2006年茂名市中考数学试卷(含答案)

合集下载

历年数学中考试题(含答案) (16)

历年数学中考试题(含答案) (16)

广东省茂名市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.2016的相反数是()A.﹣2016 B.2016 C.﹣D.2.2015年茂名市生产总值约2450亿元,将2450用科学记数法表示为()A.0.245×104B.2.45×103C.24.5×102D.2.45×10113.如图是某几何体的三视图,该几何体是()A.球B.三棱柱C.圆柱D.圆锥4.下列事件中,是必然事件的是()A.两条线段可以组成一个三角形B.400人中有两个人的生日在同一天C.早上的太阳从西方升起D.打开电视机,它正在播放动画片5.如图,直线a、b被直线c所截,若a∥b,∠1=60°,那么∠2的度数为()A.120° B.90° C.60° D.30°6.下列各式计算正确的是()A.a2•a3=a6B.(a2)3=a5C.a2+3a2=4a4D.a4÷a2=a27.下列说法正确的是()A.长方体的截面一定是长方形B.了解一批日光灯的使用寿命适合采用的调查方式是普查C.一个圆形和它平移后所得的圆形全等D.多边形的外角和不一定都等于360°8.不等式组的解集在数轴上表示为()A.B.C.D.9.如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是()A.150° B.140° C.130° D.120°10.我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.二、填空题(共5小题,每小题3分,满分15分)11.一组数据2、4、5、6、8的中位数是.12.已知∠A=100°,那么∠A补角为度.13.因式分解:x2﹣2x=.14.已知矩形的对角线AC与BD相交于点O,若AO=1,那么BD=.15.如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y=x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是.三、解答题(共10小题,满分75分)16.计算:(﹣1)2016+﹣|﹣|﹣(π﹣3.14)0.17.先化简,再求值:x(x﹣2)+(x+1)2,其中x=1.18.某同学要证明命题“平行四边形的对边相等.”是正确的,他画出了图形,并写出了如下已知和不完整的求证.已知:如图,四边形ABCD是平行四边形.求证:AB=CD,(1)补全求证部分;(2)请你写出证明过程.证明:.19.为了解茂名某水果批发市场荔枝的销售情况,某部门对该市场的三种荔枝品种A、B、C在6月上半月的销售进行调查统计,绘制成如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(1)该市场6月上半月共销售这三种荔枝多少吨?(2)该市场某商场计划六月下半月进货A、B、C三种荔枝共500千克,根据该市场6月上半月的销售情况,求该商场应购进C品种荔枝多少千克比较合理?20.有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“2”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“1”且第二次抽到数字“2”的概率.21.如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A 点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D的俯角是30°,已知教学楼AB高4米.(1)求教学楼与旗杆的水平距离AD;(结果保留根号)(2)求旗杆CD的高度.22.如图,一次函数y=x+b的图象与反比例函数y=(k为常数,k≠0)的图象交于点A(﹣1,4)和点B(a,1).(1)求反比例函数的表达式和a、b的值;(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.23.某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:(1)陈经理查看计划数时发现:A 类图书的标价是B 类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A 类图书的数量恰好比单独购买B 类图书的数量少10本,请求出A 、B 两类图书的标价;(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A 类图书每本标价降低a 元(0<a <5)销售,B 类图书价格不变,那么书店应如何进货才能获得最大利润?24.如图,在△ABC 中,∠C=90°,D 、F 是AB 边上的两点,以DF 为直径的⊙O 与BC 相交于点E ,连接EF ,过F 作FG ⊥BC 于点G ,其中∠OFE=∠A . (1)求证:BC 是⊙O 的切线;(2)若sinB=,⊙O 的半径为r ,求△EHG 的面积(用含r 的代数式表示).25.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、G为顶点的四边形是正方形时,请求出点M的坐标.2016年广东省茂名市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.2016的相反数是()A.﹣2016 B.2016 C.﹣D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:2016的相反数是﹣2016.故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.2015年茂名市生产总值约2450亿元,将2450用科学记数法表示为()A.0.245×104B.2.45×103C.24.5×102D.2.45×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2450=2.45×103,故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是某几何体的三视图,该几何体是()A.球B.三棱柱C.圆柱D.圆锥【考点】由三视图判断几何体.【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【解答】解:根据主视图是三角形,圆柱和球不符合要求,A、C错误;根据俯视图是圆,三棱柱不符合要求,A错误;根据几何体的三视图,圆锥符合要求.故选:D.【点评】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.4.下列事件中,是必然事件的是()A.两条线段可以组成一个三角形B.400人中有两个人的生日在同一天C.早上的太阳从西方升起D.打开电视机,它正在播放动画片【考点】随机事件.【分析】根据必然事件指在一定条件下,一定发生的事件,可得答案.【解答】解:A、两条线段可以组成一个三角形是不可能事件,故A错误;B、400人中有两个人的生日在同一天是必然事件,故B正确;C、早上的太阳从西方升起是不可能事件,故C错误;D、打开电视机,它正在播放动画片是随机事件,故D错误;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.如图,直线a、b被直线c所截,若a∥b,∠1=60°,那么∠2的度数为()A.120° B.90° C.60° D.30°【考点】平行线的性质.【分析】利用两直线平行,同位角相等就可求出.【解答】解:∵直线被直线a、b被直线c所截,且a∥b,∠1=48°∴∠2=48°.故选C.【点评】本题考查了平行线的性质,应用的知识为两直线平行,同位角相等.6.下列各式计算正确的是()A.a2•a3=a6B.(a2)3=a5C.a2+3a2=4a4D.a4÷a2=a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;合并同类项法则;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【解答】解:A、a2•a3=a2+3=a5,故本选项错误;B、(a2)3=a2×3=a6,故本选项错误;C、a2+3a2=4a2,故本选项错误;D、a4÷a2=a4﹣2=a2,故本选项正确.故选D.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.7.下列说法正确的是()A.长方体的截面一定是长方形B.了解一批日光灯的使用寿命适合采用的调查方式是普查C.一个圆形和它平移后所得的圆形全等D.多边形的外角和不一定都等于360°【考点】多边形内角与外角;截一个几何体;平移的性质;全面调查与抽样调查.【专题】多边形与平行四边形.【分析】A、长方体的截面不一定是长方形,错误;B、调查日光灯的使用寿命适合抽样调查,错误;C、利用平移的性质判断即可;D、多边形的外角和是确定的,错误.【解答】解:A、长方体的截面不一定是长方形,错误;B、了解一批日光灯的使用寿命适合采用的调查方式是抽样调查,错误;C、一个圆形和它平移后所得的圆形全等,正确;D、多边形的外角和为360°,错误,故选C【点评】此题考查了多边形内角与外角,截一个几何体,平移的性质,以及全面调查与抽样调查,弄清各自的定义及性质是解本题的关键.8.不等式组的解集在数轴上表示为()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各选项的解集,并做出判断.【解答】解:不等式组的解集为﹣1<x≤1,A:数轴表示解集为无解,故选项A错误;B:数轴表示解集为﹣1<x≤1,故选项B正确;C :数轴表示解集为x≤﹣1,故选项C 错误;D :数轴表示解集为x≥1,故选项D 错误; 故选B【点评】本题考查了利用数轴表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.9.如图,A 、B 、C 是⊙O 上的三点,∠B=75°,则∠AOC 的度数是( )A .150°B .140°C .130°D .120° 【考点】圆周角定理.【分析】直接根据圆周角定理即可得出结论. 【解答】解:∵A 、B 、C 是⊙O 上的三点,∠B=75°, ∴∠AOC=2∠B=150°. 故选A .【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .B .C .D .【考点】由实际问题抽象出二元一次方程组.【分析】设有x匹大马,y匹小马,根据100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,列方程组即可.【解答】解:设有x匹大马,y匹小马,根据题意得,故选C【点评】本题考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组.二、填空题(共5小题,每小题3分,满分15分)11.一组数据2、4、5、6、8的中位数是5.【考点】中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:先对这组数据按从小到大的顺序重新排序:2、4、5、6、8.位于最中间的数是5,所以这组数的中位数是5.故答案为:5.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.已知∠A=100°,那么∠A补角为80度.【考点】余角和补角.【专题】计算题;实数.【分析】根据两个角之和为180°时,两角互补求出所求角度数即可.【解答】解:如果∠A=100°,那么∠A补角为80°,故答案为:80【点评】此题考查了余角和补角,熟练掌握补角的定义是解本题的关键.13.因式分解:x2﹣2x=x(x﹣2).【考点】因式分解-提公因式法.【专题】计算题.【分析】原式提取x即可得到结果.【解答】解:原式=x(x﹣2),故答案为:x(x﹣2)【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.14.已知矩形的对角线AC与BD相交于点O,若AO=1,那么BD=2.【考点】矩形的性质.【分析】根据矩形的性质:矩形的对角线互相平分且相等,求解即可.【解答】解:在矩形ABCD中,∵角线AC与BD相交于点O,AO=1,∴AO=CO=BO=DO=1,∴BD=2.故答案为:2.【点评】本题考查了矩形的性质,解答本题的关键是掌握矩形的对角线互相平分且相等的性质.15.如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y=x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是6+6.【考点】坐标与图形变化-旋转;一次函数图象与几何变换.【分析】先求出点A2,A4,A6…的横坐标,探究规律即可解决问题.【解答】解:由题意点A2的横坐标(+1),点A4的横坐标3(+1),点A6的横坐标(+1),点A8的横坐标6(+1).故答案为6+6.【点评】本题考查坐标与图形的变换﹣旋转,一次函数图形与几何变换等知识,解题的关键是学会从特殊到一般,探究规律,由规律解决问题,属于中考常考题型.三、解答题(共10小题,满分75分)16.计算:(﹣1)2016+﹣|﹣|﹣(π﹣3.14)0.【考点】实数的运算;零指数幂.【分析】分别利用有理数的乘方运算法则结合零指数幂的性质和绝对值的性质、二次根式的性质分别化简求出答案.【解答】解:(﹣1)2016+﹣|﹣|﹣(π﹣3.14)0=1+2﹣﹣1=.【点评】此题主要考查了有理数的乘方运算、零指数幂的性质、绝对值的性质、二次根式的性质等知识,正确把握相关性质是解题关键.17.先化简,再求值:x(x﹣2)+(x+1)2,其中x=1.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用单项式乘以多项式,完全平方公式化简,去括号合并得到最简结果,把x 的值代入计算即可求出值.【解答】解:原式=x2﹣2x+x2+2x+1=2x2+1,当x=1时,原式=2+1=3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.某同学要证明命题“平行四边形的对边相等.”是正确的,他画出了图形,并写出了如下已知和不完整的求证.已知:如图,四边形ABCD是平行四边形.求证:AB=CD,BC=DA(1)补全求证部分;(2)请你写出证明过程.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在和中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA..【考点】平行四边形的性质.【分析】(1)根据题意容易得出结论;(2)连接AC,与平行四边形的性质得出AB∥CD,AD∥BC,证出∠BAC=∠DCA,∠BCA=∠DAC,由ASA证明△ABC≌△CDA,得出对应边相等即可.【解答】(1)已知:如图,四边形ABCD是平行四边形.求证:AB=CD,BC=DA;故答案为:BC=DA;(2)证明:连接AC,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA;故答案为:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形对边平行的性质,证明三角形全等是解决问题的关键.19.为了解茂名某水果批发市场荔枝的销售情况,某部门对该市场的三种荔枝品种A、B、C在6月上半月的销售进行调查统计,绘制成如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(1)该市场6月上半月共销售这三种荔枝多少吨?(2)该市场某商场计划六月下半月进货A、B、C三种荔枝共500千克,根据该市场6月上半月的销售情况,求该商场应购进C品种荔枝多少千克比较合理?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据B品种有120吨,占30%即可求得调查的这三种荔枝的总吨数;(2)总数量500乘以C品种荔枝的吨数所占的百分比即可求解.【解答】解:(1)120÷30%=400(吨).答:该市场6月上半月共销售这三种荔枝400吨;(2)500×=300(千克).答:该商场应购进C品种荔枝300千克比较合理.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“2”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“1”且第二次抽到数字“2”的概率.【考点】列表法与树状图法.【分析】(1)根据概率公式直接解答;(2)列出树状图,找到所有可能的结果,再找到第一次抽到数字“1”且第二次抽到数字“2”的数目,即可求出其概率.【解答】解:(1)∵四张正面分别标有数字1,2,3,4的不透明卡片,∴随机抽取一张卡片,求抽到数字“2”的概率=;(2)列树状图为:由树形图可知:第一次抽到数字“1”且第二次抽到数字“2”的概率=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A 点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D的俯角是30°,已知教学楼AB高4米.(1)求教学楼与旗杆的水平距离AD;(结果保留根号)(2)求旗杆CD的高度.【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)根据题意得出∠ADB=30°,进而利用锐角三角函数关系得出AD的长;(2)利用(1)中所求,结合CD=AD•tan60°求出答案.【解答】解:(1)∵教学楼B点处观测到旗杆底端D的俯角是30°,∴∠ADB=30°,在Rt△ABD中,∠BAD=90°,∠ADB=30°,AB=4m,∴AD===4(m),答:教学楼与旗杆的水平距离是4m;(2)∵在Rt△ACD中,∠ADC=90°,∠CAD=60°,AD=4m,∴CD=AD•ta n60°=4×=12(m),答:旗杆CD的高度是12m.【点评】此题主要考查了解直角三角的应用,正确应用锐角三角函数关系是解题关键.22.如图,一次函数y=x+b的图象与反比例函数y=(k为常数,k≠0)的图象交于点A(﹣1,4)和点B(a,1).(1)求反比例函数的表达式和a、b的值;(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.【考点】反比例函数与一次函数的交点问题;解二元一次方程组;待定系数法求一次函数解析式.【分析】(1)由点A的坐标结合反比例函数图象上点的坐标特征,即可求出k值,从而得出反比例函数解析式;再将点A、B坐标分别代入一次函数y=x+b中得出关于a、b的二元一次方程组,解方程组即可得出结论;(2)连接AO,设线段AO与直线l相交于点M.由A、O两点关于直线l对称,可得出点M为线段AO的中点,再结合点A、O的坐标即可得出结论.【解答】解:(1)∵点A(﹣1,4)在反比例函数y=(k为常数,k≠0)的图象上,∴k=﹣1×4=﹣4,∴反比例函数解析式为y=﹣.把点A(﹣1,4)、B(a,1)分别代入y=x+b中,得:,解得:.(2)连接AO,设线段AO与直线l相交于点M,如图所示.∵A 、O 两点关于直线l 对称, ∴点M 为线段OA 的中点, ∵点A (﹣1,4)、O (0,0), ∴点M 的坐标为(﹣,2).∴直线l 与线段AO 的交点坐标为(﹣,2).【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式、解二元一次方程组以及中点坐标公式,解题的关键是:(1)由点的坐标利用待定系数法求函数系数;(2)得出点M 为线段AO 的中点.本题属于基础题,难度不大,解决该题型题目时,巧妙的利用了中点坐标公式降低了难度.23.某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:(1)陈经理查看计划数时发现:A 类图书的标价是B 类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A 类图书的数量恰好比单独购买B 类图书的数量少10本,请求出A 、B 两类图书的标价;(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?【考点】一次函数的应用;分式方程的应用;一元一次不等式组的应用.【分析】(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x,然后根据题意列出方程,求解即可.(2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000﹣t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价﹣总成本,求出最佳的进货方案.【解答】解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得﹣10=,化简得:540﹣10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A类图书的标价为:1.5x=1.5×18=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27﹣a)元(0<a<5),由题意得,,解得:600≤t≤800,则总利润w=(27﹣a﹣18)t+(18﹣12)(1000﹣t)=(9﹣a)t+6(1000﹣t)=6000+(3﹣a)t,故当0<a<3时,3﹣a>0,t=800时,总利润最大;当3≤a<5时,3﹣a<0,t=600时,总利润最大;答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.【点评】本题考查了一次函数的应用,涉及了分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.24.如图,在△ABC中,∠C=90°,D、F是AB边上的两点,以DF为直径的⊙O与BC相交于点E,连接EF,过F作FG⊥BC于点G,其中∠OFE=∠A.(1)求证:BC是⊙O的切线;(2)若sinB=,⊙O的半径为r,求△EHG的面积(用含r的代数式表示).【考点】切线的判定.【分析】(1)首先连接OE,由在△ABC中,∠C=90°,FG⊥BC,可得FG∥AC,又由∠OFE=∠A,易得EF平分∠BFG,继而证得OE∥FG,证得OE⊥BC,则可得BC是⊙O的切线;(2)由在△OBE中,sinB=,⊙O的半径为r,可求得OB,BE的长,然后由在△BFG中,求得BG,FG的长,则可求得EG的长,易证得△EGH∽△FGE,然后由相似三角形面积比等于相似比的平方,求得答案.【解答】(1)证明:连接OE,∵在△ABC中,∠C=90°,FG⊥BC,∴∠BGF=∠C=90°,∴FG∥AC,∴∠OFG=∠A,∴∠OFE=∠OFG,∴∠OFE=∠EFG,∵OE=OF,∴∠OFE=∠OEF,∴∠OEF=∠EFG,∴OE∥FG,∴OE⊥BC,∴BC是⊙O的切线;(2)解:∵在Rt△OBE中,sinB=,⊙O的半径为r,∴OB=r,BE=r,∴BF=OB+OF=r,∴FG=BF•sinB=r,∴BG==r,∴EG=BG﹣BE=r,∴S△FGE=EG•FG=r2,EG:FG=1:2,∵BC是切线,∴∠GEH=∠EFG,∵∠EGH=∠FGE,∴△EGH∽△FGE,∴=()=,∴S△EHG=S△FGE=r2.【点评】此题考查了切线的判定、相似三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.25.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、G为顶点的四边形是正方形时,请求出点M的坐标.【考点】二次函数综合题.【分析】(1)利用待定系数法求出过A,B,C三点的抛物线的函数表达式;(2)连接PC、PE,利用公式求出顶点D的坐标,利用待定系数法求出直线BD的解析式,设出点P的坐标为(x,﹣2x+6),利用勾股定理表示出PC2和PE2,根据题意列出方程,解方程求出x的值,计算求出点P的坐标;(3)设点M的坐标为(a,0),表示出点G的坐标,根据正方形的性质列出方程,解方程即可.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴,解得,,∴经过A,B,C三点的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图1,连接PC、PE,x=﹣=﹣=1,当x=1时,y=4,∴点D的坐标为(1,4),设直线BD的解析式为:y=mx+n,则,解得,,∴直线BD的解析式为y=﹣2x+6,设点P的坐标为(x,﹣2x+6),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y=﹣2×2+6=2,∴点P的坐标为(2,2);(3)设点M的坐标为(a,0),则点G的坐标为(a,﹣a2+2a+3),∵以F、M、G为顶点的四边形是正方形,∴FM=MG,即|2﹣a|=|﹣a2+2a+3|,当2﹣a=﹣a2+2a+3时,整理得,a2﹣3a﹣1=0,解得,a=,当2﹣a=﹣(﹣a2+2a+3)时,整理得,a2﹣a﹣5=0,解得,a=,∴当以F、M、G为顶点的四边形是正方形时,点M的坐标为(,0),(,0),(,0),(,0).。

2006--2011年广东省初中升学考试数学试题及答案(6套)

2006--2011年广东省初中升学考试数学试题及答案(6套)

湖北省十堰市2006年课改实验区初中毕业生学业考试数 学 试 题注意事项:1.本试题满分120分,考试时间为120分钟;2.请考生在答题前,先将县(市)、学校、考号和姓名填写在试卷密封线内的矩形方框内; 3一、精心选一选(本大题共10小题,每小题都给出代号为A,B,C,D的四个选项,其中有且只有一个选项符合题目要求,把符合题目要求的选项的字母代号直接填在答题框内相应的题号下的方框中,不填、填错或一个方框内填写的代号超过一个,一律得0分;每小题1.下列各式中,一定成立的是( )A.()2222=-B.()3322=- C.2222-=- D.()()3322-=-2.二元一次方程组32725x y x y -=⎧⎨+=⎩,的解是( )A.32x y =⎧⎨=⎩,B.12x y =⎧⎨=⎩,C.42x y =⎧⎨=⎩,D.31x y =⎧⎨=⎩,3.下列命题正确的是( )A.ABC △中,如果30A =∠,那么12BC AB =; B.如果a b c +>,那么线段a ,b ,c 一定可以围成一个三角形; C.三角形三边垂直平分线的交点有可能在一边上; D.平分弦的直径垂直于弦4.下列四个数据,精确的是( ) A.小莉班上有45人; B.某次地震中,伤亡10万人; C.小明测得数学书的长度为21.0厘米; D.吐鲁番盆地低于海平面大约155米 5.观察图甲,从左侧正对长方体看到的结果是图乙中的( )6.学校升旗仪式上,徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅(图甲) A. B. C. D. (图乙)图是下图中的( )7.如图,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成( ) A.22.5角B.30角 C.45角D.60角8.如图所示,课堂上小亮站在座位上回答数学老师提出的问题,那么数学老师观察小亮身后,盲区是( ) A.DCE △ B.四边形ABCD C.ABF △ D.ABE △9.如图,已知12=∠∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D =∠∠;④B E =∠∠.其中能使ABC AED △≌△的条件有( ) A.4个 B.3个 C.2个 D.1个 10.在ABC △中,90C =∠,D 是边AB 上一点(不与点A ,B 重合),过点D 作直线与另一边相交,使所得的三角形与原三角形相似,这样的直线有( ) A.1条 B.2条 C.3条 D.4条二、耐心填一填(本大题共6小题,每小题3分,满分18分.把答案直接写在横线上) 11.已知直线l 经过第一、二、四象限,则其解析式可以为______________(写出一个即可). 12.用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第n 个图形需____________根火柴棒.13.学生小颖自制一个无底圆锥形纸帽,圆锥底面圆的半径为5cm ,母线长为16cm ,那么围成这个纸帽的面积(不计接缝)是_________2cm (结果保留三个有效数字).O 时间 A. 高度O 时间 B. 高度 O 时间 C. 高度 O 时间 D.高度(第7题图)(第8题图)(第9题图)(第一个图形)(第二个图形) (第三个图形)14.如图,已知AB CD ∥,55A =∠,20C =∠,则P =∠___________.15.如图,在平面直角坐标系中,请按下列要求分别作出ABC △变换后的图形(图中每个小正方形的边长为1个单位):(1)向右平移8个单位;(2)关于x 轴对称;(3)绕点O 顺时针方向旋转180.16.小亮调查本班同学的身高后,将数据绘制成如下图所示的频数分布直方图(每小组数据包含最小值,但不包含最大值.比如,第二小组数据x 满足:145150x <≤,其它小组的数据类似).设班上学生身高的平均数为x ,则x 的取值范围是___________________.三、细心做一做(本大题共3小题,满分18分)17.(5分)计算:()21sin 4527320066tan 302-+-+(至少要有两步运算过程).18.(5分)化简:232224aa a a aa ⎛⎫-÷ ⎪+--⎝⎭.(第14题图)y (第15题图) 140 145 150 155 160 165 170 1753691695251015 20学生人数 (第16题图)身高/cm x19.(8分)小莉和小慧用如图所示的两个转盘做游戏,转动两个转盘各一次,若两次数字和为奇数,则小莉胜;若两次数字和为偶数,则小慧胜.这个游戏对双方公平吗?试用列表法或树状图加以分析.四、静心试一试(本大题共4小题,满分24分)20.(6分)某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺了若干块木块,构筑成一条临时近道.木板对地面的压强()Pa p 是木板面积()2m S 的反比例函数,其图象如下图所示.(1)请直接写出这一函数表达式和自变量取值范围; (2)当木板面积为20.2m 时,压强是多少?(3)如果要求压强不超过6000Pa ,木板的面积至少要多大?200 400 600 ()1.5400A ,/Pa p2/m S432.5 2 1.5 121.(6分)武当山风景管理区,为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改善,把倾角由44减至32,已知原台阶AB 的长为5米(BC 所在地面为水平面).(1)改善后的台阶会加长多少?(精确到0.01米)(2)改善后的台阶多占多长一段地面?(精确到0.01米)22.(6分)市“康智”牛奶乳业有限公司经过市场调研,决定从明年起对甲、乙两种产品实行“限产压库”,要求这两种产品全年共新增产量20件,这20件的总产值p (万元)满足:110120p <<.已知有关数据如下表所示,那么该公司明年应怎样安排新增产品的产量?23.(6分)如图甲,李叔叔想要检测雕塑底座正面四边形ABCD 是否为矩形,但他随身只带了有刻度的卷尺,请你设计一种方案,帮助李叔叔检测四边形ABCD 是否为矩形(图乙供设计备用).BC A 44ºDA C BBCAD(图甲)(图乙)五、用心想一想(本大题共2小题,满分18分)24.(8分)如图,BD 为O 的直径,AB AC =,AD 交BC 于E ,2AE =,4ED =. (1)求证:ABE ADB △∽△,并求AB 的长;(2)延长DB 到F ,使BF BO =,连接FA ,那么直线FA 与O 相切吗?为什么?25.(10分)市“健益”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)与销售单价x (元)(30x ≥)存在如下图所示的一次函数关系. (1)试求出y 与x 的函数关系式;(2)设“健益”超市销售该绿色食品每天获得利润p 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?(3)根据市场调查,该绿色食品每天可获利润不超过4480元,现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(直接写出).F AC EB OD六、综合运用(本题满分12分)26.已知抛物线1C :22y x mx n =-++(m ,n 为常数,且0m ≠,0n >)的顶点为A ,与y 轴交于点C ;抛物线2C 与抛物线1C 关于y 轴对称,其顶点为B ,连接AC ,BC ,AB .注:抛物线()20y ax bx c a =++≠的顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.(1)请在横线上直接写出抛物线2C 的解析式:________________________; (2)当1m =时,判定ABC △的形状,并说明理由;(3)抛物线1C 上是否存在点P ,使得四边形ABCP 为菱形?如果存在,请求出m 的值;如果不存在,请说明理由.Oxy湖北省十堰市2006年课改实验区初中毕业生学业考试数学试题参考答案及评分说明一、选择题1.A 2.D 3.C 4.A 5.B 6.A 7.C 8.D 9.B 10.C 二、填空题11.如:1y x =-+(答案不唯一) 12.()66n + 13.251 14.3515.每个图形1分,图形略 16.154.5159.5x <≤ 说明:11~16题凡等价结果均给满分. 三、解答题17.解:原式216223⎛=-+⨯ ⎝⎭································ 3分 1133231322=-+=. ········································ 5分18.解:原式()()()()()()32222222a a a a a a a a a --++-=+- ························· 2分22842a aa a-==-. ·············································· 5分 19.解:这个游戏对双方公平. ····················································· 1分 理由如下:············································ 6分从表中可以看出,总共有12种结果,每种结果出现的可能性相同,而两数和为奇数的结果有6种. ·············································································· 7分61122P ∴==小莉.因此,这个游戏对双方公平. ······························· 8分 20.解:(1)()6000p S S=>(解析式与自变量取值范围各1分). ·· 2分 (2)当0.2S =时,60030000.2p ==. 即压强是3000Pa . ····································································· 4分(3)由题意知,6006000S≤,0.1S ∴≥. 即木板面积至少要有20.1m . ························································· 6分21.解:(1)如图,在Rt ABC △中,sin 445sin 44 3.473AC AB ==≈. ·········································· 1分在Rt ACD △中,3.4736.554sin 32sin 32AC AD ==≈,6.5545 1.55AD AB ∴-=-≈. 即改善后的台阶会加长1.55米. ····················································· 3分 (2)如图,在Rt ABC △中, cos 445cos 44 3.597BC AB ==≈. ········································· 4分在Rt ACD △中,3.4735.558tan 32tan 32AC CD ==≈,5.558 3.597 1.96BD CD BC ∴=-=-≈.即改善后的台阶多占1.96米长的一段地面. ······································ 6分 22.解:设该公司安排生产新增甲产品x 件,那么生产新增乙产品()20x -件,由题意, 得()110 4.57.520120x x <+-<, ··············································· 2分 解这个不等式组,得40103x <<, ················································· 3分 依题意,得111213x =,,. ····························································· 4分当11x =时,20119-=;当12x =时,20128-=;当13x =时,20137-=. ·························································································· 5分 所以该公司明年可安排生产新增甲产品11件,乙产品9件;或生产新增甲产品12件, 乙产品8件;或生产新增甲产品13件,乙产品7件. ·························· 6分 23.解:方案如下:①用卷尺分别比较AB 与CD AD ,与BC 的长度,当AB CD =,且AD BC =时,四边形ABCD 为平行四边形;否则四边形ABCD 不是平行四边形,从而不是矩形. ···················································································· 3分 ②当四边形ABCD 是平行四边形时,用卷尺比较对角线AC 与BD 的长度.当AC BD =时,四边形ABCD 是矩形;否则四边形ABCD 不是矩形. ························ 6分 说明:(1)考生设计以下方案,请参照给分. 方案一:先用勾股定理逆定理测量一个角是否为直角,然后用同样的方法再测量另外两个角是否也为直角,并给出判断;方案二:先测量四边形ABCD 是否为平行四边形,再用勾股定理逆定理测量其中一个角是否为直角,并给出判断.(2)设计方案中如果没有从反面说明四边形ABCD 不是矩形,扣2分. 24.(1)证明:AB AC =,ABC C ∴=∠∠,C D =∠∠,ABC D ∴=∠∠. 又BAE DAB =∠∠, ABE ADB ∴△∽△. ····························· 3分AB AEAD AB∴=.()()224212AB AD AE AE ED AE∴==+=+⨯=.AB∴=··········································································· 5分(2)直线FA与O相切. ·························································· 6分理由如下:连接OA.BD为O的直径,90BAD∴=∠.BD∴====.1122BF BO BD∴===⨯=2AB=BF BO AB∴==.90OAF∴=∠.∴直线FA与O相切.······························································· 8分25.解:(1)设y kx b=+,由图象可知,3040040200.k bk b+=⎧⎨+=⎩,········································································· 2分解之,得201000.kb=-⎧⎨=⎩,201000y x∴=-+(3050x≤≤,不写自变量取值范围不扣分).········· 4分(2)()()()2202020100020140020000 p x y x x x x=-=--+=-+-.·· 6分200a=-<,p∴有最大值.当()140035220x=-=⨯-时,4500p=最大值.即当销售单价为35元/千克时,每天可获得最大利润4500元.················· 8分(3)3134x≤≤或3639x≤≤.(写对一个得1分) ························ 10分26.(1)22y x mx n=--+. ····················································· 2分(2)当1m=时,ABC△为等腰直角三角形.································· 3分理由如下:如图:点A与点B关于y轴对称,点C又在y轴上,AC BC∴=.············································································ 4分新世纪教育网 精品资料 版权所有@新世纪教育网新世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。

茂名中考数学试卷答案

茂名中考数学试卷答案

茂名市2011年初中毕业生学业水平考试与高中阶段学校招生考试数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可根据试题的主要内容,并参照评分标准制定相应的评分细则后评卷。

2.解答题右端所注的分数,表示考生正确做到这一步应得的累加分数. 题号 1 2 3 4 5 6 7 8 9 10 答案 D C A D B B D B C A11、1 12、2 13、100 14、1515、 点(1,n)是双曲线xn y =与抛物线2nx y =的一个交点 . 三、(本大题共3小题,每小题7分,共21分.)16、解:(1)原式=416-,··1分(2)原式=222222y xy x y xy x -+-++,·2分=4-2,········2分 =xy 4. ·····················4分=2 .·········3分(注:以上两小题如果考生直接写出正确答案的建议给满分).17、解:方程两边乘以)2(+x ,得:)2(21232+=-x x x ,······················1分 x x x 4212322+=- ,··············································2分01242=--x x ,···················································3分0)6)(2(=-+x x ,·················································4分 解得:21-=x , 62=x ,···········································5分 经检验:6=x 是原方程的根.···········································7分18、如图所示:(1)画对得3分;(2)画对得4分(说明:图形基本正确给满分,如果没有画出线段CD 扣1分;如果把线段AB 、CD 画成弧线也各扣1分,考生可以不用标出字母A 、B 、C 、D ).四、(本大题共2小题,每小题7分,共14分19、解:(1)利用列表或树状图的方法表示从甲校到丙校的线路所有可能出现的结果如下: A 1A 2 A 3B 1 (A 1 、B 1) (A 2 、B 1) (A 3、B 1) B 2 (A 1 、 B 2) (A 2、 B 2) (A 3 、B 2 )·····························4分(2) 小张从甲学校到丙学校共有6条不同的线路,其中经过B 1线路有3条,所以:P (小张恰好经过了1B 线路的概率)=2163=.························7分20、解:(1)由已知得,5月份销售这种品牌的电风扇台数为:1000%30300=(台)··2分 (2)销售乙型电风扇占5月份销售量的百分比为:%451000450=, ····4分 销售丙型电风扇占5月份销售量的百分比为:1-30%-45%=25%, ····6分∴根据题意,丙种型号电风扇应订购:500%252000=⨯(台). ··7分五、(本大题共3小题,每小题8分,共24分)21、解:(1)500+=x y 甲 ,x y 2=乙 . ································4分(2)当甲y >乙y 时,即500+x >x 2,则x <500 ,························5分当甲y =乙y 时, 即500+x =x 2,则x =500,························6分当甲y <乙y 时,即500+x <x 2,则x >500, ······················7分∴该学校印制学生手册数量小于500本时应选择乙厂合算,当印制学生手册数量大于500本时应选择甲厂合算,当印制学生手册数量等于500本时选择两厂费用都一样 .·8分22、(1)证明:如图,∵△ABC 是等腰三角形,∴AC=BC , ∴∠BAD =∠ABE ,··1分又∵AB=BA 、∠2=∠1, ∴△ABD ≌△BAE (ASA ),·············2分∴BD=AE ,又∵∠1=∠2,∴OA=OB ,∴BD-OB=AE-OA ,即:OD=OE .································3分(2) 证明:由(1)知:OD=OE ,∴∠OED =∠ODE ,∴∠OED=180(21-∠DOE ),···4分 同理:∠1= 180(21-∠AOB ), 又∵∠DOE =∠AOB ,∴∠1=∠OED ,∴D E ∥AB ,··············5分∵AD 、BE 是等腰三角形两腰所在的线段,∴AD 与BE 不平行,∴四边形ABED 是梯形, 又由(1)知∴△ABD ≌△BAE ,∴AD=BE∴梯形ABED 是等腰梯形.·····································6分(3)解:由(2)可知:D E ∥AB ,∴△DCE ∽△ACB ,∴2)(AB DE ACB DCE =∆∆的面积的面积,即:91)3(22==∆DE DE ACB 的面积,·7分 ∴△ACB 的面积=18,∴四边形ABED 的面积=△ACB 的面积-△DCE 的面积=18-2=16 . ·8分23、解: 设购买甲种小鸡苗x 只,那么乙种小鸡苗为(200-x )只.(1)根据题意列方程,得4500)2000(32=-+x x ,···················1分解这个方程得:1500=x (只),500150020002000=-=-x (只),··························2分 即:购买甲种小鸡苗1500只,乙种小鸡苗500只.(2)根据题意得:4700)2000(32≤-+x x ,·························3分解得:1300≥x ,·············································4分即:选购甲种小鸡苗至少为1300只.·····························5分(3)设购买这批小鸡苗总费用为y 元,根据题意得:6000)2000(32+-=-+=x x x y ,·················6分又由题意得:%962000)2000%(99%94⨯≥-+x x ,··············7分解得:1200≤x ,因为购买这批小鸡苗的总费用y 随x 增大而减小,所以当x =1200时,总费用y 最小,乙种小鸡为:2000-1200=800(只),即:购买甲种小鸡苗为1200只,乙种小鸡苗为800只时,总费用y 最小,最小为4800元.········8分六、(本大题共2小题,每小题8分,共16分)24、解:(1)解法一:连接OC ,∵OA 是⊙P 的直径,∴O C ⊥AB , 在Rt △AOC 中,492522=-=-=AC OA OC ,1分 在 Rt △AOC 和Rt △ABO 中,∵∠CAO=∠OAB∴Rt △AOC ∽Rt △ABO ,····························2分∴OB AO CO AC =,即OB543=, ····················3分 ∴320=OB , ∴)320,0(B ····················4分 解法二:连接OC ,因为OA 是⊙P 的直径, ∴∠ACO=90°在Rt △AOC 中,AO=5,AC=3,∴OC=4, ············1分过C 作CE ⊥OA 于点E ,则:OC CA CE OA ⋅⋅=⋅⋅2121, 即:4321521⨯⨯=⨯⨯CE ,∴512=CE ,·························2分 ∴516)512(42222=-=-=CE OC OE ∴)512,516(C ,·········3分 设经过A 、C 两点的直线解析式为:b kx y +=.把点A (5,0)、)512,516(C 代入上式得: ⎪⎩⎪⎨⎧=+=+51251605b k b k , 解得:⎪⎪⎩⎪⎪⎨⎧=-=32034b k , ∴32034+-=x y , ∴点)320,(O B .·4分 (2)点O 、P 、C 、D 四点在同一个圆上,理由如下:连接CP 、CD 、DP ,∵O C ⊥AB ,D 为OB 上的中点,∴OD OB CD ==21, ∴∠3=∠4,又∵OP=CP ,∴∠1=∠2,∴∠1+∠3=∠2+∠4=90°,∴PC ⊥CD ,又∵DO ⊥OP ,∴Rt △PDO 和Rt △PDC 是同以PD 为斜边的直角三角形,∴PD 上的中点到点O 、P 、C 、D 四点的距离相等,∴点O 、P 、C 、D 在以DP 为直径的同一个圆上; ·················6分由上可知,经过点O 、P 、C 、D 的圆心1O 是DP 的中点,圆心)2,2(1OD OP O , 由(1)知:Rt △AOC ∽Rt △ABO ,∴AB OA OA AC =,求得:AB=a 25,在Rt △ABO 中, a a OA AB OB 222255-=-=,OD=a a OB 2255212-=,252==OA OP ∴)4255,45(21a a O -,点1O 在函数xk y =的图象上, ∴5442552k a a =-, ∴a a k 1625252-=. ················8分25、解:(1)根据已知条件可设抛物线的解析式为)5)(1(--=x x a y ,············1分把点A (0,4)代入上式得:54=a , ∴=y 516)3(54452454)5)(1(5422--=+-=--x x x x x ,···········2分 ∴抛物线的对称轴是:3=x .······································3分 (2)由已知,可求得P (6,4). ···································5分提示:由题意可知以A 、O 、M 、P 为顶点的四边形有两条边AO=4、OM=3,又知点P 的坐标中5>x ,所以,MP>2,AP>2;因此以1、2、3、4为边或以2、3、4、5为边都不符合题意,所以四条边的长只能是3、4、5、6的一种情况,在Rt △AOM 中,5342222=+=+=OM OA AM ,因为抛物线对称轴过点M ,所以在抛物线5>x 的图象上有关于点A 的对称点与M 的距离为5,即PM=5,此时点P 横坐标为6,即AP=6;故以A 、O 、M 、P 为顶点的四边形的四条边长度分别是四个连续的正整数3、4、5、6成立,即P (6,4).···································5分(注:如果考生直接写出答案P (6,4),给满分2分,但考生答案错误,解答过程分析合理可酌情给1分)⑶法一:在直线AC 的下方的抛物线上存在点N ,使△NAC 面积最大.设N 点的横坐标为t ,此时点N )452454,(2+-t t t ()50<<t ,过点N 作N G ∥y 轴交AC 于G ;由点A (0,4)和点C (5,0)可求出直线AC 的解析式为:454+-=x y ;把t x =代入得:454+-=t y ,则G )454,(+-t t , 此时:NG=454+-t -(4524542+-t t ), =t t 520542+-. ······································7分 ∴225)25(21025)52054(2121222+--=+-=⨯+-=⋅=∆t t t t t OC NG S ACN ∴当25=t 时,△CAN 面积的最大值为225, 由25=t ,得:34524542-=+-=t t y ,∴N (25, -3). ········ 8分 法二:提示:过点N 作x 轴的平行线交y 轴于点E ,作CF ⊥EN 于点F ,则NFC AEN AEFC ANC S S S S ∆∆∆--=梯形(再设出点N 的坐标,同样可求,余下过程略)。

2004年广东省茂名市中考数学试卷及答案

2004年广东省茂名市中考数学试卷及答案

2013年茂名市中考模拟试卷(三)说明:全卷分第一卷(选择题)和第二卷(非选择题),第一卷共2页,第二卷共8页;第一卷满分15分,第二卷满分105分,全卷满分120分;考试时间为100分钟。

注意事项:1. 答第一卷前,考生必须将自己的姓名、准考证号、科目代号用2B铅笔填写在答题卡上。

2.答第一卷时,把每小题的答案代号用2B铅笔在答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选其他答案,不能把答案答在试卷上否则不给分。

3.答第二卷前,考生必须将自己的试室号、准考证号、姓名、县(市、区)、毕业学校填写在密封线左边的空格内,并在试卷右上角的座位号处填上自己的座位号。

4.答第二卷时,用黑色、蓝色钢笔或圆珠笔答在试卷上,不能用铅笔或红笔作答。

5.考试结束,将第一卷、第二卷和答题卡一并交回。

同学们,准备好了吗?让我们一起对初中所学的数学知识做个小结吧!老师希望通过这次测试,了解你对初中数学的掌握程度,我们相信你能认真作答好!第一卷(选择题,共2页,满分15分)一、选择题(本大题共5小题,每小题3分,共15分。

每小题给出四个答案,其中只有一个是正确的,请你把正确答案的字母代号用2B铅笔填涂在答题卡相应的位置上)。

1.如果向前运动5m记作+5m,那么向后运动3m,记作A.8mB.2mC.-3mD.-8m2.马大哈同学做如下运算题:①x5+ x5 =x10②x5 -x4=x ③x5•x5 = x10 ④x10÷x5 =x2⑤(x5 )2=x25其中结果正确的是A.①②④B.②④C.③D.④⑤数学试卷第1页(第一卷共2页)3.一个塑料袋丢弃在地上的面积约占0.023m2,如果100万个旅客每人丢一个塑料袋,那么会污染的最大面积用科学记数法表示是A.2.3×104m2B. 2.3×106m2C. 2.3×103m2D. 2.3×10-2m24.若函数y=2 x +k的图象与y轴的正半轴相交,则函数y=k/ x的图象所在的象限是A.第一、二象限B.第三、四象限C.第二、四象限D.第一、三象限5.如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是A.2B.4C.810D.第二卷(非选择题。

2007年广东省茂名市中考试题数学试卷及答案

2007年广东省茂名市中考试题数学试卷及答案

2010年广东省茂名市中考试题数学试卷温馨提示:亲爱的同学,请你沉着冷静,充满自信,认真审题,仔细答卷,祝你考出好成绩!第一卷(选择题,满分40分,共2页)一、精心选一选(本大题共10小题,每小题4分,共40分.每小题给出四个答案,其中只有一个是正确的).1.列计算正确的是()A.B.C.D.2.《茂名日报》(2007年5月18日)报道,刚刚投产半年的茂名百万吨乙烯工程传来喜讯,正在创造全国最好的效益,每月为国家创利30 000万元,这个数用科学记数法表示是()A. B.C.D.3.在一组数据3,4,4,6,8中,下列说法正确的是()A.平均数小于中位数 B.平均数等于中位数C.平均数大于中位数D.平均数等于众数4.的角平分线AD交BC于点D,,则点D到AB的距离是()A.1 B.2 C.3 D.45.某商场2006年的销售利润为,预计以后每年比上一年增长b%,那么2008年该商场的销售利润将是()A .B .C .D .6. 在一张由复印机复印出来的纸上,一个多边形图案的一条边由原来的1cm 变成2cm ,那么这次复印出来的多边形图案面积是原来的( ) A .1倍 B .2倍 C .3倍 D .4倍7.上午九时,阳光灿烂,小李在地面上同时摆弄两根长度不相等的竹竿,若它们的影子长度相等,则这两根竹竿的相对位置可能是( )A .两根都垂直于地面B .两根都倒在地面上C .两根不平行斜竖在地面上D .两根平行斜竖在地面上 8.右图是由一些相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体 的个数是( )A .4B .5C .6D .7 9. 已知某村今年的荔枝总产量是吨(是常数),设该村荔枝的人均产量为y (吨),人口总数为x(人),则y 与x 之间的函数图象是( )10. 如图是一个圆柱形饮料罐,底面半径是5,高是12,上底 面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( ) A . B .C .D .第二卷(非选择题,共8页,满分110分)二、耐心填一填(本大题共5小题,每小题4分,共20分.请你把答案填在横线的上方).11.化简:.12.现有一个测试距离为5m的视力表,根据这个视力表,小华想制作一个测试距离为3m的视力表,则图中的.13.若实数满足,则.14.如图是一盏圆锥形灯罩AOB ,两母线的夹角,若灯炮O离地面的高OO1是2米时,则光束照射到地面的面积是米2(答案精确到0.1).15.在数学中,为了简便,记.,,,,.则.三、细心做一做(本大题共3小题,每小题8分,共24分)16.(本题满分8分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内添涂黑二个小正方形,使它们成为轴对称图形.17.(本题满分8分)已知正方形和圆的面积均为.求正方形的周长和圆的周长(用含的代数式表示),并指出它们的大小.18.(本题满分8分)已知一纸箱中放有大小均匀的只白球和只黄球,从箱中随机地取出一只白球的概率是.(1)试写出与的函数关系式;(4分)(2)当时,再往箱中放进20只白球,求随机地取出一只黄球的概率.(4分)四、沉着冷静,周密考虑(本大题共2小题,每小题8分,共16分)19.(本题满分8分)某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了右边尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:(1)该校学生报名总人数有多少人?(2分)(2)从表中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几?(3分)(3)将两个统计图补充完整.(3分)20.(本题满分8分)已知函数的图象与轴的两交点的横坐标分别是,且,求c及,的值.五、开动脑筋,再接再厉(本大题共3小题,每小题10分,共30分)21.(本题满分10分)如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE.(1)若把绕点旋转一定的角度时,能否与重合?请说明理由.(5分)(2)现把向左平移,使与重合,得,交于点.求证:,并求的长.(5分)22.(本题满分10分)某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11 815元.已知两种球厂家的批发价和商场的零售价如右表,试解答下列问题:(1)该采购员最多可购进篮球多少只?(5分)(2)若该商场把这100只球全部以零售价售出,为使商场获得的利润不低于2580元,则采购员至少要购篮球多少只,该商场最多可盈利多少元?(5分)23.(本题满分10分)已知甲、乙两辆汽车同时、同方向从同一地点A出发行驶.(1)若甲车的速度是乙车的2倍,甲车走了90千米后立即返回与乙车相遇,相遇时乙车走了1小时.求甲、乙两车的速度;(5分)(2)假设甲、乙每辆车最多只能带200升汽油,每升汽油可以行驶10千米,途中不能再加油,但两车可以互相借用对方的油,若两车都必须沿原路返回到出发点A,请你设计一种方案使甲车尽可能地远离出发点A,并求出甲车一共行驶了多少千米?(5分)六、充满信心,成功在望(本大题共2小题,每小题10分,共20分)24.(本题满分10分)如图,点A,B,C,D是直径为AB的⊙O上四个点,C是劣弧的中点,AC交BD于点E,AE=2, EC =1.(1)求证:∽;(3分)(2)试探究四边形ABCD是否是梯形?若是,请你给予证明并求出它的面积;若不是,请说明理由.(4分)(3)延长AB到H,使BH=OB.求证:CH是⊙O的切线.(3分)25.(本题满分10分)如图,已知平面直角坐标系中,有一矩形纸片OABC,O为坐标原点,轴,B(3,),现将纸片按如图折叠,AD,DE为折痕,.折叠后,点O落在点,点C落在点,并且与在同一直线上.(1)求折痕AD 所在直线的解析式;(3分)(2)求经过三点O,,C的抛物线的解析式;(3分)(3)若⊙的半径为,圆心在(2)的抛物线上运动,⊙与两坐标轴都相切时,求⊙半径的值.(4分)2006年广东省茂名市中考试题 数学试卷参考答案及评分标准说明:1、 如果考生的解法和本解法不同,可根据试题的主要内容,并参照评分标准制定相应的评分细则后评卷.2、 解答题右端所注的分数,表示考生正确做到这一步应得的累加分数. 一、选择题(本大题共10小题,每小题4分,共40分).11. 12.(或答) 13. -1 14. 15.0三、(本大题共3小题,每小题8分,共24分).16.解:此题答案不唯一,只要在方格内添的二个正方形使整个图形是对称图形就给分,每答对一个给4分,共8分.17.解:设正方形的边长为,圆的半径为R , 则,.······························································································· 2分∴,.···················································································· 4分∴ ,.···················································· 6分∵,∴. ······················································································· 8分18.解:(1)由题意得 , ······································································· 2分即. ····································································································· 3分∴. ············································································································ 4分(2)由(1)知当时,.··························································· 6分∴取得黄球的概率.·························································· 8分四、(本大题共2小题,每小题8分,共16分).19.解:(1)由两个统计图可知该校报名总人数是(人).············· 2分(2)选羽毛球的人数是(人). ····················································· 3分因为选排球的人数是100人,所以, ························································ 4分因为选篮球的人数是40人,所以,即选排球、篮球的人数占报名的总人数分别是25%和10%.·········································· 5分(3)如图(每补充完整一个得1分,共3分). (8)分20.解:令,即,当方程有两个不相等的实数根时,该函数的图象与x轴有两个交点. 1分此时即.····························································································· 2分由已知,······························································································ 3分∵,∴,················································································ 4分∴,∴,∴(舍去).····································································· 6分当时,,解得.···························· 7分综上:,为所求.················································· 8分五、(本大题共3小题,每小题10分,共30分)21.解:(1)由已知正方形ABCD得AD=DC=2,········· 1分AE=CF=1,·································································· 2分,··············································· 3分∴.··················································· 4分∴把绕点D旋转一定的角度时能与重合. 5分(2)由(1)可知,∵,∴,························································· 6分即.··························································· 7分由已知得,∴,∴.····························································· 8分由已知AE=1,AD=2,∵,···································································· 9分∴,即,∴.·················· 10分(注:本题由三角形相似或解直角三角形同样可求AG.)22.解:(1)设采购员最多可购进篮球只,则排球是(100-)只,···································· 1分依题意得:. ···························································· 3分解得. ························································································ 4分∵是整数,∴=60.····························································································· 5分答:购进篮球和排球共100只时,该采购员最多可购进篮球60只.······························ 6分(2)由表中可知篮球的利润大于排球的利润,因此这100只球中,当篮球最多时,商场可盈利最多,即篮球60只,此时排球40只,······················································································································ 8分商场可盈利(元).················ 9分即该商场可盈利2600元.·········································································· 10分23.解:(1)设甲,乙两车速度分别是x千米/时和y千米/时,···································· 1分根据题意得:.············································································ 3分解之得:.································································································· 4分即甲、乙两车速度分别是120千米/时、60千米/时.······················································ 5分(2)方案一:设甲汽车尽可能地远离出发点A行驶了x千米,乙汽车行驶了y千米,则······························································································· 6分.∴即.······························ 7分即甲、乙一起行驶到离A点500千米处,然后甲向乙借油50升,乙不再前进,甲再前进1000千米返回到乙停止处,再向乙借油50升,最后一同返回到A点,此时,甲车行驶了共3000千米. (10)分方案二:(画图法)如图此时,甲车行驶了(千米).··············································· 10分方案三:先把乙车的油均分4份,每份50升.当甲乙一同前往,用了50升时,甲向乙借油50升,乙停止不动,甲继续前行,当用了100升油后返回,到乙停处又用了100升油,此时甲没有油了,再向乙借油50升,一同返回到A点.此时,甲车行驶了(千米). ···································· 10分六、(本大题共2小题,每小题10分,共20分)24.(1)证明:∵C是劣弧的中点,∴.·········································· 1分而公共,∴∽.········································ 3分(2)证明:连结,由⑴得,∵,∴.∴.··········································································································· 4分由已知,∵是⊙O的直径,∴,∴.∴,∴,∴四边形OBCD是菱形.∴,∴四边形ABCD是梯形.················································ 5分法一:过C作CF垂直AB于F,连结OC,则∴. ······································································································ 6分∴,,∴.······································· 7分法二:(接上证得四边形ABCD是梯形)又∴,连结OC,则,和的边长均为的等边三角形 6分∴,∴······························································ 7分(3)证明:连结OC交BD于G由(2)得四边形OBCD是菱形,∴且. ····················································································· 8分又已知OB=BH,∴. ··································································· 9分∴,∴CH是⊙O的切线.·············································· 10分25.解:(1)由已知得.∴,∴.································································································ 1分设直线AD的解析式为.把A,D坐标代入上式得:,解得:,··································································································· 2分折痕AD所在的直线的解析式是.·················································· 3分(2)过作于点F,由已知得,∴.又DC=3-1=2,∴.∴在中,.,∴,而已知.··················································································· 4分法一:设经过三点O,C1,C的抛物线的解析式是·································· 5分点在抛物线上,∴,∴∴为所求························································· 6分法二:设经过三点O,C1,C的抛物线的解析式是.把O,C1,C的坐标代入上式得:,······························································································· 5分解得,∴为所求.················································· 6分(3)设圆心,则当⊙P与两坐标轴都相切时,有.································· 7分由,得,解得(舍去),.······················· 8分由,得解得(舍去),.∴所求⊙P的半径或.···················································· 10分。

2006年广东省数学中考卷

2006年广东省数学中考卷

2006年广东省数学中考卷说明:1.全卷共8页,考试时间为90分钟,满分120分。

2.答卷前,考生必须将自己的姓名、准考证号、学校按要求填写在密封线左边的空格内。

3.答题可用黑色或蓝色钢笔、圆珠笔按各题要求答在试卷上,但不能用铅笔或红笔。

4.考试结束时,将试卷交回。

一、选择题(本大题共5小题,每小题3分,共15分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母写在题目后面的括号内。

1.下列计算正确的是( )A .-1+1=0B .- 2-2=0C .3÷31=1 D .52=102.函数11+=x y 中自变量x 的取值范围是 ( )A .x≠-lB .x >-1C .x =- 1D .x <- 13.据广东信息网消息,2006年第一季度,全省经济运行呈现平稳增长态势.初步核算,全省完成生产总值约为5206亿元,用科学记数法表示这个数为 ( )A .5.206×102亿元B .0.5206×103亿元C .5.206× 103亿元D .0.5206×104亿元 4.如图所示,在□ABCD 中,对角线AC 、BD 交于点O ,下列式子中一定成立的是 ( ) A .AC⊥BD B.OA=0CC .AC=BD D .A0=OD5.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是 ( )A .OB . 6C .快D .乐二、填空题(本大题共5小题,每小题4分,共20分)请把下列各题的正确答案填写在横线上。

6.在数据1,2,3,1,2,2,4中,众数是7.分解因式2x 2-4xy +2y 2=8.如图,若△OAD≌△OBC,且∠0=65°,∠C=20°, 则∠OAD= . 9.化简777-= .10.如图,已知圆柱体底面圆的半径为π2,高为2,AB 、CD 分别是两底面的直径,AD 、BC 是母线若一只小虫从A 点出发,从侧面爬行到C 点,则小虫爬行的最短D 路线的长度是 (结果保留根式).三、解答题(本大题共5小题,每小题6分,共30分)11.求二次函数y=x 2- 2x-1的顶点坐标及它与x 轴的交点坐标.12.按下列程序计算,把答案写在表格内:(2)请将题中计算程序用代数式表达出来,并给予化简.13.如图所示,AB 是OD 的弦,半径OC 、OD 分别交AB 于点E 、F , 且AE=BF ,请你找出线段OE 与OF 的数量关系,并给予证明.14.妞妞和她的爸爸玩“锤子、剪刀、布”游戏.每次用一只手可以出锤子、剪刀、布三种手势之一,规则是锤子赢剪刀、剪刀赢布、布赢锤子,若两人出相同手势,则算打平. (1)你帮妞妞算算爸爸出“锤子”手势的概率是多少? 答:(2)妞妞决定这次出“布”手势,妞妞赢的概率有多大? 答:(3)妞妞和爸爸出相同手势的概率是多少? 答:15.如图,图中的小方格都是边长为1的正方形, △ABC 与△A ′ B ′ C ′是关于点0为位似中心的位似图形,它们的顶点都在小正方形的顶点上. (1)画出位似中心点0;(2)求出△ABC 与△A ′B ′C ′的位似比;(3)以点0为位似中心,再画一个△A 1B 1C 1,使它与△ABC 的位似比等于1.5. 四、解答题(本大题共4小题。

茂名市2006年初中毕业生学业考试与高中阶段学校招生考试

茂名市2006年初中毕业生学业考试与高中阶段学校招生考试

茂名市2006年初中毕业生学业考试与高中阶段学校招生考试历史试卷亲爱的同学,欢迎你参加历史学科的考试。

现在,请你先仔细阅读答卷说明。

答卷说明:1、本试卷分为第一卷和第二卷两部分,共8页。

第一卷4页为选择题,共20小题,占30分;第二卷4页为非选择题,共4小题,占70分。

全卷共100分,考试时间60分钟。

2、答第一卷前,考生务必将自己的姓名、考号写、涂在答题卡上;答第二卷前,考生必须将自己的考号、姓名、县(市、区)、学校填写在密封线左边的空格内。

3、选择题的答案必须填涂在答题卡上。

每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如果要改动,必须用橡皮擦干净后,再选涂另一答案。

第二卷必须用黑色或蓝色钢笔或圆珠笔直接在试卷上作答。

4、考试结束时,请将第一卷、第_二卷和答题卡一并交回。

如果你准备好了,就开始吧!祝你取得优异成绩!第一卷一、单项选择题(本大题共20小题,每小题1.5分,共30分。

在每小题列出的4个选项中,只有1个是正确的。

请把正确答案填涂在答题卡上。

)1、请你仔细看看右边的《货币统一图》,它反映的历史现象是:A.大禹建夏“家天下”B.诸候争霸战火烧C.商鞅变法促发展D.一统江山是秦朝2、①迁都洛阳②改鲜卑族姓氏为汉族姓氏③采用汉族官制④学习汉族礼法,尊崇孔学⑤……这是中国古代一位帝王改革的内容。

他的改革,促进了民族融合。

请你说出这位帝王是谁:A.秦始皇B.汉武帝C.北魏孝文帝D.唐太宗3、古代有一位商人,他经常把货物通过大运河从杭州运到北京去。

请你仔细想想,这位商人应该是生活在下列哪个朝代?A.西周B.秦朝C.汉朝D.隋朝4、唐太宗把文成公主嫁给吐蕃赞普松赞十布。

据你所知,吐蕃就是今天的祖先:A.回族B.满族C.藏族D.汉族5、有一部小说,写了四大封建家族的衰亡和贾宝玉、林黛玉的爱情悲剧,被誉为我国古典小说的高峰。

你读过这部小说吗?它是……A.《三国演义》B.《水浒传》C.《西游记》D.《红楼梦》6、中国的近代历史是以鸦片战争为开端的。

年广东省茂名市中考数学试题及答案

年广东省茂名市中考数学试题及答案

年广东省茂名市中考数学试题及答案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】2008年广东省茂名市中考数学试卷全卷分第一卷(选择题,满分40分,共2页)和第二卷(非选择题,满分110分,共8页),全卷满分150分;考试时间120分钟.第一卷(选择题,满分40分,共2页)一、精心选一选(本大题共10小题,每小题4分,共40分.每小题给出四个答案,其中只有一个是正确的). 1.-21的相反数是( ) A.-2 B.2 C.21 D.21- 2.下列图形中,既是轴对称图形又是中心对称图形的是( )A B C D3.下列运算正确的是( )A.-22=4 B.22-=-4 C. a ·a 2 = a 2D.a +2a =3a4.用平面去截下列几何体,截面的形状不可能...是圆的几何体是( ) A.球 B.圆锥 C.圆柱 D.正方体5.任意给定一个非零数,按下列程序计算,最后输出的结果是( )结果A.m B.m 2 C.m +1 D.m -16.在数轴上表示不等式组10240x x +>⎧⎨-⎩≤的解集,正确的是( ) -2 -1 0 1 2 3 -2 -1 0 1 2 3A B-2 -1 0 1 2 3 -2 -1 0 1 2 3C D7.正方形内有一点A ,到各边的距离从小到大依次是1、2、3、4,则正方形的周长是( )A.10 B.20 C.24 D.258.一组数据3、4、5、a 、7的平均数是5,则它的方差是( )A.10 B.6 C.5 D.29.已知反比例函数y =xa (a ≠0)的图象,在每一象限内,y 的值随x 值的增大而减少,则一次函数y =-a x +a 的图象不经过...( ) A.第一象限 B.第二象限 C.第三象限D.第四象限10.如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是△ABC 的面积的 ( )A.91 B.92 C.31 D.94 2008二、耐心填一填(本大题共5小题,每小题4分,共20分.请你把答案填在横线的上方).11.据最新统计,茂名市户籍人口约为7020000人,用科学记数法表示是人.12.分解因式:3x 2-27= .13.如图,点A 、B 、C 在⊙O 上,AO ∥BC ,∠AOB = 50°,则∠OAC 的度数是 .14.依法纳税是每个公民应尽的义务,新的《中华人民共和O C B A (第13题图)B ((第10题图)国个人所得税法》规定,从2008年3月1日起,公民全月工薪不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得税额,此项税款按右表分段累进计算.黄先生4月份缴纳个人所得税税金55元,那么黄先生该月的工薪是元.15.有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +1, a ⊕(b +1)= n -2现在已知1⊕1 = 2,那么2008⊕2008 = .三、细心做一做 (本大题共3小题,每小题8分,共24分)16.(本题满分8分)计算:(12-a a - 1+a a )· a a 12- 解:17.(本题满分8分)如图,方格纸中有一条美丽可爱的小金鱼.(1)在同一方格纸中,画出将小金鱼图案绕原点O旋转180°后得到的图案;(4分)(2)在同一方格纸中,并在y 轴的右侧,将原小金鱼图案以原点O 为位似中心放大,使它们的位似比为1:2,画出放大后小金鱼的图案.(4分) 18.(本题满分8分)不透明的口袋里装有3个球,这3个球分别标有数字1、2、3,这些球除了数字以外都相同.全月应纳税所得税额 税率 不超过500元的部分 5% 超过500元至2000元的部分 10%…… …… (第17题(1)如果从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?(2分)(2)小明和小东玩摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规则对双方是否公平?并说明理由.(6分)解:四、沉着冷静,周密考虑(本大题共2小题,每小题8分,共16分)19.(本题满分8分)2008年5月12日14时28分我国四川汶川发生了级大地震,地震发生后,我市某中学全体师生踊跃捐款,支持灾区,其中九年级甲班学生共捐款1800元,乙班学生共捐款1560元.已知甲班平均每人捐款金额是乙班平均每人捐款金额的倍,乙班比甲班多2人,那么这两个班各有多少人?解:20.(本题满分8分)某文具店王经理统计了2008年1月至5月A、B、C这三种型号的钢笔平均每月的销售量,并绘制图1(不完整),销售这三种型号钢笔平均每月获得的总利润为600元,每种型号钢笔获得的利润分布情况如图2.已知A、B、C这三种型号钢笔每支的利润分别是元、元、元,请你结合图中的信息,解答下列问题:(1)求出C种型号钢笔平均每月的销售量,并将图1补充完整;(4分)(2)王经理计划6月份购进A、B、C这三种型号钢笔共900支,请你结合1月至5月平均每月的销售情况(不考虑其它因素),设计一个方案,使获得的利润最大,并说明理由.(4分)解:21.(本题满分10分)如图,某学习小组为了测量河对岸塔AB 的高度,在塔底部B 的正对岸点C 处,测得仰角∠ACB =30°.(1)若河宽BC 是60米,求塔AB 的高(结果精确到米);(4分)(参考数据:2≈,3≈)(2)若河宽BC 的长度无法度量,如何测量塔AB 的高度呢?小明想出了另外一种方法:从点C 出发,沿河岸CD 的方向(点B 、C 、D 在同一平面内,且CD ⊥BC )走a 米,到达D 处,测得∠BDC =60°,这样就可以求得塔AB 的高度了.请你用这种方法求出塔AB的高.(6分)解:22.(本题满分10分)如图,⊙O 是△ABC 的外接圆,且AB =AC ,点D 在弧BC 上运动,过点D 作DE ∥BC ,DE交AB 的延长线于点E ,连结AD 、BD .(1)求证:∠ADB =∠E ;(3分)(2)当点D 运动到什么位置时,DE 是⊙O (3)当AB =5,BC =6时,求⊙O 的半径.(4分) 解:23.(本题满分10分) 如图,在等腰梯形ABCD 中,已知AD ∥BC ,AB =DC ,AD =2,BC =4,延长BC 到E ,使CE =AD .(1)写出图中所有与△DCE 全等的三角形,并选择其中一对说明全等的理由;(5分)(2)探究当等腰梯形ABCD 的高DF 是多少时,对角线AC 与BD 互相垂直?请回答并说明理由.(5分)ABD (第21题图)E CA (第22题图)解: 六、充满信心,成功在望(本大题共2小题,每小题10分,共20分)24.(本题满分10分) 我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:(1)把上表中x 、y 的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;(4分)(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(4分)(3)当地物价部门规定,该工艺品销售单价最高不能..超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?(2分)解:25(本题满分10分)如图,在平面直角坐标系中,抛物线y 经过A (0,-4)、B (x 1,0)、 C (x 2,0x 1=5. (1)求b 、c 的值;(4分) (2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对角线的菱形;(3分)销售单价x (元∕件)…… 30 40 50 60 ……每天销售量y (件) …… 500 400 300 200 …… (第24题图) F EDC B A (第23题图)(3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)解: 2008年广东省茂名市中考数学试卷答案及评分标准一、选择题(本大题共10小题,每小题4分,共40分)题 号 1 2 3 4 5 78 9 10 答 案 C A D D C B D CC 二、填空题(本大题共5小题,每小题4分,共20分). 11、×106 12、3(x +3)(x -3) 13、25° 14、2800 15、-2005三、(本大题共3小题,每小题8分,共24分) 16、解:解法一:原式=12-a a · a a 12-- 1+a a · a a 12- ········ 2分 =12-a a · a a a )1)(1(-+- 1+a a ·aa a )1)(1(-+ ·· 4分 =2·)1(+a -)1(-a ··········· 6分 =2a +2-a +1 ················ 7分 =a +3 ·················· 8分解法二:原式=1)1()1(22---+a a a a a · a a 12- ··········· 3分 =1322-+a a a · a a 12- ··············· 5分 =aa a 32+ ·················· 6分 =a +3 ·····················17、解:(第25题图)Ax yB C O(说明:画图正确,每对一个给4分.)18、解:(1)从3个球中随机摸出一个,摸到标有数字是2的球的概率是312分 或P (摸到标有数字是2的球)=31 ········· 2分 (2)游戏规则对双方公平. ··············· 3分树状图法: 或列表法: 1 (1,1) 1 2 (1,2) 3 (1,3) 1 (2,1) 开始 2 2 (2,2) 3 (2,3) 1 (3,1) 3 2 (3,2) 3 (3,3) (注:学生只用一种方法做即可) ··············· 5分由图(或表)可知, P (小明获胜)=31, P (小东获胜)=31, ··· 7分 ∵P (小明获胜)= P (小东获胜),∴游戏规则对双方公平. ····· 8分19、解:设甲班有x 人,则乙班有(x +2)人,根据题意,得 ··· 1分x 1800=21560 x × ··········· 4分 解这个方程,得 x =50 ······· 6分经检验,x =50是所列方程的根. ······· 7分所以,甲班有50人,乙班有52人. ·········· 8分小 1 2 3 1 (1,1) (1,2) (1,3)2 (2,1) (2,2) (2,3)3 (3,1) (3,2) (3,3) 东 小 明E CA 20、解: (1) 600×20%=120(元) 1分120÷=100(支) ····· 2分作图如右图: ······ 4分(2)A 、B 、C 这三种型号钢笔分别进500支、300支、100支. ··· 7分理由是:利润大的应尽可能多进货,才可能获得最大利润. ·· 8分21、解:(1)在Rt△ABC 中,∵∠ACB =30°,BC =60,∴AB =BC ·tan∠ACB ················ 1分 =60×33=203 ··············· 2分 ≈(米). ·················· 3分所以,塔AB 的高约是米. ············· 4分(2)在Rt△BCD 中,∵∠BDC =60°,CD =a , ········ 5分∴BC =CD ·tan∠BDC ················ 6分=3a . ·················· 7分 又在Rt△ABC 中,AB =BC ·tan∠ACB ········· 8分 =3a ×33=a (米). ····· 9分 所以,塔AB 的高为a 米. ··············· 10分22、解:(1)在△ABC 中,∵AB =AC ,∴∠ABC =∠C . ········ 1分∵DE ∥BC ,∴∠ABC =∠E , ∴∠E =∠C . ········· 2分又∵∠ADB =∠C ,CCACBA∴∠ADB =∠E . ········ 3分(2)当点D 是弧BC 的中点时,DE 是⊙O 的切线. ······· 4分 理由是:当点D 是弧BC 的中点时,则有AD ⊥BC ,且AD 过圆心O . ·· 5分又∵DE ∥BC ,∴ AD ⊥ED . ∴ DE 是⊙O 的切线. ········· 6分(3)连结BO 、AO ,并延长AO 交BC 于点F , 则AF ⊥BC ,且BF =21BC =3. ····· 7分 又∵AB =5,∴AF =4. ········· 8分 设⊙O 的半径为r ,在Rt△OBF 中,OF =4-r ,OB =r ,BF =3,∴ r 2=32+(4-r )2 ···· 9分 解得r =825, ∴⊙O 的半径是825. ····· 10分 23、解:(1)△CDA ≌△DCE ,△BAD ≌△DCE ; ··········· 2分 ① △CDA ≌△DCE 的理由是: ∵AD ∥BC ,∴∠CDA =∠DCE . ···· 3分 又∵DA =CE ,CD =DC , ····· 4分 ∴△CDA ≌△DCE . ······· 5分 或 ② △BAD ≌△DCE 的理由是: ∵AD ∥BC ,∴∠CDA =∠DCE . ······················· 3分 又∵四边形ABCD 是等腰梯形, ∴∠BAD =∠CDA ,F EDCBA G∴∠BAD=∠DCE.······················ 4分又∵AB=CD,AD=CE,∴△BAD≌△DCE.····················· 5分(2)当等腰梯形ABCD的高DF=3时,对角线AC与BD互相垂直.· 6分理由是:设AC与BD的交点为点G,∵四边形ABCD是等腰梯形,∴AC=DB.又∵AD=CE,AD∥BC,∴四边形ACED是平行四边形,··············· 7分∴AC=DE,AC∥DE.∴DB=DE.······················· 8分则BF=FE,又∵BE=BC+CE=BC+AD=4+2=6,∴BF=FE=3.······················ 9分∵DF=3,∴∠BDF=∠DBF=45°,∠EDF=∠DEF=45°,∴∠BDE=∠BDF+∠EDF=90°,又∵AC∥DE∴∠BGC=∠BDE=90°,即AC⊥BD.············10分(说明:由DF=BF=FE得∠BDE=90°24. 解:(1)画图如右图;··· 1分由图可猜想y与x是一次函数关系, 2分设这个一次函数为y= k x+b(k≠0)∵这个一次函数的图象经过(30,500)(40,400)这两点,∴5003040040k b k b =+⎧⎨=+⎩ 解得10800k b =-⎧⎨=⎩ ················ 3分∴函数关系式是:y =-10x +800 ··············· 4分 (2)设工艺厂试销该工艺品每天获得的利润是W 元,依题意得W=(x -20)(-10x +800) ················· 6分 =-10x 2+1000x -16000=-10(x -50)2+9000 ·················· 7分 ∴当x =50时,W 有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元. ·················· 8分(3)对于函数 W=-10(x -50)2+9000,当x ≤45时,W 的值随着x 值的增大而增大, ················ 9分∴销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大. · 10分25. 解:(1)解法一:∵抛物线y =-32x 2+b x +c 经过点A (0,-4), ∴c =-4 ·················· 1分又由题意可知,x 1、x 2是方程-32x 2+b x +c =0的两个根, ∴x 1+x 2=23b , x 1x 2=-23c =6 ············ 2分 由已知得(x 2-x 1)2=25又(x 2-x 1)2=(x 2+x 1)2-4x 1x 2 =49b 2-24 ∴49b 2-24=25 解得b =±314···················· 3分当b =314时,抛物线与x 轴的交点在x 轴的正半轴上,不合题意,舍去. ∴b =-314. ······················ 4分解法二:∵x 1、x 2是方程-32x 2+b x +c=0的两个根, 即方程2x 2-3b x +12=0的两个根. ∴x =4969b 32-±b , ················· 2分∴x 2-x 1=2969b 2-=5,解得 b =±314····················· 3分 (以下与解法一相同.)(2)∵四边形BDCE 是以BC 为对角线的菱形,根据菱形的性质,点D 必在抛物线的对称轴上, ····················· 5分又∵y =-32x 2-314x -4=-32(x +27)2+625 ······ 6分 ∴抛物线的顶点(-27,625)即为所求的点D . ······ 7分(3)∵四边形BPOH 是以OB 为对角线的菱形,点B 的坐标为(-6,0),根据菱形的性质,点P 必是直线x =-3与抛物线y =-32x 2-314x -4的交点, ············ 8分∴当x =-3时,y =-32×(-3)2-314×(-3)-4=4,∴在抛物线上存在一点P (-3,4),使得四边形BPOH 为菱形. 9分 四边形BPOH 不能成为正方形,因为如果四边形BPOH 为正方形,点P 的坐标只能是(-3,3),但这一点不在抛物线上. ······· 10分。

广东省茂名市中考数学真题试题(带解析)

广东省茂名市中考数学真题试题(带解析)

2011年广东省茂名市中考数学试卷-解析版一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的).1、(2011•茂名)计算:﹣1﹣(﹣1)0的结果正确是()A、0B、1C、2D、﹣2考点:零指数幂。

专题:存在型。

分析:先计算出(﹣1)0的值,再根据有理数的加减法进行运算即可.解答:解:原式=﹣1﹣1=﹣2.故选D.点评:本题考查的是0指数幂,即任何非0数的0次幂等于1.2、(2011•茂名)如图,在△ABC中,D、E分别是AB、AC的中点,若DE=5,则BC=()A、6B、8C、10D、12考点:三角形中位线定理。

专题:计算题。

分析:利用三角形的中位线定理求得BC即可.解答:解:∵D、E分别是AB、AC的中点,∴DE=BC,∵DE=5,∴BC=10.故选C.点评:此题主要是根据三角形的中位线定理进行分析计算.3、(2011•茂名)如图,已知AB∥CD,则图中与∠1互补的角有()A、2个B、3个C、4个D、5个考点:平行线的性质;余角和补角。

分析:由AB∥CD,根据两直线平行,同旁内角互补,即可得∠1+∠AEF=180°,由邻补角的定义,即可得∠1+∠EFD=180°,则可求得答案.解答:解:∵AB∥CD,∴∠1+∠AEF=180°,∵∠1+∠EFD=180°.∴图中与∠1互补的角有2个.故选A.点评:此题考查了平行线的性质与邻补角的定义.题目比较简单,解题时注意数形结合思想的应用.4、(2011•茂名)不等式组的解集在数轴上正确表示的是()A、B、C、D、考点:在数轴上表示不等式的解集;解一元一次不等式组。

专题:存在型。

分析:分别求出各不等式的解集,再求出其公共解集,在数轴上表示出来,找出符合条件的选项即可.解答:解:,由①得,x<2,由②得,x≥﹣3,在数轴上表示为:故选D.点评:本题考查的是在数轴上表示一元一次不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别.5、(2011•茂名)如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂 A、B、D,已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是()A、3公里B、4公里C、5公里D、6公里考点:角平分线的性质;菱形的性质。

2006--2011年广东省初中升学考试数学试题及答案(6套)

2006--2011年广东省初中升学考试数学试题及答案(6套)

2008年陕西省中考数学试题第I 卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的) 1、零上13℃记作+13℃,零下2℃可记作 ( )A .2B .-2C . 2℃D .-2℃2、如图,这个几何体的主视图是 ( )3、一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是( ) A .直角三角形 B .等腰三角形 C .锐角三角形 D .钝角三角形4、把不等式组x 315x 6-⎧⎨⎩<--<的解集表示在数轴上,正确的是 ( )5、在“爱的奉献”抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款。

其中8位工作者的捐款分别是5万,10万,10万,10万,20万,20万,50万,100万。

这组数据的众数和中位数分别是 ( ) A .20万、15万 B .10万、20万 C .10万、15万 D .20万、10万6、如图,四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( ) A .AB=CD B .AD=BC C .AB=BC D .AC=BD7、方程2x 29-=()的解是 ( ) A .12x 5 x 1==-, B .12x 5 x 1=-=, C .12x 11 x 7==-, D .12x 11 x 7=-=,8、如图,直线AB 对应的函数表达式是 ( )A .3y x 32=-+ B .3y x 32=+ C .2y x 33=-+ D .2y x 33=+A .B .C .D .(第6题图)9、如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O且∠EDC =30°,弦EF ∥AB ,则EF 的长度为( )A .2B .CD .10、已知二次函数2y ax bx c =++(其中a >0,b >0,c <0), 关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限; ③图象与x 轴的交点至少有一个在y 轴的右侧。

广州茂名市初中毕业生学业考试

广州茂名市初中毕业生学业考试

2006年茂名市初中毕业生学业考试与高中阶段学校招生考试第一卷(共4页,满分50分)一、辨别题(每小题1分,共5分)判断下列各题是否正确,正确的在答题卡上将相应题号的“A”涂黑,错误的将相应题号的“B”涂黑。

1.法律一般都以文字的形式出现。

2.父母任何时候都无权拆阅子女的信件。

3.批评建议权是人民管理国家最基本的政治权利。

4.当代资本主义国家的性质没有改变。

5.我市发展先进文化的根本任务是提高全市人民的思想道德素质。

二、单项选择题(每小题2分,共30分)下列各题的四个选项中,只有一项是最符合题意的,请将答题卡上对应题目的这个答案标号涂黑。

6.2005年6月26日,北京奥组委宣布北京2008年奥运会主题口号为A.北京欢迎你B.新北京新奥运C.绿色北京,绿色奥运D.同一个世界,同一个梦想7.2005年10月8日至11日,中共十六届五中全会在北京举行,会议通过了《中共中央关于制定国民经济和社会发展______的建议》,确立了中国未来五年的经济社会发展目标。

A.第十一个五年规划B.第十个五年计划C.第十个五年规划D.第十一个五年计划8.2005年11月26日,庆祝神舟六号载人航天飞行圆满成功大会在北京人民大会堂举行,中共中央、国务院、中央军委决定授予________ “英雄航天员”荣誉称号。

A.杨利伟、费俊龙 B.费俊龙、聂海胜C.翟志刚、聂海胜 D.杨利伟、翟志刚9.2006年1月28日,大陆同胞赠送台湾同胞的一对大熊猫乳名征集活动的结果揭晓,最终命名为A.“平平”“安安”B.“和和”“美美”C.“团团”“圆圆”D. “陆陆”“湾湾”10.从2006年秋季开始,我市______的小学生和初中生都可享受免费义务教育。

A.所有农村B.部分地区C.所有城乡D.部分农村11.《中华人民共和国道路交通安全法》和《中华人民共和国行政许可法》分别于2005年5月1日、7月1日起正式实施。

这体现了我国A.在强化公民法律意识B.法律是依法治国的主体C.建立健全了法律体系D.在推进依法治国的进程12.小李同学新买的自行车又丢了,怕回家会挨骂,便到自由市场低价买了别人偷来的自行车,小李的行为A.妨害了公共安全B.违反了《治安管理处罚条例》C.是迫不得已的防卫行为D.扰乱了公共秩序13.2006年3月4日,胡锦涛同志强调,要坚持“八荣八耻”的基本要求,引导青少年树立社会主义荣辱观。

2006年茂名市中考物理试题及答案

2006年茂名市中考物理试题及答案

2006年茂名市初中毕业生学业考试(新课标)物理试卷(试卷满分:100分 考试时间:60分钟)第一卷 选择题(30分)一、单项选择题。

共18分。

在每小题给出的四个选项中,只有一个选项是正确的答案,选对的得3分,选错的或不答的得O 分。

1.如图1所示的四个事例中,应用了光的折射规律的是2.惯性既有利,也有弊,以下现象中属于利用惯性“利”的一面的是 A .人踩到西瓜皮上会滑倒 B .用手拍掉衣服上的灰尘 C .高速行驶的汽车突然刹车,乘客往前倾 D .车未停稳就上落,人容易跌倒 3.物体浸在液体中受到的浮力大小A .和物体的密度有关B .和物体的重力有关C .和物体的体积有关D .和物体排开液体的体积有关 4.下列现象中属于放热的是 A .对着镜子呵气,镜子变模糊 B .地板上积水一会儿不见了 C .落到地上的冰雹一会儿不见了 D .衣柜中的樟脑丸一段时间后不见了 5.如图2所示的实验装置是用来演示A .电流产生磁场B .电磁感应C .磁化现象D .磁场对通电导体的作用6.如图3所示,老师用同样的力吹一根吸管,并将它不断剪短,他在研究声音的 A .响度与吸管长短的关系 B .音调与吸管材料的关系 C .音调与吸管长短的关系 D .音色与吸管材料的关系图1图2二、多项选择题。

共12分。

在每小题给出的四个选项中,有两个或两个以上的选项是正确的答案,选对的得4分。

选对但不全的得2分,有选错或不答的得0分。

7.下列事例中,属于利用水的比热容大这一特点的是A.汽车发动机用水循环冷却B.冬天睡觉时用热水袋取暖C.初春的晚上向秧田里灌水防冻D.炎热的夏天为降温而在室内泼水8.下列有关能量转化的实例中,说法正确的是A.电动机工作时,电能转化为机械能B.蓄电池充电时,电能转化为化学能C.汽油机在做功冲程中,机械能转化为内能D.植物吸收太阳光进行光合作用时,光能转化为化学能9.如图4所示是小敏同学做“观察水的沸腾”实验操作图。

广东省茂名市中考数学试题(WORD版含答案)

广东省茂名市中考数学试题(WORD版含答案)

茂名市初中毕业生学业考试 与高中阶段学校招生考试数 学 试 卷考生须知:1.全卷分第一卷(选择题,满分40分,共2页)和第二卷(非选择题,满分110分,共8页),全卷满分150分,考试时间120分钟.2.请认真填写答题卡和第二卷密封线内的有关内容,并在试卷右上角的座位号处填上自己 的座位号.3.考试结束,将第一卷、第二卷和答题卡一并交回.亲爱的同学:你好!数学就是力量,自信决定成绩.请你用心思考,细心答题,努力吧,祝你考出好成绩!第一卷(选择题,共2页,满分40分)一、精心选一选(本大题共10个小题,每小题4分,共40分.每小题给出四个答案,其中只有一个是正确的). 1.下列四个数中,其中最小..的数是( ) A .0B .4-C .π-D 22.下列运算正确..的是( ) A .2242x x x =· B .238()x x = C .422x x x ÷=D .428x x x =·3.如图所示的四个立体图形中,左视图是圆的个数是( )A .4B .3C .2D .14.已知一组数据2,2,3,x ,5,5,6的众数是2,则x 是( ) A .5 B .4 C .3 D .25.已知一个多边形的内角和是540°,则这个多边形是( )圆柱 圆锥 圆台 球 请你用2B 铅笔把每题的正确答案的字母代号对应填涂在答题卡上,填涂要规范哟!答在本...试卷上无效.....。

A .四边形B .五边形C .六边形D .七边形6.杨伯家小院子的四棵小树E F G H 、、、刚好在其梯形院子ABCD 各边的中点上,若在四边形EFGH 种上小草,则这块草地的形状是( ) A .平行四边形 B .矩形 C .正方形 D .菱形 7.设从茂名到北京所需的时间是t ,平均速度为v ,则下面刻画v 与t 的函数关系的图象是( )8.分析下列命题:①四边形的地砖能镶嵌(密铺)地面;②不同时刻的太阳光照射同一物体,则其影长都是相等的;③若在正方形纸片四个角剪去的小正方形边长越大,则所制作的无盖长方体形盒子的容积越大. 其中真命题...的个数是( ) A .3 B .2 C .1 D .09.如图,一把遮阳伞撑开时母线的长是2米,底面半径为1米,则做这把遮阳伞需用布料的面积是( )A .4π平方米B .2π平方米C .π平方米D .1π2平方米10.如图,把抛物线2y x =与直线1y =围成的图形OABC 绕原点O 顺时针旋转90°后,再沿x 轴向右平移1个单位得到图形1111O A B C ,则下列结论错误..的是( ) A .点1O 的坐标是(10), B .点1C 的坐标是(21)-, A D H G C FE (第6题图) y t O y t O y t O y t O A . B . C . D . 2米 1米(第9题图)Oy1O B1B 1C1A11A -(,) 11C (,)(第10题C .四边形111O BA B 是矩形D .若连接OC ,则梯形11OCA B 的面积是3茂名市初中毕业生学业考试 与高中阶段学校招生考试数 学 试 卷第二卷(非选择题,共8页,满分110分)二、细心填一填(本大题共5小题,每小题4分,共20分.请你把答案填在横线的上方). 11.方程1112x x=+的解是x = . 12.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是 .13.若实数x y 、满足0xy ≠,则yx m x y=+的最大值是 . 14.如图,甲、乙两楼相距20米,甲楼高20米,小明站在距甲楼10米的A 处目测得点A 与甲、乙楼顶B C 、刚好在同一直线上,若小明的身高忽略不计,则乙楼的高度是 米.15.我们常用的数是十进制数,而计算机程序处理数据使用的只有数码0和1的二进制数,这二者可以相互换算,如将二进制数1011换算成十进制数应为:32101202121211⨯+⨯+⨯+⨯=.按此方式,则将十进制数6换算成二进制数应为 . 三、用心做一做(本大题共3个小题,每小题8分,共24分).16.化简或解方程组.(1)1323228-··(4分)(第12题(第14题20米乙CB A甲10米 米20米温馨提示:下面所有解答题都应写出文字说明,证明过程或演算步骤!(2)241x y x y +=⎧⎨+=⎩①②(4分)17.如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,指针指向的数字分别记作a b 、,把a b 、作为点A 的横、纵坐标.(1)求点()A a b ,的个数; (4分)(2)求点()A a b ,在函数y x =的图象上的概率.(4分)18.如图,方格中有一个ABC △,请你在方格内,画出满足条件1111A B AB B C BC ==,,1A A ∠=∠的111A B C △,并判断111A B C △与ABC △是否一定全等?1 4 32(第17题BA C(第18题四、沉着冷静,缜密思考(本大题共2个小题,每小题8分,共16分).19.某校在“书香满校园”的读书活动期间,学生会组织了一次捐书活动.如图(1)是学生捐图书给图书馆的条形图,图(2)是该学校学生人数的比例分布图,已知该校学生共有1000人.(1)求该校学生捐图书的总本数; (6分) (2)问该校学生平均每人捐图书多少本? (2分)20.设12x x 、是关于x 的方程2410x x k -++=的两个实数根.试问:是否存在实数k ,使得1212x x x x >+·成立,请说明理由.人均捐款 书数(本) 2年级图七年级八年级35%九年级 30%图(第19题温馨提示:关于x 的一元二次方程()200ax bx c a ++=≠,当240b ac -≥时,则它的两个实数根是21242b b acx a-±-=,.五、满怀信心,再接再厉(本大题共3小题,每小题10分,共30分). 21.(本题满分10分)出厂价 成本价 排污处理费 甲种塑料 2100(元/吨) 800(元/吨) 200(元/吨) 乙种塑料2400(元/吨)1100(元/吨)100(元/吨)每月还需支付设备管理、维护费20000元(1)设该车间每月生产甲、乙两种塑料各x 吨,利润分别为1y 元和2y 元,分别求1y 和2y 与x 的函数关系式(注:利润=总收入-总支出);(6分)(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨,获得的总利润最大?最大利润是多少?(4分)22.(本题满分10分)已知:如图,直径为OA 的M ⊙与x 轴交于点O A 、,点B C 、把OA 分为三等份,连接MC 并延长交y 轴于点(03)D ,.(1)求证:OMD BAO △≌△; (6分)(2)若直线l :y kx b =+把M ⊙30k b +=.(4分)价目 品种yxCBA MO42 1 3()03D ,23.(本题满分10分)据茂名市某移动公司统计,该公司年底手机用户的数量为50万部,底手机用户的数量达72万部.请你解答下列问题:(1)求年底至底手机用户数量的年平均增长率; (5分) (2)由于该公司扩大业务,要求到底手机用户的数量不少于103.98万部,据调查,估计从底起,手机用户每年减少的数量是上年底总数量的5%,那么该公司每年新增手机用户的数量至少要多少万部?(假定每年新增手机用户的数量相同).(5分)六、灵动智慧,超越自我(本大题共2小题,每小题10分,共20分). 24.(本题满分10分) 如图,在Rt ABC△中,906024BAC C BC ∠=∠==°,°,,点P 是BC 边上的动点(点P 与点B C 、不重合),过动点P 作PD BA ∥交AC 于点D .(1)若ABC △与DAP △相似,则APD ∠是多少度? (2分) (2)试问:当PC 等于多少时,APD △的面积最大?最大面积是多少? (4分) (3)若以线段AC 为直径的圆和以线段BP 为直径的圆相外切,求线段BP 的长.(4分)60°A D CB (第24题P参考公式: 函数2y ax bx c =++(a b c 、、为常数,0a ≠)图象的顶点坐标是:2424b ac b a a ⎛⎫-- ⎪⎝⎭,25.(本题满分10分)已知:如图,直线l :13y x b =+,经过点104M ⎛⎫⎪⎝⎭,,一组抛物线的顶点112233(1)(2)(3)()n n B y B y B y B n y ,,,,,,,,(n 为正整数)依次是直线l 上的点,这组抛物线与x轴正半轴的交点依次是:11223311(0)(0)(0)(0)n n A x A x A x A x ++,,,,,,,,(n 为正整数),设101x d d =<<().(1)求b 的值;(2分) (2)求经过点112A B A 、、的抛物线的解析式(用含d 的代数式表示)(4分)(3)定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”. 探究:当01d d <<()的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d 的值. (4分)(第25题yO M x n l 1 2 3 …1B 2B 3B n B 1A 2A 3A 4A n A 1n A +茂名市初中毕业生学业考试 与高中阶段学校招生考试 数学试题参考答案及评分标准说明:1.如果考生的解与本解法不同,可根据试题的主要内容,并参照评分标准制定相应的评分细则后评卷.2.解答题右端所注的分数,表示考生正确做到这一步应得的累加分数.一、选择题(本大题共10小题,每小题4分,共40分.) 题号 1 2 3 4 5 6 7 8 9 10 答案 B C D D B A A C B D 二、填空题(本大题共5小题,每小题4分,共20分.) 11.1 12.1213.2 14.60 15.110 三、(本大题共3小题,每小题8分,共24分.)16.(1)解:原式128= ······································································ 2 分 4=. ······························································································ 4 分 (2)解:由①-②得:3y =, ······································································ 2 分 ∴把3y =代入①得:2x =-, ········································································· 3分∴方程组的解为23.x y =-⎧⎨=⎩,················································································· 4分17.解:(1)列表(或树状图)得:ab12 3 4 1 (1,1) (2,1)(3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4 (1,4)(2,4)(3,4)(4,4)因此,点()A a b ,的个数共有16个; ································································· 4分 (2)若点A 在y x =上,则a b =, 由(1)得()41164a b P ===, 因此,点()A a b ,在函数y x =图象上的概率为14. ············································ 8分 18.解:如图所示:每画对一个3分,共6分.ABC △与111A B C △不一定全等. ···································································· 8分四、(本大题共2小题,每小题8分,共16分.) 19、解:(1)九年级捐书数为:1000×30%×4=1200(本) ················································· ·1分 八年级捐书数为:1000×35%×6 = 2100(本) ························································ 2 分 七年级捐书数为:1000×35%×2 =700(本) ·························································· 3 分 ∴捐书总本数为:1200+2100+700=4000(本) ··················································· 5 分 因此,该校学生捐图书的总本数为4000本. ························································ 6 分 (2)4000÷1000=4(本) ················································································· 7分 因此,该校平均每人捐图书4本.······································································ 8分20.解:∵方程有实数根,∴240b ac -≥,∴2(4)4(1)0k --+≥,即3k ≤. ····· 2分解法一:又∵24(4)4(1)23k x k ±--+==-,·········································· 3分 ∴12(23)(23)4x x k k +=-+-=, ······················································· 4分 12(23)(23)1x x k k k =+---=+ ··························································· 5分 若1212x x x x >+,即14k +>,∴3k >. ························································· 7 分 而这与3k ≤相矛盾,因此,不存在实数k ,使得1212x x x x >+成立. ···················· 8分 解法二:又∵12441b x x a -+=-=-=, ···························································· 4分 12111c k x x k a +===+, ··············································································· 5分 (以下同解法一)五、(本大题共3小题,每小题10分,共30分.) 21.解:(1)依题意得:1(2100800200)1100y x x =--=, ··········································· 3分BA CB 1A 1 C 1 C 1B 1 A 12(24001100100)20000120020000y x x =---=-, ····································· 6 分 (2)设该月生产甲种塑料x 吨,则乙种塑料(700)x -吨,总利润为W 元,依题意得: 11001200(700)20000100820000W x x x =+--=-+. ································· 7 分∵400700400x x ⎧⎨-⎩≤,≤,解得:300400x ≤≤. ······················································ 8 分∵1000-<,∴W 随着x 的增大而减小,∴当300x =时,W 最大=790000(元). ······· 9 分 此时,700400x -=(吨).因此,生产甲、乙塑料分别为300吨和400吨时总利润最大,最大利润为790000元.························· 10 分22.证明:(1)连接BM ,∵B C 、把OA 三等分,∴1560∠=∠=°, ································ 1 分又∵OM BM =,∴125302∠=∠=°, ·························································· 2 分 又∵OA 为M ⊙直径,∴90ABO ∠=°,∴12AB OA OM ==,360∠=°, ·········· 3 分∴13∠=∠,90DOM ABO ∠=∠=°, ···························································· 4 分在OMD △和BAO △中,13.OM AB DOM ABO ∠=∠⎧⎪=⎨⎪∠=∠⎩,, ···················································· 5 分∴OMD BAO △≌△(ASA ) ········································································· 6 分 (2)若直线l 把M ⊙的面积分为二等份,则直线l 必过圆心M , ···································· 7 分∵(03)D ,,160∠=°,∴3tan 603OD OM ===° ∴3M ,, ··············································· 8 分 把 3M ,代入y kx b =+得: 30k b +=. ·············································· 10 分23.解:(1)设年底至底手机用户的数量年平均增长率为x ,依题意得: ····························· 1 分250(1)72x +=, ··························································································· 3 分∴1 1.2x +=±,∴10.2x =,2 2.2x =-(不合题意,舍去), ······························ 4 分yxCBA MO42 13()03D ,5∴年底至底手机用户的数量年平均增长率为 20%. ················································ 5 分 (2)设每年新增手机用户的数量为y 万部,依题意得: ········································· 6分 [72(1 5%)](15%)103.98y y -+-+≥, ·························································· 8分 即(68.4)0.95103.9868.40.950.95103.98y y y y ++⨯++≥,≥,64.98 1.95103.98y +≥,1.9539y ≥,∴20y ≥(万部). ······························ 9分 ∴每年新增手机用户数量至少要 20万部. ························································· 10 分 六、(本大题共 2 小题,每小题 10 分,共 20 分.)24、解:(1)当△ABC 与△DAP 相似时,∠APD 的度数是60°或30°. ···················· 2 分 (2)设PC x =,∵PD BA ∥,90BAC ∠=°,∴90PDC ∠=°, ······················· 3 分 又∵60C ∠=°,∴24cos6012AC ==°,1cos602CD x x ==°, ∴1122AD x =-,而3sin 60PD x ==°, ··················································· 4 分 ∴1131122222APD S PD AD x x ⎛⎫==-⎪⎝⎭△ ························································ 5 分 223324)(12)18388x x x =--=--+ ∴PC 等于12时,APD △的面积最大,最大面积是3··································· 6 分 (3)设以BP 和AC 为直径的圆心分别为1O 、2O ,过 2O 作 2O E BC ⊥于点E , 设1O ⊙的半径为x ,则2BP x =.显然,12AC =,∴26O C =,∴6cos603CE ==°, ∴2226333O E =-=,124321O E x x =--=-, ························· 7 分又∵1O ⊙和2O ⊙外切,∴126O O x =+. ······································· 8分在12Rt O O E △中,有2221221O O O E O E =+, ∴222(6)(21)(33)x x +=-+, ·················· 9 分解得:8x =, ∴216BP x ==. ··································································· 10 分60°ADC BPO 2 O 1E25.解:(1)∵104M ⎛⎫ ⎪⎝⎭,在13y x b =+上,∴11043b =⨯+,∴14b =. ················ 2分 (2)由(1)得:1134y x =+, ∵11(1)B y ,在l 上, ∴当1x =时,111713412y =⨯+=,∴17112B ⎛⎫⎪⎝⎭,. ········································· 3 分 解法一:∴设抛物线表达式为:27(1)(0)12y a x a =-+≠, ··································· 4分 又∵1x d =, ∴1(0)A d ,,∴270(1)12a d =-+,∴2712(1)a d =--, ················· 5 分∴经过点112A B A 、、的抛物线的解析式为:2277(1)12(1)12y x d =--+-. ············· 6 分 解法二:∵1x d =,∴1(0)A d ,,2(20)A d -,, ∴设()(2)(0)y a x d x d a =--+≠, ································································ 4 分把17112B ⎛⎫⎪⎝⎭,代入:7(1)(12)12a d d =--+,得2712(1)a d =--, ························ 5 分 ∴抛物线的解析式为27()(2)12(1)y x d x d d =---+-. ····································· 6 分(3)存在美丽抛物线. ··················································································· 7 分 由抛物线的对称性可知,所构成的直角三角形必是以抛物线顶点为直角顶点的等腰直角三角形,∴此等腰直角三角形斜边上的高等于斜边的一半,又∵01d <<,∴等腰直角三角形斜边的长小于2,∴等腰直角三角形斜边上的高必小于1,即抛物线的顶点的纵坐标必小于 1.∵当1x =时,1117113412y =⨯+=<, 当2x =时,21111213412y =⨯+=<,当3x =时,3111311344y =⨯+=>,yO M xnl12 3…1B2B3Bn B1A2A 3A4A n A1n A +∴美丽抛物线的顶点只有12B B 、. ···································································· 8分 ①若1B 为顶点,由17112B ⎛⎫⎪⎝⎭,,则7511212d =-=; ·············································· 9分 ②若2B 为顶点,由211212B ⎛⎫ ⎪⎝⎭,,则11111211212d ⎡⎤⎛⎫=---= ⎪⎢⎥⎝⎭⎣⎦, 综上所述,d 的值为512或1112时,存在美丽抛物线. ··········································· 10分。

茂名市2006年初中毕业考试试卷及答案

茂名市2006年初中毕业考试试卷及答案

茂名市2006年初中毕业生学业考试与高中阶段学校招生考试数学试卷第一卷(选择题,满分 40分,共2页)一、精心选一选(本大题共l0小题,每小题4分,共40分.每小题给出四个答案,其中只有一个是正确的).1.已知,则a的值是A. D.1.42.下列交通标志中,既是轴对称图形又是中心对称图形的是3.下列的运算中,其结果正确的是A.+=B.16x2-7x2 = 9C.x8÷x2 = x4D.x (-xy)2=x2y24.下列图形中可能是正方体展开图的是5.某校师生总人数为l000人,其中男学生、女学生和教师所占的比例如图所示,则该校男学生人数为A. 430人B. 450人C. 550人D. 570人6.下列各图中,沿着虚线将正方形剪成两部分,那么由这两部分既能拼成平行四边形,又能拼成下角形和梯形的是7.今年,我市某果农的荔枝又获丰收,预计比去年增产15 %,去年他卖荔枝收人3万元,若今年的价格和去年的持平,都是6元/公斤,则他今年的荔枝约可卖A.4.5×104元B. 4×104元C.3.45×104元D.5×104元 8.如图,小明想用皮尺测最池塘A 、B 间的距离,但现有皮尺无法直接测量,学习数学有关知识后,他想出了一个主意:先在地上取一个可以直接到达A 、B 两点的点O ,连接OA 、OB ,分别在OA 、OB 上取中点C 、D ,连接CD ,并测得CD = a ,由此他即知道A 、B 距离是A.12a B.2a C.a D.3a 9.已知点P 是反比例函数(0)ky k x=≠的图像上任一点,过P 点分别作x 轴,y 轴的平行线,若两平行线与坐标轴围成矩形的面积为2,则k 的值为 A.2 B.-2 C.±2 D.410.为了估计湖里有多少条鱼,先从湖里捕捞100条鱼都做上标记,然后放回湖中去,经过一段时间,待有标记的鱼完全混合于鱼群后,第二次再捕捞100条鱼,发现其中10条有标记,那么你估计湖里大约有鱼A. 500条B. 600条C. 800 条D. 1000条第二卷(非选择题,满分 110 分,共 8 页)二、耐心填一填(本大题共5小题,每小题4分,共20分.请你把答案填在横线的上方).11.在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是 (填上序号即可). 12.分解因式:ax 2+6ax+9a= .13.如图,点A 、B 分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A 沿其表面爬到点B 的最短路程是 . 14. 若1233215,7x y z x y z ++=++=,则111x y z++= . 15. 甲、乙、丙、丁四人参加某校招聘教师考试,试后甲、乙两人去询问成绩。

茂名市第十中学中考综合训练数学试卷(四)及答案

茂名市第十中学中考综合训练数学试卷(四)及答案

茂名市第十中学中考综合训练数学试卷 (四)说明:考试时间 120 分,满分 150 分.一、选择题(每题 4 分,共 40 分,每题给出 4 个答案,此中只有一个正确,把所选答案的编号写在题目后边的括号内)题号12345678910答案1.假如 a 与-2 互为倒数,那么 a 是.A .- 21 C .1 B .-D .2222.据统计, 2006“超级女声”短信投票的总票数约 327 000 000 张,将这个数写成科学记数法是A . 3.27 106B . 3.27 107C. 3.27 108D. 3.27 1092x 4 03.不等式组x 的解集为.3 0A .x >2B .x <3C .x >2 或 x <-3D .2<x <34.若反比率函数 y1的图象经过点 A (2,m ),则 m 的值是.xA . 2B . 21 1 C .D .225.一个袋中装有 1 个红球, 2 个白球, 3 个黄球,它们除颜色外完整同样.小明从袋中随意摸出 1 个球,摸出的是白球的概率是.A .1B .1C .1D .16 3 26.已知 α为等边三角形的一个内角,则 cos α等于.1 2 3 3 A .B .C .D .22237.以下漂亮的图案,既是轴对称图形又是中心对称图形的个数是.A .1 个B .2 个C .3个D .4 个8.教练组对运动员正式竞赛前的 5 次训练成绩进行剖析,判断谁的成绩更为稳固,一般需要观察这5次成绩的.A .均匀数或中位数B.众数或频次C.方差或极差D.频数或众数9.以下图,把一个正方形三次对折后沿虚线剪下,则所得的图形是.y1-1O2 x(第9题)(第 10 题)10.某学习小组在议论“变化的鱼”时,知道右图中的大鱼与小鱼是位似图形,若小鱼上的点 P (a,b)对应大鱼上的点 Q,则点 Q 的坐标为.A .(-2a,-2b)B.(-a,-2b)C.(-2b,-2a)D.(-2a,-b)二、填空题(每题 4 分,共 20 分) a11.比较大小: 5 1 1 . a2 212.用字母表示图中暗影部分的面积为.(第 12 题)13.某商铺销售一批服饰,每件售价 150 元,打 8 折后,仍可赢利20%,设这类服饰的成本价为 x 元,则x知足的方程是.14.用两块大小同样的等腰直角三角形纸片做拼图游戏,则以下图形:①平行四边形(不包含矩形、菱形、正方形);②矩形(不包含正方形);③正方形;④等边三角形;⑤等腰直角三角形,此中必定能拼成的图形是.(只填序号)15.某班有 49位学生,此中有 21 位女生. 在一次活动中,班上每(第 14 题)一位学生的名字都各自写在一张小纸条上,放入一盒中搅匀 .假如老师闭上眼睛从盒中随机抽出一张纸条,那么抽到写有女生名字纸条的概率是.三、解答题:(每题 8 分,共 24 分)16.计算:.2( 3 2)12 2 1+tan60°3 1x 2y 517,解方程组:3x y 118 已知两个分式: A = 2 4 ,B= 1 1 ,此中 x 2 .下边有三个结论:x 4 x 2 2 x①A=B ;②A 、B 互为倒数;③A、B 互为相反数.请问哪个正确 ?为何?四, (每题8分,共16分)19,如图,在 4×4 的正方形方格中,△ ABC和△DEF的极点都在边长为1的小正方形的极点上.(1)填空:∠ ABC=°,BC=;(2)判断△ ABC 与△DEF 能否相像,并证明你的结论.20,某企业开发出一种新产品,先期投入的开发、广告宣传花费共5000 元,且每售出一套产品,公司还需支付产品安装调试花费 20 元.(1)试写出总花费 y(元)与销售套数 x(套)之间的函数关系式;(2)假如每套订价 70 元,企业起码要售出多少套产品才能保证不赔本?五,(每题10分,共30分)21,如图,正方形 ABCD 的边 CD 在正方形 ECGF 的边 CE 上,连结 BE、 DG.(1)察看猜想 BE 与 DG 之间的大小关系,并证明你的结论.(2)图中能否存在经过旋转可以相互重合的两个三角形?若存在,请说出旋转过程;若不存在,请说明原因.E FDAB C G(第 21 题)22,为了认识茂名市中学生展开研究性学习的状况,抽查了某中学九年级甲、乙两班的部分学生,认识他们在一个月内参加研究性学习的状况,结果统计以下:(1)在此次抽查中甲班被抽查了人,乙班被抽查了人;(2)在被抽查的学生中,甲班学生参加研究性学习的均匀次数为次,乙班学生参加研究性学习的均匀次数为次;(3)依据以上信息,用你学过的统计知识,推断甲、乙两班在展开研究性学习方面哪个班级更好一些?人数甲3乙21学习次数01 2 3 45(第 22 题)23,在不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其他都同样),此中白球有 2 个,黄球有 1 个,现从中随意摸出一个是白球的概率为12 .(1)试求袋中蓝球的个数 .(2)第一次随意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率 .六(每题 10 分,共 20分)24,如图,AB 是⊙O 的直径,CB、CE 分别切⊙ O 于点 B、D,CE 与 BA 的延伸线交于点 E,连结 OC、OD.(1)求证:△OBC≌△ ODC;(2)已知 DE=a,AE=b,BC=c,请你思虑后,采用以上适合的数,设计出计算⊙ O 半径 r 的一种方案:①你采用的已知数是;C ②写出求解过程.(结果用字母表示)D caE b A BO25,如图,边长为 4 的正方形 OABC 的极点 O 为坐标原点,点 A 在 x 轴的正半轴上,点 C 在 y 轴的正半轴上.动点 D 在线段 BC 上挪动(不与 B,C 重合),连结 OD,过点 D 作 DE⊥ OD,交边AB 于点 E,连结 OE.(1)当 CD=1 时,求点 E 的坐标;(2)假如设 CD=t,梯形 COEB的面积为 S,那么能否存在 S 的最大值?若存在,恳求出这个最大值及此时 t 的值;若不存在,请说明原因.茂名市第十中学中考综合训练数学试卷(四)一、选择题BCDCB ACC CA二、填空题11.> 12.a21a 2 13.150× 80%-x=20%x 14.①、③、⑤ 15、3;4 7三、解答题16. 解:原式=2( 3 1) 1 12 1 3( 3 1)( 3 21)= ( 3 1) 1 2131 3 =2 217, x1 y 218,由于B=x 1 1 1 1 x 2 x 2 4 42 2 x x 2 x 2 x2 4 x2 4 x2 4比较可知, A与 B 不过分式自己的符号不一样,所以 A、B 互为相反数. 19, 解:(1)∠ABC=135°, BC= 2 2;(2)能判断△ABC 与△DEF 相像(或△ABC∽△ DEF)这是由于∠ ABC =∠ DEF = 90 °+45°=135°, AB 22,BC DE 2 EF∴ AB BC∴△ ABC∽△ DEF.DE EF 2 22 220,(1)解:y=5000+20x(2)解法 1:设企业起码要售出x套产品才能保证不赔本,则有:70 x≥5000+20x解得:x≥100解法 2:每套成本是5000若每套成本和销售价相等则: 70500020 20 x x解得: x=100所以企业起码要售出100套产品才能保证不赔本21.解:(1)BE=DG.证明:∵四边形 ABCD 和四边形 ECGF 都是正方形,∴BC=DC,EC=GC,∠BCE=∠DCG=90°∴△BCE≌△DCG.∴BE=DG.(2)存在,它们是 Rt△BCE 和 Rt△DCG.将 Rt△BCE 绕点 C 顺时针旋转 90°,可与 Rt△DCG 完整重合.22解:(1)10人,10人;(2)2.7次,2.2次;(3)甲班学生参加研究性学习的均匀次数大于乙班学生参加研究性学习的均匀次数,所以在展开研究性学习方面甲班更好一些23.解:(1)设蓝球个数为 x 个则由题意得2 1解得 x=1,即蓝球有 1 个2+1+x =2(2)树状图或列表正确两次摸到都是白球的概率=122=1624(1)证明:∵ CD、CB 是⊙ O 的切线,C ∴∠ODC=∠OBC=90°又∵ OD=OB,OC=OC,∴△OBC≌△ODC(HL )D c(2)选择 a、b、c,或此中 2 个均给分;a方法一:在 Rt△EBC 中,由勾股定理:a2 2ac b E b A O B2 22. (b+2r) +c =(a+c) ,得 r= 2方法二:Rt△ ODE∽Rt△CBE,ab 2r ,得 r=b 28ac .br c 4方法三:连结 AD,可证: AD//OC,ab ,得 r=bc.c r a2c a2ac若选择 a、c:需综合运用以上的多种方法,得 r=.若选择 b、c,则相关系式 2r3+br2-bc2=0.(以上解法仅供参照,只需解法正确均给分)25,解:(1)正方形OABC中,由于ED⊥OD,即∠ODE =90°所以∠ CDO+∠EDB=90°,即∠ COD= 90°- ∠CDO,而∠EDB =90°- ∠CDO,所以∠ COD =∠EDB又由于∠OCD=∠DBE=90°所以△ CDO∽△BED,所以CDCO,即1 4 ,得 BE=3,BE BD BE 4 1 4则:AE 4 3 134 4所以点 E 的坐标为( 4,13).4(2)存在 S 的最大值.由△CDO∽△BED,所以CDCO ,即t4 ,BE=t-41 t2,BE DB BE 4 tS 1×4×(4+t-41 t2)1(t 2)2 10 .2 2故当 t=2 时,S有最大值 10.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

茂名市2006年初中毕业生学业考试
与高中阶段学校招生考试
数学试卷
“没有比人更高的山,没有比脚更长的路”.亲爱的同学们,准备好了吗?请相信自己,沉着应答,你一定能愉快地完成这次测试之旅,祝你成功!
第一卷(
选择题,满分 40分,共2页)
一、精心选一选(本大题共l0小题,每小题4分,共40分.
每小题给出四个答案,其中只有一个是正确的). 1.已知=0,则a 的值是
A.
D.1.4
2.下列交通标志中,既是轴对称图形又是中心对称图形的是
3.下列的运算中,其结果正确的是
A.+=
B.16x 2-7x 2 = 9
C.x 8÷x 2 = x 4
D.x (-xy)2=x 2y 2 4.下列图形中可能是正方体展开图的是
5.某校师生总人数为l000人,其中男学生、女学生和教师所占的比例如图所示,则该校男学生人数为
A. 430人
B. 450人
C. 550人
D. 570人
6.下列各图中,沿着虚线将正方形剪成两部分,那么由这两部分既能拼成平行四边形,又能拼成下
角形和梯形的是
7.今年,我市某果农的荔枝又获丰收,预计比去年增产15 %,去年他卖荔枝收人3万元,若今年的价格和去年的持平,都是6元/公斤,则他今年的荔枝约可卖
A.4.5×104元
B. 4×104元
C.3.45×104元
D.5×104元
8.如图,小明想用皮尺测最池塘A 、B 间的距离,但现有皮尺无法直接测量,学习数学有关知识后,他想出了一个主意:先在地上取一个可以直接到达A 、B
两点的点O ,连接OA 、OB ,分别在OA 、OB 上取中点C 、D ,连接CD ,并测得CD = a , 由此他即知道A 、B 距离是 A.
1
2
a B.2a C.a D.3a 9.已知点P 是反比例函数(0)k
y k x
=
≠的图像上任一点,过P 点分别作x 轴,y 轴的平行线,若两平行线与坐标轴围成矩形的面积为2,则k 的值为 A.2 B.-2 C.±2 D.4
10.为了估计湖里有多少条鱼,先从湖里捕捞100条鱼都做上标记,然后放回湖中去,经过一段时
间,待有标记的鱼完全混合于鱼群后,第二次再捕捞
100条鱼,发现其中10条有标记,那么你估计湖里大约有鱼
A. 500条
B. 600条
C. 800 条
D. 1000条
茂名市2006年初中毕业生学业考试
与高中阶段学校招生考试
数 学 试 卷
第二卷(非选择题,满分 110 分,共 8 页)
二、耐心填一填(本大题共5小题,每小题4分,共20分.请你把答案填在横线的上方). 11.在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图
都完全相同的是 (填上序号即可). 12.分解因式:ax 2
+6ax+9a= .
13.如图,点A 、B 分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁
从点A 沿其表面爬到点B 的最短路程是 . 14. 若
1233215,7x y z x y z ++=++=,则111
x y z
++= . 15. 甲、乙、丙、丁四人参加某校招聘教师考试,试后甲、乙两人去询问成绩。

请你根据下面回答
者对甲、乙两人回答的内容进行分析,则这四人的名次排列共可能有 种不同情况。

三、细心做一做(本大题共3小题,每小题8分,共24分)
16.已知:两个分式1111A x x =
-
+-.22
1
B x =-.其中 x ≠±1.下面三个结论:①A=B ,②A 、B 为倒数, ③A 、B 互为相反数。

请问这三个结论中哪一个结论 正确?为什么? 解:
17. 如图,在平面直角坐标系xoy 中,直角梯形OABC, BC//AO,
A (-2, 0),
B (-l, 1),将直角梯.形OAB
C 绕点O 顺时针旋转900
后,点A 、B 、C 分别落在点A ′、B ′、C ′处.请你解答下列问题:
(l )在如图直角坐标系xoy 中画出旋转后的梯形O ′A ′B ′C ′; (4分) (2)求点A 旋转到A ′所经过的弧形路线长 (4分)
18.甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转
动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积大于10,那么甲获胜;如果积不大于10,那么乙获胜。

清你解决下列问题:
(l )利用树状图(或列表)的方法表示游戏所有可能出现的结果; (4分) (2)求甲、乙两人获胜的概率。

(4分)
解:
四、沉着冷静,周密考虑(本大题2小题,每小题8分,共16分)
19.现从我市区近期卖出的不同面积的商品房中 随机抽取1000套进行统计,并根据结果绘出 如图所示的统计图,请结合图中的信息, 解答下列问题:
(l )卖出面积为110-130cm 2
,的商品房有
套,并在右图中补全统计图;(4分) (2)从图中可知,卖出最多的商品房约占全部 卖出的商品房的 %; (2分) (3)假如你是房地产开发商,根据以上提供的
信息,你会多建住房面积在什么范围内的住房?为什么? (2 ) 解:
20. 先阅读,再填空解题:
(1)方程:x 2
-x-2=0 的根是:x 1=-3, x 2=4,则x 1+x 2=1,x 1·x 2=12; (2)方程2x 2-7x+3=0的根是:x 1=
12, x 2=3,则x 1+x 2=72,x 1·x 2=3
2
; (3)方程x 2-3x+1=0的根是:x 1= , x 2= .
则x 1+x 2= ,x 1·x 2= ;
根据以上(1)(2)(3)你能否猜出:
如果关于x 的一元二次方程mx 2
+nx+p=0(m ≠0且m 、n 、p 为常数)的两根为x 1、x 2,那么x 1+x 2、x 1、x 2与系数m 、n 、p 有什么关系?请写出来你的猜想并说明理由. 解:
五、开动脑筋,再接再厉(本大题共3小题.每小题10分,共30分) 21.(本小题满分10分)
七巧板是我们祖先的一项创造,被誉为“东方魔板”, 如图是一副七巧板,若已知S △BPC =1,请你根据七巧板 制作过程的认识,解决下列问题:
(1)求一只妈蚁从点A 沿A →B →C →H →E 所走的路线 的总长(结果精确到0.01);(5分) (2)求平行四边形EFGH 的面积.(5分) 解:
22.(本小题满分10分)
为了鼓励居民节约用水,我市某地水费按下表规 定收取:
(l )若某户用水量为x 吨,需付水费为y 元,则水费y (元)与用水量x(吨)之间的函数关系式是:
(010);(10).x y x ≤≤⎧⎪=⎨>⎪⎩
(4分)
(2)若小华家四月份付水费17元,问他家四月份用水多少吨? (3分)
(3)已知某住宅小区100户居民五月份交水费共1682元,且该月每户用水量均不超过15吨(含
15吨),求该月用水量不超过10吨的居民最多可能有多少户? (3分)
如图,已知△ABC内接于⊙O,AB是直径,D是BC的中点,
连接DO并延长到F使AF=OC.
(1)写出途中所有权等的三角形(不用证明);(4分)
(2)探究:当∠1等于多少都市,四边形OCAF是菱形?请回答并
给予证明.(6分)
解:
六、充满信心,成功在望(本大题共2小题,每小题10分,共20分)
24.(本小题满分10分)
已知:半径为1的⊙O1与X轴交于A、B 两点,圆心O1
的坐标为(2, 0),二次函数y=-x2+bx+c的图象经过A、B
两点,其顶点为F.
(1)求 b、c的值及二次函数顶点F的坐标; (4分)
(2)写出将二次函数y=-x2+bx+c的图象向下平移1个
单位再向左平移2个单位的图象的函数表达式;
(2分)
(3)经过原点O的直线l与⊙O相切,求直线l的函数表达式.(4分)解:
如图,李华晚上在路灯下散步.已知李华的
身高AB=h,灯柱的高OP=O/P/=l,两灯柱之间的距离
OO/=m.
(l)若李华距灯柱OP的水平距离OA=a,求他影
子AC的长;(3分)
(2)若李华在两路灯之间行走
.......,则他前后的两个影子的长度之和(DA+AC)是否是定值?请说
明理由;(3分)
v匀速行走,
(3)若李华在点A朝着影子(如图箭头)的方向以
1
v. (4分)
试求他影子的顶端在地面上移动的速度
2
解:
茂名市2006年初中毕业生学业考试
与高中阶段学校招生考试
数学试卷参考答案及评分标准。

相关文档
最新文档