高分子知识点资料整理总结
高分子材料化学重点知识点总结

水溶性高分子的性能:水溶性;2.增黏性;3.成膜性;4.表面活性剂功能;5.絮凝功能;6.粘接作用。
造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100万:主要用于纸浆分散剂;2)分子量在100万和500万之间:主要用于纸张增强剂;3)分子量大于500万:造纸废水絮凝剂(超高分子量);(2)聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。
日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。
壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。
1996年公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。
第二章、离子交换树脂离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。
(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。
离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。
(2)根据所交换离子的类型:阳离子交换树脂(3H);阴离子交换树脂(3);两性离子交换树脂离子交换树脂的制备:(1)聚苯乙烯型:(方程式)离子交换树脂的选择性:高价离子,大半径离子优先离子交换树脂的再生:a. 钠型强酸型阳离子交换树脂可用10溶液再生;b. 型强碱型阴离子交换树脂则用4溶液再生。
高分子总复习各章重点

复习第一章绪论1.聚合物的命名(习惯)习惯命名法a.以单体名称来命名。
一种单体:“聚”+单体名。
如聚乙烯、聚丙烯、聚苯乙烯、聚甲基丙烯酸甲酯。
两种不同单体合成的共物:共聚单体中各取一个字后缀“树脂”“橡胶”。
苯酚-甲醛的聚合物称为酚醛树脂,丁二烯-苯乙烯共聚物称为丁苯橡胶。
两种不同单体合成的缩聚物:在其结构单元前加一个“聚”字。
如由己二胺、己二酸缩聚的产物称为聚己二酰己二胺。
b. 以聚合物的结构特征命名以聚合物的特征结构命名。
如聚酯、聚酰胺、聚氨酯、聚脲、聚砜等。
c. 以商品名称命名如涤纶(聚对苯二甲酸乙二醇酯),锦纶(尼龙6),维纶(聚乙烯醇缩甲醛),腈纶(聚丙烯腈),丙纶(聚丙烯)等。
尼龙后面的数字代表其单体来源,第一个数字代表二元胺中碳的数目,第二个数字代表二元酸中碳的数字。
例如尼龙-6,10即是用己二胺、癸二酸为单体合成的。
d.用英文缩写命名在文章和文献中经常采用英文缩写符号表示。
如聚苯乙烯(polystyrene)简称为PS,聚醋酸乙烯酯(polyvinylacetate)简称为PVAc等。
见附表1。
2.结构单元、重复单元、聚合度、单体单元的概念结构单元:由一种单体分子通过聚合进入重复单元的部分。
重复单元:大分子链上重复出现的、最小基本单元(分子式中括号内的部分)。
聚合度:高分子链中重复单元的数目称为聚合度。
单体单元:除电子结构改变外,原子种类及个数完全相同的结构单元。
3.判断聚合类型逐步聚合:通过单体上所带的能相互反应的官能团逐步反应形成二聚体、三聚体、四聚体等,直到最终在数小时内形成聚合物的反应。
连锁聚合:在链引发形成的活性中心的作用下,通过链增长、链终止、链转移等基元反应在极短时间内形成高分子的反应写出下列聚合物的一般名称、单体、聚合反应式,并指明这些聚合反应属于加聚反应还是缩聚反应,链式聚合还是逐步聚合?-(1) -[- CH2- CH-]n|COO CH3(2) -[- CH2- CH-]-n|OCOCH3(3) -[- CH2- C = CH- CH2-]-n|CH3(4) -[-NH(CH2)6NHCO(CH2)4CO-]n-(5) -[-NH(CH 2)5CO -]n - 知识点:H 2CCH COOCH3n CH 2CH COOCH3n丙烯酸甲酯 聚丙烯酸甲酯加聚反应、连锁聚合(1)(2)(3)(4)(5)CH 2CH OCOCH3n CH 2CH OCOCH3n醋酸乙烯 聚醋酸乙烯加聚反应、连锁聚合CH 2CCH 3H CCH 2n CH 2CCH 3CHCH 2n异戊二烯 聚异戊二烯加聚、连锁聚合NH 2(CH 2)6NH 2n +COOH(CH 2)4COOHn 己二胺 己二酸 尼龙-66(聚己二酰己二胺)逐步、聚合缩聚NH(CH2)5COn H+OH-NH(CH2)5CO n NH(CH2)5COn逐步聚合 开环聚合连锁聚合 开环聚合己内酰胺 尼龙-6NH(CH2)6NHOC(CH2)4COn课后作业P15—3写出聚乙烯、聚氯乙烯、尼龙66、维尼纶、天然橡胶、顺丁橡胶的分子式,根据表1-4所列这些聚合物的相对分子质量,计算这些聚合物的聚合度。
高分子化学知识点

后期: 自动加速现象出现后聚合速率逐渐减慢,直至结束,转化率可达90%~100%。
四、问答题(15分×3=45分)
1.自由基聚合与缩聚反应的特征比较
自由基聚合:
1)由基元反应组成,各步反应的活化能不同。引发最慢。
解答:CH2=CHC6H5 以(C6H5CO2)2引发属于自由基聚合,以萘钠引发属于阴离子聚合,以BF3 + H2O引发属于阳离子聚合,但是副反应多,工业上较少采用,用Ti(OEt)4+AlEt3进行配位阴离子聚合;CH2=CHCl以(C6H5CO2)2引发属于自由基聚合,除此之外,不可发生阴、阳离子聚合反应;CH2=C(CH3)2以BF3 + H2O引发属于阳离子聚合,并且该单体只可发生阳离子聚合;CH2=C(CH3)COOCH3以(C6H5CO2)2引发属于自由基聚合,以萘钠引发属于阴离子聚合,不可发生阳离子聚合。
2. 写出二元共聚物组成微分方程并讨论其适用的范围?(8分)
解答: ,
(或d[M1]/d[M2]=[m1]/[M2]?{r1[M1]+[M2]}/{r2[M2]+[M1]})
使用范围:适用于聚合反应初期,并作以下假定。
假定一:体系中无解聚反应。
假定二:等活性。自由基活性与链长无关。
反应程度:是参加反应的官能团数占起始官能团数的分数,用P表示。反应程度可以对任何一种参加反应的官能团而言是指已经反应的官能团的数目。
3.自由基聚合反应转化率-时间曲线特征
诱导期:初级自由基为阻聚杂质所终止,无聚合物形成,聚合速率零。若严格取除杂质,可消除诱导期。
高分子化学知识点总结

高分子化学知识点总结高分子化学是研究高分子化合物的合成、结构、性能和应用的一门学科。
它是化学领域中的一个重要分支,对于材料科学、生物医学、环境保护等众多领域都有着深远的影响。
以下是对高分子化学一些重要知识点的总结。
一、高分子的基本概念高分子化合物是指相对分子质量很大的化合物,其相对分子质量通常在 10^4 到 10^7 之间。
高分子化合物由许多结构单元通过共价键重复连接而成,这些结构单元被称为单体。
例如,聚乙烯是由乙烯单体聚合而成,其结构单元就是乙烯。
高分子的相对分子质量具有多分散性,即同一种高分子化合物中,不同分子的相对分子质量大小不同。
通常用平均相对分子质量来表示高分子的相对分子质量,常见的平均相对分子质量有数均相对分子质量、重均相对分子质量和粘均相对分子质量。
二、高分子的分类根据来源,高分子可以分为天然高分子和合成高分子。
天然高分子如纤维素、蛋白质、淀粉等,是自然界中存在的;合成高分子则是通过人工合成得到的,如聚乙烯、聚丙烯、聚苯乙烯等。
按照高分子的主链结构,可分为碳链高分子、杂链高分子和元素有机高分子。
碳链高分子的主链完全由碳原子组成,如聚乙烯、聚丙烯;杂链高分子的主链除了碳原子外,还含有氧、氮、硫等原子,如聚酯、聚酰胺;元素有机高分子的主链中不含碳原子,而是由硅、磷、钛等元素组成,侧链则为有机基团。
三、高分子的合成方法(一)加聚反应加聚反应是指由不饱和单体通过加成聚合反应生成高分子化合物的过程。
在加聚反应中,单体分子中的双键或三键打开,相互连接形成高分子链。
常见的加聚反应有自由基聚合、离子聚合和配位聚合。
自由基聚合是应用最广泛的一种加聚反应,其反应条件相对简单,通常在加热或引发剂的作用下进行。
引发剂分解产生自由基,引发单体聚合。
离子聚合包括阳离子聚合和阴离子聚合,它们对反应条件要求较高,需要在无水、无氧的环境中进行。
配位聚合可以制备具有规整结构的高分子,如等规聚丙烯。
(二)缩聚反应缩聚反应是指由具有两个或两个以上官能团的单体通过缩合反应生成高分子化合物,并伴随有小分子副产物(如水、醇、氨等)生成的过程。
高分子物理知识点

高分子物理知识点1.高分子结构:高分子是由重复单元组成的长链分子。
高分子的结构包括主链结构、支链结构、交联结构等。
主链的物理结构对高分子材料的性能有重要影响。
2.高分子分子量:高分子的分子量对其性能有重要影响。
分子量越大,高分子材料的力学性能和热稳定性往往越好。
常用的衡量高分子分子量的指标有相对分子质量、平均相对分子质量和聚合度等。
3.高分子链的构象:高分子链的构象指高分子链在空间中的排列方式。
构象对高分子材料的物理性质和加工性能等有重要影响。
高分子链的构象可以是线形的、螺旋形的、交替形的等。
4.高分子的玻璃转变温度:玻璃转变温度是高分子从玻璃态转变为橡胶态的临界温度。
高分子的物理性质在玻璃转变温度附近发生剧烈变化。
玻璃转变温度对高分子材料的应用范围和使用条件有重要影响。
5.高分子的熔融温度:熔融温度是高分子从固态转变为液态的临界温度。
高分子的熔融温度对其加工工艺和热稳定性有重要影响。
6.高分子的热膨胀系数:热膨胀系数是衡量高分子材料在温度变化下体积变化的指标。
高分子的热膨胀系数对其尺寸稳定性和热应力分析有重要影响。
7.高分子的力学性能:高分子材料具有较低的弹性模量和较高的塑性变形能力。
其力学性能包括拉伸强度、弹性模量、断裂韧性等。
8.高分子的热性能:高分子材料的热稳定性、热导率和热膨胀系数等热性能对高分子材料的加工和应用有重要影响。
9.高分子的光学性能:高分子材料的透明度、折射率、发光性质等光学性能对于光学器件和光学材料的应用具有重要意义。
10.高分子的电学性能:高分子材料具有较低的电导率和较高的介电常数。
高分子的电学性能对于电介质材料和电子器件的应用有重要影响。
以上仅是高分子物理学的一些知识点,该领域的研究内容非常广泛和复杂。
高分子材料是现代工程和科学领域中的重要材料,了解高分子物理学的知识,对于高分子材料的设计、合成、应用和性能改善都具有重要意义。
高分子化学总结

高分子化学总结1.高分子:也叫聚合物分子或大分子,具有高的相对分子量,其结构必须是由多个重复单元所组成。
2.单体:能够进行聚合反应,并构成高分子基本结构组成单元的小分子,三合成聚合物的起始原料。
3.结构单元:在大分子链中出现的以单体结构为基础的原子团称为结构单元。
4.加聚反应:烯类单体加成而聚合起来的反应称为加聚反应,反应产物称为加聚物。
5.共聚物:由两种或两种以上的单体聚合而成的高分子称为共聚物。
缩聚反应:是缩合反应多次重复结果形成聚合物的过程,兼有缩合出低分子和聚合成高分子的双重含义,反应产物称为缩聚物。
高分子的聚集态结构:高分子的聚集态结构,是指高聚物材料整体的内部结构,即高分子链与链之间的排列和堆砌结构。
分晶态、非晶态、液晶态。
8.官能度:一分子中能参加反应的官能团的数目叫做官能度。
9.平均官能度:每一分子平均带有的基团数。
10.反应程度:参加反应的基团数占起始基团数的分数。
11.转化率:参加反应的单体量占起始单体量的分数。
12.两者区别:转化率是指已经参加反应的单体数目,反应程度则是指已经反应的官能团数目。
13.凝胶化现象:体系粘度突然急剧增加,难以流动,体系转变为具有弹性的凝胶状物质,这种现象称为凝胶化。
凝胶点:开始出现凝胶化时的反应程度(临界反应程度)称为凝胶点,用Pc表示,是高度支化的缩聚物过渡到体型缩聚物的转折点。
引发剂:自由基聚合引发剂通常是一些可在聚合温度下具有适当热分解速率,分解产生自由基,并能引发单体聚合的化合物。
16.引发剂半衰期:引发剂分解至起始浓度一半所需要的时间。
17.引发剂效率:引发剂用来引发单体聚合的部分占引发剂分解或消耗总量的分数。
自动加速现象:随着反应进行,体系粘度增大,活性端基可能被包埋,双基终止困难,速率常数Kt下降,聚合反应速率不仅不随单体和引发剂浓度的降低而减慢,反而增大的现象。
笼蔽效应:引发剂单体处在单体或溶剂的“笼子”中,在笼里分解成初级自由基,浓度高,若不及时扩散出笼子,引发笼子外的单体聚合,则初级自由基易相互结合,歧化等反应,消耗引发剂。
高分子化学知识点总结

第一章 绪论单体:能通过聚合反应形成高分子化合物的低分子化合物,即合成聚合物的原料。
高分子:一个大分子由许多简单的结构单元通过共价键重复键接而成,并具有一定机械性能。
结构单元:在大分子链中出现的以单体结构基础的原子团称为结构单元。
重复单元:大分子链上化学组成和结构均可重复的最小单元,可能与结构单元相同,也可能由2个或多个结构单元组成。
单体单元:与单体中原子种类及个数相同的结构单元,仅电子结构有所变化。
重复单元或结构单元类似大分子链中的一个环节,故俗称链节由一种单体聚合而成的高分子称为均聚物; 由两种或两种以上的单体聚合而成的高分子则称为共聚物. 结构单元=单体单元=重复单元=链节聚合度:聚合度是衡量高分子大小的一个指标。
合成尼龙-66具有另一特征:H 2N(CH 2)6NH 2+ HOOC(CH 2)4COOHH--NH(CH 2)6NH--CO(CH 2)4CO--OHn(2n-1) H 2O +结构单元 结构单元 重复结构单元有两种表示法:[1]以大分子链中的结构单元数目表示,记作:[2]:以大分子链中的重复单元数目表示,记作:由聚合度可计算出高分子的分子量: M 是高分子的分子量; M 0 是结构单元的分子量 结构单元=重复单元=链节≠ 单体单元单体在形成高分子的过程中要失掉一些原子 结构单元 ≠ 重复单元 ≠ 单体单元 重复单元=链节 三大合成材料:橡胶,塑料,纤维玻璃化温度:聚合物从玻璃态到高弹态的热转变温度。
分子量及其分布数均分子量:按聚合物中含有的分子数目统计平均的分子量高分子样品中所有分子的总重量除以其分子(摩尔)总数∑∑∑∑∑∑====iii iiiii in Mx M WWNM N N WM )(式中,W i ,N i ,M i 分别为i -聚体的重量、分子数、分子量重均分子量:是按照聚合物的重量进行统计平均的分子量i -聚体的分子量乘以其重量分数的加和∑∑∑∑∑===iiiii i iii w Mw M NM N WM W M 2分布指数表示:重均分子量与数均分子量的比值,M w / M nM w / M n 分子量分布情况1 均一分布 接近 1 (1.5 ~ 2) 分布较窄远离 1 (20 ~ 50) 分布较宽 聚合反应1. 按单体-聚合物结构变化分类【1】 缩聚 【2】加聚 【3】开环聚合 2. 按聚合机理分类【1】逐步聚合 【2】连锁聚合(活性种可以是自由基、阴离子、阳离子;过程由链引发、链增长、链终止等基元反应组成)n xDP n DP x n ==00M DP M x M n ⋅=⋅=第二章逐步聚合反应1逐步聚合的基本概念与连锁聚合不同,逐步聚合的基本特征是聚合度随时间逐步增长,而转化率在聚合初期即可达到很高,因此表现出与连锁聚合完全不同的规律。
高分子化学知识点总结

高分子化学知识点总结
基本概念:
单体:构成高分子链的基本单元。
高分子:由许多单体通过化学键连接而成的大分子。
聚合物:由高分子链通过化学键连接而成的物质。
低聚物:聚合度较低的高分子。
结构单元、重复单元、链节:构成高分子链的基本单元。
主链、侧链、端基、侧基:高分子链的组成部分。
聚合度:高分子链中单体单元的数量。
相对分子质量:高分子的分子量。
聚合反应类型:
加成聚合与缩合聚合:两种主要的聚合反应类型。
连锁聚合与逐步聚合:两种常见的聚合反应机制。
聚合物的分类:
根据不同的标准(如来源、结构、性能等)对聚合物进行分类。
常用聚合物的命名、来源、结构特征:
了解常见聚合物的命名规则、来源和结构特征。
聚合物的相对分子质量及其分布:
了解聚合物相对分子质量的测定方法及其分布特征。
高分子化学的研究范围:
涉及天然高分子和合成高分子。
天然高分子存在于天然材料中,如棉、麻、毛、丝等;合成高分子包括塑料、合成纤维、合成橡胶等。
高分子化学的发展历史:
从天然高分子的利用与加工、天然高分子的改性、合成高分子的生产到高分子科学的建立,经历了四个主要时期。
高分子化学反应动力学、化学热力学、结构化学、高分子物理等相关分支学科的基础知识。
高分子化学在实际应用中的重要性:高分子材料在现代社会中的广泛应用,如塑料、橡胶、纤维、涂料、粘合剂等。
总之,高分子化学涉及众多知识点,需要系统学习和理解。
通过掌握这些基础知识,可以更好地理解高分子材料的性质和应用。
高分子知识点

连锁聚合:活性中心引发单体,迅速连锁增长的聚合。
烯类单体的加聚反应大部分属于连锁聚合。
连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。
逐步聚合:无活性中心,单体中不同官能团之间相互反应而逐步增长。
绝大多数缩聚反应都属于逐步聚合。
大多数烯类加聚属于连锁机理。
官能度:一分子聚合反应原料中能参与反应的官能团数称为官能度。
反应程度:参加反应的官能团数占起始官能团数的分率。
凝胶点:多官能团体系缩聚至某一反应程度,粘度急增,难以流动,气泡也无法上升,这时的反应程度就定为凝胶点诱导分解:诱导分解实际上是自由基向引发剂的转移反应,其结果使自由基终止,产生新自由基,自由基数目无增减,但消耗一分子引发剂,使引发剂效率降低。
笼蔽效应:在溶液聚合反应中,浓度较低的引发剂分子及其分解出的初级自由基始终处于含大量溶剂分子的高黏度聚合物溶液的包围之中,一部分初级自由基无法与单体分子接触而更容易发生向引发剂或溶剂的转移反应,从而使引发剂效率降低。
引发剂效率:引发剂分解后,往往只有一部分用来引发单体聚合,这部分引发剂占引发剂分解消耗总量的分率称为引发剂效率。
动力学链长:每个初级自由基自链引发开始到活性中心真正死亡(链终止)为止所消耗的单体分子数链转移常数:是链转移速率常数和增长速率常数之比,代表链转移反应与链增长反应的竞争能力。
诱导期:聚合初期初级自由基为阻聚杂质所终止,无聚合物形成,聚合速率为零的时期。
半衰期:物质分解至起始浓度(计时起点浓度)一半时所需的时间。
偶合终止:两链自由基的独电子相互结合成共价键的终止反应,偶合终止的结果是大分子的聚合度为链自由基重复单元数的两倍。
歧化终止:某链自由基夺取另一自由基的氢原子或其他原子终止反应。
歧化终止的结果是聚合度与链自由基的单元数相同。
悬浮聚合:通过强有力的搅拌并在分散剂的作用下,把单体分散成无数小液珠悬浮于水中,由油溶性引发剂引发而进行的聚合反应。
乳液聚合:通过强有力搅拌并在乳化剂的作用下,把单体分散成乳状液悬浮于水中由水溶性引发剂引发而进行的聚合反应,体系由单体、水、水溶性引发剂、水溶性乳化剂组成。
高分子化学知识点总结

高分子化学知识点总结高分子化学是一门研究高分子材料的合成、结构、性质、加工和应用的学科,其内容涉及有机化学、物理化学、材料科学等多个学科领域。
下面是关于高分子化学的一些常见知识点的总结。
1. 高分子的定义和分类:高分子是由多个结构相似的重复单元组成的巨大分子。
根据高分子的来源可以分为天然高分子和合成高分子;按照化学结构可以分为线性高分子、支化高分子、网络高分子和共聚高分子等。
2. 高分子的合成方法:高分子合成方法主要包括聚合反应和缩聚反应。
聚合反应是指在单体之间发生共价键的形成,从而形成高分子;缩聚反应是指两个或多个单体通过失去一个小分子而结合成高分子。
3. 高分子的聚合反应:聚合反应可以分为自由基聚合、阴离子聚合、阳离子聚合和离子聚合等几种类型。
其中,自由基聚合是最常见的一种聚合反应,其原理是利用自由基引发剂引发单体之间的自由基反应,从而形成高分子。
4. 高分子的物理性质:高分子的物理性质受到其分子结构的主导。
常见的高分子物理性质包括玻璃化转变温度、熔融温度、热膨胀系数、力学性能等。
另外,高分子的物理性质还与其分子量、分子量分布、聚合度和晶形等因素有关。
5. 高分子的结构性质:高分子的结构性质是指高分子链的空间构型和排列方式。
高分子的结构性质直接影响其力学性能、热学性能和电学性能等。
常见的高分子结构性质包括晶体结构、无规共聚物和嵌段共聚物等。
6. 高分子的应用:高分子材料是一类重要的工程材料,广泛应用于塑料、橡胶、纤维、涂料、胶粘剂、管材、包装材料、电子材料、医疗材料等领域。
高分子材料具有重量轻、力学性能好、耐高温、绝缘性能好等优点。
7. 高分子的改性:由于高分子的一些性能和应用方面的限制,科学家通过添加助剂、共混物、交联等方式对高分子进行了改性。
改性可以改变高分子的力学性能、热学性能、电学性能等,并且使其能够满足特定应用的要求。
8. 高分子的可持续发展:随着环境问题的日益突出,高分子化学也在朝着可持续发展的方向发展。
高分子化学知识要点

高分子化学知识要点一、高分子的基本概念高分子化合物,简称高分子,是指那些由众多原子或原子团主要以共价键结合而成的相对分子质量在一万以上的化合物。
生活中常见的高分子材料有塑料、橡胶、纤维等。
高分子与小分子化合物相比,具有独特的性能。
例如,高分子材料通常具有较好的韧性、弹性和机械强度。
这是因为高分子的长链结构能够有效地分散和承受外力。
高分子的相对分子质量是一个重要的参数。
它不是一个确定的值,而是具有一定的分布范围。
这是由于聚合反应过程中的随机性导致的。
相对分子质量的大小和分布会显著影响高分子材料的性能。
二、高分子化合物的分类高分子化合物的分类方法有多种。
按照来源,可分为天然高分子和合成高分子。
天然高分子如纤维素、蛋白质等,是自然界中原本就存在的;合成高分子则是通过人工化学反应合成的,如聚乙烯、聚苯乙烯等。
根据高分子主链的结构,又可分为碳链高分子、杂链高分子和元素有机高分子。
碳链高分子的主链全部由碳原子组成,像聚乙烯、聚丙烯就属于此类;杂链高分子的主链除了碳原子,还含有氧、氮、硫等杂原子,如聚酯、聚酰胺;元素有机高分子的主链中不含碳原子,而是由硅、磷、铝等元素组成,不过侧基一般是有机基团。
另外,还可以根据用途将高分子分为塑料、橡胶、纤维、涂料、胶粘剂等。
不同类型的高分子在性能和应用方面有着很大的差异。
三、高分子的合成方法高分子的合成方法主要包括加聚反应和缩聚反应。
加聚反应是指由不饱和单体通过加成反应相互结合形成高分子的过程。
在这个过程中,没有小分子副产物生成。
例如,乙烯在引发剂的作用下发生加聚反应生成聚乙烯。
缩聚反应则是由具有两个或两个以上官能团的单体,通过官能团之间的缩合反应逐步形成高分子,同时会产生小分子副产物,如水、醇、氨等。
聚酯的合成就是一个典型的缩聚反应。
此外,还有开环聚合、逐步加成聚合等合成方法。
开环聚合是指环状单体通过开环形成线性高分子的反应;逐步加成聚合则是通过逐步的加成反应形成高分子。
高分子复习整理

一、名词解释热塑性聚合物:聚合物大分子之间以物理力聚而成,加热时可熔融,并能溶于适当溶剂中。
热塑性聚合物受热时可塑化,冷却时则固化成型,并且可以如此反复进行。
热固性聚合物:许多线性或支链形大分子由化学键连接而成的交联体形聚合物,许多大分子键合在一起,已无单个大分子可言。
这类聚合物受热不软化,也不易被溶剂所溶胀。
引发剂效率:引发聚合部分引发剂占引发剂分解消耗总量的分率称为引发剂效率。
诱导分解:诱导分解实际上是自由基向引发剂的转移反应,其结果使引发剂效率降低。
引发剂:在聚合体系中能够形成活性中心的物质,使单体在其上连接分为自由基引发剂,离子引发剂。
动力学链长:每个活性种从引发阶段到终止阶段所消耗的单体分子数定义为动力学链长,动力学链在链转移反应中不终止。
均聚合:由一种单体进行的聚合反应。
共聚合:由两种或两种以上单体共同参加的连锁聚合反应。
形成的聚合物中含有两种或多种单体单元。
均聚物:由均聚合所形成的聚合物。
共聚物:由共聚合形成的聚合物。
自由基活性:一般表示自由基之间的相对活性,可用不同自由基与同一单体反应的增长速率常数来衡量。
歧化终止:链自由基夺取另一自由基的氢原子或其他原子终止反应。
偶合终止:两链自由基的独电子相互结合成共价键的终止反应。
本体聚合:本体聚合是单体本身、加入少量引发剂(或不加)的聚合。
悬浮聚合:悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。
溶液聚合:是指单体和引发剂溶于适当溶剂的聚合。
乳液聚合:是单体在水中分散成乳液状而进行的聚合,体系由单体、水、水溶性引发剂、水溶性乳化剂组成。
反应程度与转化率:参加反应的官能团数占起始官能团数的分率。
参加反应的反应物(单体)与起始反应物(单体)的物质的量的比值即为转化率。
凝胶化现象凝胶点:体型缩聚反应进行到一定程度时,体系粘度将急剧增大,迅速转变成不溶、不熔、具有交联网状结构的弹性凝胶的过程,即出现凝胶化现象。
(完整版)高分子化学知识点总结

第一章绪论1.1 高分子的基本概念高分子化学:研究高分子化合物合成与化学反应的一门科学。
单体:能通过相互反应生成高分子的化合物。
高分子或聚合物(聚合物、大分子):由许多结构和组成相同的单元相互键连而成的相对分子质量在10000以上的化合物。
相对分子质量低于1000的称为低分子。
相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。
相对分子质量大于1 000 000的称为超高相对分子质量聚合物。
主链:构成高分子骨架结构,以化学键结合的原子集合。
侧链或侧基:连接在主链原子上的原子或原子集合,又称支链。
支链可以较小,称为侧基;也可以较大,称为侧链。
端基:连接在主链末端原子上的原子或原子集合。
重复单元:大分子链上化学组成和结构均可重复出现的最小基本单元,可简称重复单元,又可称链节。
结构单元:单体分子通过聚合反应进入大分子链的基本单元。
(构成高分子链并决定高分子性质的最小结构单位称为~)。
单体单元:聚合物中具有与单体的化学组成相同而键合的电子状态不同的单元称为~。
聚合反应:由低分子单体合成聚合物的反应。
连锁聚合:活性中心引发单体,迅速连锁增长的聚合。
烯类单体的加聚反应大部分属于连锁聚合。
连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。
逐步聚合:无活性中心,单体官能团之间相互反应而逐步增长。
绝大多数缩聚反应都属于逐步聚合。
加聚反应:即加成聚合反应,烯类单体经加成而聚合起来的反应。
加聚反应无副产物。
缩聚反应:缩合聚合反应,单体经多次缩合而聚合成大分子的反应。
该反应常伴随着小分子的生成。
1.2 高分子化合物的分类1) 按高分子主链结构分类:可分为:①碳链聚合物:大分子主链完全由碳原子组成的聚合物。
②杂链聚合物:聚合物的大分子主链中除了碳原子外,还有氧、氮,硫等杂原子。
③元素有机聚合物:聚合物的大分子主链中没有碳原子孙,主要由硅、硼、铝和氧、氮、硫、磷等原子组成。
④无机高分子:主链与侧链均无碳原子的高分子。
高分子基本知识

环保型高分子材料开发
低毒、低污染
开发低毒、低污染的高分子材料,减少对环境和 人体的危害。
节能、低碳
采用节能、低碳的生产工艺和技术,降低高分子 材料的生产能耗和碳排放。
资源化利用
利用可再生资源和废弃物制备高分子材料,实现 资源的循环利用。
高分子材料循环利用技术
物理回收
通过物理方法(如熔融、溶解、 研磨等)对废旧高分子材料进行 回收和再利用。
。
热塑性
部分高分子材料在加热后可塑 化,冷却后固化。
热固性
部分高分子材料在加热和加压 下发生化学反应,形成不溶不
熔的固化物。
高分子化学性质
官能团反应
高分子链上的官能团可与其他 物质发生化学反应,如酯化、
酰胺化等。
降解反应
高分子链在特定条件下可发生 断裂,形成低分子量化合物。
交联反应
通过化学键将高分子链互相连 接起来,提高材料的力学性能 和耐热性。
高分子基本知识
目录
• 高分子概述 • 高分子结构与性质 • 高分子合成与制备方法 • 高分子表征与测试技术 • 高分子材料分类与应用领域 • 高分子发展趋势与挑战
01 高分子概述
高分子定义与特点
高分子定义
高分子化合物是指相对分子质量高达 几千到几百万的化合物,通常由许多 相同的、简单的结构单元通过共价键 重复连接而成。
生物可降解高分子材料研究
天然高分子材料
利用天然高分子材料(如淀粉、纤维素、壳 聚糖等)进行改性和加工,制备出可生物降 解的高分子材料。
合成生物降解高分子材料
通过合成方法制备出具有生物降解性的高分子材料, 如聚乳酸、聚ε-己内酯等。
生物降解性能评价
研究生物降解高分子材料的降解机理、降解 速率和降解产物等,为其应用提供理论支持 。
高分子化学与物理基础知识点

高分子化学与物理基础知识点
1. 高分子的定义和分类
高分子是由许多重复单元通过共价键连接而成的大分子。
根据来源,高分子可分为天然高分子和合成高分子;根据性能和用途,高分子可分为塑料、橡胶、纤维、涂料、胶粘剂等。
2. 高分子的结构
高分子的结构包括一级结构(近程结构)和二级结构(远程结构)。
一级结构指的是高分子链中原子的化学组成和排列方式,如头尾结构、顺反异构等;二级结构指的是高分子链的形态,如伸直链、螺旋链、折叠链等。
3. 高分子的合成
高分子的合成方法包括加聚反应、缩聚反应、开环聚合等。
其中,加聚反应是通过单体分子间的加成反应形成高分子的方法;缩聚反应是通过单体分子间的缩合反应形成高分子的方法。
4. 高分子的物理性能
高分子的物理性能包括力学性能、热性能、电性能、光学性能等。
其中,力学性能是高分子材料最重要的性能之一,包括拉伸强度、弯曲强度、冲击强度等。
5. 高分子的溶液性质
高分子在溶液中的性质包括溶解过程、溶剂选择、分子量测定等。
高分子的溶解过程一般分为溶胀和溶解两个阶段;溶剂选择要考虑高分子的极性、分子量、溶液的黏度等因素。
以上是高分子化学与物理的一些基础知识点,希望对你有所帮助。
第二章 高分子基础知识

IUPAC的系统命名法
学术论文中一定要用原则:1.Fra bibliotek确定重复单元结构;
2. 排好重复单元中次级单元( subunit )的次序;先写有取代 基的部分,如聚氯乙烯应写成聚(1-氯代乙烯)。
先写所连接的侧基元素最少的,如聚丁二烯的应写成 聚 (1-次丁烯基) poly(1-butenylene).
3. 给重复单元命名;
➢ 涤纶(的确良)是一种聚酯纤维,代表 聚对苯二甲酸乙二酯;
➢ 面纶代表尼龙6; ➢ 维尼纶代表聚乙烯醇缩醛; ➢ 腈纶(人造羊毛)代表聚丙烯腈; ➢ 氯纶代表聚氯乙烯; ➢ 丙纶代表聚丙烯 。
橡胶
许多合成的生橡胶是共聚物,往往从共聚单体中各取 一个字,后缀“橡胶”二字来命名,如丁(二烯)苯 (乙烯)橡胶,丁(二烯)(丙烯 )腈橡胶,乙(烯) 丙(烯)橡胶等
如果主链和侧基均无碳原子则称为无机高分子。
命名
常规用法和俗名
一种单体经加聚制成的聚合物,常以单体名 前冠以“聚”字,如聚乙烯、聚苯乙烯等 ;
由两种不同的单体聚合成的产物,常取两种 单体的简名,后缀“树脂”来命名。如苯酚 和甲醛,尿素和甲醛,甘油和邻苯二甲酸酐 的缩聚产物分别称作酚醛树脂、脲醛树脂和 醇酸树脂。 “树脂”是一个术语,指未加有助剂的聚合 物粉料、粒料等
(3)交联形聚合物 交联形聚合物又称网状聚合物或体型聚合物。可看成是许多线形高 分子通过化学键连接而成的网状结构。 交联形聚合物可通过多官能度单体聚合而成,也可通过适当助剂是 线形聚合物交联而成。 线形和支链形聚合物为热塑性聚合物,交联形聚合物为热固性聚合 物。橡胶一般为轻度交联的交联形聚合物。
(4)其它形状的聚合物 除了上述三种基本形状外,还发展了新型结构的高分 子,如星形聚合物、梯形聚合物、半梯形聚合物等。
高分子简要整理

✧单体:合成聚合物的化合物。
高分子:结构单元通过共价键重复键接而成的分子。
✧烯类聚合物:结构单元、重复单元、链节、单体单元相同✧缩聚物:结构单元和重复单元不同✧聚合物的分类来源(天然高分子、合成高分子、改性高分子)用途(合成树脂和塑料(塑性、几万~几十万、合成橡胶(高弹性、分子量大,>十万、合成纤维(分子量小,几万))主链结构(碳链、杂链、元素有机聚合物)特征集团:✧聚合反应分类:按单体结构和反应类型:官能团间的缩聚(逐步聚合)、加聚(连锁的)、开环反应(大部分连锁,少部分逐步);按按聚合机理:逐步聚合、连锁聚合(慢引发、快增长、速终止)AIBN引发的自由基反应属于连锁反应,而丁基锂引发的属于连锁聚合反应。
分子量:数均分子量、重均分子量、Z均分子量和粘均分子量分子量分布指数:重均分子量与数均分质量之比()>1(a)比值接近1,分子量分布窄,阴离子活性聚合<1.1活性自由基聚合<1.5(b)比值越大,分子量分布越宽,合成聚合物一般在1.5~2.0至20~50间。
高分子链的几何形状主要是三种:线形、支链形和体形。
线形聚合物的特征:(1)由只含两个官能团的单体聚合而成。
(2)聚合物链可能比较舒展,或蜷曲成团,取决于链的柔顺性和外部条件。
(3)线形聚合物一般加热可熔融,在溶剂中可溶解,热塑性聚合物。
支链形聚合物的特征:(1)支链可由聚合过程中的链转移反应,或接枝反应生成。
(2)支链形聚合物一般加热也可熔融,在溶剂中可溶解,热塑性聚合物。
(3)大分子链的高度支链化使支链形聚合物较难结晶。
体形聚合物的特征:(1)可看作许多线形大分子由化学键连接而成的体型结构。
(多官能团)(2)交联程度低的网状结构,加热可软化,但不熔融;适当溶剂可溶胀,但不溶解,即不可熔融不可溶解为热固性聚合物⏹缩聚反应:(1)官能团单体多次缩合聚合的反应;(2)反应产物中有小分子副产物;(3)产物多为杂链聚合物;(4)代表聚合物:聚酯、聚酰胺、酚醛树脂、环氧树脂、醇酸树脂、聚碳酸酯、聚酰亚胺、聚苯硫醚、聚硅氧烷、硅酸盐、纤维素、核酸、蛋白质等。
高分子材料化学重点知识点总结

第一章水溶性高分子水溶性高分子的性能:水溶性;2.增黏性;3.成膜性;4.表面活性剂功能;5.絮凝功能;6.粘接作用。
造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100万:主要用于纸浆分散剂;2)分子量在100万和500万之间:主要用于纸张增强剂;3)分子量大于500万:造纸废水絮凝剂(超高分子量);(2)聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。
日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。
壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。
1996年Donlar公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。
第二章、离子交换树脂离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。
(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。
离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。
(2)根据所交换离子的类型:阳离子交换树脂(-SO3H);阴离子交换树脂(-N+R3Cl-);两性离子交换树脂离子交换树脂的制备:(1)聚苯乙烯型:(方程式)离子交换树脂的选择性:高价离子,大半径离子优先离子交换树脂的再生:a. 钠型强酸型阳离子交换树脂可用10%NaCl溶液再生;b. OH型强碱型阴离子交换树脂则用4%NaOH溶液再生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一名词解释
体型缩聚:参加反应的单体只要有一种单体具有两个以上的官能团(即f>2),缩聚反应将向三个方向发展,生成支化或交联结构的三维体型大分子缩聚物的缩聚反应,这种聚合反应称为体型缩聚
引发剂效率:引发剂分解后,往往只有一部分用来引发单体聚合,这部分引发剂占引发剂分解或消耗总量的分数称作引发剂效率
自动加速现象:又称凝胶效应,是聚合反应进行到一定程度时,聚合速率显著上升的一种现象。
降解:达到生命周期的终结。
塑料降解是使聚合物分子量下降、聚合物材料(塑料)物性下降
链柔性:指高分子链在绕单键内旋转自由度,内旋转可导致高分子链构象的变化,因为伴随着状态熵增大,自发地趋向于蜷曲状态的特性。
单体:是能起聚合反应或缩聚反应等合成高分子化合物的简单化合物
逐步聚合:聚合反应缓慢逐步进行,每步反应的速率和活化能大致相同,链长逐步增长的聚合反应
歧化终止:以某自由基夺取另一自由基的氢原子或其他原子而终止聚合反应的方式
笼敝效应:虽然A、B相遇几率变低,当一旦相遇即具有很高的碰撞频率,总体看来其碰撞频率并不低于气相反应中的碰撞频率,因而发生反应的机会也较多。
交联:两个或者更多的分子相互键合交联成网络结构的体型分子的反应
构型:共价键化合物分子中各原子在空间的相对排列关系。
结构单元:构成高分子链并决定高分子结构以一定方式连接起来的原子组合称为结构单元。
缩合聚合:指的是具有两个或两个以上反应官能团的单体之间反复发生缩合反应生成聚合物同时放出小分子的过程。
偶合终止:是指两个链自由基相互结合的终止。
诱导效应:由于电负性不同的取代基(原子或原子团)的影响,使整个分子中的成键电子云密度向某一方向偏移,使分子发生极化的效应,叫诱导效应
扩链:指使聚合物主链增长的过程
构象:在有机化合物分子中,由C—C单键旋转而产生的原子或基团在空间排列的无数特定的形象称为构象。
二简答
1,写出聚己二酰己二胺的聚合反应式以及单体的名称
尼龙66
2.写出由对苯二甲酸+乙二醇得到的链状高分子的重复单元的化学结构式
3.写出常用引发剂过硫酸钾亚硫酸盐体系的分子式和分解反应式。
K2S2O8—SO32-
分解反应式:
S2O82-+SO32-→ SO42-+SO·4-+SO3·-
4.写出w-羟基己酸的缩聚反应写出o-羟基己酸的缩聚反应
HOCH2CH3CH3CH3CH3COOH缩合
5.计算等物质的量反应的对苯二甲酸与乙二醇反应,在下列反应程度时的平均聚合度和
分子量; (1) 0.800; (2) 0.995。
6. 松弛过程
在外力作用下高分子链由原来的构象过渡到与外力相适应的构象的过程,即高分子链由一种平衡态过渡到另一种平衡态的过程,此过程伴有弹性形变
7.写出聚氟乙烯的聚合反应式以及单体的名称。
8.写出由α-甲基苯乙烯得到的链状高分子的重复单元的化学结构式。
9.写出常用引发剂偶氮二异丁睛的分子式和分解反应式。
分解从氮氮双键断开取半边自由基,生成氮气
10.写出w-氨基己酸的缩聚反应
11.计算等物质敢量反应的对苯二甲酸与乙二醇反应,在下列反应程度时的平均聚合度和分子量: (1) 0.500; (2) 0.800。
12.说明非晶态聚合物的玻璃化转变
指高聚物的玻璃态与高弹态之间的转变。
某些液体在温度迅速下降时被固化成为玻璃态而不发生结晶作用。
13. 写出聚异丁烯的聚合反应式以及单体的名称。
14.写出由1,3-丁二烯得到的链状高分子的重复单元的化学结构式。
15.写出常用引发剂过氧化二苯甲酰的分子式和分解反应式。
断开过氧键生成自由基,进一步生成苯自由基16.说明什么是粘流转变
分子链重心开始出现相对位移。
模量再次急速下降。
聚合物既呈现橡胶弹性,又呈现流动性
三问答题
1从结构观点讨论温度和剪切速率对聚合物熔体黏度的影响。
在聚合物成型加工过程中如何利用黏度对温度和的切速率的不同敏感性来改善聚合物的加工流功性?
答:随温度升商,聚合物黏度下降。
黏度随温度开高而下降的幅度与流动活化能的大小有关。
对刚性链聚合物,流动活化能一般都比较大,温度对黏度的影响就比较明显。
随温度升高,黏度明显下降。
由于刚性链聚合物的表观黏度对温度表现出较大的敏感性。
可以将它们称之为温敏性聚合物。
对于这类聚合物,在成型加工过程中采用改变温度的方法来调节聚合物
的黏度和流动性比较有效。
对柔性链聚合物,由于流动活化能比较小,表观黏度随温度的变化不大,尽管随温度升高黏度呈下降趋势,但下降幅度较小。
在极低(第一牛顿区)和极高(第二牛顿区) 剪切速率下,聚合物熔体的黏度不随剪切速率变化,表现出牛顿流体的流动行为。
只有在中间剪切速率范围内(假塑性区),剪切速率的变化才会对熔体黏度产生影响。
此时,随剪切速率增加,分子链解缠结不断发生,缠结结构的破坏和分子链沿流动方向的取向,导致黏度不断下降。
对于柔性链聚合物,由于很容易过链段的运动实现分子链的取向,所以其黏度随剪切速率增加下降明易;但是,由于刚性链聚合物中运动单元(链段)较长,链构象的改变比较因难。
分子链不容易取向。
所以随剪切速率增加,黏度下降幅度很小。
2.聚合物的分子运动有何特点?
答:运动单元的多重性:聚合物的运动单元可以是侧基、支链、链节、链段和整个分子等。
高分子热运动是一个松弛过程:在一定的外界条件下,聚合物从一种平衡状态通过热运动达到与外界条件相适应的新的平衡态,这个过程不是瞬间完成的,需要一定的时间。
高分子热运动与温度有关:随着温度的升高,高分子热运动的松弛时间缩短。
3.聚合物熔体的流动机理是什么?其粘性流动具有什么特征?
机理:以20~30个碳原子组成的链段作为运动单元,通过链段的相继跃迁实现大分子链的相对位移,从而发生聚合物的宏观流动。
特征:1流动机理是链段相继跃迁2流动粘度大,流动困难,且粘度不是一个常数3流动时有构象变化,产生弹性记忆效应
四计算题
涤纶聚对苯二甲酸乙二醇酯天然橡胶聚异戊二烯。