25-简单的线性规划问题(1)
高中数学简单线性规划复习题及答案(最全面)
简单线性规划复习题及答案(1)1、设,x y 满足约束条件⎪⎩⎪⎨⎧≤--≥-+≥-020202y x y x y x ,则22y x ++的最大值为 452、设变量,x y 满足⎪⎩⎪⎨⎧≥-+≥-≤-+030201825y x y x y x ,若直线20kx y -+=经过该可行域,则k 的最大值为答案:13、若实数x 、y ,满足⎪⎩⎪⎨⎧≤+≥≥123400y x y x ,则13++=x y z 的取值范围是]7,43[.4、设y x z +=,其中y x ,满足⎪⎩⎪⎨⎧≤≤≤-≥+k y y x y x 0002,若z 的最大值为6,则z 的最小值为5、已知x 、y 满足以下条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则22z x y =+的取值范围是 4[,13]56、已知实数,x y 满足约束条件1010310x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩,则22(1)(1)x y -+-的最小值为 127、已知,x y 满足约束条件1000x x y x y m -≥⎧⎪-≤⎨⎪+-≤⎩,若1y x +的最大值为2,则m 的值为 58、表示如图中阴影部分所示平面区域的不等式组是⎪⎩⎪⎨⎧≥-+≤--≤-+0623063201232y x y x y x9、若曲线y = x 2上存在点(x ,y )满足约束条件20,220,x y x y x m +-≤⎧⎪--≤⎨⎪>⎩,则实数m 的取值范围是 (,1)-∞10、已知实数y ,x 满足10103x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则3z x y =+的最小值为 -311、若,x y 满足约束条件10,0,40,x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩则x y的最小值为 13. 12、已知110220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩,则22(2)(1)x y ++-的最小值为___10_13、已知,x y 满足不等式0303x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则函数3z x y =+取得最大值是 1214、已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则z =2x +4y 的最小值是-615、以原点为圆心的圆全部在区域⎪⎩⎪⎨⎧≥++≤-+≥+-0943042063y x y x y x 内,则圆面积的最大值为 π51616、已知y x z k y x x y x z y x 42,0305,,+=⎪⎩⎪⎨⎧≥++≤≥+-且满足的最小值为-6,则常数k = 0 . 17、已知,x y 满足约束条件,03440x x y y ≥⎧⎪+≥⎨⎪≥⎩则222x y x ++的最小值是 118、在平面直角坐标系中,不等式组0,0,,x y x y x a +≥⎧⎪-≥⎨⎪≤⎩(a 为常数),表示的平面区域的面积是8,则2x y +的最小值 14-19、已知集合22{(,)1}A x y x y =+=,{(,)2}B x y kx y =-≤,其中,x y R ∈.若A B ⊆,则实数k 的取值范围是⎡⎣20、若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为 12-21、若实数x ,y 满足不等式组201020x y x y a -≤⎧⎪-≤⎨⎪+-≥⎩,目标函数2t x y =-的最大值为2,则实数a 的值是 222、已知点(,)P x y 满足条件020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩,若3z x y =+的最大值为8,则实数k = 6- .23、设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩⎪⎨⎧≤->-+≤-- 23.24、已知实数y x , 22222)(y x y y x +++的取值范围为 ⎥⎦⎤⎢⎣⎡+221,35.简单线性规划复习题及答案(2)1、设实数x,y 满足⎪⎩⎪⎨⎧≤-≥-+≤--0205202y y x y x 则y x x y z +=的取值范围是 10[2,]3由于yx表示可行域内的点()x y ,与原点(00),的连线的斜 率,如图2,求出可行域的顶点坐标(31)(12)A B ,,,, (42)C ,,则11232OA OB OC k k k ===,,,可见123y x ⎡⎤∈⎢⎥⎣⎦,,结合双勾函数的图象,得1023z ⎡⎤∈⎢⎥⎣⎦,,2、若实数,x y 满足不等式组22000x y x y m y ++≥⎧⎪++≤⎨⎪≥⎩,且2z y x =-的最小值等于2-,则实数m 的值等于 1-3、设实数x 、y 满足26260,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩,则{}max 231,22z x y x y =+-++的取值范围是 [2,9]【解析】作出可行域如图,当平行直线系231x y z +-=在直线BC 与点A 间运动时,23122x y x y +-≥++,此时[]2315,9z x y =+-∈,平行直线线22x y Z ++=在点 O 与BC 之间运动时,23122x y x y +-≤++,此时,[]222,8z x y =++∈. ∴[]2,9z ∈图23 A yxOcB 634、佛山某家电企业要将刚刚生产的100台变频空调送往市内某商场,现有4辆甲型货车和8辆乙型货车可供调配。
简单的线性规划(一)
y
1
x+<0 x+y-1=0
x
二元一次不等式表示平面区域
例1 画出不等式2x+y-6<0表示的平面区域。 y
6
注意:把直
线画成虚线以 表示区域不包 括边界
O
2x+y-6=0
3
x
二元一次不等式表示平面区域
例2 画出不等式组 x+y=0
x y 5 0 x y 0 x 3
简单的线性规划
中学所学的线性规划只是规划论中的极小一部分,
但这部分内容体现了数学的工具性、应用性,同时也 渗透了化归、数形结合的数学思想,为学生今后解决 实际问题提供了一种重要的解题方法―数学建模法.通 过这部分内容的学习,可使学生进一步了解数学在解 决实际问题中的应用,培养学生学习数学的兴趣、应 用数学的意识和解决实际问题的能力。
二元一次不等式表示平面区域
作业:P64 习题 7.4 1
;
/ 搜索引擎大全
twd03twu
块儿热毛巾轻柔地为自己擦脸呢,就伸出双手哆哆嗦嗦地抓住男娃儿的手,吃力地说:“小直子,是你吗?你哥和你姐呢?”小沙弥记 着师傅的嘱咐,不敢多说什么,只轻轻地说:“你一定饿坏了吧?我喂你多喝点儿热粥吧。等喝饱了,你就安静地睡觉。放心啊,一切 都好着呢!你先歇息,有什么话,咱们以后再说。”小沙弥说着,扶着耿老爹慢慢坐起来。然后端来一碗热粥,一勺一勺地喂给耿老爹 喝。耿老爹确实饿坏了,一口气喝下去两碗,这才对小沙弥说:“我喝好了。告诉爹,你是怎么逃命的啊?你的头发怎么没了呢?你哥 和你姐呢?”聪明的小沙弥有点儿明白了,这个落难的人,是把自己当成他的儿子了!而且,他们是父子四人一起落难的!震惊的小沙 弥不敢多问,赶快扶耿老爹重新躺下来,并且给他掖一掖被子,亲切地说:“你太累了,需要好好歇息。我先把灯熄了吧。我就睡在你 的旁边,有什么事情你就叫我。我也很累了,咱们睡觉吧!”小沙弥说着,一口吹灭了灯,躺在耿老爹身旁装睡。听耿老爹又念叨了一 句:“唉,怎么没有看见你哥和你姐呢?”一会儿,听到耿老爹呼吸均匀地睡着了,小沙弥轻轻地下炕,直奔师傅屋里去了。老和尚还 没有歇息,正微微眯缝着眼睛在铺上打坐呢。小沙弥进屋来没敢大声说话,只是垂手站在一边。老和尚听见动静微睁双眼,看到是机灵 的小徒弟进来了。他心下明白,小家伙这个时候还来,肯定是有重要事情要和他说,就问:“徒儿,可是落难的施主醒过来了?”小沙 弥说:“师傅,他醒过来了,我已经喂他吃了两碗热粥,此时睡着了。他把我认作自己的儿子了,睡着之前一直喊我小直子,问我是怎 么逃命的,头发怎么没有了;还说怎么没有看见我的哥哥和姐姐。”老和尚双手合十说:“阿弥陀佛!不幸的人啊,看来是父子四人同 时落难的。你回去一定要好生照顾。他刚刚活过来,意识尚未完全清醒呢。如果认你为儿,你不必否认。等他的身体逐渐恢复了,我再 给他慢慢疏导吧。”小沙弥听从师傅嘱咐,马上返回厨房的火炕上陪耿老爹睡觉去了。从此之后,耿老爹就在小寺庙里住了下来。这个 寺庙实在是太小了,除了前院正中供奉有大肚弥勒佛的香火房还算说得过去之外,前、后院加起来也就还有十几间极普通的木制板房了。 而且,这个寺庙里的僧人也就只有前面提到的师徒四人。不过,这个寺庙虽然很小,僧人也只有老少四人,但出家人慈悲为怀的慈善和 仁爱之心却是一点儿也不少的。尽管日日三餐都是粗茶淡饭,但师徒四人亲亲热热和和气气地生活在一起。因此,与其说这是一个寺庙, 倒不如说这里就是一个普普通通的人家。而且,师徒四人都用特别友善的心,非常耐心地对待身体逐渐恢复,但意识一直糊涂不清的耿 老爹。尤其是那个极其机
高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)
简单的线性规划问题【知识概述】线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题.解决线性规划的数学问题我们要注意一下几点1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题;2.解决线性规划问题需要经历两个基本的解题环节(1)作出平面区域;(直线定”界”,特“点”定侧);(2)求目标函数的最值.(3)求目标函数z=ax+by最值的两种类型:①0b>时,截距最大(小),z的值最大(小);②0b>时,截距最大(小),z的值最小(大);【学前诊断】1.[难度] 易满足线性约束条件23,23,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y=+的最大值是()A.1B.32C.2D.32.[难度] 易设变量,x y满足约束条件0,0,220,xx yx y≥⎧⎪-≥⎨⎪--≤⎩则32z x y=-的最大值为( )A.0B.2C.4D.63. [难度] 中设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C .(1,3) D .(3,)+∞【经典例题】例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =+的最大值为( )A.5B.4C.1D.8例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为( )A.4B.3C.2D.1例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数(0,0)z abx y a b =+>>的最小值为8,则a b +的最小值为____________.例4. 在约束条件下0,0,,24,x y x y s x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )A.[]6,15B.[]7,15 C.[]6,8 D.[]7,8例5. 设不等式组1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,所表示平面区域是1,Ω平面区域2Ω与1Ω关于直线3490x y --=对称,对于1Ω中任意一点A 与2Ω中的任意一点B ,AB 的最小值等于( )A.285B.4C.125D.2例6.对于实数,x y ,若11,21,x y -≤-≤则21x y -+的最大值为_________.例7.在约束条件22240x y x y +++≤下,函数32z x y =+的最大值是___________.例8. 已知函数2()2(,)f x x ax b a b =++∈R ,且函数()y f x =在区间()0,1与()1,2内各有一个零点,则22(3)z a b =++的取值范围是( ).A.2⎫⎪⎪⎝⎭B.1,42⎛⎫ ⎪⎝⎭C.()1,2D.()1,4 例9. 奇函数()f x 在R 上是减函数,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,t s的取值范围是( ). A.1,14⎡⎫-⎪⎢⎣⎭ B.1,14⎡⎤-⎢⎥⎣⎦ C.1,12⎡⎫-⎪⎢⎣⎭ D.1,12⎡⎤-⎢⎥⎣⎦例10. 某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克 A 产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为(A )甲车间加工原料10箱,乙车间加工原料60箱(B )甲车间加工原料15箱,乙车间加工原料55箱(C )甲车间加工原料18箱,乙车间加工原料50箱(D )甲车间加工原料40箱,乙车间加工原料30箱【本课总结】线性规划是不等式和直线与方程的综合应用,是数形结合的和谐载体,也是高考中的重要考点,近几年的高考题中考查的频率较高,一般以考查基本知识和方法为主,属于基础类题,难度一般不高.1. 解决线性规划问题有一定的程序性:第一步:确定由二元一次不等式表示的平面区域;第二步:令z=0画直线0:0l ax by +=;第三步:平移直线0l 寻找使直线a z y x b b=-+截距取最值(最大或最小)的位置(最优解).第四步:将最优解坐标代入线性目标函数z ax by =+求出最值2. 解决线性规划问题要特别关注线性目标函数z ax by =+中b 的符号,若b >0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最大(小)值,若b <0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最小(大)值, b <0的情况是很多同学容易出现的盲点.3. 线性规划问题要重视数形结合思想的运用,善于将代数问题和几何问题相互转化,由线性规划问题引申的其它数形结合题目也要灵活掌握,如:将平面区域条件引申为:22240x y x y +++≤表示圆面等,将目标函数引申为:2224z x y x y =+++表示动点到定点的距离的最值问题;21y z x +=-表示动点与定点连线的斜率的最值问题等. 4. 线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则一般在区域顶点处取得最大或最小值5. 线性规划中易错点提示(1)忽视平面区域是否包括边界.一般最优解都处于平面区域的边界顶点处,若平面区域不包含边界,则可能不存在最值.(2)忽视对线性目标函数z ax by =+中b 的符号的区分.(3)代数问题向其几何意义的转化困难.【活学活用】1. [难度] 中若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-ay x y y x y x 0220表示的平面区域是一个三角形,则a 的取值范围是( ) A.4,3⎡⎫+∞⎪⎢⎣⎭ B.(]0,1 C.41,3⎡⎤⎢⎥⎣⎦ D.(]40,1,3⎡⎫+∞⎪⎢⎣⎭2. [难度] 中 设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A .4B .11C .12D .143. [难度] 中 已知变量x 、y 满足约束条件 20,1,70,x y y x x x y -+≤⎧⎪≥⎨⎪+-≤⎩则的取值范围是( ) A .9,65⎡⎤⎢⎥⎣⎦ B .9,5⎛⎤-∞ ⎥⎝⎦∪[)6,+∞ C .(],3-∞∪[)6,+∞ D .[3,6]。
简单的线性规划问题(第1课时)课件2
x+2y 8
x 2 y 8
4 4y x
16 12
x y
4 3
x 0
x
0
y 0
y 0
将上述不等式组表示成平面上的区域,图中的阴影部 分中的整点(坐标为整数)就代表所有可能的日生产安排。
若生产一件甲产品获利2万元,生产一件乙产品获 利3万元,采用那种生产安排利润最大?
0.06 0.06
174xx174
y y
6 6
x 0
x 0
y 0
y 0
目标函数为:z=28x+21y
作出二元一次不等式组所表示的平面区域,即可行域
把目标函数z=28x+21y 变形为 y 4 x z
它表示斜率为 4
3 28
3
随z变化的一组平行直
线系
6/7 y
z 28 是直线在y轴上 5/7 M
为它是关于变量x、y的一次解析式,又称线性目标函数。
在线性约束条件下求线性目标函数的最大值或最小值
问题,统称为线性规划问题。y
满足线性约可束行的域解 4 3
最优解
(x,y)叫做可行解。
由所有可可行行解解组成
的集合叫做可行域。
o
4
8x
使目标函数取得最大值或最小值的可行解叫
做这个问题的最优解。
三、例题
设工厂获得的利润为z,则z=2x+3y
把z=2x+3y变形为
y
y 2 x z
4
3
3
3
它表示斜率为
2 3
的
M
直线系,z与这条直线
的截距有关。
o
4
8x
如图可见,当直线经过可行域上的点M时,截距
最大,即z最大。
高中数学 必修5 26.简单的线性规划问题(一)
26.简单的线性规划问题(一)教学目标 班级______ 姓名____________1.了解线性规划的基本概念.2.掌握简单的线性规划问题的一般解法.教学过程一、线性规划的相关概念.1.线性规划的相关概念.(1)约束条件:关于变量x ,y 的不等式组.(2)线性约束条件:关于x ,y 的一次不等式组.(3)目标函数:要求最值的关于x ,y 的函数解析式.(4)线性目标函数:关于x ,y 的一次解析式.(5)可行解:满足线性约束条件的解),(y x . (6)可行域:由所有可行解组成的集合.(7)最优解:使目标函数取最值的可行解.(8)线性规划问题:在线性约束条件下求线性目标函数的最值问题.2.注意事项.(1)线性约束条件必须是关于x ,y 的二元一次不等式(或等式).(2)在线性约束条件下,最优解可能不唯一.(3)最优解一定是可行解,但可行解不一定是最优解.(4)线性规划问题不一定存在可行解.二、线性规划问题.1.用线性规划求最值的一般步骤:(1)画可行域;(2)分析几何意义;(3)找最优解,求最值.2.常用几何公式:(1)截距:直线b kx y +=(斜截式)与y 轴交点的纵坐标,即当0=x 时,y 的值b .(2)斜率:2121x x y y k --=,表示),(11y x ,),(22y x 两点连线的斜率. (3)两点间的距离:221221)()(y y x x d -+-=,表示),(11y x ,),(22y x 两点间的距离. (4)点到直线的距离:2200||B A C By Ax d +++=,点),(00y x 到直线0=++C By Ax 的距离.三、例题分析:1.用线性规划求最值.32≤+y x ,例1:设变量x ,y 的线性约束条件为 32≤+y x ,求分别目标函数y x z +=1, 0≥x ,0≥y .12+=x y z ,322223+-++=y x y x z 的最大值.02≥-+y x , 作业:若实数x ,y 满足 4≤x , 求x y S -=的最小值.5≤y ,。
3.3.2简单线性规划(1_2)--上课用
y-x=0
5
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
3、根据b的正负值判断向上向下 平移时Z的增减性, 1 O
1 A(2,-1)
5
x
y+1=0
B(-1,-1)
-1
x+y-1=0
x - y 0 1 、 画出x y - 1 0区域 y y 1 0
使 式中,的x、y满足约束条件:
3 z z y x , 为直线3x 5 y z 0 5 5 5 的纵截距
5 x 3 y 15 y x 1 x 5 y 3
5x+3y=15 y y=x+1
5
B(3/2,5/2)
1
X-5y=3 x
O
-1
1
5
A(-2,-1)
B.z=5x+3y D.z=3x+5y
答案:A
第31页
高考题练习:
x y≥2, 1.(2009 浙江)若实数x, y满足不等式组 2 x y≤4, x y≥0, 则2x 3y的最小值是 ________ .
答案:4
第32页
解析:作出可行域如下图. 作直线l:2x+3y=0,平移l,当l过点A(2,0)时,2x+3y有最小值4.
D.5
z=5×1+0=5.
答案:D
第34页
则z x 2y的最大值为
A.4 答案:B B.3 C.2
y≤1, 3.(2010 全国Ⅰ若变量 ) x、y满足约束条件 x y≥0, x y 2≤0,
高中数学 同步教学 简单的线性规划问题
x (1)
2
率的 2 倍,
因为 kQA= 7 ,kQB= 3 ,所以 z 的取值范围是[ 3 , 7 ].
48
42
方法技巧 与二元一次不等式(组)表示的平面区域有关的非线性目标函数 的最值问题的求解,一般要结合给定代数式的几何意义来完成.
常 见 代 数 式 的 几 何 意 义 :(1) x2 y2 表 示 点 (x,y) 与 原 点 (0,0) 的 距
4.给定下列命题:在线性规划中,
①最优解指的是使目标函数取得最大值的变量x或y的值;
②最优解指的是目标函数的最大值或最小值;
③最优解指的是使目标函数取得最大值或最小值的可行域;
④最优解指的是使目标函数取得最大值或最小值的可行解.
其中正确命题的序号是
.
解析:因为最优解是使目标函数取得最大值或最小值的可行解,即满足 线性约束条件的解(x,y),它是一个有序实数对,所以①②③均错,④正确. 故填④. 答案:④
变式探究:在本例的约束条件下,求z=x2+y2+2x的最大值与最小值.
解:z=x2+y2+2x=(x+1)2+y2-1 表示可行域内任意一点(x,y)与点 D(-1,0)距离的平方减去 1,
如图所示,过 D 作 AB 的垂线 DP,垂足为 P,所以|DP|= | 1 0 4 | = 5 = 5 2 ,
(2)简单线性规划问题的解法 在确定线性约束条件和线性目标函数的前提下,用图解法求最优解的步骤 可概括为“画、移、求、答”,即: ① 画 : 在 平 面 直 角 坐 标 系 中 , 画 出 可 行 域 和 直 线 ax+by=0( 目 标 函 数 为 z=ax+by); ②移:平行移动直线ax+by=0,确定使z=ax+by取得最大值或最小值的点; ③求:求出使z取得最大值或最小值的点的坐标(解方程组)及z的最大值或 最小值; ④答:给出正确答案.
简单的线性规划(一)
课题:简单的线性规划(一)教学目标:了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.2010年考试说明要求A 级。
知识点回顾:1. 二元一次不等式表示的平面区域:在平面直角坐标系中,设有直线0=++C By Ax (B 不为0)及点),(00y x P ,则(1)若B>0,000>++C By Ax ,则点P 在直线的_____,此时不等式0>++C By Ax 表示直线0=++C By Ax 的______的区域;(2)若B>0,000<++C By Ax ,则点P 在直线的______,此时不等式0<++C By Ax 表示直线0=++C By Ax 的_____的区域;(3) 若B<0, 我们都把Ax +By +C >0(或<0)中y 项的系数B 化为正值.2. 目标函数可转化为y 轴上截距的z=ax+by 最值问题。
课前训练:1. 设变量x ,y 满足约束条件3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数z=2x+3y 的最小值为2. 在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(α为常数)所表示的平面区域内的面积等于2,则a 的值为3. 已知点(,3)P a 在不等式组352504301x y x y x +-≤⎧⎪-+≤⎨⎪≥⎩所表区域内;则a 的范围是4.已知点(3,1)和(-4,6)在直线023=+-a y x 的两侧,则a 的取值范围是5.若⎪⎩⎪⎨⎧≥-≤+-≥035,4,1y x y x y 表示的平面区域的面积6.图中阴影部分表示的平面区域可用二元一次不等式组来表示为 .典型例题:若A 为不等式组0,0,2x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当实数a 从-2连续变化到1时,动直线x y a += 扫过A 中区域的面积为设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数z=ax+by (a>0,b>0)的最大值为12,则23a b+的最小值为课堂检测:1.已知点()2286,3424x y x y Q x y x y ⎧⎫⎧+<+⎪⎪∈⎨⎨⎬+>⎩⎪⎪⎩⎭,如果直线:20l ax y ++=经过点Q ,那么实数a 的取值范围是 .2. 已知在平面直角坐标系xOy 中,O(0,0), A(1,-2), B(1,1), C(2.-1),动点M(x,y) 满足条件⎩⎪⎨⎪⎧-2≤−→OM ·−→OA ≤21≤−→OM ·−→OB ≤2,则−→OM ·−→OC 的最大值为 。
3.3.2简单的线性规划问题(1).ppt1
y
o
x
1.课题导入
在现实生产、生活中,经常会遇到资源利用、人力调配、 生产安排等问题。 1、下面我们就来看有关与生产安排的一个问题:
某工厂用A、B两种配件生产甲、乙两种产品,每 生产一件甲产品使用4个A配件耗时1h,每生产一件乙 产品使用4个B配件耗时2h,该厂每天最多可从配件厂 获得16个A配件和12个B配件,按每天工作8h计算,该 厂所有可能的日生产安排是什么? 按甲、乙两种产品分别生产x、y件,由 已知条件可得二元一次不等式组
5 x+3 y 1 5 1 y x+ x-5 y 3
1.解:作出平面区域
y
A
o x C
y x x+y 1 y - 1
z=2x+y
B
作出直线y=-2x+z的 图像,可知z要求最大值, 即直线经过C点时。 求得C点坐标为(2,-1), 则Zmax=2x+y=3
把z=2x+3y变形为
由上图可以看出,当实现直线x=4与直线x+2y-8=0的交点M z 14 (4,2)时,截距的值最大 ,最大值为 , 3 3
这时 2x+3y=14. 所以,每天生产甲产品 4 件,乙产品 2 件时, 工厂可获得最大利润14万元。
二、基本概念
Hale Waihona Puke 一组关于变量x、y的一次不等式,称为线性约束 条件。 把求最大值或求最小值的的函数称为目标函数,因 为它是关于变量x、y的一次解析式,又称线性目标函数。 在线性约束条件下求线性目标函数的最大值或最小值 y 问题,统称为线性规划问题。 4 可行域 最优解 满足线性约束的解
3
(x,y)叫做可行解。 由所有可行解组成 可行解 的集合叫做可行域。
简单的线性规划(一)
课题:7.4 简单的线性规划(一)授课人:石家庄市第一中学孟庆善教材分析:本节课是在学生学习了直线与直线方程的关系,初步了解了二元一次方程的几何意义的基础上,引领学生进一步研究二元一次不等式的几何意义,为后面学习用图解法求二元函数最值问题创造条件.使学生体会数与形的转化过程,逐步加强学生应用几何图形解决代数问题的意识.基于以上分析,在教学中应充分利用多媒体课件向学生展示代数条件与几何图形的对应关系,加强学生对问题的了解,培养学生学习数学的兴趣.教学目标:1.使学生了解二元一次不等式表示平面区域;2. 掌握根据二元一次不等式(组)正确做出平面区域的方法,培养学生作图的能力.3.让学生通过观察、联想,体验数学的作用,培养学生学习数学的兴趣,培养学生勤于思考、勇于探索和团结协作的精神。
教学重点:二元一次不等式表示平面区域.教学难点:1.二元一次不等式表示平面区域;2.根据二元一次不等式(组)正确做出平面区域.教法分析:师生互动,探究、研讨、辨析、总结鉴于高二学生已具有较好的数学基础知识和较强的分析问题、解决问题的能力,本节课以学生为中心,以问题为载体,采用启发、引导、探索相结合的教学方法.首先设置“问题”情境,激发学生解决问题的欲望;其次提供观察、探索、交流的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取知识.恰当的利用多媒体课件辅助教学,直观生动地呈现学生思维的形成过程,从而提高教学效率.在教学过程中,注重学生的探索经历和发现新知的体验,使其形成自己对数学知识的理解和有效的学习策略.教学过程:小结:1.二元一次不等式表示平面区域;2.二元一次不等式(组)表示平面区域的作图方法.作业:1.阅读教材P63-P65;2.习题7.4 1.。
线性规划问题
线性规划问题线性规划是一种数学优化方法,用于解决线性约束下的最优化问题。
早在20世纪40年代,线性规划就被广泛应用于军事、经济、运输等领域。
随着计算机技术的发展,线性规划在实际问题中的应用变得更加广泛。
线性规划问题由目标函数、约束条件以及决策变量组成。
目标函数是我们要最小化或最大化的数值量,约束条件是问题的限制条件,决策变量是我们需要确定的变量。
线性规划的数学模型可以表示为:最小化(或最大化):C^T * X约束条件为:AX ≤ B, X ≥ 0其中,C是目标函数的系数向量,X是决策变量的向量,A是约束条件的系数矩阵,B是约束条件的右侧常数向量。
线性规划问题的求解方法主要有单纯形法和内点法。
单纯形法是一种迭代算法,通过不断移动基变量和非基变量来寻找最优解。
内点法则通过寻找内点来逼近最优解,相比于单纯形法,内点法在高维问题上更有优势。
线性规划问题的应用非常广泛。
例如,在生产计划中,我们需要考虑资源的有限性和生产过程中的约束条件,通过线性规划可以优化生产计划,使生产成本最低。
在供应链管理中,线性规划可用于优化货物的选择和运输方式,最大化利润。
在金融领域,线性规划可用于投资组合分配的优化,以达到风险最小化或收益最大化。
线性规划的应用也面临一些挑战。
首先,线性规划问题的求解可能非常耗时,特别是在高维情况下。
其次,线性规划的模型只适用于线性问题,无法处理非线性的问题。
最后,线性规划问题的结果可能依赖于输入参数的准确性,如果参数不准确,可能导致结果的偏差。
为了克服这些挑战,研究人员一直在不断改进线性规划算法。
一些改进包括使用启发式算法来加速求解过程,使用混合整数线性规划来处理离散决策变量,以及引入鲁棒线性规划来处理参数不确定性。
总之,线性规划是一种强大的数学工具,可以用于解决各种实际问题。
虽然线性规划问题存在一些挑战,但通过不断改进算法和方法,我们可以提高线性规划的求解效率和准确性,使其在实际应用中发挥更大的作用。
25-简单的线性规划问题(1)
3.3.2简单的线性规划问题(1)教材分析本节内容是在学习了不等式、直线方程的基础上,利用不等式和直线方程的有关知识展开的,它是对二元一次不等式的深化和再认识、再理解。
通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力.教学目标重点:会用图解法解决简单的线性规划问题;难点:准确求得线性规划问题的最优解;知识点:了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;能力点:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力,并培养学生运用数形结合思想解题的能力和化归的能力;教育点:让学生体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用,品尝学习数学的乐趣;自主探究点:分单元组探究利用图解法求线性目标函数的最优解;考试点:求得线性规划问题的最优解;易错点:找最优解;教法:启发式、单元组合作讨论式:通过问题激发学生求知欲,使学生主动参与活动,以独立思考和单元组交流的形式,在教师的指导下发现问题、分析问题和解决问题.教具准备:多媒体课件,投影仪.课堂模式:学案导学教学过程一、创设情景在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题,怎样达到省时、省力、高效是我们要研究的问题,下面我们就来看有关与生产安排的一个问题:引例:某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h 计算,该厂所有可能的日生产安排是什么?【设计意图】数学是现实世界的反映,通过学生关注的热点问题引入,激发学生的兴趣,引发学生的思考,培养学生从实际问题抽象出数学模型的能力。
二、探究新知学生活动单元组合作探讨,并选代表发言。
简单线性规划(1)
2012-12-26
练习1:
画出下列不等式表示的平面区域:
(1)2x+3y-6>0 (2)2x+5y≥10 (3)4x-3y≤12
Y Y Y
2
O
3
X
2
O
X
5
O
3 -4
Hale Waihona Puke X(1)(2)
(3)
例2:画出不等式组
Y
x y 5 0 x y 0 x 3
表示的平面区域
x+y=0
Y
3
O
2
3
X
2.由三直线x-y=0;x+2y-4=0及y+2=0所 围成的平面区域如下图:
则用不等式可表示为:
y x x 2 y 4 y 2
应该注意的几个问题:
1、若不等式中不含0,则边界应 画成虚线,否则应画成实线。 2、画图时应非常准确,否则将得 不到正确结果。 3、熟记“直线定界、特殊点定域” 方法的内涵。
第一节
二元一次不等式表示平面区域
提出问题—引入新课 解决问题—得出结论 典型例题分析与练习 课堂小结与课外作业
y
o
x
点 的集合{(x,y)|x-y+1=0}表示 什么图形? 点的集合{(x,y)|x-y+1>0} 表示什么图形?
想 一 想 ? 在平面直角坐标系中,
猜一猜:
(1)对直线L右下方的点(x,y), x-y+1>0 成立. (2)对直线L左上方的点(x,y), x+y-1<0 成立.
求不等式|x-2|+|y-2|≤2所表 示的平面区域的面积.
(3)注意所求区域是否包括边界直 线.
(完整版)简单的线性规划问题(附答案)
简单的线性规划问题[学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题.知识点一 线性规划中的基本概念知识点二 线性规划问题 1.目标函数的最值线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是zb ,当z 变化时,方程表示一组互相平行的直线.当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.知识点三 简单线性规划问题的实际应用 1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A 、B 、C 三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小? 2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一 求线性目标函数的最值例1 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,则z =3x +y 的最大值为( )A .12B .11C .3D .-1答案 B解析 首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y =-3x +z 经过点A 时,z 取得最大值.由⎩⎪⎨⎪⎧ y =2,x -y =1⇒⎩⎪⎨⎪⎧x =3,y =2,此时z =3x +y =11.跟踪训练1 (1)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一...,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.答案 (1)D (2)1解析 (1)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.(2)由题意,作出约束条件组成的可行域如图所示,当目标函数z =3x +y ,即y =-3x +z 过点(0,1)时z 取最小值1.题型二 非线性目标函数的最值问题例2 设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,求(1)x 2+y 2的最小值; (2)yx的最大值. 解 如图,画出不等式组表示的平面区域ABC ,(1)令u =x 2+y 2,其几何意义是可行域ABC 内任一点(x ,y )与原点的距离的平方.过原点向直线x +2y -4=0作垂线y =2x ,则垂足为⎩⎪⎨⎪⎧x +2y -4=0,y =2x 的解,即⎝⎛⎭⎫45,85, 又由⎩⎪⎨⎪⎧x +2y -4=0,2y -3=0,得C ⎝⎛⎭⎫1,32, 所以垂足在线段AC 的延长线上,故可行域内的点到原点的距离的最小值为|OC |= 1+⎝⎛⎭⎫322=132, 所以,x 2+y 2的最小值为134.(2)令v =yx ,其几何意义是可行域ABC 内任一点(x ,y )与原点相连的直线l 的斜率为v ,即v=y -0x -0.由图形可知,当直线l 经过可行域内点C 时,v 最大, 由(1)知C ⎝⎛⎭⎫1,32, 所以v max =32,所以y x 的最大值为32.跟踪训练2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1,则(x +3)2+y 2的最小值为________.答案 10解析 画出可行域(如图所示).(x +3)2+y 2即点A (-3,0)与可行域内点(x ,y )之间距离的平方.显然AC 长度最小,∴AC 2=(0+3)2+(1-0)2=10,即(x +3)2+y 2的最小值为10. 题型三 线性规划的实际应用例3 某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A ,B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少?解 设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,于是有⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,x ∈N ,y ∈N ,z =300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点(4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值, 最大值是z =300×4+400×4=2 800, 即该公司可获得的最大利润是2 800元.反思与感悟 线性规划解决实际问题的步骤:①分析并根据已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数(直线)求出最优解;⑥实际问题需要整数解时,应适当调整,以确定最优解.跟踪训练3 预算用2 000元购买单价为50元的桌子和20元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才行?解 设桌子、椅子分别买x 张、y 把,目标函数z =x +y , 把所给的条件表示成不等式组,即约束条件为⎩⎪⎨⎪⎧50x +20y ≤2 000,y ≥x ,y ≤1.5x ,x ≥0,x ∈N *,y ≥0,y ∈N *.由⎩⎪⎨⎪⎧50x +20y =2 000,y =x ,解得⎩⎨⎧x =2007,y =2007,所以A 点的坐标为⎝⎛⎭⎫2007,2007.由⎩⎪⎨⎪⎧50x +20y =2 000,y =1.5x ,解得⎩⎪⎨⎪⎧x =25,y =752,所以B 点的坐标为⎝⎛⎭⎫25,752. 所以满足条件的可行域是以A ⎝⎛⎭⎫2007,2007,B ⎝⎛⎭⎫25,752, O (0,0)为顶点的三角形区域(如图).由图形可知,目标函数z =x +y 在可行域内的最优解为B ⎝⎛⎭⎫25,752, 但注意到x ∈N *,y ∈N *,故取⎩⎪⎨⎪⎧x =25,y =37.故买桌子25张,椅子37把是最好的选择.1.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A .-1B .1 C.32D .22.某公司招收男职员x 名,女职员y 名,x 和y 需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,x ∈N *,y ∈N *,则z=10x +10y 的最大值是( ) A .80 B .85 C .90 D .953.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤1,x ≤1,x +y ≥1,则z =x 2+y 2的最小值为________.一、选择题1.若点(x, y )位于曲线y =|x |与y =2所围成的封闭区域, 则2x -y 的最小值为( ) A .-6 B .-2 C .0 D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为( )A .-4B .0 C.43 D .43.实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,y ≥0,x -y ≥0,则z =y -1x的取值范围是( )A .[-1,0]B .(-∞,0]C .[-1,+∞)D .[-1,1)4.若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )(整点是指横、纵坐标都是整数的点)恰有9个,则整数a 的值为( )A .-3B .-2C .-1D .05.已知x ,y 满足⎩⎪⎨⎪⎧x ≥1,x +y ≤4,x +by +c ≤0,目标函数z =2x +y 的最大值为7,最小值为1,则b ,c的值分别为( ) A .-1,4 B .-1,-3 C .-2,-1 D .-1,-26.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥5,x -y +5≥0,x ≤3,使z =x +ay (a >0)取得最小值的最优解有无数个,则a 的值为( )A .-3B .3C .-1D .1二、填空题7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≤2,y ≤2,x +y ≥2,则z =x +2y 的取值范围是________.8.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________(答案用区间表示).9.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为________.10.满足|x |+|y |≤2的点(x ,y )中整点(横纵坐标都是整数)有________个.11.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________.三、解答题12.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,目标函数z =2x -y ,求z 的最大值和最小值.13.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,求a 的取值范围.14.某家具厂有方木料90 m 3,五合板600 m 2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m 3,五合板2 m 2,生产每个书橱需要方木料0.2 m 3,五合板1 m 2,出售一张方桌可获利润80元,出售一个书橱可获利润120元. (1)如果只安排生产书桌,可获利润多少? (2)如果只安排生产书橱,可获利润多少? (3)怎样安排生产可使所得利润最大?当堂检测答案1.答案 B 解析 如图,当y =2x 经过且只经过x +y -3=0和x =m 的交点时,m 取到最大值,此时,即(m,2m )在直线x +y -3=0上,则m =1. 2.答案 C解析 该不等式组表示的平面区域为如图所示的阴影部分.由于x ,y ∈N *,计算区域内与⎝⎛⎭⎫112,92最近的点为(5,4),故当x =5,y =4时,z 取得最大值为90.3.答案 12解析实数x ,y 满足的可行域如图中阴影部分所示,则z 的最小值为原点到直线AB 的距离的平方, 故z min =⎝⎛⎭⎫122=12.课时精练答案一、选择题 1.答案 A解析 画出可行域,如图所示,解得A (-2,2),设z =2x -y ,把z =2x -y 变形为y =2x -z , 则直线经过点A 时z 取得最小值; 所以z min =2×(-2)-2=-6,故选A. 2.答案 D解析 作出可行域,如图所示.联立⎩⎪⎨⎪⎧ x +y -4=0,x -3y +4=0,解得⎩⎪⎨⎪⎧x =2,y =2.当目标函数z =3x -y 移到(2,2)时,z =3x -y 有最大值4. 3.答案 D解析 作出可行域,如图所示,y -1x的几何意义是点(x ,y )与点(0,1)连线l 的斜率,当直线l 过B (1,0)时k l 最小,最小为-1.又直线l 不能与直线x -y =0平行,∴k l <1.综上,k ∈[-1,1).4.答案 C 解析不等式组所表示的平面区域如图阴影部分所示,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0).当a =-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)5个整点.故选C. 5.答案 D解析 由题意知,直线x +by +c =0经过直线2x +y =7与直线x +y =4的交点,且经过直线2x +y =1和直线x =1的交点,即经过点(3,1)和点(1,-1),∴⎩⎪⎨⎪⎧ 3+b +c =0,1-b +c =0,解得⎩⎪⎨⎪⎧b =-1,c =-2.6.答案 D解析 如图,作出可行域,作直线l :x +ay =0,要使目标函数z =x +ay (a >0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x +y =5重合,故a =1,选D.二、填空题 7.答案 [2,6]解析 如图,作出可行域,作直线l :x +2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故z 的取值范围为[2,6].8.答案 [3,8] 解析 作出不等式组⎩⎪⎨⎪⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分所示.在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值z min =2×3-3×1=3; 当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值z max =2×1+3×2=8.所以z ∈[3,8]. 9.答案 4解析 由线性约束条件⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图中阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y ,得z 的最大值为4.10.答案 13解析 |x |+|y |≤2可化为 ⎩⎪⎨⎪⎧x +y ≤2 (x ≥0,y ≥0),x -y ≤2 (x ≥0,y <0),-x +y ≤2 (x <0,y ≥0),-x -y ≤2 (x <0,y <0),作出可行域为如图正方形内部(包括边界),容易得到整点个数为13个. 11.答案 21解析 作出可行域(如图),即△ABC 所围区域(包括边界),其顶点为A (1,3),B (7,9),C (3,1)方法一 ∵可行域内的点都在直线x +2y -4=0上方, ∴x +2y -4>0,则目标函数等价于z =x +2y -4,易得当直线z =x +2y -4在点B (7,9)处,目标函数取得最大值z max =21. 方法二 z =|x +2y -4|=|x +2y -4|5·5, 令P (x ,y )为可行域内一动点,定直线x +2y -4=0, 则z =5d ,其中d 为P (x ,y )到直线x +2y -4=0的距离. 由图可知,区域内的点B 与直线的距离最大, 故d 的最大值为|7+2×9-4|5=215.故目标函数z max =215·5=21. 三、解答题12.解 z =2x -y 可化为y =2x -z ,z 的几何意义是直线在y 轴上的截距的相反数,故当z 取得最大值和最小值时,应是直线在y 轴上分别取得最小和最大截距的时候.作一组与l 0:2x -y =0平行的直线系l ,经上下平移,可得:当l 移动到l 1,即经过点A (5,2)时,z max =2×5-2=8.当l 移动到l 2,即过点C (1,4.4)时,z min =2×1-4.4=-2.4.13.解 先画出可行域,如图所示,y =a x 必须过图中阴影部分或其边界.∵A (2,9),∴9=a 2,∴a =3. ∵a >1,∴1<a ≤3.14.解 由题意可画表格如下:(1)设只生产书桌x 张,可获得利润z 元, 则⎩⎪⎨⎪⎧0.1x ≤90,2x ≤600,z =80x ,x ≥0⇒⎩⎪⎨⎪⎧x ≤900,x ≤300,x ≥0⇒0≤x ≤300.所以当x =300时,z max =80×300=24 000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元. (2)设只生产书橱y 个,可获得利润z 元, 则⎩⎪⎨⎪⎧0.2y ≤90,1·y ≤600,z =120y ,y ≥0⇒⎩⎪⎨⎪⎧y ≤450,y ≤600,y ≥0⇒0≤y ≤450.所以当y =450时,z max =120×450=54 000(元),即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元. (3)设生产书桌x 张,书橱y 个,利润总额为z 元, 则⎩⎪⎨⎪⎧0.1x +0.2y ≤90,2x +y ≤600,x ≥0,y ≥0⇒⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0.z =80x +120y .在平面直角坐标系内作出上面不等式组所表示的平面区域,即可行域(如图).作直线l :80x +120y =0,即直线l :2x +3y =0.把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,此时z =80x +120y 取得最大值.由⎩⎪⎨⎪⎧x +2y =900,2x +y =600, 解得,点M 的坐标为(100,400). 所以当x =100,y =400时,z max =80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个,可使所得利润最大.。
简单的线性规划问题(一) 设计
“简单的线性规划”的设计说明
本节课是“简单的线性规划”第二课时,为实现本课时的教学目标,抓住重点,突破难点,在设计这堂课时,考虑了如下方面:
1.从实际出发,引出线性规划问题,在数学概念的引入过程中,教学的主要方式是在学生已经获得的感性认识的基础上,再给数学概念下定义。
本节课首先从创设一个实际问题情境出发,然后将一个实际问题抽象概括为一个数学问题,从而引出线性规划问题。
2.变方法的传授过程为问题的解决过程
本节课主要通过问题1说明线性规划的意义及有关概念,介绍了线性规划问题的图解法。
因此,问题的教学是本节的重点。
在讲解问题1 时,教师主要采用启发式教学方法引导学生在对问题的观察、联想、分析、化归的尝试过程中,紧紧抓住数形结合的思想方法,通过学生的积极参与及多媒体手段的运用,再达到使一个平淡的方法传授过程变为生动有趣的问题的解决过程的目的。
3.通过变式训练,促进知识的深化。
为使学生将所学的知识转化为技能,本节课的练习设计力求由浅入深,由易到难,同时又有利于教师及时反馈、及时调节,使学生对线性规划的知识在认识上得到深化、升华。
4.重视小结的“画龙点睛”作用。
课堂小结主要帮助学生对线性规划问题进行再认识,并将本节内容纳入原有知识体系,使其达到举一反三、灵活运用的目的。
简单线性规划(一)
简单的线性规划(一)教学设计一、教材分析本节课是在学习了直线方程和二元一次不等式表示平面区域的基础上,介绍直线方程的一个简单应用。
中学所学的线性规划只是规划论中极小的一部分,但这部分内容也能体现数学的工具性和应用性,为学生今后解决实际问题提供了一种重要的方法——数学建模法。
另外,简单的线性规划问题中的可行域,实际就是一个二元一次不等式表示的平面区域,因而解决简单线性规划问题是以二元一次不等式表示平面区域的知识为基础的,故本节课又有着承前启后的作用。
二、教法分析适宜采用启发式讲解、互动式讨论、研究式探索、反馈式评价等授课方式,充分发挥学生的主体地位,营造生动活泼的课堂教学氛围。
三、学法分析互相讨论、探索发现。
由于学生在尝试问题解决的过程中常会在新旧知识联系、策略选择、思想方法运用等方面遇到一定的困难,需要教师指导.作为学生活动的组织者、引导者、参与者,教师要帮助学生重温与问题解决有关的旧知,给予学生思考的时间和表达的机会,共同对(解题)过程进行反思等,在师生(生生)互动中,给予学生启发和鼓励,在心理上、认知上予以帮助.这样,在学法上确立的教法,能帮助学生更好地获得完整的认知结构,使学生思维、能力等得到和谐发展.四、学习目标分析知识与技能:1.了解线性规划的意义,以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念.2.掌握线性规划的图解法,并会用图解法求线性目标函数的最大值和最小值.3.能将实际问题转化为数学问题,从实际情景中抽象解决一些简单的线性规划应用问题的基本思路和主要方法.过程与方法:在学生独立探究和师生的双边活动中完成简单的线性规划的数学理论的构建,在实践中掌握求解简单的线性规划问题的方法--图解法.情感与态度:1.通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系.体会不等式(组)刻画不等关系的意义和价值.2.体会线性规划的基本思想,借助几何直观解决一些简单的线性规划问题.3.通过实例,体验数学与日常生活的联系,感受数学的使用价值.增强应用意识,提高实践能力.五、教学重、难点重点:用图解法求线性规划问题的最优解.难点:对用图解法求线性规划问题的最优解这一方法的理解和掌握.六、所需材料及资源1、多媒体课件2电脑,投影仪,直尺等七、教学过程:[情境导入] 某工厂生产甲、乙两种产品,生产1t 甲种产品需要A 种原料4t 、B 种原料12t ,产生的利润为2万元;生产1t 乙种产品需要A 种原料1t 、B 种原料9t ,产生的利润为1万元.现有库存A 种原料10t 、B 种原料60t ,如何安排生产才能使利润最大? [第一步]设分别生产甲、乙两种产品为xt 、yt 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3.2简单的线性规划问题(1)
教材分析
本节内容是在学习了不等式、直线方程的基础上,利用不等式和直线方程的有关知识展开的,它是对二元一次不等式的深化和再认识、再
理解。
通过这一部分的学习,使学生进一步了解数学在解决实际问题中
的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、
应用数学的意识和解决实际问题的能力.
点:会用图解法解决简单的线性规划问题;
准确求得线性规划问题的最优解;
知识点:了解线性规划的意义以及约束条件、目标函数、可行解、可行
域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决
一些简单的实际问题;
能力点:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力,并培养学生运用数形结合思想解题的能力和化归的能力;
教育点:让学生体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用,品尝学习数学的乐趣;
分单元组探究利用图解法求线性目标函数的最优解;
求得线性规划问题的最优解;
最优解;
教 法:启发式、单元组合作讨论式:通过问题激发学生求知欲,使学
生主动参与活动,以独立思考和单元组交流的形式,在教师的指导下发
现问题、分析问题和解决问题.
多媒体课件,投影仪.
学案导学
一、创设情景
在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题,怎样达到省时、省力、高效是我们要研究的问题,下面我们就来看有关与生产安排的一个问题:
引例:某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,该厂所有可能的日生产安排是什么?
【设计意图】数学是现实世界的反映,通过学生关注的热点问题引入,激发学生的兴趣,引发学生的思考,培养学生从实际问题抽象出数学模型的能力。
二、探究新知
学生活动 单元组合作探讨,并选代表发言。
(1)用不等式组表示问题中的限制条件:
设甲、乙两种产品分别生产x、y件,又已知条件可得二元一次不等式组:
. (1)
(2)画出不等式组所表示的平面区域:
如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。
教师提出新问题:
进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?
学生活动:
设生产甲产品x件,乙产品y件时,工厂获得的利润为z,则,这样上述问题就转化为:当x,y满足不等式(1)并且为非负整数时,z的最大值是多少?
把变形为,这是斜率为,在y轴上的截距为的直线。
当z变化时,可以得到一族互相平行的直线,如图,由于这些直线的斜率是确定的,因此只要给定一个点,(例如(1,2)),就能确定一条直线(),这说明,截距可以由平面内的一个点的坐标唯一确定。
可以看到,直线与不等式组(1)的区域的交点满足不等式组(1),而且当截距最大时,z 取得最大值。
因此,问题可以转化为当直线与不等式组(1)确定的平面区域有公共点时,在区域内找一个点P,使直线经过点P时截距最大.得出结论:
由上图可以看出,当实现经过直线与直线的交点M(4,2)时,截距的值最大,最大值为,这时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元.
【设计意图】数学教学的核心是学生的再创造,让学生自主探究,体验数学知识的发生、发展的过程,体验转化和数形结合的思想方法,从而使学生更好地理解数学概念和方法,突出了重点,化解了难点。
给出线性规划的有关概念:
①线性约束条件:在上述问题中,不等式组是一组变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,故又称线性约束条件.
②线性目标函数:
关于x、y的一次式z=2x+y是欲达到最大值或最小值所涉及的变量
x、y的解析式,叫线性目标函数.
③线性规划问题:
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.
④可行解、可行域和最优解:
满足线性约束条件的解(x,y)叫可行解.
由所有可行解组成的集合叫做可行域.
使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.三、理解新知(变换条件,加深理解)
学生活动:探究课本第88页的探究活动
(1)在上述问题中,如果生产一件甲产品获利3万元,每生产一件乙产品获利2万元,有应当如何安排生产才能获得最大利润?在换几组数据试试。
(2)由上述过程,你能得出最优解与可行域之间的关系吗?
反思过程,提炼方法
解线性规划问题的基本步骤:
(1)设列(列线性约束条件和目标函数);
(2)画可行域——画出线性约束条件所确定的平面区域;
(3)过原点作目标函数直线的平行直线;
(4)平移直线,观察确定可行域内最优解的位置;
(5)求最值——解有关方程组求出最优解,将最优解代入目标函数求最值。
简记为设列——画——作——移——求五步。
【设计意图】强化学生解题思路,规范解题步骤。
四、应用新知
1、典例分析
例5:营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪,1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1kg食物B含有
0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元。
为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?
解:设每天食用
(1),目标函数为
二元一次不等式组(1)等价于(2)
做出二元一次不等式组(2)所表示的平面区域,即可行域
考虑考虑,将它变形为 ,这是斜率为 、随z变化的一族平行直线. 是直线在y轴上的截距,当取得最小值时,z的值最小.当然直线与可行域相交,即在满足约束条件时目标函数取得最小值.
由图可见,当直线经过可行域上的点M时,截距最小,即z最小.
解方程组 得点M( , ),因此,当 , 时,取最小值,最小值为16.
由此可知每天食用食物A约143克,食物B约571克,能够满足日常饮食要求,又使花费最低,最低成本为16元.
【设计意图】要完成一项确定的任务,如何统筹安排,尽量做到用最少的资源去完成它,这是线性规划中最常见的问题之一.
补例:
求的最大值和最小值,使满足约束条件
【设计意图】本题中的纵截距的取最大值时z不是取最大值而是取最小值,这样使学生产生思想上的知识的冲突,从而进一步认识到目标函数直线的纵截距与z的最值之间的关系.
2随堂练习
请同学们结合课本P91练习1来掌握图解法解决简单的线性规划问题.(1)求的最大值,使式中的满足
约束条件
(2)求的最大值和最小值,使式中的满足约束条件
【设计意图】及时检验学生利用图解法解线性规划问题的情况.
五:课堂小结(单元组交流整理,再选出代表发言,其他小组有不同见解可给与补充。
)
用图解法解决简单的线性规划问题的基本步骤:
(1)找出线性约束条件,确定线性目标函数;
(2)由二元一次不等式表示的平面区域做出可行域;
(3)在可行域内求目标函数的最优解
六、布置作业
必做题:课本习题第3、4题
思考题:把例5中变量的范围改为,求z的最小值。
【设计意图】对例5的变形为下一课时解决实际问题中的最优解是整数解的教学埋下伏笔。
七、教后反思
由于上节课学习了怎样列不等式组和画不等式组表示的平面区域,所以对本节开始的引例学生很快得出结果,但对于引例求最值时,我通过在下面了解单元组的讨论情况,好学生都能通过预习了解去求,部分成绩弱的还是不太了解,所以为了强化学生的解题思路,在给出相关定义后我让学生结合引例总结解决线性规划问题的一半步骤,让接受慢的学生按部就班去解决线性规划问题,从后面例题和练习的处理,感觉效果还是很明显的。
还有为了让学生不会有求z最大值就是求截距最大值错误思想,我特意选了补例,让学生深入理解求目标函数的灵活性。
另一方面通过学生的单元组合作交流,学生都能参与进去,能充分调动学生的学习积极性,以后还会多多利用。
八、板书设计
引例§3.3.2 简单的线性
规划问题
1、相关概念
2、 解决线性规划问
题一般步骤例5补例
练习(1)、
(2)。