4.3 用方程解决实际问题(2)

合集下载

苏科版2024新版七年级数学上册教案:4.3.3 用一元一次方程解决问题——利用公式、规律解决问题

苏科版2024新版七年级数学上册教案:4.3.3 用一元一次方程解决问题——利用公式、规律解决问题

学校七年级数学教案课题4.3用一元一次方程解决问题(3)课型新授课编号时间主备复备审核教学目标1.会利用公式或找规律列方程解决实际问题,通过结合实际问题,创造有趣的情境,提高学习兴趣.2.能够根据实际问题中的数量关系列方程解决问题,培养数学建模能力,分析问题、解决问题的能力.教学重难点重点:会利用公式或找规律列方程解决实际问题.难点:能够根据实际问题中的数量关系列方程解决问题.教学环节教学过程师生活动个人复备知学1.揭示课题2.揭示目标课上板书课题;学生齐读目标.预学阅读课本P125、126 页,完成课本练习T1根据预学情况给各小组评分.互学如图,小明将一个正方形纸片剪去一个宽为4的长条后,再从剩下的长方形纸片上剪去一个宽为5的长条.如果两次剪下的长条面积正好相等,那么每一个长条的面积是多少?图形的公式构建等量关系.导学例1:已知三角形三个角的度数之比为2:3:5,判断这个三角形的形状.例2:用黑白两色棋子按如图所示的方式摆图形,依次规律,图形中黑色棋子的个数有可能是50吗?例3:制作一张桌子要用1个桌面和4条桌腿,1m3木材可制作20个桌面或制作400条桌腿,现有12m3木材,应怎样计划用料才能制作尽可能多的桌子?利用三角形内角和定理得到等量关系.引导学生从“数”和“形”两个方面找规律,注意理解为什么不可能.小组交流.检学1.宋代数学家杨辉称幻方为纵横图,传说最早出现的幻方是夏禹时代的“洛书”,杨辉在他的著作《续占摘奇算法》中总结了“洛书”的构造,在如图所示的三阶幻方中,每行,每列、每条对角线上的三个数之和都相等,则m+n的值是()A.7 B.1 C.2(1)(2)2.如图,涂色部分是正方形,图中最大的长方形的周长是厘米.独立完成,课堂交流.总结谈谈你这一节课有哪些收获.各抒己见.课后作业板书设计教后记。

用方程解决问题

用方程解决问题

06—07学年度第一学期七年级数学学案§4.3用方程解决问题(1)学习目标:1、进一步理解方程的概念,初步感受方程作为刻画客观世界有效模型的意义。

2、经历运用方程解决实际问题的过程,体会运用方程解决问题的关键是寻找等量关系。

学习重点:在多个未知量中设定一个未知数,建立方程解决问题。

学习难点:间接设未知数。

学习过程:一、情境引入如何配制一种三色冰淇淋呢?配方:咖啡色、红色和白色配料比为1:2:6。

(1)如果给你1g的咖啡色配料,那么你还需要红色、白色配料分别为多少?(2)如果分别给你2g、3g……你又如何配制呢?下面我们要配制质量为45g的冰淇淋该如何配制呢?问题1:质量为45g的某种三色冰淇淋中, 咖啡色、红色和白色配料的比为1︰2︰6,这种三色冰淇淋中咖啡色、红色和白色配料分别是多少?(说说你是用什么方法求出答案的?)提问:如果用方程解,想一想,(1)如何设未知数?(2)相等关系是什么?提问:如果在三色冰淇淋中,咖啡色、红色和白色配料的比为2︰3︰5,那么又如何设未知数?二、数学实验室1、两人一组做游戏:(1)在准备的月历的同一行上任意圈出相邻的4个数,并把所圈出的4个数的和告诉同学, Array让同学求出这4个数;(2)在月历上任意找1个数以及它的上、下、左、右的4个数,每人分别把这5个数的和告诉同学,让同学求出这5个数。

变式:上面的游戏中,同一竖列中能有4个数的和为75吗?同一行列中呢?2、巩固练习:李校长外出开会一周,这一周各天的日期之和是63,这一周是哪几号?(注意让学生比较设哪个未知数更为简便)三、例题教学例1、一张桌子有一张桌面和四条桌腿,做一张桌面需要木材0.03m3,做一条桌腿需要木材0.002m3,现做一批这样的桌子,恰好用去木材3.8m3,共做多少张桌子?例2、已知甲数与乙数的比是1︰3,甲数与丙数的比是2︰5,且甲数、乙数、丙数的三数和等于130,求这三个数。

四、练一练1、课本书P 103. 1、2、3、42、某校参加全县中学生运动会,获取金牌数与银牌数的比是5︰6,铜牌数比金牌数的2倍少5块,金牌数的3倍与银牌数之和等于42块,求该校获取三种奖牌各多少块?五、小结1、用一元一次方程解决问题的步骤有哪些?2、用一元一次方程解决问题的关键是什么?06—07学年度第一学期七年级数学学案§4.3用方程解决问题(2)学习目标:1、通过列表分析实际问题中的数量关系,建立方程解决问题。

苏教版七年级数学上册《4.3用方程解决问题 (第四课时)2》教学设计

苏教版七年级数学上册《4.3用方程解决问题  (第四课时)2》教学设计

4.3用方程解决问题(第四课时)一、教学目标。

教学重难点分析1、教学目标:(1)经历和体会列方程解决实际问题的过程,进一步刻画现实世界中的数学模型。

(2)经历从“问题情境---建立数学模型----解释,应用与拓展”过程,体会数学的应用价值。

(3)提高对数学的好奇心和求知欲,增强学数学的自信心。

2.重难点分析。

(1)重点分析(1)经历和体会列方程解决实际问题的过程,进一步刻画现实世界中的数学模型。

:(2)难点分析:经历从“问题情境---建立数学模型----解释,应用与拓展”过程,体会数学的应用价值。

2、预习练习:(1)填空敌我两军相距25km,敌军以5km/h的速度逃跑,我军同时以8km/h的速度追击,并在相距1km处发生战斗,问战斗是在开始追击后几小时发生的?题中的相等关系是:我军追击的距离+=敌人逃跑的距离+.问题情景涉及一个常见的数量关系:路程=设战斗是在开始追击后x小时发生的,列表分析:列方程得.二、教学过程(一).课前准备(1)填空敌我两军相距25km,敌军以5km/h的速度逃跑,我军同时以8km/h 的速度追击,并在相距1km处发生战斗,问战斗是在开始追击后几小时发生的?题中的相等关系是:我军追击的距离+=敌人逃跑的距离+.问题情景涉及一个常见的数量关系:路程=设战斗是在开始追击后x小时发生的,列表分析:列方程得.创设问题情境良马驽马元朝朱世杰所著《算学启家》中,记载了这样一道题:“两马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?你能读懂吗?(问题“良马每天行240里,驽马每天行150里,驽马先行12天,良马几日后可追上驽马?”)根据题意,画出“线段图”,由“线段图”找出等量关系,试一试!小结:这是一个直线型追及问题,驽马在前,良马在后,良马跑的速度比驽马快,所以一定时间后良马会追上驽马,追上驽马时,两马跑的路程相等。

(二)探索活动运动场跑道周长400m,小红跑步的速度是爷爷的倍,他们从同一地点沿跑道的同一方向同时出发,小红5分钟后第一次追上了爷爷,你知道他们的跑步速度吗?提示:(1)参加过学校运动会800m或1500m的比赛项目吗?速度快的人与速度慢的人会相遇吗?第一次相遇他们各自所走的路程之间有什么关系?(2)从同一地点出发往同一方向行走,小红5分钟后第一次追上了爷爷,他们所走的路程之间有什么关系?1.探索解决问题(1)设爷爷跑步的速度是xm/min,那么可以列出表格(2)“线段图”表示(3)本题也可以用环形图表出。

苏科版七年级数学上册4.3用一元一次方程解决问题 动点问题

苏科版七年级数学上册4.3用一元一次方程解决问题  动点问题

苏科版七年级数学上册《用一元一次方程解决问题》专题:动点问题1. 已知:如图,在数轴上,点O为原点,点A、点B所表示的数分别为a、b,且满足|a+40|+(b-20=0;(1)直接写出a、b的值;a=_____;b=_____.(2)动点P从点A出发,以每秒m个单位长度的速度向点B匀速运动,同时动点Q从点B 出发,以每秒2m个单位长度的速度在点B和原点之间做匀速往返运动,当运动时间为7秒时,点P在点A和原点之间,恰好满足点P到原点的距离是点Q到原点距离的一半,求m的值;(3)在(2)的条件下,当点P和点Q第一次相遇后,速度均变为原来的2倍,点P运动到点B后停止运动,点P停止运动后,点Q运动到原点也停止运动,t为何值时,P、Q两点间的距离为5个单位长度?2.如图,数轴上点A对应的有理数为12,点P以每秒1个单位长度的速度从点A出发,点Q以每秒2个单位长度的速度从原点O出发,且P、Q两点同时向数轴正方向运动.设运动时间为t秒.(1)填空:当t=2时,P,Q两点对应的有理数分别为_____,_____,PQ=_____.(2)当PQ=8时,求t的值.3.如图,在数轴上,点O为原点,点A、点B是数轴上的两点,已知点A所对应的数是x,点B对应的数是y,且x、y满足|x+4|+(y-10=0.(1)点A所对应的数是_____,点B所对应的数是_____.(2)若动点P从点A出发以每秒6个单位长度向右运动,动点Q从点B出发以每秒2个单位长度向点A运动,到达A点即停止运动,P、Q同时出发,且Q停止运动时,P也随之停止运动,求经过多少秒时,P、Q第一次相距6个单位长度?(3)在(2)的条件下,整个运动过程中,设运动时间为t秒,若AP的中点为M,BQ的中点为N,当t为何值时,BM+AN=2PB?4.如图,点A,B都在数轴上,点O为原点,设点A、B表示的数分别是a、b,且a与b满足|a+8|+(b-2=0.动点P从点A出发,沿数轴向左以每秒2个单位长度的速度运动,动点Q从点B出发,沿数轴向左以每秒3个单位长度的速度运动,已知点P与点Q同时出发,且P、Q两点重合后同时停止运动,设点P的运动时间为t秒.(1)直接写出a、b的值和线段AB的长,a=_____,b=_____,AB=_____;(2)当PQ的长为5时,求t的值;(3)若点M为PQ的中点,点N为BQ的中点,是否存在t值,使MN=3BO,若存在,请求出t的值;若不存在,请说明理由.5.已知:如图,点A、点B为数轴上两点,点A表示的数为a,点B表示的数为b,a与b满足|a+4|+(b-8=0.动点P从点A出发,以2个单位长度/秒的速度沿数轴向右运动,同时动点Q从点B出发,以1个单位长度/秒的速度沿数轴向右运动.(1)直接写出a、b的值,a=_____,b=_____;(2)设点P的运动时间为t秒,当t为何值时,P、Q两点相距20个单位长度;(3)若在运动过程中,动点Q始终保持原速度原方向,动点P到达原点时,立即以原来的速度向相反的方向运动.设点P的运动时间为t秒,当t为何值时,原点O分线段PQ 为1:3两部分.6.如图,已如数轴上点A表示数是6,且AB=10.动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数_____;当t=1时,点P所表示的数是_____;(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R运动多少秒时追上点P?(3)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R运动多少秒时PR相距2个单位长度?7.在数轴上,若A、B、C三点满足AC=2CB,则称C是线段AB的相关点.当点C在线段AB 上时,称C为线段AB的内相关点,当点C在线段AB延长线上时,称C为线段AB的外相关点.如图1,当A对应的数为5,B对应的数为2时,则表示数3的点C是线段AB的内相关点,表示数-1的点D是线段AB的外相关点.(1)如图2,A、B表示的数分别为5和-1,则线段AB的内相关点表示的数为_____,线段AB的外相关点表示的数为_____.(2)在(1)的条件下,点P、点Q分别从A点、B点同时出发,点P、点Q分别以3个单位/秒和2个单位/秒的速度向右运动,运动时间为t秒.①当PQ=7时,求t值.②设线段PQ的内相关点为M,外相关点为N.直接写出M、N所对应的数为相反数时t的取值.8. 如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数_____,点P表示的数_____(用含t的式子表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)在(2)的条件下,当点P,点Q之间的距离是3时,运动时间是多少秒?9.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3:2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距5个单位长度?10. 已知数轴上两点A、B对应的数分别为-3、5,点P为数轴上一动点,且点P对应的数为x.(1)若点P到点A、点B的距离相等,则点P对应的数为_____.(2)数轴上是否存在点P,使点P到点A、点B的距离之和为10?若存在,请求出x的值;若不存在,说明理由;(3)现在点A、点B分别以2个单位长度/秒和1个单位长度/秒的速度同时向右运动,点P以3个单位长度/秒的速度同时从O点向左运动,当点A与点B之间的距离为2个单位长度时,求点P所对应的数是多少?11. 如图,数轴上有两点A,B,点A表示的数为2,点B在点A的左侧,且AB=6.动点P 从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动,设运动时间为t秒(t>0).(1)填空:数轴上点B表示的数为_____,点P表示的数为_____(用含t的式子表示);(2)经过多长时间,P、B两点之间相距8个单位长度?(3)动点R从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动.若点P,R同时出发,经过多长时间,P,R之间的距离为2个单位长度?12.数轴是我们进入七年级后研究的一个很重要的数学工具,它不但让我们在数轴上表示所有的有理数,让数变得具体而形象,还帮助我们理解了相反数和绝对值;当然,数轴也可以解决一些实际问题:小华家,小明家,学校在一条东西的大街上,小华家在学校的东面距学校500米,小明家在学校的西面距学校300米.(1)画出如图的数轴(学校为原点,小华家为A点,小明家为B点),数轴的单位长度为实际的_____米.(2)列算式表示小华与小明家之间的距离.(3)周末小明自西向东,小华自东向西出去玩,他们每分钟都走80米,问几分钟后两人相遇?相遇地点在学校的哪边?在数轴上用点C表示出来.13. 已知,如图A,B分别为数轴上的两点,点A对应的数是-18,点B对应的数为20.(1)请直接写出线段AB的中点M对应的数.(2)现在有一只电子蚂蚁P从B点出发,在数轴上以3个单位/秒的速度向左运动.请解答下面问题:①试求出运动15秒时蚂蚁P到点A的距离.②直接写出运动多少秒时P到B的距离是P到A的距离的2倍,并直接写出P点所对应的数.14.如图,A,B两点在数轴上对应的有理数分别为a,b,|a|=10,a+b=80,->0.(1)求出a,b的值;(2)现有一只电子蚂蚁P从点A出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从点B出发,以2个单位长度/秒的速度向左运动.设两只电子蚂蚁在数轴上的点C相遇.①求出点C对应的数是多少?②若相遇后,电子蚂蚁P继续向前运动,电子蚂蚁Q则以原来2倍的速度在BC之间来回运动,求两只电子蚂蚁第二次相遇时对应的数是多少?15.如图,在数轴上有两点A、B,所对应的数分别是a、b,且满足a+5是最大的负整数,b-3是绝对值最小的有理数.点C在点A右侧,到点A的距离是2个单位长度.(1)数轴上,点B表示的数是_____,点C表示的数是_____.(2)点P、Q为数轴上两个动点,点P从A点出发速度为每秒1个单位长度,点Q从B点出发速度为每秒2个单位长度.若P、Q两点同时出发,相向而行,运动时间为t秒.求当t为何值时,点P与点Q之间的距离是3个单位长度?(3)在(2)的条件下,在点P、Q运动的过程中,是否存在t值,使点Q到点A、点B、点C的距离之和为15?若存在,求出t值,并直接写出此时点P在数轴上所表示的数;若不存在,请说明理由.16. 已知数轴上的A、B两点分别对应的数字为a、b,且a,b满足|4a-b|+(a-4=0.(1)直接写出a、b的值;(2)P从A出发,以每秒3个长度的速度沿数轴正方向运动,当PA=PB时,求P运动的时间和P表示的数;(3)数轴上还有一点C对应的数为36,若点P从A出发,以每秒3个单位的速度向C点运动,同时,Q从B点出发,以每秒1个长度的速度向正方向运动,点P运动到C点立即返回再沿数轴向左运动.当PQ=10时,求P点对应的数.17.如图,数轴上点A,B对应的数分别为a,b,并且|a+4|+(b-1=0,点O是原点.(1)a=_____,b=_____;(2)点A,B沿数轴同时出发向右匀速运动,点A的速度为3个单位长度/秒,点B的速度为1个单位长度/秒,若运动时间为t秒,运动过程中,当A,B两点到原点O的距离相等时,求t的值.18.如图,在数轴上点A表示的有理数为-4,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度运动至点A停止运动.设运动时间为t(单位:秒).(1)求t=2时点P表示的有理数;(2)求点P与点B重合时t的值;(3)①点P由点A到点B的运动过程中,求点P与点A的距离(用含t的代数式表示);②点P由点A到点B的运动过程中,点P表示的有理数是多少(用含t的代数式表示);(4)当点P表示的有理数与原点距离是2个单位时,直接写出所有满足条件的t的值.。

4.3.3 用方程解决问题(工程问题)

4.3.3 用方程解决问题(工程问题)

8( x 2 ) 4x 40 40 解之得: X=2

1
经检验x=2符合实际所求 答:应先安排2人工作4小时。
练一练
某中学的学生自己动手整修操场,如果让初 一学生单独工作,需要7.5小时完成;如果让初二 学生单独完成,需要5小时完成。如果让初一、初 二学生一起工作1小时,再由初二学生单独完成剩 余部分,共需多少时间完成? 解:设完成这项工作共需x小时,由题意可得:
1 15
1 9
3+x x
1 x 9
例1.一项工程,甲队单独施工15天完成,乙队单独 施工9天完成.现在由甲队先工作3天,剩下的由甲、 乙两队合作,还需要几天可以完成? 解:设还需要x天才能完成任务,根据题意列方 程得 1 1 (3+x)+ x =1 15 9 解之得 x=4.5
经检验x=4.5符合实际所求
1 甲乙合作 9
x天
1 ( 9
1 + 15 )x
1 + 9 )x=1
例1.一项工程,甲队单独施工15天完成,乙队单独 施工9天完成.现在由甲队先工作3天,剩下的由甲、 乙两队合作,还需要几天可以完成?
解:设还需要x天才能完成任务,根据题意列方 程得 3 1 1 +( + )x=1 15 15 9
解之得 x=4.5 经检验x=4.5符合实际所求 答:甲、乙两个队合作还需要4.5天才能完成任务。

实际问题的 答案


检验
数学问题的解 X=a
引例:
1.一项工作甲独做5天完成,乙独做10 天 1 完成,那么甲每天的工作效率是 , 5 1 乙每天的工作效率是 1 0 ,两人合 1 1 作3天完成的工作量是 ( 5 10) 3 ,此时 1 1 1 ( 剩余的工作量是 5 10) 3 。 2.一项工作甲独做a天完成,乙独做 b 天完 1 成,那么甲每天的工作效率是 , a 1 乙每天的工作效率是 b ,两人合 1 1 3( ) 作3天完成的工作量是 ,此 a b 1 1 1 3 ( ) 时剩余的工作量是 。 a b

4.3用方程解决问题(2)

4.3用方程解决问题(2)
初中数学七年级上册 (苏科版)
4.3用方程解决问题(2)
1、用方程解决问题的一般步骤 是什么? 2用方程解决问题的关键是什么?
例1:某车间有28名工人,生产某种螺栓 和螺母,一个螺栓的两头各套上一个螺 母,每人每天平均生产螺栓12个或螺母 18个,问多少工人生产螺母,多少人生 产螺栓刚好使产品配套。
问题二:
甲、乙两球队开展足球比赛,规定胜一场得3分,平一 场得1分,负一场得0分。甲、乙两队共比赛6场,甲队 保持不败,共得14分。甲队胜了几场?
巩固练习
用方Leabharlann 程解决问 题
1、某班学生39人到公园划船,共租用9艘船, 每艘大船可坐5人,每艘小船可坐3人。每艘船 都坐满,问大、小船各租了多少艘? 2.有一个两位数,两个数位上的数字和是9,如 果把个位上的数字与十位上的数字对调,那么 所得的新两位数比原两位数大63,求原两位数.
1、用白铁皮做盒子,每张铁皮可做盒身16个, 或盒底43个,一个盒身与两个盒底配套,现有 150张铁皮,如何分配铁皮可使盒身盒底配套。
2、(1)初一(1)班43人参加运土劳动,共30根扁
担,要安排多少人抬土?多少人挑土,可使扁担和 人数相配不多不少? (2)如果参加劳动的人数不变,扁担数为20根可 以吗?为什么?
选取合适的等量关系列方程对于快捷地解 决问题起到一个关键的作用
合作质疑,探索新知





问 题
问题一:
某班学生分两组参加植树活动,甲组有17人, 乙组有25人,后来由于需要,又从甲组抽调了部 分同学去乙组,结果乙组人数是甲组的2倍。问从 甲组抽调了多少人去乙组?

合作质疑,探索新知


苏教版七上4.3用方程解决问题2

苏教版七上4.3用方程解决问题2

4.3用方程解决问题(2)学习目标:1.能利用表格作为建模策略,分析实际问题中的数量关系列方程解决问题.2.进一步体会运用方程解决问题的关键是寻找等量关系,提高分析问题、解决问题的能力.3.综合运用已有知识,在探索和解决问题的过程中获得体验,发展自己的思维能力.教学流程:一、预习导航1、某校七年级共有65名同学在植树节活动中担任运土工作。

现有45根扁担,请你安排一问题1:题中有哪些已知的量与未知的量?问题2:你如何理解“扁担和人数恰好相配”?问题3:抬土一般是多少人?要几根扁担?挑土呢?问题4:请你根据以上问题,填写上面表格。

问题5:你能找到题中的等量关系吗?如果能,请根据你列出的等量关系列出方程。

2、广东宏远队的朱芳雨是中国男篮的主力前锋.在一场洲际杯比赛中,他一人独得23分(不含罚球得分).已知他投进3分球比2分球少4个,他一共投进了几个3分球和几个2分球?问题:(1)题中涉及哪几个量?(2)相等关系是什么?合作探究一、例题分析例1:小丽在水果店花18元买了苹果和橘子共6kg,已知苹果每千克3.2元,橘子每千克2.6元,小丽买了苹果和橘子各多少?同学们仔细审题思考1:(1)指出问题中的数、数量、已知数量和未知数量;(2)表格可以怎样设计?(3)设小丽买了x kg苹果,如何用表格分析问题中的数量关系?列出方程是什么?思维拓展:本题还有没有其它解法?变式:如果设小丽买苹果花x元,请你利用表格分析,只要求列出方程不用求解。

例2:某汽车运输公司有甲,乙两个车队,共150辆汽车,因工作需要从乙车队调20辆支援甲车队,这时甲车队的汽车数正好是乙车队汽车数的2倍,求甲,乙两车队原来各有汽车多少辆? 分析:这个问题的相等关系是:_______ ___=______________(1)问题中的等量关系是什么?(2)如何设计表格?(3)如何用表格分析问题中的数量关系?二、展示交流1、期中考试后,班主任为了奖励学习进步的12名同学,让班长去买了12件奖品,其中笔记本每本3元,圆珠笔每支4元,共用了43元。

4.3用方程解决问题(2)

4.3用方程解决问题(2)
问题2:在一场篮球比赛中,小林一人独得28分(不含罚球得分),已知他投中的2分球比3分球多4个,他一共投中了多少个2分球?多少个3分球?
1、某班学生39人到公园划船,共租用9艘船,每艘大船可坐5人,每艘小船可坐3人。每艘船都坐满,问大、小船各租了多少艘?
2、甲、乙两球队开展足球比赛,规定胜一场得3分,平一场得1分,负一场得0分。甲、乙两队共比赛6场,甲队保持不败,共得14分。甲队胜了几场?
1、你能用表格把上述问题中的数量关系表示出来吗?表格又该如何设计呢?
(让学生独立思考或小组讨论,然后指名板演,以充分调动学生的学习积极性和主动性,对于个人或小组的成果要给以积极的评价。当学生对于表格的设计有疑惑时,教师可根据在第二环节时讨论问题中的等量关系式的板书加以提示,如:“问题中有关苹果的量有哪些?橘子呢?”)
分析:问题1学生的难点在表格内容的设计上;问题2虽有两问,但难点是在学生对篮球得分的算法上。要让学生在充分探索的基础上,适当引导以突破难点,对于学生的不同形式的列表,教师要给以积极评价。
为了便于解决问题,“等量关系式”、“方程”也可作为表格中的必要选项,以问题2为例可列出如下表格以分析问题中的数量关系:
课时编号
39
备课时间
课题
4.3用方程解决问题(2)教案
教学目标
1、进一步学习用方程解决实际问题的基本步骤(设、列、解、答)
2、理解“列表法”在分析较复杂的实际问题的数量关系时的作用和运用“列表法”的意义。
3、能综合运用知识,灵活合理地设计表格,正确有效地运用列表法解决问题。
过程性目标:
4、在具体的问题情境解决过程中,让学生感受到列表法对弄清问题中的数
板书如下:
解1:设小丽买苹果x kg,则买橘子(6-x) kg.根据题意,得;3.2x + 2.6(6-x) = 18

4.3 用方程解决问题(2)同步作业

4.3 用方程解决问题(2)同步作业

4.3 用方程解决问题(2)感受·理解1.足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分,一个队进行了14场比赛,其中负5场,共得19分,那么这个队胜了 场.2.今年母女两人的年龄和为60岁,10年前母亲的年龄是女儿的7倍,则今年女儿的年龄为_______岁.3.一根弹簧在弹性限度内,每悬挂砝码一千克就被拉长0.5cm ,若弹簧原长12cm ,那么悬挂_______ 千克砝码时弹簧长为17cm.4.陈华以8折的优惠价买了一双鞋子,节省20元,则他买鞋时实际用了__________元.5..甲车队有50辆汽车,乙车队有41辆汽车,如果要使乙车队车数比甲车队车数的2 倍还多1辆,应从甲车队调多少辆车到乙车队?6.某班学生39人到公园划船,共租用了9艘船,每艘大船可坐5人,每艘小船可坐3人,每艘船都坐满,问大,小船各租了多少艘?7.某人买甲,乙两种笔记本共20本,付款40.8元,甲种笔记本的单价为2.2元, 乙种笔记本的单价为1.8元,两种笔记本各买多少本?思考·运用8.某小组原来的女生数是全组人数的31,后来又加入了4个女生,于是女生人数占全组人数的一半,该小组原来有多少人?9.某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10个,又知两个大齿轮和三个小齿轮配为一套,问应如何安排劳力使生产的产品刚好配套?10.现有水果1000kg,入库时测得含水量为96℅,一个月后因水果中水分损耗,测得含水量为95℅,这批水果的总重量损失了多少千克?探究·拓展11.某电脑公司销售A,B两种品牌电脑,前年共卖出2200台.去年A种电脑卖出的数量比前年多6℅,B种电脑卖出的数量比前年减少5℅,两种电脑的总销量增加了110台.前年A,B两种电脑各卖出多少台?12. 有一卷铁丝,第一次用去了它的一半少1m,第二次用去了剩下的一半多1m,结果还剩下一10m,求这卷铁丝原来的长度.13.两桶内共有水48千克,如果甲桶给乙桶加水一倍,然后乙桶又给甲桶加甲桶剩余水的一倍,那么两桶内的水重量相等,问原来甲, 乙两桶内各有多少千克水?。

用一元二次方程解决问题(含答案)

用一元二次方程解决问题(含答案)

4.3用一元二次方程解决问题(1)目标导航:知识要点:根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题.学习要点:掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.基础巩固题1、长方形的长比宽多4cm,面积为60cm2,则它的周长为________.2、如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为_______.3、直角三角形两条直角边的和为7,面积为6,则斜边为().A.37B.5 C.38D.74、有两块木板,第一块长是宽的2倍,第二块的长比第一块的长少2m,宽是第一块宽的3倍,已知第二块木板的面积比第一块大108m2,这两块木板的长和宽分别是().A.第一块木板长18m,宽9m,第二块木板长16m,宽27m;B.第一块木板长12m,宽6m,第二块木板长10m,宽18m;C.第一块木板长9m,宽4.5m,第二块木板长7m,宽13.5m;D.以上都不对5、从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是().A.8cm B.64cm C.8cm2D.64cm26、在一块长12m,宽8m的长方形平地中央,划出地方砌一个面积为8m2•的长方形花台,要使花坛四周的宽地宽度一样,则这个宽度为多少?7、某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,•上口宽比渠深多2m,渠底比渠深多0.4m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?8、如图,要设计一本书的封面,封面长27cm,宽21cm,•正中央是一个与整个封面长宽比例相同的矩形,•如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,•应如何设计四周边衬的宽度(精确到0.1cm )?九 年级 练数 学 习同步9、如图,在ΔABC 中,∠B=90º,AB=4cm ,BC=10cm ,点P 从点B 出发,沿BC 以1cm/s 的速度向点C 移动,问:经过多少秒后,点P 到点A 的距离的平方比点P 到点B 的距离的8倍大1?AB P C思维拓展题10、如图所示,在一个长为32米,宽为20米的矩形空地上,建造一个草坪,并修筑等宽且互相垂直的两条路,要使草坪的面积为540米2,求路的宽度。

4.3 用一元一次方程解决问题课时3 用线形示意图解决问题 苏科版数学七年级上册课件

4.3 用一元一次方程解决问题课时3 用线形示意图解决问题 苏科版数学七年级上册课件


5x-9=111.
• 答:小组成员共有24名,他们计划做111个“中国结”
• 小结:一种事情分成两种情况,这两种情况的总量不变。
当堂小练
• 1、某汽车对运送一批货物,每辆汽车装4吨还剩下8吨 未装,每辆汽车装4.5吨就恰好装完,该车队运送货物 的汽车共有多少辆?
• 解:设该车队运送货物的汽车共有x辆,根据题意,得: 4x+8=4.5x 解得: x=16
5x个
计划做“中国结”的个数
9个
由图可知,这个小组计划做“中国结”
个。
由(2)的数量关系可以画出如图的线段示意图:
计划做“中国结”的个数
4x个
1ቤተ መጻሕፍቲ ባይዱ个
可知,这个小组计划做“中国结”________个。
• 问题3、题目中的相等关系是什么? 计划做“中国结”的个数相等。
• 解:设小组成员共有x名. • 根据题意,得 5x-9=4x+15. • 解这个方程,得 x=24.
12(x )=39 x=3 答:原定的时间是3小时,他行的路程是39千米.
拓展与延伸
• 一件夹克衫先按成本提高50%标价,再以8折(标价的 80%)出售,结果获利28元,这件夹克衫的成本是多 少元?
• 如果利用线形示意图进行分析,你能求出结果吗?

标价(1+50%)x元
成本x元
28元
售价:(1+50%)x·80%元
• 答:该车队运送货物的汽车共有16辆。
当堂小练
• 2.一个邮递员骑自行车在规定时间内把特快专递送到单 位。他每小时行15千米,可以早到24分钟,如果每小 时行12千米,就要迟到15分钟。原定的时间是多少? 他去的单位有多远? 解:设原定的时间为x小时,由题意可得方程 15(x )=12(x+ )

2024年苏科版七年级数学上册 4.3 用一元一次方程解决问题(课件)

2024年苏科版七年级数学上册 4.3 用一元一次方程解决问题(课件)

知1-练
解题秘方:紧扣等量关系“两片国槐树叶与三片银杏树叶 一年的滞尘总量为164 mg”列出方程求解. 解:设一片国槐树叶一年的平均滞尘量为x mg,则一片银 杏树叶一年的平均滞尘量为(2x-4)mg. 根据题意,得2x+3(2x-4)=164. 解这个方程,得x=22, 此时,2x-4 =40. 答:一片银杏树叶一年的平均滞尘量为 40 mg,一片国槐树叶一年的平均滞尘量为22 mg .
知2-讲
方法总结 常见的两种基本等量关系:
(1)总量与分量关系问题:总量=各分量的和; (2)余缺问题: 表示同一个量的两个不同的式子相等.
知2-练
例 2 派派的妈妈和派派今年共36岁,再过5年, 派派妈妈 的年龄比派派年龄的4倍还大1岁, 则派派今年的年 龄为___4_岁____.
解题秘方:设派派今年的年龄为x岁,紧扣“5 年后 派派妈妈的年龄=4×5 年后派派的年龄+1 岁”, 即可列出关于x的一元一次方程.
“一读,二划,三复述,四表示.”“一读”就是读题,
审题 方法
初步感知题意;“二划”就是在题目上面划符号,找 出重点词句, 理出脉络,使题目简单明了;“三复述” 就是复述题意,使题目变得详细,题意清晰;“四表
示”就是画图表示题意, 使题目变得一目了然
续表:
知1-讲
(1)直接设法:题目问什么,就设什么,它一般适用
知2-练
例 4 [定价格][中考·泰州]某校七年级社会实践小组去商场 调查商品销售情况, 了解到该商场以每件80 元的价 格购进了某品牌衬衫500 件, 并以每件120 元的价格 销售了400 件, 商场准备采取促销措施, 将剩下的 衬衫降价销售. 请你帮商场计算一下, 当每件衬衫降 价多少元时, 销售完这批衬衫正好达到盈利45%的 预期目标?

4.3 用一元一次方程解决问题(课件)苏科版(2024)数学七年级上册

4.3 用一元一次方程解决问题(课件)苏科版(2024)数学七年级上册
项目
只数
足数


合计
35
94
解:设鸡有 只.根据题意,得 .解得 . .答:鸡有23只,兔有12只.
2.利用列表法找工程问题中的等量关系
工程问题中的等量关系
工作量 工作效率×工作时间(或人均效率×时间×人数);合作的效率 各部分单独做的效率和;总工作量 各部分工作量之和.
典例5 (一题多解)检查一处住宅区的自来水管,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙两人合作,但乙中途离开了一段时间,后2天由乙、丙两人合作完成.求乙中途离开了几天?
解:设后两车相距 .根据等量关系,得 ,解得 .答:后快车与慢车相距 .
列表法是一种建模策略,它可以帮助我们分析实际问题中数量之间的等量关系,从而列方程解决问题.1.利用列表法找鸡兔同笼问题中的等量关系
鸡兔同笼问题中的等量关系
鸡的数量兔的数量头的数量,鸡的足数 鸡的数量兔的足数 兔的数量 足的总数量
沿直线运动
沿圆周运动(同时同地)
追及问题
同地不同时
同时不同地
等量关系
时间
(行程问题中常用的三个量之间的关系:路程 速度×时间)
典例3 (一题多问)甲、乙两站相距 ,一列慢车从甲站开出,行驶速度为 ,一列快车从乙站开出,行驶速度为 .
(1)两车相向而行,慢车先开出 ,快车再开.问快车开出多少小时后两车相遇?
解:解所列出的一元一次方程.验:检验所得的解是不是所列方程的解、是否符合实际意义.答:写出答案(包括单位名称).
用一元一次方程解决实际问题的基本过程:审:审清题意,找出题中的等量关系,分清题中的已知量、未知量.设:设未知数,用含未知数的代数式表示其他未知量.列:根据题中的等量关系,列出一元一次方程.

七年级数学教案:用一元一次方程解决问题(全6课时)

七年级数学教案:用一元一次方程解决问题(全6课时)
(3)某电脑价格一月份下降了10%,二月份上升了10%,则二月份的价格与原价相比()
A、不增也不减;B、增加1%;
C、减少9% ;D、减少1
二.探究交流
活动1:在日历上,小明生日那天的上、下、左、右4个日期数的和为64,你能说出小明生日是几号吗?
(1)设小明生日为x号,上、下、左、右4个日期为_______,________,________,_______
课时NO:主备人:审核人用案时间:年月日星期
教学课题
4.3用一元一次方程解决问题(1)
教学目标
1.能用一元一次方程解决简单的实际问题,包括列方程、解方程,并能根据实际
问题的意义检验所得结果是否合理,提高分析问题和解决问题的能力.
2.经历“问题情境——建立数学模型——解释、应用与拓展”的过程,体会数学的
若设租用客车 辆,共可乘坐44 人,加上乘坐校车的64人,就是全体328人.可得方程___________________________________
如何解这个方程?
2 。(1)某复读机的进价是250元,按标价的9折出售时,利润率为15.2%,那么此复读机的标价是__________________元.
教学难点
分析数量关系,列出等量关系
教学方法
教具准备
教学课件
教学过程
个案补充
一.自主先学:
行程问题的基本关系:路程=×
基本类型:
(1)相遇问题:甲路程+乙路程=
(2)追击问题:两人间距离(或慢者先行路程)+=快者路程.
(3)环形跑道问题:
①同时同向而行:首次相遇快者路程-慢者路程=
②同时反向而行:首次相遇两者路程之和=
相遇问题怎么解决?

一次方程(组)复习教案

一次方程(组)复习教案

一次方程(组)复习教案第一章:一次方程的定义与解法1.1 方程的定义:解释方程的概念,方程是一个含有未知数的等式。

强调方程中的等号表示两边的值相等。

1.2 一次方程的定义:介绍一次方程的概念,一次方程是最高次数为1的方程。

举例说明一次方程的一般形式:ax + b = 0。

1.3 解一次方程的步骤:讲解解一次方程的步骤,包括:1. 将方程写成标准形式ax + b = 0。

2. 移项,将未知数移到方程的一边,常数移到另一边。

3. 化简方程,消去系数。

4. 求解未知数的值。

1.4 解一次方程的练习:提供一些练习题,让学生根据解一次方程的步骤求解。

引导学生运用加减法、乘除法等运算来化简方程。

第二章:二元一次方程的定义与解法2.1 二元一次方程的定义:介绍二元一次方程的概念,二元一次方程是含有两个未知数的一次方程。

举例说明二元一次方程的一般形式:ax + = c。

2.2 解二元一次方程的步骤:讲解解二元一次方程的步骤,包括:1. 将方程组写成标准形式,即两个方程分别写成ax + = c 的形式。

2. 利用代入法或消元法求解未知数的值。

3. 检验解的可行性,确保解满足原方程组的所有方程。

2.3 解二元一次方程组的练习:提供一些练习题,让学生根据解二元一次方程的步骤求解。

引导学生运用代入法、消元法等方法来求解方程组。

第三章:一次方程与一次不等式的关系3.1 一次方程与一次不等式的定义:介绍一次方程与一次不等式的概念,一次方程是等式,而一次不等式是不等号连接的两个表达式。

举例说明一次不等式的一般形式:ax + b > c 或ax + b ≤c。

3.2 一次方程与一次不等式的关系:解释一次方程的解集是一次不等式的解集的特殊情况。

讲解如何从一次方程的解集中找出满足一次不等式的解。

3.3 解一次不等式的步骤:讲解解一次不等式的步骤,包括:1. 将不等式写成标准形式,即ax + b ≤c 或ax + b > c。

(苏教版)七年级上数学4.3用一元一次方程解决问题

(苏教版)七年级上数学4.3用一元一次方程解决问题

用一元一次方程解决问题(1)课型:新授课教学目标:1、通过对实际问题的分析,进一步理解方程式刻画客观世界的有效模型。

2、经历用方程解决实际问题的过程,知道解应用问题的一般步骤和关键。

教学重点:在实际问题中寻找等量关系,建立方程。

教学难点:分析问题寻找等量关系。

教学过程:1、情境创设某旅行社的一则广告如下:我社组团去龙湾风景区旅游,收费标准为:如果人数不超过30人,人均旅游费用为800元;如果人数多于30人,那么每增加1人,人均旅游费用降低10元,但人均旅游费用不得低于500元,甲公司分批组织员工到龙湾风景区旅游,现计划用28000元组织第一批员工去旅游,问这次旅游可以安排多少人参加?2、探索活动问题1、如何设未知数?如何找出表达实际问题的相等关系?问题2、你是如何解这个方程的?方程的解都符合题意吗?3、变式训练:某旅行社的一则广告如下:我社组团去龙湾风景区旅游,收费标准为:如果人数不超过30人,人均旅游费用为800元;如果人数多于30人,那么每增加1人,人均旅游费用降低10元,但人均旅游费用不得低于500元,甲公司组织员工到龙湾风景区旅游,并支付给旅行社29250元。

求该公司第二批参加旅游的员工人数。

4、例题教学如图,一块长方形铁皮的长是宽的2倍,四角各截去一个正方形,制成高是5㎝,容积是500㎝3的无盖长方体容器。

求这块铁皮的长和宽。

5、变式训练1:一块边长为10㎝的正方形硬纸板的四周各剪去一个同样大小的正方形,再折成一个无盖的长方体盒子,若要求长方体的底面积为81㎝2,则剪去的正方形边长为多少?6、变式训练2:一块正方形铁皮的4个角各剪去一个边长为4㎝的小正方形,做成一个无盖的盒子。

已知盒子的容积是400㎝3,求原铁皮的边长。

7、练习:(1)一块长方形菜地的面积是150㎝2。

如果它的长减少5m,那么菜地就变成正方形,求原菜地的长和宽。

(2)在一块长70m、宽50m的长方形绿地的四周有一条宽度相等的人行道,这条人行道的面积是1300m2,求这条人行道的宽度。

4.3《一元一次方程的应用》省优获奖学案2

4.3《一元一次方程的应用》省优获奖学案2

4.3 一元一次方程的应用(2)1、会找等积变形问题类型应用题的相等关系设未知数列方程;2、掌握用方程解决实际问题的基本步骤:理解题意,寻找等量关系,设未知数列方程,解方程,作答.重点:列方程解决等积问题.难点:将实际问题转化成一元一次方程来解决.1、借助表格分析应用题,列方程解决实际问题;2、在探索的过程中积极动手、动脑、动口,加强交流互助,达到合作共赢.1、圆柱的底面半径为r ,高为h ,那么圆柱的底面面积是_______,圆柱的体积是_______.如果一个圆柱的底面直径是10cm ,高为h ,则圆柱的体积可表示为 .2、一个正方体的棱长为a ,这个正方形的体积是 .3、一个长方体的长为a ,宽为b ,高为c ,这个长方形体积是_____________.4、长方形长为m ,宽为n ,此时长方形周长为________,面积为________.一、知识链接,明确目标(10分钟)如图,将一个底面直径为20cm 、高为9cm直径为10cm 变,那么圆柱的高变成了多少?1、在这个问题中有什么等量关系?.根据等量关系,列出方程:.解这个方程,得x= .因此,高变成了cm.【温馨提示】1、如果题目没有要求,在表示圆的周长或面积、圆柱圆锥的体积时保留π的形式。

2、解方程时要注意选择简单的方法巩固练习:要锻造一个直径为10cm,高为8cm的圆柱形毛坯,应截取直径为8cm的圆钢多长?小结:列方程解应用题的一般步骤是:、、、、、 .二、自主学习,点拨释疑(限时15分钟)【例1 】用一根长为10m的铁丝围成一个长方形.探究(1)使得这个长方形的长比宽多1.4m,此时长方形的长、宽各为多少米?【分析】由题意知,长方形的始终是不变的,所以可得等量关系 =在解决这个问题的过程中,要抓住这个等量关系。

解:(1)设此时长方形的为xm,则它的为 m,由题意得探究(2)使得这个长方形的长比宽多0.8m,此时长方形的长、宽各为多少米?解:探究(3)使得这个长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?解后反思:1、本题列方程时用的等量关系是什么?2、在表示未知量时抓住关键字:“多、少、倍、分、比”.三、巩固练习,提升能力(限时5分钟)1、第一块试验田的面积比第二块试验田的3倍还多100平方米,这两块试验田共2900平方米,两块试验田的面积分别是_________和________平方米。

苏教版七年级上册数学 第4章 4.3 用一元一次方程解决问题(第2课时)

苏教版七年级上册数学  第4章 4.3 用一元一次方程解决问题(第2课时)

苏教版七年级上册数学第4章一元一次方程4.3 用一元一次方程解决问题第2课时用一元一次方程解决问题(2)1.(2019秋・云浮期末)某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设从乙处调x人到甲处,则所列方程是( )A.2(30+x)=24-xB.2(30-x)=24+xC.30-x=2(24+x)D.30+x=2(24-x)2.(2019秋・抚顺望花区期末)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母22个或螺栓16个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A.22x=16(27-x)B.16x=22(27-xC.2×16x=22(27-x)D.2×22x=16(27-x)3.小华带x元去买甜点,若全买红豆汤圆刚好可买30杯,若全买豆花刚好可买40杯.已知豆花每杯比红豆汤圆便宜10元,则可列方程为___________________________.4.要锻造直径为200毫米,厚为18毫米的钢圆盘,现有直径为40毫米的圆钢,不计损耗,则应截取圆钢多长?设应截取的圆钢长为x毫米,则根据题意可列方程为________________,解方程得______________________.5.(1)(2019秋・台州椒江区期末)儿子今年12岁,父亲今年40岁,则再过___________年,父亲的年龄是儿子的年龄的2倍.(2)(2019秋・孝感孝南区期末)父子二人今年的年龄和为44岁,已知两年前父亲的年龄是儿子的4倍,则今年儿子的年龄是__________岁.6.某水果店用500元购进甲、乙两种水果共50kg,这两种水果的进价、售价如下表所示:(1)求这两种水果各购进多少千克;(2)如果这批水果当天售完,水果店除进货成本外,还需其他成本0.1元/kg,那么水果店销售完这批水果获得的利润是多少元?(利润=售价-成本)7.(2018·邵阳)程大位是我国明朝的珠算发明家他的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,求大、小和尚各有多少人.下列结果正确的是( )A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人8.(2019秋·兰州期末)有一玻璃密封器皿如图①所示,测得其底面直径为20厘米,高20厘米,现内装蓝色溶液若干.当如图②放置时,测得液面高10厘米;当如图③放置时,测得液面高16厘米,则该玻璃密封器皿的总容量为()A.31250cmπ B.31300cmπ C.31350cmπ D.31400cmπ9.某工程队共有27人,每天每人可挖土4方,或运土5方,为使挖出的土及时运走,则应分配挖土_________人,运土_______人.10.(2019・北京一模)2019年1月1日起,新个税法全面施行,将个税起征额从每月3500元调整至5000元,首次增加子女教育、大病医疗、赡养老人等6项专项附加扣除.新的税率表(摘要)如下:若小吴2019年1月应缴税款为215元,专项附加扣除2000元,则他的当月工资薪金是__________元.(注:应纳税额=纳税所得额-起征额-专项附加扣除)11.某工厂现有153m木料,准备制作各种尺寸的圆桌和方桌,如果用部分木料制作桌面,其余木料制作桌腿.(1)已知一张圆桌由一个桌面和一条桌腿组成,如果13m木料可制作40个桌面,或制作20条桌腿要使制作出的桌面桌腿恰好配套,求出制作桌面的木料为多少立方米.(2)已知一张方桌由一个桌面和四条桌腿组成.根据所给条件,解答下列问题.①如果13m木料可制作50个桌面,或制作300条桌腿,应怎样计划用料才能使做好的桌面调整前调整后分级应纳税额税率应纳税额税率1 不超过1500元的部分3% 不超过3000元的部分3%2超过1500元至4500元的部分10%超过3000元至12000元的部分10%和桌腿恰好配套?②如果33m木料可制作20个桌面,或制作320条桌腿,应怎样计划用料才能制作尽可能多的桌子?12.黑熊妈妈想检测小熊学习“列方程解应用题”的效果,给了小熊19个苹果,要小熊把它们分成4堆,要求分后,如果再把第一堆增加一倍,第二堆增加一个、第三堆减少两个,第四堆减少一半后,这4堆苹果的个数要相同.小熊挠挠脑袋,该如何将这19个苹果分成4堆呢?13.为增强公民节水意识,合理利用水资源,某市采用“阶梯收费”,标准如下表: Array m,则应缴水费:2×6+4×(9-6)=24(元)例如:某用户2月份用水93m,应缴水费多少元?(1)某用户3月份用水153(2)已知某用户4月份缴水费20元,求该用户4月份的用水量.m(6月份用水量超过5月份用水量),共缴水费64元,(3)如果某用户5,6月份共用水203那么该用户5,6月份各用水多少立方米?。

苏科版2024新版七年级数学上册教案:4.3.2 用一元一次方程解决问题——利用线形示意图解决问题

苏科版2024新版七年级数学上册教案:4.3.2 用一元一次方程解决问题——利用线形示意图解决问题

学校七年级数学教案课题 4.3 用一元一次方程解决问题(2)课型新授课编号时间主备复备审核教学目标1.能用画线形示意图作为建模策略,分析实际问题中的等量关系,列方程解决问题.2.经历用方程解决问题的过程,进一步体会建立方程模型的作用,培养抽象、概括、分析问题、解决问题的能力和克服困难的意志.教学重难点重点:线形示意图的构建和分析.难点:如何画线形示意图来反映问题中的数量关系.教学环节教学过程师生活动个人复备知学1.揭示课题:2.揭示目标课上板书课题;学生齐读目标.预学阅读课本P 123、124页,完成课本练习T1 根据预学情况给各小组评分.互学1.生活中,我们经常可以在各种售货平台看见一些商品优惠信息,要想知道商家有没有少赚,我们需要知道什么?上述的基本量之间有什么样的关系呢?2.如图,可列方程为:让学生从常见实际生活情境中感受数学.回顾进价、标价、售价、利润等关系.导学活动:用线形示意图分析问题例1:一件羽绒服的标价为进价的1.5倍,在促销活动中以8折出售,获利96元,这件羽绒服的进价是多少元?例2:小明、小亮相约从学校去博物馆,小明以5km/h的速度步行0.5h后,小亮骑自行车以15km/h的速度沿相同路线出发,并在途中追上了小明,小亮出发多久后可以追上小明?例3:运动场环形跑道周长400m,小红跑步的速度是爷爷的53倍,他们从同一起点沿跑道的同一方向同时出发,5min后小红第一次与爷爷相遇.小红和爷爷跑步的速度各是多少?分层教学,一部分学生直接列式,一部分学生借助线形示意图分析.明确等量关系,注意草稿检验和答.追及问题,关键是理解“追上”.感受利用线形示意图分析等量关系的优越性,并引导学生观察线形示意图以及如何画线形示意图.检学1.沿河县为进一步提升旅游业质量和档次,满足游客消费需求,开通了沿河——洪渡古镇的乌江水上旅游航线,已知游艇在乌江河中来往航行于沿河、洪渡古镇两码头之间,顺流航行全程需2小时,逆流航行全程需3小时,已知水流速度为每小时3km,求沿河、洪渡古镇两码头间的距离,若设沿河、洪渡古镇两码头间距离为x km,则所列方程为()A.B.独立完成,课堂交流.C.D.2.A,B两站间的距离为335km,一列慢车从A站开往B 站,每小时行驶55km,慢车行驶1h后,另有一列快车从B站开往A站,每小时行驶85km,设快车行驶了x h后与慢车相遇,可列方程为()A.55x +85x =335 B.55(x﹣1)+85x =335C.55x +85(x﹣1)=335 D.55(x+1)+85x =335总结谈谈你这一节课有哪些收获.课后作业板书设计教后记。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作保护环境宣传的人数+植树种草的人数= 七年级参加公益活动的人数。
如果我做环保宣传的同 植树种草的人 参加公益活动的 学/名 /名 同学/名
在这个等量关系中,参加保护环境宣传的人数 和七年级参加公益活动的总人数都是未知数, 已知参加保护环境宣传的人数是参加公益活动 总人数的15%,所以我们设七年级共有x名同 学参加公益活动,那么参加保护环境宣传的人 数可表示为(15%x)。 根据题意得:15%x+170=x 解这个方程,得 0.15x-x=-170 -0.85x=-170 x=200
我们把设未知数列方程解应用题的方 法叫做代数方法。把不设未知数用算 术式求解的方法,叫做算术方法。随 着学习的深入,接触到的问题越来越 复杂,你将逐步体会到代数方法的优 越性,感到列方程解应用题的简捷美。
例题讲解
例1 某校七年级同学参加这一 次公益活动,其中15%的同学 去作保护环境的宣传,剩下的 170名同学去植树、种草。七 年级共有多少名同学参加这次 公益活动? 怎样用方程来解决这个问题呢? 列方程解决实际问题,关键是找出含有所 求数量的等量关系。本题中的等量关系是
小两台拖拉机一天共耕耘地 面积是19公顷,其中,大拖 拉机耕地的面积比小拖拉机 耕地面积的2倍还多1公顷。 这两台拖拉机一天各耕地多 少公顷? 1.本题中已知量由哪些? 答:(1)大、小两台拖拉一天耕地19公顷。 (2)大拖拉机耕地的面积比小拖拉机耕地面 积的2倍还多1公顷。
2.求什么?
3.本题中含有的所求数量的等量关系是什 么?
一般步骤如下:
1.认真审题,找出能够表达题目含义的 等量关系; 2.分析等量关系中,已知量与 未知量的关系,适当设未知数; 3.将等量关系中,其余的未知量用 含 x 的代数式表示,再根据等量关系, 列出方程; 4.解这个方程; 5.检验答案是否合理、正确(不 必写出来)。最后写答案。
《数学周报》
答:拖拉机一天耕地公顷数+小拖拉机一天 耕地公顷数=19。
解:设小拖拉机一天耕地 x 公顷,依题意, 列方程:
2 x 1 x 19 解这个方程,得 x 6 。
故 2 x 1 2 6 1 13 或19-6=13。
答:小拖拉机一天耕地6公顷,大拖拉机 一天耕地13公顷。
精彩不断
创意无限


配合《数学周报》使用
效果更佳
4.若本题设大拖拉机耕地 x公顷,那么该选 项哪个等量关系列方程比较好呢?请你试 一试,并比较两种解法。 解法二:等量关系为: 大拖拉机一天耕地公顷数=2×小拖拉机一 天耕地公顷数+1 即 x 2(19 x) 1 显然解法一简便。 通过上面问题的解答,你能说出列一元 一次方程解应用问题的一般步骤吗?
苏科版七年级上册 第四章 一元一次方程
4.3 用方程解决问题 (第二课时)
今问鸡兔同笼,上有35 头,下有94足,问鸡兔 各有多少只?
此题用列方程的方法解非常简单,因为每 只鸡有一个头,两只足,每只兔子有一个 头、四只足。 假设次笼中有鸡 x 只,则有兔 (35 x)只,有 鸡足2x 只,兔足 4(35 x) ,那么根据已知条 件:鸡足+兔足=94,得,
2 x 4(35 x) 94
这样就列出了方程,解方程即可求出
x 23 35 x 12
既有鸡23只,兔12只。
此题用算术法解要比上述解法难得多。首先 得考虑:如果鸡和兔都长两只足,那么笼中 应有35×2=70只足,94- 70=24,那么说明, 这24只足是少算进去的兔足,又因为每只兔 有4只足,我们把每只兔子少算了两只足, 因为24÷2=12可知笼内有12只兔子。有鸡 35-12=23只,具体写出算式就是: 94 35 2 12 笼内有兔子的只数= (只) 2 笼中有鸡的只数=35-12=23(只)
相关文档
最新文档