六年级下册数学知识点

合集下载

完整版)六年级数学下册总复习知识点整理版

完整版)六年级数学下册总复习知识点整理版

完整版)六年级数学下册总复习知识点整理版六年级数学下册总复知识点归纳一、常用的数量关系式1.每份数 ×份数 = 总数,总数 ÷每份数 = 份数,总数 ÷份数 = 每份数。

2.速度 ×时间 = 路程,路程 ÷速度 = 时间,路程 ÷时间 = 速度。

3.单价 ×数量 = 总价,总价 ÷单价 = 数量,总价 ÷数量 = 单价。

4.工作效率 ×工作时间 = 工作总量,工作总量 ÷工作效率= 工作时间,工作总量 ÷工作时间 = 工作效率。

5.加数 + 加数 = 和,和 - 一个加数 = 另一个加数。

6.被减数 - 减数 = 差,被减数 - 差 = 减数,差 + 减数 = 被减数。

7.因数 ×因数 = 积,积 ÷一个因数 = 另一个因数。

8.被除数 ÷除数 = 商,被除数 ÷商 = 除数,商 ×除数 =被除数。

二、小学数学图形计算公式1.正方形(C:周长,S:面积,a:边长):周长 = 边长× 4,C = 4a;面积 = 边长 ×边长,S = a × a。

2.正方体(V:体积,a:棱长):表面积 = 棱长 ×棱长 ×6,S表 = a × a × 6;体积 = 棱长 ×棱长 ×棱长,V = a × a × a。

3.长方形(C:周长,S:面积,a:长,b:宽):周长 = (长 + 宽) × 2,C = 2(a + b);面积 = 长 ×宽,S = ab。

4.长方体(V:体积,S:面积,a:长,b:宽,h:高):表面积 = (长 ×宽 + 长 ×高 + 宽 ×高) × 2,S = 2(ab + ah + bh);体积 = 长 ×宽 ×高,V = abh。

小学六年级下册数学重点知识点整理

小学六年级下册数学重点知识点整理

小学六年级下册数学重点知识点整理六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零.。

3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。

6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/3。

3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12 ,12是1/12的倒数。

8.小数的倒数:普通算法:找一个小数的倒数,例如,把化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/19.用1计算法:也可以用1去除以这个数,例如,1/等于4 ,所以的倒数4 ,因为乘积是1的两个数互为倒数。

分数、整数也都使用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。

11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1。

单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

六年级下册数学全部知识点总结

六年级下册数学全部知识点总结

六年级下册数学全部知识点总结
1.分数运算:
-分数加减法:同分母、异分母分数的加减法则及其混合运算。

-分数乘法:分数与整数、分数与分数的乘法法则,理解倒数概念,掌握分数乘法的简便算法。

-分数除法:分数除以整数、分数除以分数的运算规则,以及分数除法转化为乘法运算的方法。

2.比和比例:
-比的意义和性质,比的基本性质,求比值和化简比。

-比例的意义,比例的基本性质,解比例方程,正比例和反比例的概念及应用。

3.百分数:
-百分数的意义,百分数与小数、分数之间的互化。

-百分数的应用,如折扣、税率、利率等问题的解决。

4.圆:
-圆的基本概念,直径、半径、周长、面积的计算公式。

-圆心角、弧、扇形、圆锥和圆柱的相关计算。

-圆周率π的认识和应用。

5.统计与概率:
-复式统计表和复式条形统计图的理解和绘制。

-可能性的大小比较,简单事件发生的可能性计算。

6.平面图形与立体图形:
-平行四边形、梯形的性质和面积计算。

-三角形、平行四边形、梯形的高线定义和画法。

-长方体、正方体、圆柱、圆锥的体积和表面积计算。

7.代数初步:
-用字母表示数,列含未知数的等式(方程)解决问题。

-解简易方程,包括一步方程和两步方程。

8.解决问题策略:
-应用所学知识解决生活中实际问题,如行程问题、工程问题、浓度问题等。

六年级数学(下册)概念汇总

六年级数学(下册)概念汇总

一、负数1.正数负数的意义:生活中具有相反意义的量可以用正数和负数表示。

2.正数和负数的读写方法:写正数,一般在数字前面加一个正号“+”,也可以省略不写;读正数,有正号的读正几,没有正号的直接读数。

写负数,在数字前面加负号“-”;读负数,读作负几。

3.认识数轴:在数轴上,0左边的数是负数,右边的数是正数。

二、百分数1.折扣:几折就表示十分之几,也就是现价是原价的百分之几十。

商品现价=原价×折扣2.成数:成数表示一个数是另一个数的十分之几,通称“几成”3.税率:应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率。

应纳税额=总价×税率4.利率:利息与本金的比率叫做利率。

利息=本金×利率×存期5.解决生活中的实际问题:应用百分数知识解决生活中的实际问题。

三、圆柱与圆锥1.圆柱特征:底面:两个底面完全相同,都是圆形。

侧面:沿高剪开,展开后是一个长方形或正方形。

高:两个底面之间的距离,有无数条。

2.圆锥特征:底面:一个底面,是圆形。

高:顶点到底面圆心的距离,只有一条。

3.面积:(1)底面积=圆周率×半径的平方,字母公式:S=πr ²。

(2)侧面积=底面周长×高,字母公式:Sπdh。

(3)表面积=侧面积+底面积×24.体积:物体所占空间的大小。

底面积×高,字母公式:V=Sh或V=πr ²h。

底面积×高×3/1,字母公式:V=3/1Sh或V3/1πr ²h。

四、比例1.比例的意义和性质:(1)表示两个比相等的式子叫做比例。

(2)在比例中,两个外项的积等于两个内项的积,这叫做比例的基本性质。

2.正比例和反比例:(1)用x和y分别表示两种相关联的量,用k表示它们的比值(一定),正比例关系可可以用这样的式子表示:x/y=k。

(2)用x和y分别表示两种相关联的量,用k表示它们的积(一定),反比例关系可以用这样式子表示:xy=k。

人教版小学六年级数学下册知识点_数学知识点

人教版小学六年级数学下册知识点_数学知识点

人教版小学六年级数学下册知识点_数学知识点人教版小学六年级数学下册知识点一:比例1.理解比例的意义和基本性质,会解比例。

2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

7.比例的意义:表示两个比相等的式子叫做比例。

如:2:1=6:8.组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。

这叫做比例的基本性质。

例如:由3:2=6:4可知3×4=2×6;或者由x×1。

5=y×1。

2可知x:y=1.2:1.5。

10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

11.正比例和反比例:(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示y/x=k(一定)例如:①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。

④y=5x,y和x成正比例,因为:y÷x=5(一定)。

六年级下册数学书知识点

六年级下册数学书知识点

六年级下册数学书知识点六年级下册数学书知识1第一单元圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。

2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。

(2)两个底面间的距离叫做圆柱的高。

(3)圆柱有无数条高,且高的长度都相等。

(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。

3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。

(2)圆锥的侧面是一个曲面。

(3)圆锥只有一条高。

(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。

4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。

圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。

圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2 或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。

(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。

5、圆柱的体积:一个圆柱所占空间的大小。

6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。

拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。

所以圆的面积=π×半径×半径=π×半径2如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。

六年级下册数学重点知识笔记

六年级下册数学重点知识笔记

六年级下册数学重点知识笔记
以下是六年级下册数学的一些重点知识笔记:
1. 负数:理解负数的概念,掌握正负数的读写方法,能用正负数表示日常生活中的问题。

2. 比例:理解比例的概念,掌握比例的基本性质,能应用比例的知识解决简单的问题。

3. 圆柱和圆锥:掌握圆柱和圆锥的各部分名称及特征,理解圆柱的侧面积和表面积的计算方法,掌握圆柱的体积的计算方法。

4. 比例尺:理解比例尺的概念,掌握计算方法,能根据比例尺计算图上距离和实际距离。

5. 正比例和反比例:理解正比例和反比例的概念,能判断两个量是否成正比例或反比例,能用正反比例解决简单的问题。

6. 统计:掌握扇形统计图和折线统计图的绘制方法,能根据数据选择合适的统计图进行描述。

7. 数学广角:通过实例使学生初步学会用假设法进行逻辑推理,体会假设法在解决实际问题中的应用。

以上仅为基础内容,具体的教学重点可能会有所不同,建议以教学大纲为准。

六年级数学下册思维内容

六年级数学下册思维内容

六年级数学下册思维内容
六年级数学下册思维内容主要包括以下知识点:
1. 负数:负数是小于0的数,数轴上0左边的数叫做负数。

负数有无数个,其中有负整数、负分数和负小数。

负数的写法是在数字前面加负号“-”,
例如:-2,-,-45,-2/5。

2. 百分数:百分数是一种表达比例或分率的数学符号。

百分数的写法是在数字后面加上百分号“%”,例如:50%,%。

3. 圆柱与圆锥:这部分主要学习圆柱和圆锥的基本概念和性质,包括它们的表面积、体积等计算方法。

4. 比例:比例是表示两个比值相等的数学关系,通常用于解决实际问题中。

比例的写法是在两个比之间加上等号,例如:a:b=c:d。

此外,六年级数学下册思维内容还包括一些其他知识点,例如扇形统计图、正负数混合运算等。

这些知识点的学习有助于培养学生的逻辑思维、抽象思维和解决问题的能力。

在学习过程中,学生应该注重实践和应用,通过练习和思考来加深对知识点的理解和掌握。

六年级下册数学全册知识点

六年级下册数学全册知识点

六年级下册数学全册知识点一、整数运算1. 整数的概念和表示方法2. 整数的加法和减法运算3. 整数的乘法和除法运算4. 整数的混合运算二、小数与分数1. 小数的基本概念和表示方法2. 小数的加法和减法运算3. 小数的乘法和除法运算4. 分数的基本概念和表示方法5. 分数的加法和减法运算6. 分数的乘法和除法运算7. 分数与小数的相互转化三、平方根和立方根1. 正数的平方根和立方根的概念2. 平方根和立方根的计算方法3. 估算平方根和立方根的大小四、图形的性质和计算1. 平行四边形、矩形、正方形、三角形的性质和区分方法2. 长方体、正方体的性质和计算公式3. 圆的概念和相关计算公式4. 直角坐标系的基本概念和图形的坐标表示五、比例与百分数1. 等比例和不等比例的关系2. 比例的概念和解题方法3. 百分数的概念和转化4. 百分数的应用:利息、折扣、增长率等六、统计与概率1. 数据的收集和整理2. 极差、中位数、众数和平均数的计算方法3. 直方图和折线图的绘制和解读4. 概率的基本概念和计算方法七、二次根式1. 平方数和完全平方根的概念2. 二次根式的计算方法和化简3. 二次根式的加法和减法运算4. 二次根式的乘法和除法运算八、初步代数1. 代数式的概念和建立2. 代数式的加法和减法运算3. 代数式的乘法和除法运算4. 代数式的应用:简单方程的解法以上是六年级下册数学全册的知识点概述,通过学习这些知识,可以帮助孩子们更好地理解和掌握数学的基本概念和运算方法。

在学习中要多做习题和实际问题的应用,提高自己的数学思维和解决问题的能力。

六年级数学下册知识点(整理6篇)

六年级数学下册知识点(整理6篇)

六年级数学下册知识点〔整理6篇〕篇1:六年级下册数学知识点第一单元负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 3.4 2/5……是远远不够的。

所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。

假设一个数小于0,那么称它是一个负数。

负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“-”号,不可以省略例如:-2,-5.33,-45,-2/5正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数假设一个数大于0,那么称它是一个正数。

正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。

例如:+2,5.33,+45,2/54、0 既不是正数,也不是负数,它是正、负数的分界限6、比拟两数的大小:①利用数轴:负数篇2:六年级下册数学知识点第二单元百分数二(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。

通称“打折”。

几折就是非常之几,也就是百分之几十。

解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进展解答。

商品如今打八折:如今的售价是原价的80﹪商品如今打六折五:如今的售价是原价的65﹪2、成数:几成就是非常之几,也就是百分之几十。

解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进展解答。

这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二)、税率和利率1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一局部缴纳给国家。

(2)纳税的意义:税收是国家财政收入的主要来之一。

六年级数学下册必背知识点归纳

六年级数学下册必背知识点归纳

六年级数学下册必背知识点归纳1、0既不是正数,也不是负数,它是正数和负数的分界。

0大于所有负数,小于所有正数。

负数比较大小,不考虑负号,数字大的数反而小。

2、“+”能够省略不写,“-”不能省略。

3、数轴的要素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。

0左边的数差不多上负数,0右边的数差不多上正数百分数(二)知识点1、折扣:商品按原定价格的百分之几出售,叫做折扣。

通称“打折”。

几折就表示十分之几,也确实是百分之几十。

例如八折就表示十分之八,确实是按原价的80﹪出售。

2、成数:“几成”确实是十分之几,也确实是百分之几十。

三成五确实是十分之三点五,也确实是35%3、应纳税额 = 总收入×税率税率=应纳税额÷总收入总收入=应纳税额÷税率4、利息=本金×利率×存期5、满100元减50元,确实是在总价中取整百元部分,每个100元减去50元,不满100元的零头部分不优待。

圆、圆柱、圆柱必背公式1、在同圆或等圆内,直径的长度是半径的2倍,公式d=2r;半径的长度是直径的一半,公式r=d÷2.2、已知直径求周长:圆的周长=圆周率×直径,公式C=πd,直径=周长÷圆周率,公式d=C ÷π3、已知半径求周长:圆的周长=2×圆周率×半径,公式C=2πr,半径=周长÷圆周率的2倍,公式r=C÷2π4、已知半径求面积:圆的面积=圆周率×半径的平方,公式S圆 =πr25、已知直径求面积:圆的面积=圆周率×(直径÷2)的平方,公式S圆 =π(d÷2)26、圆柱的侧面积=底面的周长×高,公式S侧=Ch;圆柱的底面周长=侧面积÷高,公式C=s 侧÷h;圆柱的高=侧面积÷底面周长,公式h=S侧÷C。

7、圆柱的表面积=侧面积+2×底面积,公式 S表= S侧+2S底。

六年级下册数学知识点归纳

六年级下册数学知识点归纳

六年级下册数学知识点归纳数学知识点归纳一、分数1.分数的定义及表示分数是指用一个整数表示出一个数分的几份,分子表示分出来的几份,分母表示每份分成的份数。

通常表示为:$$\frac{a}{b}$$2.分数的大小比较(1)分母相同时,分数大小由分子大小决定。

(2)分母不同时,先通分,再比较分子大小。

3.分数的化简分数的化简就是把分子和分母同时除以一个相同的数,使它们的最大公约数为1。

如:$$\frac{6}{8}=\frac{3}{4}$$4.分数的加减乘除(1)相加减:通分后,把分子相加减,分母不变。

(2)相乘:把两个分数的分子和分母分别相乘即可。

(3)相除:把被除数乘以除数的倒数,即把除数化为分数的分子倒放,分母在写下去,再进行相乘运算。

二、小数1.小数的定义及表示小数是指数分的几份,每份分成的量相等。

通常用小数点表示,小数点左边的数表示整数部分,右边表示小数部分,数字前面加0不影响其原来的大小。

2.小数的大小比较(1)相同位数,大小由高位数决定。

(2)位数不同时,以比较到的位数为准,不够0补齐。

3.小数的四则运算(1)相加减:保留相同位数,竖式相加减。

(2)相乘:先把小数变成整数,再按整数的乘法进行运算,最后把结果的小数点后移。

(3)相除:把被除数和除数都扩大10、100、1000……倍,使除数变成整数,然后按整数的除法进行运算,最后把结果的小数点前移。

三、倍数和约数1.倍数若a,b为正整数,其中a ≤ b,则b是a的倍数,a是b的因数。

一个数的倍数有无穷多个。

2.约数若a,b为正整数,其中a ≤ b,则a能整除b,称a是b的因数,b是a的倍数。

一个数的因数是有限多个。

四、整数1.正数、负数正整数和0,统称为正数,用“+”表示;负整数,用“-”表示。

2.整数的大小比较(1)一正一负,正数大。

(2)同号但绝对值不同时,绝对值大的数大。

(3)同号且绝对值相同时,大小相同。

3.绝对值表示一个数到原点的距离,用“|”表示。

小学六年级数学下册知识点归纳

小学六年级数学下册知识点归纳
小学数学六年级下册知识点归纳总结
1.负数:负数是数学术语,指小于0的实数, 如?3。
任何正数前加上负号都等于负数。在数轴 线上,负数都在0的左侧,所有的负数都比
自然数小。负数用负号“-”标记, 如?2,?5.33,?45,?0.6等。
2.正数:大于0的数叫正数(不包括0)
若一个数大于零(>0),则称它是一个正 数。正数的前面可以加上正号“+”来表示。 正数有无数个,其中分正整数,正分数和正
无理数。
3.正数的几何意义:数轴上0右边的数叫做正 数
4.数轴:规定了原点,正方向和单位长度 的直线叫数轴。
所有的实数都可以用数轴上的点来表示。 也可以用数轴来比较两个实数的大小。
5.数轴的三要素:原点、单位长度、正方 向。
6.圆柱:以矩形的一边所在直线为旋转轴, 其余三边旋转形成的面所围成的旋转体
上距离。
线段比例尺:在图上附有一条注有数目的 线段,用来表示和地面上相对应的实际距
离。
20.按比例分配:
在农业生产和日常生活中,常常需要把一 个数量按照一定的比来进行分配。这种分
配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几, 然后求出总数的几分之几是多少。
21.比例的意义:比例的意义
即AG矩形的一条边为轴,旋转360°所得 的几何体就是圆柱。
其中AG叫做圆柱的轴,AG的长度叫和D'G旋转形成的两个圆叫做圆 柱的底面,DD'旋转形成的曲面叫做圆柱的
侧面。
7.圆柱的体积:圆柱所占空间的大小,叫 做这个圆柱体的体积。设一个圆柱底面半 径为r,高为h,则体积V:V=πr2h ;如S为
S=πR2(n/360)+πr2或(1/2)αR2+πr2(此n为角 度制,α为弧度制,α=π(n/180)

六年级下册数学所有知识点

六年级下册数学所有知识点

六年级下册数学所有知识点一、负数。

1. 负数的定义。

- 为了表示两种相反意义的量,如零上温度和零下温度、收入与支出等,我们引入了负数。

像 - 3、- 5.6、- (1)/(2)等带有负号的数叫做负数;以前学过的像3、5.6、(1)/(2)等正数前面加上“+”号(也可省略不写)。

0既不是正数也不是负数。

2. 数轴。

- 规定了原点、正方向和单位长度的直线叫做数轴。

在数轴上,从左到右的顺序就是数从小到大的顺序。

所有的负数都在0的左边,也就是负数都比0小;所有的正数都在0的右边,正数都比0大。

3. 比较大小。

- 正数>0>负数;两个负数比较大小,负号后面的数越大,这个负数越小。

例如 - 3>-5。

二、百分数(二)1. 折扣。

- 几折就表示十分之几,也就是百分之几十。

例如,七五折就是指现价是原价的75%。

原价×折扣 = 现价;现价÷折扣 = 原价;现价÷原价 = 折扣。

2. 成数。

- 成数表示一个数是另一个数的十分之几,通称“几成”。

例如,“一成”就是十分之一,改写成百分数就是10%;“三成五”就是十分之三点五,改写成百分数就是35%。

3. 税率。

- 应纳税额与各种收入(销售额、营业额……)的比率叫做税率。

应纳税额 = 各种收入×税率。

4. 利率。

- 单位时间内的利息与本金的比率叫做利率。

利息=本金×利率×存期;取回的钱= 本金+利息。

三、圆柱与圆锥。

1. 圆柱。

- 圆柱的认识。

- 圆柱有两个底面,是完全相同的两个圆;有一个侧面,是曲面,沿高展开后是一个长方形(或正方形),这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。

圆柱有无数条高,高的长度都相等。

- 圆柱的表面积。

- 圆柱的表面积 = 侧面积+两个底面积。

圆柱的侧面积 = 底面周长×高,用字母表示为S_侧=Ch(C = 2π r或C=π d),S_底=π r^2,所以S_表=2π rh + 2π r^2。

六年级下册数学一二单元知识点

六年级下册数学一二单元知识点

六年级下册数学一二单元知识点一、负数1. 负数的认识- 负数就像生活中的那些“反向”情况。

比如说温度,零上温度我们用正数表示,像+5℃表示零上5摄氏度。

那零下温度呢,就用负数啦,比如 - 3℃就是零下3摄氏度。

它就像是正数的“小跟班”,但是方向相反哦。

- 在数轴上,负数在0的左边,正数在0的右边。

0就像是个分界点,把正数和负数分得清清楚楚的。

就像拔河比赛,0是中间的那条线,正数队在右边用力拉,负数队在左边用力拉。

2. 负数的大小比较- 比较负数的大小有点像比谁更“冷”。

比如说 - 5和 - 3, - 5就比 - 3更“冷”,也就是 - 5< - 3。

因为在数轴上,越往左的数越小,负数离0越远就越小。

这就好比在冬天,零下5度肯定比零下3度要冷得多呀。

3. 负数的运算- 加上一个负数就等于减去这个负数的绝对值。

比如说3+( - 2),就相当于3 - 2 = 1。

就好像你本来有3个苹果,又有人拿走了2个(这里拿走就用负数表示),最后就剩下1个苹果啦。

- 减去一个负数就等于加上这个负数的绝对值。

像5-( - 3),就等于5 + 3 = 8。

这就像是你本来欠别人3个东西(用 - 3表示),现在不用还了(减去 - 3),那你就相当于多了3个,所以就变成加3了。

二、百分数(二)1. 折扣- 折扣就是商家的一种促销手段。

比如说打八折,就是按原价的80%出售。

如果一件衣服原价100元,打八折后的价格就是100×80% = 80元。

这就好比你去菜市场买菜,老板说给你个八折优惠,你就可以少花点钱啦。

2. 成数- 成数也和百分数有关系哦。

一成就是10%,二成就是20%。

比如说今年粮食产量比去年增产二成,就是说今年的产量比去年多了20%。

如果去年产量是1000千克,今年产量就是1000×(1 + 20%)=1200千克。

就像你的零花钱比去年多了二成,你就可以买更多的小零食啦。

3. 税率- 税率是国家从企业或者个人收入里拿一部分钱的比例。

六年级下核心考点清单

六年级下核心考点清单

六年级下核心考点清单
六年级下核心考点清单:
1. 小学数学知识的巩固和运用:加减乘除的运算技巧、分数、百分数、小数、单位换算等。

2. 图形的认识和性质:平行四边形、长方形、正方形、三角形、圆等图形的性质、面积和周长的计算。

3. 数据的处理和分析:图表的读取和分析、统计图的制作和解读、平均数的计算等。

4. 代数的初步学习:代数式的认识和运算、方程的解法、一元一次方程的解法等。

5. 几何图形的绘制和变换:几何图形的画法、图形的平移、旋转和翻折等基本变换。

6. 时、空和形的关系:时间的计算和换算、空间的方位和位置、立体图形的认识和展开等。

7. 逻辑思维和问题解决:逻辑思维的训练、问题解决的方法和策略、应用题的解题思路等。

8. 数学语言和表达:数学语言的运用、数学步骤和过程的书写、数学问题的表述等。

这些是六年级下学期数学的核心考点,学生需要掌握这些知识和技能,才能够顺利完成六年级的数学学习。

六年级下册数学知识点归纳笔记

六年级下册数学知识点归纳笔记

以下是六年级下册数学知识点的归纳笔记:一、整数运算。

1.整数的加减法。

-同号相加减,异号相减加。

-加减法可以化为同号运算或异号运算。

-加法满足交换律和结合律,减法不满足交换律和结合律。

2.整数的乘除法。

-同号相乘为正,异号相乘为负。

-除法可以化为乘法运算。

3.整数的混合运算。

-先乘除后加减,先括号里的后括号外的。

-同级运算可以交换顺序。

二、小数运算。

1.小数的加减法。

-小数点对齐,按位相加减,注意进位借位。

2.小数的乘法。

-把小数转化为整数,计算完再将结果还原成小数。

3.小数的除法。

-把除数、被除数都变成整数,再进一步计算。

三、分数运算。

1.分数的加减法。

-通分后,按照整数的加减法进行运算。

2.分数的乘除法。

-分数的乘法,分子相乘,分母相乘。

-分数的除法,除数的倒数乘以被除数。

四、面积和周长。

1.长方形的面积和周长。

-面积为长乘以宽,周长为长加宽的两倍。

2.正方形的面积和周长。

-面积为边长的平方,周长为边长的四倍。

3.三角形的面积和周长。

-面积为底乘以高的一半,周长为三边之和。

4.平行四边形的面积和周长。

-面积为底乘以高,周长为底的两倍加上高的两倍。

五、几何变换。

1.平移。

-所有点同时沿着同一方向移动相同的距离。

2.旋转。

-将图形围绕一个点或轴心旋转。

3.翻折。

-将图形沿着一条直线对称。

4.对称和投影。

-对称:将图形对移到与原来位置对称的位置。

-投影:将图形沿着一条直线或面投影到相应的位置。

六、数据统计。

1.统计图。

-条形图、折线图、饼状图、扇形图,用于表示数据的数量、比例和变化趋势等。

2.中心倾向和散布度。

-中心倾向:平均数、中位数、众数,反映数据的集中程度。

-散布度:极差、方差、标准差,反映数据的离散程度。

以上就是六年级下册数学知识点的归纳笔记,希望可以对学生们的数学学习有帮助。

六年级下数学知识点归纳总结

六年级下数学知识点归纳总结

六年级下数学知识点归纳总结以下是六年级下数学知识点归纳总结:1. 负数:小于0的数。

2. 圆柱与圆锥圆柱:两个圆面和一个曲面。

圆锥:一个圆面和一个曲面。

3. 比例比例的基本性质:比例的两个内项之积等于两个外项之积。

正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

4. 比例尺图上距离:实际距离=比例尺数字式:1:1000线段式:文字式:图上1厘米代表实际距离的1000厘米。

5. 扇形统计图用扇形的面积表示部分在总体中所占的百分比。

易于显示每组数据相对于总数的大小。

6. 圆柱和圆锥的复习侧面积=底面周长×高表面积=侧面积+底面积×2体积=底面积×高7. 统计折线统计图:可以清楚的看出数量增减变化的情况。

条形统计图:可以清楚地看出各种数量的多少。

8. 总复习数与代数:数的认识、数的运算、式与方程、正比例与反比例、量的计量、探索规律。

空间与图形:图形的认识、图形的变换、图形的位置与方向、图形与坐标。

统计与概率:简单数据统计过程、根据统计图表进行简单的数据分析、随机事件及其发生的概率。

9. 解决问题的策略列表法:用列表的方法整理问题的条件和思路,解决问题的方法。

列方程:用字母表示未知数,根据题意列出方程,解方程求得未知数的方法。

10. 数学广角数与形结合的规律逻辑推理的方法和实际应用。

六年级下册数学知识点(全面)

六年级下册数学知识点(全面)

第一单元:负数1、负数:负数是数学术语,指小于0的实数,如-3。

任何正数前加上负号都等于负数。

在数轴线上,负数都在0的左侧,所有的负数都比自然数小。

负数用负号“-”标记,如-2,-5.33,-45,-0.6等。

2、正数:大于0的数叫正数(不包括0)。

若一个数大于零(>0),则称它是一个正数。

正数的前面可以加上正号“+”来表示。

正数有无数个,其中分正整数,正分数和正无理数。

3、正数的几何意义:数轴上0右边的数叫做正数。

4、0既不是整数,也不是负数。

5、数轴:规定了原点,正方向和单位长度的直线叫数轴。

所有的实数都可以用数轴上的点来表示。

也可以用数轴来比较两个实数的大小。

6、数轴的三要素:原点、单位长度、正方向。

第二单元:百分数(二)1、折扣:商品按原定价格的百分之几出售,叫做折扣。

通称“打折”。

几折就表示十分之几,也就是百分之几十。

例如八折=108=0.8=80﹪,六折五=0.65=65﹪。

2、成数:农业收成,经常用“成数”来表示。

现广泛应用于表示各行各业的发展变化情况。

一成是十分之一,也就是10%。

三成五就是十分之三点五,也就是35%。

3、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

(2)纳税的意义:税收是国家财政收入的主要来源之一。

国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。

(3)应纳税额:缴纳的税款叫做应纳税额。

(4)税率:应纳税额与各种收入的比率叫做税率。

(5)应纳税额的计算方法:应纳税额 = 总收入 × 税率4、利率(1)存款分为活期、整存整取和零存整取等方法。

(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

(3)本金:存入银行的钱叫做本金。

(4)利息:取款时银行多支付的钱叫做利息。

(5)利率:利息与本金的比值叫做利率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级下册数学知识点六年级下册数学知识点数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。

以下是店铺为大家收集的六年级下册数学知识点,仅供参考,大家一起来看看吧。

六年级下册数学知识点1典型应用题:具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。

(1)平均数问题:平均数是等分除法的发展。

解题关键:在于确定总数量和与之相对应的总份数。

算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。

数量关系式:数量之和÷数量的个数=算术平均数。

加权平均数:已知两个以上若干份的平均数,求总平均数是多少。

数量关系式(部分平均数×权数)的总和÷(权数的和)=加权平均数。

差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。

数量关系式:(大数-小数)÷2=小数应得数数与各数之差的和÷总份数=数应给数数与个数之差的和÷总份数=最小数应得数。

例:一辆汽车以每小时100千米的速度从甲地开往乙地,又以每小时60千米的速度从乙地开往甲地。

求这辆车的平均速度。

分析:求汽车的平均速度同样可以利用公式。

此题可以把甲地到乙地的路程设为“1”,则汽车行驶的总路程为“2”,从甲地到乙地的速度为100,所用的时间为1÷100,汽车从乙地到甲地速度为60千米,所用的时间是1÷60,汽车共行的时间为1÷100+1÷60,汽车的平均速度为2÷(1÷100+1÷60)=75(千米)(2)归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。

根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。

根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。

一次归一问题,用一步运算就能求出“单一量”的归一问题。

又称“单归一。

”两次归一问题,用两步运算就能求出“单一量”的归一问题。

又称“双归一。

”正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。

反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。

解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。

数量关系式:单一量×份数=总数量(正归一)总数量÷单一量=份数(反归一)例一个织布工人,在七月份织布4774米,照这样计算,织布6930米,需要多少天?分析:必须先求出平均每天织布多少米,就是单一量。

6930÷(4774÷31)=45(天)(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。

特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。

数量关系式:单位数量×单位个数÷另一个单位数量=另一个单位数量单位数量×单位个数÷另一个单位数量=另一个单位数量。

例修一条水渠,原计划每天修800米,6天修完。

实际4天修完,每天修了多少米?分析:因为要求出每天修的长度,就必须先求出水渠的长度。

所以也把这类应用题叫做“归总问题”。

不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。

800×6÷4=1200(米)(4)和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。

解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。

解题规律:(和+差)÷2=大数大数-差=小数(和-差)÷2=小数和-小数=大数例某加工厂甲班和乙班共有工人94人,因工作需要临时从乙班调46人到甲班工作,这时乙班比甲班人数少12人,求原来甲班和乙班各有多少人?分析:从乙班调46人到甲班,对于总数没有变化,现在把乙数转化成2个乙班,即94-12,由此得到现在的乙班是(94-12)÷2=41(人),乙班在调出46人之前应该为41+46=87(人),甲班为94-87=7(人)(5)和倍问题:已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题,叫做和倍问题。

解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。

求出倍数和之后,再求出标准的数量是多少。

根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。

解题规律:和÷倍数和=标准数标准数×倍数=另一个数例:汽车运输场有大小货车115辆,大货车比小货车的5倍多7辆,运输场有大货车和小汽车各有多少辆?分析:大货车比小货车的5倍还多7辆,这7辆也在总数115辆内,为了使总数与(5+1)倍对应,总车辆数应(115-7)辆。

列式为(115-7)÷(5+1)=18(辆),18×5+7=97(辆)(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。

解题规律:两个数的差÷(倍数-1)=标准数标准数×倍数=另一个数。

例甲乙两根绳子,甲绳长63米,乙绳长29米,两根绳剪去同样的长度,结果甲所剩的长度是乙绳长的3倍,甲乙两绳所剩长度各多少米?各减去多少米?分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的3倍,实比乙绳多(3-1)倍,以乙绳的长度为标准数。

列式(63-29)÷(3-1)=17(米)…乙绳剩下的长度,17×3=51(米)…甲绳剩下的长度,29-17=12(米)…剪去的长度。

(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。

解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。

解题关键及规律:同时同地相背而行:路程=速度和×时间。

同时相向而行:相遇时间=速度和×时间同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。

同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。

例甲在乙的后面28千米,两人同时同向而行,甲每小时行16千米,乙每小时行9千米,甲几小时追上乙?分析:甲每小时比乙多行(16-9)千米,也就是甲每小时可以追近乙(16-9)千米,这是速度差。

已知甲在乙的后面28千米(追击路程),28千米里包含着几个(16-9)千米,也就是追击所需要的时间。

列式28÷(16-9)=4(小时)(8)流水问题:一般是研究船在“流水”中航行的问题。

它是行程问题中比较特殊的一种类型,它也是一种和差问题。

它的特点主要是考虑水速在逆行和顺行中的不同作用。

船速:船在静水中航行的速度。

水速:水流动的速度。

顺水速度:船顺流航行的速度。

逆水速度:船逆流航行的速度。

顺速=船速+水速;逆速=船速-水速解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。

解题时要以水流为线索。

解题规律:船行速度=(顺水速度+逆流速度)÷2;流水速度=(顺流速度逆流速度)÷2路程=顺流速度×顺流航行所需时间;路程=逆流速度×逆流航行所需时间例一只轮船从甲地开往乙地顺水而行,每小时行28千米,到乙地后,又逆水航行,回到甲地。

逆水比顺水多行2小时,已知水速每小时4千米。

求甲乙两地相距多少千米?分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。

已知顺水速度和水流速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用2小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。

列式为284×2=20(千米)20×2=40(千米)40÷(4×2)=5(小时)28×5=140(千米)。

(9)还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。

解题关键:要弄清每一步变化与未知数的关系。

解题规律:从最后结果出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。

根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。

解答还原问题时注意观察运算的顺序。

若需要先算加减法,后算乘除法时别忘记写括号。

例某小学三年级四个班共有学生168人,如果四班调3人到三班,三班调6人到二班,二班调6人到一班,一班调2人到四班,则四个班的人数相等,四个班原有学生多少人?分析:当四个班人数相等时,应为168÷4,以四班为例,它调给三班3人,又从一班调入2人,所以四班原有的人数减去3再加上2等于平均数。

四班原有人数列式为168÷4-2+3=43(人)一班原有人数列式为168÷4-6+2=38(人);二班原有人数列式为168÷4-6+6=42(人)三班原有人数列式为168÷4-3+6=45(人)。

(10)植树问题:这类应用题是以“植树”为内容。

凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。

解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。

解题规律:沿线段植树:_棵树=段数+1棵树=总路程÷株距+1;_株距=总路程÷(棵树-1)总路程=株距×(棵树-1)沿周长植树:棵树=总路程÷株距株距=总路程÷棵树总路程=株距×棵树例沿公路一旁埋电线杆301根,每相邻的两根的间距是50米。

后来全部改装,只埋了201根。

求改装后每相邻两根的间距。

分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。

列式为50×(301-1)÷(201-1)=75(米)(11)盈亏问题:是在等分除法的基础上发展起来的。

他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余,或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫盈亏问题。

解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。

相关文档
最新文档