何运用这些函数求解直角三角形中的边长和角度。
4.结合实际例题,演示如何使用勾股定理和锐角三角函数解决实际问题,使学生明白数学知识在实际生活中的价值。
3.小组合作,共同探究:组织学生进行小组讨论和合作,共同解决实际问题。在这个过程中,学生可以相互交流、相互学习,提高解决问题的能力。
4.拓展思维,提高能力:在教学过程中,设置一定的拓展性问题,引导学生进行思考。通过拓展性问题,培养学生的创新意识和解决问题的能力。
5.紧扣教材,注重实践:紧密围绕教材内容,结合生活实际,设计具有针对性的练习题。让学生在实践中掌握知识,提高解题能力。
4.解直角三角形:通过例题,讲解如何运用勾股定理及锐角三角函数解直角三角形。
5.实际应用:让学生分组讨论,解决实际问题,巩固所学知识。
6.总结与拓展:总结解直角三角形的步骤和方法,引导学生进行拓展思考。
7.课后作业:布置适量的练习题,巩固所学知识,提高学生的解题能力。

九年级数学《解直角三角形-复习课》教案

九年级数学《解直角三角形-复习课》教案

第28章解直角三角形(单元复习课)教学任务分析问题1:在Rt △ABC 中,∠C=90°则(1)∠A 、∠B 的关系是_________, (2)_____,,的关系是c b a(3)边角关系是________________________________________________________________________________问题2:你能根据上述边角关系得到30°、45°、60°角的三角函数值吗?填写下表。

问题3:同角的三角函数之间有什么关系?互余的两角呢?问题4:锐角的正弦值是怎样随着角度数的变化而变化的?余弦、正切呢?其锐角三角函数值的范围分别是什么? 2、组织交流,总结要点;3、板书教师总结知识结构图(多媒体展示)。

【学生活动】 1、学生反思回顾知识点,回答和完成导学案中的问题及三个表格;2、绘制出自己总结的知识结构图;3、交流展示自己总结的知识结构图及自主学习的成果;4、看听记教师的总结。

用数学的意识。

帮助学生学会用数学的思考方法解决实际问题,引发认知冲突,激发学生学习兴趣。

【媒体应用】1、展示反思回顾的问题;2、展示导学案中提出的问题;3、展示师生共同总结的本章本章要点和本章知识结构图。

活动三 基础训练,查补缺漏: 【基础闯关】1、Rt △ABC 中,∠C=90°若SinA= 时,tanA= 。

2、Rt △ABC 中,∠C=90°,若AC=3BC ,则CosA= 。

3、菱形ABCD 中对角线AC 交BD 于点O ,且AC=8,BD=6,则下列结论中正确的为( )A 、Sin ∠ADB=B 、Cos ∠DAB=C 、tan ∠DBA =D 、tan ∠ADB=4、计算: (1)(2)丨Sin45°- 1丨-【教师活动】 1、操作多媒体出示问题。

2、组织学生交流和点评,得出正确答案。

【学生活动】 1、尝试完成练习,有困难的同学可以合作完成; 2、参与交流展示及点评。

28.2.1 解直角三角形教案

28.2.1 解直角三角形教案

28.2.1 解直角三角形本节是在学习锐角三角函数之后,结合已学过的三角形内角和定理和勾股定理,研究解直角三角形的问题,既能加深对锐角三角函数概念的理解,又为后续解决与其相关的实际问题打下基础.解直角三角形是结合三角形内角和定理、勾股定理等知识,利用锐角三角函数对直角三角形的三条边以及两锐角这五个要素进行求解,在解直角三角形时注意借助相应的直角三角形来寻找已知元素与未知元素的关系式.【情景导入】要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足50°≤α≤75°(见教材第85页第10题图),现有一架长6 m 的梯子.(1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1 m)?(2)当梯子底端距离墙面2.4 m 时,梯子与地面所成的角α等于多少(精确到1°)?这时人是否能够安全使用这架梯子?【说明与建议】 说明:用来源于学生身边的问题吸引他们的注意力,激发他们的好奇心,体会解直角三角形来源于生活,并服务于生活,诱发学生对新知识的渴求.建议:教师引导学生思考,为本节课学习解直角三角形做好铺垫. 【归纳导入】在Rt △ABC 中,∠C =90°,∠A =20°,c =10 cm. (1)根据“直角三角形两锐角互余”得∠B =70°. (2)由sinA =ac ,得a =c ·sinA =10sin20°cm.(3)由cosA =bc,得b =c ·cosA =10cos20°cm.通过以上填空,Rt △ABC 的三条边长及三个角全部知道了,这种由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.【说明与建议】 说明:通过解答此题说明已知直角三角形的一个锐角,可以求出另一个锐角,选择恰当的边角关系,还可以求出其他的边长.建议:让学生先自主探究,然后交流解题的方法并比较从中选择最合适的方法.命题角度1 在直角三角形中解直角三角形这类题目一般已知一边一角或两边求其他元素.注意以下知识和技巧的总结及运用: 理论依据:在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c. (1)三边之间的关系:a 2+b 2=c 2. (2)锐角之间的关系:∠A +∠B =90°.(3)边角之间的关系:sinA =a c =cosB ,cosA =b c =sinB ,tanA =a b =1tanB .(4)面积公式:S △ABC =12ab =12ch(h 为斜边上的高).提示:当所求的元素既可用乘法又可用除法求解时,一般用乘法,不用除法;既可用已知数据又可用中间数据求解时,最好用已知数据.技巧方法:1.(宜昌中考)如图,△ABC 的顶点是正方形网格的格点,则cos ∠ABC 的值为(B) A.23B.22C.43D.2232.(巴中中考)如图,点A ,B ,C 在边长为1的正方形网格格点上,下列结论错误的是(A)A .sinB =13B .sinC =255C .tanB =12D .sin 2B +sin 2C =1命题角度2 构造直角三角形再解直角三角形这类问题一般和三角形或圆的相关知识结合命题,题目没有直接告诉是直角三角形,通过条件或添加辅助线,可以证明或构造直角三角形,再根据解直角三角形的方法解答问题.3.(黑龙江中考)如图,在△ABC 中,sinB =13,tanC =2,AB =3,则AC 的长为(B)A. 2B.52C. 5D .24.如图,点A ,B 是以CD 为直径的⊙O 上的两点,分别在直径的两侧,其中点A 是CDB ︵的中点.若tan ∠ACB =2,AC =5,则BC 的长为(D)A. 5B .2 5C .1D .2命题角度3 分类讨论解不定三角形在解直角三角形问题时,如遇到直角或者某个锐角不确定时,特别是在没有给出图形的情况下,要注意分类讨论,防止漏解.5.(内江中考)已知,在△ABC 中,∠A =45°,AB =42,BC =5,则△ABC 的面积为2或14.双直角三角形所谓“双直角三角形”是指一条直角边重合,另一条直角边共线的两个直角三角形.其位置关系有两种:如图1,公共直角边为AD ,则AD =BC ·tan α·tan βtan β-tan α,我们把它叫做公式1.图1 图2 如图2,公共直角边为AD ,则AD =BC ·tan α·tan βtan β+tan α,我们把它叫做公式2.课题28.2.1 解直角三角形授课人素养目标1.了解解直角三角形的意义和条件.2.帮助学生理解直角三角形中五个元素(直角除外)的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形.3.发展学生的数学应用意识,提高归纳能力,感受解直角三角形的策略.教学重点解直角三角形的意义以及一般方法.教学难点选择恰当的边角关系解直角三角形.授课类型新授课课时教学步骤师生活动设计意图回顾如图,在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别是a,b,c,那么除直角∠C外的两个锐角和三条边之间有如下关系:两锐角之间的关系:∠A+∠B=90°.三边之间的关系:a2+b2=c2.边角之间的关系:sinA=ac,cosA=bc,tanA=ab.回顾以前所学内容,为本节课的教学内容做好准备.活动一:创设情境、导入新课【课堂引入】意大利比萨斜塔在落成时就已倾斜,其塔顶中心点为B,塔身中心线与垂直中心线的夹角为∠A,过点B向垂直中心线引垂线,垂足为C,如图.在Rt△ABC中,∠C=90°,BC=5.2 m,AB=54.5 m,求∠A的度数.师生活动:教师呈现问题并引导学生结合图形,观察已知条件和所求角之间的关系,分析得到通过求∠A的正弦来求∠A的度数.通过实际问题,激发学生的学习兴趣,把实际问题转化为数学问题,并一般化:已知直角三角形斜边和直角边,求它的锐角的度数,通过求解的过程,初步体会解直角三角形的内涵,引入课题.活动二:实践探究、交流新知【探究新知】1.解直角三角形的定义问题:将比萨斜塔问题推广为一般的数学问题该如何求解?师生活动:已知直角三角形的斜边和一条直角边,求它的锐角的度数,利用锐角的正弦(或余弦)的概念直接求解.问题:在活动一所述的Rt△ABC中,你还能求出其他未知的边和角吗?师生活动:学生思考并说明求解思路,教师把问题一般化,给出解直角三角形的内涵:一般地,直角三角形中,除直角外,共有五个元素,即三条边和两个锐角.由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.2.解直角三角形的方法问题:回想一下,刚才解直角三角形的过程中,用到了哪些知识?你能梳理一下直角三角形各个元素之间的关系吗?师生活动:如图,引导学生结合图形,梳理五个元素(直角除外)之间的关系,学生展示:(1)三边之间的关系:a2+b2=c2(勾股定理).(2)两锐角之间的关系:∠A+∠B=90°.(3)边角之间的关系:sinA=ac,cosA=bc,tanA=ab,sinB=ba,cosB=ac,tanB=ba.问题:从上述问题来看,在直角三角形中,知道斜边和一条直角边这两个元素,可以求出其余的三个元素.一般地,已知五个元素(直角除外)中的任意两个元素,可以求其余元素吗?教师给出结论:在直角三角形中,知道除直角外的五个元素中的两个元素(至1.有条理地梳理直角三角形除直角外的五个元素之间的关系,明确各自的作用,便于应用.2.在讨论解直角三角形的方法过程中,明确解直角三角形的条件,培养学生的逻辑思维能力.少有一个是边),就可以求出其余三个未知元素.活动三:开放训练、体现应用【典型例题】例1(教材第73页例1)如图,在Rt△ABC中,∠C=90°,AC=2,BC=6,解这个直角三角形.解:AB=22,∠B=30°,∠A=60°.师生活动:学生在教师的引导下,思考如何求出所有未知元素.先让学生找出所有未知元素:∠A,∠B和AB,然后让学生逐一说明求每一个未知元素的方法和依据,教师引导学生选择简便的解题途径.最后给出简洁、规范的解题步骤.例2(教材第73页例2)如图,在Rt△ABC中,∠C=90°,∠B=35°,b=20,解这个直角三角形(结果保留小数点后一位).解:∠A=90°-∠B=90°-35°=55°.∵tanB=ba,∴a=btanB=20tan35°≈28.6.∵sinB=bc,∴c=bsinB=20sin35°≈34.9.师生活动:由学生代表参照例1的解题思路,分析本题的解题思路;然后由学生独立完成,再小组交流;最后由学生代表展示解题步骤.对于求c,如果学生采取不同方法,让他们展示不同方法;如果学生没有采取不同方法,教师注意引导他们思考其他解法.【变式训练】1.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=43,则CD的值为(D)1.通过解特殊的直角三角形,训练学生解直角三角形的思路和方法,提高学生分析和解决问题的能力.2.进一步训练解一般直角三角形的思路和方法,并体会从计算简便的角度选用适当的关系式求解.3.变式训练拓展学生思维,同时增强学生对所学知识的灵活应用能力.A .2 B.45 C.43 D.65提示:延长AD ,BC ,两线交于点O ,得到两个直角三角形,解直角三角形即可. 2.在△ABC 中,若AB =10,AC =15,∠BAC =150°,则△ABC 的面积为(A) A .37.5 B .75 C .100 D .150提示:过点C 作CD ⊥AB ,交BA 的延长线于点D.在Rt △ADC 中利用特殊角求出高CD ,再计算三角形的面积.3.在Rt △ABC 中,∠C =90°,b =3,S △ABC =923,解这个直角三角形.解:如图:∵在Rt △ABC 中,∠C =90°,b =3,S △ABC =923,∴12ab =92 3. ∴a =3 3.∴tanA =a b =333= 3.∴∠A =60°.∴∠B =180°-∠A -∠C =180°-60°-90°=30°. ∴c =2b =6. 活动四:课堂检测【课堂检测】1.如图,在Rt △ABC 中,∠C =90°,AB =4,sinA =12,则BC 的长为(A)A .2B .3 C. 3 D .2 3通过设置课堂检测,进一步巩固所学新知,同时检测学习效果,做到“堂堂清”.2.在Rt △ABC 中,∠C =90°,∠B =40°,BC =3,则AC =(C) A .3sin40° B .3sin50° C .3tan40° D .3tan50°3.在Rt △ABC 中,∠C =90°,斜边中线是3 cm ,sinA =13,则S △ABC =(D)A. 2 cm 2B .2 2 cm 2C .3 2 cm 2D .4 2 cm 2提示:由中线长可以求出斜边,解直角三角形求出两直角边,再计算三角形面积.4.如图,在△ABC 中,BD ⊥AC 于点D ,AB =6,AC =53,∠A =30°.(1)求BD 和AD 的长. (2)求tanC 的值. 解:(1)∵BD ⊥AC , ∴∠ADB =90°.在Rt △ADB 中,AB =6,∠A =30°, ∴BD =12AB =3.∴AD =BDtanA=3BD =3 3. (2)CD =AC -AD =53-33=23, 在Rt △BCD 中,tanC =BD CD =323=32.学生进行当堂检测,完成后,教师进行批阅、点评、讲解. 课堂小结1.课堂总结:(1)什么叫解直角三角形?(2)两个直角三角形全等要具备什么条件?为什么在直角三角形中,已知一边和一个锐角或两边就能解直角三角形呢?教学说明:教师提问并引导学生总结归纳解直角三角形的定义以及直角三角形五元素之间的关系. 2.布置作业:教材第77页习题28.2第1题.引导学生从知识和方法两个方面总结自己的收获,理清解直角三角形的目的、条件、依据、方法,提升综合运用知识的能力.。

解直角三角形 优秀教案

解直角三角形 优秀教案
设计意图:复习勾股定理,直角三角形两锐角互余及锐角三角函数,为探究“解直角三角形至少需要知道几个元素”做好知识准备,让学生能顺利的完成探究活动。
第三环节问题探究,形成技能
定义:由直角三角形中已知的元素,求出所有未知元素的过程,叫做解直角三角形.
讨论:在 中,除直角C外,至少要知道几个元素,就可以求出其余的元素?
(3)知道一边一锐角,能求其余元素吗?
实战演练2
在 中,∠C= ,∠A、∠B、∠C所对的边分别为a、b、c.
(2)若∠B= ,b= 10,求∠A、a、c.
总结:如果知道一边一锐角,可以先根据两锐角互余求出另一个锐角,再根据已知的边和角选择某两个三角函数求出另外两边;或者可以先选某三角函数求另一边,再根据勾股定理求第三边。
学生活动:教师引导学生对比探究“三角形全等的条件”的过程,鼓励学生分析、交流、讨论,结合图形,与同伴讨论、交流自己的分析思路和疑惑。
探究一:知道一个元素能求出其余元素吗?
分类讨论: ;
总结:如果知道一个锐角,只可以再求出另一个锐角;如果知道一条边,任何其余元素都求不出来,所以知道一个元素不可以求出其余元素。
【教学方法】
本节课采用自主、合作学习的方法
【教学过程】
第一环节问题导入,适时点题
多媒体展示我们学校孔子像的图片。
问:同学们认识照片中的雕像吗?你们知道它有多高吗?有哪些方法可以测量它的高度呢?
设计意图:选用测量学生身边熟悉的孔子雕像的高度来引入课题,一来可以给学生产生
熟悉感,让学生对本节课充满信心和好奇心;二来可以让学生意识到生活中处处有数学。
深入思考:
同学们对照三角形全等的知识思考一下,为什么知道两条边就可以解直角三角形呢?
教师点评:

解直角三角形教案

解直角三角形教案

解直角三角形教案【作文】解直角三角形教案一、引言直角三角形是初中数学里的重要概念之一,也是三角函数的基础。

本教案旨在通过直观的图示和详细的解题步骤,帮助学生掌握解直角三角形相关知识,提高他们的数学运算能力。

二、教学目标1. 理解直角三角形的定义和性质;2. 掌握解直角三角形的基本方法;3. 能够运用解直角三角形的知识解决实际问题。

三、教学内容1. 直角三角形的定义和性质直角三角形指的是其中一个角为90度的三角形。

直角三角形的两条边与直角的关系是勾股定理的基础。

2. 解直角三角形的基本方法解直角三角形的基本方法分为以下几个步骤:步骤1:观察题目中给出的已知条件,确定所求的目标。

步骤2:根据已知条件和所求目标,选择适合的三角函数关系式。

步骤3:代入已知条件,解方程求得所需要的信息。

步骤4:验证所得结果是否符合实际情况。

步骤5:整理解题过程,得出最终答案。

3. 解直角三角形的实例讲解以具体的实例进行解题演示,让学生通过实际操作和分析来理解解直角三角形的过程。

实例:已知直角三角形的一条直角边长为3cm,斜边长为5cm,求另一条直角边的长。

解题步骤:步骤1:已知条件为直角边长为3cm,斜边长为5cm,所求目标为另一条直角边长。

步骤2:选择适合的三角函数关系式。

根据已知条件可以使用正弦函数来解题,即sinθ = 直角边/斜边。

步骤3:代入已知条件,解方程求得直角边的长度。

sinθ = 3/5,求得sinθ ≈ 0.6。

通过逆正弦函数,得到θ的近似值θ ≈ arcsin(0.6) ≈ 0.643。

步骤4:验证结果是否符合实际情况。

检查通过计算得到的另一条直角边的长是否符合勾股定理。

3² + 直角边² ≈ 5²,9 + 直角边² ≈ 25,直角边² ≈ 16,直角边≈ 4。

符合,所以推断结果正确。

步骤5:整理解题过程,得出最终答案。

根据计算得到直角边的长度约为4cm。

解直角三角形教案

解直角三角形教案

解直角三角形复习教案一、教材分析《解直角三角形》是在苏教版九年级(下)第7章《解直角三角形》第5节内容。

教学内容是能利用直角三角形的边角关系(勾股定理、两锐角互余、锐角三角函数)解直角三角形。

通过学习,学生学会用直角三角形的有关知识去解决某些简单的实际问题,从而进一步把形和数结合起来,提高分析和解决问题的能力。

它既是前面所学知识的运用,也是高中继续解斜三角形的重要预备知识。

它的学习还蕴涵着深刻的数学思想方法(数学建模、转化化归),在本节教学中有针对性的对学生进行这方面的能力培养。

二、目的分析在知识上,本节课的目标是使学生理解解直角三角形的意义,能运用直角三角形的三个关系式解直角三角形。

在培养能力上,通过学生的探索讨论发现解直角三角形所需的最简条件,使学生了解体会用化归的思想方法将未知问题转化为已知问题去解决,在解决问题的过程中渗透“数学建模”思想。

三、重难点分析1.教学重点:正确运用直角三角形中的边角关系解直角三角形2.教学难点:选择适当的关系式解直角三角形四、中考考点分析1.边角关系的求解(知二便可求一):(1)已知一边一角求其他的边角;(2)已知两边求其他的边角2.特殊角的三角函数求值3.解直角三角形与实际问题,如测山高、塔高、船的航行距离、堤坝的横截面、穿越公园问题、台风侵袭问题、航行触礁(进入危险区)问题等是反复考查的重点内容.(掌握仰角和俯角、坡度和坡角、方向角)五、教法分析因为是复习课,所以我们应该针对学生的实际状况,找准学生的薄弱之处,梯度的,逐点的进行突破。

通过讲例题,做习题,讲练结合,系统归纳,方法总结,以达到查漏补缺的目的。

我在教学的过程中是采取启发和引导的方式进行。

比如,在讲解例题的时候,我习惯先让学生琢磨这道题目的思路和方法,要求学生说清楚每个步骤做法的理由,在这个过程中,我就能很清晰地了解学生的薄弱环节和擅长之处,从而有针对性的教学。

在学生练习的过程中要是算错或用错定理公式,我不会立即就指出,而是在学生做完之后再引导他发现自己的错误之处。

解直角三角形教案

解直角三角形教案

解直角三角形教案解直角三角形教案直角三角形是初中数学中的重要内容之一,也是几何学中的基础概念。

本文将为大家介绍一份解直角三角形的教案,帮助学生更好地理解和掌握直角三角形的相关知识。

一、教学目标通过本节课的学习,学生应能够:1. 理解直角三角形的定义和性质;2. 掌握直角三角形中的各个要素,如斜边、直角边、对边和对角;3. 运用勾股定理解决直角三角形相关问题;4. 运用正弦、余弦、正切等三角函数解决直角三角形相关问题。

二、教学内容1. 直角三角形的定义和性质直角三角形是指其中一个角为直角(即90度)的三角形。

直角三角形的性质包括:直角边互相垂直、斜边是直角边的平方和的平方根等。

2. 直角三角形的要素直角三角形的要素包括:斜边、直角边、对边和对角。

斜边是直角三角形的最长边,直角边是与直角相邻的两条边,对边是与直角三角形的直角边不相邻的边,对角是直角三角形的两个直角边之间的夹角。

3. 勾股定理勾股定理是解决直角三角形问题的重要定理,它表明在直角三角形中,直角边的平方和等于斜边的平方。

即a² + b² = c²,其中a和b为直角边的长度,c为斜边的长度。

4. 三角函数三角函数是解决直角三角形问题的有力工具。

其中,正弦函数(sin)、余弦函数(cos)和正切函数(tan)是最常用的三角函数。

正弦函数定义为对边与斜边的比值,余弦函数定义为邻边与斜边的比值,正切函数定义为对边与邻边的比值。

三、教学过程1. 引入直角三角形的概念通过展示一张直角三角形的图片,引导学生观察并讨论直角三角形的特点,引出直角三角形的定义和性质。

2. 探究直角三角形的要素通过给出一个直角三角形的图形,让学生自主观察并找出斜边、直角边、对边和对角,引导学生理解这些要素的含义和关系。

3. 学习勾股定理通过一个生活中的实际问题,如测量房间的对角线长度,引出勾股定理的应用场景。

然后,通过具体的例子,教授勾股定理的原理和使用方法。

2024-2025学年华师版初中数学九年级(上)教案第24章解直角三角形24.1测量

2024-2025学年华师版初中数学九年级(上)教案第24章解直角三角形24.1测量

第24章解直角三角形24.1测量教学反思教学目标1.能够借助刻度尺等工具进行测量.2.能用测得的数据计算出物体的高度和宽度.3.会采用类比、归纳的学习方法测量物高和河宽.教学重难点重点:探索测量距离的几种方法.难点:选择适当的方法测量物体的高度或长度.教学过程复习巩固直角三角形两锐角、三边之间的关系:如图,在Rt △ABC中,∠C=90°.角:∠A+ ∠B=90°.边:AC2 + BC2 =AB2.导入新课【问题1】活动1(小组讨论,教师点评)思考:当你走进学校,仰头望着操场旗杆上高高飘扬的五星红旗时,你也许很想知道,操场旗杆有多高?教师引出课题:第24章解直角三角形24.1测量探究新知探究点用不同的方案进行测量活动2(小组讨论,教师点评)要求:(1)画出测量图形;(2)写出需要测量的数据(可以用字母表示需要测量的数据);(3)根据测量数据写出计算旗杆的高度的比例式.一、影长法原理:在太阳光线下,同一时刻中,物高与影长成正比.得比例式:ABED=BCDF.【总结】利用太阳光,量出竹竿在太阳下的影子长度、旗杆的影子长度、竹竿的高度,便可构造出相似三角形,从而求出旗杆的高度.二、平面镜法原理:根据反射角等于入射角,再利用等角的余角相等,可得一组角相等,再根据物与地面垂直,得出一组直角,得两个三角形相似,列出比例式求解.得比例式:AB AE CD CE.三、标杆法教学反思原理:构造相似三角形.得比例式:HF GF AE GE=.AB=AE+EB四、测倾器法方法:1.在测点D安置测倾器,测得点B的仰角∠BAC=34°;2.量出测点D到物体底部E的水平距离DE=l0米;3.量出测倾器的高度AD=1.5米.现在若按1:500的比例将△ABC画在纸上,并记为△A B C''',可得△ABC∽△A B C''',可得比例式:BC AC B C A C=''''.根据比例尺1∶500,可求得BC,得BE=BC+CE.合作探究,解决问题(小组讨论,教师点评)典例讲解(师生互动)例如图,小东用长为3.2 m的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8 m、与旗杆相距22 m,求旗杆的高度.【探索思路】(引发学生思考)观察法:构建相似三角形模型→得出比例线段→代入数据求解.【解】∵ED⊥AD,BC⊥AC,∴ED∥BC,∴△AED∽△ABC,教学反思∴ED AD BC AC=.∵AD=8 m,AC=AD+CD=8+22=30(m),ED=3.2 m,∴BC=ED ACAD=12 m,∴旗杆的高度为12 m.【题后总结】(学生总结,老师点评)已知两个直角三角形中某些边的数据,我们可以考虑运用直角三角形相似的知识来求未知边的长度.【即学即练】一条大河两岸的A、B处分别立着高压线铁塔,如图所示.假设河的两岸平行,你在河的南岸,请利用现有的自然条件、皮尺和标杆,并结合你学过的全等三角形的知识,设计一个不过河便能测量河的宽度的好办法.(要求:画出示意图,并标出字母,结合图形简要叙述你的方案)【探索思路】(引发学生思考)转化法:作辅助线,将测AB的长转化为在河岸同一侧测与AB相等线段的长,考虑利用三角形的全等来构建测量模型.【解】在河南岸AB的垂线BF上取两点C、E,使CE=BE,再定出BF的垂线CD,使A、E、D在同一条直线上,这时测得CD的长就是AB的长.【题后总结】(学生总结,老师点评)在实际生活中,对于难以实地测量的线段,常常通过两个全等三角形,转化需要测量的线段到易测量的边上或者已知边上来,从而求解.课堂练习1.如图,小华晚上由路灯A下的B处走到C时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知小华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米B.6米C.7.2米D.8米2.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3 m,标杆与旗杆的水平距离BD=15 m,人的眼睛与地面的高度EF=1.6 m,人与标杆CD的水平距离DF=2 m,求旗杆AB的高度.3.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,请问水深多少?教学反思参考答案1.B2.【解】∵CD⊥FB,AB⊥FB,∴CD∥AB,∴△CGE∽△AHE,∴CGAH=EGEH,即CD EFAH-=EGFD BD+,∴3 1.6AH-=2215+,解得AH=11.9.∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).故旗杆AB的高度为13.5 m.3.【解】如图,红莲被吹至一边,花朵刚好齐及水面,即AC为红莲的长.在Rt△ABC中,AB=h,AC=h+3,BC=6.由勾股定理,得AC2=AB2+BC2,即(h+3)2=h2+62,所以h2+6h+9=h2+36,6h=27,解得h=4.5.即水深4.5尺.课堂小结(学生总结,老师点评)用不同的方案进行测量:(1)影长法;(2)平面镜法;(3)标杆法;(4)测倾器法.原理:1.利用物体在阳光下的影子进行测量的根据是在同一时刻,物高与影长成比例.2.利用直角三角形进行测量的根据是勾股定理.3.构造相似三角形进行测量的根据是对应边成比例,对应角相等.布置作业教材第101页练习第1,2题,第101页习题24.1第1,2题.板书设计课题第24章解直角三角形24.1测量用不同的方案进行测量:例题(1)影长法;(2)平面镜法;(3)标杆法;(4)测倾器法.教学反思。

解直角三角形教案(全章)

解直角三角形教案(全章)

一、教学目标1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。

2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。

二、教学重点、难点重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。

三、教学过程(一)复习引入操场里有一个旗杆,老师让小明去测量旗杆高度。

(演示学校操场上的国旗图片)小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。

你想知道小明怎样算出的吗?。

解直角三角形及应用(教案)

解直角三角形及应用(教案)
4.实践活动和小组讨论环节,学生们积极参与,表现出很高的热情。他们在讨论中互相启发,共同解决问题,这有助于培养他们的团队协作能力和沟通能力。
5.学生在小组讨论中提出了很多有趣的观点和想法,这让我意识到他们对解直角三角形的应用有着广泛的兴趣。在今后的教学中,我可以更多地引入类似的实际案例,激发学生的学习兴趣。
6.总结回顾环节,我发现部分学生对正弦、余弦、正切的记忆仍然不够牢固。在接下来的教学中,我需要加强对这些知识点的复习和巩固,确保学生能够熟练掌握。
1.注重理论与实践相结合,让学生在实际问题中感受数学的魅力。
2.加强对重点、难点的讲解和练习,帮助学生扎实掌握知识点。
3.鼓励学生积极参与课堂讨论,培养他们的团队协作和沟通能力。
2.在案例分析环节,我尝试让学生通过实际测量和计算,体验到解直角三角形的实际应用。这让他们对知识点的印象更加深刻,也提高了他们解决实际问题的能力。
3.教学难点方面,正弦、余弦、正切在不同象限的正负问题对学生来说是一个挑战。我通过举例和对比,帮助学生理解和记忆这个难点。但从课堂反应来看,这部分内容还需要在后续的练习中进一步巩固。
3.培养学生的数据运算能力,通过计算特殊角的正弦、余弦、正切值,提高学生的计算准确性和速度。
4.培养学生的数学建模素养,使学生能够将实际问题转化为数学模型,运用数学知识解决现实问题,增强学生的应用意识。
三、教学难点与重点
1.教学重点
-理解并掌握正弦、余弦、正切的定义及其在直角三角形中的应用。
-学会使用计算器计算特殊角的正弦、余弦、正切值。
五、教学反思
在今天的教学中,我发现学生们对于解直角三角形这一章节的内容充满了好奇心。通过引入日常生活中的实际问题,他们能够更直观地感受到数学知识的实用性和趣味性。在讲授新课的过程中,我注意到以下几点:

《解直角三角形》 教学设计

《解直角三角形》 教学设计

《解直角三角形》教学设计一、教学目标1、知识与技能目标(1)理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。

(2)能够将实际问题中的数量关系转化为解直角三角形的数学问题,并能正确选用适当的锐角三角函数关系式解决问题。

2、过程与方法目标(1)通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,培养学生分析问题和解决问题的能力。

(2)通过将实际问题转化为数学问题,体会数学建模的思想。

3、情感态度与价值观目标(1)通过数学学习,让学生体验数学与生活的密切联系,激发学生学习数学的兴趣。

(2)培养学生严谨的科学态度和合作交流的意识。

二、教学重难点1、教学重点(2)将实际问题转化为解直角三角形的数学问题。

2、教学难点将实际问题中的数量关系转化为直角三角形中元素之间的关系。

三、教学方法讲授法、讨论法、练习法四、教学过程1、复习引入(1)提问:直角三角形的三边有什么关系?锐角之间有什么关系?边角之间有什么关系?(2)在直角三角形 ABC 中,∠C = 90°,∠A、∠B、∠C 所对的边分别为 a、b、c。

已知 a = 3,b = 4,求 c 的长度。

(3)已知∠A = 30°,斜边 c = 6,求∠A 的对边 a 的长度。

通过复习,为学习解直角三角形做好知识铺垫。

2、讲授新课(1)解直角三角形的概念在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形。

直角三角形中,除直角外,共有五个元素,即三条边和两个锐角。

只要知道其中的两个元素(至少有一个是边),就可以求出其余的三个元素。

(3)解直角三角形的方法①已知两条直角边 a、b,求斜边 c 及锐角 A、B。

由勾股定理\(c =\sqrt{a^2 + b^2}\),\(\tan A =\frac{a}{b}\),则\(A =\arctan\frac{a}{b}\),\(B = 90° A\)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解直角三角形教案设计
教学建议
1.知识结构:
本小节主要学习解直角三角形的概念,直角三角形中除直角外的五个元素之间的关系以及直角三角形的解法.
2.重点和难点分析:
教学重点和难点:直角三角形的解法.
本节的重点和难点是直角三角形的解法.为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做解直角三角形,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系.正确选用这些关系,是正确、迅速地解直角三角形的关键.
3. 深刻认识锐角三角函数的定义,理解三角函数的表达式向方程的转化.
锐角三角函数的定义:
实际上分别给了三个量的关系:a、b、c是边的长、、和是由用不同方式来决定的三角函数值,它们都是实数,但它与代数式的不同点在于三角函数的值是有一个锐角的数值参与其中.
当这三个实数中有两个是已知数时,它就转化为一个一元方程,解这个方程,就求出了一个直角三角形的未知的元素. 由此看来,表达三角函数的定义的4个等式,可以转化为求
边长的方程,也可以转化为求角的方程,所以成为解三角形的重要工具.
4. 直角三角形的解法可以归纳为以下4种,列表如下:
5. 注意非直角三角形问题向直角三角形问题的转化
由上述(3)可以看到,只要已知条件适当,所有的直角三角形都是可解的.值得注意的是,它不仅使直角三角形的计算问题得到彻底的解决,而且给非直角三角形图形问题的解决铺平了道路.不难想到,只要能把非直角三角形的图形问题转化为直角三角形问题,就可以通过解直角三角形而获得解决.请看下例.
例如,在锐角三角形ABC中,,求这个三角形的未知的边和未知的角(如图)
这是一个锐角三角形的解法的问题,我们只需作出BC边上的高(想一想:作其它边上的高为什么不好.),问题就转化为两个解直角三角形的问题.
在Rt中,有两个独立的条件,具备求解的条件,而在Rt中,只有已知条件,暂时不具备求解的条件,但高AD可由解时求出,那时,它也将转化为可解的直角三角形,问题就迎刃而解了.
掌握非直角三角形的图形向直角三角形转化的途径和方法
是十分重要的,如
(1)作高线可以把锐角三角形或钝角三角形转化为两个直角
三角形.
(2)作高线可以把平行四边形、梯形转化为含直角三角形的图形.
(3)连结对角线,可以把矩形、菱形和正方形转化为含直角三角形的图形.
(4)如图,等腰三角形AOB是正n边形的n分之一.作它的底边上的高,就得到直角三角形OAM,OA是半径,OM是边心距,AB是边长的一半,锐角.
6. 要善于把某些实际问题转化为解直角三角形问题.
很多实际问题都可以归结为图形的计算问题,而图形计算问题又可以归结为解直角三角形问题.
我们知道,机器上用的螺丝钉问题可以看作计算问题,而圆柱的侧面可以看作是长方形围成的(如图).螺纹是以一定的角度旋转上升,使得螺丝旋转时向前推进,问直径是6mm的螺丝钉,若每转一圈向前推进1.25mm,螺纹的初始角应是多少度多少分?
解答略写
这个例子说明,生产和生活中有很多实际问题都可以抽象为一个解直角三角形问题,我们应当注意培养这种把数学知识应用于实际生活的意识和能力.
一、教学目标
1.使学生掌握直角三角形的边角关系,会运用勾股定理、直
角三角形的两个锐角互余及锐角三角函数解直角三角形; 2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力;
3.通过本节的学习,向学生渗透数形结合的数学思想,培养他们良好的学习习惯.
二、重点难点疑点及解决办法
1.重点:直角三角形的解法。

2.难点:三角函数在解直角三角形中的灵活运用。

3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边。

4.解决办法:设置疑问,引导学生主动发现方法与途径,解决重难点,以相似三角形知识为背景解决疑点。

三、教学步骤
(一)明确目标
1.在三角形中共有几个元素?
2.如图直角三角形ABC中,这五个元素间有哪些等量关系呢?
(1)边角之间关系
(2)三边之间关系
(勾股定理)
(3)锐角之间关系。

以上三点正是解直角三角形的依据,通过复习,使学生便于
应用。

(二)整体感知
教材在继锐角三角函数后安排解直角三角形,目的是运用锐用三角函数知识,对其加以复习巩固。

同时,本课又为以后的应用举例打下基础。

因此在把实际问题转化为数学问题之后,就是运用本课解直角三角形的知识来解决的。

综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课。

(三)教学过程
1.我们已掌握Rt的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素。

这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢,激发了学生的学习热情。

2.教师在学生思考后,继续引导为什么两个已知元素中至少有一条边?让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除
直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形)。

3.例题
【例1】在中,为直角,所对的边分别为,且,解这个三角形。

解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用。

因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想。

其次,教师组织学生比较各种方法中哪些较好,选一种板演。

完成之后引导学生小结已知一边一角,如何解直角三角形? 答:先求另外一角,然后选取恰当的函数关系式求另两边。

计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底。

【例2】在Rt中,,解这个三角形。

在学生独立完成之后,选出最好方法,教师板书。

注意:例1中的b和例2中的c都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便
一些。

但先后要查两次表,并作一次加法(或减法)或者使用计算器求平方、平方根及三角正数值等。

4.巩固练习
解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握。

为此,教材配备了练习P.23中1、2练习1针对各种条件,使学生熟练解直角三角形;练习2代入数据,培养学生运算能力。

(四)总结扩展
1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素。

四、布置作业
教材P.32习题6.4A组3。

五、板书设计。

相关文档
最新文档