(完整版)解直角三角形总结
解直角三角形的基本类型及其解法公式(总结)

1、解直角三角形的类型与解法
已知、
解 已知条件 法
解法步骤
三角
类型
Rt△ABC
两直角边(如 a,b)
由 tan A=ba,求∠A;∠B=90°-A,c = a2 b2
两 斜边,一直角边(如 c, 由 Sin A=ca,求∠A;∠B=90°-A,b a)
= c2 - a2
αβ a
h x
高度 a
矩形的性质
皮
a-h tanα= x ,
tanβ= a
x
和直角三角 形的边角关
尺
a-h a
系
侧
俯角α ∴x=tanα=tanβ ∴h=
倾
俯角β a-attaannβα
器
高度
测量底部不可到达的物体的高度(2)
数字模型
所 应测距
用
离
工
具
数量关系
A
α
a2 a1
h1
β
h
x
tanα= h1
皮
尺
直角 三角 形的 边角 关系
2)测量底部可以到达的物体的高度
数学模型
所 应测数用Leabharlann 据工数量关系
根据 原理
具
a1 镜子
h
a2
a3
皮
尺
镜 子
目高 a1 水平距 离 a2 水平距 离 a3
h
a3
a1 a2
h = a1 ,h= a1a3
a3 a2
a2
h = a3 ,h= a1a3
a1 a2
a2
反射 定律
航行 60 海里到达 B 处,测得小岛 C 此时在轮船的东偏北 63.5°方向上.之后,轮船继续向东航行多少海里,距离
完整版)解直角三角形知识点总结

完整版)解直角三角形知识点总结解直角三角形直角三角形的性质:直角三角形有以下几个性质:1.直角三角形的两个锐角互余,即∠A+∠B=90°,因为∠C=90°。
2.在直角三角形中,30°角所对的直角边等于斜边的一半,即BD=AB/2=DC。
这是因为∠A=30°,∠C=90°,根据正弦定理得到BD=AB/2,根据余弦定理得到BD=DC。
3.直角三角形斜边上的中线等于斜边的一半,即CD=AB/2.这是因为D为AB的中点,且∠ACB=90°。
4.勾股定理:a²+b²=c²,其中c为斜边,a、b为直角边。
5.射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项,每条直角边是它们在斜边上的射影和斜边的比例中项。
这是因为CD⊥AB,根据相似三角形的性质得到CD²=AD×BD,同时根据勾股定理得到AC²=AD×AB,BC²=BD×AB,因此CD²=AC²-AD²=BC²-BD²。
锐角三角函数的概念:在直角三角形中,锐角A的正弦、余弦、正切、余切分别为sinA、cosA、XXX、cotA,它们的定义如下:sinA=a/c,cosA=b/c,tanA=a/b,cotA=b/a。
锐角三角函数的取值范围是:-1≤sinα≤1,-1≤cosα≤1,tanα≥0,cotα≥0.锐角三角函数之间的关系:1.平方关系:sin²A+cos²A=1.2.倒数关系:tanA×tan(90°-A)=1.3.弦切关系:XXX,XXX。
4.互余关系:sinA=cos(90°-A),cosA=sin(90°-A),tanA=cot(90°-A),cotA=tan(90°-A)。
完整解直角三角形的知识点总结

完整解直角三角形的知识点总结直角三角形是一个重要的几何概念,由于其特殊的性质和应用广泛的场景,掌握直角三角形的知识对于学习几何学和解决实际问题非常重要。
下面是对直角三角形的完整解的知识点总结,包括定义、性质、定理、求解方法等。
一、定义:直角三角形是一个有一个内角为90°的三角形。
直角三角形中的两条边与含有直角的角度有特殊的关系。
二、性质:1.直角三角形中,长边被称为斜边,与直角相对的两条边分别被称为直角边。
2.直角三角形的两个直角边构成直角,斜边是直角的对边。
3.直角三角形的斜边是直角边中最长的边。
三、三角函数:1. 正弦函数(sine):表示一个角的对边与斜边之比。
sinA = a / c。
2. 余弦函数(cosine):表示一个角的临边与斜边之比。
cosA = b / c。
3. 正切函数(tangent):表示一个角的对边与临边之比。
tanA = a / b。
4. 余切函数(cotangent):表示一个角的临边与对边之比。
cotA =b / a。
5. 割函数(secant):表示一个角的斜边与临边之比。
secA = c / b。
6. 余割函数(cosecant):表示一个角的斜边与对边之比。
cscA =c / a。
四、勾股定理:1. 勾股定理(Pythagorean theorem):直角三角形中,斜边的平方等于两个直角边平方和的和。
a^2 + b^2 = c^22.勾股定理的逆定理:如果一个三角形的三条边满足a^2+b^2=c^2,那么这个三角形是直角三角形。
五、特殊直角三角形:1.45°-45°-90°直角三角形:其两个直角边长度相等,斜边长度为直角边长度的√2倍。
2.30°-60°-90°直角三角形:其两个直角边长度之比为1:√3,斜边长度为直角边长度的2倍。
六、解直角三角形的方法:1.已知两边长度,求解第三边:根据勾股定理,利用已知的两条直角边的长度求解斜边的长度。
解直角三角形的基本类型及其解法公式

2)测量底部可以到达的物体的高度
数学模型
所 用 应测数据
工具
数量关系
a1 镜子
a2
a3
h 皮尺 目高 a1
h = a1 ,h= a1a3
a3 a2
a2
镜子 水 平 距 离
a2 水平距离
a3
h
a3
a1 a2
皮尺 标杆
标杆高 a1 标杆影长 a2 物体影长 a3
h = a3 ,h= a1a3
a1 a2
1)利用水平距离测量物体高度
数学模型
所用 应测数据
工具
侧倾 α、β αβ
ax
数量关系
tanα= ,tanβ=
x1
x2
tanα·tanβ =a·tanα+tanβ
tanα= tanβ=
ax
x
=a·ttaannαβ·-ttaannβα
根据 原理 直角 三角 形的 边角 关系
h1
仰角α
h
仰角β
高度 a
h tanα=x,
tanβ=h-x a
h=tanαta-nαtanβ
三角形的 边角关系
tan
α
=
h x
,
tan
β
=
h-a x
、
h
=
tanα tanα-tanβ
a h αβ x
仰角α 仰角β 高度 a
tanα=hx, tanβ=a+x h h=tabβta-nαtanα
工具
数量关系
A
α
a2 a1
h1
β
h
x
tanα= h1 a1 x
tanβ= h1 x
仰角α, 仰角β 水平距离
解直角三角形(5种题型)(解析版)

解直角三角形(5种题型)【知识梳理】一.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A=∠A的对边斜边=ac,cos A=∠A的邻边斜边=bc,tan A=∠A的对边∠A的邻边=ab.(a,b,c分别是∠A、∠B、∠C的对边)二.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.三.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.四.解直角三角形的应用-仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.在视线与水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角;五.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.【考点剖析】一.解直角三角形1.(2022春•闵行区校级期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,点D在边AC上,且AD =2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余弦值.【分析】(1)根据题意,AC=BC=6,AD=2CD,可得AD的长度,根据等腰直角三角形的性质可得AB=√2AC,由AE=sin45°•AD的长度,则BE=AB﹣AE,计算即可得出答案;(2)过点E作EF⊥BC,垂足为F,如图,根据等腰直角三角形的性质可得,EF=BF=sin45°•BE,则CF=BC﹣BF,根据勾股定理可得CE=√EF2+CF2,在Rt△ECF中,由cos∠ECB=CFCE 计算即可得出答案.【解答】解:(1)∵AC=BC=6,AD=2CD,∴AD=4,∵∠ACB=90°,∴AB=√2AC=6√2,∴∠DAE=45°,DE⊥AB,∴AE=sin45°•AD=√22×4=2√2,∴BE=AB﹣AE=6√2−2√2=4√2;(2)过点E作EF⊥BC,垂足为F,如图,∵∠B=45°,∴EF=BF=sin45°•BE=√22×4√2=4,∴CF=BC﹣BF=2,∴CE=√EF2+CF2=√42+22=2√5,在Rt△ECF中,cos∠ECB=CFCE =2√5=√55.【点评】本题主要考查了解直角三角形及等腰直角三角形形的性质,应用等腰直角三角形性质进行计算是解决本题的关键.2.(2022春•浦东新区校级期中)如图,在△ABC中,CD是边AB上的高,AE是BC边上的中线,已知AD=8,BD=4,cos∠ABC=45.(1)求高CD的长;(2)求tan∠EAB的值.【分析】(1)在Rt△BCD中,由已知条件cos∠ABC=BDBC =45,即可算出BC的长,根据勾股定理即可得出答案;(2)过点E作EF⊥AB,垂足为F,如图,可得CD∥EF,由E为BC的中点,可得EF是△BCD的中位线,即可算出EF=12CD,DF的长度,即可算出AF=AD+DF的长度,在Rt△AEF中,根据tan∠EAB=EFAF即可得出答案.【解答】解:(1)在Rt△BCD中,∵cos∠ABC=BDBC =45,∴4BC =45,∴BC=5,∴CD=√BC2−BD2=√52−42=3;(2)过点E作EF⊥AB,垂足为F,如图,∵EF⊥BD,∴CD∥EF,∵E为BC的中点,∴EF是△BCD的中位线,∴EF=12CD=12×3=32,DF=12BD=12×4=2,∴AF=AD+DF=8+2=10,在Rt△AEF中,∴tan∠EAB=EFAF =3210=15.【点评】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.3.(2022•黄浦区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,sin∠ABC=13,D是边AB上一点,且CD=CA,BE⊥CD,垂足为点E.(1)求AD 的长; (2)求∠EBC 的正切值.【分析】(1)过C 点作CH ⊥AD 于H ,如图,利用等腰三角形的性质得到AH =DH ,再证明∠ACH =∠ABC ,则sin ∠ACH =sin ∠ABC =13,然后利用正弦的定义求出AH ,从而得到AD 的长;(2)在Rt △ABC 中先求出AB =9,则BD =7,再证明∠HCD =∠EBD ,则sin ∠EBD =DE BD =13,利用正弦的定义求出DE =73,接着利用勾股定理计算出BE ,然后根据正切的定义求解.【解答】解:(1)过C 点作CH ⊥AD 于H ,如图, ∵CD =CA , ∴AH =DH ,∵∠ABC+∠BCH =90°,∠ACH+∠BCH =90°, ∴∠ACH =∠ABC , ∴sin ∠ACH =sin ∠ABC =13, 在Rt △ACH 中,sin ∠ACH =AH AC =13,∴AD =2AH =2;(2)在Rt △ABC 中,sin ∠ABC =AC AB=13,∴AB =3AC =9,∴BD =AB ﹣AD =9﹣2=7, ∵∠E =90°, 而∠EDB =∠HDC , ∴∠HCD =∠EBD , ∴sin ∠EBD =DE BD =13,∴DE =13BD =73,∴BE =√72−(73)2=14√23,在Rt △EBC 中,tan ∠EBC =EC EB=3+7314√23=4√27.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质. 二.解直角三角形的应用4.(2022•长宁区二模)冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼前面20米处要盖一栋高25米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)冬至中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市全部采光不受影响,两楼应至少相距多少米?(结果保留整数)【分析】(1)延长光线交CD 于点F ,过点F 作FG ⊥AB ,垂足为G ,根据题意可得∠AFG =29°,GF =BC =20米,GB =FC ,然后在Rt △AGF 中,利用锐角三角函数的定义求出AG ,从而求出GB 的长,进行比较,即可解答;(2)延长光线交直线BC 于点E ,根据题意可得∠AEB =29°,然后在Rt △ABE 中,利用锐角三角函数的定义求出BE 的长,即可解答.【解答】解:(1)冬至中午时,超市以上的居民住房采光有影响,理由:延长光线交CD于点F,过点F作FG⊥AB,垂足为G,则∠AFG=29°,GF=BC=20米,GB=FC,在Rt△AGF中,AG=FG•tan29°≈20×0.55=11(米),∵AB=25米,∴GB=AB﹣AG=25﹣11=14(米),∴FC=GB=14米,∵14米>6米,∴冬至中午时,超市以上的居民住房采光有影响;(2)延长光线交直线BC于点E,则∠AEB=29°,在Rt△ABE中,AB=25米,∴BE=ABtan29°≈250.55≈45(米),∴若要使得超市全部采光不受影响,两楼应至少相距45米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2022•徐汇区二模)激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?【分析】(1)过点A作AD⊥BC于点D,根据题意可得AB=AC,当∠BAC=33°时,当∠BAC=40°时,利用锐角三角函数即可解决问题;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意列出方程即可解决问题.【解答】解:(1)如图,过点A作AD⊥BC于点D,根据题意可知:AB=AC,AD⊥BC,∴BC=2BD,∠BAD=∠CAD=∠BAC,当∠BAC=33°时,∠BAD=∠CAD=16.5°,在△ABD中,BD=AD×tan16.5°≈3.5×0.30=1.05(m),∴BC=2BD=2.10(m),当∠BAC=40°时,∠BAD=∠CAD=20°,在△ABD中,BD=AD×tan20°≈3.5×0.36=1.26(m),∴BC=2BD=2.52m,答:小佳家要选择电视屏幕宽为2.10m﹣2.52m之间的激光电视就能享受黄金观看体验;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意可得:=,解得:x=16000,经检验x=16000是原方程的解,符合题意,答:今年这款激光电视每台的售价是16000元.【点评】本题考查了解直角三角形的应用,分式方程的应用,视点,视角和盲区,解决本题的关键是根据题意找到等量关系准确列出方程.6.(2022•崇明区二模)为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)点在最高位置与最低位置时的高度差.(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?【分析】(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,然后在Rt△BOD中,利用锐角三角函数的定义求出OD的长,进行计算即可解答;(2)先设小杰原计划x小时完成锻炼,然后根据实际每小时的能量消耗﹣原计划每小时的能量消耗=100,列出方程进行计算即可解答.【解答】解:(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,在Rt△BOD中,∠BOA=25°,∴OD=BO•cos25°≈80×0.906=72.48(cm),∴AD=OA﹣OD=80﹣72.48≈7.5(cm),∴踏板中心点在最高位置与最低位置时的高度差约为7.5厘米;(2)设小杰原计划x小时完成锻炼,由题意得:,解得:,经检验:都是原方程的根,但不符合题意,舍去,答:小杰原计划锻炼1小时完成.【点评】本题考查了解直角三角形的应用,分式方程的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.7.(2022•宝山区二模)某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)【分析】(1)根据每级台阶高度都是0.25米,然后计算出3个台阶的总高度,即可解答;(2)连接BC,根据题意可得:AB=DC,AB∥DC,从而可得四边形ABCD是平行四边形,然后利用平行四边形的性质可得AD=BC,AD∥BC,从而求出∠CBH=66°,最后在Rt△CBH中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)∵每级台阶高度都是0.25米,∴BH=3×0.25=0.75(米),∴点B与点C离地面的高度差BH的长度为0.75米;(2)连接BC,由题意得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAB=∠CBH=66°,在Rt△CBH中,BH=0.75米,∴BC=≈=1.875(米),∴扶手AD的长度约为1.875米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三.解直角三角形的应用-坡度坡角问题8.(2021秋•闵行区期末)如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为.【分析】根据坡度的概念计算,得到答案.【解答】解:斜面AB的坡度为20:30=1:1.5,故答案为:1:1.5.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.9.(2022春•浦东新区校级期中)工厂的传送带把物体从地面送到离地面5米高的地方,如果传送带与地面所成的斜坡的坡度i=1:2.4,那么物体所经过的路程为米.【分析】根据坡度的概念求出AC,根据勾股定理求出AB.【解答】解:∵传送带与地面所成的斜坡的坡度i=1:2.4,∴BCAC =12.4,即5AC=12.4,解得,AC=12,由勾股定理得,AB=√AC2+BC2=√122+52=13(米),故答案为:13.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.10.(2022•黄浦区二模)某传送带与地面所成斜坡的坡度i=1:2.4,如果它把物体从地面送到离地面10米高的地方,那么物体所经过的路程为米.【分析】根据坡度的概念求出水平距离,根据勾股定理计算,得到答案.【解答】解:∵传送带与地面所成斜坡的坡度i=1:2.4,它把物体从地面送到离地面10米高,∴水平距离为:2.4×10=24,∴物体所经过的路程为:√102+242=26(米),故答案为:26.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.11.(2022•浦东新区二模)如图,一个高BE为√3米的长方体木箱沿坡比为1:√3的斜面下滑,当木箱滑至如图位置时,AB=3米,则木箱端点E距地面AC的高度EF为米.【分析】根据坡度的概念求出∠DAF=30°,根据正弦的定义求出DE,进而求出BD,得到答案.【解答】解:设AB、EF交于点D,∵斜坡的坡比为1:√3,∴tan∠DAF=√3=√33,∴∠DAF=30°,∴∠ADF=90°﹣30°=60°,∴∠BDE=60°,在Rt△BDE中,sin∠BDE=BEDE,∴√3DE =√32,解得,DE=2(米),∴BD=1m,∴AD=AB﹣BD=2(米),在Rt△ADF中,∠DAF=30°,∴DF=12AD=1(米),∴EF=DE+DF=3(米),故答案为:3.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.四.解直角三角形的应用-仰角俯角问题12.(2021秋•浦东新区期末)在离旗杆20米处的地方,用测角仪测得旗杆顶的仰角为α,如测角仪的高为1.5米,那么旗杆的高为()米.A.20cotαB.20tanαC.1.5+20tanαD.1.5+20cotα【分析】由题意得,在直角三角形中,知道了已知角的邻边求对边,用正切值计算即可.【解答】解:根据题意可得:旗杆比仪器高20tanα,测角仪高为1.5米,故旗杆的高为(1.5+20tanα)米.故选:C.【点评】本题考查了解直角三角形的应用﹣仰角俯角,熟练掌握解直角三角形的方法是解题的关键.13.(2022•徐汇区二模)如图,小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮板底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为α,已知tanα的值为0.3,则点D到地面的距离CD的长为米.【分析】根据题意可得AE=BC=5米,EC=AB=1.7米,然后在Rt△ADE中,利用锐角三角函数的定义求出DE的长,进行计算即可解答.【解答】解:由题意得:AE=BC=5米,EC=AB=1.7米,在Rt△ADE中,tanα=0.3,∴DE=AE•tanα=5×0.3=1.5(米),∴DC=DE+EC=1.5+1.7=3.2(米),∴点D到地面的距离CD的长为3.2米,故答案为:3.2.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.14.(2022•青浦区二模)小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A点测得古树顶的仰角为α,向前走了100米到B点,测得古树顶的仰角为β,则古树的高度为米.【分析】设CD=x米,用含x的代数式表示出AD和BD的长,再根据AD﹣BD=100可得x的值.【解答】解:设CD=x米,在Rt△ACD中,tanα=CDAD,∴AD=xtanα,在Rt△BCD中,tanβ=CDBD,∴BD=xtanβ,∵AD﹣BD=100,∴xtanα−xtanβ=100,解得x=100⋅tanβ⋅tanαtanβ−tanα,故答案为:100⋅tanβ⋅tanαtanβ−tanα.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.五.解直角三角形的应用-方向角问题15.(2021秋•黄浦区期末)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在距码头西端M的正西方向58千米处有一观测站O,现测得位于观测站O的北偏西37°方向,且与观测站O相距60千米的小岛A处有一艘轮船开始航行驶向港口MN.经过一段时间后又测得该轮船位于观测站O的正北方向,且与观测站O相距30千米的B处.(1)求AB两地的距离;(结果保留根号)(2)如果该轮船不改变航向继续航行,那么轮船能否行至码头MN靠岸?请说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37≈0.75.)【分析】(1)过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.(2)延长AB交l于D,比较OD与OM+MN的大小即可得出结论.【解答】解:(1)过点A作AC⊥OB于点C.由题意,得OA=60千米,OB=30千米,∠AOC=37°.∴AC=OAsin37°≈60×0.60=36(千米).在Rt△AOC中,OC=OA•cos∠AOC≈60×0.8=48(千米).∴BC=OC﹣OB=48﹣30=18(千米).在Rt△ABC中,AB=.(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵∠ABC=∠OBD,∠ACB=∠BOD=90°.∴△ABC∽△DBO,∴,∴,∴OD=60(千米).∵60>58+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.【点评】本题考查了解直角三角形的应用,此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.16.(2021秋•嘉定区期末)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).(参考数据:,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】(1)根据特殊角三角函数即可解决问题;(2)根据三角函数定义可得CN的长,进而可以求该轮船航行的速度.【解答】解:(1)由题意,得∠ACM=∠BDM=90°,AC=3,BD=4,∠CAM=∠DBM=60°,在Rt△ACM中,,∴cos60°=,∴AM=6,在Rt△BDM中,,∴cos60°=,∴BM=8,∴AB=AM+BM=14千米.答:两个灯塔A和B之间的距离为14千米.(2)在Rt△ACM中,,∴,∴,在Rt△BDM中,,∴, ∴, ∴,在Rt △BDN 中,,由题意,得∠DBN =53°∴, ∴DN =4tan53°,∴,设该轮船航行的速度是V 千米/小时,由题意,得,∴V ≈40.7(千米/小时 ),答:该轮船航行的速度是40.7千米/小时. 【点评】本题考查了解直角三角形的应用中的仰角俯角问题、矩形的判定与性质等知识;掌握仰角俯角定义是解题的关键.【过关检测】一、单选题 九年级假期作业)已知在ABC 中,【答案】B 【分析】过点C 作CD AB ⊥,垂足为D ,根据60A ∠=︒,得出30ACD ∠=︒,进而求得CD ,由已知条件得出CD BD =,进而得出45BCD ∠=︒,即可求解.【详解】解:如图所示,过点C 作CD AB ⊥,垂足为D ,在Rt ADC 中,60A ∠=︒,∴30ACD ∠=︒, ∴sin ,cos CD AD A A AC AC ==sin 602CD =︒∴⨯=11BD AB AD ∴=−=∴CD BD =,在Rt BCD 中,CD BD =45BCD ∴∠=︒75ACB ACD BCD ∴∠=∠+∠=︒故选:B .【点睛】本题考查了解直角三角形,构造直角三角形,掌握直角三角形的边角关系是解题的关键.【答案】D【分析】在直线y=2x 上任取一点P (a ,2a),过点P 作x 轴的垂线,垂足为点B ,则可求得α的正余弦、正余切值,从而可得答案.【详解】如图,在直线y=2x 上任取一点P (a ,2a),过点P作x 轴的垂线,垂足为点B则OB=|a|,PB=2|a| 由勾股定理得:|OPa ==在直角△POB 中,sin 5PB OP α==,cos 5OB OP α===, 2tan =2a PB OB a α==,1cot =22a OB PB a α==故选项D 正确故选:D【点睛】本题考查了正比例函数的图象与性质,锐角三角函数,关键是画出图形,并在直线任取一点,作x 轴的垂线得到直角三角形.【答案】D【分析】先求出120°的补角为60°,然后再把60°放在直角三角形中,所以过点C作CD⊥AB,交BA的延长线于点D,在Rt△ACD中可求出AD与CD的长,最后在Rt△BDC中利用勾股定理求出BC即可解答.【详解】解:过点C作CD⊥AB,交BA的延长线于点D,∵∠BAC=120°,∴∠CAD=180°-∠BAC=60°,在Rt△ACD中,AC=2,∴AD=ACcos60°=2×12=1,CD=ACsin60°=2×∵AB=4,∴BD=AB+AD=4+1=5,∴tanB=CD BD=, 故选:D .【点睛】本题考查了解直角三角形,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键. 4.(2023·上海·九年级假期作业)如图,45ACB ∠=︒,125PRQ ∠=︒,ABC 底边BC 上的高为1h ,PQR 底边QR 上的高为2h ,则有( )A .12h h =B .12h h <C .12h h >D .以上都有可能【答案】B 【分析】由已知可知高所对的斜边都为5,由正弦的定义可得到高关于正弦的表达式,比较正弦值即可得到答案.【详解】解:如图,分别作出两三角形的高12,h h∵45,5ACB AC ∠=︒=∴1sin 455sin 45h AC =⨯︒=︒ ∵125,5PRQ PR ∠=︒=∴()2sin 1801255sin55h PR =︒−︒=︒ ∵sin 55sin 45︒︒>∴21h h > 故选:B .【点睛】本题考查解直角三角形,依题意作高构造直角三角形是解题的关键.5.(2023·上海·九年级假期作业)小杰在一个高为h 的建筑物顶端,测得一根高出此建筑物的旗杆顶端的仰【答案】C 【分析】过A 作AE BC ⊥于E ,在Rt ACE △中,已知了CE 的长,可利用俯角CAE ∠的正切函数求出AE 的值;进而在Rt ABE △中,利用仰角BAE ∠的正切函数求出BE 的长;从而可得答案.【详解】解:如图,过A 作AE BC ⊥于E ,则四边形ADCE 是矩形,CE AD h ==.∵在Rt ACE △中,CE h =,60CAE ∠=︒,∴tan 60CE AE ==︒,∵在Rt ABE △中,30BAE ∠=︒,∴1tan 303BE AE h =︒==,∴1433BC BE CE h h h =+=+=. 即旗杆的高度为43h .故选C .【点睛】本题考查了解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再运用三角函数的定义解题,是中考常见题型,解题的关键是作出高线构造直角三角形.6.(2021·上海·九年级专题练习)如图,把两条宽度都是1的纸条,其中一条对折后再两条交错地叠在一起,相交成角α,则重叠部分的面积是( )【答案】C【分析】根据题意可知:所得图形是菱形,设菱形ABCD,由已知得∠ABE=α,过A作AE⊥BC于E,由勾股定理可求BE、AB、BC的长度,根据菱形的面积公式即可求出所填答案.【详解】解:由题意可知:重叠部分是菱形,设菱形ABCD,则∠ABE=α,过A作AE⊥BC于E,则AE=1,设BE=x,∵∠ABE=α,∴AB=1sin sinAEαα=,∴BC=AB=1sinα,∴重叠部分的面积是:1sinα×1=1sinα.故选:C.【点睛】本题主要考查了菱形的性质,勾股定理,含30°角的直角三角形的性质,菱形的面积公式等知识点,把实际问题转化成数学问题,利用所学的知识进行计算是解此题的关键.二、填空题7.(2023·上海·九年级假期作业)小球沿着坡度为1:1.5i=的坡面滚动了13m,则在这期间小球滚动的水平距离是___________m.【答案】【分析】设高度为x ,根据坡度比可得水平距离为1.5x ,根据勾股定理列方程即可得到答案;【详解】解:设高度为x ,∵坡度为1:1.5i =,∴水平距离为1.5x ,由勾股定理可得,222(1.5)13x x +=,解得:x =∴水平距离为1.5⨯=故答案为:【点睛】本题考查坡度比及勾股定理,解题的关键是根据坡度比得到高度与水平距离的关系.【答案】13【分析】根据斜坡AB 的坡度1i =AB 的值先求出AH ,再根据斜坡AC 的坡度21:2.4i =,求得AC ,即可求解.【详解】解:∵1i =∴tan 3ABH ∠==, ∴30ABH ∠=︒,∴152AH AB ==, ∵21:2.4i =,∴1tan 2.4AH ACB CH ∠==,∵5AH =,∴12=CH ,在Rt ACH 中,13AC ==,故答案为:13.【点睛】本题考查的是解直角三角形的应用,坡度问题,熟知锐角三角函数的定义是解答此题的关键.【答案】10【分析】作BH AC ⊥于H .由四边形ABCD 是矩形,推出OA OC OD OB ===,设5OA OC OD OB a ====,由余切函数,可得4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,求出a 即可解决问题.【详解】解:如图,作BH AC ⊥于H .∵四边形ABCD 是矩形,∴OA OC OD OB ===,设5OA OC OD OB a ====,则10AC a =.∵根据题意得:3cot 4OH BOH BH ∠==, ∴4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,∴1a =,∴10AC =.故答案为10.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题. 10.(2023·上海·九年级假期作业)已知:在ABC 中,60A ∠=︒,45B ∠=︒,8AB =.则ABC 的面积为____(结果可保留根号).【答案】48−【分析】过C 作CD AB ⊥于D ,利用直角三角形的性质求得CD 的长.已知AB 的长,根据三角形的面积公式即可求得其面积.【详解】解:过C 作CD AB ⊥于D ,在Rt ADC 中,90CDA ∠=︒Q ,∴tan tan 60CD DAC AD =∠=︒=即AD 在Rt BDC 中,45B ∠=︒, 45BCD ∴∠=︒, CD BD ∴=.8AB DB DA CD =+==,12CD ∴=−.118(124822ABC S AB CD ∴=⨯=⨯⨯−=−故答案为:48−【点睛】本题考查解直角三角形,直角三角形的性质及三角形的面积公式,熟练掌握通过作三角形的高,构造直角三角形是解题的关键.分别在DEF 的边,ABE 沿直线 【答案】67【分析】根据题意和翻折的性质可得ABCABE 是等腰直角三角形,ABC 是等腰直角三角形,所以AC BE ∥,得23DA AC DE HE ==,设2AC AE x ==,则3HE x =,4AD x =,所以7FE x =,6DE x =,然后根据锐角三角函数即可解决问题.【详解】解:如图所示:90DEF ∠=︒,45EBA ∠=︒,ABE ∴是等腰直角三角形,AE BE ∴=,ABE 沿直线AB 翻折,翻折后的点E 落在DEF 内部的点C ,ABC ∴是等腰直角三角形,∴∥AC BE ,∴23DA AC DE HE ==,FH AD =,设2AC AE x ==,则3HE x =,4AD x =,7FE x ∴=,6DE x =, ∴67DE FE =,6cot 7DE D FE ∴==. 故答案为:67.【点睛】本题考查了翻折变换,解直角三角形,解决本题的关键是掌握翻折的性质. 统考二模)在ABC 中,,那么ABC 的重心到【答案】4【详解】解:如下图所示,设点D 为BC 的中点,点E 为三角形的重心,∵AB AC =,∴AD BC ⊥,∵152BD BC ==,5cos 13B =,cos BD B AB = ∴13AB =,∴12AD ==,∵点E 为三角形的重心,∴21AE ED =, ∴4ED =,∵AD BC ⊥,∴ABC 的重心到底边的距离为4,故答案为:4.【点睛】本题考查解直角三角形、三角形重心的性质和勾股定理,解题的关键是熟知重心到顶点的距离与重心到对边中点的距离之比为2:1. 13.(2023·上海·一模)平面直角坐标系内有一点()1,2P ,那么OP 与x 轴正半轴的夹角为α,tan α=________.【答案】2【分析】过点P 作PA x ⊥轴于点A ,由P 点的坐标得PA 、OA 的长,根据正切函数的定义得结论.【详解】解:过点P 作PA x ⊥轴于点A ,如图:∵点PA x ⊥,∴2PA =,1OA =,∴2an 21t PA OA α===.故答案为:2.【点睛】本题考查了点在平面直角坐标系里的意义及解直角三角形.解决本题的关键是构造直角三角形. 一模)如图,已知在ABC 中, 【答案】95【分析】如图,设AP m =.证明AP MQ m ==,根据3cos cos 5A CMQ =∠=,构建方程求解.。
解直角三角形的知识点总结

解直角三角形一、锐角三角函数(一)、锐角三角函数定义在直角三角形ABC中,ZC=90°,设BC=a, CA=b,AB=c,锐角A得四个三角函数就就是:(1)正弦定义:在直角三角形中A B C,锐角A得对边与斜边得比叫做角A得正弦,记作s i nA,BPsin A =,(2)余弦得定义:在直角三角行ABC,锐角A得邻边与斜边得比叫做角A得余弦,记作co s A,即c o s A =,(3)正切得定义:在直角三角形ABC中,锐角A得对边与邻边得比叫做角A得正切,记作tanA,即t an A =,(4)锐角A得邻边与对边得比叫做ZA得余切,记作c otA 即锐角A得正弦、余弦,正切、余切都叫做角A得锐角三角函数。
这种对锐角三角函数得定义方法,有两个前提条件:⑴锐角ZA必须在直角三角形中,且ZC=9 0 °;(2)在直角三角形ABC中,每条边均用所对角得相应得小写字母表示。
否则,不存在上述关系注意 :锐角三角函数得定义应明确(1), ”四个比值得大小同△ ABC得三边得大小无关,只与锐角得大小有关,即当锐角A取固定值时,它得四个三角函数也就就是固定得;(2 )s i nA不就就是sinA得乘积,它就就是一个比值,就就是三角函数记号,就就是一个整体,其她三个三角函数记号也就就是一样;(3)利用三角函数定义可推导出三角函数得性质,如同角三角函数关系,互余两角得三角函数关系、特殊角得三角函数值等;(二)、同角三角函数得关系(1)平方关系:(2)倒数关系:tan a cota=l(3)商数关系:注意: (1)这些关系式都就就是恒等式,正反均可运用,同事还要注意它们得变形公式。
(2)得简写,读作“得平方”,不能将前者就就是a得正弦值得平方,后者无意义;(3)这里应充分理解“同角”二字,上述关系式成立得前提就就是所涉及得角必须相同,如,而就不一定成立。
(4 )同角三角函数关系用于化简三角函数式。
解直角三角形(整理)ppt

3.在△ABC中,AB=AC,如果tanB=4:3, A 那么sin =________.
2
解直角三角形
☆ 考点范例解析
1.锐角三角函数的概念关系 2.求特殊角的三角函数值 3.互余或同角的三角函数关系 4.解直角三角形
7. 在 R t ABC中 ,C=90 , si nA= , 5 求 co sA, t an A, 的 值.
解直角三角形
☆ 考点范例解析
1.锐角三角函数的概念关系 2.求特殊角的三角函数值 3.互余或同角的三角函数关系 4.解直角三角形
8.如图小正方形的边长为1,连 结小正方形的三个顶点得到 ABC,则AC边上的高是( )
A) 3 2 3 B) 5 10 3 C) 5 5 4 D) 5 5 2
A
C
B
点评:作BC边上的高,利用 面积公式即可求出AC边的高, 面积法是解决此类问题的有 效途径
16
30°
20
例:我市某住宅小区高层建筑均为正南正北向,楼高都 是16米,某时太阳光线与水平线的夹角为30 °,如果南 北两楼间隔仅有20米,试求:(1)此时南楼的影子落 在北楼上有多高?(2)要使南楼的影子刚好落在北楼 的墙脚,两楼间的距离应当是多少米?
例:我市某住宅小区高层建筑均为正南正北向,楼高都 是16米,某时太阳光线与水平线的夹角为30 °,如果南 北两楼间隔仅有20米,试求:(1)此时南楼的影子落 在北楼上有多高?(2)要使南楼的影子刚好落在北楼 的墙脚,两楼间的距离应当是多少米?
C 山坡 P O A E B 水平地面
方位角!
一艘渔船正以30海里/小时的速度由西向东追赶 鱼群,在A处看见小岛C在船北偏东60°的方向上; 40min后,渔船行驶到B处,此时小岛C在船北偏东 30°的方向上。已知以小岛C为中心,10海里为半径 的范围内是多暗礁的危险区。这渔船如果继续向东追 赶鱼群,有没有进入危险区的可能? C
解直角三角形知识点总结

解直⾓三⾓形知识点总结 解直⾓三⾓形是中考数学的⼀⼤考点,但相关的知识点其实并不是⼗分的难,下⾯解直⾓三⾓形知识点总结是⼩编为⼤家带来的,希望对⼤家有所帮助。
解直⾓三⾓形知识点总结 【知识梳理】 1.解直⾓三⾓形的依据(1)⾓的关系:两个锐⾓互余;(2)边的关系:勾股定理;(3)边⾓关系:锐⾓三⾓函数 2.解直⾓三⾓形的基本类型及解法:(1)已知斜边和⼀个锐⾓解直⾓三⾓形;(2)已知⼀条直⾓边和⼀个锐⾓解直⾓三⾓形;(3)已知两边解直⾓三⾓形. 3.解直⾓三⾓形的应⽤:关键是把实际问题转化为数学问题来解决 【课前预习】 1、在Rt△ABC中,∠C=90°,根据已知量,填出下列表中的未知量: a b c ∠A ∠B 6 30° 10 45° 2、所⽰,在△ABC中,∠A=30°,,AC= ,则AB= . 变式:若已知AB,如何求AC? 3、在离⼤楼15m的地⾯上看⼤楼顶部仰⾓65°,则⼤楼⾼约 m. (精确到1m, ) 4、铁路路基横断⾯为⼀个等腰梯形,若腰的坡度为1:,顶宽为3⽶,路基⾼为4⽶, 则坡⾓= °,腰AD= ,路基的下底CD= . 5、王英同学从A地沿北偏西60°⽅向⾛100m到B地,再从B地向正南⽅向⾛200m到C地,此时王英同学离A地 m. 【解题指导】 例1 在Rt△ ABC中,∠C=90°,AD=2AC=2BD,且DE⊥AB. (1)求tanB;(2)若DE=1,求CE的长. 例2 34-4所⽰,某居民⼩区有⼀朝向为正南⽅向的居民楼,该居民楼的⼀楼是⾼6m的⼩区超市,超市以上是居民住房,在该楼的前⾯15m处要盖⼀栋⾼20m的新楼.当冬季正午的阳光与⽔平线的夹⾓为32°时. (1)问超市以上的居民住房采光是否有影响,为什么? (2)若新楼的影⼦刚好部落在居民楼上,则两楼应相距多少⽶? (结果保留整数,参考数据: ) 例3某校初三课外活动⼩组,在测量树⾼的⼀次活动中,34-6所⽰,测得树底部中⼼A到斜坡底C的⽔平距离为8.8m.在阳光下某⼀时刻测得1m的标杆影长为0.8m,树影落在斜坡上的部分CD=3.2m.已知斜坡CD的坡⽐,求树⾼AB.(结果保留整数,参考数据 ) 例4 ⼀副直⾓三⾓板放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长. 【巩固练习】 1、某坡⾯的坡度为1: ,则坡⾓是_______度. 2、已知⼀斜坡的坡度为1:4,⽔平距离为20m,则该斜坡的垂直⾼度为 . 3、河堤的横断⾯1所⽰,堤⾼BC是5m,迎⽔斜坡AB长13m,那么斜坡AB的坡度等于 . 4、菱形在平⾯直⾓坐标系中的位置2所⽰, ,则点的坐标为 . 5、先锋村准备在坡⾓为的⼭坡上栽树,要求相邻两树之间的⽔平距离为5⽶,那么这两树在坡⾯上的距离AB为 . 6、⼀巡逻艇航⾏⾄海⾯处时,得知其正北⽅向上处⼀渔船发⽣故障.已知港⼝处在处的北偏西⽅向上,距处20海⾥; 处在A处的北偏东⽅向上,求之间的距离(结果精确到0.1海⾥) 【课后作业】 ⼀、必做题: 1、4,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为 cm. 2、某⼈沿着有⼀定坡度的坡⾯前进了10⽶,此时他与⽔平地⾯的垂直距离为⽶,则这个坡⾯的坡度为__________. 3、已知5,在△ABC中,∠A=30°,tanB= ,BC= ,则AB的长为__ ___. 4、6,将以A为直⾓顶点的等腰直⾓三⾓形ABC沿直线BC平移得到△,使点与C重合,连结,则的值为 . 5、7所⽰,在⼀次夏令营活动中,⼩亮从位于A点的营地出发,沿北偏东60°⽅向⾛了5km到达B 地,然后再沿北偏西30°⽅向⾛了若⼲千⽶到达C地,测得A地在C地南偏西30°⽅向,则A、C两地的距离为( ) (A) (B) (C) (D) 6、8,⼩明要测量河内岛B到河边公路l的距离,在A测得,在C测得,⽶,则岛B到公路l的距离为( )⽶. (A)25 (B) (C) (D) 7、9所⽰,⼀艘轮船由海平⾯上A地出发向南偏西40°的⽅向⾏驶40海⾥到达B地,再由B地向北偏西10°的⽅向⾏驶40海⾥到达C地,则A、C两地相距( ). (A)30海⾥ (B)40海⾥ (C)50海⾥ (D)60海⾥ 8、是⼀⽔库⼤坝横断⾯的⼀部分,坝⾼h=6m,迎⽔斜坡AB=10m,斜坡的坡⾓为α,则tanα的值为( ) (A) (B) (C) (D) 9、11,A,B是公路l(l为东西⾛向)两旁的两个村庄,A村到公路l的距离AC=1km,B村到公路l的距离BD=2km,B村在A村的南偏东45°⽅向上. (1)求出A,B两村之间的距离; (2)为⽅便村民出⾏,计划在公路边新建⼀个公共汽车站P,要求该站到两村的距离相等,请⽤尺规在图中作出点P的位置(保留清晰的作图痕迹,并简要写明作法). 10、是⼀个半圆形桥洞截⾯⽰意图,圆⼼为O,直径AB是河底线,弦CD是⽔位线,CD∥AB,且CD = 24 m,OE⊥CD于点E.已测得sin∠DOE = .(1)求半径OD;(2)根据需要,⽔⾯要以每⼩时0.5 m的速度下降,则经过多长时间才能将⽔排⼲? 11、所⽰,A、B两城市相距100km. 现计划在这两座城市间修筑⼀条⾼速公路(即线段AB),经测量,森林保护中⼼P在A城市的北偏东30°和B城市的北偏西45°的⽅向上. 已知森林保护区的范围在以P 点为圆⼼,50km为半径的圆形区域内. 请问:计划修筑的这条⾼速公路会不会穿越保护区?为什么?(参考数据:, ) 12、,斜坡AC的坡度(坡⽐)为1: ,AC=10⽶.坡顶有⼀旗杆BC,旗杆顶端B点与A点有⼀条彩带AB 相连,AB=14⽶.试求旗杆BC的⾼度. ⼆、选做题: 13、,某货船以每⼩时20海⾥的速度将⼀批重要物资由A处运往正西⽅向的B处,经过16⼩时的航⾏到达.此时,接到⽓象部门的通知,⼀台风中⼼正以40海⾥每⼩时的速度由A向北偏西60o⽅向移动,距台风中⼼200海⾥的圆形区域(包括边界)均会受到影响.⑴ B处是否会受到台风的影响?请说明理由.⑵为避免受到台风的影响,该船应在到达后多少⼩时内卸完货物? 14、所⽰,在Rt△ABC中,∠ACB=90°,半径为1的圆A与边AB相交于点D,与边AC相交于点E,连接DE并延长,与线段BC的延长线交于点P. (1)当∠B=30°时,连接AP,若△AEP与△BDP相似,求CE的长; (2)若CE=2,BD=BC,求∠BPD的正切值; (3)若tan∠BPD= ,设CE=x,△ABC的周长为y,求y关于x的函数关系式.。
《三角函数及解直角三角形》知识点总结

《三角函数及解直角三角形》知识点总结在是三角形ABC 中,︒=∠90C ,(1)锐角A的对边与斜边的比叫做∠A的正弦,记作A sin 。
即A A ∠=sin 的对边=a , 斜边=c .(2)锐角A的邻边与斜边的比叫做∠A的余弦,记作A cos 。
即A A ∠=cos 的邻边=b ,斜边=c (3)锐角A的对边与邻边的比叫做∠A的正切,记作A tan 。
即A A ∠=tan 的对边=a ,邻边=b (4)锐角A的邻边与对边的比叫做∠A的余切,记作A cot 。
即A A ∠=cot 的邻边=b ,对边=a 锐角A的正弦、余弦、正切、余切都叫做∠A的三角函数。
注意:(1)正弦、余弦、正切、余切都是在直角三角形中给出的,要避免应用时对任意的三角形 随便套用定义;(2)A sin 不是sin 与A 的乘积,是三角形函数记号,是一个整体。
“A sin ”表 示一个比值,其他三个三角函数记号也是一样的;(3)锐角三角函数值与三角形三边长短无关,只与锐角的大小有关。
例是直角三角形,︒=∠90C ,AB=10,AC=6.求B B B A A A tan ,cos ,sin ,tan ,cos ,sin。
【解析】在三角形ABC 中,因为︒=∠90C ,所以︒=∠+∠90B A ,又因为AB=10,AC=6,所以BC=8.即:,54108sin ===AB BC A 53106cos ===AB AC A ,3468tan ===AC BC A ; 53106sin ===AB AC B ,54108cos ===AB BC B ,4386tan ===BC AC B 。
(1)平方关系:ααα,1cos sin 22=+为锐角,即同一锐角的正弦和余弦的平方和等于1; (2)倒数关系:ααα,1cot tan =⋅为锐角,即同一锐角的正切与余切的积为1,互为倒数;(3)商的关系:ααααααsin cos cot ,cos sin tan ==α为锐角,即同一锐角的正弦与余弦的商等于正切,同一锐角的余弦与正弦的商等于余切。
解直角三角形的知识点总结

知识点总结一、锐角三角函数 (一)、基础知识1.锐角三角函数定义在直角三角形ABC 中,∠C=900,设BC=a ,CA=b ,AB=c ,锐角A 的三角函数是:(1) 正弦定义:在直角三角形中ABC ,锐角A 的对边与斜边的比叫做角A 的正弦,记作sinA ,即sin A = ca,(2)余弦的定义:在直角三角行ABC ,锐角A 的邻边与斜边的比叫做角A 的余弦,记作cosA ,即cos A = cb,(3)正切的定义:在直角三角形ABC 中,锐角A 的对边与邻边的比叫做角A 的正切,记作tanA ,即tan A =ba,2、坡角与坡度坡面与水平面的夹角称为坡角,坡面的铅直高度与水平宽度的比为坡度(或坡比),即坡度等于坡角的正切。
3、锐角三角函数关系:(1)平方关系: sin 2A + cos 2A = 1; 4、互为余角的两个三角函数关系若∠A+∠B=90,则sinA=cosB,cosA=sinB. 5、特殊角的三角函数:00 300450600sin α 0 21 22 23 cos α 1 23 22 21 tan α33 13二、勾股定理1、勾股定理的概念:直角三角形斜边的平方等于两直角边的平方和。
2、勾股定理的数学表达;若三角形ABC 为直角三角形,∠A ,∠B,∠C 的对边分别为a,b,c,且∠C=∠90,则222c b a =+,反之,已知a,b,c 为三角形ABC 的边。
若222c b a =+,则三角形ABC 为直角三角形。
1、在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦、余弦 ( ) (A ) 都扩大2倍 (B ) 都扩大4倍 (C ) 没有变化 (D ) 都缩小一半2.在Rt △ABC 中,∠C=90°,sinA=54,则cosB 的值等于( )A .53 B. 54 C. 43 D.553.在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( ) A .12B .22C .32D .334.在Rt ∆ABC 中,∠C=90º,∠A=15º,AB 的垂直平分线与AC 相交于M 点,则CM :MB 等于( )(A )2:3 (B )3:2 (C )3:1 (D )1:3 5.等腰三角形底边与底边上的高的比是3:2,则顶角为 ( )(A ) 600 (B ) 900 (C ) 1200 (D ) 1506.身高相等的三名同学甲、乙、丙参加风筝比赛,三人放出风筝线长、线与地面夹角如下表(假设风筝是拉直的),则三人所放的风筝中( )同学 甲 乙 丙 放出风筝线长 100m 100m 90m线与地面夹角40º 45º 60ºA 、甲的最高B 、丙的最高C 、 乙的最低D 、丙的最低 7..如图,一渔船上的渔民在A 处看见灯塔M 在北偏东60O 方向,这艘渔船以28km/时的速度向正东航行,半小时到B 处,在B 处看见灯塔M 在北偏东15O方向,此时,灯塔M 与渔船的距离是( ) A.km 27 B.km 214C.km 7 D.km 148、河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( ) A .53米 B .10米C .15米D .103米9.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为 A .12秒. B .16秒. C .20秒. D .24秒.60OABM东A B CD10、084sin 45(3)4-︒+-π+-= 11、在△ABC 中,∠A=30º,tan B=13,BC=10,则AB 的长为 . 12、锐角A 满足2 sin(A-150)=3,则∠A= .13、已知tan B=3,则sin2B= . 14、某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个破面的坡度为 .15、如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为______米(保留根号).16.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= .17.△ABC 中,∠C=90°,∠B=30°,AD 是△ABC 的角平分线,若AC=3.求线段AD 的长.18.如图,在梯形ABCD 中,AD ∥BC ,BD ⊥DC ,∠C =60°,AD =4,BC =6,求AB 的长.A BCD α1l 3l 2l 4l19、某兴趣小组用高为1.2米的仪器测量建筑物CD 的高度.如示意图,由距CD 一定距离的A 处用仪器观察建筑物顶部D 的仰角为β,在A 和C 之间选一点B ,由B 处用仪器观察建筑物顶部D 的仰角为α.测得A ,B 之间的距离为4米,tan 1.6α=,tan 1.2β=,试求建筑物CD 的高度.20、一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F=∠ACB=90°, ∠E=45°,∠A=60°,AC=10,试求CD 的长.21、综合实践课上,小明所在小组要测量护城河的宽度。
解直角三角形的基本类型与解法公式(总结)

解直角三角形的基本类型及其解法公式(总结)1、解直角三角形的类型与解法2、测量物体的高度的常见模型1)利用水平距离测量物体高度2)测量底部可以到达的物体的高度13)测量底部不可到达的物体的高度(1)测量底部不可到达的物体的高度(2)第三部分真题分类汇编详解2007-2012(2007)19.(本小题满分6分)一艘轮船自西向东航行,在A处测得东偏北21.3°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C最近?(参考数据:sin21.3°≈925,tan21.3°≈25,sin63.5°≈910,tan63.5°≈2)A B C北东(2008)19.(本小题满分6分)在一次课题学习课上,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图所示,其中,AB 表示窗户,且2AB =米,BCD 表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD 的最小夹角α为18.6,最大夹角β为64.5.请你根据以上数据,帮助小明同学计算出遮阳蓬中CD 的长是多少米?(结果保留两个有效数字)0.34=,sin 64.50.90=,tan 64.5 2.1=)(2009)19.(本小题满分6分)在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角,然后往塔的方向前进50米到达B 处,此时测得仰角,已知测倾器高1.5米,请你根据以上数据计算出古塔CD 的高度. (参考数据:,,,)21CFE ∠=°37CGE ∠=°3sin 375°≈3tan 374°≈9sin 2125°≈3tan 218°≈(2010)19.(本小题满分6分)小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数) (参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,) 解:37° 48°DCA(2011)19.(6分)某商场准备改善原有楼梯的安全性能,把倾斜角由 原来的40º减至35º.已知原楼梯AB 长为5m ,调整后的楼梯所占地面CD 有多长?(结果精确到0.1m .参考数据:sin40º≈0.64,cos40º≈0.77,sin35º≈0.57,tan35º≈0.70)B第19题图40ºDBC(2012)20.(8分)附历年真题标准答案:(2007)19.(本小题满分6分)解:过C作AB的垂线,交直线AB于点D,得到Rt△ACD与Rt△BCD.设BD=x海里,在Rt △BCD 中,tan ∠CBD =CD BD,∴CD =x ·tan63.5°.在Rt △ACD 中,AD =AB +BD =(60+x)海里,tan ∠A =CD AD,∴CD =(60+x) ·tan21.3°.∴x ·tan63.5°=(60+x)·tan21.3°,即()22605x x =+.解得,x =15.答:轮船继续向东航行15海里,距离小岛C 最近.…………………………6′ (2008)19.(本小题满分6分)解:设CD 为x ,在Rt △BCD 中, 6.18==∠αBDC ,∵CDBC BDC =∠tan ,∴x BDC CD BC 34.0tan =∠⋅=. ············ 2′在Rt △ACD 中, 5.64==∠βADC , ∵CDAC ADC =∠tan ,∴x ADC CD AC 1.2tan =∠⋅=.∵BC AC AB -=,∴x x 34.01.22-=. 1.14x ≈.答:CD 长约为1.14米. (2009)19.(本小题满分6分) 解:由题意知,, ∴,设,CD AD ⊥EF AD ∥90CEF ∠=°CE x =在中,,则; 在中,,则 ∵,∴. ,∴(米). 答:古塔的高度约是39米. ······················································ 6分 (2010)19.(本小题满分6分)解:设CD = x .在Rt △ACD 中,tan37AD CD︒=,则34AD x=,∴34AD x =.在Rt △BCD 中,tan48° =BDCD, 则1110BD x=,∴1110BD x =.……………………4分∵AD +BD =AB ,∴31180410x x +=. 解得:x ≈43.Rt CEF △tan CE CFE EF ∠=8tan tan 213CE x EF x CFE ===∠°Rt CEG △tan CE CGE GE ∠=4tan tan 373CE x GE x CGE ===∠°EF FG EG =+845033x x =+37.5x =37.5 1.539CD CE ED =+=+=答:小明家所在居民楼与大厦的距离CD大约是43米.…………………6分(2011)19.(本小题满分6分)(2012)20.(8分)。
直角三角形知识点总结

直角三角形知识点总结直角三角形知识点总结知识点在不断更新的同时也需要及时的归纳总结,才能更好的掌握,接下来小编给大家整理解直角三角形知识点整理,供大家参考阅读。
1解直角三角形一、锐角三角函数(一)、锐角三角函数定义在直角三角形ABC中,C=900,设BC=a,CA=b,AB=c,锐角A的四个三角函数是:(1)正弦定义:在直角三角形中ABC,锐角A的对边与斜边的比叫做角A的正弦,记作sinA,即sin A=ca,(2)余弦的定义:在直角三角行ABC,锐角A的邻边与斜边的比叫做角A的余弦,记作cosA,即cos A=cb,(3)正切的定义:在直角三角形ABC中,锐角A的对边与邻边的比叫做角A的正切,记作tanA,即tan A=ba,(4)锐角A的邻边与对边的比叫做A的余切,记作cotA 即aAAAb的对边的邻边cot锐角A的正弦、余弦,正切、余切都叫做角A的锐角三角函数。
这种对锐角三角函数的定义方法,有两个前提条件:(1)锐角A必须在直角三角形中,且(2)在直角三角形ABC中,每条边均用所对角的相应的小写字母表示。
否则,不存在上述关系2注意:锐角三角函数的定义应明确(1)ca,cb,ba,ab四个比值的大小同△ABC的三边的大小无关,只与锐角的大小有关,即当锐角A取固定值时,它的四个三角函数也是固定的;(2)sinA不是sinA的乘积,它是一个比值,是三角函数记号,是一个整体,其他三个三角函数记号也是一样;(3)利用三角函数定义可推导出三角函数的性质,如同角三角函数关系,互余两角的三角函数关系、特殊角的'三角函数值等;(二)、同角三角函数的关系(1)平方关系:122sinCOS(2)倒数关系:tana cota=1(3)商数关系:sincoscot,cossintan注意:(1)这些关系式都是恒等式,正反均可运用,同事还要注意它们的变形公式。
(2)sinsin22是的简写,读作“sin的平方”,不能将22sin写成sin前者是a的正弦值的平方,后者无意义;(3)这里应充分理解“同角”二字,上述关系式成立的前提是所涉及的角必须相同,如1cottan,1223030cossin22,而1cossin22就不一定成立。
解直角三角形小结精编

解直角三角形是九年级上学期第二章第二节的内容,通过本节的学习,需要掌握直角三角形中,除直角外其余五个元素之间的关系,并熟练运用锐角三角比的意义解直角三角形,以及解直角三角形的相关应用.重点在于理解仰角、俯角、方向角、坡度、坡角等概念,并能利用其解决实际问题;难点在于,若一个三角形不是直角三角形,要有意识把它化归为解直角三角形的问题.1、 解直角三角形在直角三角形中,由已知元素求出所有未知元素的过程,叫做解直角三角形. 在t R ABC ∆中,如果=90C ∠︒,那么它的三条边和两个锐角之间有以下的关系: (1)三边之间的关系:222a b c +=(2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系: sin cos a A B c ==,cos sin bA B c ==tan cot a A B b ==,cot tan b A B a== 解直角三角形内容分析知识结构模块一:解直角三角形知识精讲ABO xyAB CDEAB CDEO【例1】ABC∆中,90C∠=︒,已知AB = 6.4,40B∠=︒,则A∠=______,AC =______,BC =______.(sin400.64︒≈,sin500.77︒≈,边长精确到0.1)【例2】若菱形的周长为8,相邻两内角之比为3 : 1,则菱形的高是______.【例3】如图,OAB∆中,OA = OB,125AOB∠=︒.已知点A的坐标是(4,0),则点B 的坐标是____________.(用锐角三角比表示)【例4】如图,在ABC∆中,90BAC∠=︒,AB = AC,D为边AC的中点,DE BC⊥于点E,连接BD,则tan DBC∠的值为()A.13B1-C.2-D.14【例5】如图,在矩形ABCD中,对角线AC、BD相交于点O,E是边AD的中点,若AC = 10,DC=,则BO=______,EBD∠的度数约为____°____'(参考数据:1tan2634'2︒≈).【例6】在锐角ABC∆中,AB = 14,BC = 14,84ABCS∆=,求cot C的值.例题解析ABCAB CDAB CAB C 【例7】如图,ABC∆中,AB=AC = 2,边BC上的高AD=求ABCS∆和BAC∠的大小.【例8】如图,在锐角ABC∆,4sin5B=,tan2C=,且40ABCS∆=,求BC的长.【例9】如图,ABC∆中,30B∠=︒,45C∠=︒,2AB AC-=BC的长.【例10】如图,先将斜边AB长6 cm,30A∠=︒的直角三角板ABC绕点C顺时针方向旋转90°至''A B C∆位置,再沿CB向左平移,使点B落在原三角板ABC位置的斜边AB上,则平移的距离为______.ABCDAB CDAB CDENM 【例11】如图,正方形ABCD中,E为边BC上一点,将正方形折叠,使A点与E点重合,折痕为MN,若1tan3AEN∠=,DC + CE =10.(1)求ANE∆的面积;(2)求sin ENB∠的值.【例12】如图,四边形ABCD中,90A C∠=∠=︒,120B∠=︒,AB = 4,BC = 2,求四边形的面积.【例13】如图,在四边形ABCD中,已知AD = AB = BC,连接AC,且30ACD∠=︒,tan3BAC∠=,CD = 3,求AC的长.A BCDEFNMxyO【例14】小智在学习特殊角的三角比时发现,将如图所示的矩形纸片ABCD沿过B点的直线折叠,使点A落在BC上的点E处,折痕BM.还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,折痕EN.利用这种方法,可以求出tan67.5︒的1+,试证明之.【例15】在平面直角坐标系内,放置了5个如图所示的正方形(用阴影表示).点1B在y轴上,点1C、1E、2E、2C、3E、4E、3C在x轴上.已知正方形1111A B C D的边长为1,1160B C O∠=︒,11B C//22B C//33BC,则点3A到x轴的距离是()AB C D仰角 视线水平线视线俯角铅垂线北北偏东30°南偏西45°北偏西70°南偏东50°30°70° 45°50°hl1、 仰角与俯角在测量过程中,常常会遇到仰角和俯角.如图,当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,视线在水平线下方的角叫做俯角.2、 方向角指北或指南方向线与目标方向线所成的小于90°的角叫做方向角. 如图:北偏东30°,北偏西70°,南偏东50°,南偏西45°.3、 坡度(坡比)、坡角在修路、挖河、开渠等设计图纸上,都需要注明斜坡的倾斜程度.如图,坡面的铅垂高度h 和水平宽度l 的比叫做坡面的坡度(或坡比),记作i ,即h i l=. 坡度通常写成1 : m 的形式,如1:1.5i =. 坡面与水平面的夹角叫做坡角,记作α.坡度i 与坡角α之间的关系:tan hi lα==.模块二:解直角三角形的应用知识精讲AB OCABDABP北ABC【例16】如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角ABO∠为α,则树OA的高度为()A.30tanαB.30sinαC.30tanαD.30cosα【例17】如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处.如果海轮沿着正南方向航行到灯塔的正东方向,那么海轮航行的距离AB的长是()海里A.2 B.2sin 55°C.2cos 55°D.2tan 55°【例18】如图所示,某公园入口处原有三级台阶,每级台阶高为18厘米,深为30厘米,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i = 1 : 5,那么AC的长度是______厘米.【例19】如图,斜面AC的坡度为1 : 2,AC=米,坡顶有一旗杆BC,旗杆顶端B 点与A点有一条彩带相连,若AB = 10米,则旗杆BC的高度为()米A.5 B.6 C.8 D.例题解析ACDABCDAP Q【例20】如图,要在宽为22米的大道AB两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直.当灯罩的轴线DO通过公路路面中心线时照明效果最佳.此时,路灯的灯柱BC的高度应该设计为()米A.11-B.11-C.-D.4【例21】如图,为测得一栋大厦CD的高度,一人先在附近一楼房的底端A点观测大厦顶端C处的仰角是60°,然后爬到该楼房顶端B处观测大厦底部D处的俯角是30°,已知楼房高AB约是45 m,根据以上观测数据可求大厦的高CD是______m.【例22】如图,小智在大楼30米高(即PH = 30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°.已知山坡的坡度为,点P、H、B、C、A在同一平面上,点H、B、C在同一直线上,且PH HC⊥.则山坡上A、B两点间的距离为______.【例23】某单位拟建造地下停车库,设计师提供了车库入口设计示意图(如图),按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你计算图中CE的长.(参考数据:sin180.309︒≈,cos180.951︒≈,tan180.325︒≈,cot18 3.078︒≈,结果精确到0.1 m)ABCDE9 m0.5 m°A BCDABA'B'O'O【例24】小方在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面高'2OO=米.当吊臂顶端由点A抬升至点'A(吊臂长度不变)时,地面B处的重物(高度不计)被吊至'B处,紧绷着的吊缆''A B AB=.AB 垂直地面'O B于点B,直线''A B垂直地面'O B于点C,吊臂长度'10OA OA==米,且3cos5A=,1sin'2A=.(1)求重物在水平方向移动的距离BC;(2)求重物在竖直方向提升的高度'B C.【例25】如图,是一座人行天桥的示意图,天桥的高度是10米,CB DB⊥,坡面AC 的坡角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡度为3i=.若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米1.414≈1.732≈)【例26】数学兴趣小组准备利用所学的知识测量公路旁某广告牌的高度.如图所示,先在水平面上点A处测得对广告牌上沿点C的仰角为30°,然后沿AH方向前进10米至点B处,测得对广告牌下沿点D的仰角为60°.已知矩形广告牌垂直于地面的一边CD高2米.求广告牌的高度GH(结果保留根号).A BCDGH广告牌ABCDP NMQHA BCDO东【例27】如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C 处,测得45CAO∠=︒.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45 km/h和36 km/h.经过0.1 h,轮船甲行驶至B处,轮船乙行驶至D处,测得58DBO∠=︒.此时B处距离码头O有多远?(参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.60︒≈)【例28】如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼.已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且30BDN∠=︒,假设汽车在高架道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A作MN的垂线,垂足为H.如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排居民楼,那么此时汽车与点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板.当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(结果精确到11.7≈)AB CD EF NMPJHABC【例29】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象部门观测,某沿海城市A 正南方向相距220 km 的B 处有一台风中心,中心最大风力为12级,每远离台风中心20 km ,风力就会减弱一级.现台风中心正以15 km /h 的速度沿北偏东30°方向移动,如图所示.若城市所受风力达到或超过4级,则称为受台风影响.(1)设台风中心风力不变,该城市是否会受到这次台风的影响?请说明理由. (2)如该城市受台风影响,那么台风影响该城市的持续时间有多长? (3)该城市受到台风影响时的最大风力为几级?【例30】某水库大坝的横截面积是如图所示的四边形ABCD ,其中AB // CD .瞭望台PC 正前方水面上有两艘渔船M 、N ,观察员在瞭望台顶端P 处观测渔船M 的俯角31α=︒,观测渔船N 的俯角45β=︒.已知MN 所在直线与PC 所在直线垂直,垂足为E ,PE 长为30米.(1)求两渔船M 、N 之间的距离(结果精确到1米)(2)已知坝高24米,坝长100米,背水坡AD 的坡度i = 1 : 0.25.为了提高大坝的防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝顶加宽3米,背水坡FH 的坡度为i = 1 : 1.5.施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的1.5倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan310.60︒≈,sin 310.52︒≈)A BCDABCDABC DE FG ABCD【习题1】 如图,菱形ABCD 的边长为15,3sin 5BAC ∠=,则对角线AC 的长为______.【习题2】 有一个相框的侧面抽象为如图所示的几何图形,已知BC = BD = 15 cm ,40CBD ∠=︒,则点B 到CD 的距离为______cm .(参考数据:sin 200.342︒≈,cos 200.940︒≈,sin 400.642︒≈,cos 400.766︒≈,结果精确到0.1 cm )【习题3】 如图,为了测得电视塔的高度AB ,在D 处用高为1米的测角仪CD 测得电视塔顶端A 的仰角为30°,再向电视塔方向前进100米到达F 处,又测得电视塔顶端A 的仰角为60°,则这个电视塔的高度AB 为()A .米B .51米C .()米D .101米【习题4】 如图,ABC ∆中,90C ∠=︒,3sin 5B =.D 是BC 上一点,已知45ADC ∠=︒,DC = 6,求tan BAD ∠的值.随堂检测ABCDCDEFABC30°45° 【习题5】 如图,ABC ∆和ADE ∆都是等边三角形,AB = 2AD ,已知45BAD ∠=︒,AC与DE 相交于点F ,ABC ∆【习题6】 如图,在四边形ABCD 中,45A C ∠=∠=︒,105ADB ABC ∠=∠=︒.(1)若AD = 2,求AB ;(2)若2AB CD +=,求AB .【习题7】 2015年4月25日14时11分,尼泊尔发生8.1级地震,震源深度为20千米.中国救援队火速赶往灾区救援,探测出某建筑物废墟下方C 处有生命迹象.在废墟一侧某面上选两探测点A 、B ,点A 、B 相距2米,探测线与该面的夹角分别是30°和45°(如图),试确定生命所在的点C1.414≈,1.732≈)【习题8】 利用几何图形,求sin 18°的值.ABCO北北东ABCA 1B 1C 1【习题9】 如图,港口B 位于港口O 正西方向120 km 处,小岛C 位于港口O 北偏西60°方向上.一艘游船从港口O 出发,沿OA 方向(北偏西30°)以v km /h 的速度驶离港口O ,同时一艘快艇从港口B 出发,沿北偏东30°的方向以60 km /h 的速度驶向小岛C ,在小岛C 用1 h 加装补给物资后,立即按原来的速度给游船送去. (1)快艇从港口B 到小岛C 需要多长时间?(2)若快艇从小岛C 到与游船相遇恰好用时1 h ,求v 的值及相遇处与港口O 的距离.【习题10】 如图所示,已知边长为2的正三角形ABC 沿直线l 顺时针滚动. (1)当ABC ∆滚动一周到111A B C ∆的位置时,A 点所运动的路程约为______;(精确到0.1)(2)设ABC ∆滚动240°,C 点的位置为'C ,当ABC ∆滚动480°时,A 点的位置再'A ,请你利用正切的两角和公式()tan tan tan 1tan tan αβαβαβ++=-,求出''CAC CAA ∠+∠的度数.ABCD EFABC北东ABCDEFABCD【作业1】 如图,将正方形ABCD 的边BC 延长到点E ,使得CE = AC ,AE 与CD 相交于点F ,求E ∠的余切值.【作业2】 如图,在矩形ABCD 中,AB = 8,BC = 12,E 是BC 的中点,连接AE ,将ABE∆沿AE 折叠,点B 落在点F 处,连接FC ,则sin EFC ∠的值为______.【作业3】 如图,AD 是ABC ∆的中线,1tan 3B =,cos 2C =,AC(1)BC 的长;(2)sin ADC ∠的值.【作业4】 如图,轮船从B 处以每小时60海里的速度沿南偏东20°的方向匀速航行,在B 处观测灯塔A 位于南偏东50°方向上.轮船航行40分钟到达C 处,在C 处观测灯塔A 位于北偏东10°方向上,则C 处与灯塔A 的距离是( )A .20海里B .40海里 C海里 D海里课后作业ABCDABCDDABC ABCENM 【作业5】 如图,在ABC ∆中,45B ∠=︒,AB =,D 是BC 上一点,AD = 5,CD = 3,求ADC ∠的度数及AC 的长.【作业6】 如图,点D 在ABC ∆的边BC 上,C BAD DAC ∠+∠=∠,4tan 7BAD ∠=,AD =,CD = 13,求线段AC 的长.【作业7】 如图,一栋楼房AB 背后有一台阶CD ,台阶每层高0.2米,且AC = 17.2米.设太阳光线与水平地面的夹角为α,当60α=︒时,测得楼房在地面上的影长AE = 10米.现有一只小猫睡在台阶的MN 这层上晒太阳.1.73≈) (1)楼房的高度约为多少米?(2)过了一会儿,当45α=︒时,问小猫能否还晒到太阳?请说明理由.【作业8】 如图,CD 是ABC ∆的中线,已知90ACD ∠=︒,3cos 5A =,求tan ∠BCD 的值.ABCDEF【作业9】 如图,在梯形ABCD 中,AD // BC ,AB = 4,BC = 6,DAC B AEF ∠=∠=∠,点E 、F 分别在BC 、AC 上(点E 与B 、C 不重合),设BE = x ,AF = y . (1)求cos B ;(2)求证:ABE ∆∽ECF ∆; (3)求y 关于x 的代数式;(4)当点E 在BC 上移动时,AEF ∆是否有可能是直角三角形?若有可能,请求出BE 的长;若不能,请说明理由.【作业10】 如图(a )所示,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E是BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)连接GD ,求证:ADG ∆≌ABE ∆;(2)连接FC ,观察并猜测FCN ∠的度数,并说明理由;(3)如图(b )所示,将图(a )中正方形ABCD 改为矩形ABCD ,AB = a ,BC = b (a 、b 为常数),E 是线段BC 上一动点(不含端点B 、C ),以AE 为边在直线MN 上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当点E 由B 向C 运动时,FCN ∠的大小是否总保持不变,若FCN ∠的大小不变,请用含a 、b 的代数式表示tan FCN ∠的值;若FCN ∠的大小改变,请举例说明.ABCDE FNM G ABCDEFNM G 图(a )图(b )。
解直角知识点总结

解直角知识点总结一、直角三角形的基本概念直角三角形是指其中一个角为直角(即90度)的三角形。
在直角三角形中,有一边是长边,另外两边是短边。
根据勾股定理,长边的平方等于两短边平方的和。
直角三角形的基本概念主要包括三边、三角、三角的边。
1. 三边直角三角形的三条边分别为斜边、邻边和对边。
斜边是直角三角形的斜边,对应直角的斜边是毗邻直角的两条边。
2. 三角直角三角形的三角分别是直角、锐角和钝角。
直角是90度的角,锐角小于90度,钝角大于90度。
3. 三角的边直角三角形的三条边分别对应三个角。
斜边对应的角为锐角或钝角,而两条直角边对应的角分别为直角和与之相对的锐角或钝角。
二、直角三角形的性质直角三角形有一些特殊的性质,这些性质对于解题以及应用都具有重要的意义。
1. 直角三角形皮斯算定理若直角三角形的两条直角边分别为a和b,斜边为c,那么a的平方加上b的平方等于c 的平方。
即a² + b² = c²。
2. 正弦定理正弦定理的具体表述是,在一个直角三角形中,三条边的比是相等的。
即a/sinA = b/sinB = c/sinC。
3. 余弦定理余弦定理的具体表述是,在一个直角三角形中,三条边的比是相等的。
即a² = b² + c² -2bc*cosA。
4. 正切定理正切定理的具体表述是,在一个直角三角形中,两边与角的正切之比是相等的。
即tanA = b/a, tanB = a/b。
5. 直角三角形的重心直角三角形的重心位于斜边上距离直角边的中点。
三、直角三角形的应用直角三角形在实际生活中有着广泛的应用,尤其是在工程领域和日常生活中。
以下是几个直角三角形常见的应用:1. 测量在建筑和工程测量中,直角三角形经常被用来测量高度或距离。
通过利用三角函数的计算,可以精确测量任意高度或距离。
2. 建筑设计在建筑设计中,直角三角形的概念被广泛应用。
建筑师和设计师可以通过直角三角形的原理来设计建筑物的结构、外形和布局。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解直角三角形总结解直角三角形与直角三角形的概念、性质、判定和作图有着密切的联系,是在深入研究几何图形性质的基础上,根据已知条件,计算直角三角形未知的边长、角度和面积,以及与之相关的几何图形的数量。
1、明确解直角三角形的依据和思路在直角三角形中,我们是用三条边的比来表述锐角三角函数定义的.因此,锐角三角函数的定义本质揭示了直角三角形中边角之间的关系,是解直角三角形的基础。
如图1,在Rt△ABC中,∠C=90°,设三个内角A、B、C所对的边分别为a、b、c(以下字母同),则解直角三角形的主要依据是(1)边角之间的关系:sinA=cosB=ac, cosA=sinB=bc,tanA=cotB=ab,cotA=tanB=ba。
(2)两锐角之间的关系:A+B=90°。
(3)三条边之间的关系:。
以上每个边角关系式都可看作方程,解直角三角形的思路,就是根据已知条件,正确地选择直角三角形中边角间的关系式,通过解一元方程来求解。
2、解直角三角形的基本类型和方法我们知道,由直角三角形中已知的元素求出未知元素的过程叫作解直角三角形,而在直角三角形中,除直角以外还有三条边及两个锐角共五个元素,那么什么样的直角三角形才可解呢?如果已知两个锐角能否解直角三角形呢?事实上,解直角三角形跟直角三角形的判定与作图有着本质的联系,因为已知两个元素(至少有一个是边)可以判定直角三角形全等,也可以作出直角三角形,即此时直角三角形是确定的,所以这样的直角三角形是可解的。
由于已知两个锐角的直角三角形是不确定的,它们是无数多个相似的直角三角形,因此求不出各边的长。
所以,要解直角三角形,给出的除直角外的两个元素中,必须至少有一个是边。
这样,解直角三角形就分为两大类,即已知一条边及一个锐角或已知两条边解直角三角形。
四种基本类型和解法列表如下:已知条件解法一边及一锐角直角边a及锐角A B=90°-A,b=a·tanA,c=sinaA斜边c及锐角A B=90°—A,a=c·sinA,b=c·cosA两边两条直角边a和b ,B=90°—A,直角边a和斜边c sinA=ac,B=90°-A,例1、如图2,若图中所有的三角形都是直角三角形,且∠A=α,AE=1,求AB的长。
分析一:所求AB是Rt△ABC的斜边,但在Rt△ABC 中只知一个锐角A=α,暂不可解。
而在Rt△ADE中,已知一直角边及一锐角是可解的,所以就从解Rt△ADE入手。
解法一:在Rt△ADE中,∵cosA=AEAD,且∠A=α,AE=1,∴AD=cosAEA=1cos,在Rt△ADC中,∵cosA=ADAC,∴AC=cosADA=1coscosαα=21cosα,在Rt△ABC中,∵cosA=ACAB,∴AC=cosACA=21coscosαα=31cosα。
分析二;观察图形可知,CD、CE分别是Rt△ABC和Rt△ACD斜边上的高,具备应用射影定理的条件,可以利用射影定理求解。
解法二:同解法一得,∴AD=1cosα,在Rt△ACD中,∵AD2=AE.AC∴AC=2ADAE=21cosα,在Rt△ABC中,∵AC2=AD.AB∴AB=2ACAD=31cosα。
说明:本题是由几个直角三角形组合而成的图形.这样的问题,总是先解出已经具备条件的直角三角形,从而逐步创造条件,使得要求解的直角三角形最终可解。
值得注意的是,由于射影定理揭示了直角三角形中有关线段的数量关系,因而在解直角三角形时经常要用到。
在解直角三角形的问题中,经常会遇到这样的图形(图3),它是含有两个直角三角形的图形。
随着D点在BC边上位置的变化,会引起直角三角形中有关图形数量相应的变化,从而呈现许多不同的解直角三角形的问题,下面举例加以说明。
例2、如图3,在Rt△ABC中,∠C=90°,AD是BC边上的中线。
(1)若BD=2,∠B=30°,求AD的长;(2)若∠ABC=α,∠ADC=β,求证:tanβ=2tan α。
(1)分析:由AD 是BC 边的中线,只知DC 一条边长,仅此无法直接在Rt △ADC 中求解AD 。
而在Rt △ABC 中,由已知BC 边和∠B 可以先求出AC,从而使Rt △ADC 可解。
解:在Rt △ABC 中,∵BC =2BD =22,∠B =30°,∴AC =BC ·tanB =232⨯=26, 在Rt △ADC 中,∵DC =BD =2,∴AD=22AC BC +=423。
(2)分析:α和β分别为Rt △ABC 和Rt △ADC 中的锐角,且都以直角边AC 为对边,抓住图形的这个特征,根据直角三角形中锐角三角比可以证明tan β=2tan α。
证明:在Rt △ABC 中,∵tan ∠ABC=ACBC,∠ABC=α,∴AC=BC 。
tan α, 在Rt △ADC 中,∵tan ∠ADC=ACDC,∠ADC=β,∴AC=DC.tan β,又∵BC =2DC , ∴tan β=2tan α。
例3、如图3,在Rt △ABC 中,∠C =90°,AD 是∠BAC 的平分线.(1)若AB ∶BD =3,求∠B ;(2)又若BD =4,求。
分析:已知AD 是∠BAC 的平分线,又知两条线段的比AB ∶BD =3,应用三角形内角平分线的性质定理,就能把已知条件集中转化到Rt △ADC 中,先求出∠DAC 即可求得∠B 。
解:(1)∵AD 是∠BAC 的平分线,∴AB AC =BD CD ,即AB BD =ACCD3即 在Rt △ADC 中,∵cot ∠DAC=ACCD3,∴∠DAC =30°, ∴∠BAC =2∠DAC =60°, ∴∠B =90°-∠BAC =30°.(2)∵AB BD =3,BD =4,∴AB =3BD =43,∵∠B =30°,∴AC =12AB =23,又∵BC =AB ·cosB =6,∴ABC S ∆=12BC ·AC =12×6×23=63.说明:解直角三角形时,要注意三角形中主要线段的性质,利用平面几何的有关定理,往往能够建立已知与未知的联系,找到解决问题的突破口。
例4、如图3,在Rt △ABC 中、∠C =90°,D 为BC 上一点,∠ABC =45°,∠ADC =60°,BD =1,求AB 。
分析:已知的角度告诉我们,Rt △ABC 和Rt △ADC 都是特殊的直角三角形,抓往这个特点设未知数,根据线段间的数量关系,可以列出一元一次方程求解。
解:在Rt △ADC 中,设DC =x,∵∠ADC =60°,∴AD =2x,AC =3x,在Rt △ABC 中,∵∠ABC =45°,BD =1,∴1+x =3x ,∴x =31+, ∴AB =2AC =6x =3262+。
说明:解直角三角形时,要注意发掘图形的几何性质,利用线段和差的等量关系布列方程。
还要熟练地掌握特殊锐角的三角比值,以使解答过程的表述简洁.例5、如图4,在△ABC 中、D 、F 分别在AC 、BC 上,且AB ⊥AC ,AF ⊥BC ,BD =DC =FC =1,求AC.分析:由数形结合易知,△ABC 是直角三角形,AF 为斜边上的高线,CF 是直角边AC 在斜边上的射影,AC 为所求,已知的另外两边都在△BDC 中,且BD =DC =1,即△BDC 是等腰三角形。
因此,可以过D 作DE ⊥BC ,拓开思路。
由于DE ,AF 同垂直于BC ,又可以利用比例线段的性质,逐步等价转化求得AC 。
解:在△ABC 中,设AC 为x ,∵AB ⊥AC,AF ⊥BC ,又FC =1,根据射影定理,得:,即BC =。
再由射影定理, 得:,.在△BDC中,过D作DE⊥BC于E,∵BD=DC=1,∴BE=EC,又∵AF⊥BC,∴DE∥AF,.在Rt△DEC中,∵DE2+EC2=DC2,即,整理得x6=4,∴x=32∴AC=32.说明:本题体现了基本图形基本性质的综合应用.还应该注意,作垂线构造直角三角形是解直角三角形时常用的方法。
3、解直角三角形在实际问题中的应用借助解直角三角形解决实际问题,包括度量工件、测量距离、工程技术等许多方面.解决问题的关键是要从实际问题中抽象出几何图形,把实际问题中的数量关系转化为直角三角形的边角之间的关系,从而通过解直角三角形使实际问题得到解决.例6、某型号飞机的机翼形状如图5,根据图示尺寸计算AC、BD和AB的长度(保留三个有效数字)。
分析;飞机机翼形状为四边形ABDC ,要求其中三条边的长度,一方面应使所求线段成为直角三角形的元素,另一方面,要设法将已知条件与未知量集中在某个三角形中以求解,这就需要恰当地构造直角三角形。
解:过C 作CE ⊥BA,交BA 的延长线于E 。
在Rt △ACE 中,∵∠ACE =45°,CE =5,∴AC =2CE ≈1。
414×5=7。
07.过D 作DF ⊥BA ,交BA 的延长线于F ,且与AC 交于G,在Rt △BDF 中,∵∠BDF =30°,DF =5,∴BD =cos30DF =50.866=5。
77,∴BF=12BD =2。
885∴AB =BF —AF =BF —FG =BF —(DF —DG )=BF-(DF —CD )=2。
885-(5-3。
4)≈1.29(米). 说明:解决实际问题时,计算常有精确度的要求,应注意近似计算的法则和规范表述。
例7、某勘测队在山脚测得山顶的仰角为38°,沿倾斜角为25°的山坡前进800米后,又测得山顶的仰角为62°,求山的高度(精确到0.1米).(cos13°=0.9744, sin13°=0。
2250,cot24°=2.246,sin38°=0。
6157)分析:先根据题意画出示意图(如图6),BC 为山高,AD 为山坡,∠DAC =25°,因为仰角为视线与水平线的夹角,所以∠BAC =38°,AD =800米,∠BDE =62°,要直接在Rt △ABC 中求BC 不够条件,必须设法先求出AB,这就需要根据已知条件,构造直角三角形。
解:过D 作DF ⊥AB 于F,在Rt △ADF 中,∠DAF =38°-25°=13°, ∴AF =AD ·cos ∠DAF =800×0.9744=779。
5, DF =AD ·sin ∠DAF =800×0.2250=180.0。