3.卡诺图化简法(一)

合集下载

卡诺图化简

卡诺图化简

Z(A,B,C,D)=ABC+ABD+AC’D+C’D’+AB’C+A’CD’+++Z+BA=,(,,)C+BACADCDCABDABCACDD先填ABC项,即利用ABC=ABC(D+D’)=ABCD+ABCD’,如下图填入:图一’D,但ABCD项的表格已填入1,则不在填,只填ABC’D按照上述方法填好整个函数表达式,如下图:卡诺图圈“1”法化简步骤:1、先圈包含1个数最多的最大“1”圈,其中1格数只能为1、2、4、8、16;2、再圈包含1个数第二多的“1”圈,其中1格数也只能为1、2、4、8、16;以此类推,直到把卡诺图中所有的1格圈完。

3、检查每个“1”圈中是否至少有一个1格未被其它“1”圈圈过,若都被其他圈圈过,则该“1”圈舍去。

4、保留每个“1”圈中的不变的变量,其中“0”用原变量表示,“1”用反变量表示,变量之间用“.”连接,则构成该“1”圈的乘积项。

5、一个“1”圈对应一个乘积项,有多少“1”圈,就有多少乘积项,它们之间用“+”连接。

例题2:Y(A,B,C,D)=m1+m5+m6+m7+m11+m12+m13+m15解:1、在卡诺图中填充好函数表达式,如下图:4、圈完所有的1格,通过检查,发现原来圈4个1格的最大“1圈”中所有的1格都被其6、按照写化简后的函数逻辑表达式的规则,得化简后的函数表达式:Y(A,B,C,D)=A’C’D+ABC’+ ACD+A’BCABC’ACD A’BC。

知识点3.卡诺图化简法

知识点3.卡诺图化简法

相邻项相加能消去一个因子,合并为一项,如:

卡诺图化简就是建立在相邻项的基础上的,消去多余的因子,使函
数得到简化。
逻辑函数的化简——卡诺图化简法
利用卡诺图化简时,首先要把函数表示成最小项之 和的形式,称为标准与或式(或最小项表达式),求函 数标准与或式有两种方法:
①从真值表中求标准与或式 ②从一般表达式利用展开法求标准与或式
逻辑函数的化简——卡诺图化简法
【例1】化简逻辑函数
化简得:
最小项合并结果有时不是唯一的,但合并后的项数和每一 项的因子数是相同的!
逻辑函数的化简——卡诺图化简法
【例2】 用卡诺图法化简逻辑函数Z(A,B,C,D)
=∑m(0,1,2,3,4,5,6,7,10,11)。
化简得:
逻辑函数的化简——卡诺图化简法
逻辑函数的化简——卡诺图化简法
利用前面介绍的公式法化简逻辑函数,要熟练掌 握逻辑代数的基本公式、常用公式和一些定律,并 且需要有一定的技巧,这对许多人来说有困难。借 助卡诺图化简逻辑函数比较方便,容易掌握。卡诺 图是美国工程师karnaugh在20世纪50年代提出的, 它建立在最小项的基础上,所以首先要了解有关最 小项的内容。
b.四个小方格组成一个大方格、或组成一行(列)、或 处于相邻两行(列)的两端、或处于四角时,所代表的最小 项可以合并,合并后可消去两个变量。
逻辑函数的化简——卡诺图化简法
c.八个小方格组成一个大方格、或组成相邻的两行 (列)、或处于两个边行(列)时,所代表的最小项可以合 并,合并后可消去三个变量。
逻辑函数的化简——卡诺图化简法
仔细分析上表,可以总结出最小项的性质: ①对任何一个最小项,只有一组变量的取值组合,使 它的值为1。反之,对于输入变量任何一组取值,有且 只有一个最小项的值为1。 ②任意两个最小项的乘积恒等于0 。 ③所有最小项之和为1。 ④具有相邻性的两个最小项之和能合并成一项且消去 一个因子。

逻辑函数的卡诺图表示和卡诺图化简法省公开课获奖课件市赛课比赛一等奖课件

逻辑函数的卡诺图表示和卡诺图化简法省公开课获奖课件市赛课比赛一等奖课件
01 0 0 1 0
11 0 0 1 1 10 0 1 1 1
例:将F(A、B、C、D) ACD AB BCD ABC AC
化为最简与非—与非式。 CD
解:
ACD
AB
00 01 11 10
00 01
1 1
1 0
0 m104,m15 1 两1次填1
AB
11 1 1 1 1
10 0 1 1 1
B CD AC
ABC
1.卡诺图化简逻辑函数旳原理 : 具有相邻性旳最小项能够合并,并消去不同旳因子,
合并旳成果为这些项旳公因子.
(1)2个相邻旳最小项结合,2项能够而合并为1项, 并消去1个不同旳变量。
(2)4个相邻旳最小项结合, 4项能够而合并为1项, 并消去2个不同旳变量。
(3)8个相邻旳最小项结合, 8项能够而合并为1项, 并消去3个不同旳变量。
解: 写成简化形式: F m0 m3 m6 m7 然后填入卡诺图:
例3 画出 Y ABC D ACD AC 旳卡诺图
解:直接填入
CD 00 01 11 10
AB
00 0 0 1 0
01 0 0 1 0
11 0 0 1 1
10 0 1 1 1
CD 00 01 11 10
AB
00 0 0 1 0
总之, 2n 个相邻旳最小项结合,2n 项能够而合并为1
项,能够消去n个不同旳变量。
化简根据
2n项相邻,并构成一种矩形组, 2n项能够而合并为 1项,消去n个因子,合并旳成果为这些项旳公因子。
利用卡诺图化简旳规则
相邻单元格旳个数必须是2n个,并构成矩 形组时才能够合并。
CD 00 01 11 10
诺图

用卡诺图化简逻辑函数

用卡诺图化简逻辑函数

1.4 用卡诺图化简逻辑函数本次重点内容1、卡诺图的画法与性质2、用卡诺图化简函数 教学过程 应用卡诺图化简 一、卡诺图逻辑函数可以用卡诺图表示。

所谓卡诺图,就是逻辑函数的一种图形表示。

对n 个变量的卡诺图来说,有2n 个小方格组成,每一小方格代表一个最小项。

在卡诺图中,几何位置相邻(包括边缘、四角)的小方格在逻辑上也是相邻的。

二、最小项的定义及基本性质: 1、最小项的定义在n 个变量的逻辑函数中,如乘积项中包含了全部变量,并且每个变量在该乘积项中或以原变量或以反变量的形式但只出现一次,则该乘积项就定义为该逻辑函数的最小项。

通常用m 表示最小项,其下标为最小项的编号。

编号的方法是:最小项的原变量取1,反变量取0,则最小项取值为一组二进制数,其对应的十进制数便为该最小项的编号。

如最小项C B A 对应的变量取值为000,它对应十进制数为0。

因此,最小项C B A 的编号为m 0,如最小项C B A 的编号为m 4,其余最小项的编号以此类推。

2、最小项的基本性质:(1)对于任意一个最小项,只有一组变量取值使它的值为1,而其余各种变量取值均使它的值为0。

(2)不同的最小项,使它的值为1的那组变量取值也不同。

(3)对于变量的任一组取值,全体最小项的和为1。

图1.4.1分别为二变量、三变量和四变量卡诺图。

在卡诺图的行和列分别标出变量及其状态。

变量状态的次序是00,01,11,10,而不是二进制递增的次序00,01,10,11。

这样排列是为了使任意两个相邻最小项之间只有一个变量改变(即满足相邻性)。

小方格也可用二进制数对应于十进制数编号,如图中的四变量卡诺图,也就是变量的最小项可用m 0, m 1,m 2,……来编号。

1010001111001A BCAB CD B A 0001111000011110m m m m m mmmm m m m 012300112233m m m m m m m m m m m m m m m m 456789101112131415图1.4.1 卡诺图二、应用卡诺图表示逻辑函数应用卡诺图化简逻辑函数时,先将逻辑式中的最小项(或逻辑状态表中取值为1的最小项)分别用1填入相应的小方格内,其它的则填0或空着不填。

卡诺图化简——精选推荐

卡诺图化简——精选推荐
– 例:用三个逻辑变量A、B、C分别表示一台电动机的 正转、反转和停止。若A=1表示电动机正转,B=1表 示电动机反转,C=1表示电动机停止,则ABC的状态 只能是100、010、001,而其它的状态如000、011、 101、110、111是不能出现的状态。
逻辑函数中的无关项
• 约束项:
– 表示方法:
CD
AB 00 01 11 10
Y ( A D)( A B C)
00 0 1 0 0
( A B C)( A B D)
01 1 1 1 1
11 0 0 0 1 10 1 0 0 1
卡诺图化简法
• 利用卡诺图化简函数
– 例2:用卡诺图化简为最简与或式和最简或与式
CD AB 00
00 0
CD
AB 00 01 11 10
00 1 1
×
最简与或式(另一种圈法):
01 ×
×1
Y BC BC
11 × × 1 1 × 1 ××
逻辑函数中的无关项
• 无关项在逻辑函数化简中的作用:
– 例1:用卡诺图简化下列逻辑函数,并写成最简与或式 和或与式。
Y(A, B,C, D) m(0,1,6,9,14,15) d(2,4,7,8,10,11,12,13)
《数字电子技术》
Lecture 5:逻辑代数基础(4)
1
内容提要
• 逻辑函数化简:卡诺图法 • 有无关项的函数化简 • 卡诺图的其它应用
卡诺图化简法
• 利用卡诺图化简函数
– 化成最简与或式
• 画出表示该逻辑函数的卡诺图。
• 找出可以合并的最小项,即1的项(必须是 2n 个1),
进行圈 “1” 。 • 圈好“1” 后写出每个圈的乘积项,然后相加,即为简

卡诺图化简

卡诺图化简

卡诺图化简法卡诺图化简法又称为图形化简法。

该方法简单、直观、容易掌握,因而在逻辑设计中得到广泛应用。

一卡诺图的构成卡诺图是一种平面方格图,每个小方格代表一个最小项,故又称为最小项方格图。

1.结构特点卡诺图中最小项的排列方案不是唯一的,图2.5(a)、(b)、(c)、(d)分别为2变量、3变量、4变量、5变量卡诺图的一种排列方案。

图中,变量的坐标值应0表示相变量的反变量,1表示相应变量的原变量。

各小方格依变量顺序取坐标值,所得二进制数对应的十进制数即相应最小项的下标i。

在五变量卡诺图中,为了方便省略了符号“m”,直接标出m的下标i。

图2. 5 2~5变量卡诺图从图2.5所示的各卡诺图可以看出,卡诺图上变量的排列规律使最小项的相邻关系能在图形上清晰地反映出来。

具体地说,在n个变量的卡诺图中,能从图形上直观、方便地找到每个最小项的n个相邻最小项。

以四变量卡诺图为例,图中每个最小项应有4个相邻最小项,如m5的4个相邻最小项分别是m1,m4,m7,m13,这4个最小项对应的小方格与m5对应的小方格分别相连,也就是说在几何位置上是相邻的,这种相邻称为几何相邻。

而m2则不完全相同,它的4个相邻最小项除了与之几何相邻的m3和m6之外,另外两个是处在“相对”位置的m0(同一列的两端)和m10(同一行的两端)。

这种相邻似乎不太直观,但只要把这个图的上、下边缘连接,卷成圆筒状,便可看出m0和m2在几何位置上是相邻的。

同样,把图的左、右边缘连接,便可使m2和m10相邻。

通常把这种相邻称为相对相邻。

除此之外,还有“相重”位置的最小项相邻,如五变量卡诺图中的m3,除了几何相邻的m1,m2,m7和相对相邻的m11外,还与m19相邻。

对于这种情形,可以把卡诺图左边的矩形重叠到右边矩形之上来看,凡上下重叠的最小项相邻,这种相邻称为重叠相邻。

归纳起来,卡诺图在构造上具有以下两个特点:☆ n个变量的卡诺图由2n个小方格组成,每个小方格代表一个最小项;☆ 卡诺图上处在相邻、相对、相重位置的小方格所代表的最小项为相邻最小项。

卡诺图化简法

卡诺图化简法

26
(7) 由最大项表达式求最简与或式
例2.6.18 已知函数 F ( A, B,C, D) M (5,7,13,15)
求最简与或式。
CD AB 00 01 11 10
00 1 1 1 1 01 1 0 0 1 11 1 0 0 1 10 1 1 1 1
F(A,B,C,D) = B + D
图 2.6.18
16
(4) 合并的规律 ① 圈2格,可消去1个变量;
BC A 00 01 11 10
0 1 1 00 1 0 0 00
BC
A
00 01 11 10
0 1 0 01
1 0 0 00
F=AB
F=AC
17
② 圈4格,可消去2个变量;
ห้องสมุดไป่ตู้
BC
A
00 01 11 10
0 1 1 00
1 1 1 00
BC A 00 01 11 10
例2.6.16 化简函数
F( A, B,C, D) m(0,2,5,6,7,8,9,10,11,14,15)
为最简与或式。
CD AB 00 01 11 10
00 1 0 0 1 01 0 1 1 1 11 0 0 1 1 10 1 1 1 1
图 2.6.15
F(A,B,C,D) = A B D + BD+AB+BC
BC A 00 01 11 10 ⊕0 0 1 1 0
1 0 0 00
BC A 00 01 11 10 ﹦ 0 0 0 10
1 0 1 00
11
(4) 反演 BC
A 00 01 11 10
0 0 1 00 1 0 1 00

(完整版)逻辑函数的卡诺图化简法

(完整版)逻辑函数的卡诺图化简法

第十章 数字逻辑基础补充:逻辑函数的卡诺图化简法1.图形图象法:用卡诺图化简逻辑函数,求最简与或表达式的方法。

卡诺图是按一定规则画出来的方框图。

优点:有比较明确的步骤可以遵循,结果是否最简,判断起来比较容易。

缺点:当变量超过六个以上,就没有什么实用价值了。

公式化简法优点:变量个数不受限制缺点:结果是否最简有时不易判断。

2.最小项(1)定义:是一个包括所有变量的乘积项,每个变量均以原变量或反变量的形式出现一次。

注意:每项都有包括所有变量,每个乘积它中每个变量出现且仅出项1次。

如:Y=F (A ,B ) (2个变量共有4个最小项B A B A B A AB )Y=F (A ,B ,C ) (3个变量共有8个最小项C B A C B A C B A BC A C B AC B A C AB ABC )结论: n 变量共有2n 个最小项。

三变量最小项真值表(2)最小项的性质①任一最小项,只有一组对应变量取值使其值为1: ②任意两个最小项的乘种为零; ③全体最小项之和为1。

(3)最小项的编号:把与最小项对应的变量取值当成二进制数,与之相应的十进制数,就是该最小项的编号,用m i 表示。

3.最小项表达式——标准与或式任何逻辑函数都可以表示为最小项之和的形式——标准与或式。

而且这种形式是惟一的,即一个逻辑函数只有一种最小项表达式。

例1.写出下列函数的标准与或式:Y=F(A,B,C)=AB+BC+CA 解:Y=AB(C +C)+BC(A +A)+CA(B +B)=ABC C B A ABC BC A ABC C AB +++++ =ABC C B A BC A C AB +++ =3567m m m m +++例2.写出下列函数的标准与或式:C B AD AB Y ++=解:))()(C B D A B A Y +++=( ))((C B D B A ++= D C B C A B A B A +++=D C B A D C B A C B A C B A BC A ++++=D C B A D C B A D C B A D C B A D C B A D BC A BCD A ++++++=_ 8014567m m m m m m m ++++++= =)8,7,6,5,4,1,0(m ∑ 列真值表写最小项表达式。

卡诺图化简法

卡诺图化简法

m 0 m 1 m 2 m 3 m 7
m (0,1,2,3,7)
2021/10/10
第6章
9
➢ 已知真值表,写出函数的最小项之和的形式
如果列出了函数的真值表,则只要将函数值为1的那些最 小项相加,便是函数的最小项表达式。
ABC Y
000 0 001 1 010 1 011 1 100 0 101 1 110 0 111 0
18
再如:
AC
BD
ABCDABCDABCDABCD ACD(BB)ACD(BB) CD(AA)CD
2021/10/10
BD
19
性质3:卡诺图中八个相邻1格的最小项可以合并成一个与项, 并 消去三个变量。
综上所述,在 n 个变量卡诺图中,若有2k个1格相邻(k为
0,1,2…,n), 它们可以圈在一起加以合并,合并时可消去
相邻的两个最小项之和可以合并成一项,并消去一个变 量。如:
m 0 m 2 A B C A B C A ( B B ) C A C
第6章
2021/10/10
12
2.卡诺图
◆ 基本知识
卡诺图是由美国工程师卡诺(Karnaugh)首先提出的一种 用来描述逻辑函数的特殊方格图。
在这个方格图中,每一个方格代表逻辑函数的一个最小项, 而且几何相邻(在几何位置上,上下或左右相邻)的小方格具 有逻辑相邻性,即两相邻小方格所代表的最小项只有一个变量 取值不同。
的最简与或表达式
解:1画出函数F 的卡诺图。对于在函数 F 的标准与或表达式中出现
的那些最小项,在其卡诺图的对应小方格中填上1,其余方格不填;
2合并最小项。把图中所有的1格都圈起来,相邻且能够合并在 一起的1 格圈在一个大圈中; 3写出最简与或表达式。对卡诺图中所画每一个圈进行合并,保 留相同的变量,去掉互反的变量。

卡诺图化简逻辑表达式

卡诺图化简逻辑表达式
对于包含多个非门或多个连续的与或 非门的逻辑表达式,卡诺图化简可能 无法得到最简结果。
卡诺图对于大规模逻辑电路的优化效果有限
随着逻辑电路规模的增大,卡诺图的化简过程变得复杂且耗时,难以在实际工程 中应用。
对于大规模逻辑电路,可能需要采用其他优化方法,如布尔代数、门级优化等, 以获得更好的优化效果。
THANKS
感谢观看
卡诺图化简逻辑表达式
• 卡诺图简介 • 卡诺图化简逻辑表达式的方法 • 卡诺图化简逻辑表达式的实例 • 卡诺图与其他化简方法的比较 • 卡诺图的局限性
01
卡诺图简介
卡诺图的定义
• 定义:卡诺图是一种用于表示二进制逻辑函数关系的图形表示 法,通过将逻辑函数输入变量的所有可能取值组合在网格中表 示出来,可以直观地观察到函数的最简形式。
卡诺图与布尔代数化简的比较
布尔代数化简
通过使用逻辑运算(与、或、非)的代数性质,如吸收律、分配律等,对逻辑表达式进 行简化。这种方法需要一定的数学基础,但在处理复杂逻辑表达式时可能较为繁琐。
卡诺图化简
利用图形直观地表示输入变量的所有可能组合,通过排除法简化逻辑表达式。卡诺图化 简简单易懂,不需要复杂的数学运算,特别适合初学者和解决多变量逻辑表达式的化简
问题。
卡诺图与公式化简的比较
公式化简
通过逻辑运算的公式和定理,对逻辑表达式 进行简化。这种方法需要熟练掌握各种逻辑 公式和定理,对于初学者有一定的难度。
卡诺图化简
利用图形化的方式表示输入变量的所有可能 组合,通过排除法简化逻辑表达式。卡诺图 化简直观、易于操作,不需要复杂的公式和 定理,特别适合初学者和解决多变量逻辑表 达式的化简问题。
05
卡诺图的局限性
卡诺图适用范围有限

卡诺图化简法

卡诺图化简法

性质2:不同的最小项,使它的值为1的那一组变量取值 也不同。 第6章
(3)最小项的性质
A 0 0 0 0 1 1 1 1
B 0 0 1 1 0 0 1 1
C 0 1 0 1 0 1 0 1
3 变量全部最小项的真值表 ABC ABC m0 m1 m2 m3 m4 m5 m6 m7 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1BC A 0BC 0 0 0 B 0C 0 0 A AABC 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
五.逻辑函数的卡诺图化简法
1. 关于“最小项”
(1)最小项定义 如果一个函数的某个乘积项包含了函数的全部变量,其 中每个变量都以原变量或反变量的形式出现,且仅出现一次, 则这个乘积项称为该函数的一个标准积项,通常称为最小项。
3个变量A、B、C可组成8个最小项:
ABC、ABC、ABC、ABC、ABC、ABC、ABC、ABC
返回
第6章
(2)最小项的表示方法 通常用符号mi来表示最小项。下标i的确定:把最小项中的 原变量记为1,反变量记为0,当变量顺序确定后,可以按顺序 排列成一个二进制数,则与这个二进制数相对应的十进制数, 就是这个最小项的下标i。 3个变量A、B、C的8个最小项可以分别表示为:
m0 A B C、m1 A BC、m 2 ABC、m3 ABC m 4 AB C、m5 ABC、m6 ABC、m7 ABC
m6 0 0 0 0 0 0 1 0
m7 0 0 0 0 0 0 0 1
性质1:任意一个最小项,只有一组变量取值使其值为1, 而在变量取其他各组值时这个最小项的值都是0。 第6章

《卡诺图化简法》课件

《卡诺图化简法》课件
总结词
卡诺图化简的基本步骤
详细描述
详细阐述卡诺图化简的基本步骤, 包括如何根据逻辑函数绘制卡诺图 、如何根据卡诺图进行化简等。
实例二:复杂的逻辑函数化简
总结词
通过卡诺图化简复杂逻辑函数
01
02
详细描述
选取具有代表性的复杂逻辑函数,如含有多 个变量和复合逻辑运算的函数,利用卡诺图 进行化简,展示化简过程和结果。
优化最小项的排列方式
优化最小项的排列方式,可以减少重复计算和提高化简效率。
THANKS
感谢观看
杂。
约束条件
卡诺图化简法要求逻辑函数在最小 项上的取值必须明确(0或1),对 于含有未知取值的逻辑函数不适用 。
非二进制系统
卡诺图仅适用于二进制逻辑系统, 对于非二进制系统(如三进制、四 进制等)需要其他化简方法。
03
卡诺图化简法的步骤
构造卡诺图
01
02
03
确定变量
首先确定待化简的逻辑函 数的变量,即确定卡诺图 的行数和列数。
注意约束条件
在使用卡诺图化简法时,应考虑约束条件,如输 入变量的取值范围和输出变量的取值范围。
避免重复计算
在化简过程中,应避免重复计算最小项,以提高 化简效率。
如何提高卡诺图化简法的效率
熟悉卡诺图化简法的步骤
熟练掌握卡诺图化简法的步骤,可以更快地完成化简过程。
选择合适的软件工具
使用合适的软件工具,如逻辑模拟软件等,可以提高卡诺图化简法 的效率。
《卡诺图化简法》 PPT课件
目录
• 卡诺图化简法简介 • 卡诺图的构成与特性 • 卡诺图化简法的步骤 • 卡诺图化简法的实例分析 • 卡诺图与其他化简方法的比较 • 卡诺图化简法的实际应用与注意事项

卡诺图化简法1

卡诺图化简法1

Y3 ABCD m7
(4)从一般形式表达式画卡诺图 先将表达式变换为与或表达式,则可画出卡诺图。
2019/2/7 9
3.卡诺图化简法 由于卡诺图两个相邻最小项中,只有一个变量 取值不同,而其余的取值都相同。所以,合并相邻 最小项,利用公式A+A=1,AB+AB=A,可以消去 一个或多个变量,从而使逻辑函数得到简化。 (1)卡诺图中最小项合并的规律 合并相邻最小项,可消去变量。 合并两个最小项,可消去一个变量; 合并四个最小项,可消去两个变量; 合并八个最小项,可消去三个变量。 合并2N个最小项,可消去N个变量。
2019/2/7
图2-4
例2-2的卡诺图
7
(3)从与-或表达式画卡诺图 把每一个乘积项所包含的那些最小项(该乘积项 就是这些最小项的的公因子)所对应的小方块都填上 1,剩下的填0,就可以得到逻辑函数的卡诺图。
例 已知Y=AB+ACD+ABCD,画卡诺图。
1 AB=11
ABCD=0111
1 1 +1 1
相邻
图2-2 四变量卡诺图的画法
正确认识卡诺 图的“逻辑相邻”: 上下相邻,左右相 邻,并呈现“循环 相邻”的特性,它 类似于一个封闭的 球面,如同展开了 的世界地图一样。 对角线上不相 邻。
2019/2/7
5
2. 用卡诺图表示逻辑函数 (1)从真值表画卡诺图 根据变量个数画出卡诺图,再按真值表填写每一 个小方块的值(0或1)即可。需注意二者顺序不同。
2019/2/7 10
m3
BC D
m11
图2-5
2019/2/7
两个最小项合并
11
图2-6
2019/2/7
四个最小项合并
12

逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法

卡诺图化简的依据
CD + ABCD = ABD
^CD + ABCD =
ABD A BD + ABD = AD
ABD + ABD = AD
AD+AD=D
卡诺图化简的依据
利用卡诺图化简的依据是:
_____丿 ____________________________________________________________
逻辑代数基础
华中科技大学 罗杰
逻辑函数的卡诺图化简法
卡诺图化简法
什么是卡诺 图?
如何用卡诺图 A如何用卡
1来表示逻辑函 数?
诺图化简 逻辑函数?
卡诺图化简法
■如何用卡诺图7 化; 简逻辑函数呢?
包含以下内容: -化简逻辑函数的依据是什么? -化简的步骤是什么?
卡诺图化简的依据
卡诺图化简的依据
括上、下底相邻,
左、右边相邻和
四角两两相邻。M
同一方格,但新增的
向兩團由一■由亜1看=1
丄 I™U. I IJI kiTrl • I • r 1 1 f_jA
I"
LJLLI LEU I ALL IJ
新的方格。
一个包围圈的 方 格数要尽可 能多, 包围圈的 数目要 可能少。
•具有相邻性的最小项可以合并,并消去不同的因子。 •由于卡诺图具有循环相邻的特性,且几何位置相邻的最小 项
在逻辑上也必然是相邻的,从卡诺图上能直观地找出那 些具
有相邻性的最小项并将其合并化简。
卡诺图化简法的步骤
卡诺图舀 化简法的步骤
卡诺图化简法的步骤
化简的步骤
按 最,=J 小 项 表 达 式 填 卡 诺图,凡式中存在的 最.=J 小 项 , 其 对 应 方 格

卡诺图

卡诺图
归纳起来,卡诺图化简的原则是:
☆ 在覆盖函数中的所有最小项的前提下,卡诺圈的个数达到最少。
☆ 在满足合并规律的前提下卡诺圈应尽可能大。
☆ 根据合并的需要,每个最小项可以被多个卡诺圈包围。
3.求函数的最简“或-与”表达式
当需要求一个函数的最简“或-与”表达式时,可采用“两次取反法”。
根据定理AB+AB=A和相邻最小项的定义,两个相邻最小项可以合并为一个与项并消去一个变量。例如,4变量最小项ABCD和ABCD相邻,可以合并为ABD;ABCD和ABCD相邻,可以合并为ABD;而与项ABD和ABD又为相邻与项,故按同样道理可进一步将两个相邻与项合并为BD。
用卡诺图化简逻辑函数的基本原理就是把上述逻辑依据和图形特征结合起来,通过把卡诺图上表征相邻最小项的相邻小方格“圈”在一起进行合并,达到用一个简单“与”项代替若干最小项的目的。
具体如下:
☆ 先求出函数F的反函数F的最简“与-或”表达(合并卡诺图上的0方格);
☆ 然后对F的最简“与-或”表达式取反,从而得到函数F的最简“或-与”表达式。
卡诺图化简逻辑函数具有方便、直观、容易掌握等优点。但依然带有试凑性。尤其当变量个数大于6时,画图以及对图形的识别都变得相当复杂。
在五变量卡诺图中,为了方便省略了符号“m”,直接标出m的下标i 。
归纳起来,卡诺图在构造上具有以下两个特点:
☆ n个变量的卡诺图由2^n个小方格组成,每个小方格代表一个最小项;
☆ 卡诺图上处在相邻、相对、相重位置的小方格所代表的最小项为相邻最小项。
二 卡诺图的性质
卡诺图的构造特点使卡诺图具有一个重要性质:可以从图形上直观地找出相邻最小项合并。合并的理论依据是并项定理AB+AB=A。例如,

卡诺图教学省公开课一等奖全国示范课微课金奖课件

卡诺图教学省公开课一等奖全国示范课微课金奖课件

2024/10/6
116/628
m3
BC
D
m11
图2-15 两个最小项合并
2024/10/6
117/728
图2-16 四个最小项合并
2024/10/6
118/828
图2-17 八个最小项合并
2024/10/6
119/928
(2)利用卡诺图化简逻辑函数 步骤
① 画出逻辑函数卡诺图;
② 合并相邻最小项(圈组);
逻辑相邻: 两个最小项,只有一个变量形式 不一样,其余都相同。逻辑相邻最小项能够合并。
几何相邻含义: 一是相邻——紧挨; 二是相对——任一行或一列两头;
2024/10/6
9 9/28
(2)卡诺图画法 首先讨论三变量(A、B.C)函数卡诺图画法。
① 3邻必须逻
2024/10/6
115/528
3.1.3 用卡诺图化简逻辑函数
因为卡诺图两个相邻最小项中,只有一个变量 取值不一样,而其余取值都相同。所以,合并相邻 最小项,利用公式A+A=1,AB+AB=A,能够消去 一个或多个变量,从而使逻辑函数得到简化。
(1)卡诺图中最小项合并规律 合并相邻最小项, 可消去变量。 合并两个最小项, 可消去一个变量; 合并四个最小项, 可消去两个变量; 合并八个最小项, 可消去三个变量。 合并2N个最小项, 可消去N个变量。
小结: 1、最小项表示式意义; 2.用卡诺图化简逻辑函数方法。
作业: 2-9; 2-11
2024/10/6
227/728
再 见!
2024/10/6
返回首页
228/828
辑相邻:变量取值 按00、01.11.10次序 (循环码 )排列 。

卡诺图化简法

卡诺图化简法

1 1
1
1 1
1
mi
例:将逻辑式
P = B C + ABD 填入卡诺图
D
CD 00 AB 00 01 11 01
C
11
1
10
1
填 BC 填 ABD
B AB
BC
1
1
1
1
10
ABD
mi
例:将逻辑式 P = CD + D 填入卡诺图
CD 00 AB 00 01 11 10 01 11 1 1 1 1 10 CD 00 AB 00 01 11 10 01 1 1 1 1 11 1 1 1 1 10
ABC D + ABC D = ABC ( D + D ) = ABC
所以,在卡诺图中只要将有关的最小项重新排列、组合, 所以,在卡诺图中只要将有关的最小项重新排列、组合,就 有可能消去一些变量,使逻辑函数得到化简。 有可能消去一些变量,使逻辑函数得到化简。
CD 00 01 11 10 AB 0 0 0 0 00 0 0 01 0 011 0 0 10
7
11 11 10
1
13
1
15
所以ABD处于第三行和第二、第 处于第三行和第二、 所以 处于第三行和第二 三列的交点上(一行二列)。 三列的交点上(一行二列)。
mi
例:将逻辑式P= BC + B D 填入卡诺图
CD 0 0 00 1 00 AB 00 1 01 11 10
11
10 0
1
这是B, 先填 BC , 这是 , 这是 C ; 这一与项处于第二、 BC 这一与项处于第二、 第三行和第一、 第三行和第一、第二列的交 点处(二行二列)。 点处(二行二列)。 再填 B D , 这是 B , 这是 D 。 这一与项处于第一、 B D 这一与项处于第一、 第四行和第一、 第四行和第一、第四列的交点 二行二列)。 处(二行二列)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卡诺图化简法是逻辑函数化简的一种直观方法。首先,需要掌握最小项的概念,即包含全部变量且每个变量只出现一次的乘积项。卡诺图则是最小项按一定规则排列的方格图,具有循环相邻性,保证了相邻最小项在几何位置上也相邻。通过识别相邻最小项,即只有一个变量互为反变量、其余变量均相同的两个最小项,可以将其合并为一项,从而简化逻辑函数。文档详细介绍了卡诺图的构成原则,如何通过卡诺图表示最小项,并给出了二变量、三变量和四变量的卡诺图示例。此外,还解释了如何根据卡诺图方格对。通过卡诺图化简法,可以更加直观地判断化简结果是否最简,并有效简化逻辑函数的表达。
相关文档
最新文档