2019年高考数学(文科)一轮分层演练 含解析 第8章立体几何 第5讲

合集下载

高考数学(人教A版文科)一轮复习真题演练集训:第八章立体几何8-5Word版含解析

高考数学(人教A版文科)一轮复习真题演练集训:第八章立体几何8-5Word版含解析

真题操练集训1.[2016·浙江卷 ] 已知相互垂直的平面α,β交于直线l ,若直线m,n 知足 m∥α,n⊥β,则 (A .m∥lC.n⊥l )B.m∥nD.m⊥n答案:C分析:由于α∩β=l,因此l?β,又n⊥β,因此n⊥l.应选C.2.[2016 ·新课标全国卷Ⅱ]α,β是两个平面, m,n 是两条直线,有以下四个命题:①假如 m⊥n,m⊥α,n∥β,那么α⊥β.②假如 m⊥α,n∥α,那么 m⊥n.③假如α∥β,m? α,那么 m∥β.④假如 m∥n,α∥β,那么 m 与α所成的角和 n 与β所成的角相等.此中正确的命题有 ________.(填写全部正确命题的编号)答案:②③④分析:关于命题①,可运用长方体举反例证明其错误:如图,不如设AA′为直线 m,CD 为直线 n,ABCD 所在的平面为α,ABC′D′所在的平面为β,明显这些直线和平面知足题目条件,但α⊥β不建立;命题②正确,证明以下:设过直线 n 的某平面与平面α订交于直线 l ,则 l ∥n,由 m⊥α知 m⊥l,进而 m⊥n,结论正确;由平面与平面平行的定义知,命题③正确;由平行的传达性及线面角的定义知,命题④正确.3.[2016 ·江苏卷 ] 如图,在直三棱柱 ABC-A1B1C1中, D,E 分别为 AB,BC 的中点,点 F 在侧棱 B1B 上,且B1D⊥,⊥AA1F A1C1 1B1.求证: (1)直线 DE∥平面 A1C1F;(2)平面 B1DE⊥平面 A1C1F.证明:(1)在直三棱柱ABC-A1B1C1中,A1C1∥AC. 在△ABC 中,由于D,E 分别为AB,BC 的中点,因此 DE∥AC,于是 DE∥A1C1.又 DE?平面 A1C1F,A1C1? 平面 A1C1F,因此直线 DE∥平面 A1C1F.(2)在直三棱柱 ABC-A1B1C1中,A1A⊥平面 A1B1C1.由于 A1C1? 平面 A1B1C1,因此 A1A⊥A1C1.又 A1C1⊥A1B1,A1A? 平面 ABB1A1,A1B1? 平面 ABB1A1,A1A∩A1B1=A1,因此 A1C1⊥平面 ABB1A1.由于 B1D? 平面 ABB1A1,因此 A1C1⊥B1D.又 B1D⊥A1F,A1C1? 平面 A1C1F,A1F? 平面 A1C1F,A1C1∩A1F =A1,因此 B1D⊥平面 A1C1F.由于直线 B1D? 平面 B1DE,因此平面 B1DE⊥平面 A1C1F.4.[2016 ·新课标全国卷Ⅱ]如图,菱形 ABCD 的对角线 AC 与 BD 交于点 O,点 E,F 分别在 AD,CD 上, AE=CF,EF 交 BD 于点H.将△ DEF 沿 EF 折到△ D′ EF 的地点.(1)证明: AC⊥HD′;5(2)若 AB =5,AC =6,AE =4,OD ′= 2 2,求五棱锥 D ′- ABCFE的体积.(1)证明:由已知得 AC ⊥BD ,AD =CD.AE CF又由 AE =CF ,得 AD =CD ,故 AC ∥EF.由此得 EF ⊥ HD ,EF ⊥HD ′,因此 AC ⊥HD ′.OH AE 1(2)解:由 EF ∥AC ,得 DO =AD =4.由 AB =5,AC =6,得DO =BO = AB 2-AO 2=4.因此 OH =1,D ′H =DH =3.于是 OD ′2+OH 2=(2 2)2+12=9=D ′H 2,故 OD ′⊥ OH.由 (1)知, AC ⊥HD ′,又 AC ⊥BD ,BD ∩HD ′= H ,因此 AC ⊥平面 BHD ′,于是 AC ⊥OD ′.又由 OD ′⊥ OH , AC ∩OH =O ,因此 OD ′⊥平面 ABC.EF DH 9又由 AC =DO 得 EF =2. 五边形 ABCFE 的面积11 969S =2×6×8-2×2×3= 4.1 6923 2因此五棱锥 D ′- ABCFE 的体积 V =3× 4 ×22=2.5.[2016 ·四川卷 ] 如图,在四棱锥 P - ABCD 中, PA ⊥CD , AD1∥BC,∠ ADC=∠ PAB=90°,BC=CD=2AD.(1)在平面 PAD 内找一点 M,使得直线CM∥平面 PAB,并说明原因;(2)证明:平面 PAB⊥平面 PBD.(1)解:取棱 AD 的中点 M(M∈平面 PAD),点 M 即为所求的一个点.原因以下:1由于 AD∥BC,BC=2AD,因此 BC∥AM,且 BC=AM,因此四边形 AMCB 是平行四边形,进而 CM∥AB.又 AB? 平面 PAB,CM?平面 PAB,因此 CM∥平面 PAB.(说明:取棱 PD 的中点 N,则所找的点能够是直线 MN 上随意一点)(2)证明:由已知, PA⊥AB,PA⊥ CD,1由于 AD∥BC,BC=2AD,因此直线 AB 与 CD 订交.因此 PA⊥平面 ABCD.进而 PA⊥BD.1连结 BM,由于 AD∥BC,BC=2AD,因此 BC∥MD ,且 BC=MD .因此四边形 BCDM 是平行四边形.1因此 BM=CD=2AD, 因此 BD⊥AB.又 AB∩AP=A,因此BD⊥平面PAB.又 BD? 平面 PBD,因此平面 PAB⊥平面 PBD.。

2019年高考数学(文科)一轮分层演练:第8章立体几何第1讲(含答案解析)

2019年高考数学(文科)一轮分层演练:第8章立体几何第1讲(含答案解析)

[学生用书P246(单独成册)]一、选择题1.将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的侧视图为()解析:选B.侧视图中能够看到线段AD1,应画为实线,而看不到B1C,应画为虚线.由于AD1与B1C 不平行,投影为相交线,故应选B.2.已知一个几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱C.球D.四棱柱解析:选B.由已知中的三视图可得该几何体是三棱柱,故选B.3.将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为()解析:选D.根据几何体的结构特征进行分析即可.4.若某几何体的三视图如图所示,则这个几何体的直观图可以是()解析:选D .A ,B 的正视图不符合要求,C 的俯视图显然不符合要求,故选D .5.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )解析:选C .由正视图和侧视图及体积易得几何体是四棱锥P -ABCD ,其中ABCD 是边长为2的正方形,P A ⊥平面ABCD ,且P A =2,此时V P ­ABCD =13×22×2=83,则俯视图为Rt △P AB ,故选C .6.(2018·兰州适应性考试)如图,在正方体ABCD -A 1B 1C 1D 1中,点P 是线段A 1C 1上的动点,则三棱锥P -BCD 的俯视图与正视图面积之比的最大值为( )A .1B . 2C . 3D .2解析:选D .正视图,底面B ,C ,D 三点,其中D 与C 重合,随着点P 的变化,其正视图均是三角形且点P 在正视图中的位置在边B 1C 1上移动,由此可知,设正方体的棱长为a ,则S 正视图=12×a 2;设A 1C 1的中点为O ,随着点P 的移动,在俯视图中,易知当点P 在OC 1上移动时,S 俯视图就是底面三角形BCD 的面积,当点P 在OA 1上移动时,点P 越靠近A 1,俯视图的面积越大,当到达A 1的位置时,俯视图为正方形,此时俯视图的面积最大,S 俯视图=a 2,所以S 俯视图S 正视图的最大值为a 212a 2=2,故选D .二、填空题7.如图,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为________.解析:直观图的面积S ′=12×(1+1+2)×22=2+12.故原平面图形的面积S =S ′24=2+2.答案: 2+ 28.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm .解析:如图,过点A 作AC ⊥OB ,交OB 于点C . 在Rt △ABC 中,AC =12 cm ,BC =8-3=5(cm). 所以AB =122+52=13(cm). 答案:139.已知正四棱锥V -ABCD 中,底面面积为16,一条侧棱的长为211,则该棱锥的高为________. 解析:如图,取正方形ABCD 的中心O ,连接VO ,AO ,则VO 就是正四棱锥V -ABCD 的高.因为底面面积为16,所以AO =22.因为一条侧棱长为211,所以VO =VA 2­AO 2=44-8=6. 所以正四棱锥V -ABCD 的高为6. 答案:610.如图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是________.解析:作出直观图如图所示,通过计算可知AF、DC最长且DC=AF=BF2+AB2=33.答案:3 3三、解答题11.如图,在四棱锥P-ABCD中,底面为正方形,PC与底面ABCD垂直,如图为该四棱锥的正视图和侧视图,它们是腰长为6 cm的全等的等腰直角三角形.(1)根据图中所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求P A.解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm的正方形,如图,其面积为36 cm2.俯视图(2)由侧视图可求得PD=PC2+CD2=62+62=6 2 (cm).由正视图可知AD=6 cm,且AD⊥PD,所以在Rt△APD中,P A=PD2+AD2=(62)2+62=6 3 (cm).12.如图所示的三个图中,上面是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图如图所示(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积.解:(1)如图.(2)所求多面体的体积 V =V 长方体-V 正三棱锥=4×4×6-13×(12×2×2)×2=2843(cm 3).。

2019届高考数学(文科)一轮复习课件(人教A版)第八章 立体几何 8.3

2019届高考数学(文科)一轮复习课件(人教A版)第八章 立体几何 8.3

-12知识梳理 双基自测 自测点评
1
2
3
4
5
3.(2017全国Ⅰ,文6)如图,在下列四个正方体中,A,B为正方体的两 个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平 面MNQ不平行的是( )
关闭
易知选项B中,AB∥MQ,且MQ⊂平面MNQ,AB⊄平面MNQ,则AB∥平面
MNQ;选项C中,AB∥MQ,且MQ⊂平面MNQ,AB⊄平面MNQ,则AB∥平面
-6知识梳理 双基自测 自测点评
1
2
3
4
5
6
7
5.直线与平面的位置关系 直线与平面的位置关系有 平行 三种情况.
、 相交
、在平面内
-7知识梳理 双基自测 自测点评
1
2
3
4
5
6
7
6.平面与平面的位置关系 平面与平面的位置关系有 平行
、 相交
两种情况.
-8知识梳理 双基自测 自测点评
1
2
3
4
5
6
7
MNQ;选项D中,AB∥NQ,且NQ⊂平面MNQ,AB⊄平面MNQ,则AB∥平面 MNQ.故排除选项B,C,D.故选A. A
解析
关闭
答案
-13知识梳理 双基自测 自测点评
1
2
3
4
5
4.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列 四个命题,其中正确的命题是 .(填序号) ①P∈a,P∈α⇒a⊂α;ห้องสมุดไป่ตู้a∩b=P,b⊂β⇒a⊂β;③ a∥b,a⊂α,P∈b,P∈α⇒b⊂α;④α∩β=b,P∈α,P∈β⇒P∈b
关闭
③④
答案

2019版高考数学(文)一轮狂刷练:第8章平面解析几何8-5a含解析

2019版高考数学(文)一轮狂刷练:第8章平面解析几何8-5a含解析

[重点保分 两级优选练]
A 级
一、选择题
1.(2018·江西五市八校模拟)已知正数m 是2和8的等比中项,则圆锥曲线x 2+y 2m =1的焦点坐标为( )
A .(±3,0)
B .(0,±3)
C .(±3,0)或(±5,0)
D .(0,±3)或(±5,0)
答案 B
解析 因为正数m 是2和8的等比中项,所以m 2=16,则m =4,所以圆锥曲
线x 2+y 2m =1即为椭圆x 2+y 24=1,易知其焦点坐标为(0,±3),故选B. 2.(2017·湖北荆门一模)已知θ是△ABC 的一个内角,且sin θ+cos θ=34,则方
程x 2sin θ-y 2cos θ=1表示( )
A .焦点在x 轴上的双曲线
B .焦点在y 轴上的双曲线
C .焦点在x 轴上的椭圆
D .焦点在y 轴上的椭圆
答案 D
解析 因为(sin θ+cos θ)2
=1+2sin θcos θ=916,所以sin θcos θ=-732<0,结合θ∈(0,π),知sin θ>0,cos θ<0,又sin θ+cos θ=34>0,所以sin θ>-cos θ>0,故1-cos θ
>1sin θ>0,因为x 2sin θ-y 2cos θ=1可化为y 2-1cos θ+x 21sin θ
=1,所以方程x 2sin θ-y 2cos θ=1表示焦点在y 轴上的椭圆.故选D.
3.(2018·湖北八校联考)设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,。

【分层演练系列】2019届高考数学(江苏版文)一轮复习题:第8章 平面解析几何 5 第5讲

【分层演练系列】2019届高考数学(江苏版文)一轮复习题:第8章 平面解析几何 5 第5讲

1.已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是________.[解析] 因为方程x 22-k +y22k -1=1表示焦点在y 轴上的椭圆,则由⎩⎨⎧2-k >0,2k -1>0,2k -1>2-k 得⎩⎪⎨⎪⎧k <2,k >12,k >1,故k 的取值范围为(1,2). [答案] (1,2)2.中心在坐标原点的椭圆,焦点在x 轴上,焦距为4,离心率为22,则该椭圆的方程为________.[解析] 依题意,2c =4,c =2,又e =c a =22,则a =22,b =2,所以椭圆的标准方程为x 28+y 24=1.[答案] x 28+y 24=13.已知点M (3,0),椭圆x 24+y 2=1与直线y =k (x +3)交于点A ,B ,则△ABM 的周长为________.[解析] M (3,0)与F (-3,0)是椭圆的焦点,则直线AB 过椭圆左焦点F (-3,0),且AB =AF +BF ,△ABM 的周长等于AB +AM +BM =(AF +AM )+(BF +BM )=4a =8.[答案] 84.“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的________条件.[解析] 把椭圆方程化成x 21m +y 21n=1.若m >n >0,则1n >1m>0.所以椭圆的焦点在y 轴上.反之,若椭圆的焦点在y 轴上,则1n >1m>0即有m >n >0.故为充要条件.[答案] 充要5.如图,椭圆x 2a 2+y 22=1的左、右焦点分别为F 1,F 2,P 点在椭圆上,若 PF 1=4,∠F 1PF 2=120°,则a 的值为________.[解析] b 2=2,c =a 2-2,故F 1F 2=2a 2-2,又PF 1=4,PF 1+PF 2=2a ,PF 2=2a -4,由余弦定理得cos 120°=42+(2a -4)2-(2a 2-2)22×4×(2a -4)=-12,化简得8a =24,即a =3.[答案] 36.若一个椭圆长轴的长度、短轴的长度和焦距依次成等差数列,则该椭圆的离心率为________. [解析] 由题意知2a +2c =2(2b ),即a +c =2b ,又c 2=a 2-b 2,消去b 整理得5c 2=3a 2-2ac ,即5e2+2e -3=0,所以e =35或e =-1(舍去).[答案] 357.已知P 是以F 1,F 2为焦点的椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,若PF 1→·PF 2→=0,tan ∠PF 1F 2=12,则此椭圆的离心率为________.[解析] 因为PF 1→·PF 2→=0,所以PF 1→⊥PF 2→,所以PF 1+PF 2=655c =2a ,所以e =c a =53.[答案]538.已知圆C 1:x 2+2cx +y 2=0,圆C 2:x 2-2cx +y 2=0,椭圆C :x 2a 2+y 2b2=1(a >b >0),若圆C 1,C 2都在椭圆内,则椭圆离心率的取值范围是________.[解析] 圆C 1,C 2都在椭圆内等价于圆C 2的右顶点(2c ,0),上顶点(c ,c )在椭圆内部,所以只需⎩⎨⎧2c <a ,c 2a 2+c 2b 2<1⇒0<c a <12.即椭圆离心率的取值范围是⎝ ⎛⎭⎪⎫0,12.[答案] ⎝ ⎛⎭⎪⎫0,129.(2018·无锡调研)过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O为坐标原点,则△OAB 的面积为________.[解析] 由题意知椭圆的右焦点F 的坐标为(1,0),则直线AB 的方程为y =2x -2.联立⎩⎨⎧x 25+y 24=1,y =2x -2,解得交点A (0,-2),B ⎝ ⎛⎭⎪⎫53,43,所以S △OAB =12·OF ·|y A -y B |=12×1×⎪⎪⎪⎪⎪⎪-2-43=53.[答案] 5310.椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c ,若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.[解析] 直线y =3(x +c )过点F 1,且倾斜角为60°,所以∠MF 1F 2=60°,从而∠MF 2F 1=30°,所以MF 1⊥MF 2.在Rt △MF 1F 2中,MF 1=c ,MF 2=3c ,所以该椭圆的离心率e =2c 2a =2cc +3c=3-1.[答案]3-111.如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,以原点为圆心,椭圆C 的短半轴长为半径的圆与直线x -y +2=0相切.(1)求椭圆C 的方程;(2)已知点P (0,1),Q (0,2).设M 、N 是椭圆C 上关于y 轴对称的不同两点,直线PM 与QN 相交于点T ,求证:点T 在椭圆C 上.[解] (1)由题意知b =22= 2.因为离心率e =c a =32,所以ba=1-⎝ ⎛⎭⎪⎫c a 2=12. 所以a =2 2.所以椭圆C 的方程为x 28+y 22=1.(2)证明:由题意可设M ,N 的坐标分别为(x 0,y 0),(-x 0,y 0),则直线PM 的方程为y =y 0-1x 0x +1,①直线QN 的方程为y =y 0-2-x 0x +2.② 设T (x ,y ).联立①②解得x 0=x2y -3, y 0=3y -42y -3. 因为x 208+y 202=1,所以18⎝ ⎛⎭⎪⎫x 2y -32+12⎝ ⎛⎭⎪⎫3y -42y -32=1.整理得x 28+(3y -4)22=(2y -3)2,所以x 28+9y 22-12y +8=4y 2-12y +9,即x 28+y 22=1.所以点T 坐标满足椭圆C 的方程,即点T 在椭圆C 上.12.(2018·江苏省重点中学领航高考冲刺卷(二))在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为e =22,右顶点到右准线的距离为2- 2. (1)求椭圆C 的方程;(2)如图,若直线y =k 1x (k 1>0)与椭圆C 在第一象限的交点为A ,y =k 2x (k 2<0)与椭圆C 在第二象限的交点为B ,且OA 2+OB 2=3.①证明:k 1k 2为定值;②若点P 满足OP →=2OA →,直线BP 与椭圆交于点Q ,设BP →=mBQ →,求m 的值.[解] (1)设椭圆C 的半焦距为c , 则由题意可知,⎩⎪⎨⎪⎧e =22=c aa 2c -a =2-2,解得⎩⎨⎧a =2c =1,所以b 2=a 2-c 2=1,所以椭圆C 的方程为x 22+y 2=1.(2)①证明:设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y =k 1xx 2+2y 2=2, 解得x 21=21+2k 21,y 21=2k 211+2k 21,所以OA 2=2(1+k 21)1+2k 21,同理OB 2=2(1+k 22)1+2k 22, 从而3=OA 2+OB 2=2⎝ ⎛⎭⎪⎫1+k 211+2k 21+1+k 221+2k 22,整理得4k 21k 22=1.由于k 1>0,k 2<0,故k 1k 2=-12.②设Q (x 3,y 3),由OP →=2OA →得P (2x 1,2y 1),又由BP →=mBQ →,得(2x 1-x 2,2y 1-y 2)=m (x 3-x 2,y 3-y 2), 即⎩⎪⎨⎪⎧x 3=2m x 1+m -1m x 2y 3=2m y 1+m -1m y2.由点Q 在椭圆上得⎝ ⎛⎭⎪⎫2m x 1+m -1m x 222+⎝ ⎛⎭⎪⎫2m y 1+m -1m y 22=1, 整理得⎝ ⎛⎭⎪⎫2m 2⎝ ⎛⎭⎪⎫x 212+y 21+⎝ ⎛⎭⎪⎫m -1m 2⎝ ⎛⎭⎪⎫x 222+y 22+2·m -1m ·2m ⎝ ⎛⎭⎪⎫x 1x 22+y 1y 2=1,(*)由①得y 1y 2x 1x 2=-12,即x 1x 22+y 1y 2=0,而A ,B 在椭圆上,故x 212+y 21=1,x 222+y 22=1,代入(*)式得4m 2+(m -1)2m 2=1,解得m =52.1.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则PM +PN 的最小值为________.[解析] 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且PF 1+PF 2=10,从而PM +PN 的最小值为PF 1+PF 2-1-2=7.[答案] 72.如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1PA 2为钝角,则此椭圆的离心率的取值范围为________.[解析] 设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),∠B 1PA 2为钝角可转化为B 2A 2→,F 2B 1→所夹的角为钝角,则(a ,-b )·(-c ,-b )<0,得b 2<ac ,即a 2-c 2<ac ,故⎝ ⎛⎭⎪⎫c a 2+c a -1>0即e 2+e -1>0,e >5-12或e <-5-12,又0<e <1,所以5-12<e <1. [答案] ⎝⎛⎭⎪⎫5-12,1 3.以椭圆上任意一点与焦点所连结的线段为直径的圆与以长轴为直径的圆的位置关系是________.[解析] 如图,设线段是PF 1,O 1是线段PF 1的中点,连结O 1O ,PF 2,其中O 是椭圆的中心,F 2是椭圆的另一个焦点,则在△PF 1F 2中,由三角形中位线定理可知,两圆的连心线的长是OO 1=12PF 2=12(2a -PF 1)=a -12PF 1=R -r ,故两圆内切.[答案] 内切4.设e 1,e 2分别为具有公共焦点F 1与F 2的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足PF →1·PF →2=0,则e 21+e 22(e 1e 2)2的值为________.[解析] 设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,F 1F 2=2c ,P 为第一象限的交点,由题意得PF 1+PF 2=2a 1,PF 1-PF 2=2a 2,所以PF 21+PF 22=2a 21+2a 22.又因为PF →1·PF →2=0,所以PF 1⊥PF 2. 所以PF 21+PF 22=F 1F 22,即2a 21+2a 22=4c 2.所以⎝ ⎛⎭⎪⎫a 1c 2+⎝ ⎛⎭⎪⎫a 2c 2=2,即1e 21+1e 22=2,即e 21+e 22(e 1e 2)2=2.[答案] 25.(2018·南京学情调研)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =22,一条准线方程为x =2.过椭圆的上顶点A 作一条与x 轴、y 轴都不垂直的直线交椭圆于另一点P ,P 关于x 轴的对称点为Q .(1)求椭圆的方程;(2)若直线AP ,AQ 与x 轴交点的横坐标分别为m ,n ,求证:mn 为常数,并求出此常数.[解] (1)因为c a =22,a2c=2,所以a =2,c =1,所以b =a 2-c 2=1.故椭圆的方程为x 22+y 2=1.(2)法一:设P 点坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1). 因为k AP =y 1-1x 1-0=y 1-1x 1,所以直线AP 的方程为y =y 1-1x 1x +1. 令y =0,解得m =-x 1y 1-1.因为k AQ =-y 1-1x 1-0=-y 1+1x 1,所以直线AQ 的方程为y =-y 1+1x 1x +1.令y =0,解得n =x 1y 1+1.所以mn =-x 1y 1-1×x 1y 1+1=x 211-y 21.又因为(x 1,y 1)在椭圆x 22+y 2=1上,所以x 212+y 21=1,即1-y 21=x 212,所以x 211-y 21=2,即mn =2.所以mn 为常数,且常数为2.法二:设直线AP 的斜率为k (k ≠0),则AP 的方程为y =kx +1, 令y =0,得m =-1k.联立方程组⎩⎨⎧y =kx +1,x 22+y 2=1,消去y ,得(1+2k 2)x 2+4kx =0,解得x A =0,x P =-4k 1+2k2,所以y P =k ×x P +1=1-2k21+2k2,则Q 点的坐标为⎝ ⎛⎭⎪⎫-4k 1+2k2,-1-2k 21+2k 2.所以k AQ =-1-2k21+2k 2-1-4k 1+2k2=12k ,故直线AQ 的方程为y =12k x +1.令y =0,得n =-2k ,所以mn =⎝ ⎛⎭⎪⎫-1k ×(-2k )=2.所以mn 为常数,常数为2.6.(2018·常州市高三教育学会学业水平监测)已知圆C :(x -t )2+y 2=20(t <0)与椭圆E :x 2a 2+y 2b2=1(a >b >0)的一个公共点为B (0,-2),F (c ,0)为椭圆E 的右焦点,直线BF 与圆C 相切于点B .(1)求t 的值以及椭圆E 的方程;(2)过点F 任作与坐标轴都不垂直的直线l 与椭圆交于M ,N 两点,在x 轴上是否存在一定点P ,使PF 恰为∠MPN 的平分线?解:(1)由题意知,b =2,因为C (t ,0),B (0,-2),所以BC =t 2+4=20,所以t =±4,因为t <0,所以t =-4.因为BC ⊥BF ,所以c =1,所以a 2=b 2+c 2=5,所以椭圆E 的方程为x 25+y 24=1.(2)设M (x 1,y 1),N (x 2,y 2),l :y =k (x -1)(k ≠0),代入x 25+y 24=1,化简得(4+5k 2)x 2-10k 2x +5k 2-20=0,所以⎩⎪⎨⎪⎧x 1+x 2=10k24+5k2,x 1x 2=5k 2-204+5k2.若点P 存在,设P (m ,0),由题意得k PM +k PN =0, 所以y 1x 1-m +y 2x 2-m =k (x 1-1)x 1-m +k (x 2-1)x 2-m=0.所以(x 1-1)(x 2-m )+(x 2-1)(x 1-m )=0,即2x 1x 2-(1+m )(x 1+x 2)+2m =2·5k 2-204+5k 2-(1+m )10k24+5k2+2m =0.所以8m -40=0,所以m =5,即在x 轴上存在一定点P (5,0),使PF 恰为∠MPN 的平分线.。

2019版高考文科数学大一轮复习人教A版文档:第八章 立体几何8-5 含答案 精品

2019版高考文科数学大一轮复习人教A版文档:第八章 立体几何8-5 含答案 精品

§8.5直线、平面垂直的判定与性质1.直线与平面垂直(1)定义如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α互相垂直,记作l⊥α,直线l叫做平面α的垂线,平面α叫做直线l的垂面.(2)判定定理与性质定理2.直线和平面所成的角(1)定义平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.若一条直线垂直于平面,它们所成的角是直角,若一条直线和平面平行,或在平面内,它们所成的角是0°的角.(2)范围:⎣⎡⎦⎤0,π2. 3.平面与平面垂直 (1)二面角的有关概念①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角. (2)平面和平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. (3)平面与平面垂直的判定定理与性质定理知识拓展 重要结论(1)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线l 与平面α内的无数条直线都垂直,则l ⊥α.( × ) (2)垂直于同一个平面的两平面平行.( × ) (3)直线a ⊥α,b ⊥α,则a ∥b .( √ ) (4)若α⊥β,a ⊥β,则a ∥α.( × )(5)若直线a ⊥平面α,直线b ∥α,则直线a 与b 垂直.( √ )(6)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.(×)题组二教材改编2.[P73T1]下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β答案 D解析对于D,若平面α⊥平面β,则平面α内的直线可能不垂直于平面β,即与平面β的关系还可以是斜交、平行或在平面β内,其他选项均是正确的.3.[P67T2]在三棱锥P-ABC中,点P在平面ABC中的射影为点O.(1)若P A=PB=PC,则点O是△ABC的________心;(2)若P A⊥PB,PB⊥PC,PC⊥P A,则点O是△ABC的________心.答案(1)外(2)垂解析(1)如图1,连接OA,OB,OC,OP,在Rt△POA,Rt△POB和Rt△POC中,P A=PC=PB,所以OA=OB=OC,即O为△ABC的外心.(2)如图2,延长AO,BO,CO分别交BC,AC,AB于H,D,G.∵PC⊥P A,PB⊥PC,P A∩PB=P,∴PC⊥平面P AB,又AB⊂平面P AB,∴PC⊥AB,∵AB⊥PO,PO∩PC=P,∴AB⊥平面PGC,又CG⊂平面PGC,∴AB⊥CG,即CG为△ABC边AB上的高.同理可证BD,AH分别为△ABC边AC,BC上的高,即O为△ABC的垂心.题组三易错自纠4.(2017·湖南六校联考)已知m和n是两条不同的直线,α和β是两个不重合的平面,下列给出的条件中一定能推出m⊥β的是()A.α⊥β且m⊂αB.α⊥β且m∥αC.m∥n且n⊥βD.m⊥n且α∥β答案 C解析由线面垂直的判定定理,可知C正确.5.如图所示,在正方体ABCD—A1B1C1D1中,点O,M,N分别是线段BD,DD1,D1C1的中点,则直线OM与AC,MN的位置关系是()A.与AC,MN均垂直B.与AC垂直,与MN不垂直C.与AC不垂直,与MN垂直D.与AC,MN均不垂直答案 A解析因为DD1⊥平面ABCD,所以AC⊥DD1,又因为AC⊥BD,DD1∩BD=D,所以AC⊥平面BDD1B1,因为OM⊂平面BDD1B1,所以OM⊥AC.设正方体的棱长为2,则OM=1+2=3,MN=1+1=2,ON=1+4=5,所以OM2+MN2=ON2,所以OM⊥MN.故选A.6.如图所示,AB是半圆O的直径,VA垂直于半圆O所在的平面,点C是圆周上不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是()A.MN∥ABB.平面VAC⊥平面VBCC.MN与BC所成的角为45°D.OC⊥平面VAC答案 B解析由题意得BC⊥AC,因为VA⊥平面ABC,BC⊂平面ABC,所以VA⊥BC.因为AC∩VA =A,所以BC⊥平面VAC.因为BC⊂平面VBC,所以平面VAC⊥平面VBC.故选B.题型一直线与平面垂直的判定与性质典例如图所示,在四棱锥P—ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.证明(1)在四棱锥P—ABCD中,∵P A⊥底面ABCD,CD⊂平面ABCD,∴P A⊥CD.又∵AC⊥CD,P A∩AC=A,P A,AC⊂平面P AC,∴CD⊥平面P AC.而AE⊂平面P AC,∴CD⊥AE.(2)由P A=AB=BC,∠ABC=60°,可得AC=P A.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,PC,CD⊂平面PCD,∴AE⊥平面PCD,而PD⊂平面PCD,∴AE⊥PD.∵P A⊥底面ABCD,AB⊂平面ABCD,∴P A⊥AB.又∵AB⊥AD,且P A∩AD=A,∴AB⊥平面P AD,而PD⊂平面P AD,∴AB⊥PD.又∵AB∩AE=A,AB,AE⊂平面ABE,∴PD⊥平面ABE.思维升华证明线面垂直的常用方法及关键(1)证明直线和平面垂直的常用方法:①判定定理;②垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);③面面平行的性质(a⊥α,α∥β⇒a⊥β);④面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.跟踪训练如图,在直三棱柱ABC—A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.证明(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC—A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.题型二 平面与平面垂直的判定与性质典例 (2018·开封模拟)如图,在四棱锥P -ABCD 中,AB ⊥AC ,AB ⊥P A ,AB ∥CD ,AB =2CD ,E ,F ,G ,M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点.(1)求证:CE ∥平面P AD ; (2)求证:平面EFG ⊥平面EMN .证明 (1)方法一 取P A 的中点H ,连接EH ,DH . 因为E 为PB 的中点, 所以EH 綊12AB .又CD 綊12AB ,所以EH 綊CD .所以四边形DCEH 是平行四边形,所以CE ∥DH . 又DH ⊂平面P AD ,CE ⊄平面P AD , 所以CE ∥平面P AD .方法二 连接CF . 因为F 为AB 的中点, 所以AF =12AB .又CD =12AB ,所以AF =CD .又AF ∥CD ,所以四边形AFCD 为平行四边形. 因此CF ∥AD ,又CF ⊄平面P AD ,AD ⊂平面P AD , 所以CF ∥平面P AD .因为E ,F 分别为PB ,AB 的中点,所以EF ∥P A . 又EF ⊄平面P AD ,P A ⊂平面P AD , 所以EF ∥平面P AD .因为CF ∩EF =F ,故平面CEF ∥平面P AD . 又CE ⊂平面CEF ,所以CE ∥平面P AD .(2)因为E ,F 分别为PB ,AB 的中点,所以EF ∥P A .又因为AB⊥P A,所以EF⊥AB,同理可证AB⊥FG.又因为EF∩FG=F,EF,FG⊂平面EFG,所以AB⊥平面EFG.又因为M,N分别为PD,PC的中点,所以MN∥CD,又AB∥CD,所以MN∥AB,所以MN⊥平面EFG.又因为MN⊂平面EMN,所以平面EFG⊥平面EMN.引申探究1.在本例条件下,证明:平面EMN⊥平面P AC.证明因为AB⊥P A,AB⊥AC,且P A∩AC=A,P A,AC⊂平面P AC,所以AB⊥平面P AC.又MN∥CD,CD∥AB,所以MN∥AB,所以MN⊥平面P AC.又MN⊂平面EMN,所以平面EMN⊥平面P AC.2.在本例条件下,证明:平面EFG∥平面P AC.证明因为E,F,G分别为PB,AB,BC的中点,所以EF∥P A,FG∥AC,又EF⊄平面P AC,P A⊂平面P AC,所以EF∥平面P AC.同理FG∥平面P AC.又EF∩FG=F,所以平面EFG∥平面P AC.思维升华(1)判定面面垂直的方法①面面垂直的定义;②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).(2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.跟踪训练 (2018届河南中原名校质检)在四棱锥P —ABCD 中,平面P AD ⊥平面ABCD ,AB ∥CD ,△P AD 是等边三角形,已知AD =2,BD =23,AB =2CD =4. (1)设M 是PC 上一点,求证:平面MBD ⊥平面P AD ; (2)求四棱锥P —ABCD 的体积.(1)证明 在△ABD 中,由勾股定理知AD ⊥BD , 又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,BD ⊂平面ABCD , 所以BD ⊥平面P AD ,又BD ⊂平面BDM , 所以平面MBD ⊥平面P AD .(2)解 如图,取AD 的中点O ,则PO ⊥AD .因为平面P AD ⊥平面ABCD ,且平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD , 所以PO ⊥平面ABCD ,所以PO 是四棱锥P —ABCD 的高,且PO =2×32=3, 底面ABCD 的面积是△ABD 面积的32,即33,所以四棱锥P —ABCD 的体积为13×33×3=3.题型三 垂直关系中的探索性问题典例 如图所示,平面ABCD ⊥平面BCE ,四边形ABCD 为矩形,BC =CE ,点F 为CE 的中点.(1)证明:AE ∥平面BDF ;(2)点M 为CD 上任意一点,在线段AE 上是否存在点P ,使得PM ⊥BE ?若存在,确定点P 的位置,并加以证明;若不存在,请说明理由. (1)证明 连接AC 交BD 于点O ,连接OF .∵四边形ABCD是矩形,∴O为AC的中点.又F为EC的中点,∴OF∥AE.又OF⊂平面BDF,AE⊄平面BDF,∴AE∥平面BDF.(2)解当点P为AE的中点时,有PM⊥BE,证明如下:取BE的中点H,连接DP,PH,CH.∵P为AE的中点,H为BE的中点,∴PH∥AB.又AB∥CD,∴PH∥CD,∴P,H,C,D四点共面.∵平面ABCD⊥平面BCE,且平面ABCD∩平面BCE=BC,CD⊥BC,CD⊂平面ABCD,∴CD⊥平面BCE.又BE⊂平面BCE,∴CD⊥BE,∵BC=CE,且H为BE的中点,∴CH⊥BE.又CH∩CD=C,且CH,CD⊂平面DPHC,∴BE⊥平面DPHC.又PM⊂平面DPHC,∴PM⊥BE.思维升华对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.跟踪训练如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,M为棱AC的中点.AB =BC,AC=2,AA1= 2.(1)求证:B1C∥平面A1BM;(2)求证:AC1⊥平面A1BM;(3)在棱BB1上是否存在点N,使得平面AC1N⊥平面AA1C1C?如果存在,求此时BNBB1的值;如果不存在,请说明理由.(1)证明连接AB1与A1B,两线交于点O,连接OM.在△B1AC中,∵M,O分别为AC,AB1的中点,∴OM∥B1C,又∵OM⊂平面A1BM,B1C⊄平面A1BM,∴B1C∥平面A1BM.(2)证明∵侧棱AA1⊥底面ABC,BM⊂平面ABC,∴AA1⊥BM,又∵M为棱AC的中点,AB=BC,∴BM⊥AC.∵AA1∩AC=A,AA1,AC⊂平面ACC1A1,∴BM⊥平面ACC1A1,∴BM⊥AC1.∵AC=2,∴AM=1.又∵AA1=2,∴在Rt△ACC1和Rt△A1AM中,tan∠AC1C=tan∠A1MA=2,∴∠AC1C=∠A1MA,即∠AC1C+∠C1AC=∠A1MA+∠C1AC=90°,∴A1M⊥AC1.∵BM∩A1M=M,BM,A1M⊂平面A1BM,∴AC 1⊥平面A 1BM .(3)解 当点N 为BB 1的中点,即BN BB 1=12时,平面AC 1N ⊥平面AA 1C 1C . 证明如下:设AC 1的中点为D ,连接DM ,DN .∵D ,M 分别为AC 1,AC 的中点, ∴DM ∥CC 1,且DM =12CC 1.又∵N 为BB 1的中点,∴DM ∥BN ,且DM =BN , ∴四边形BNDM 为平行四边形, ∴BM ∥DN ,∵BM ⊥平面ACC 1A 1,∴DN ⊥平面AA 1C 1C . 又∵DN ⊂平面AC 1N , ∴平面AC 1N ⊥平面AA 1C 1C .立体几何证明问题中的转化思想典例 (12分)如图所示,M ,N ,K 分别是正方体ABCD —A 1B 1C 1D 1的棱AB ,CD ,C 1D 1的中点.求证:(1)AN ∥平面A 1MK ; (2)平面A 1B 1C ⊥平面A 1MK .思想方法指导 (1)线面平行、垂直关系的证明问题的指导思想是线线、线面、面面关系的相互转化,交替使用平行、垂直的判定定理和性质定理.(2)线线关系是线面关系、面面关系的基础.证明过程中要注意利用平面几何中的结论,如证明平行时常用的中位线、平行线分线段成比例;证明垂直时常用的等腰三角形的中线等. (3)证明过程一定要严谨,使用定理时要对照条件,步骤书写要规范. 规范解答证明 (1)如图所示,连接NK . 在正方体ABCD —A 1B 1C 1D 1中,∵四边形AA1D1D,DD1C1C都为正方形,∴AA1∥DD1,AA1=DD1,C1D1∥CD,C1D1=CD.[2分]∵N,K分别为CD,C1D1的中点,∴DN∥D1K,DN=D1K,∴四边形DD1KN为平行四边形,[3分]∴KN∥DD1,KN=DD1,∴AA1∥KN,AA1=KN,∴四边形AA1KN为平行四边形,∴AN∥A1K.[4分]又∵A1K⊂平面A1MK,AN⊄平面A1MK,∴AN∥平面A1MK.[6分](2)如图所示,连接BC1.在正方体ABCD—A1B1C1D1中,AB∥C1D1,AB=C1D1.∵M,K分别为AB,C1D1的中点,∴BM∥C1K,BM=C1K,∴四边形BC1KM为平行四边形,∴MK∥BC1.[8分]在正方体ABCD—A1B1C1D1中,A1B1⊥平面BB1C1C,BC1⊂平面BB1C1C,∴A1B1⊥BC1.∵MK∥BC1,∴A1B1⊥MK.∵四边形BB1C1C为正方形,∴BC1⊥B1C,[10分]∴MK⊥B1C.∵A1B1⊂平面A1B1C,B1C⊂平面A1B1C,A1B1∩B1C=B1,∴MK⊥平面A1B1C.又∵MK⊂平面A1MK,∴平面A1B1C⊥平面A1MK.[12分]1.若平面α⊥平面β,平面α∩平面β=直线l,则() A.垂直于平面β的平面一定平行于平面αB.垂直于直线l的直线一定垂直于平面αC.垂直于平面β的平面一定平行于直线lD.垂直于直线l的平面一定与平面α,β都垂直答案 D解析对于A,垂直于平面β的平面与平面α平行或相交,故A错误;对于B,垂直于直线l的直线与平面α垂直、斜交、平行或在平面α内,故B错误;对于C,垂直于平面β的平面与直线l平行或相交,故C错误.D正确.2.(2017·深圳四校联考)若平面α,β满足α⊥β,α∩β=l,P∈α,P∉l,则下列命题中是假命题的为()A.过点P垂直于平面α的直线平行于平面βB.过点P垂直于直线l的直线在平面α内C.过点P垂直于平面β的直线在平面α内D.过点P且在平面α内垂直于l的直线必垂直于平面β答案 B解析由于过点P垂直于平面α的直线必平行于平面β内垂直于交线的直线,因此也平行于平面β,因此A正确;过点P垂直于直线l的直线有可能垂直于平面α,不一定在平面α内,因此B不正确;根据面面垂直的性质定理,知选项C,D正确.3.设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β()A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m答案 A解析选项A,∵l⊥β,l⊂α,∴α⊥β,A正确;选项B,α⊥β,l⊂α,m⊂β,l与m的位置关系不确定;选项C,∵l∥β,l⊂α,∴α∥β或α与β相交;选项D,∵α∥β,l⊂α,m⊂β,此时,l与m的位置关系不确定.故选A.4.(2017·中原名校联盟联考)已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是()A.α⊥β且m⊂αB.α⊥β且m∥αC.m∥n且n⊥βD.m⊥n且n∥β答案 C解析对于选项A,由α⊥β且m⊂α,可得m∥β或m与β相交或m⊂β,故A不成立;对于选项B,由α⊥β且m∥α,可得m⊂β或m∥β或m与β相交,故B不成立;对于选项C,由m∥n且n⊥β,可得m⊥β,故C正确;对于选项D,由m⊥n且n∥β,可得m∥β或m 与β相交或m⊂β,故D不成立.故选C.5.(2018届江西南昌摸底)如图,在四棱锥P—ABCD中,△P AB与△PBC是正三角形,平面P AB⊥平面PBC,AC⊥BD,则下列结论不一定成立的是()A.PB⊥AC B.PD⊥平面ABCDC.AC⊥PD D.平面PBD⊥平面ABCD答案 B解析取BP的中点O,连接OA,OC,则BP⊥OA,BP⊥OC,又因为OA∩OC=O,所以BP⊥平面OAC,所以BP⊥AC,故选项A正确;又AC⊥BD,BP∩BD=B,得AC⊥平面BDP,又PD⊂平面BDP,所以AC⊥PD,平面PBD⊥平面ABCD,故选项C,D正确,故选B.6.如图所示,直线P A垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面P AC的距离等于线段BC的长.其中正确的是()A.①②B.①②③C.①D.②③答案 B解析对于①,∵P A⊥平面ABC,∴P A⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∵AC∩P A=A,∴BC⊥平面P AC,又PC⊂平面P AC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥P A,∵P A⊂平面P AC,OM⊄平面P AC,∴OM∥平面P AC;对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离,故①②③都正确.7.如图,已知P A⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________.答案 4解析∵P A⊥平面ABC,AB,AC,BC⊂平面ABC,∴P A⊥AB,P A⊥AC,P A⊥BC,则△P AB,△P AC为直角三角形.由BC⊥AC,且AC∩P A=A,得BC⊥平面P AC,从而BC⊥PC,因此△ABC,△PBC也是直角三角形.8.(2018·洛阳模拟)如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD .(只要填写一个你认为正确的条件即可)答案 DM ⊥PC (或BM ⊥PC 等)解析 ∵P A ⊥底面ABCD ,∴BD ⊥P A ,连接AC ,则BD ⊥AC ,且P A ∩AC =A ,∴BD ⊥平面P AC ,∴BD ⊥PC .∴当DM ⊥PC (或BM ⊥PC )时,即有PC ⊥平面MBD , 而PC ⊂平面PCD ,∴平面MBD ⊥平面PCD .9.如图,∠BAC =90°,PC ⊥平面ABC ,则在△ABC 和△P AC 的边所在的直线中,与PC 垂直的直线有________;与AP 垂直的直线有________.答案 AB ,BC ,AC AB解析 ∵PC ⊥平面ABC ,∴PC 垂直于直线AB ,BC ,AC ;∵AB ⊥AC ,AB ⊥PC ,AC ∩PC =C ,∴AB ⊥平面P AC ,∴与AP 垂直的直线是AB .10.如图,在直三棱柱ABC -A 1B 1C 1中,侧棱长为2,AC =BC =1,∠ACB =90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 交于点E ,要使AB 1⊥平面C 1DF ,则线段B 1F 的长为________.答案 12解析 设B 1F =x ,因为AB 1⊥平面C 1DF ,DF ⊂平面C 1DF , 所以AB 1⊥DF . 由已知可得A 1B 1=2,设Rt △AA 1B 1斜边AB 1上的高为h ,则DE =12h .又12×2×2=12×h 22+(2)2, 所以h =233,DE =33.在Rt △DB 1E 中, B 1E =⎝⎛⎭⎫222-⎝⎛⎭⎫332=66. 由面积相等得12×66×x 2+⎝⎛⎭⎫222=12×22x , 得x =12.11.(2017·长春二检)如图,在三棱锥A —BCD 中,△ABC 是等腰直角三角形,且AC ⊥BC ,BC =2,AD ⊥平面BCD ,AD =1.(1)求证:平面ABC ⊥平面ACD ;(2)若E 为AB 的中点,求点A 到平面CED 的距离. (1)证明 因为AD ⊥平面BCD ,BC ⊂平面BCD , 所以AD ⊥BC ,又AC ⊥BC ,AC ∩AD =A , AC ,AD ⊂平面ABCD , 所以BC ⊥平面ACD , 因为BC ⊂平面ABC , 所以平面ABC ⊥平面ACD .(2)解 由已知可得CD =3,取CD 的中点F ,连接EF , 因为E 为AB 的中点, 所以ED =EC =12AB =2,所以△ECD 为等腰三角形, 从而EF =52, 所以S △ECD =12×3×52=154.由(1)知BC ⊥平面ACD ,所以E 到平面ACD 的距离为1, S △ACD =12×3×1=32.设点A 到平面CED 的距离为d , 则V 三棱锥A —ECD =13·S △ECD ·d=V 三棱锥E —ACD =13·S △ACD ·1,解得d =255.12.如图,在四棱锥P —ABCD 中,PC =AD =CD =12AB =2,AB ∥DC ,AD ⊥CD ,PC ⊥平面ABCD .(1)求证:BC ⊥平面P AC ;(2)若M 为线段P A 的中点,且过C ,D ,M 三点的平面与线段PB 交于点N ,确定点N 的位置,说明理由;并求三棱锥A —CMN 的高.(1)证明 连接AC ,在直角梯形ABCD 中, AC =AD 2+DC 2=22, BC =(AB -CD )2+AD 2=22, 所以AC 2+BC 2=AB 2, 即AC ⊥BC .又PC ⊥平面ABCD ,BC ⊂平面ABCD ,所以PC ⊥BC ,又AC ∩PC =C ,AC ,PC ⊂平面P AC , 故BC ⊥平面P AC .(2)解 N 为PB 的中点,连接MN ,CN .因为M 为P A 的中点,N 为PB 的中点, 所以MN ∥AB ,且MN =12AB =2.又因为AB ∥CD ,所以MN ∥CD ,所以M ,N ,C ,D 四点共面, 所以N 为过C ,D ,M 三点的平面与线段PB 的交点.因为BC ⊥平面P AC ,N 为PB 的中点, 所以点N 到平面P AC 的距离d =12BC = 2.又S △ACM =12S △ACP =12×12×AC ×PC =2,所以V 三棱锥N —ACM =13×2×2=23.由题意可知,在Rt △PCA 中, P A =AC 2+PC 2=23,CM =3, 在Rt △PCB 中,PB =BC 2+PC 2=23, CN =3,所以S △CMN =12×2×2= 2.设三棱锥A —CMN 的高为h ,V 三棱锥N —ACM =V 三棱锥A —CMN =13×2×h =23,解得h =2,故三棱锥A —CMN 的高为 2.13.(2018届南宁市联考)如图,在正方形ABCD 中,E ,F 分别是BC ,CD 的中点,G 是EF 的中点.现在沿AE ,AF 及EF 把这个正方形折成一个空间图形,使B ,C ,D 三点重合,重合后的点记为H .下列说法错误的是________.(填序号)①AG ⊥△EFH 所在平面;②AH ⊥△EFH 所在平面; ③HF ⊥△AEF 所在平面;④HG ⊥△AEF 所在平面. 答案 ①③④解析 折之前AG ⊥EF ,CG ⊥EF ,折之后也垂直,所以EF ⊥平面AHG ,折之前∠B ,∠D ,∠C 均为直角,折之后三点重合,所以折之后AH ,EH ,FH 三条直线两两垂直,所以AH ⊥△EFH 所在平面,②对;同时可知AH ⊥HG ,又HF ⊥△AEH 所在平面,过AE 不可能做两个平面与直线HF 垂直,③错;如果HG ⊥△AEF 所在平面,则有HG ⊥AG ,与②中AH ⊥HG 矛盾,④错;若AG ⊥△EFH 所在平面,则有AG ⊥HG ,与②中AH ⊥HG 矛盾,所以①也错.14.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A 在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.答案①②③解析由题意知P A⊥平面ABC,∴P A⊥BC.又AC⊥BC,且P A∩AC=A,P A,AC⊂平面P AC,∴BC⊥平面P AC,∴BC⊥AF.∵AF⊥PC,且BC∩PC=C,BC,PC⊂平面PBC,∴AF⊥平面PBC,∴AF⊥PB,又AE⊥PB,AE∩AF=A,AE,AF⊂平面AEF,∴PB⊥平面AEF,∴PB⊥EF.故①②③正确.15.(2017·兰州模拟)如图,在直角梯形ABCD中,BC⊥DC,AE⊥DC,且E为CD的中点,M,N分别是AD,BE的中点,将△ADE沿AE折起,则下列说法正确的是__________.(写出所有正确说法的序号)①不论D折至何位置(不在平面ABC内),都有MN∥平面DEC;②不论D折至何位置(不在平面ABC内),都有MN⊥AE;③不论D折至何位置(不在平面ABC内),都有MN∥AB;④在折起过程中,一定存在某个位置,使EC⊥AD.答案①②④解析由已知,在未折叠的原梯形中,AB∥DE,BE∥AD,所以四边形ABED为平行四边形,所以BE=AD,折叠后如图所示.①过点M 作MP ∥DE ,交AE 于点P ,连接NP .因为M ,N 分别是AD ,BE 的中点,所以点P 为AE 的中点,故NP ∥EC .又MP ∩NP =P ,DE ∩CE =E ,所以平面MNP ∥平面DEC ,故MN ∥平面DEC ,①正确;②由已知,AE ⊥ED ,AE ⊥EC ,所以AE ⊥MP ,AE ⊥NP ,又MP ∩NP =P ,所以AE ⊥平面MNP ,又MN ⊂平面MNP ,所以MN ⊥AE ,②正确;③假设MN ∥AB ,则MN 与AB 确定平面MNBA ,从而BE ⊂平面MNBA ,AD ⊂平面MNBA ,与BE 和AD 是异面直线矛盾,③错误; ④当EC ⊥ED 时,EC ⊥AD .因为EC ⊥EA ,EC ⊥ED ,EA ∩ED =E ,所以EC ⊥平面AED ,AD ⊂平面AED ,所以EC ⊥AD ,④正确.16.(2018·泉州模拟)点P 在正方体ABCD —A 1B 1C 1D 1的面对角线BC 1上运动,给出下列命题:①三棱锥A —D 1PC 的体积不变;②A 1P ∥平面ACD 1;③DP ⊥BC 1;④平面PDB 1⊥平面ACD 1.其中正确的命题序号是________.答案 ①②④解析 连接BD 交AC 于点O ,连接DC 1交D 1C 于点O 1,连接OO 1,则OO 1∥BC 1,所以BC 1∥平面AD 1C ,动点P 到平面AD 1C 的距离不变,所以三棱锥P —AD 1C 的体积不变.又因为11——P AD C A D PC V V 三棱锥三棱锥=,所以①正确; 因为平面A 1C 1B ∥平面AD 1C ,A 1P ⊂平面A 1C 1B ,所以A 1P ∥平面ACD 1,②正确;由于当点P在B点时,DB不垂直于BC1,即DP不垂直BC1,故③不正确;由于DB1⊥D1C,DB1⊥AD1,D1C∩AD1=D1,所以DB1⊥平面AD1C.又因为DB1⊂平面PDB1,所以平面PDB1⊥平面ACD1,④正确.。

2019版高考数学大一轮复习江苏专版文档:第八章 立体

2019版高考数学大一轮复习江苏专版文档:第八章 立体

§8.1空间几何体的表面积与体积考情考向分析本部分是高考考查的重点内容,主要涉及空间几何体的表面积与体积的计算.命题形式主要以填空题为主,考查空间几何体的表面积与体积的计算,涉及空间几何体的结构特征,要求考生要有较强的空间想象能力和计算能力,广泛应用转化与化归思想.1.多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式3.柱、锥、台、球的表面积和体积【知识拓展】1.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差.(2)底面面积及高都相等的两个同类几何体的体积相等.2.几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=3a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R=2a.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.(3)正四面体的外接球与内切球的半径之比为3∶1.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)多面体的表面积等于各个面的面积之和.(√)(2)锥体的体积等于底面积与高之积.(×)(3)球的体积之比等于半径比的平方.( × )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( √ ) (5)长方体既有外接球又有内切球.( × )(6)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS .( × ) 题组二 教材改编2.[P55练习T3]已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为________cm. 答案 2解析 S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, ∴r 2=4,∴r =2.3.[P60练习T4]已知棱台的上、下底面面积分别为4,16,高为3,则该棱台的体积为________. 答案 28 题组三 易错自纠4.各棱长均为2的正三棱锥的表面积是________. 答案 4 3解析 每个面的面积为12×2×2×32=3,∴该正三棱锥的表面积为4 3.5.体积为8的正方体的顶点都在同一球面上,则该球的表面积为________. 答案 12π解析 由题意可知正方体的棱长为2,其体对角线23即为球的直径,所以球的表面积为4πR 2=(2R )2π=12π.6.已知某圆柱的侧面展开图是边长为2a ,a 的矩形,则该圆柱的体积为________. 答案 a 32π或a 3π解析 设圆柱的母线长为l ,底面圆的半径为r , 则当l =2a 时,2πr =a ,∴r =a2π,这时V 圆柱=2a ·π⎝⎛⎭⎫a 2π2=a32π; 当l =a 时,2πr =2a ,∴r =a π,这时V 圆柱=a ·π⎝⎛⎭⎫a 2=a3π. 综上,该圆柱的体积为a 32π或a 3π.题型一 求空间几何体的表面积1.若三棱锥的三条侧棱两两垂直,且侧棱长都相等,其外接球的表面积是4π,则其侧棱长为________. 答案233解析 依题意可以构造一个正方体,其体对角线就是该三棱锥外接球的直径. 设侧棱长为a ,外接球的半径为r . 由外接球的表面积为4π,得r =1, ∴3a =2r =2,∴a =233.2.正六棱台的上、下两底面的边长分别是1 cm,2 cm ,高是1 cm ,则它的侧面积为________ cm 2. 答案972解析 正六棱台的侧面是6个全等的等腰梯形,上底长为1 cm ,下底长为2 cm ,高为正六棱台的斜高.又边长为1 cm 的正六边形的中心到各边的距离是32cm ,边长为2 cm 的正六边形的中心到各边的距离是 3 cm ,则梯形的高为 1+⎝⎛⎭⎫3-322=72(cm),所以正六棱台的侧面积为6×12×(1+2)×72=972(cm 2).思维升华 空间几何体表面积的求法(1)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. (2)旋转体的表面积问题注意其侧面展开图的应用. 题型二 求空间几何体的体积典例 (1)(2017·江苏宿迁三模)如图,在正三棱柱ABC -A 1B 1C 1中,已知AB =AA 1=3,点P 在棱CC 1上,则三棱锥P -ABA 1的体积为________.答案934解析 三棱锥P -ABA 1的体积等于三棱锥B -AP A 1的体积,点B 到面AP A 1的距离为332,△AP A 1的面积为92,故三棱锥P -ABA 1的体积为934.(2)(2017·江苏南京三模)如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,BB 1=3,∠ABC =90°,点D 为侧棱BB 1上的动点.当AD +DC 1最小时,三棱锥D -ABC 1的体积为________.答案 13解析 几何体展开图如图所示:△ABD ∽△ACC 1,∴BD CC 1=ABAC ,∵AB =1,BC =2,BB 1=3, ∴AC =3,CC 1=3,∴BD =1,则11--=D ABC A BC D V V =13×12×1×2×1=13.思维升华 空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.跟踪训练 (1)(2018届南京一中调研)如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个正三角形组成,则该多面体的体积是________.答案26解析 由展开图,可知该多面体是正四棱锥,底面正方形的边长为1,侧棱长也为1,∴该正四棱锥的高h =⎝⎛⎭⎫322-⎝⎛⎭⎫122=22,∴其体积V =13×12×22=26.(2)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为________.答案23解析 如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连结DG ,CH ,容易求得EG =HF =12,AG =GD =BH =HC =32, 取AD 的中点O ,连结GO ,易得GO =22, ∴S △AGD =S △BHC =12×22×1=24,∴多面体的体积V =V三棱锥E -ADG+V三棱锥F -BCH+V三棱柱AGD -BHC=2V 三棱锥E -ADG +V 三棱柱AGD -BHC=13×24×12×2+24×1=23. 题型三 简单的等积变换典例 如图所示,三棱柱ABC -A 1B 1C 1中,若E ,F 分别为AB ,AC 的中点,平面EB 1C 1F 将三棱柱分成体积为V 1,V 2的两部分,那么V 1∶V 2等于多少?解 如图,延长A 1A 到A 2,B 1B 到B 2,C 1C 到C 2,且A 1A =AA 2,B 1B =BB 2,C 1C =CC 2,连结A 2C 2,A 2B 2,B 2C 2,则得到三棱柱ABC -A 2B 2C 2,且111222--=,ABC A B C ABC A B C V V 延长B 1E ,C 1F ,则B 1E 与C 1F 相交于点A 2.因为A 2A ∶A 2A 1=1∶2,所以2A AEF V 三棱-锥=182111A A B C V 三棱-锥.又2A AEF V 三棱-锥=142A ABC V 三棱-锥=14×13222ABC A B C V 三棱柱-=112111ABC A B C V 三棱柱-, 所以V 1=72A AEF V 三棱-锥=712111ABC A B C V 三棱柱-,故V 1∶V 2=7∶(12-7)=7∶5.思维升华 当所给几何体的体积不容易计算时,可根据几何体的结构特征将其分解成多个体积可求的几何体,或者补形成体积可求的几何体,这种解法就是割补法,割补法求体积体现了转化与化归思想的应用.跟踪训练 (2018届灌云高级中学检测)正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 的中点,则三棱锥A -B 1DC 1的体积为________. 答案 1解析 如图,连结AD ,因为△ABC 是正三角形, 且D 为BC 中点,则AD ⊥BC . 又因为BB 1⊥平面ABC ,故BB 1⊥AD ,且BB 1∩BC =B ,BB 1,BC ⊂平面BCC 1B 1,所以AD ⊥平面BCC 1B 1,所以AD 是三棱锥A -B 1DC 1的高. 所以11A B DC V 三棱-锥=1311·B DC S AD=13×3×3=1.1.若圆锥的轴截面是正三角形,则它的侧面积是底面积的________倍. 答案 2解析 设底面半径为r ,则S 底面=πr 2, S 侧面=12×2πr ×2r =2πr 2,所以S 侧面=2S 底面.2.(2014·江苏)设甲、乙两个圆柱的底面面积分别为S 1,S 2,体积分别为V 1,V 2,若它们的侧面积相等且S 1S 2=94,则V 1V 2的值是________.答案 32解析 设甲、乙两个圆柱的底面半径分别为r 1,r 2,高分别为h 1,h 2, 则2πr 1h 1=2πr 2h 2,所以h 1h 2=r 2r 1.又S 1S 2=πr 21πr 22=94, 所以r 1r 2=32,则V 1V 2=πr 21h 1πr 22h 2=r 21r 22·h 1h 2=r 21r 22·r 2r 1=r 1r 2=32.3.已知A ,B ,C 三点都在以O 为球心的球面上,OA ,OB ,OC 两两垂直,三棱锥O —ABC 的体积为43,则球O 的表面积为________.答案 16π解析 设球O 的半径为R ,以球心O 为顶点的三棱锥的三条侧棱两两垂直且都等于球的半径R ,另外一个侧面是边长为2R 的等边三角形.因此根据三棱锥的体积公式,得13×12R 2·R=43,∴R =2,∴S 球的表面积=4π×22=16π. 4.(2013·江苏) 如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=________.答案124解析 由题意可知,三棱锥F -ADE 与三棱柱A 1B 1C 1-ABC 的高之比为12,底面积之比为14,故V 1∶V 2=13×12×141=124.5.(2018届淮安中学质检) 如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =22,则三棱锥B -AEF的体积为______.答案112解析 连结AC ,BD ,易知AC ⊥平面BDD 1B 1,则V 三棱锥B -AEF =V 三棱锥A -BEF =13×AC 2×S △BEF =13×AC 2×12×EF ×BB 1=13×22×12×22×1=112.6.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P —ABC 为鳖臑,P A ⊥平面ABC ,P A =AB =2,AC =4,三棱锥P —ABC 的四个顶点都在球O 的球面上,则球O 的表面积为________. 答案 20π解析 方法一 将三棱锥P —ABC 放入长方体中,如图(1),三棱锥P —ABC 的外接球就是长方体的外接球.因为P A =AB =2,AC =4,△ABC 为直角三角形,所以BC =42-22=2 3.设外接球的半径为R ,由题意可得(2R )2=22+22+(23)2=20,故R 2=5,则球O 的表面积为4πR 2=20π.方法二 利用鳖臑的特点求解,如图(2),因为四个面都是直角三角形,所以PC 的中点到每一个顶点的距离都相等,即PC 的中点为球心O ,易得2R =PC =20,所以球O 的表面积为4πR 2=20π.7.(2015·江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________. 答案7解析 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7.8.(2017·天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________. 答案 92π解析 设正方体棱长为a ,则6a 2=18, ∴a = 3.设球的半径为R ,则由题意知2R =a 2+a 2+a 2=3, ∴R =32.故球的体积V =43πR 3=43π×⎝⎛⎭⎫323=92π.9. 如图所示,在直角梯形ABCD 中,AD ⊥DC ,AD ∥BC ,BC =2CD =2AD =2,若将该直角梯形绕BC 边旋转一周,则所得的几何体的表面积为________.答案 (2+3)π解析 根据题意可知,此旋转体的上半部分为圆锥(底面半径为1,高为1),下半部分为圆柱(底面半径为1,高为1),如图所示.则所得几何体的表面积为圆锥的侧面积、圆柱的侧面积以及圆柱的下底面积之和,即表面积为12·2π·1·12+12+2π·12+π·12=(2+3)π. 10.如图所示,一个底面半径为R 的圆柱形量杯中装有适量的水.若放入一个半径为r 的实心铁球,水面高度恰好升高r ,则R r=________.答案 233解析 由水面高度升高r ,得圆柱体积增加了πR 2r ,恰好是半径为r 的实心铁球的体积,因此有43πr 3=πR 2r .故R r =233. 11.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E —ACD 的体积为63,求该三棱锥的侧面积. (1)证明 因为四边形ABCD 为菱形,所以AC ⊥BD .因为BE ⊥平面ABCD ,AC ⊂平面ABCD ,所以BE ⊥AC .而BD ∩BE =B ,BD ,BE ⊂平面BED ,所以AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)解 设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x 2. 因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x . 由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x . 由已知得,三棱锥E —ACD 的体积V 三棱锥E-ACD =13×12AC ·GD ·BE =624x 3=63, 故x =2.从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5.故三棱锥E —ACD 的侧面积为3+2 5.12.(2017·南京二十九中调研)如图,四棱锥P -ABCD 的底面为正方形,平面PCD ⊥平面ABCD ,平面PCB ⊥平面ABCD ,E ,F 分别为线段CD ,P A 的中点.(1)求证:EF ∥平面PBC ;(2)若∠PBC =π4,AB =4,求棱锥P -ABCE 的体积. (1)证明 取PB 中点G ,连结FG ,CG .∵F 为P A 的中点,∴FG 綊12AB .又E 为CD 的中点,ABCD 为正方形,∴EC 綊12CD 綊12AB ,∴EC 綊FG . 即四边形ECGF 为平行四边形,∴EF ∥GC .又EF ⊄平面PBC ,CG ⊂平面PBC ,∴EF ∥平面PBC .(2)解 ∵平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,又BC ⊥CD ,∴BC ⊥平面PCD ,∴BC ⊥PC .同理CD ⊥PC ,∴PC ⊥平面ABCD ,∵AB =4,∠PBC =π4,∴PC =4. ∴V P -ABCE =13×4×2+42×4=16.13.(2014·江苏)设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________. 答案 32解析 设两个圆柱的底面半径和高分别为r 1,r 2和h 1,h 2,由S 1S 2=94,得πr 21πr 22=94,则r 1r 2=32. 由圆柱的侧面积相等,得2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2,所以V 1V 2=πr 21h 1πr 22h 2=r 1r 2=32. 14.在三棱锥P —ABC 中,P A ⊥平面ABC 且P A =2,△ABC 是边长为3的等边三角形,则该三棱锥外接球的表面积为________.答案 8π解析 由题意得,此三棱锥外接球即为以△ABC 为底面、以P A 为高的正三棱柱的外接球,因为△ABC 的外接圆半径r =32×3×23=1,外接球球心到△ABC 的外接圆圆心的距离d =1,所以外接球的半径R =r 2+d 2=2,所以三棱锥外接球的表面积S =4πR 2=8π.15.已知三棱锥O —ABC 的顶点A ,B ,C 都在半径为2的球面上,O 是球心,∠AOB =120°,当△AOC 与△BOC 的面积之和最大时,三棱锥O —ABC 的体积为________.答案 233解析 设球O 的半径为R ,因为S △AOC +S △BOC =12R 2(sin ∠AOC +sin ∠BOC ),所以当∠AOC =∠BOC =90°时, S △AOC +S △BOC 取得最大值,此时OA ⊥OC .OB ⊥OC ,OB ∩OA =O ,OA ,OB ⊂平面AOB ,所以OC ⊥平面AOB ,所以V 三棱锥O —ABC =V 三棱锥C —OAB =13OC ·12OA ·OB sin ∠AOB =16R 3sin ∠AOB =233. 16.(2016·江苏)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥P —A 1B 1C 1D 1,下部分的形状是正四棱柱ABCD —A 1B 1C 1D 1(如图所示),并要求正四棱柱的高OO 1是正四棱锥的高PO 1的4倍.(1)若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大?解 (1)V =13×62×2+62×2×4=312(m 3). (2)设PO 1=x ,则O 1B 1=62-x 2,B 1C 1=2·62-x 2,∴1111A B C D S =2(62-x 2),又由题意可得下面正四棱柱的高为4x .则仓库容积V =13x ·2(62-x 2)+2(62-x 2)·4x =263x (36-x 2). 由V ′=0得x =23或x =-23(舍去).由实际意义知V 在x =23(m)时取到最大值, 故当PO 1=23(m)时,仓库容积最大.。

2019版高考文科数学大一轮复习人教A版文档:第八章 立体几何8.1 Word版含答案

2019版高考文科数学大一轮复习人教A版文档:第八章 立体几何8.1 Word版含答案
③根据圆台的定义和性质可知,命题③正确.
所以答案为①③.
思维升华(1)关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一反例即可.
(2)圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.
(3)既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.
答案③⑤
题组三易错自纠
4.某空间几何体的正视图是三角形,则该几何体不可能是()
A.圆柱B.圆锥
C.四面体D.三棱柱
答案A
解析由三视图知识知,圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形.
5.(2018·珠海质检)将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的侧视图为()
(6)菱形的直观图仍是菱形.(×)
题组二教材改编
2.[P19T3]由斜二测画法得到:
①相等的线段和角在直观图中仍然相等;
②正方形在直观图中是矩形;
③等腰三角形在直观图中仍然是等腰三角形;
④平行四边形的直观图仍然是平行四边形.
上述结论正确的个数是()
A.0B.1C.2D.3
答案B
解析逐一考查所给的说法:

半圆
直径所在的直线
3.空间几何体的三视图
(1)三视图的名称
几何体的三视图包括:正视图、侧视图、俯视图.
(2)三视图的画法
①在画三视图时,重叠的线只画一条,挡住的线要画成虚线.
②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察到的几何体的正投影图.

2019高考数学文一轮分层演练:第8章立体几何 章末总结 Word版含解析

2019高考数学文一轮分层演练:第8章立体几何 章末总结 Word版含解析

章末总结C.28πD.32πⅡ,T14,5分)α,β是两个平面,是两条直线,有下列四个命题:的中点;在平面P AC内的正投影ABCD中,AB∥CD,且∠一、选择题1.(必修2 P10B组T1改编)如图,若Ω是长方体ABCD-A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是()A.EH∥FG B.四边形EFGH是矩形C.Ω是棱柱D.Ω是棱台解析:选D.因为EH∥A1D1,A1D1∥B1C1,EH⊄平面BCC1B1,所以EH∥平面BCC1B1.又因为平面EFGH∩平面BCC1B1=FG,所以EH∥FG,且EH=FG,由长方体的特征知四边形EFGH为矩形,Ω为五棱柱,所以选项A,B,C都正确.故选D.2.(必修2 P61练习、P71练习T2、P73练习T1改编)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若α⊥γ,β⊥γ,则α∥βD.若m⊥α,n⊥α,则m∥n解析:选D.A中,两直线可能平行,相交或异面;B中,两平面可能平行或相交;C 中,两平面可能平行或相交;D中,由线面垂直的性质定理可知结论正确,故选D.3.(必修2 P78A组T7改编)正四棱锥的三视图如图所示,则它的外接球的表面积为()A .25πB .252πC .253πD .254π解析:选C .由三视图画出直观图与其外接球示意图,且设O 1是底面中心.由三视图知,O 1A =2,O 1P =3,所以正四棱锥P -ABCD 的外接球的球心O 在线段O 1P 上.设球O 的半径为R .由O 1O 2+O 1A 2=OA 2得(3-R )2+(2)2=R 2. 所以R =523.则外接球的表面积为S =4πR 2=4π·⎝⎛⎭⎫5232=253π.4.(必修2 P 79 B 组 T 2改编)如图,在正方体ABCD -A 1B 1C 1D 1中,B 1D ∩平面A 1BC 1=H . 有下列结论.①B 1D ⊥平面A 1BC 1;②平面A 1BC 1将正方体体积分成1∶5两部分; ③H 是B 1D 的中点;④平面A 1BC 1与正方体的六个面所成的二面角的余弦值都为33.则正确结论的个数有( )A .1B .2C .3D .4解析:选C .对于①,连接B 1C 与A 1D ,由正方体性质知,BC 1⊥B 1C ,BC 1⊥A 1B 1, 又A 1B 1∩B 1C =B 1,A 1B 1,B 1C ⊂平面A 1B 1CD . 所以BC 1⊥平面A 1B 1CD . 又B 1D ⊂平面A 1B 1CD . 所以B 1D ⊥BC 1.同理B 1D ⊥A 1B ,A 1B ∩BC 1=B . 所以B 1D ⊥平面A 1BC 1,故①正确. 对于②.设正方体棱长为a . 则V 三棱锥B -A 1B 1C 1=13·12a ·a ·a =16a 3.所以平面A 1BC 1将正方体分成两部分的体积之比为16a 3∶(a 3-16a 3)=1∶5.故②正确.对于③,设正方体棱长为a , 则A 1B =2a .由V B 1-A 1BC 1=16a 3,得13×34×(2a )2·B 1H =16a 3, 所以B 1H =33a ,而B 1D =3a . 所以B 1H ∶HD =1∶2,即③错误.对于④,由对称性知,平面A 1BC 1与正方体六个面所成的二面角的大小都相等. 由①知B 1H ⊥平面A 1BC 1,而A 1B 1⊥平面B 1BCC 1. 所以∠A 1B 1H 的大小即为所成二面角的大小.cos ∠A 1B 1H =B 1H A 1B 1=33aa =33.故④正确.故选C .二、填空题5.(必修2 P 53 B 组 T 2改编)已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,点A 1在底面ABC 上的射影D 为BC 的中点,则异面直线AB 与CC 1所成的角的余弦值为________.解析:连接A 1D ,AD ,A 1B ,易知∠A 1AB 为异面直线AB 和CC 1所成的角,设三棱柱的侧棱长与底面边长均为1,则AD =32,A 1D =12,A 1B =22,由余弦定理得cos ∠A 1AB =1+1-122×1×1=34. 答案:346.(必修2 P 79 B 组 T 1改编)如图在直角梯形ABCD 中,BC ⊥DC ,AE ⊥DC ,M ,N 分别是AD ,BE 的中点,将△ADE 沿AE 折起.则下列说法正确的是________.(填上所有正确说法的序号)①不论D 折至何位置(不在平面ABC 内)都有MN ∥平面DEC ; ②不论D 折至何位置都有MN ⊥AE ;③不论D 折至何位置(不在平面ABC 内)都有MN ∥AB ; ④在折起过程中,一定存在某个位置,使EC ⊥AD ; ⑤无论D 折至何位置,都有AE ⊥DC . 解析:如图,设Q ,P 分别为CE ,DE 的中点,可得四边形MNQP 是矩形,所以①②正确;不论D 折至何位置(不在平面ABC 内)都有MN 与AB 是异面直线,不可能MN ∥AB ,所以③错;当平面ADE ⊥平面ABCD 时,可得EC ⊥平面ADE ,故EC ⊥AD ,④正确.无论D 折到何位置,均有AE ⊥平面CDE .故AE ⊥CD .故⑤正确.答案:①②④⑤ 三、解答题7.(必修2 P 79B 组T 1改编)如图,边长为33的正方形ABCD 中,点E ,F 分别是边AB ,BC 上的点,将△AED ,△DCF 分别沿DE ,DF 折起,使A ,C 两点重合于点A ′.(1)求证:A ′D ⊥EF .(2)当BE =BF =13BC 时,求三棱锥A ′­EFD 的体积.解:(1)证明:因为A ′D ⊥A ′E ,A ′D ⊥A ′F , A ′E ∩A ′F =A ′,所以A ′D ⊥平面A ′EF , 因为EF ⊂平面A ′EF , 所以A ′D ⊥EF .(2)由(1)知,A ′D ⊥平面A ′EF ,所以A ′D 的长即为三棱锥D -A ′EF 的高, 则A ′E =A ′F =23BC =23,EF =BE 2+BF 2=6,作A ′O ⊥EF 于点O , 所以A ′O =A ′E 2-⎝⎛⎭⎫12EF 2=422,则V A ′­EFD =V D -A ′EF =13A ′D ·S △A ′EF =13×33×12EF ·A ′O =13×33×12×6×422=3212. 8.(必修2 P 78 A 组 T 4改编)如图,正方体ABCD -A 1B 1C 1D 1的棱长为2,E 、F 、M 分别是C 1B 1,C 1D 1和AB 的中点.(1)求证:MD 1∥平面BEFD . (2)求M 到平面BEFD 的距离. 解:(1)证明:连接BF .因为M 、F 分别为AB 与C 1D 1的中点,且ABCD -A 1B 1C 1D 1是正方体. 所以MB ═∥D 1F .所以四边形MBFD 1为平行四边形, 所以MD 1∥BF .又MD 1⊄平面BEFD ,BF ⊂平面BEFD . 所以MD 1∥平面BEFD . (2)过E 作EG ⊥BD 于G . 因为正方体的棱长为2,所以BE =5,BG =12(BD -EF )=12(22-2)=22.所以EG =BE 2-BG 2=5-12=322. 所以S △EBD =12BD ×EG =12×22×322=3.又S △MBD =12MB ×AD =12×1×2=1.E到平面ABCD的距离为2,设M到平面BEFD的距离为d.由V三棱锥M-BDE=V三棱锥E-MBD得13S△EBD·d=13S△MBD×2.所以d=S△MBD×2S△EBD =1×23=23.所以M到平面BED的距离为23.。

2019版高考数学一轮复习第八章平面解析几何

2019版高考数学一轮复习第八章平面解析几何



双曲线
课前·双基落实
想一想、辨一辨、试一试、全面打牢基础
课堂·考点突破
自主研、合作探、多面观、全扫命题题点

课后·三维演练
基础练、题型练、能力练、全练力保全能
课 前 双 基落实
想一想、辨一辨、试一试、全面打牢基础





1.双曲线的定义 平面内与两个定点F1, F2的 距离的差的绝对值等于非零 常数 (小于 |F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线 ______
2.双曲线的标准方程和几何性质 标准方程 x2 y2 y2 x2 - =1(a>0,b>0) 2- 2=1(a>0,b>0) a2 b2 a b
图形
性 质
范围 对称性
x≤-a 或 x≥a,y∈R y≤-a 或 y≥a,x∈R 对称轴: 坐标轴 对称中心: 原点
标准方程 顶点 渐近线 离心率 性 质 a,b,c 的关系
2 y 即其标准方程为x2- = 1. 2 2 y 答案:x2- =1 2
课 堂 考 点突破
自主研、合作探、多面观、全扫命题题点
考点一 双曲线的标准方程
[题组练透]
x2 y2 1. (2017· 天津高考 )已知双曲线 2- 2 = 1(a>0, b>0)的左焦点 a b 为 F,离心率为 2 .若经过 F和 P(0,4)两点的直线平行于双 ( )
x2 y2 解析:设要求的双曲线方程为 2- 2= 1(a>0, b>0), a b x2 y2 由椭圆 + =1,得椭圆焦点为(± 1,0),顶点为(± 2,0). 4 3 所以双曲线的顶点为(± 1,0),焦点为(± 2,0). 所以a= 1, c= 2,所以b2= c2- a2= 3,

2019版高考文科数学大一轮复习人教A版文档:第八章 立

2019版高考文科数学大一轮复习人教A版文档:第八章 立

§8.3 空间点、直线、平面之间的位置关系1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线互相平行. 2.直线与直线的位置关系 (1)位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行直线相交直线异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角). ②范围:⎝⎛⎦⎤0,π2. 3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况. 4.平面与平面的位置关系有平行、相交两种情况. 5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.知识拓展1.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.2.异面直线的判定定理经过平面内一点的直线与平面内不经过该点的直线互为异面直线.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.(√)(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.(×)(3)两个平面ABC与DBC相交于线段BC.(×)(4)经过两条相交直线,有且只有一个平面.(√)(5)没有公共点的两条直线是异面直线.(×)(6)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线.(×)题组二教材改编2.[P52B组T1(2)]如图所示,已知M,N分别是正方体ABCD—A1B1C1D1中BB1和B1C1的中点,则MN与CD1所成的角为________.答案60°解析连接AD1,AC,因为M,N分别是正方体ABCD—A1B1C1D1中BB1和B1C1的中点,所以AD1∥MN,故∠AD1C为MN与CD1所成的角或其补角,由于AC=AD1=D1C,故∠AD1C =60°,则MN与CD1所成的角为60°.3.[P45例2]如图,在三棱锥A—BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC ,BD 满足条件________时,四边形EFGH 为菱形; (2)当AC ,BD 满足条件________时,四边形EFGH 为正方形. 答案 (1)AC =BD (2)AC =BD 且AC ⊥BD 解析 (1)∵四边形EFGH 为菱形, ∴EF =EH ,故AC =BD .(2)∵四边形EFGH 为正方形,∴EF =EH 且EF ⊥EH , ∵EF 綊12AC ,EH 綊12BD ,∴AC =BD 且AC ⊥BD .题组三 易错自纠4.若P 是两条异面直线l ,m 外的任意一点,则( ) A .过点P 有且仅有一条直线与l ,m 都平行 B .过点P 有且仅有一条直线与l ,m 都垂直 C .过点P 有且仅有一条直线与l ,m 都相交 D .过点P 有且仅有一条直线与l ,m 都异面 答案 B解析 A 项,设过点P 的直线为n ,若n 与l ,m 都平行,则l ,m 平行,与l ,m 异面矛盾,A 错;B 项,l ,m 只有唯一的公垂线,而过点P 与公垂线平行的直线只有1条,B 对;C 项,如图所示,在正方体ABCD —A ′B ′C ′D ′中,设AD 为直线l ,A ′B ′为直线m ,若点P 在P 1点,显然无法作出直线与两直线都相交,C 错; D 项,若P 在P 2点,则直线CC ′及D ′P 2均与l ,m 异面,D 错. 5.下列命题正确的有________.(填序号) ①若直线与平面有两个公共点,则直线在平面内;②若直线l 上有无数个点不在平面α内,则l 与平面α平行; ③若直线l 与平面α相交,则l 与平面α内的任意直线都是异面直线;④如果两条异面直线中的一条与一个平面平行,则另一条直线一定与该平面相交; ⑤若直线l 与平面α平行,则l 与平面α内的直线平行或异面. 答案 ①⑤ 解析 ①正确;②错误,直线l 与平面α相交时,仍有无数个点不在平面α内; ③错误,直线l 与平面α内过该交点的直线不是异面直线; ④错误,另一条直线可能在该平面内;⑤正确.6.如图为正方体表面的一种展开图,则图中的四条线段AB ,CD ,EF ,GH 在原正方体中互为异面的对数为______.答案 3解析平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行.故互为异面的直线有且只有3对.题型一平面基本性质的应用典例如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.思维升华共面、共线、共点问题的证明(1)证明点或线共面问题的两种方法:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.(2)证明点共线问题的两种方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.跟踪训练已知正方体ABCD—A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q,求证:(1)D,B,F,E四点共面;(2)若A1C交平面BDEF于R点,则P,Q,R三点共线.证明如图.(1)∵EF是△D1B1C1的中位线,∴EF∥B1D1.在正方体AC1中,B1D1∥BD,∴EF∥BD.∴EF,DB确定一个平面,即D,B,F,E四点共面.(2)在正方体AC1中,设A1ACC1确定的平面为α,平面BDEF为β.∵Q∈A1C1,∴Q∈α.又Q∈EF,∴Q∈β,则Q是α与β的公共点,∴α∩β=PQ.又A1C∩β=R,∴R∈A1C,∴R∈α,且R∈β,则R∈PQ,故P,Q,R三点共线.题型二判断空间两直线的位置关系典例(1)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交答案 D解析方法一由于l与直线l1,l2分别共面,故直线l与l1,l2要么都不相交,要么至少与l1,l2中的一条相交.若l∥l1,l∥l2,则l1∥l2,这与l1,l2是异面直线矛盾.故l至少与l1,l2中的一条相交.方法二如图1,l1与l2是异面直线,l1与l平行,l2与l相交,故A,B不正确;如图2,l1与l2是异面直线,l1,l2都与l相交,故C不正确.(2)(2017·唐山一中月考)如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________.(填上所有正确答案的序号)答案②④解析在图①中,直线GH∥MN;在图②中,G,H,N三点共面,但M∉平面GHN,N∉GH,因此直线GH与MN异面;在图③中,连接GM,GM∥HN,因此GH与MN共面;在图④中,G,M,N共面,但H∉平面GMN,G∉MN,因此GH与MN异面.所以在图②④中GH与MN异面.思维升华空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.对于异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;对于垂直关系,往往利用线面垂直或面面垂直的性质来解决.跟踪训练 (1)(2016·山东)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交,故选A. (2)已知a ,b ,c 为三条不重合的直线,已知下列结论:①若a ⊥b ,a ⊥c ,则b ∥c ;②若a ⊥b ,a ⊥c ,则b ⊥c ;③若a ∥b ,b ⊥c ,则a ⊥c . 其中正确的个数为( ) A .0 B .1 C .2 D .3 答案 B解析 在空间中,若a ⊥b ,a ⊥c ,则b ,c 可能平行,也可能相交,还可能异面,所以①②错,③显然成立.题型三 求异面直线所成的角典例 (2018·南宁模拟)如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为( )A.15B.25C.35D.45答案 D解析 连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,由AB =1,AA 1=2,易得A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45,即异面直线A 1B 与AD 1所成角的余弦值为45.引申探究将上例条件“AA 1=2AB =2”改为“AB =1,若异面直线A 1B 与AD 1所成角的余弦值为910”,试求AA 1AB的值.解 设AA 1AB =t ,则AA 1=tAB .∵AB =1,∴AA 1=t .∵A 1C 1=2,A 1B =t 2+1=BC 1, ∴cos ∠A 1BC 1=t 2+1+t 2+1-22×t 2+1×t 2+1=910.∴t =3,即AA 1AB=3.思维升华 用平移法求异面直线所成的角的三步法 (1)一作:根据定义作平行线,作出异面直线所成的角; (2)二证:证明作出的角是异面直线所成的角;(3)三求:解三角形,求出所作的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.跟踪训练 在如图所示的正方体ABCD —A 1B 1C 1D 1中,E ,F 分别是棱B 1B ,AD 的中点,则异面直线BF 与D 1E 所成角的余弦值为( )A.147B.57C.105D.255答案 D解析 如图,过E 点作EM ∥AB ,过M 点作MN ∥AD ,取MN 的中点G ,所以平面EMN ∥平面ABCD ,EG ∥BF ,异面直线BF 与D 1E 所成的角,转化为∠D 1EG ,不妨设正方体的棱长为2,GE =5,D 1G =2,D 1E =3,在△D 1GE 中,由余弦定理 cos ∠D 1EG =9+5-22×3×5=255,故选D.构造模型判断空间线面位置关系典例已知m,n是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若m⊥α,n⊥β,m⊥n,则α⊥β;②若m∥α,n∥β,m⊥n,则α∥β;③若m⊥α,n∥β,m⊥n,则α∥β;④若m⊥α,n∥β,α∥β,则m⊥n.其中所有正确的命题是________.(填序号)思想方法指导本题可通过构造模型法完成,构造法实质上是结合题意构造符合题意的直观模型,然后利用模型直观地对问题作出判断,这样减少了抽象性,避免了因考虑不全面而导致解题错误.对于线面、面面平行、垂直的位置关系的判定,可构造长方体或正方体化抽象为直观去判断.解析借助于长方体模型来解决本题,对于①,可以得到平面α,β互相垂直,如图(1)所示,故①正确;对于②,平面α,β可能垂直,如图(2)所示,故②不正确;对于③,平面α,β可能垂直,如图(3)所示,故③不正确;对于④,由m⊥α,α∥β可得m⊥β,因为n∥β,所以过n作平面γ,且γ∩β=g,如图(4)所示,所以n与交线g平行,因为m⊥g,所以m⊥n,故④正确.答案①④1.在下列命题中,不是公理的是()A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线答案 A解析选项A是由公理推证出来的,而公理是不需要证明的.2.(2018·佛山模拟)在三棱柱ABC-A1B1C1中,E,F分别为棱AA1,CC1的中点,则在空间中与直线A1B1,EF,BC都相交的直线()A.不存在B.有且只有两条C.有且只有三条D.有无数条答案 D解析在EF上任意取一点M,直线A1B1与M确定一个平面,这个平面与BC有且仅有1个交点N,当M的位置不同时确定不同的平面,从而与BC有不同的交点N,而直线MN与A1B1,EF,BC分别有交点P,M,N,如图,故有无数条直线与直线A1B1,EF,BC都相交.3.(2017·济南模拟)a,b,c是两两不同的三条直线,下面四个命题中,真命题是() A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥c答案 C解析若直线a,b异面,b,c异面,则a,c相交、平行或异面;若a,b相交,b,c相交,则a,c相交、平行或异面;若a⊥b,b⊥c,则a,c相交、平行或异面;由异面直线所成的角的定义知C正确.故选C. 4.(2017·福州质检)直三棱柱ABC—A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°答案 C解析如图,延长CA到点D,使得AD=AC,连接DA1,BD,则四边形ADA1C1为平行四边形,所以∠DA1B就是异面直线BA1与AC1所成的角.又A1D=A1B=DB,所以△A1DB为等边三角形,所以∠DA1B=60°.故选C.5.下列命题中,正确的是()A.若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线B.若a,b是两条直线,且a∥b,则直线a平行于经过直线b的所有平面C.若直线a与平面α不平行,则此直线与平面内的所有直线都不平行D.若直线a∥平面α,点P∈α,则平面α内经过点P且与直线a平行的直线有且只有一条答案 D解析对于A,当α∥β,a,b分别为第三个平面γ与α,β的交线时,由面面平行的性质可知a∥b,故A错误.对于B,设a,b确定的平面为α,显然a⊂α,故B错误.对于C,当a⊂α时,直线a与平面α内的无数条直线都平行,故C错误.易知D正确.故选D.6.以下四个命题中,①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.正确命题的个数是()A.0 B.1 C.2 D.3答案 B解析①显然是正确的;②中若A,B,C三点共线,则A,B,C,D,E五点不一定共面;③中构造长方体(或正方体),如图所示,显然b,c异面,故不正确;④中空间四边形中四条线段不共面,故只有①正确.7.给出下列命题,其中正确的命题为________.(填序号)①如果线段AB在平面α内,那么直线AB在平面α内;②两个不同的平面可以相交于不在同一直线上的三个点A,B,C;③若三条直线a,b,c互相平行且分别交直线l于A,B,C三点,则这四条直线共面;④若三条直线两两相交,则这三条直线共面;⑤两组对边相等的四边形是平行四边形.答案①③8. 一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.以上四个命题中,正确命题的序号是________.答案①③解析如图,①AB⊥EF,正确;②显然AB∥CM,所以不正确;③EF与MN是异面直线,所以正确;④MN与CD异面,并且垂直,所以不正确,则正确的是①③.9.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.答案 4解析EF与正方体左、右两侧面均平行,所以与EF相交的平面有4个.10.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.答案 2D,AD,解析取圆柱下底面弧AB的另一中点D,连接C因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成的角即为异面直线AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点,所以C1D⊥圆柱下底面,所以C1D⊥AD.因为圆柱的轴截面ABB1A1是正方形,所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为 2.11.(2018·石家庄调研)如图,在正方体ABCD—A1B1C1D1中,O为正方形ABCD的中心,H为直线B1D与平面ACD1的交点.求证:D1,H,O三点共线.证明如图,连接BD,BD1,则BD ∩AC =O ,∵BB 1綊DD 1,∴四边形BB 1D 1D 为平行四边形,又H ∈B 1D ,B 1D ⊂平面BB 1D 1D ,则H ∈平面BB 1D 1D ,∵平面ACD 1∩平面BB 1D 1D =OD 1,∴H ∈OD 1.即D 1,H ,O 三点共线.12.如图所示,等腰直角三角形ABC 中,∠A =90°,BC =2,DA ⊥AC ,DA ⊥AB ,若DA =1,且E 为DA 的中点,求异面直线BE 与CD 所成角的余弦值.解 如图所示,取AC 的中点F ,连接EF ,BF ,∵在△ACD 中,E ,F 分别是AD ,AC 的中点,∴EF ∥CD .∴∠BEF 或其补角即为异面直线BE 与CD 所成的角.在Rt △EAB 中,AB =AC =1,AE =12AD =12, ∴BE =52. 在Rt △EAF 中,AF =12AC =12,AE =12,∴EF =22. 在Rt △BAF 中,AB =1,AF =12,∴BF =52. 在等腰三角形EBF 中,cos ∠FEB =12EF BE =2452=1010. ∴异面直线BE 与CD 所成角的余弦值为1010.13.(2018·长春质检)若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定答案 D解析 如图,在长方体ABCD —A 1B 1C 1D 1中,记l 1=DD 1,l 2=DC ,l 3=DA .若l 4=AA 1,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,此时l 1∥l 4,可以排除选项A 和C.若取C 1D 为l 4,则l 1与l 4相交;若取BA 为l 4,则l 1与l 4异面;若取C 1D 1为l 4,则l 1与l 4相交且垂直.因此l 1与l 4的位置关系不能确定.14.(2017·郑州质检)如图,在矩形ABCD 中,AB =2AD ,E 为边AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE .若M 为线段A 1C 的中点,则在△ADE 翻折过程中,下列四个命题中不正确的是________.(填序号)①BM 是定值;②点M 在某个球面上运动;③存在某个位置,使DE ⊥A 1C ;④存在某个位置,使MB ∥平面A 1DE .答案 ③解析 取DC 的中点F ,连接MF ,BF ,则MF ∥A 1D 且MF =12A 1D ,FB ∥ED 且FB =ED ,所以∠MFB =∠A 1DE .由余弦定理可得MB 2=MF 2+FB 2-2MF ·FB ·cos ∠MFB 是定值,所以M 是在以B 为球心,MB 为半径的球上,可得①②正确;由MF ∥A 1D 与FB ∥ED 可得平面MBF ∥平面A 1DE ,可得④正确;若存在某个位置,使DE ⊥A 1C ,则因为DE 2+CE 2=CD 2,即CE ⊥DE ,因为A 1C ∩CE =C ,则DE ⊥平面A 1CE ,所以DE ⊥A 1E ,与DA 1⊥A 1E 矛盾,故③不正确.15.(2017·山西四校联考)如图,已知正方体ABCD —A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,点N 在正方体的底面ABCD 内运动,则MN 的中点P 的轨迹的面积是( )A .4πB .πC .2π D.π2答案 D解析 连接DN ,则△MDN 为直角三角形,在Rt △MDN 中,MN =2,P 为MN 的中点,连接DP ,则DP =1,所以点P 在以D 为球心,半径R =1的球面上,又因为点P 只能落在正方体上或其内部,所以点P 的轨迹的面积等于该球面面积的18,故所求面积S =18×4πR 2=π2. 16.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,CC 1的中点,则在空间中与三条直线A 1D 1,EF ,CD 都相交的直线有________条.答案 无数解析 方法一 在EF 上任意取一点M ,直线A 1D 1与M 确定一个平面,这个平面与CD 有且仅有1个交点N ,M 取不同的位置就确定不同的平面,从而与CD 有不同的交点N ,而直线MN 与这3条异面直线都有交点.如图所示.方法二 (图略)在A 1D 1上任取一点P ,过点P 与直线EF 作一个平面α,因CD 与平面α不平行,所以它们相交,设它们交于点Q ,连接PQ ,则PQ 与EF 必然相交,即PQ 为所求直线.由点P 的任意性,知有无数条直线与三条直线A 1D 1,EF ,CD 都相交.。

2019届高考数学一轮复习第八章平面解析几何第五节椭圆课时作业201807203226

2019届高考数学一轮复习第八章平面解析几何第五节椭圆课时作业201807203226

第五节 椭圆课时作业 A 组——基础对点练1.已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .9 解析:由4=25-m 2(m >0)⇒m =3,故选B. 答案:B2.方程kx 2+4y 2=4k 表示焦点在x 轴上的椭圆,则实数k 的取值范围是( ) A .k >4 B .k =4 C .k <4D .0<k <4解析:方程kx 2+4y 2=4k 表示焦点在x 轴上的椭圆,即方程x 24+y 2k=1表示焦点在x 轴上的椭圆,可得0<k <4,故选D. 答案:D3.已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( ) A.x 24+y 23=1 B .x 28+y 26=1C.x 22+y 2=1 D .x 24+y 2=1解析:依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1,故选A. 答案:A4.椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B ,左、右焦点分别为F 1,F 2,若|AF 1|,|F 1F 2|,|F 1B |成等差数列,则此椭圆的离心率为( ) A.12 B .55C.14D .5-2解析:由题意可得2|F 1F 2|=|AF 1|+|F 1B |,即4c =a -c +a +c =2a ,故e =c a =12.答案:A5.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π4,则椭圆和双曲线的离心率乘积的最小值为( ) A.12 B .22C .1D . 2解析:如图,假设F 1,F 2分别是椭圆和双曲线的左、右焦点,P 是第一象限的点,设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,则根据椭圆及双曲线的定义得|PF 1|+|PF 2|=2a 1,|PF 1|-|PF 2|=2a 2,∴|PF 1|=a 1+a 2,|PF 2|=a 1-a 2.设|F 1F 2|=2c ,又∠F 1PF 2=π4,则在△PF 1F 2中,由余弦定理得,4c 2=(a 1+a 2)2+(a 1-a 2)2-2(a 1+a 2)(a 1-a 2)cos π4,化简得,(2-2)a 21+(2+2)a 22=4c 2,设椭圆的离心率为e 1,双曲线的离心率为e 2,∴2-2e 21+2+2e22=4,又2-2e 21+2+2e 22≥2 2-2e 21·2+2e 22=22e 1·e 2, ∴22e 1·e 2≤4,即e 1·e 2≥22,即椭圆和双曲线的离心率乘积的最小值为22.故选B. 答案:B6.若x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是________.解析:将椭圆的方程化为标准形式得y 22k+x 22=1,因为x 2+ky 2=2表示焦点在y 轴上的椭圆,所以2k>2,解得0<k <1.答案:(0,1)7.若椭圆的方程为x 210-a +y 2a -2=1,且此椭圆的焦距为4,则实数a =________.解析:由题可知c =2.①当焦点在x 轴上时,10-a -(a -2)=22,解得a =4.②当焦点在y 轴上时,a -2-(10-a )=22,解得a =8.故实数a =4或8. 答案:4或88.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率等于13,其焦点分别为A ,B .C 为椭圆上异于长轴端点的任意一点,则在△ABC 中,sin A +sin Bsin C的值等于________.解析:在△ABC 中,由正弦定理得sin A +sin B sin C =|CB |+|CA ||AB |,因为点C 在椭圆上,所以由椭圆定义知|CA |+|CB |=2a ,而|AB |=2c ,所以sin A +sin B sin C =2a 2c =1e =3.答案:39.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1(-c,0),F 2(c,0),过F 2作垂直于x 轴的直线l 交椭圆C 于A ,B 两点,满足|AF 2|=36c . (1)求椭圆C 的离心率;(2)M ,N 是椭圆C 短轴的两个端点,设点P 是椭圆C 上一点(异于椭圆C 的顶点),直线MP ,NP 分别和x 轴相交于R ,Q 两点,O 为坐标原点.若|OR →|·|OQ →|=4,求椭圆C 的方程.解析:(1)∵点A 的横坐标为c ,代入椭圆,得c 2a 2+y 2b2=1.解得|y |=b 2a =|AF 2|,即b 2a =36c ,∴a 2-c 2=36ac . ∴e 2+36e -1=0,解得e =32. (2)设M (0,b ),N (0,-b ),P (x 0,y 0), 则直线MP 的方程为y =y 0-bx 0x +b . 令y =0,得点R 的横坐标为bx 0b -y 0. 直线NP 的方程为y =y 0+bx 0x -b . 令y =0,得点Q 的横坐标为bx 0b +y 0. ∴|OR →|·|OQ →|=⎪⎪⎪⎪⎪⎪b 2x 20b 2-y 20=⎪⎪⎪⎪⎪⎪a 2b 2-a 2y 20b 2-y 20=a 2=4,∴c 2=3,b 2=1,∴椭圆C 的方程为x 24+y 2=1.10.(2018·沈阳模拟)椭圆C :x 2a 2+y 2b 2=1(a >b >0),其中e =12,焦距为2,过点M (4,0)的直线l 与椭圆C 交于点A ,B ,点B 在A ,M 之间.又线段AB 的中点的横坐标为47,且AM →=λMB →.(1)求椭圆C 的标准方程. (2)求实数λ的值.解析:(1)由条件可知,c =1,a =2,故b 2=a 2-c 2=3,椭圆的标准方程为x 24+y 23=1.(2)由题意可知A ,B ,M 三点共线, 设点A (x 1,y 1),点B (x 2,y 2).若直线AB ⊥x 轴,则x 1=x 2=4,不合题意. 则AB 所在直线l 的斜率存在,设为k , 则直线l 的方程为y =k (x -4).由⎩⎪⎨⎪⎧y =k x -4,x 24+y23=1,消去y 得(3+4k 2)x 2-32k 2x +64k 2-12=0.①由①的判别式Δ=322k 4-4(4k 2+3)·(64k 2-12)=144(1-4k 2)>0,解得k 2<14,且⎩⎪⎨⎪⎧x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3.由x 1+x 22=16k 23+4k 2=47, 可得k 2=18,将k 2=18代入方程①,得7x 2-8x -8=0.则x 1=4-627,x 2=4+627.又因为AM →=(4-x 1,-y 1),MB →=(x 2-4,y 2), AM →=λMB →,所以λ=4-x 1x 2-4,所以λ=-9-427.B 组——能力提升练1.(2018·合肥市质检)已知椭圆M :x 2a2+y 2=1,圆C :x 2+y 2=6-a 2在第一象限有公共点P ,设圆C 在点P 处的切线斜率为k 1,椭圆M 在点P 处的切线斜率为k 2,则k 1k 2的取值范围为( ) A .(1,6) B .(1,5) C .(3,6)D .(3,5)解析:由于椭圆M :x 2a 2+y 2=1,圆C :x 2+y 2=6-a 2在第一象限有公共点P ,所以⎩⎪⎨⎪⎧a 2>6-a 2,6-a 2>1,解得3<a 2<5.设椭圆M :x 2a2+y 2=1与圆C :x 2+y 2=6-a 2在第一象限的公共点P (x 0,y 0),则椭圆M 在点P 处的切线方程为x 0x a2+y 0y =1,圆C 在P 处的切线方程为x 0x +y 0y =6-a 2,所以k 1=-x 0y 0,k 2=-x 0a 2y 0,k 1k 2=a 2,所以k 1k 2∈(3,5),故选D. 答案:D2.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2c ,若椭圆上存在点M 使得sin ∠MF 1F 2a =sin ∠MF 2F 1c,则该椭圆离心率的取值范围为( )A .(0,2-1)B .(22,1) C .(0,22) D .(2-1,1)解析:在△MF 1F 2中,|MF 2|sin ∠MF 1F 2=|MF 1|sin ∠MF 2F 1,而sin ∠MF 1F 2a =sin ∠MF 2F 1c,∴|MF 2||MF 1|=sin ∠MF 1F 2sin ∠MF 2F 1=a c.① 又M 是椭圆x 2a 2+y 2b 2=1上一点,F 1,F 2是该椭圆的焦点,∴|MF 1|+|MF 2|=2a .②由①②得,|MF 1|=2ac a +c ,|MF 2|=2a2a +c .显然,|MF 2|>|MF 1|,∴a -c <|MF 2|<a +c ,即a -c <2a2a +c <a +c ,整理得c 2+2ac -a 2>0, ∴e 2+2e -1>0, 解得e >2-1,又e <1, ∴2-1<e <1,故选D. 答案:D3.已知P (1,1)为椭圆x 24+y 22=1内一定点,经过P 引一条弦,使此弦被P 点平分,则此弦所在的直线方程为________.解析:易知此弦所在直线的斜率存在,所以设斜率为k ,弦的端点坐标为(x 1,y 1),(x 2,y 2), 则x 214+y 212=1,① x 224+y 222=1,② ①-②得x 1+x 2x 1-x 24+y 1+y 2y 1-y 22=0,∵x 1+x 2=2,y 1+y 2=2, ∴x 1-x 22+y 1-y 2=0,∴k =y 1-y 2x 1-x 2=-12. ∴此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0. 答案:x +2y -3=04.已知椭圆C :x 22+y 2=1的两焦点为F 1,F 2,点P (x 0,y 0)满足0<x 202+y 20<1,则|PF 1|+|PF 2|的取值范围是________.解析:由点P (x 0,y 0)满足0<x 202+y 20<1,可知P (x 0,y 0)一定在椭圆内(不包括原点),因为a=2,b =1,所以由椭圆的定义可知|PF 1|+|PF 2|<2a =22,当P (x 0,y 0)与F 1或F 2重合时,|PF 1|+|PF 2|=2,又|PF 1|+|PF 2|≥|F 1F 2|=2,故|PF 1|+|PF 2|的取值范围是[2,22). 答案:[2,22)5.(2018·保定模拟)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,a +b =3.(1)求椭圆C 的方程.(2)如图,A ,B ,D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m .证明:2m -k 为定值.解析:(1)因为e =32=c a , 所以a =23c ,b =13c .代入a +b =3得,c =3,a =2,b =1.故椭圆C 的方程为x 24+y 2=1.(2)证明:因为B (2,0),P 不为椭圆顶点,则直线BP 的方程为y =k (x -2)⎝ ⎛⎭⎪⎫k ≠0,k ≠±12,①把①代入x 24+y 2=1,解得P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1.直线AD 的方程为y =12x +1.②①与②联立解得M ⎝⎛⎭⎪⎫4k +22k -1,4k 2k -1.由D (0,1),P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1,N (x,0)三点共线知-4k4k 2+1-18k 2-24k 2+1-0=0-1x -0,得N ⎝⎛⎭⎪⎫4k -22k +1,0.所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k 2k +122k +12-22k -12=2k +14,则2m -k =2k +12-k =12(定值).附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。

2019年高考数学(文科)一轮分层演练:第8章立体几何第4讲(含答案解析)

2019年高考数学(文科)一轮分层演练:第8章立体几何第4讲(含答案解析)

[学生用书P252(单独成册)]一、选择题1.设α,β是两个不同的平面,m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分不必要条件是()A.m∥l1且n∥l2B.m∥β且n∥l2C.m∥β且n∥βD.m∥β且l1∥α解析:选A.由m∥l1,m⊂α,得l1∥α,同理l2∥α,又l1,l2相交,l1,l2⊂β,所以α∥β,反之不成立,所以m∥l1且n∥l2是α∥β的一个充分不必要条件.2.已知m,n,l是不同的直线,α,β是不同的平面,以下命题正确的是()①若m∥n,m⊂α,n⊂β,则α∥β;②若m⊂α,n⊂β,α∥β,l⊥m,则l⊥n;③若m⊥α,n⊥β,α∥β,则m∥n;④若α⊥β,m∥α,n∥β,则m⊥n.A.①③B.③④C.②④D.③解析:选D.①若m∥n,m⊂α,n⊂β,则α∥β或α,β相交;②若m⊂α,n⊂β,α∥β,l⊥m,则l⊥n或l∥n或l,n异面;③正确;④若α⊥β,m∥α,n∥β,则m⊥n或m∥n或m,n异面.3.如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则()A.BD∥平面EFGH,且四边形EFGH是矩形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是菱形D.EH∥平面ADC,且四边形EFGH是平行四边形解析:选B.由AE∶EB=AF∶FD=1∶4知EF═∥15BD,所以EF∥平面BCD.又H,G分别为BC,CD的中点,所以HG═∥12BD,所以EF∥HG且EF≠HG.所以四边形EFGH是梯形.4.在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,给出下列四个推断:①FG∥平面AA1D1D;②EF∥平面BC1D1;③FG∥平面BC1D1;④平面EFG∥平面BC1D1.其中推断正确的序号是()A.①③B.①④C.②③D.②④解析:选A.因为在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,所以FG∥BC1,因为BC1∥AD1,所以FG∥AD1,因为FG⊄平面AA1D1D,AD1⊂平面AA1D1D,所以FG∥平面AA1D1D,故①正确;因为EF∥A1C1,A1C1与平面BC1D1相交,所以EF与平面BC1D1相交,故②错误;因为E,F,G分别是A1B1,B1C1,BB1的中点,所以FG∥BC1,因为FG⊄平面BC1D1,BC1⊂平面BC1D1,所以FG∥平面BC1D1,故③正确;因为EF与平面BC1D1相交,所以平面EFG与平面BC1D1相交,故④错误.故选A.5.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列命题:①若m∥l,且m⊥α,则l⊥α;②若m∥l,且m∥α,则l∥α;③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.其中正确命题的个数是()A.1 B.2C.3 D.4解析:选B.由题易知①正确;②错误,l也可以在α内;③错误,以墙角为例即可说明;④正确,可以以三棱柱为例说明,故选B.6.如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列说法中,错误的为( ) A .AC ⊥BD B .AC =BD C .AC ∥截面PQMND .异面直线PM 与BD 所成的角为45° 解析:选B .因为截面PQMN 是正方形, 所以PQ ∥MN ,QM ∥PN ,则PQ ∥平面ACD 、QM ∥平面BDA , 所以PQ ∥AC ,QM ∥BD ,由PQ ⊥QM 可得AC ⊥BD ,故A 正确; 由PQ ∥AC 可得AC ∥截面PQMN ,故C 正确; 由BD ∥PN ,所以∠MPN 是异面直线PM 与BD 所成的角,且为45°,D 正确; 由上面可知:BD ∥PN ,MN ∥AC . 所以PN BD =AN AD ,MN AC =DN AD ,而AN ≠DN ,PN =MN , 所以BD ≠AC .B 错误.故选B . 二、填空题 7.如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH 所在四边形的面积为定值; ③棱A 1D 1始终与水面所在平面平行; ④当容器倾斜如图所示时,BE ·BF 是定值. 其中正确的命题是________.解析:由题图,显然①是正确的,②是错误的;对于③,因为A 1D 1∥BC ,BC ∥FG , 所以A 1D 1∥FG 且A 1D 1⊄平面EFGH , 所以A 1D 1∥平面EFGH (水面). 所以③是正确的;对于④,因为水是定量的(定体积V ), 所以S △BEF ·BC =V ,即12BE ·BF ·BC =V .所以BE ·BF =2VBC (定值),即④是正确的.答案:①③④8.棱长为2的正方体ABCD -A 1B 1C 1D 1中,M 是棱AA 1的中点,过C ,M ,D 1作正方体的截面,则截面的面积是________.解析:由面面平行的性质知截面与平面AB 1的交线MN 是△AA 1B 的中位线,所以截面是梯形CD 1MN ,易求其面积为92.答案:929.已知平面α∥β,P ∉α且P ∉ β,过点P 的直线m 与α,β分别交于A ,C ,过点P 的直线n 与α,β分别交于B ,D ,且P A =6,AC =9,PD =8,则BD 的长为________.解析:如图1,因为AC ∩BD =P ,图1所以经过直线AC 与BD 可确定平面PCD . 因为α∥β,α∩平面PCD =AB , β∩平面PCD =CD ,所以AB ∥CD .所以P A AC =PBBD ,即69=8-BD BD ,所以BD =245. 如图2,同理可证AB ∥CD .图2所以P A PC =PB PD ,即63=BD -88,所以BD =24.综上所述,BD =245或24.答案:245或2410.如图,在直三棱柱ABC -A 1B 1C 1中,若BC ⊥AC ,∠BAC =π3,AC =4,M 为AA 1的中点,点P 为BM 的中点,Q 在线段CA 1上,且A 1Q =3QC ,则PQ 的长度为________.解析:由题意知,AB =8,过点P 作PD ∥AB 交AA 1于点D ,连接DQ ,则D 为AM 的中点,PD =12AB =4.又因为A 1Q QC =A 1D AD=3,所以DQ ∥AC ,∠PDQ =π3,DQ =34AC =3,在△PDQ 中,PQ =42+32-2×4×3×cos π3=13.答案:13 三、解答题11.如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为菱形,E ,F 分别是线段A 1D ,BC 1的中点.延长D 1A 1到点G ,使得D 1A 1=A 1G .证明:GB ∥平面DEF .证明:连接A 1C ,B 1C ,则B 1C ,BC 1交于点F .因为CB ═∥D 1A 1,D 1A 1=A 1G ,所以CB ═∥A 1G ,所以四边形BCA 1G 是平行四边形,所以GB ∥A 1C . 又GB ⊄平面A 1B 1CD ,A 1C ⊂平面A 1B 1CD , 所以GB ∥平面A 1B 1CD .又点D ,E ,F 均在平面A 1B 1CD 内,所以GB ∥平面DEF . 12.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是BC ,CC 1,C 1D 1,A 1A 的中点.求证: (1)BF ∥HD 1; (2)EG ∥平面BB 1D 1D ; (3)平面BDF ∥平面B 1D 1H . 证明:(1)如图所示,取BB 1的中点M ,连接MH ,MC 1,易证四边形HMC 1D 1是平行四边形, 所以HD 1∥MC 1. 又因为MC 1∥BF , 所以BF ∥HD 1.(2)取BD 的中点O ,连接EO ,D 1O , 则OE ═∥12DC ,又D 1G ═∥12DC , 所以OE ═∥D 1G ,所以四边形OEGD 1是平行四边形,所以GE ∥D 1O . 又GE ⊄平面BB 1D 1D ,D 1O ⊂平面BB 1D 1D ,所以EG ∥平面BB 1D 1D .(3)由(1)知BF ∥HD 1,又BD ∥B 1D 1,B 1D 1,HD 1⊂平面B 1D 1H ,BF ,BD ⊂平面BDF ,且B 1D 1∩HD 1=D 1,DB ∩BF =B ,所以平面BDF ∥平面B 1D 1H .1.如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形.(1)证明:平面A 1BD ∥平面CD 1B 1;(2)若平面ABCD ∩平面B 1D 1C =直线l ,证明B 1D 1∥l . 证明:(1)由题设知BB 1═∥DD 1, 所以四边形BB 1D 1D 是平行四边形, 所以BD ∥B 1D 1. 又BD ⊄平面CD 1B 1, B 1D 1⊂平面CD 1B 1, 所以BD ∥平面CD 1B 1.因为A 1D 1═∥B 1C 1═∥BC , 所以四边形A 1BCD 1是平行四边形, 所以A 1B ∥D 1C .又A 1B ⊄平面CD 1B 1,D 1C ⊂平面CD 1B 1, 所以A 1B ∥平面CD 1B 1. 又因为BD ∩A 1B =B , 所以平面A 1BD ∥平面CD 1B 1. (2)由(1)知平面A 1BD ∥平面CD 1B 1, 又平面ABCD ∩平面B 1D 1C =直线l , 平面ABCD ∩平面A 1BD =直线BD , 所以直线l ∥直线BD ,在四棱柱ABCD -A 1B 1C 1D 1中,四边形BDD 1B 1为平行四边形, 所以B 1D 1∥BD , 所以B 1D 1∥l .2.如图,ABCD 与ADEF 为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.(1)求证:BE ∥平面DMF ; (2)求证:平面BDE ∥平面MNG .证明:(1)如图,连接AE ,则AE 必过DF 与GN 的交点O ,连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO ,又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB中点,所以MN为△ABD的中位线,所以BD∥MN,又BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG,又DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.。

(共8套)2019年高考数学章节练习题集第8章立体几何.doc

(共8套)2019年高考数学章节练习题集第8章立体几何.doc

第八章立体几何W第1讲空间几何体的结构、三视图和直观图.docx 岂第2讲空间几何体的表面积与体积.docx岂第3讲空间点、直线、平面之间的位置关系.docx 岂:第4讲直线、平面平行的判走及其性质.docx岂第5讲直线、平面垂直的判走及其性质.docxW第6讲空间向量及其运算.docx第7讲立体几何中的向呈方法(一).docx第8讲立体几何中的向量方法(二).docx第1讲空间几何体的结构、三视图和直观一、选择题1.下列四个几何体屮,几何体只有主视图和左视图相同的是()©①止方体A②圆锥③三棱台④止四棱锥A.①②B.①③C.①④D.②④解析由几何体分析知②④中主视图和左视图相同.答案D2.以下关于几何体的三视图的论述屮,正确的是().A.球的三视图总是三个全等的圆B.止方体的三视图总是三个全等的止方形C.水平放置的正四而体的三视图都是正三角形D.水平放置的圆台的俯视图是一个圆解析画几何体的三视图要考虑视角,但对于球无论选择怎样的视角,其三视图总是三个全等的圆.答案A3.将正方体(如图(a)所示)截去两个三棱锥,得到图(b)所示的几何体,则该几何体的侧视图为解析还原正方体后,将D, D, A 三点分别向正方体右侧面作垂线,DyA 的射影为GB,且为实线,BiC 被遮挡应为虚线.答案B4. 若某儿何体的三视图如图所示,则这个儿何体的直观图可以是().解析 A, B 的正视图不符合要求,C 的俯视图显然不符合要求,答案选D.答案D5. 一个平而四边形的斜二测画法的直观图是一个边长为日的正方形,则原平面)・左视A BD侧视图四边形的面积等于().答案B图的是解析 选项C 不符合三视图中“宽相等”的要求. 答案c 二、填空题7.如图所示,E 、F 分别为止方体ABCD-A }B X C }D X 的面ADD^Ai.面BCCiBi 的中心,则四边形BFD X E 在该正方体的面DCGD 上的投影是 ________ (填序号).A.B. 2y[2a解析 根据斜二测画法画平面图形的直观图的规则,可以得出一个平面图形的面积S 与它的直观图的面积C 之间的关系是c =芈$木题中直观图的面积为才,所以原平面四边形的面积等于=2电才.故选B. 6. 一个锥体的正视图和侧视图如图所示, 下面选项中,不可能是该锥体的俯视)・D .4③ ④解析B在面DCCQi上的投影为C, F、E在面DCqDj上的投影应分别在边CC]和DDi上,而不在四边形的内部,故①③④错误.答案②8. ______________________________________ 如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为 _______________________________________ ・解析(构造法)由主视图和俯视图可知几何体是正方体切割后的一部分(四棱锥G ABCE ,还原在正方体中,如图所示.多面体最长的一条棱即为正方体的体对角线,如图即由正方体棱长AB=2知最长棱AQ的长为2^3.答案2书9.利用斜二测画法得到的:①三角形的直观图一定是三角形;②正方形的直观图一定是菱形;③等腰梯形的直观图可以是平行四边形;④菱形的直观图一定是菱形.以上正确结论的序号是 _______ .解析由斜二测画法的规则可知①正确;②错误,是一般的平行四边形;③ 错误,等腰梯形的直观图不可能是平行四边形;而菱形的直观图也不一定是菱形,④也错误.答案①10.图(a)为长方体积木块堆成的儿何体的三视图,此儿何体共由_________ 块木块堆成;图(b)中的三视图表示的实物为________ .解析(1)由三视图可知从正面看到三块,从侧面看到三块,结合俯视图可判 断几何体共由4块长方体组成.(2)由三视图可知几何体为圆锥. 答案4圆锥三、解答题11. 如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它 的主视图和左视图在下面画出(单位:cm).(1)在主视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;图(a) 侧视图图(b)解⑴如图.(2)所求多面体的体积&亞瑚一孑正三昨=4X4X6—lxhx2X2〕X212. 已知圆锥的底面半径为厂,高为h,且正方体ABCD — A5GD内接于圆锥,求这个正方体的棱长.解 如图所示,过内接止方体的一组对棱作圆锥的轴截 面,设圆锥内接正方体的棱长为兀,则在轴截面屮,正方体的对角面AxACCy 的一组邻边的长分别为x 和迈兀.・・・△以I Cl S △ VMN,.h~x .Irh・• 2r =~lT f2=2+^即圆锥内接正方体的棱长为不詬・13・正四棱锥的高为羽,侧棱长为羽,求侧面上斜高(棱锥侧面三角形的高)为多少?解 如图所示,在正四棱锥S —ABCD 中, 高 0S=书,侧棱 SA = SB=SC=SD=\fj, 在RtASOA 中,OA=ylSA 2~OS 2=2, :.AC=4, ・・・AB=BC=CD=DA=2©作0E 丄AB 于E,则E 为AB 中点. 连接SE,则SE 即为斜高,284=~(cn?)・ V图5解(1)该三棱锥在侧(右)投影面上的投影是一直角三角形,该三棱锥的侧视 图应是图2.(2)该儿何体是三棱锥,其直观图如图所示,其中 04、08、OC 两两垂直,•••△OAB 、△OAC 、/\OBC 都是肓角三角形,但△ABC 是锐角三角形•设AO=a, OC=c, OB=b,则 AC=yJa 2+ c 29 BC=ylc 2+ b 2, AB=yJa 2+b 2,•I cosZBAC=庆 V?+/>o,・•・ABAC 为锐角.同理,ZABC. ZACB 也是锐角.综上所述,该几何体的面中共有三个直角三角形.(3)该几何体是三棱锥,其直观图如图所示,其屮,丄BC,在 RtASOE 中,•:OE=*BC=d SO=书,・・・SE=E 即侧面上的斜高为书.14. (1)如图1所示的三棱锥的三条侧棱04、OB 、0C 两两垂直,那么该三棱 锥的侧视图是图2还是图3?(2)某几何体的三视图如图4,问该几何体的面中有几个直角三角形? (3)某几何体的三视图如图5,问该几何体的面中有几个直角三角形?俯视图图4正视图 侧视图俯视图ADAB丄BD, BDA.CD, :.DC丄面ABD, :.DC-LAD f ・・・△ACD也是直角三角形.・・・该几何体的面中共有四个直角三角形.第2讲空间几何体的表面积与体积一、选择题1.棱长为2的正四面体的表面积是().A.、/§B. 4 C・ 4、信D・16解析每个而的而积为:-X2X2X^-=V3- ••-正四而体的表而积为:4^3. 答案C2.把球的表面积扩大到原来的2倍,那么体积扩大到原来的()・A.2倍B. 2型倍Cp倍 D.远倍解析由题意知球的半径扩大到原来的电倍,则体积$=討#,知体积扩大到原来的2迈倍.答案B3.一个儿何体的三视图如图所示,那么此儿何体的侧面积(单位:cn?)为().A.48B. 64 C・ 80解析据三视图知,该几何体是一个正四棱锥(底面边长为8),直观图如图,PE 为侧面AB4B的边AB上的高,且PE=5..・.此几何1c体的侧面积是S=4S=4X-X8X5 = 80(cm 2)・答案C4. 已知三棱锥S-ABC 的所有顶点都在球0的球面上,△ABC 是边长为1的正 三角形,SC 为球0的直径,且SC=2,则此棱锥的体积为()•A.解析 在直角三角形 ASC 中,AC=1, ZSAC=90。

2019高考数学文一轮分层演练:第8章立体几何 第2讲 Word版含解析

2019高考数学文一轮分层演练:第8章立体几何 第2讲 Word版含解析

[学生用书P248(单独成册)]一、选择题1、圆柱的底面积为S ,侧面展开图是一个正方形,那么圆柱的侧面积是( ) A 、4πS B 、2πS C 、πSD 、233πS解析:选A 、由πr 2=S 得圆柱的底面半径是Sπ,故侧面展开图的边长为2π·Sπ=2πS ,所以圆柱的侧面积是4πS ,故选A 、2、如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的体积是( )A 、πB 、π3C 、3πD 、3π3解析:选D 、由三视图可知,该几何体是两个同底的半圆锥,其中底的半径为1,高为22-12=3,因此体积=2×12×13π×12×3=33π、3、如图所示的是一个几何体的三视图,则该几何体的表面积为( )A 、20B 、22C 、24D 、26解析:选D 、该几何体为一个长方体从正上方挖去一个半圆柱剩下的部分,长方体的长,宽,高分别为4,1,2,挖去半圆柱的底面半径为1,高为1,所以表面积为S =S 长方体表-2S 半圆柱底-S 圆柱轴截面+S 半圆柱侧=2×4×1+2×1×2+2×4×2-π×12-2×1+12×2π×1=26、故选D 、4、(2018·兰州诊断考试)某几何体的三视图如图所示,则该几何体的表面积为( )A 、(9+5)πB 、(9+25)πC 、(10+5)πD 、(10+25)π解析:选A 、由三视图可知,该几何体为一个圆柱挖去一个同底的圆锥,且圆锥的高是圆柱高的一半、故该几何体的表面积S =π×12+4×2π+12×2π×5=(9+5)π、5、(2018·云南第一次统考)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A 、12B 、18C 、24D 、30解析:选C 、由三视图知,该几何体是直三棱柱削去一个同底的三棱锥,其中三棱柱的高为5,削去的三棱锥的高为3,三棱锥与三棱柱的底面均为两直角边分别为3和4的直角三角形,所以该几何体的体积为12×3×4×5-13×12×3×4×3=24,故选C 、6、正四棱锥P -ABCD 的侧棱和底面边长都等于22,则它的外接球的表面积是( )A 、16πB 、12πC 、8πD 、4π解析:选A 、设正四棱锥的外接球半径为R ,顶点P 在底面上的射影为O ,因为OA =12AC=12AB 2+BC 2=12(22)2+(22)2=2,所以PO =P A 2-OA 2=(22)2-22=2、又OA =OB =OC =OD =2,由此可知R =2,于是S 球=4πR 2=16π、二、填空题7、将一个边长分别为4π,8π的矩形卷成一个圆柱,则这个圆柱的表面积是________、 解析:当以长度为4π的边为底面圆时,底面圆的半径为2,两个底面的面积是8π;当以长度为8π的边为底面圆时,底面圆的半径为4,两个底面圆的面积为32π、无论哪种方式,侧面积都是矩形的面积32π2、故所求的表面积是32π2+8π或32π2+32π、答案:32π2+8π或32π2+32π8、一个几何体的三视图如图所示,则该几何体的体积为________、解析:该几何体可视为正方体截去两个三棱锥所得,所以其体积为8-43-16=132、答案:1329、在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,过A 1,C 1,B 三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD -A 1C 1D 1,这个几何体的体积为403,则经过A 1,C 1,B ,D 四点的球的表面积为________、解析:设AA 1=x ,则V ABCD ­A 1C 1D 1=V ABCD ­A 1B 1C 1D 1-V B ­A 1B 1C 1=2×2×x -13×12×2×2×x=403,则x =4、 因为A 1,C 1,B ,D 是长方体的四个顶点,所以经过A 1,C 1,B ,D 四点的球的球心为长方体ABCD -A 1B 1C 1D 1的体对角线的中点,且长方体的体对角线为球的直径,所以球的半径R =22+22+422=6,所以球的表面积为24π、答案:24π10、一个几何体的三视图如图所示,且其侧(左)视图是一个等边三角形,则这个几何体的体积为________、解析:由题意得,该几何体为如图所示的五棱锥P ­ABCDE ,所以体积V =13×⎝⎛⎭⎫12×2×1+22×3=533、答案:53 3三、解答题11、如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积、解:由已知得:CE =2,DE =2,CB =5,S 表面=S 圆台侧+S 圆台下底+S 圆锥侧=π(2+5)×5+π×25+π×2×22=(60+42)π,V =V圆台-V 圆锥=13(π·22+π·52+22·52π2)×4-13π×22×2=1483π、12、已知一个圆锥的底面半径为R ,高为H 、(1)若圆锥内有一个高为x 的内接圆柱,则x 为何值时,圆柱的侧面积最大?最大侧面积是多少?(2)作一平面将圆锥分成一个小圆锥与一个圆台,当两几何体的体积相等时,求小圆锥的高与圆台的高的比值、解:(1)设圆柱的侧面积为S ,底面半径为r 、 由r R =H -x H ,得r =R -R H·x 、 则圆柱的侧面积S =2πrx =2πx ⎝⎛⎭⎫R -R H ·x =-2πR H·x 2+2πRx ,显然,当x =-2πR 2⎝⎛⎭⎫-2πR H =H2时,圆柱的侧面积最大,最大侧面积为-2πR H ·⎝⎛⎭⎫H 22+2πR ·H 2=12πRH 、(2)设小圆锥的底面半径为a ,高为b 、由题意得小圆锥的体积V 1=12×13πR 2H =16πR 2H ,由a R =b H ,且13πa 2b =16πR 2H ,得b =312H =342H 、 设圆台高为c ,则b c=342H H -342H=342-34,故小圆锥的高与圆台的高的比值为342-34、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[学生用书P254(单独成册)]一、选择题1.如图,在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,P A⊥平面ABC,则四面体P-ABC中共有直角三角形的个数为()A.4B.3C.2 D.1解析:选A.由P A⊥平面ABC可得△P AC,△P AB是直角三角形,且P A⊥BC.又∠ABC =90°,所以△ABC是直角三角形,且BC⊥平面P AB,所以BC⊥PB,即△PBC为直角三角形,故四面体P-ABC中共有4个直角三角形.2.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:选A.由AC⊥AB,AC⊥BC1,得AC⊥平面ABC1.因为AC⊂平面ABC,所以平面ABC1⊥平面ABC.所以C1在平面ABC上的射影H必在两平面的交线AB上.3.设a,b,c是空间的三条直线,α,β是空间的两个平面,则下列命题中,逆命题不成立的是()A.当c⊥α时,若c⊥β,则α∥βB.当b⊂α时,若b⊥β,则α⊥βC.当b⊂α,且c是a在α内的射影时,若b⊥c,则a⊥bD.当b⊂α,且c⊄α时,若c∥α,则b∥c解析:选B.A的逆命题为:当c⊥α时,若α∥β,则c⊥β.由线面垂直的性质知c⊥β,故A正确;B的逆命题为:当b⊂α时,若α⊥β,则b⊥β,显然错误,故B错误;C的逆命题为:当b⊂α,且c是a在α内的射影时,若a⊥b,则b⊥c.由三垂线逆定理知b⊥c,故C正确;D的逆命题为:当b⊂α,且c⊄α时,若b∥c,则c∥α.由线面平行判定定理可得c∥α,故D正确.4.已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α⊥β;④若m∥l,则α⊥β.其中正确命题的个数是()A.1 B.2C.3 D.4解析:选B.命题①,若α∥β,又m⊥α,所以m⊥β,又l⊂β,所以m⊥l,正确;命题②,l与m可能相交,也可能异面,错误;命题③,α与β可能平行,错误;命题④,因为m∥l,又m⊥α,所以α⊥β,正确.5.在△ABC中,AB=AC=5,BC=6,P A⊥平面ABC,P A=8,则P到BC的距离是() A. 5 B.2 5C.3 5 D.4 5解析:选D.如图,取BC的中点D,连接AD,则AD⊥BC.又P A⊥平面ABC,根据三垂线定理,得PD⊥BC.在Rt△ABD中,AB=5,BD=3,所以AD=4.在Rt△P AD中,P A=8,AD=4,所以PD=45.6.如图,四边形ABCD中,AB=AD=CD=1,BD=2,BD⊥CD.将四边形ABCD 沿对角线BD折成四面体A′­BCD,使平面A′BD⊥平面BCD,则下列结论正确的是()A .A ′C ⊥BDB .∠BA ′C =90°C .CA ′与平面A ′BD 所成的角为30° D .四面体A ′­BCD 的体积为13解析:选B .若A 成立可得BD ⊥A ′D ,产生矛盾,故A 不正确;由题设知:△BA ′D 为等腰Rt △,CD ⊥平面A ′BD ,得BA ′⊥平面A ′CD ,于是B 正确; 由CA ′与平面A ′BD 所成的角为∠CA ′D =45°知C 不正确; V A ′­BCD =V C -A ′BD =16,D 不正确.故选B . 二、填空题 7.如图,已知∠BAC =90°,PC ⊥平面ABC ,则在△ABC ,△P AC 的边所在的直线中,与PC 垂直的直线有__________________;与AP 垂直的直线有________.解析:因为PC ⊥平面ABC , 所以PC 垂直于直线AB ,BC ,AC . 因为AB ⊥AC ,AB ⊥PC ,AC ∩PC =C , 所以AB ⊥平面P AC , 又因为AP ⊂平面P AC ,所以AB ⊥AP ,与AP 垂直的直线是AB . 答案:AB ,BC ,AC AB8.如图所示,在四棱锥P -ABCD 中P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD .(只要填写一个你认为是正确的条件即可)解析:连接AC ,BD ,则AC ⊥BD ,因为P A ⊥底面ABCD ,所以P A ⊥BD .又P A ∩AC =A ,所以BD ⊥平面P AC ,所以BD ⊥PC .所以当DM ⊥PC (或BM ⊥PC )时,即有PC ⊥平面MBD .而PC ⊂平面PCD ,所以平面MBD ⊥平面PCD . 答案:DM ⊥PC (或BM ⊥PC ) 9.如图,直三棱柱ABC -A 1B 1C 1中,侧棱长为2,AC =BC =1,∠ACB =90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 交于点E .要使AB 1⊥平面C 1DF ,则线段B 1F 的长为________.解析:设B 1F =x ,因为AB 1⊥平面C 1DF ,DF ⊂平面C 1DF ,所以AB 1⊥DF . 由已知可以得A 1B 1=2,设Rt △AA 1B 1斜边AB 1上的高为h ,则DE =12h ,又2×2=h ×22+(2)2,所以h =233,DE =33.在Rt △DB 1E 中, B 1E =(22)2-(33)2=66. 由面积相等得66× x 2+(22)2=22x ,得x =12.即线段B 1F 的长为12. 答案:1210.已知m,n是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若m⊥α,n⊥β,m⊥n,则α⊥β;②若m∥α,n∥β,m⊥n,则α∥β;③若m⊥α,n∥β,m⊥n,则α∥β;④若m⊥α,n∥β,α∥β,则m⊥n.其中所有正确的命题是________.(将正确命题的序号都填上)解析:借助于长方体模型来解决本题,对于①,可以得到平面α,β互相垂直,如图(1)所示,故①正确;对于②,平面α、β可能垂直,如图(2)所示,故②不正确;对于③,平面α、β可能垂直,如图(3)所示,故③不正确;对于④,由m⊥α,α∥β可得m⊥β,因为n∥β,所以过n作平面γ,且γ∩β=g,如图(4)所示,所以n与交线g平行,因为m⊥g,所以m⊥n,故④正确.故①④正确.答案:①④三、解答题11.如图,在多面体ABCDPE中,四边形ABCD和CDPE都是直角梯形,AB∥DC,PE∥DC,AD⊥DC,PD⊥平面ABCD,AB=PD=DA=2PE,CD=3PE,F是CE的中点.(1)求证:BF∥平面ADP;(2)已知O是BD的中点,求证:BD⊥平面AOF.证明:(1)如图,取PD的中点为G,连接FG,AG,因为F是CE的中点,所以FG是梯形CDPE的中位线,因为CD=3PE,所以FG=2PE,FG∥CD,因为CD ∥AB ,AB =2PE ,所以AB ∥FG ,AB =FG ,即四边形ABFG 是平行四边形,所以BF ∥AG ,又BF ⊄平面ADP ,AG ⊂平面ADP ,所以BF ∥平面ADP . (2)延长AO 交CD 于M ,连接BM ,FM ,因为BA ⊥AD ,CD ⊥DA ,AB =AD ,O 为BD 的中点, 所以ABMD 是正方形,则BD ⊥AM ,MD =2PE . 所以FM ∥PD , 因为PD ⊥平面ABCD ,所以FM ⊥平面ABCD ,所以FM ⊥BD , 因为AM ∩FM =M ,所以BD ⊥平面AMF , 所以BD ⊥平面AOF .12.(2018·郑州第二次质量检测)如图,高为1的等腰梯形ABCD 中,AM =CD =13AB =1,M 为AB 的三等分点.现将△AMD 沿MD 折起,使平面AMD ⊥平面MBCD ,连接AB ,AC .(1)在AB 边上是否存在点P ,使AD ∥平面MPC ?(2)当点P 为AB 边的中点时,求点B 到平面MPC 的距离.解:(1)当AP =13AB 时,有AD ∥平面MPC .理由如下:连接BD 交MC 于点N ,连接NP . 在梯形MBCD 中,DC ∥MB ,DN NB =DC MB =12, 因为△ADB 中,AP PB =12,所以AD ∥PN .因为AD ⊄平面MPC ,PN ⊂平面MPC , 所以AD ∥平面MPC .(2)因为平面AMD ⊥平面MBCD ,平面AMD ∩平面MBCD =DM , 平面AMD 中AM ⊥DM ,所以AM ⊥平面MBCD . 所以V P -MBC =13×S △MBC ×AM 2=13×12×2×1×12=16. 在△MPC 中,MP =12AB =52,MC =2,又PC =(12)2+12=52,所以S △MPC =12×2×(52)2-(22)2=64. 所以点B 到平面MPC 的距离为 d =3V P -MBCS △MPC =3×1664=63.1.如图,已知四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为菱形,AD =2,∠DAB =60°,E 为AB 的中点.(1)证明:平面PCD ⊥平面PDE ;(2)若PD =3AD ,求点E 到平面PBC 的距离. 解:(1)证明:因为PD ⊥底面ABCD , 所以PD ⊥AB ,连接DB ,在菱形ABCD 中,∠DAB =60°, 所以△DAB 为等边三角形,又E 为AB 的中点, 所以AB ⊥DE ,又PD ∩DE =D , 所以AB ⊥平面PDE ,因为CD ∥AB ,所以CD ⊥平面PDE ,因为CD⊂平面PCD,所以平面PCD⊥平面PDE.(2)因为AD=2,所以PD=23,在Rt△PDC中,PC=4,同理PB=4,易知S△PBC=15,S△EBC=3 2,设点E到平面PBC的距离为h,连接EC,由V P-EBC=V E-PBC得,13S△ABC·PD=13S△PBC·h,所以h=15 5.2.如图,E是以AB为直径的半圆上异于A,B的一点,矩形ABCD所在平面垂直于该半圆所在的平面,且AB=2AD=2.(1)求证:EA⊥EC;(2)设平面ECD与半圆弧的另一个交点为F,EF=1,求三棱锥E-ADF的体积.解析:(1)证明:因为矩形ABCD⊥平面ABE,CB⊂平面ABCD且CB⊥AB,所以CB⊥平面ABE,从而AE⊥BC,①又因为在半圆ABE中,AB为直径,所以∠AEB=90°,即AE⊥BE,②由①②知AE⊥平面BCE,故有EA⊥EC.(2)因为AB∥CD,所以AB∥平面DCE.又因为平面DCE∩平面ABE=EF,所以AB∥EF,在等腰梯形ABEF中,EF=1,AF=1,∠AFE=120°,所以S△AEF=12×EF×AF×sin 120°=34,V E-ADF=V D-AEF=13×S△AEF×AD=13×34×1=3 12.。

相关文档
最新文档