概率与统计同步练习(含答案)

合集下载

北师大版小学数学六年级上册总复习《统计与概率》同步练习带答案

北师大版小学数学六年级上册总复习《统计与概率》同步练习带答案

《统计与概率》同步习题
1.观察下图,回答问题。

(1)最受欢迎的两种球类运动分别是()和(),这两种球类的百分比之和是()。

(2)图中的各个扇形分别代表的是(),所有百分比之和是()。

(3)如果你是体育委员,准备组织全班同学观看一场球类比赛,为了吸引尽可能多的同学去观看比赛,你会组织观看()比赛。

2.下面是某商店某种毛绒玩具销售情况统计图,看图回答问题。

(1)从()可以看出该种毛绒玩具销售数量的变化情况。

(2)这个商店该种毛绒玩具销售的总数量是()。

你是从()中得到这个数据的。

参考答案
1.(1)乒乓球足球56%
(2)每种受欢迎的球类人数占总人数的百分比100% (3)乒乓球
2.(1)图3 (2)26200套图1或图3。

六年级下册数学同步练习5.8统计与概率|西师大版(2018秋)

六年级下册数学同步练习5.8统计与概率|西师大版(2018秋)

六年级下册数学同步练习及解析|西师大版(2019秋)第5单元第8课时统计与概率一、填空。

1.()统计图是用长短不同、宽窄一致的直条表示数量,从图上很容易看出()。

【答案】:条形统计图;各种数量的多少【解析】:条形统计图用长短不同,宽窄一致的直条表示数量,它可以清楚的看出数量的多少,根据此填空即可。

2.抛出一枚硬币,落下后有()种结果。

出现反面的可能性是()。

【答案】:2;1 2【解析】抛一枚硬币,落下后可能正面朝上,也可能反面朝上,因此有两种可能;出现反面的可能性是12,根据此填空即可。

3.一个装满白球的盒子里,()摸出红球,()摸出白球。

【答案】:不可能;一定【解析】:因为盒子里全是白球,因此不可能摸出红球,一定能摸出白球,根据此填空即可。

4.下面记录的是六(1)班第一组学生期中考试成绩(单位:分)83、89、81、55、62、70、78、94、84、97、86、100、66、75请根据上面的记录的分数填写下表,并回答问题。

(1)该小组的平均成绩是()分。

(2)优秀率(接满分80分以上计算)是()%。

(3)及格率是()%。

(4)优秀学生比其他学生多()人,多()%。

【答案】:(1)74 (2)57.1 (3)92.9 (4)2;33.3【解析】:(1)把成绩相加然后除以个数就可以算出平均分是多少,即:(83+89+81+55+62+70+78+94+84+97+86+100+66+75)÷14=74(分)(2)优秀率=优秀人数÷总人数,即:8÷14=57.1%;(3)及格率=及格人数÷总人数,即:13÷14=92.9%;第 1 页第 2 页(4)用优秀人数减去不是优秀的人数,即可求出优秀学生比其他学生多多少人,即:8-6=2人,用多的人数除以其他人数,即:2÷6=33.3%。

二、选择题。

1. 在我们学过的统计知识中,最能清楚地表示出数量增减变化情况的是( )。

人教版六年级数学下册总复习《统计与概率》课后练习题(附答案)

人教版六年级数学下册总复习《统计与概率》课后练习题(附答案)

人教版六年级数学下册总复习《统计与概率》课后练习题(附答案)一、填空题。

1.在括号里填上“可能”“一定”或“不可能”。

(1)儿子( )比爸爸高。

(2)世界上每天( )有人出生。

(3)太阳( )从西边升起。

2.掷一枚骰子,单数朝上的可能性是()(),双数朝上的可能性是()()。

3.5个连续自然数的平均数是12,这5个数中最大的是( )。

4.常用的统计图有()、()和( )。

5.某地今年上半年每月的平均气温是5℃、8℃、12℃、18℃、24℃、30℃,为了反映气温的变化情况,制成( )统计图比较合适。

6.六(1)班有男生25人,女生20人,从中任选一人,选到女生的可能性是()()。

7.在一幅条形统计图里,用1厘米长的直条表示20万元,用( )厘米长的直条表示30万元,用5厘米长的直条表示( )万元。

8.在92、93、95、93、90、98、94、93、96、91中,平均数是( ),中位数是( ),众数是( )。

二、判断题。

(对的画“√”,错的画“✕”)1.要想比较清楚地反映小明成绩的变化情况,应选择条形统计图。

( )2.心电图的图形是折线统计图。

( )3.条形统计图和折线统计图都可以看出数量的多少。

( )4.一次抽奖活动的中奖率是1%,抽100次一定会中奖。

( )三、选择题。

(把正确答案的序号填在括号里)1.要统计小红每次数学测试成绩,看看是进步还是退步,不能选用( )统计图。

A.条形B.折线C.扇形2.97、95、96、93、93、92、94,这组数据的众数是( )。

A.93B.94C.963.盒子里有4个白球和6个黑球,任意摸一个球,摸到黑球的可能性是( )。

A.45B.35C.254.小红和小芹做转盘游戏,如果停在黄色的区域算小红赢,停在红色的区域算小芹赢。

下面的( )转盘是公平的。

答案:一、1.(1)可能(2)一定(3)不可能 2.121 23.144.条形统计图折线统计图扇形统计图5.折线6.497.1.5 100 8.93.5 93 93二、1.✕ 2.√ 3.√ 4.✕三、1.C 2.A 3.B 4.A。

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

《概率论与数理统计》练习题(含答案)

《概率论与数理统计》练习题(含答案)

《概率论与数理统计》练习题(含答案)一、单项选择题1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立. (D )若C B ⊂,则A 与C 也独立.答案:(D ).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-. (C )2(2)-Φ. (D )12(2)-Φ.答案:(A )解答: ~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ).3.设随机变量X 和Y 不相关,则下列结论中正确的是( ) (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =.SABC答案:(B )解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ ()+2cov x y D X Y DX DY -=+(,) 应选(B ).4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为( )(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==.答案:(A )解答: 若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+∴29α=, 19β=故应选(A ).5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是( )(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. 答案:(A ) 解答:1EX μ=,所以1X 是μ的无偏估计,应选(A ).6. 设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有( )Y X(A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤ (C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥答案:C 解答:由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥ ()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+- 应选C.7. 设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞, 且~(0,1)Y aX b N =+,则在下列各组数中应取( ) (A )1/2, 1.a b == (B)2,a b ==(C )1/2,1a b ==-. (D)2,a b == 答案:B 解答:22(2)4()x f x +-==即~(2,)X N - 故当a b ===时 ~(0,1)Y aX b N =+ 应选B.8. 设随机变量X 与Y 相互独立,其概率分布分别为010.40.6X P010.40.6Y P则有( )(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == 答案:C解答:()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.9. 对任意随机变量X ,若EX 存在,则[()]E E EX 等于( )(A )0. (B ).X (C ).EX (D )3().EX 答案:C 解答:[()]E E EX EX = 应选C.10. 设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为( ) (A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+ (C )(x u x uαα-+ (D )/2/2(x u x u αα-+ 答案:D 解答:因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D. 11、设为总体的一个样本,为样本均值,则下),,,(21n X X X )2,1(2N X列结论中正确的是( D )。

概率统计习题集(含答案)

概率统计习题集(含答案)

第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C + C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P AB P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B = B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -= B .()A B B A -⊃C .()A B B A -⊂D .()A B B A -=8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则PA B C -= ()( ). A .0.5 B .0.1 C .0.44 D .0.317掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。

初中数学统计与概率专题训练50题含参考答案

初中数学统计与概率专题训练50题含参考答案

初中数学统计与概率专题训练50题含参考答案一、单选题1.统计得到的一组数据有80个.其中最大值为141,最小值为50,取组距为10,可以分()A.10组B.9组C.8组D.7组2.下列说法正确的是()A.方差越大,数据的波动越大B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前的安检应采用抽样调查D.掷一枚硬币,正面一定朝上3.到了劳动课时,刚好是小明和小聪两位同学值日,教室里有两样劳动工具:扫把和拖把,小明与小聪用“剪刀,石头,布”的游戏方法决定谁胜了就让谁使用扫把,则小明出“剪刀”后,能胜出的概率是()A.12B.13C.16D.194.小思去延庆世界园艺博览会游览,如果从永宁瞻胜、万芳华台、丝路花雨、九州花境四个景点中随机选择一个进行参观,那么他选择的景点恰为丝路花雨的概率为()A.12B.14C.18D.1165.2022年深圳市有11.2万名学生参加中考,为了了解这些考生的数学成绩,从中抽取200名考生的数学成绩进行统计分析,在这个问题中,下列说法:①这11.2万名考生的数学成绩是总体;①每个考生是个体;①200名考生是总体的一个样本;①样本容量是200,其中说法正确的有()A.4个B.3个C.2个D.1个6.下列说法正确的是()A.“打开电视,正在播放新闻联播”是必然事件B.对某批次手机防水功能的调查适合用全面调查(普查)方式C.某种彩票的中奖率是8%是指买8张必有一张中奖D.对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式7.如下电路图中,任意关闭a、b、c三个开关中的两个,灯泡发亮的概率为().A.310B.13C.16D.238.下列说法正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次可投中6次C.抽样调查选取样本时,所选样本可按自己的喜好选取D.检测某城市的空气质量,采用抽样调查法9.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.9B.12C.15D.1810.下列调查中,适宜采用全面调查的是()A.对某班学生制作校服前的身高调查B.对某品牌灯管寿命的调查C.对浙江省居民去年阅读量的调查D.对现代大学生零用钱使用情况的调查11.钉钉打卡已经成为一种工作方式,老师利用钉钉调查了全班学生平均每天的阅读时间,统计结果如下表,在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1.5B.1,1.5C.1,2D.1,112.从1~9这九个自然数中任取一个,是2的倍数或是3的倍数的概率是()A.19B.29C.23D.4913.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.手可摘星辰D.大漠孤烟直14.2021年7月24日,宁波小将杨倩取得了东京奥运会气步枪首枚金牌,使得射击运动在各校盛行起来.某班有甲、乙、丙、丁四名学生进行了射击测试,每人10次射击成绩的平均数⎺x(单位:环)及方差s2(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择()A.甲B.乙C.丙D.丁15.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把3个球放入两个抽屉中,有一个抽屉中至少有2个球是必然事件C.任意打开九年级下册数学教科书﹐正好是97页是确定事件D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同).如果从中任取两个球.不一定可以取到红球16.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是()A.13B.14C.15D.1617.如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是()A.2B.4C.8D.1618.某班抽取6名同学参加体能测试,成绩如下:75,95,85,80,90,85. 下列表述不正确的是().A.众数是85B.中位数是85C.平均数是85D.方差是15 19.对于数据:1,7,5,5,3,4,3.下列说法中错误的是()A.这组数据的平均数是4B.这组数据的众数是5和3C.这组数据的中位数是4D.这组数据的方差是2220.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率二、填空题21.一组数据2,6,5,2,4,则这组数据的平均数是__________.22.数据1,2,2,5,8的众数是_____.23.某校开展为“希望小学”捐书活动,以下是5名同学捐书的册数:2,3,5,7,2,则这组数据的中位数是_____.24.一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别.从袋中随机摸取一个小球,它是黄球的概率______.25.已知样本1,3,9,a,b的众数是9,平均数是6,则中位数为__.26.九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是_____.27.某校在七年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生成绩达90分以上,据此估计该校七年级640名学生中这次模拟考试成绩达90分以上的约有____名学生.28.数据3,4,5,6,7的平均数是___________.29.某校为了举办“迎国庆”的活动,调查了本校所有学生,调查的结果被整理成如图所示的扇形统计图.如果全校学生人数是1200人,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有________人.30.下表列出了某地农作物生长季节每月的降雨量(单位:mm):其中有______个月的降雨量比这6个月平均降雨量大.31.有一组数据:3,a,4,8,9,它们的平均数是6,则a是_______.32.从2,3,4,6中任意选两个数,记作a和b,且a≠b,那么点(a,b)在函数8=图象上的概率是_______.yx33.若a、b、c的方差为3,则23b+、23a+、23c+的方差为________.34.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是_________.35.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是_________.36.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是___________.37.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为_______.38.数字2018、2019 、2020 、2021 、2022的方差是__________;39.一组数据:9、12、10、9、11、9、10,则它的方差是_____.40.某校七年级开展“阳光体育”活动,对爱好乒乓球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.若爱好羽毛球的人数是爱好足球的人数的4倍,若爱好篮球的人数是14人,则爱好羽毛球的人数为________.三、解答题41.射箭时,新手成绩通常不太稳定,小明和小华练习射箭,第一局12支箭射完后,两人的成绩如图所示,请根据图中信息估计小明和小华谁是新手,并说明你这样估计的理由.42.某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm),请你用所学过的有关统计的知识回答下列问题:(1)分别求甲、乙两段台阶路的高度平均数;(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在总高度及台阶数不变的情况下,请你提出合理的整修建议.43.某校在八年级开展环保知识问卷调查活动,问卷一共10道题,八年级(三)班的问卷得分情况统计图如下图所示:a______________;(1)扇形统计图中,(2)根据以上统计图中的信息,①问卷得分的极差是_____________分;①问卷得分的众数是____________分;①问卷得分的中位数是______________分;(3)请你求出该班同学的平均分.44.西昌市数科科如局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:(1)年抽取的调查人数最少;年抽取的调查人数中男生、女生人数相等;(2)求图2中“短跑”在扇形图中所占的圆心角α的度数;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?45.“垃圾分类,从我做起”,垃圾一般可分为:可回收垃圾、厨余垃圾、有害垃圾、其它垃圾.现小明提了一袋垃圾,小聪提了两袋垃圾准备投放.(1)直接写出小明所提的垃圾恰好是“厨余垃圾”的概率;(2)求小聪所提的两袋垃圾不同类的概率.46.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是(精确到0.1),并说明理由.(2)估算袋中白球的个数.47.为了调查A、B两个区的初三学生体育测试成绩,从两个区各随机抽取了1000名学生的成绩(满分:40分,个人成绩四舍五入向上取整数)A区抽样学生体育测试成绩的平均分、中位数、众数如下:B区抽样学生体育测试成绩的分布如下:请根据以上信息回答下列问题(1)m=;(2)在两区抽样的学生中,体育测试成绩为37分的学生,在(填“A”或“B”)区被抽样学生中排名更靠前,理由是;(3)如果B区有10000名学生参加此次体育测试,估计成绩不低于34分的人数.48.为庆祝建校60周年,某校组织七年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校七年级学生进行抽样调查,根据所得数据绘制出如下计图表:根据图表提供的信息,回答下列问题:(1)这次抽样调查,一共抽取学生 人;(2)扇形统计图中,扇形E 的圆心角度数是 ; (3)请补全频率分布直方图;(4)已知该校七年级共有学生360人,请估计身高在160170x <的学生约有多少人?49.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环): 小华:7,8,7,8,9,9; 小亮:5,8,7,8,10,10. (1)填写下表:(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么? (3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差 .(填“变大”、“变小”、“不变”)50.(2011湖北鄂州,17,6分)为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图. ①甲、乙两种品牌食用油各被抽取了多少瓶用于检测?①在该超市购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?参考答案:1.A【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为141,最小值为50,它们的差是141-50=91,已知组距为10,那么由于91÷10=9.1,故可以分成10组.故选:A.【点睛】本题考查的是组数的计算,根据组数的定义来解即可.2.A【详解】A、方差越大,数据的波动越大,正确;B、某种彩票中奖概率为1%,是指买100张彩票可能有1张中奖,错误;C、旅客上飞机前的安检应采用全面调查,错误;D、掷一枚硬币,正面不一定朝上,错误,故选A.3.B【详解】画树状图为:共有3种等可能的结果数,其中小明出“剪刀”后,能胜出的结果数为1,所以小明出“剪刀”后,能胜出的概率=13.故选B.4.B【分析】根据概率公式直接解答即可.【详解】①共有四个景点,分别是永宁瞻胜、万芳华台、丝路花雨、九州花境,①他选择的景点恰为丝路花雨的概率为14;故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.5.C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:由题意可知,这11.2万名考生的数学成绩是总体;每一名考生的数学成绩是个体;抽取的200名考生的数学成绩是总体的一个样本;样本容量为200;故①是正确的;①错误;①错误;①是正确的.故选:C.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.D【分析】根据必然事件、随机事件、概率的意义,以及全面调查与抽样调查的定义判断即可.【详解】解:A、“打开电视,正在播放新闻联播”是随机事件,不符合题意;B、对某批次手机放水功能的调查适合用抽样调查方式,不符合题意;C、某种彩票的中奖率是8%是指买8张可能一张中奖,不符合题意;D、对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式,符合题意.故选:D.【点睛】本题主要考查了概率的意义,掌握全面调查与抽样调查、随机事件的定义是解本题的关键.7.D【分析】用概率公式即可求解.【详解】由图可知,使得灯泡亮的组合有ab,ac这两种,总的可能情况有ab、ac、bc这3种情况,则让灯泡亮的概率为:2÷3=23,故选:D.【点睛】本题考查了用概率公式求解概率的知识,关键是要找全所有的可能情况和使灯泡亮的情况.8.D【详解】试题解析:A、“任意画一个三角形,其内角和为360°”是不可能事件,故A错误;B、已知某篮球运动员投篮投中的概率为0.6,则他投十次可能投中6次,故B错误;C、抽样调查选取样本时,所选样本要具有广泛性、代表性,故C错误;D、检测某城市的空气质量,采用抽样调查法,故D正确;故选D.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.9.B【详解】由频率的定义知,320%3a=+,解得a=12.10.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A.对某班学生制作校服前的身高调查,适宜采用全面调查,故此选项符合题意;B.对某品牌灯管寿命的调查,具有破坏性,应采用抽样调查,故此选项不合题意;C.对浙江省居民去年阅读量的调查,工作量大,应采用抽样调查,故此选项不合题意D.对现代大学生零用钱使用情况的调查,人数众多,应采用抽样调查,故此选项不合题意.故选:A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.B【分析】根据表格中的数据可知全班人数共有30人,从而可以求得全班学生平均每天阅读时间的中位数和众数,本题得以解决;【详解】班级学生=8+9+10+3=30(人),阅读量1.5h的人有10个,人数最多,①众数是1.5h.阅读量从小到大排列为0.5h的有8个,1h的有9个,1.5h的人有10个,2h的有3个,所以中间的是第15、16个数分别是1h、1h,①中位数=1+1=12h.故选:B.【点睛】本题主要考查了中位数和众数的求解,准确计算是解题的关键.12.C【分析】从1到9这9个自然数中任取一个有9种可能的结果,其中是2的倍数或是3的倍数的有2,3,4,6,8,9共计6个.【详解】解:从1到9这9个自然数中任取一个有9种可能的结果,是2的倍数或是3的倍数的有6个结果,因而概率是23.故选:C.【点睛】用到的知识点为:概率 所求情况数与总情况数之比.正确写出是2的倍数或是3的倍数的数有哪些是本题解决的关键.13.C【分析】根据必然事件、随机事件、不可能事件的意义结合具体问题情境进行判断即可.【详解】解:A.“黄河入海流”是必然事件,因此选项A 不符合题意;B.“锄禾日当午”是随机事件,因此选项B不符合题意;C.“手可摘星辰”是不可能事件,因此选项C 符合题意;D.“大漠孤烟直”是随机事件,因此选项D不符合题意;故选:C.【点睛】本题考查了必然事件、随机事件、不可能事件,理解必然事件、随机事件、不可能事件的意义是正确判断的前提.14.A【分析】观察表格中的数据,甲、丙、丁的平均数相等且大于乙的平均数,从方差来看,甲的方差最小,根据方差的意义,方差小的发挥稳定,据此即可求解.【详解】解:甲、丙、丁的平均数相等且大于乙的平均数,甲的方差最小,①要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择甲.故选A.【点睛】本题考查了平均数,方差,掌握方差的意义是解题的关键.15.C【分析】随机事件是在随机试验中,可能出现也可能不出现,其发生概率在0%至100%之间,必然事件是一定会发生的事件,其发生概率是100%,确定事件是必然事件和不可能事件的统称,不可能事件发生的概率是0,据此逐项分析解题即可.【详解】A.抛一枚硬币,硬币落地时正面朝上是随机事件,故A.不符合题意;B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,故B.不符合题意;C.任意打开九年级数学教科书,正好是97页是随机事件,故C.符合题意;D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同),从中任取2个球,不一定取到红球是随机事件,故D.不符合题意故选:C【点睛】本题考查随机事件、必然事件、确定事件等知识,是基础考点,难度较易,掌握相关知识是解题关键.16.A【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 .故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.A【详解】解:由题意知,新数据是在原来每个数上加上100得到,原来的平均数为x ,新数据是在原来每个数上加上100得到,则新平均数变为x +100,则每个数都加了100,原来的方差s 12= 1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,现在的方差s 22=1n[(x 1+100﹣x ﹣100)2+(x 2+100﹣x ﹣100)2+…+(x n +100﹣x ﹣100)2]=1 n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,方差不变.故选A .【点睛】方差的计算公式:s 2=1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2] 18.D【详解】分析:本题考查统计的有关知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.利用平均数和方差的定义可分别求出.详解:这组数据中85出现了2次,出现的次数最多,所以这组数据的众数位85; 由平均数公式求得这组数据的平均数位85,将这组数据按从大到校的顺序排列,第3,4个数是85,故中位数为85. 方差()()()()()()222222217585958585858085908585856S ⎡⎤=-+-+-+-+-+-⎣⎦, 125.3= 所以选项D 错误.故选D.点睛:考查中位数,算术平均数,众数,方差,掌握它们的概念是解题的关键.19.D【详解】由平均数公式可得这组数据的平均数为4;在这组数据中5和3都出现了2次,其他数据均出现了1次,所以众数是5和3; 将这组数据从小到大排列为:1、3、3、4、5、5、7,可得其中位数是4;其方差S 2=1n[(x 1-x¯)2+(x 2-x¯)2+…+(x n -x¯)2]=227,所以D 错误.故选D . 20.B【详解】试题分析:根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,然后进行判断.解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为,不符合题意;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是,符合题意;C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为,不符合题意;D、抛一枚硬币,出现反面的概率为,不符合题意,故选B.考点:利用频率估计概率.21.19 5【分析】直接根据算术平均数的定义进行求解.【详解】这组数据的平均数265241955++++==,故答案为:195.【点睛】本题考查算术平均数,熟练掌握算术平均数的计算公式是解题的关键.22.2【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中2是出现次数最多的,故众数是2.故答案为:2.【点睛】本题为统计题,考查了众数的定义,是基础题型.23.3【分析】根据中位数的定义解答即可.【详解】解:①2,2,3,5,7在中间位置的是3,①这组数据的中位数是3.故答案为3.【点睛】本题考查中位数的概念,将数据按照从小到大排列,在最中间位置的数或最中间的两个数的平均数就是中位数.24.25##0.4【分析】直接利用概率公式求解即可求得答案.【详解】解:①一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别,①从中随机摸出一个小球,恰好是黄球的概率为:4412 645==+.故答案为:25.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.25.8【分析】先根据众数的定义判断出a,b中至少有一个是9,再用平均数求出a+b=17,即可得出结论.【详解】解:①样本1,3,9,a,b的众数是9,①a,b中至少有一个是9,①样本1,3,9,a,b的平均数为6,①(1+3+9+a+b)÷5=6,①a+b=17,①a,b中一个是9,另一个是8,①这组数为1,3,9,8,9,即1,3,8,9,9,①这组数据的中位数是8.故答案为:8.【点睛】本题考查了众数、平均数和中位数的知识,解答本题的关键是能根据众数的定义得出a,b中至少有一个是9.26.112【分析】根据众数的出现次数最多的特点从数据中即可得到答案.【详解】解:在这组数据中出现次数最多的是112,所以这组数据的众数为112,故答案为:112.【点睛】此题重点考查学生对众数的理解,掌握众数的定义是解题的关键.27.160【详解】分析:先求出随机抽取的40名学生中成绩达到90分以上的所占的百分比,再乘以640,即可得出答案.详解:①随机抽取40名学生的数学成绩进行分析,有10名学生的成绩达90分以上,①七年级640名学生中这次模拟考数学成绩达90分以上的约有640×1040=160(名);故答案为160.点睛:此题主要考查了用样本估计总体,求出样本中符合条件的百分比是解题关键,比较简单.28.5【分析】根据平均数的的计算公式列出算式,进行计算即可.【详解】解:这组数据的平均数=(3+4+5+6+7)÷5=5,故答案是:5.【点睛】主要考查了平均数,用到的知识点是平均数的计算公式,熟记算术平均数公式是解题的关键.29.300【分析】根据扇形统计图中的数据和题目中的数据,可以计算出这所学校赞成举办演讲比赛的学生人数.【详解】解:由统计图可得,这所学校赞成举办演讲比赛的学生有:1200(140%35%)120025%300⨯--=⨯=(人),故答案为:300.【点睛】本题考查扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.30.3【分析】首先运用求平均数的公式得出这六个月平均每月的降雨量,然后进行比较即可.【详解】解:平均每月的降雨量=(20+55+82+135+116+90)÷6=83.3mm,所以有三个月的降雨量比这六个月平均降雨量大.故答案为3.【点睛】本题主要考查的是样本平均数的求法.熟记公式是解决本题的关键.31.6【详解】【分析】根据平均数的定义进行求解即可得.【详解】由题意得:38495a++++=6,解得:a=6,故答案为6.。

(完整版)《概率与数理统计》练习册及答案

(完整版)《概率与数理统计》练习册及答案

第一章 概率论的基本概念一、选择题1.将一枚硬币连抛两次,则此随机试验的样本空间为( ) A .{(正,正),(反,反),(一正一反)}B 。

{(反,正),(正,反),(正,正),(反,反)}C .{一次正面,两次正面,没有正面} D.{先得正面,先得反面}2。

设A,B 为任意两个事件,则事件(AUB)(Ω-AB)表示( ) A .必然事件 B .A 与B 恰有一个发生 C .不可能事件 D .A 与B 不同时发生3.设A ,B 为随机事件,则下列各式中正确的是( ). A 。

P (AB )=P (A)P (B) B 。

P(A —B)=P (A )-P (B) C.)()(B A P B A P -= D.P(A+B)=P(A )+P(B )4。

设A ,B 为随机事件,则下列各式中不能恒成立的是( )。

A 。

P(A -B)=P(A)-P (AB ) B 。

P (AB )=P(B )P (A|B ),其中P (B)〉0C 。

P(A+B)=P(A)+P (B) D.P(A )+P(A )=1 5。

若φ≠AB ,则下列各式中错误的是( ).A .0)(≥AB P B 。

1)(≤AB PC 。

P(A+B)=P(A)+P (B )D 。

P (A-B)≤P(A) 6.若φ≠AB ,则( ).A. A ,B 为对立事件B.B A =C.φ=B A D 。

P(A-B )≤P (A ) 7。

若,B A ⊂则下面答案错误的是( )。

A. ()B P A P ≤)( B 。

()0A -B P ≥C.B 未发生A 可能发生 D 。

B 发生A 可能不发生 8。

下列关于概率的不等式,不正确的是( ). A. )}(),(min{)(B P A P AB P ≤ B 。

.1)(,<Ω≠A P A 则若 C 。

1212(){}n n P A A A P A A A ≤+++ D.∑==≤ni i ni i A P A P 11)(}{9.(1,2,,)i A i n =为一列随机事件,且12()0n P A A A >,则下列叙述中错误的是( )。

天津理工大学概率论与数理统计同步练习册答案详解

天津理工大学概率论与数理统计同步练习册答案详解

天津理工大学概率论与数理统计同步练习册答案详解第一章 随机变量 习题一1、写出下列随机试验的样本空间(1)同时掷三颗骰子,记录三颗骰子点数之和Ω= {}1843,,, (2)生产产品直到有10件正品为止,记录生产产品的总件数Ω= {} ,,1110 (3)对某工厂出厂的产品进行检验,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止,或检查4个产品就停止检查,记录检查的结果。

用“0”表示次品,用“1”表示正品。

Ω={111111101101011110111010110001100101010010000,,,,,,,,,,,}(4)在单位圆内任意取一点,记录它的坐标Ω= }|),{(122<+y x y x(5)将一尺长的木棍折成三段,观察各段的长度Ω=},,,|),,{(1000=++>>>z y x z y x z y x其中z y x ,,分别表示第一、二、三段的长度(6 ) .10只产品中有3只次品 ,每次从其中取一只(取后不放回) ,直到将3只次品都取出 , 写出抽取次数的基本空间U =“在 ( 6 ) 中 ,改写有放回抽取” 写出抽取次数的基本空间U =解: ( 1 ) U = { e3 , e4 ,… e10 。

}其 中 ei 表 示 “ 抽 取 i 次 ” 的 事 件 。

i = 3、 4、 …、 10( 2 ) U = { e3 , e4 ,… }其 中 ei 表 示 “ 抽 取 i 次 ” 的 事 件 。

i = 3、 4、 …2、互不相容事件与对立事件的区别何在?说出下列各对事件的关系 (1)δ<-||a x 与δ≥-||a x 互不相容 (2)20>x 与20≤x 对立事件(3)20>x 与18<x 互不相容 (4)20>x 与22≤x 相容事件(5)20个产品全是合格品与20个产品中只有一个废品 互不相容(6)20个产品全是合格品与20个产品中至少有一个废品 对立事件2 解: 互不相容:φ=AB ; 对立事件 : φ=AB )1( 且 Ω=⋃B A3、设A,B,C 为三事件,用A,B,C 的运算关系表示下列各事件(1)A 发生,B 与C 不发生 - C B A (2)A 与B 都发生,而C 不发生 - C AB(3)A,B,C 中至少有一个发生 -C B A ⋃⋃ (4)A,B,C 都发生 -ABC(5)A,B,C 都不发生 - C B A (6)A,B,C 中不多于一个发生 -C B C A B A ⋃⋃(7)A,B,C 中不多于两个发生-C B A ⋃⋃(8)A,B,C 中至少有两个发生-BC AC AB ⋃⋃4、盒内装有10个球,分别编有1- 10的号码,现从中任取一球,设事件A 表示“取到的球的号码为偶数”,事件B 表示“取到的球的号码为奇数”,事件C 表示“取到的球的号码小于5”,试说明下列运算分别表示什么事件.(1)B A 必然事件 (2)AB 不可能事件 (3)C 取到的球的号码不小于5 (4)C A 1或2或3或4或6或8或10(5)AC 2或4 (6)C A 5或7或9 (7)C B 6或8或10 (8)BC 2或4或5或6或7或8或9或105、指出下列命题中哪些成立,哪些不成立. (1)B B A B A = 成立 (2)B A B A = 不成立 (3)C B A C B A = 不成立 (4)φ=))((B A AB 成立(5)若B A ⊂,则AB A = 成立 (6)若φ=AB ,且A C ⊂,则φ=BC 成立(7)若B A ⊂,则A B ⊂ 成立 (8)若A B ⊂,则A B A = 成立7、设一个工人生产了四个零件,i A 表示事件“他生产的第i 个零件是正品”),,,(4321=i ,用1A ,2A ,3A ,4A 的运算关系表达下列事件.3 (1)没有一个产品是次品; (1) 43211A A A A B =(2)至少有一个产品是次品;(2) 432143212A A A A A A A A B =⋃⋃⋃=(3)只有一个产品是次品;(3) 43214321432143213A A A A A A A A A A A A A A A A B ⋃⋃⋃=(4)至少有三个产品不是次品 4)432143214321432143214A A A A A A A A A A A A A A A A A A A A B ⋃⋃⋃⋃=8. 设 E 、F 、G 是三个随机事件,试利用事件的运算性质化简下列各式 : (1)()()F E F E (2) ()()()F E F E F E (3)()()G F F E 解 :(1) 原式 ()()()()E F F F E F E E E ==(2) 原式 ()()()()E F F E F F E F E F E ===(3) 原式 ()()()()()G E F G F F F G E F E ==9、设B A ,是两事件且7060.)(,.)(==B P A P ,问(1)在什么条件下)(AB P 取到最大 值,最大值是多少?(2)在什么条件下)(AB P 取到最小值,最小值是多少? 解: (1)6.0)(,=⊂AB P B A (2)3.0)(,==⋃AB P S B A 10. 设 事 件 A , B , C 分 别 表 示 开 关 a , b , c 闭 合 , D 表 示 灯 亮 , 则可用事件A ,B ,C 表示:(1) D = A B C ;(2) D = ()C B A 。

概率论与数理统计练习题(含答案)

概率论与数理统计练习题(含答案)

数理统计练习题一、填空题1、设A 、B 为随机事件,且P (A )=0.5,P (B )=0.6,P (B |A )=0.8,则P (A +B )=__ 0.7 __。

2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。

3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 。

4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(−−X X E =1,则=λ___1____。

5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2_____时 ,成功次数的方差的值最大,最大值为 25 。

6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 ),(211σμN 。

7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=34。

8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b μ+;)(b kX D +=22k σ。

9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。

设Z =2X -Y +5,则Z ~ N(-2, 25) 。

10、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。

1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。

2、设X ∼B (2,p ),Y ∼B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。

3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。

4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。

概率论与数理统计同步练习题答案

概率论与数理统计同步练习题答案
P (A B ) P (A ) P ( B ) 0 .6P(B)0.3
(2)A,B独立 P (A B ) P (A ) P (B ) P (A )B
P ( A ) P ( B ) P ( A ) P ( B ) 0 .6 P(B) 3
7
(3)AB ABB
(3)第二次取白球 (4)恰有两次取红球
(5) 后两次至多有一次取红球
.
(1) A1 A2
(2) A1A2A3
(3) A 2
(4) A 1A 2A 3A 1A 2A 3A 1A 2A 3
(5) A2A3A2A3A2A3
3 随机抽查三件产品,A={三件中至少有一件废品} B={三件中至少有二件废品} C={三件正品},问

a1(1 qn 1 q
5
所以此表不是分布表
2 已知离散型随机变量的分布律如下,求常数a=?
(1)
P{X m} a 5
m=1,2,3…25
(2) P{X m} a m=0,1,2,3…
m!
解 (1) a 25 1
5
(2)注意到:
a1 5
1111...1.. .e 1! 2! 3! n!
P(A)131132311 P(B)1P(A )11 3 1 133 211
4 袋中有9红球3白球,任取5球,求(1) 其中至少有1 个白球的概率(2) 其中至多有2个白球的概率
解 A={ 其中至少有1个白球}
B= {其中至多有2个白球}
P(A)1P(A)1C C19552
P(AB )P(AB)
第三次
1 袋中有3红球2白球,不放回地抽取2次,每次取 一个,求(1) 第二次取红的概率 (2) 已知第一次 取白球,求第二次取红球的概率

初中数学统计与概率专题训练50题(含答案)

初中数学统计与概率专题训练50题(含答案)

初中数学统计与概率专题训练50题含参考答案一、单选题1.红河州博物馆拟招聘一名优秀讲解员,其中小华笔试、试讲、面试三轮测试得分分别为90分、94分、92分.综合成绩中笔试占30%、试讲占50%、面试占20%,那么小华的最后得分为()A.92分B.92.4分C.90分D.94分2.一个足球队23名队员的年龄统计结果如下表所示,这个足球队队员年龄的众数,中位数分别是()A.14,15B.14,14C.15,13D.15,153.我校四名跳远运动员在前的10次跳远测试中成绩的平均数相同,方差s2如下表示数,如果要选出一名跳远成绩最稳定的选手参加抚顺市运动会,应选择的选手是()A.甲B.乙C.丙D.丁4.盒子中有白色乒乓球和黄色乒乓球若干个,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,由此估计摸白色乒乓球的概率为()A.14B.12C.13D.345.下列数据是2019年3月一天某时公布的中国六大城市的空气污染指数情况:则这组数据的中位数和众数分别是()A.162和155B.169和155C .155和162D .102和1556.下列调查中,适合采用全面调查方式的是( ) A .对横锦水库水质情况的调查B .新冠疫情期间,对某高危县市居民的体温进行调查C .某厂生产出的口罩进行质量合格率的调查D .春节期间对某类烟花爆竹燃放安全情况的调查 7.以下调查中,适宜全面调查是( ) A .调查某种灯泡的使用寿命 B .调查某班学生的身高情况 C .调查春节联欢晚会的收视率D .调查我市居民日平均用水量8.一个不透明的箱子里装有红色小球和白色小球共4个,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量的重复实验后,发现摸到红色小球的频率稳定于0.75左右.请估计箱子里白色小球的个数是( ) A .1B .2C .3D .49.在一个不透明的袋子中装有2个红球、1个黄球和1个黑球,这些球的形状、大小、质地等完全相同,若随机从袋子里摸出1个球,则摸出红球的概率是( )A .14B .13C .12D .3410.七个人并成一排照相,如果a 表示甲、乙两人相邻的可能性,b 表示甲、乙两人不相邻的可能性,则( ) A .a b >B .a b <C .a b =D .无法确定11.8名学生的鞋码(单位:原米)由小到大是21,22,22,22,23,23,24,25,则这组数据的众数和中位数是( ) A .23,22B .23,22.5C .22,22D .22,22.512.以下问题,不适合采用全面调查方式的是(). A .调查全班同学对“商合杭”高铁的了解程度 B .春运期间检查旅客的随身携带物品 C .学校竞选学生会干部,对报名学生面试D .了解全市中小学生对“2019年海军阅兵”的知晓程度13.若一组数据1,1,2,3,x 的平均数是2,则这组数据的众数是( ) A .1B .1和3C .1和2D .314.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是( )A .中位数是12.7%B .众数是15.3%C .平均数是15.98%D .方差是015.下列说法正确的是( )A .为了解一批电池的使用寿命,应采用全面调查的方式B .数据1x ,2x ,...,n x 的平均数是5,方差是0.2,则数据12x +,22x +,...,2n x +的平均数是7,方差是2.2C .通过对甲、乙两组学生数学成绩的跟踪调查,整理计算得到甲、乙两组数据的方差为20.3s =甲,20.5s =乙,则乙数据较为稳定D .为了解官渡区九年级8000多名学生的视力情况,从中随机选取500名学生的视力情况进行分析,则选取的样本容量为50016.下列结论中:①ABC 的内切圆半径为r ,ABC 的周长为L ,则ABC 的面积是12Lr ;①同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为12;①圆内接平行四边形是矩形;①无论p 取何值,方程()()2320x x p ---=总有两个不等的实数根.其中正确的结论有( ) A .4个B .3个C .2个D .1个17.将50个数据分成3组,第一组和第三组的频率之和为0.7,则第二小组的频数是( ) A .0.3B .0.7C .15D .3518.教练准备从甲、乙、丙、丁四个足球队员中选出一个队员去罚点球,四个队员平时训练罚点球的平均命中率x 及方差s 2如表所示:如果要选出一个成绩较好且状态较稳定的队员去执行罚球,那么应选的队员是( )A .甲B .乙C .丙D .丁19.有下列调查:①了解地里西瓜的成熟程度;①了解某班学生完成20道素质测评选择题的通过率;①了解一批导弹的杀伤范围;①了解成都市中学生睡眠情况.其中不适合普查而适合抽样调查的是( )A .①①B .①①①C .①①①D .①①①20.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( ) A .12B .13C .34D .1二、填空题21.为了调查全校学生对购买正版书籍,唱片和软件的支持率,用简单的随机抽样方法,在全校55个班级中抽取8个班级,调查这8个班级所有学生对购买正版书籍,唱片和软件的支持率.在这次调查中,总体是_____,样本是_____,样本容量是_____,抽样方法 _____(填“合理”或“不合理”).22.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择___________. 23.为完成下列任务,你认为用什么调查方式更合适?(选填“全面调查”或“抽样调查”)(1)了解一批圆珠笔芯的使用寿命________. (2)了解全班同学周末时间是如何安排的________. (3)了解我国八年级学生的视力情况________. (4)了解中央电视台春节联欢晚会的收视率________. (5)了解集贸市场出售的蔬菜中农药的残留情况________.(6)了解里约奥运会100米决赛参赛运动员兴奋剂的使用情况________.24.我市11月份30天的最高气温变化情况如图所示,将1日-15日气温的方差记为21S ,15日-30日气温的方差记为22S .观察统计图,比较21S ,22S 的大小:21S ______22S (填“>、=、<”)25.小张手机月基本费用为18元,某月,他把手机费中各项费用的情况制成扇形统计图(如图),则他该月的基本话费为________元.26.某校为了解学生课外阅读情况,随机调查了50名学生,得到某一天各自课外阅读所用时间,结果如图.根据条形图估计这一天该校学生平均课外阅读时间为______小时.27.甲、乙两名同学投掷实心球,每人投10次,平均成绩为18米,方差分别为S甲2=0.1,S2=0.04,成绩比较稳定的是__(填“甲”或“乙”).乙28.某社区开展“节约每一滴水”活动,为了解开展活动的一个月以来节约用水的情况,从该小区的1000个家庭中选出20个家庭统计了解一个月的节水情况,见下表①请你估计这1000个家庭一个月节约用水的总量大约是________m3.29.某射击运动员在同一条件下的射击结果如下表:根据频率的稳定性,估计这名运动员射击一次时击中靶心的概率是______(结果保留小数点后两位).30.一组数据-3,-2,1,3,6,x的中位数是1,那么这组数据的众数是___________.31.袋中装有大小相同的2个红球和3个绿球,从袋中摸出1个球摸到绿球的概率为___________.32.甲乙两班举行一分钟跳绳比赛,参赛学生每分钟跳绳次数的统计结果如表:某同学分析如表后得到如下结论:①甲,乙两班学生平均成绩相同;①乙班优秀人数多于甲班优秀人数(每分钟跳绳≥110次为优秀);①甲班成绩的波动比乙班大,则正确结论的序号是____.33.质地均匀的正四面体骰子的四个面上分别写有数字:2,3,4,5.投掷这个正四面体两次,则第一次底面上的数字能够整除第二次底面上的数字的概率是________ 34.一组数据为5,7,3,x,6,4. 若这组数据的众数是5,则该组数据的平均数是______.35.转盘中6个扇形的面积相等,任意转动转盘一次,当转盘停止转动,指针落在扇形中的数小于5的概率是________.36.数据-5,3,4,0,1,8,2的极差为_______.37.从1-,23-,0,23,1这五个数字中,随机抽取一个数记为a,则使得关于x的方程213axx+=-的解为正数的概率是______.38.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1000人,则根据此估计步行上学的有________人.39.一组数据3,2,3,4,x的平均数是3,则它的方差是_____.40.从如图所示的四个带圆圈的数字中,任取两个数字(既可以是相邻也可以是相对的两个数字)相互交换它们的位置,交换一次后能使①,①两数在相对位置上的概率是________.三、解答题41.某中学举行“校园好声音”歌手大赛,初、高中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校比赛.两个队选出的五名选手的决赛成绩如图所示.(1)根据图示,填写下表:(2)结合两个队的成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队成绩的方差,并判断哪一个代表队选手成绩较稳定.42.质量检查员准备从一批产品中抽取10件进行检查,如果是随机抽取,为了保证每件产品被检的机会均等;(1)请采用计算器模拟实验的方法,帮质量检查员抽取被检产品;(2)如果没有计算器,你能用什么方法抽取被检产品?43.某市在,,,,A B C D E五处客流中心存放共享单车,并陆续投放至城区.在D处客流中心存放了甲、乙、丙三种型号的单车,其中甲型号单车500辆.根据单车存放数量绘制了如图1的条形统计图和图2的扇形统计图.图1图2(1)补全条形统计图1,该市在五处客流中心存放共享单车共______辆,这五处客流中心单车存放量的中位数是________千辆;(2)在客流中心D处有_________辆乙型号单车;(3)张华和姐姐准备一起从所住小区每人骑一辆单车去书店.小区门口停放着甲型单车两辆,乙型和丙型单车各一辆,张华认为自己随机选中乙型单车,同时姐姐选中甲型单车的概率是13.张华的说法是否正确?请通过列树状图的方法说明理由.44.为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩按“优秀”、“良好”、“及格”、“不及格”四个等级进行统计,并绘制了如图所示的扇形统计图和条形统计图(部分信息未给出),根据以上提供的信息,解答下列问题:(1)本次调查共抽取了名学生?(2)①请补全条形统计图;①扇形统计图中表示“及格”的扇形的圆心角度数为°(3)若该校有2400名学生参加此次竞赛,估计这次竞赛成绩为“优秀”和“良好”等级的学生共有多少名?45.小明和小聪最近5次数学测验的成绩如下:小聪:76,84,80,87,73;小明:78,82,79,80,81.哪位同学的数学成绩比较稳定?46.在一个不透明的口袋中装有4个红球,3个白球,2个黄球,每个球除颜色外都相同.(1)请判断下列事件是不确定事件、不可能事件还是必然事件,填写在横线上.①从口袋中任意摸出1个球是白球;①从口袋中任意摸出4个球全是白球;①从口袋中任意摸出1个球是红球或黄球;①从口袋中任意摸出8个球,红、白、黄三种颜色的球都有;(2)请求出(1)中不确定事件的概率.47.佳佳调查了初一600名学生选择课外兴趣班的情况,根据调查结果绘制了统计图的一部分如下:(1)补全条形统计图;(2)求扇形统计图中表示“书法”的扇形圆心角的度数;(3)估计在3000名学生中选择音乐兴趣班的学生人数.48.钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答年新型冠状病毒防治全国统一考试全国卷试卷满分100分,社区管理员随机从有400人的某小区抽取40名人员的答卷成绩,根据他们的成绩数据绘制了如下的表格和统计图:根据上面提供的信息,回答下列问题: .a,b=,c=;(1)统计表中的=(2)请补全条形统计图;(3)根据抽样调查结果,请估计该小区答题成绩为“C级”的有多少人?49.在学校组织的迎接建党100周年知识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相等级的得分依次记为100分,90分,80分,70分.学校将九年级一班和二班的成绩整理并绘制成统计图.(1)根据统计图,求出在此次竞赛中二班成绩为C的人数.(2)①请完成下面的表格:①结合以上统计量,请你从不同角度分析两个班级的成绩.50.某学校八年级举行“垃圾分类,人人有责”的知识测试活动,现从中随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理,得到条形统计图如下:(1)求抽取的学生测试成绩的平均数、众数和中位数;(2)该校八年级共有600名学生参加此次测试活动,试估计八年级参加此次测试的学生成绩合格的人数.参考答案:1.B【分析】根据加权平均数的定义列式计算即可.【详解】解:小华的最后得分为90×30%+94×50%+92×20%=92.4(分),故选:B.【点睛】本题主要考查了加权平均数,解题的关键是掌握加权平均数的定义.2.D【分析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),众数是一组数据中出现次数最多的数据,据此判断即可.【详解】解:这组数据中出现次数最多的是15,所以这组数据的众数是15,这组数据中第12个数据是15,所以这组数据的中位数是15,故选:D.【点睛】本题主要考查了众数、中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.3.D【分析】根据方差的意义进行判断即可.【详解】解:由题意知:丁的方差最小,所以丁的成绩最稳定,应选择的选手是丁,故D 正确.故选:D.【点睛】本题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.A【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,利用概率公式解答即可.【详解】解:估计摸白色乒乓球的概率为901 3604,故选A.【点睛】此题考查利用频率估计概率,解答此题的关键是要计算出口袋中白色球所占的比例即白球的概率.5.A【分析】根据众数和中位数的定义求解即可.一组数据中,出现次数最多的数就叫这组数据的众数.把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.【详解】解:由图可得出这组数据中155出现的次数最多,因此,这组数据的众数是155;把这一组数据按从小到大的数序排列,在中间的两个数字是155、169,因此,这组数据的中位数是1691551622+=.故选:A.【点睛】本题考查的知识点是众数以及中位数,掌握众数以及中位数的定义是解此题的关键.6.B【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、对横锦水库水质情况的调查,适合抽样调查,故本选项不合题意;B、新冠疫情期间,对某高危县市居民的体温进行调查,适合全面调查,故本选项符合题意;C、某厂生产出的口罩进行质量合格率的调查,适合抽样调查,故本选项不合题意;D、春节期间对某类烟花爆竹燃放安全情况的调查,适合抽样调查,故本选项不合题意.故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.B【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A、调查某种灯泡的使用寿命,适宜抽样调查,故本选项不符合题意;B、调查某班学生的身高情况,适宜全面调查,故本选项符合题意;C、调查春节联欢晚会的收视率,适宜抽样调查,故本选项不符合题意;D、调查我市居民日平均用水量,适宜抽样调查,故本选项不符合题意;故选:B【点睛】本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.A【分析】用球的总个数乘以摸到白球的频率即可.【详解】解:估计箱子里白色小球的个数是4(10.75)⨯-=1(个),故选:A.【点睛】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.9.C【分析】由袋子中装有2个红球,1个黄球,1个黑球,随机从袋子中摸出1个球,这个球是黄球的情况有1种,根据概率公式即可求得答案.【详解】解:①袋子中装有2个红球,1个黄球,1个黑球共2+1+1=4个球,①摸到这个球是红球的概率是1÷2=12.故选:C.【点睛】本题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.10.B【分析】可分析特定情况下a,b的值,比较即可.【详解】若甲站在一排最左边的位置,那么第二个位置可有6个人选择,是乙的只有1种,故a<b.故选B.【点睛】易错点是得到特定情况下两人相邻的情况数和不相邻的情况数.11.D【分析】根据中位数和众数的概念求解即可.【详解】解:数据按从小到大的顺序排列为21,22,22,22,23,23,24,25,所以中位数是22232=22.5;数据22出现了3次,出现次数最多,所以众数是22.故选:D.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.12.D【分析】根据全面调查和抽样调查的特点对每个选项进行判断即可.【详解】A、调查全班同学对“商合杭”高铁的了解程度,适合采用全面调查,故A项错误;B、春运期间检查旅客的随身携带物品,适合采用全面调查,故B项错误;C、学校竞选学生会干部,对报名学生面试,适合采用全面调查,故C项错误;D、了解全市中小学生对“2019年海军阅兵”的知晓程度,不适合采用全面调查,故D项正确;故选:D.【点睛】本题考查了全面调查和抽样调查的区别,掌握这两种调查方式的特点是解题关键.13.B【分析】先根据算术平均数的定义列出关于x的方程,解之求出x的值,从而还原这组数据,再利用众数的概念求解可得.【详解】解:①数据1,1,2,3,x的平均数是2,①1+1+2+3+x=5×2,解得x=3,则这组数据为1,1,2,3,3,①这组数据的众数为1和3,故选:B .【点睛】本题主要考查众数和算术平均数的求法,解题的关键是掌握算术平均数和众数的概念.14.B【详解】分析:直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.详解:A 、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B 、众数是15.3%,正确;C 、15(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C 错误; D 、①5个数据不完全相同,①方差不可能为零,故此选项错误.故选B .点睛:此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.15.D【分析】根据普查与抽样调查的区别判断A ,根据平均数的计算方法和方差的计算方法可得出B ,根据方差的意义可得出C ,最后根据样本容量的含义进行分析即可.【详解】为了解一批电池的使用寿命,应采用抽样调查,故A 错误; 由题可得125n x x x n+++=可得,125n x x x n +++=, 所以12+25+27n x x x n n n n n +++==; 因为()()()22212-5-5-50.2n x x x n+++=, 所以()()()22212+2-7+2-7+2-7n x x x n+++,()()()22212-5-5-5=0.2n x x x n +++=.故B 错误;根据方差的意义可知,方差越小越稳定,故C错误;题目中的500确实是样本容量,故D正确;故答案选D.【点睛】本题主要考查了平均数和方差的求解,准确的理解方差意义及样本容量的意义是解题的关键.16.B【分析】①如图1,连接圆心和切点,则可得到垂直关系,此时将图形分割成三个三角形,求三个三角形的面积和即为ABC的面积;①用列举法求此种情况的概率即可;①如图3,根据矩形的判定性质:对角线相等,且互相平分的四边形是矩形,判断其是否为矩形;①根据一元二次方程根的判别式性质判断该方程有几个实数根.【详解】①如图1,连接OE,OD,OF;OA,OB,OC;则OE①AB,OF①AC,OD①BC;①S△ABC=12AB·OE+12BC·OD+12AC·OF①OE=OF=OD=r,AB+BC+AC=l,①S△ABC=12AB·r+12BC·r+12AC·r=2r(AB+BC+AC)=12Lr,①①正确.①列举抛掷两枚硬币所能产生的全部结果,它们是:正正,正反,反正,反反,①满足硬币全部正面向上的概率=14,①①错误.①如图3,①平行四边形ABCD为圆内接平行四边形,①OA=OB=OC=OD,且圆心O是对角线的交点,①BD=2OB=2OC=AC ,①平行四边形ABCD 是矩形,①①正确.①①()()2320x x p ---=,即x 2-5x +6-p 2=0,①△=b 2﹣4ac =(-5)2-4(6-p 2),①△=25-24+4 p 2>0,①无论p 取何值,该方程总有两个不相等的实数根,①①正确,故选:B .【点睛】①本小问考查了三角形内切圆的性质,三角形的面积公式,解答本小问的关键是,充分利用已知条件,将问题转化为求几个三角形面积的和;①本小问考查了用列举法求概率,解答本题的关键是列举出所能产生的全部结果,然后再找出题目所要求的结果数量除以全部结果的数量;①本小问考查了圆的性质,矩形的判定,熟练掌握并运用对角线互相平分且相等的四边形是矩形是解题的关键;①本小问考查了一元二次方程根的判别式,熟练掌握并运用一元二次方程根的判别式是解题的关键(①>0时,有两个不同的实数根;①=0时,有两个相等的实数根;①<0时,无实数根).17.C【分析】根据频率的性质,即各组的频率和是1,求得第二组的频率;再根据频率=频数÷总数,进行计算【详解】根据频率的性质,得第二小组的频率是0.3,则第二小组的频数是50×0.3=15.故选C .【点睛】本题考查频率、频数的关系:频率=数据数据总数.注意:各组的频率和是1.18.C【分析】先比较平均数得到乙和丙成绩较好,然后比较方差得到丙的状态稳定,于是可决定选队员丙去参赛.【详解】解:①乙、丙的平均数比甲、丁大,①应从乙和丙中选,①丙的方差比乙的小,①丙的成绩较好且状态稳定,应选的队员是丙;故选:C.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.19.C【分析】根据普查适用的范围小,具有适用性,抽样调查具有代表性,机会均等的原则,不具破坏性的特点依次判断即可.【详解】①了解地里西瓜的成熟程度,不适合普查而适合抽样调查;①了解某班学生完成20道素质测评选择题的通过率,适合普查;①了解一批导弹的杀伤范围,不适合普查而适合抽样调查;①了解成都市中学生睡眠情况,不适合普查而适合抽样调查;故选:C.【点睛】此题考查普查与抽样调查的定义,正确理解两者的关系及各自的特点是解题的关键.20.C【分析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是34,。

(完整版)概率论与数理统计练习题附答案详解

(完整版)概率论与数理统计练习题附答案详解

第一章《随机事件及概率》练习题一、单项选择题1、设事件A 与B 互不相容,且P (A )>0,P (B )>0,则一定有( )(A )()1()P A P B =-; (B )(|)()P A B P A =;(C )(|)1P A B =; (D )(|)1P A B =。

2、设事件A 与B 相互独立,且P (A )>0,P (B )>0,则( )一定成立 (A )(|)1()P A B P A =-; (B )(|)0P A B =;(C )()1()P A P B =-; (D )(|)()P A B P B =。

3、设事件A 与B 满足P (A )>0,P (B )>0,下面条件( )成立时,事件A 与B 一定独立(A )()()()P AB P A P B =; (B )()()()P A B P A P B =U ;(C )(|)()P A B P B =; (D )(|)()P A B P A =。

4、设事件A 和B 有关系B A ⊂,则下列等式中正确的是( )(A )()()P AB P A =; (B )()()P A B P A =U ;(C )(|)()P B A P B =; (D )()()()P B A P B P A -=-。

5、设A 与B 是两个概率不为0的互不相容的事件,则下列结论中肯定正确的是( ) (A )A 与B 互不相容; (B )A 与B 相容;(C )()()()P AB P A P B =; (D )()()P A B P A -=。

6、设A 、B 为两个对立事件,且P (A )≠0,P (B ) ≠0,则下面关系成立的是( ) (A )()()()P A B P A P B =+U ; (B )()()()P A B P A P B ≠+U ;(C )()()()P AB P A P B =; (D )()()()P AB P A P B =。

六年级数学第十二册同步练习统计与概率试题及答案.doc

六年级数学第十二册同步练习统计与概率试题及答案.doc

10统计与概率1.填空。

(1)常用的统计图有()统计图、()统计图和()统计图。

(2)我们学过的统计量有()数、()数和()数。

(3)在一组数据大小差异比较悬殊的情况下,用()数表示这组数据的一般水平比较合适。

(4)盒子里有大小相同的7个黄球,3个蓝球,摸到蓝球的可能性是(),摸到()球的可能性大些。

(5)某同学期末语文和数学的平均成缋是94分,语文成绩是93分,那么数学成绩是()分。

3答案:⑴条形折线扇形(2)平均中位众⑶众⑷5黄(5)952.判断。

(1)扇形统计图能够淸楚地反映出各部分数M与总数之间的百分比关系。

()(2)任何一组数据,至少有一个众数。

()(3)—名战士五次射击的成绩分别是10环、10环、9环、10环和2环,这五次射击的平均成绩能够很好地代表这名战士射击的一般水平。

()(4)一个正方体,5个而上写着数字“1”,只有1个而上写着数字“2”,如果只掷一次,有可能数字“2”朝上。

()答案:(1)7 (2)X ⑶X (4)73.选择。

(1)要表示本校各年级的人数,用()统计图比较合适。

A.条形B.折线C.扇形(2)有7个箱子,平均每个箱子里面有20本书,如果任意搬走一箱,那么里面的书的本数()。

A.—定是20本B.多于20本C.少于20本D.等于、多于和少于20本都有可能答案:(1)A (2)D4.下阁是某城市初屮学生从2000年至2007年每天学习所用的时间的统计表。

(单位:h)2000 年2001 年2002 年2003 年2004 年2005 年2006 年2007 年10891213141516(2)从图屮可以得到哪些信息?(3)你对这个城市的学生有什么建议?答案:(1)(2)2002年至2007年学生学习所用的时间呈上升趋势。

(3)学习时间过长,注意锻炼身体,合理利用时间。

数学小博士用3, 4, 5任意组成的三位数中,是3的倍数的可能性是多少?提示:因为3+4+5=12,所以组成的任意三位数都是3的倍数。

六年级数学下册试题 一课一练5.4统计与概率(同步练习)西师大版(含答案)

六年级数学下册试题 一课一练5.4统计与概率(同步练习)西师大版(含答案)

5.4统计与概率(同步练习)一、填空。

1、要反映某食品中各种营养成份的含量,最好选用()统计图。

2、明明在期末考试中,语文94分,数学98分,外语84分,三科平均分是()。

3、某公司去年1~12月生产产值统计后,制成()统计图,能比较清楚地反映出各月产值的多少;如果要反映各月产值增减变化的情况,可以抽成()统计图。

4、六(一)班男生有24人,平均身高是156厘米,女生16人,平均身高是152厘米,全班同学的平均身高是()厘米。

二、选择题。

(把正确答案的序号填在括号里)1、要表示出六年级各班收集废旧电池节数的情况,绘制()统计图较好。

A、条形B、折线C、扇形D、都不合适2、学生在课外活动中参加各种小组的情况()A.条形统计图B.扇形统计图C.折线统计图D.复式条形统计图3、两个百货公司一个季度的营业额情况()A.条形统计图B.扇形统计图C.折线统计图D.复式条形统计图4、我国几座名山主峰的海拔高度()A.条形统计图B.扇形统计图C.折线统计图D.复式条形统计图5、判断哪个班的成绩的成绩更好,用()比较合适。

A.中位数B.平均数C.众数三、综合练习。

1、下面记录的是六(1)班第一组学生期中考试成绩(单位:分)83、89、81、55、62、70、78、94、84、97、86、100、66、75请根据上面的记录的分数填写下表,并回答问题。

(1)该小组的平均成绩是()分。

(2)优秀率(接满分80分以上计算)是()%。

(3)及格率是()%。

(4)优秀学生比其他学生多()人,多()%。

2、下图是某小学2001-2006年全校学生人数的统计图。

(1)上图中每一个小格代表()人,2005年全校学生人数是()人。

(2)对比每年男女学生的人数,你有什么发现?(3)从图中可以看出,()年到()年全校人数增加得最多,增加了()人。

(4)你能根据统计图制作统计表吗?3、信息统计。

根据上面统计图提供的数据填空。

(1)枫叶新区2005年的月平均气温,从( )月开始逐渐上升,( )月的月平均气温最高。

六年级数学下册《统计与概率》同步练习及答案

六年级数学下册《统计与概率》同步练习及答案

统计与概率考点题库
1.李丽期末考试各科成绩分别是语文96分、数学100分、英语98分,她三科成绩的平均分是多少?
2.小丽和小明玩抽纸牌游戏,6张纸牌上分别写着:1,2,3,4,5,6。

抽到奇数小丽获胜,抽到偶数小明获胜,这个游戏规则公平吗?
3.某校举行演讲比赛,对于某位选手的演讲,10位评委给出的分数如下(单位:分):9.9,9.8,9.8,9.7,9.6,9.6,9.6,9.5,9.2,9.0。

这组数据的中位数和众数各是多少?平均数呢?
4.期末考试,王强的语文、数学、英语的平均分是94分,地理成绩公布后,四科平均分提高了1分,王强的地理成绩是多少?
5.六年一班要举办一个联欢会,通过转盘来决定每个人表演节目的类型,
表演节目分为唱歌、跳舞和小品三种。

为使指针停在舞蹈区域的可能性是1
4
,停
在唱歌区的可能性是1
2
,应该怎样设计转盘?
答案:
1.98分
2.公平
3.中位数:9.6众数:9.6平均数:9.57 4.98分
5.略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同步练习X010111.有下列问题:①某路口一天经过的车辆数为ε;②某无线寻呼台一天内收到寻呼的次数为ε;③一天之内的温度为ε;④某人一生中的身高为ε;⑤射击运动员对某目标进行射击,击中目标得1分,未击中目标得0分,用ε表示运动员在射击中的得分上述问题中的ε的离散型随机变量的是( )A .①②③⑤B .①②④C .①D .①②⑤2.若随机变量A .1B .2C .3D .63.设某批产品合格率为43,不合格率为41,现对该产品进行测试,设第ε次首次测到正品,则P (ε=3)等于A .)43()41(223⨯CB .)41()43(223⨯C C .)43()41(2⨯D .)41()43(2⨯4.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ε,则“ε>4”表示试验的结果为( )A .第一枚为5点,第二枚为1点B .第一枚大于4点,第二枚也大于4点C .第一枚为6点,第二枚为1点D .第一枚为4点,第二枚为1点 5.某12人的兴趣小组中,有5名“三好生”,现从中任意选6人参加竞赛,用ε表示这6人中“三好生”的人数,则下列概率中等于6123735C C C 的是( ) A .P (ε=2) B .P (ε=3) C .P (ε≤2) D .P (ε≤3)6.若P (ε≤n )=1-a ,P (ε≥m )=1-b ,其中m<n ,则P (m ≤ε≤n )等于( ) A .(1-a)(1-b) B .1-a(1-b) C .1-(a+b) D .1-b(1-a)8.已知随机变量ε的分布列为若η=2ε-3 9.抛掷一枚骰子5次,得到点数为6的次数记为ε,则P (ε>3)=_________10.一个口袋中装有5个白球、3个红球,现从袋中往外取球,每次任取一个,取出后记下球的颜色,然后放回,直到红球出现10次时停止没停止时总共取了ε次球,则P (ε=12)等于___________班级 姓名 座号、9、 . 10、 .11.设ε~B (2,P )η~B (4,P ),已知有:95)1(=≥εP 求P (η≥1)12.有5支不同标价的圆珠笔,分别标有10元、20元、30元、40元、50元从中任取3支,若以ε表示取到的圆珠笔中的最高标价,试求ε的分布列13.某射手有5发子弹,射击一次命中概率为0.9,如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ε的分布列14.袋中有3个白球,3个红球和5个黑球,从袋中随机取3个球,假定取得一个白球得1分,取得一个红球扣1分,取得一个黑球得0分,求所得分数的概率分布同步练习 X010121.下列两个变量之间的关系是函数关系的是A .光照时间和果树产量B .降雪量和交通事故发生率C .人的年龄和身高D .正方形的边长和面积 2.有以下四个随机变量:(1)某无线寻呼台1分钟内接到寻呼次数ξ是一个随机变量(2)如果以测量仪的最小单位计数,测量的舍入误差ξ是一个随机变量(3)一个沿数轴进行随机运动的质点,它在数轴上的位置ξ是一个随机变量 (4)某人射击一次中靶的环数ξ是一个随机变量 其中离散型随机变量的个数是A .1B .2C .3D .43.袋中有大小相同的5只钢球,分别标有1、2、3、4、5五个号码.在有放回的抽取条件下依次取出2个球,设两个球号码之和为随机变量ξ,则ξ所有可能值的个数是A .25B .10C .9D .54.随机变量ξ的分布列为P (ξ=k )=)1(+k k c,k=1、2、3、4,其中c 为常数,则P (2521<<ξ)的值为A .54B .65C .32D .435.袋中有2个黑球6个红球,从中任取两个,可以作为随机变量的是 A .取到的球的个数 B .取到红球的个数C .至少取到一个红球D .至少取到一个红球的概率6.抛掷两枚骰子,所得点数之和计为ξ,那么,ξ=4表示的随机实验结果是 A .一颗是3点,一颗是1点 B .两颗都是2点C .两颗都是4点D .一颗是3点,一颗是1点或两颗都是2点m= .8.随机变量ξ的分布列为P (ξ=k )=k a2(k=0,1,2,…,10)则a= .9.设随机变量ξ只可能取5,6,7,…,16这12个值,且取每个值的概率均相同,则P (ξ≥9)= ;P (6<ξ≤14== .10.已知随机变量ξ~B (5,31),则P (ξ=3)= .11.如果天气状况分为阴、小雨、中雨、大雨、晴五种,它们分别用数字1、2、3、4、5来表示,用ξ来表示一天的天气状况.若某天的天气状况是阴天有小雨,则用ξ的表示式可表示为 .班级 姓名 座号7、 .8、 .9、 ; .10、 .11、 .12.袋中装有6个分别标有1至6号数的小球,从袋中同时任取两球,以两球号数差作为随 机变量x (x >0),求x 的概率分布.13.甲、乙、丙三人独立参加入学考试合格的概率分别为32、21、52,记合格人数为ξ,试求ξ的分布列.14求:(1)P (ξ<1},P (ξ≤1),P (ξ<2},P (ξ≤2); (2)F (x )=P (ξ≤x ),x ∈R .同步练习 X010211.某人从家乘车到单位,途中有3个交通岗亭。

假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯的次数的期望为:( ) A .0.4 B .1.2 C .34.0 D .0.62.已知ε~B(n ,p),E ε=8,D ε=1.6,则n 与p 的值分别是( ) A .100和0.08 B .20和0.4 C .10和0.2 D .10和0.8 3.随机变量εA .1B .31C .4.5D .2.44.已知随机变量ε且η=2ε+3,则 A .53 B .56 C .521 D .5125.甲、乙两台自动车床生产同种标准件,ε表示甲机床生产1000件产品中的次品数,ηA .甲比乙质量好B .乙比甲质量好C .甲与乙质量相同D .无法判定6.卖水果的某个体户,在不下雨的日子可赚100元,在雨天则要损失10元。

该地区每年下雨的日子约有130天,则该个体户每天获利的期望值是(1年按365天计算)( ) A .90元 B .45元 C .55元 D .60.82元 7.设ε的分布列为则D ε等于 8.从一批含有13只正品,2只次品的产品中,不放回地抽取3次,每次抽取1只,设抽得次品数为ε,则E (5ε+1)=________________。

9.设一次试验成功的概率为p ,进行100次独立重复试验,当p=_______________时,成功次数的标准差最大,其最大值是________________。

10.已知随机变量ε且E ε=1.1,则D ε班级 姓名 座号7、 .8、 .9、 ; .10、 .1112.有一批数量很大的商品,其中次品占1%。

现从中任意地连续取出200件该商品,设其次品数为ε,求E ε,D ε.13.有A其中A ε、B ε分别表示A 、B 两种钢筋的抗拉强度。

试比较A 、B 两种钢筋哪一种质量好.14.某人有10万元,有两种投资方案:一是购买股票,二是存入银行获取利息。

买股票的收益取决于经济形势,假设可分为三种状态:形势好、形势中等、形势不好。

若形势好可获利4万元,若形势中等可获利1万元,若形势不好要损失2万元。

如果存入银行,假设年利率为8%(不考虑利息可得税),可得利息8000元。

又假设经济形势好、中、差的概率分别为30%,50%,20%。

试问应选择哪一种方案,可使投资的效益较大?同步练习 X010221.已知随机变量ξ服从二项分布ξ~B (n ,p ),且E ξ=7,D ξ=6,则p 等于A .71B .61C .51D .412.设E ξ=10,E η=3,则E (3ξ+5η)等于A .45B .40C .30 了D .153.设15000件产品中有1000件次品,从中抽取150件进行检查,则查得次品数的数学期望为A .15B .10C .20D .5 4.设随机变量ξ的概率分布为P (ξ=k )=p k ·(1-p )1-k (k=0,1),则E ξ、D ξ的值分别是A .0和1B .p 和p 2C .p 和1-pD .p 和(1-p )pA .0B .0.8C .2D .16.抛掷两个骰子,至少有一个4点或5点出现时,就说这些试验成功,则在10次试验中,成功次数ξ的期望是A .310B .955C .980D .9507.设随机变量ξ服从二项分布,且E ξ=2,D ξ=1.6,则ξ服从的分布为 . 8.从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为 . 9.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个球,则其中含红球个数的数学期望是 .10.某渔船要对下月是否出海做出决策,如出海后遇到好天气,可得收益6000元,如出海后天气变坏将损失8000元,若不出海,无论天气如何都将承担1000元损失费,据气象部门的预测下月好天的概率为0.6,天气变坏的概率为0.4,则该渔船应选择_____________(填“出海”或“不出海”).11.一射手对靶射击,直到第一次命中为止,每次命中率为0.6,现在共有4颗子弹,命中后尚余子弹数目ξ的期望为 .、 .8、 .9、 .10、 .11、 .12.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所出次品数分别为ξ、13.有12个零件,其中9个正品,3个次品,每次从中任取5个,其中至少含有4个正品就算符合要求,有放回地取11次,问符合要求的平均次数为多少?14.A、B两个试验方案在某科学试验中成功的概率相同,已知A、B两个方案至少一个方案试验成功的概率是0.36.(1)求两个方案均获成功的概率;(2)设试验成功的方案的个数为随机变量ξ,求ξ的分布列及数学期望.同步练习X010311.系统抽样又称为等距抽样。

从N 个个体中抽取n 个个体为样本,先确定抽样间隔,即抽样距][n Nk =(取整数部分),从第一段1,2,…,k 个号码中随机抽取一个个体号码0i ,则k i +0,…,k n i )1(0-+及0i 构成一个个体为n 的样本,其中每个个体入样的概率( ) A .相等 B .不相等 C .与0i 有关 D .与编号有关2.如果采用分层抽样,从个体数为N 的总体中,抽取一个容量为n 的样本,那么每个个体被抽到的概率等于( )A .N 1B .n 1C .N nD .nN3.有以下两个问题:①某社区有1000个家庭,其中高收入家庭250户,中等收入家庭560户,低收入家庭190户,为了了解社会购买力的某项指标,要从中抽取一个容量为200户的样本。

相关文档
最新文档