3.3.2简单的线性规划问题教案
高二数学人教A版必修5教学教案3-3-2简单的线性规划问题(7)
《简单的线性规划问题》教学设计一、教学内容解析线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,是辅助人们进行科学管理的数学方法,为合理地利用有限的人力、物力、财力等资源作出最优决策。
本节的教学重点是线性规划问题的图解法。
数形结合和化归思想是研究线性约束条件下求线性目标函数的最值问题的数学理论和方法,本节课重点体现了这一数学思想,将目标函数与直线的截距、斜率、两点距离联系起来,这样就能使学生对数形结合思想的理解和应用更透彻,为以后解析几何的学习和研究奠定了基础,使学生从更深层次地理解“以形助数”的作用。
二、教学目标设置(1)知识与技能:使学生了解线性规划的意义,利用数形结合及化归的数学方法,理解并掌握非线性目标函数及非线性约束条件下目标函数的最值求法;(2)过程与方法:在实验探究的过程中,培养学生的数据分析能力、探究能力、合情推理能力;在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力;(3)情态、态度与价值观:激发学生动手操作、勇于探索的精神,培养学生发现问题、分析问题及解决问题的能力,体会数学活动充满着探索与创造。
三、教学重点难点教学重点:求非线性目标函数的最值;教学难点:能将代数问题转化为斜率或距离等几何问题;四、学情分析本节课学生在学习了简单线性规划问题的基础上,会画出平面区域,并且会计算简单线性目标函数的最值。
从数学知识上看,学生在此基础上还学习过直线的斜率,两点距离问题,直线与圆的位置关系,具备本节课所需知识要素。
从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这成了学生学习的困难。
五、教学方法本课以例题为载体,以学生为主体,以数学实验为手段,以问题解决为目的,激发学生动手操作、观察思考、猜想探究的兴趣。
注重引导帮助学生充分体验“从具体到一般”的抽象过程。
应用“数形结合”的思想方法,培养学生学会分析问题,解决问题的能力。
六、教学过程。
2019-2020年高中数学必修五教案:3-3-2简单的线性规划问题
2019-2020年高中数学必修五教案: 3-3-2 简单的线性规划问题简单的线性规划问题一、教学背景1.本节课是《普通高中课程标准实验教科书数学》人教A 版必修5第三章《不等式》中3.3.2《简单的线性规划问题》的第一课时。
主要内容是线性规划的相关概念和简单的线性规划问题的解法。
2.本节课的教学对象是河北省秦皇岛市抚宁区第一中学高一文班学生。
二、教学目标 (一)知识与技能1. 了解约束条件、目标函数、可行解、可行域、最优解等基本概念。
2. 会用图解法解决简单线性规划问题,即求目标函数的最大值或最小值。
(二)过程与方法在线性规划问题的探究过程中,引导学生通过观察、分析、操作、归纳、概括的基本环节,达到知识的建构。
增强学生的观察、联想、细心作图的能力,把握化归思想和数形结合两大数学思想。
注重培养学生积极主动、勇于探索的学习方式,整节课着重创造师生互动、生生互动的良好学习环境,学生在老师的引导下亲身经历动手实践、动脑思考等方法探究线性规划的简单问题获取直接结题经验。
(三)情感态度与价值观学习中渗透函数、数形结合、化归等重要数学思想,培养学生“数形结合”的应用数学的意识,激发学生的学习兴趣。
结合本节教学内容,让学生成为课堂活动的主导,体验探究学习、合作学习的乐趣,并从中获得成功的体验,增强学生学习数学知识的自信心。
培养实事求是、理论与实际相结合的科学态度和科学道德。
三、教学重点和难点教学重点:图解法解线性规划问题。
教学难点:准确求得线性规划问题的最优解。
四、教学过程 (一)复习回顾在同一坐标系上作出下列直线:xy 2-=;12+-=x y ;32--=x y ;42+-=x y ;72+-=x y 。
投影展示学生的画图作业,引导学生观察5条直线的特征:平行。
得出结论:形如)0(2¹+-=t t x y 的直线与x y 2-=平行。
直线b kx y +=中的b 叫做纵截距:直线与y 轴交点的纵坐标。
《3.3.2简单的线性规划问题(二)》教学设计
《3.3.2简单的线性规划问题(二)》教学设计一.教学目标1. 从实际情境中抽象出一些简单的二元线性规划问题,并加以解决;2. 体会线性规划的基本思想,借助几何直观解决一些简单的线性规划问题.二.教学重点:利用图解法求得线性规划问题的最优解三.教学难点:把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际四.新课讲3、四.课程讲解课本第91页的“阅读与思考”——错在哪里?()().y 2x 24 y -x 216y x 4x 的取值范围试求,,满足不等式:、引例:若实数+⎩⎨⎧≤≤≤+≤y例1.1x 3- 4y -x 255y 3x y 2x z 1的最大值和最小值试求件:,式中变量满足下列条:设练习z ⎪⎩⎪⎨⎧≥≤≤++=.,106z 11的最大值和最小值求改为:中:将练习变式z y x z +=.,2z 12的最大值和最小值求改为:中:将练习变式z y x z -=z 的几何意义是什么?(-2)-(-1)-x y z z =可以化为.1-,2-,.1-,2-,和最小值)的直线斜率的最大值(与)求过可行域内点(的最大值和最小值,即求)构成的直线的斜率()与点(几何意义是可行域内的M y x z M y x.,z 14的最大值和最小值求改为:中:将练习变式z x y z = .,21z 13的最大值和最小值求改为:中:将练习变式z x y z ++=.,z 1522的最大值和最小值求改为:中:将练习变式z y x z +=z 的几何意义是什么? .0,0O ,.00O ,和最小值)距离的平方的最大值(到圆心)求过可行域内点(的最大值和最小值,即求)的距离的平方,()到圆心看成为可行域上的点(把y x z y x z()().,12z 1622的最大值和最小值求改为:中:将练习变式z y x z +++=五.课堂小结1.概念小结: 线性目标函数的最大值、最小值一般在可行域的顶点处取得.线性目标函数的最大值、最小值也可能在可行域的边界上取得,即满足条件的最优解有无数多个2.方法线性规划问题图解法的思路,解题步骤及注意事项(画图要准确). 课本习题中出现的都是“截距型”目标函数z ax by =+(a b ,不同时为零),即线性目标函数,高考中除了出现“截距型”目标函数的情况外,还有非线性目标函数:(1)“斜率型”目标函数y b z x a-=-(a b ,为常数).最优解为点(a b ,)与可行域上的点的斜率的最值;(2)“两点间距离型”目标函数22()()z x a y b =-+-(a b ,为常数).最优解为点(a b ,)与可行域上的点之间的距离的平方的最值;(3)“点到直线距离型”目标函数z ax by c =++(a b c ,,为常数,且a b ,不同时为零).最优解为可行域上的点到直线0ax by c ++=的距离的最值.六.课后练习1.随堂优化P54 1-32. 课时作业p91。
《简单的线性规划问题》教案
《简单的线性规划问题》教学设计(人教A版高中课标教材数学必修5第三章第3.3.2节)祁东二中谭雪峰一、内容与内容解析本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中第3.3.2《简单的线性规划问题》的第一课时. 本课内容是线性规划的相关概念和简单的线性规划问题的解法.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.本节内容是在学习了不等式和直线方程的基础上,利用不等式和直线方程的有关知识展开的.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力.二、教学目标一)、知识目标1.了解线性规划的意义、了解线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念.2.理解线性规划问题的图解法3. 会用图解法求线性目标函数的最优解.二)、能力目标1.在应用图解法解题的过程中培养学生的观察能力、理解能力.2.在变式训练的过程中,培养学生的分析能力、探索能力.3.培养学生观察、联想、作图和理解实际问题的能力,渗透化归、数形结合的数学思想.三)、情感目标1.让学生体验数学来源于生活,服务于生活,品尝学习数学的乐趣.2.让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神.三、教学重点、难点重点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解.难点:借助线性目标函数的几何含义准确理解线性目标函数在y 轴上的截距与z最值之间的关系.四、学习者特征分析1. 已经掌握用平面区域表示二元一次不等式(组)2. 初步学会分析简单的实际应用问题3. 能根据实际数据假设变量,并从中抽象出不等的线性约束条件并用相应的平面区域进行表示本节课学生在学习过程中可能遇到以下疑虑和困难:1.将实际问题抽象成线性规划问题;2.用图解法解线性规划问题中,为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题?如何想到要这样转化?3.数形结合思想的深入理解.五、教学与学法分析本节课以学生为中心,以问题为载体,采用启发、引导、探索相结合的教学方法.课堂中应注重创设师生互动、生生互动的和谐氛围,通过学生动手实践、动脑思考等方法探究数学知识获取直接经验,进而培养学生的思维能力和应用意识等.1.设置“问题”情境,激发学生解决问题的欲望;2.提供“观察、探索、交流”的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取直接经验.3.在教学中体现“重过程、重情感、重生活”的理念;让学生经历“学数学、做数学、用数学”的过程.指导学生做到“四会”:会疑、会议、会思、会变.4.在教学中重视学生的探索经历和发现新知的体验,使学生形成自己对数学知识的理解和有效的学习策略.六、文本教学与信息技术整合点分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,调动学生的学习兴趣,利用多媒体辅助教学,借助信息技术工具,以“几何画板”软件为平台,将目标函数与直线方程进行转化,通过直线的平行移动的演示,观察纵坐标的变化,直观生动地呈现图解法求最优解的过程,既加大课堂信息量,提高教学效率,同时让学生学会用“数形结合”思想方法建立起代数问题和几何问题间的密切联系.七、教学过程分析数学教学是数学活动的教学,我将整个教学过程分为五个环节:1.复习回顾:[幻灯片第2-4张]1)提问:如何作二元一次不等式表示的平面区域?直线定界;特殊点定域.2)巩固练习:画出下面不等式组所表示的平面区域.【设计意图】复习旧知,为本课的图解法解题热身准备. 2. 分析引例,形成概念,规范解答在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题……1) 将实际生活问题转化为数学问题(数学建模) [幻灯片第5-8张]教师组织学生学习引例.[引例]:某工厂有A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h ,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天8h 计算,该厂所有可能的日生产安排是什么?师生活动:通过教师引导,让学生正确理解题意,用不等式组表示问题中的5003x y x y x -+⎧⎪+⎨⎪⎩≥≥≤限制条件及作出相应的平面区域,将实际问题转化为数学问题.(1)、教师提问:同学们,你们能用不等式组表示问题中的限制条件吗?引导学生设定未知数(设甲、乙两种产品分别生产x 、y 件), 分析已知条件得到二元一次方程组:(2)、让学生画出不等式组所表示的平面区域.【设计意图】数学是现实世界的反映.通过引入学生感兴趣的实际生活问题,激发学生兴趣,使学生产生急于解决问题的内驱力,引发了学生的思考,同时师生之间通过互动复习旧知,培养学生从实际问题抽象出数学模型的能力.(3)、教师进一步提出新问题:若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?引导学生若设定工厂获得的利润为z ,则易得z = 2x + 3y ,此时问题转化为即求z 的最大值的问题了.【设计意图】添加优化问题,定义目标函数,引出新问题.2)分析问题,形成概念[幻灯片第9-17张]师生活动:教师根据引题得出线性规划问题相关概念.(1)、就在学生兴趣顿起的时候,教师就此给出了相关概念:① 上述问题中,不等式组是一组对变量 x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,所以又叫线性约束条件. 线性约束条件除了用一次不等式表示外,有时也用一次方程表示.② 欲求最大值或最小值的函数z=2x+3y 叫做目标函数. 由于 z=2x+y 又是x 、y 的一次解析式,所以又叫线性目标函数.③ 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.④ 满足线性约束条件的解(x,y)叫做可行解.2841641200x y x y x y +≤⎧⎪≤⎪⎪≤⎨⎪≥⎪≥⎪⎩⑤ 由所有可行解组成的集合叫做可行域.⑥ 使目标函数取得最大值或最小值的可行解,它们都叫做这个问题的最优解.(2)、 引导学生理解,引题的问题就是一个线性规划问题. 图中阴影部分(即可行域)的整点(坐标为整数的点)就代表所有可能的日生产安排. 于是问题就转化为当点(x,y )在可行域运动时如何求z=2x+3y 的最大值问题.3)探究交流,解决问题[幻灯片第18-20张](1)、教师提问:如何求z=2x+3y 的最大值问题?先让学生自主探究,再分组讨论交流,然后试着这样引导学生:由于已经将x ,y 所满足的条件几何化了,你能否将式子z=2x+3y 作某种几何解释?学生自然地想到它在几何上表示直线2x+3y-z=0. 当z 取不同的值时可得到一族平行直线.于是问题又转化为当这族直线与可行域有公共交点时,如何求z=2x+3y 的最大值.(2)、这一问题对于部分学生仍有一定难度,教师再次提问:在直线2x+3y-z=0中,z 是否与这直线的某种几何意义有关?学生讨论交流后得出:将直线2x+3y-z=0改写成斜截式233z y x =-+,学生此时会明白直线2,33z y x =-+它表示为斜率为2,3k =-截距3z b =的直线,当z 变化时,可以得到一组互相平行的直线,而且当截距3z 最大时,z 取最大值. 于是问题又转化为当2x+3y-z=0这族直线与可行域有公共交点时,在可行域内找一个点,使直线经过此点时在y 轴上的截距最大. 接着让学生动手实践,用作图法找到点E 并求出点E 的坐标(4,2),而求出z 的最大值为14,所以每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元 .师生活动:教师引发学生思考变形目标函数,将z=2x+3y 化成233z y x =-+的形式,挖掘几何含义,作过原点直线23y x =-并进行平移,观察纵截距的最大值,教师利用多媒体辅助教学工具作动态演示平移确定最值,并有意强调解题步骤:画、作、移、求.【设计意图】:让学生自主探究,体验数学知识的发生、发展过程,体验转化和数形结合的思想方法,通过目标函数的不同变式,让学生熟悉求最值的方法,从而让学生更好地理解数学概念和方法,突出了重点,化解了难点.3.反思过程,提练方法[幻灯片第21张]教师引导学生归纳、提炼求解步骤:第一步:画——根据约束条件画出可行域;第二步:作——过原点作目标函数直线的平行直线0l ;第三步: 移——平移直线0l 找出与可行域有公共点且纵截距最大或最小的直线,确定可行域内最优解的位置;第四步:求——解有关方程组求出最优解,将最优解代入目标函数求最值.4.模仿练习,强化方法,拓展题型[幻灯片第22-26张]为了更好地理解图解法解线性规划问题的内在规律,同时让学生掌握解决简单线性规划问题的基本步骤,让学生做下面这个练习:练习(教材例5)、营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg 的蛋白质,0.06kg 的脂肪,1kg 食物A 含有0.105kg 碳水化合物,0.07kg 蛋白质,0.14kg 脂肪,花费28元;而1食物B 含有0.105kg 碳水化合物,0.14kg 蛋白质,0.07kg 脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 多少kg ?师生活动:教师引领学生理解题意,让学生领会用表格形式描述数据的直观性.让学生独立建立线性规划的数学模型,并正确设出变量,找好目标函数及约束条件后自行完成此题. 由一位同学生展示自己的解题过程和结果. 教师规范解题步骤和格式.1.分析:将已知数据列成表格解:设每天食用x (kg )食物A ,y (kg )食物B ,总成本为z ,那么 0.1050.1050.075,0.070.140.06,0.140.070.06,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩①目标函数为2821z x y =+.二元一次不等式组①等价于775,7146,1476,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩ ②二元一次不等式组所表示的平面区域(图1),即可行域.考虑2821z x y =+,将它变形为4321z y x =-+.这里4321z y x =-+是斜率为43-,随z 变化的一组平行直线,21z 是直线在y 轴上的截距,当21z 取最小值时,z 的值最小.当然直线要与可行域相交,即在满足约束条件时目标函数2821z x y =+取得最小值.由图1可见,当直线2821z x y =+经过可行域上的点M 时,截距21z 最小,即z 最小. 解方程组775,147 6.x y x y +=⎧⎨+=⎩ 得M 的坐标为17x =,47y =. 所以282116z x y =+=.答:每天食用食物A 为17kg ,食物B 为47kg ,能够满足日常饮食要求,又使花费最低,最低成本为16元.【设计意图】1). 通过一道完整的简单线性规划问题,让学生掌握解决简单线性规划问题的基本步骤,培养学生的数学建模意识.同时进一步加深对图解法的认识.2).通过此题检测学生对已学知识的掌握情况,进一步培养学生的运算能力和准确作图的能力.3).展现线性规划的另一类型题(可行域不封闭、最优解为最小值),并与引例相比较,对比可行域封闭与不封闭、最优解为最大值与最小值两种情况的线性规划问题.师生活动:由教师帮助学生分析错解的原因,并提出问题.学生意识到可以把所有可能的解都求出来,进行比较即可.师生一起反思练习的求解过程.教师通过巡视发现错解的学生,帮助学生找到错误的原因.并提出问题:有时若由于不可避免的误差带来错解,你如何解决?【设计意图】通过反思及寻求问题答案,让学生深入思考,培养学生科学严谨的学习态度和解决问题的能力.5.变式演练,深入探究,开阔视野[幻灯片第27张]师生活动:让学生自己动手解决问题,教师可用几何画板演示。
3.3.2简单线性规划(1_2)--上课用
y-x=0
5
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
3、根据b的正负值判断向上向下 平移时Z的增减性, 1 O
1 A(2,-1)
5
x
y+1=0
B(-1,-1)
-1
x+y-1=0
x - y 0 1 、 画出x y - 1 0区域 y y 1 0
使 式中,的x、y满足约束条件:
3 z z y x , 为直线3x 5 y z 0 5 5 5 的纵截距
5 x 3 y 15 y x 1 x 5 y 3
5x+3y=15 y y=x+1
5
B(3/2,5/2)
1
X-5y=3 x
O
-1
1
5
A(-2,-1)
B.z=5x+3y D.z=3x+5y
答案:A
第31页
高考题练习:
x y≥2, 1.(2009 浙江)若实数x, y满足不等式组 2 x y≤4, x y≥0, 则2x 3y的最小值是 ________ .
答案:4
第32页
解析:作出可行域如下图. 作直线l:2x+3y=0,平移l,当l过点A(2,0)时,2x+3y有最小值4.
D.5
z=5×1+0=5.
答案:D
第34页
则z x 2y的最大值为
A.4 答案:B B.3 C.2
y≤1, 3.(2010 全国Ⅰ若变量 ) x、y满足约束条件 x y≥0, x y 2≤0,
高中数学 同步教学 简单的线性规划问题
x (1)
2
率的 2 倍,
因为 kQA= 7 ,kQB= 3 ,所以 z 的取值范围是[ 3 , 7 ].
48
42
方法技巧 与二元一次不等式(组)表示的平面区域有关的非线性目标函数 的最值问题的求解,一般要结合给定代数式的几何意义来完成.
常 见 代 数 式 的 几 何 意 义 :(1) x2 y2 表 示 点 (x,y) 与 原 点 (0,0) 的 距
4.给定下列命题:在线性规划中,
①最优解指的是使目标函数取得最大值的变量x或y的值;
②最优解指的是目标函数的最大值或最小值;
③最优解指的是使目标函数取得最大值或最小值的可行域;
④最优解指的是使目标函数取得最大值或最小值的可行解.
其中正确命题的序号是
.
解析:因为最优解是使目标函数取得最大值或最小值的可行解,即满足 线性约束条件的解(x,y),它是一个有序实数对,所以①②③均错,④正确. 故填④. 答案:④
变式探究:在本例的约束条件下,求z=x2+y2+2x的最大值与最小值.
解:z=x2+y2+2x=(x+1)2+y2-1 表示可行域内任意一点(x,y)与点 D(-1,0)距离的平方减去 1,
如图所示,过 D 作 AB 的垂线 DP,垂足为 P,所以|DP|= | 1 0 4 | = 5 = 5 2 ,
(2)简单线性规划问题的解法 在确定线性约束条件和线性目标函数的前提下,用图解法求最优解的步骤 可概括为“画、移、求、答”,即: ① 画 : 在 平 面 直 角 坐 标 系 中 , 画 出 可 行 域 和 直 线 ax+by=0( 目 标 函 数 为 z=ax+by); ②移:平行移动直线ax+by=0,确定使z=ax+by取得最大值或最小值的点; ③求:求出使z取得最大值或最小值的点的坐标(解方程组)及z的最大值或 最小值; ④答:给出正确答案.
高中数学 (3.3.2 简单线性规划问题)示范教案 新人教A版必修5
3.3.2 简单线性规划问题从容说课本节课先由师生共同分析日常生活中的实际问题来引出简单线性规划问题的一些基本概念,由二元一次不等式组的解集可以表示为直角坐标平面上的区域引出问题:在直角坐标系内,如何用二元一次不等式(组)的解集来解决直角坐标平面上的区域求解问题?再从一个具体的二元一次不等式(组)入手,来研究一元二次不等式表示的区域及确定的方法,作出其平面区域,并通过直线方程的知识得出最值.通过具体例题的分析和求解,在这些例题中设置思考项,让学生探究,层层铺设,以便让学生更深刻地理解一元二次不等式表示的区域的概念,有利于二元一次不等式(组)与平面区域的知识的巩固.“简单的线性规划”是在学生学习了直线方程的基础上,介绍直线方程的一个简单应用,这是《新大纲》对数学知识应用的重视.线性规划是利用数学为工具,来研究一定的人、财、物、时、空等资源在一定条件下,如何精打细算巧安排,用最少的资源,取得最大的经济效益.它是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,并能解决科学研究、工程设计、经营管理等许多方面的实际问题.中学所学的线性规划只是规划论中的极小一部分,但这部分内容体现了数学的工具性、应用性,同时也渗透了化归、数形结合的数学思想,为学生今后解决实际问题提供了一种重要的解题方法——数学建模法.通过这部分内容的学习,可使学生进一步了解数学在解决实际问题中的应用,培养学生学习数学的兴趣和应用数学的意识和解决实际问题的能力.依据课程标准及教材分析,二元一次不等式表示平面区域以及线性规划的有关概念比较抽象,按学生现有的知识和认知水平难以透彻理解,再加上学生对代数问题等价转化为几何问题以及数学建模方法解决实际问题有一个学习消化的过程,故本节知识内容定为了解层次.本节内容渗透了多种数学思想,是向学生进行数学思想方法教学的好教材,也是培养学生观察、作图等能力的好教材.本节内容与实际问题联系紧密,有利于培养学生学习数学的兴趣和“用数学”的意识以及解决实际问题的能力.教学重点重点是二元一次不等式(组)表示平面的区域.教学难点难点是把实际问题转化为线性规划问题,并给出解答.解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解.为突出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法将实际问题数学化、代数问题几何化.课时安排3课时三维目标一、知识与技能1.掌握线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;2.运用线性规划问题的图解法,并能应用它解决一些简单的实际问题.二、过程与方法1.培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新.三、情感态度与价值观1.通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,培养学生观察、联想、猜测、归纳等数学能力;2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.教学过程 第1课时导入新课师 前面我们学习了二元一次不等式A x+B y+C >0在平面直角坐标系中的平面区域的确定方法,请同学们回忆一下. (生回答) 推进新课[合作探究]师 在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题.例如,某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 产品耗时1小时,每生产一件乙产品使用4个B 产品耗时2小时,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么?设甲、乙两种产品分别生产x 、y 件,应如何列式?生 由已知条件可得二元一次不等式组:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤≤≤+.0,0,124,164,82y x y x y x师 如何将上述不等式组表示成平面上的区域?生 (板演)师 对照课本98页图3.39,图中阴影部分中的整点(坐标为整数的点)就代表所有可能的日生产安排,即当点P (x,y )在上述平面区域中时,所安排的生产任务x 、y 才有意义. 进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?设生产甲产品x 件,乙产品y 件时,工厂获得利润为z ,则如何表示它们的关系? 生 则z=2x+3y.师 这样,上述问题就转化为:当x 、y 满足上述不等式组并且为非负整数时,z 的最大值是多少?[教师精讲]师 把z=2x+3y 变形为z x y 3132+-=,这是斜率为32-,在y 轴上的截距为31z 的直线.当z变化时可以得到什么样的图形?在上图中表示出来.生 当z 变化时可以得到一组互相平行的直线.(板演)师 由于这些直线的斜率是确定的,因此只要给定一个点〔例如(1,2)〕,就能确定一条直线z x y 3132+-=,这说明,截距z[]3可以由平面内的一个点的坐标唯一确定.可以看到直线z x y 3132+-=与表示不等式组的区域的交点坐标满足不等式组,而且当截距3z最大时,z 取最大值,因此,问题转化为当直线z x y 3132+-=与不等式组确定的区域有公共点时,可以在区域内找一个点P ,使直线经过P 时截距3z最大. 由图可以看出,当直线z x y 3132+-=经过直线x=4与直线x+2y-8=0的交点M (4,2)时,截距3z 最大,最大值为314.此时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元. [知识拓展]再看下面的问题:分别作出x=1,x-4y+3=0,3x+5y-25=0三条直线,先找出不等式组所表示的平面区域(即三直线所围成的封闭区域),再作直线l 0:2x+y=0. 然后,作一组与直线l 0平行的直线:l:2x+y=t,t∈R(或平行移动直线l 0),从而观察t 值的变化:t=2x+y∈[3,12].若设t=2x+y ,式中变量x 、y 满足下列条件⎪⎩⎪⎨⎧≥≤+-≤-.1,2553,34x y x y x 求t 的最大值和最小值.分析:从变量x 、y 所满足的条件来看,变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域ABC .作一组与直线l 0平行的直线:l:2x+y=t,t∈R(或平行移动直线l 0),从而观察t 值的变化:t=2x+y∈[3,12].(1)从图上可看出,点(0,0)不在以上公共区域内,当x=0,y=0时,t=2x+y=0.点(0,0)在直线l 0:2x+y=0上.作一组与直线l 0平行的直线(或平行移动直线l 0)l:2x+y=t,t∈R. 可知,当l 在l 0的右上方时,直线l 上的点(x,y)满足2x+y >0,即t >0. 而且,直线l 往右平移时,t 随之增大(引导学生一起观察此规律).在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点B (5,2)的直线l 2所对应的t 最大,以经过点A (1,1)的直线l 1所对应的t 最小.所以t m a x =2×5+2=12,t min =2×1+3=3.(2)(3)[合作探究]师 诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.t=2x+y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于t=2x+y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示. 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z=2x+y 在线性约束条件下的最大值和最小值的问题,即为线性规划问题.那么,满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解. 课堂小结用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设t=0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值. 布置作业1.某工厂用两种不同原料均可生产同一产品,若采用甲种原料,每吨成本1 000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本为1500元,运费400元,可得产品100千克,如果每月原料的总成本不超过6 000元,运费不超过2 000元,那么此工厂每月最多可生产多少千克产品? 分析:将已知数据列成下表:甲原料(吨)乙原料(吨)费用限额 成本 1 000 1 500 6 000 运费 500 400 2 000 产品90100解:设此工厂每月甲、乙两种原料各x 吨、y 吨,生产z 千克产品,则⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥,2000400500,600015001000,0,0y x y x y x z=90x+100y.作出以上不等式组所表示的平面区域,即可行域,如右图:由⎩⎨⎧=+=+.2045,1232y x y x 得⎪⎪⎩⎪⎪⎨⎧==.720,712y x 令90x+100y=t ,作直线:90x+100y=0,即9x+10y=0的平行线90x+100y=t ,当90x+100y=t过点M (712,720)时,直线90x+100y=t 中的截距最大. 由此得出t 的值也最大,z m a x =90×712+100×720=440.答:工厂每月生产440千克产品.2.某工厂家具车间造A 、B 型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A 、B 型桌子分别需要1小时和2小时,漆工油漆一张A 、B 型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A 、B 型桌子分别获利润2千元和3千元,试问工厂每天应生产A 、B 型桌子各多少张,才能获得利润最大?解:设每天生产A 型桌子x 张,B 型桌子y 张,则⎪⎩⎪⎨⎧≥≥≤+≤+.0,0,93,82y x y x y x 目标函数为z=2x+3y. 作出可行域:把直线l :2x+3y=0向右上方平移至l′的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z=2x+3y 取得最大值.解方程⎩⎨⎧=+=+,93,82y x y x 得M 的坐标为(2,3).答:每天应生产A 型桌子2张,B 型桌子3张才能获得最大利润.3.课本106页习题3.3A 组2.第2课时导入新课师 前面我们学习了目标函数、线性目标函数、线性规划问题、可行解、可行域、最优解等概念.师 同学们回忆一下用图解法解决简单的线性规划问题的基本步骤.生(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域); (2)设t=0,画出直线l 0;(3)观察、分析,平移直线l 0,从而找到最优解; (4)最后求得目标函数的最大值及最小值. 推进新课师 【例1】 已知x 、y 满足不等式组⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+,0,0,2502,3002y x y x y x 试求z=300x+900y 的最大值时的整点的坐标及相应的z 的最大值.师 分析:先画出平面区域,然后在平面区域内寻找使z=300x+900y 取最大值时的整点. 解:如图所示平面区域A O BC ,点A (0,125),点B (150,0),点C 的坐标由方程组⇒⎩⎨⎧=+=+25023002y x y x ⎪⎪⎩⎪⎪⎨⎧==,3200,3350y x 得C (3350,3200), 令t=300x+900y , 即,90031tx y +-=, 欲求z=300x+900y 的最大值,即转化为求截距t[]900的最大值,从而可求t 的最大值,因直线90031t x y +-=与直线x y 31-=平行,故作x y 31-=的平行线,当过点A (0,125)时,对应的直线的截距最大,所以此时整点A 使z 取最大值,z m a x =300×0+900×125=112 500. 师 【例2】 求z=600x+300y 的最大值,使式中的x 、y 满足约束条件3x+y≤300,x+2y≤250, x≥0,y≥0的整数值.师 分析:画出约束条件表示的平面区域即可行域再解. 解:可行域如图所示.四边形A O BC ,易求点A (0,126),B (100,0),由方程组⇒⎩⎨⎧=+=+25223003y x y x ⎪⎪⎩⎪⎪⎨⎧==.5191,5369y x 得点C 的坐标为(5369,5191).因题设条件要求整点(x,y)使z=600x+300y 取最大值,将点(69,91),(70,90)代入z=600x+300y ,可知当x=70,y=90时,z 取最大值为z m a x =600×70+300×900=69 000.师 【例3】 已知x 、y 满足不等式⎪⎩⎪⎨⎧≥≥≥+≥+,0,0,12,22y x y x y x 求z=3x+y 的最小值.师 分析:可先找出可行域,平行移动直线l 0:3x+y=0找出可行解,进而求出目标函数的最小值.解:不等式x+2y≥2表示直线x+2y=2上及其右上方的点的集合; 不等式2x+y≥1表示直线2x+y=1上及其右上方的点的集合. 可行域如右图所示.作直线l 0:3x+y=0,作一组与直线l 0平行的直线l:3x+y=t(t∈R). ∵x、y 是上面不等式组表示的区域内的点的坐标. 由图可知:当直线l:3x+y=t 通过P (0,1)时,t 取到最小值1,即z min =1.师 评述:简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的: (1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域; (3)在可行域内求目标函数的最优解.师 课堂练习:请同学们通过完成练习来掌握图解法解决简单的线性规划问题.(1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y(2)求z=3x+5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x[教师精讲]师 (1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y解:不等式组表示的平面区域如右图所示: 当x=0,y=0时,z=2x+y=0, 点(0,0)在直线l 0:2x+y=0上.作一组与直线l 0平行的直线l:2x+y=t,t∈R.可知在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (2,-1)的直线所对应的t 最大. 所以z m a x =2×2-1=3.(2)求z=3x+5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x解:不等式组所表示的平面区域如右图所示.从图示可知直线3x+5y=t 在经过不等式组所表示的公共区域内的点时,以经过点(-2,-1)的直线所对应的t 最小,以经过点(89,817)的直线所对应的t 最大. 所以z min =3×(-2)+5×(-1)=-11,z m a x =3×89+5×817=14.[知识拓展]某工厂生产甲、乙两种产品.已知生产甲种产品1 t,需耗A种矿石10 t、B种矿石5 t、煤4 t;生产乙种产品需耗A种矿石4 t、B种矿石4 t、煤9 t.每1 t甲种产品的利润是600元,每1 t乙种产品的利润是1 000元.工厂在生产这两种产品的计划中要求消耗A种矿石不超过360 t、B种矿石不超过200 t、煤不超过300 t,甲、乙两种产品应各生产多少(精确到0.1 t),能使利润总额达到最大?师分析:将已知数据列成下表:消耗量产品资源甲产品(1 t)乙产品(1 t) 资源限额(t)A种矿石(t)10 4 300B种矿石(t) 5 4 200 煤(t) 利润(元) 4 9 360600 1 000解:设生产甲、乙两种产品分别为x t、y t,利润总额为z元,那么⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+;0,0,36094,20045,300410yxyxyxyx目标函数为z=600x+1 000y.作出以上不等式组所表示的平面区域,即可行域.作直线l:600x+1 000y=0,即直线:3x+5y=0,把直线l向右上方平移至l1的位置时,直线经过可行域上的点M,且与原点距离最大,此时z=600x+1 000y取最大值.解方程组⎩⎨⎧=+=+,36094,20045yxyx得M的坐标为x=29360≈12.4,y=291000≈34.4.答:应生产甲产品约12.4 t,乙产品34.4 t,能使利润总额达到最大.课堂小结用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).(2)设t=0,画出直线l 0.(3)观察、分析,平移直线l 0,从而找到最优解. (4)最后求得目标函数的最大值及最小值.以实际问题为背景的线性规划问题其求解的格式与步骤: (1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域; (3)在可行域内求目标函数的最优解. 当然也要注意问题的实际意义 布置作业课本第105页习题3.3A 组3、 4.第3课时导入新课师 前面我们已经学习了用图解法解决简单的线性规划问题的基本步骤以及以实际问题为背景的线性规划问题其求解的格式与步骤.这节课我们继续来看它们的实际应用问题. 推进新课师 【例5】 营养学家指出,成人良好的日常饮食应该至少提供0.075 kg 的碳水化合物,0.06 kg 的蛋白质,0.06 kg 的脂肪.1 kg 食物A 含有0.105 kg 碳水化合物,0.07 kg 蛋白质,0.14 kg 脂肪,花费28元;而1kg 食物B 含有0.105 kg 碳水化合物,0.14 kg 蛋白质,0.07 kg 脂肪,花费21元.为了满足营养学家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少克? 师 分析:将已知数据列成下表:食物/kg 碳水化合物/kg蛋白质/kg 脂肪/kg A 0.105 0.07 0.14 B0.1050.140.07若设每天食用x kg 食物A ,y kg 食物B ,总成本为z ,如何列式?生 由题设条件列出约束条件①⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+0,y 0,x 0.06,0.07y 0.14x 0.06,0.14y 0.07x 0.075,0.105y 105x .0 其目标函数z=28x+21y.二元一次不等式组①等价于②⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+.0,0,6714,6147,577y x y x y x y x师 作出二元一次不等式组②所表示的平面区域,即可行域.请同学们在草稿纸上完成,再与课本上的对照.生 考虑z=28x+21y,将它变形为2834z x y +-=,这是斜率为34-、随z 变化的一族平行直线.28z 是直线在y 轴上的截距,当28z 取得最小值时,z 的值最小.当然直线与可行域相交,即在满足约束条件时目标函数z=28x+21y 取得最小值.由图可见,当直线z=28x+21y 经过可行域上的点M 时,截距z[]28最小,即z 最小.解方程组⎩⎨⎧=+=+6714,577y x y x 得点M(71,74),因此,当71=x ,74=y 时,z=28x+21y 取最小值,最小值为16.由此可知每天食用食物A 约143克,食物B 约571克,能够满足日常饮食要求,又使花费最低,最低成本为16元.师 【例6】 在上一节课本的例题(课本95页例3)中,若根据有关部门的规定,初中每人每年可收取学费1 600元,高中每人每年可收取学费2 700元.那么开设初中班和高中班各多少个,每年收取的学费总额最多?学段班级学生数 配备教师数 硬件建设/万元 教师年薪/万元 初中45 2 26/班 2/人 高中 40 3 54/班 2/人师 由前面内容知若设开设初中班x 个,高中班y 个,收取的学费总额为z 万元, 此时,目标函数z=0.16×45x+0.27×40y,可行域如下图把z=7.2x+10.8y 变形为54532z x y +-=,得到斜率为-32-,在y 轴上截距为545z ,随z 变化的一组平行直线.由图可以看出,当直线z=7.2x+10.8y 经过可行域上的点M 时,截距545z 最大,即z 最大.解方程组⎩⎨⎧=+=+402,30y x y x 得点M (20,10),因此,当x=20,y=10时,z=7.2x+10.8y 取最大值,最大值为252.由此可知开设20个初中班和10个高中班时,每年收取的学费总额最多,为252万元. 师 【例7】 在上一节例4中(课本96页例4),若生产1车皮甲种肥料,产生的利润为10 000元,若生产1车皮乙种肥料,产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?生 若设生产x 车皮甲种肥料,y 车皮乙种肥料,能够产生的利润z 万元.目标函数z=x+0.5y,可行域如下图:把z=x+0.5y 变形为y=-2x+2z,得到斜率为-2,在y 轴上截距为2z,随z 变化的一组平行直线.由图可以看出,当直线y=-2x+2z 经过可行域上的点M 时,截距2z 最大,即z 最大.解方程组⎩⎨⎧=+=+104,661518y x y x 得点M(2,2),因此当x=2,y=2时,z=x+0.5y 取最大值,最大值为3.由此可见,生产甲、乙两种肥料各2车皮,能够产生最大的利润,最大利润为3万元. [教师精讲]师 以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义. 课堂小结 用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域);(2)设t=0,画出直线l 0;(3)观察、分析,平移直线l 0,从而找到最优解;(4)最后求得目标函数的最大值及最小值. 以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义.布置作业课本第105页习题3.3 B组1、2、3板书设计第1课时简单线性规划问题图1课堂小结线性规划问题的相关概念图2第2课时简单线性规划问题例1课堂小结例3例2第3课时简单线性规划问题例5课堂小结例7例6。
《简单的线性规划问题》参考教案
课题: §3.3.2简单的线性规划第1课时授课类型:新授课【教学目标】1.知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;3.情态与价值:培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力。
【教学重点】用图解法解决简单的线性规划问题【教学难点】准确求得线性规划问题的最优解【教学过程】1.课题导入[复习提问]1、二元一次不等式在平面直角坐标系中表示什么图形?2、怎样画二元一次不等式(组)所表示的平面区域?应注意哪些事项?3、熟记“直线定界、特殊点定域”方法的内涵。
2.讲授新课在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。
1、下面我们就来看有关与生产安排的一个问题:引例:某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,该厂所有可能的日生产安排是什么?(1)用不等式组表示问题中的限制条件:设甲、乙两种产品分别生产x、y件,又已知条件可得二元一次不等式组: (1)(2)画出不等式组所表示的平面区域:如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。
(3)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?(4)尝试解答:设生产甲产品x件,乙产品y件时,工厂获得的利润为z,则z=2x+3y.这样,上述问题就转化为:当x,y满足不等式(1)并且为非负整数时,z的最大值是多少?把z=2x+3y变形为,这是斜率为,在y轴上的截距为的直线。
学案4:3.3.2 简单的线性规划问题
3.3.2 简单的线性规划问题学习目标:1.了解线性规划的意义.2.了解线性规划问题中一些术语的含义.3.会解决一些简单的线性规划问题.学习重难点:1.求目标函数的最值.(重点、难点)2.目标函数的最值与其对应直线截距的关系(易错点).学习过程:自学导引1.解决线性规划问题的一般方法解决线性规划问题的一般方法是图解法,其步骤如下:(1)确定线性约束条件,注意把题中的条件准确翻译为不等式组;(2)确定线性目标函数;(3)画出可行域,注意作图准确;(4)利用线性目标函数(直线)求出最优解;(5)实际问题需要整数解时,应调整检验确定的最优解(调整时,注意抓住“整数解”这一关键点).说明:求线性目标函数在约束条件下的最值问题的求解步骤是:①作图——画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l.②平移——将直线l平行移动,以确定最优解所对应的点的位置.③求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值.2.线性规划的应用线性规划的理论和方法主要在两类问题中得到应用:一是在人力、物力、资金等资源一定的条件下,如何利用它们完成更多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务,常见的问题有:(1)物资调运问题:(2)产品安排问题;(3)下料问题.例题探究:题型一 求线性目标函数的最值例1:已知关于x ,y 的二元一次不等式组⎩⎪⎨⎪⎧ x +2y ≤4,x -y≤1,x +2≥0.(1)求函数u =3x -y 的最大值和最小值;(2)求函数z =x +2y 的最大值和最小值.规律方法:图解法是解决线性规划问题的有效方法.其关键在于平移目标函数对应的直线ax +by =0,看它经过哪个点(或哪些点)时最先接触可行域和最后离开可行域,则这样的点即为最优解,再注意到它的几何意义,从而确定是取得最大值还是最小值.变式1:已知x ,y 满足约束条件⎩⎪⎨⎪⎧ 5x +3y ≤15,y ≤x +1,x -5y ≤3.求z =3x +5y 的最大值和最小值.题型二 非线性目标函数的最值问题例2:已知⎩⎪⎨⎪⎧ x -y +2≥0,x +y -4≥0,2x -y -5≤0,求:(1)z =x 2+y 2-10y +25的最小值;(2)z =2y +1x +1的取值范围.规律方法:非线性目标函数的最值问题,要充分理解非线性目标函数的几何意义,诸如两点间的距离(或平方).点到直线的距离,过已知两点的直线斜率等.常见代数式的几何意义主要有:(1) (x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离;x 2+y 2表示点(x ,y )与原点(0,0)的距离.(2)y -b x -a表示点(x ,y )与点(a ,b )连线的斜率;y x 表示点(x ,y )与原点(0,0)连线的斜率.这些代数式的几何意义能使所求问题得以转化,往往是解决问题的关键.变式2:如果点P 在平面区域⎩⎪⎨⎪⎧ 2x -y +2≥0,x +y -2≤0,2y -1≥0上,点Q 在曲线x 2+(y +2)2=1上,求|PQ |的最小值.题型三 线性规划的实际应用例3:某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C .另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C .如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?题后反思:用图解法解线性规划应用题的具体步骤为:(1)设元,并列出相应的约束条件和目标函数;(2)作图:准确作图,平移找点;(3)求解:代入求解,准确计算;(4)检验:根据结果,检验反馈.变式3:某公司计划2012年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.假定甲、乙两个电视台为该公司所做的每分钟广告能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大.最大收益是多少万元?方法技巧:数形结合思想在线性规划中的应用数形结合的主要解题策略是:数形问题的解决;或:形数问题的解决.数与形结合的基本思路是:根据数的结构特征构造出与之相适应的几何图形,并利用直观特征去解决数的问题;或者将要解决的形的问题转化为数量关系去解决.课堂检测:1.已知-1≤x+y≤4且2≤x-y≤3,且z=2x-3y的取值范围是________(答案用区间表示).2.目标函数z=3x-y,将其看成直线方程时,z的意义是()A.该直线的截距B.该直线纵截距C.该直线的纵截距的相反数D.该直线横截距3.若点(x,y)在曲线y=-|x|与y=-2所围成的封闭区域内(包括边界),则2x-y的最大值为() A.-6B.4C.6D.8参考答案例题探究:例1:解: (1)作出二元一次不等式组⎩⎪⎨⎪⎧ x +2y ≤4,x -y≤1,x +2≥0.表示的平面区域,如图所示.由u =3x -y ,得y =3x -u ,得到斜率为3,在y 轴上的截距为-u ,随u 变化的一组平行线, 由图可知,当直线经过可行域上的C 点时,截距-u 最大,即u 最小.解方程组⎩⎪⎨⎪⎧x +2y =4,x +2=0,得C (-2,3), ∴u min =3×(-2)-3=-9. 当直线经过可行域上的B 点时,截距-u 最小,即u 最大,解方程组⎩⎪⎨⎪⎧ x +2y =4,x -y =1,得B (2,1), ∴u max =3×2-1=5.∴u =3x -y 的最大值是5,最小值是-9.(2)作出二元一次不等式组⎩⎪⎨⎪⎧ x +2y ≤4,x -y≤1,x +2≥0.表示的平面区域,如图所示.由z =x +2y ,得y =-12x +12z ,得到斜率为-12,在y 轴上的截距为12z ,随z 变化的一组平行线.由上图可知,当直线经过可行域上的A 点时,截距12z 最小,即z 最小, 解方程组⎩⎪⎨⎪⎧x -y =1,x +2=0,得A (-2,-3), ∴z min =-2+2×(-3)=-8.当直线与直线x +2y =4重合时,截距12z 最大,即z 最大, ∴z max =x +2y =4,∴z =x +2y 的最大值是4,最小值是-8.变式1:解: 由不等式组⎩⎪⎨⎪⎧ 5x +3y ≤15,y ≤x +1,x -5y ≤3.作出可行域,如图所示.∵目标函数为z =3x +5y ,∴作直线l :3x +5y =t (t ∈R ).平移直线l ,在可行域内以经过点A ⎝⎛⎭⎫32,52的直线l 1所对应的t 最大.类似地,在可行域内,以经过点B (-2,-1)的直线l 2所对应的t 最小.∴z max =3×32+5×52=17,z min =3×(-2)+5×(-1)=-11. 例2:解:(1)作出可行域如图所示,A (1,3),B (3,1),C (7,9).z =x 2+(y -5)2表示可行域内任一点(x ,y )到点M (0,5)的距离的平方,过M 作AC 的垂线,易知垂足在AC 上,故MN =|0-5+2|1+(-1)2=32=322. ∴MN 2=⎝⎛⎭⎫3222=92, ∴z 的最小值为92. (2)z =2·y -⎝⎛⎭⎫-12x -(-1)表示可行域内点(x ,y )与定点Q ⎝⎛⎭⎫-1,-12连线斜率的2倍,∵k QA =74,k QB =38, ∴z 的取值范围是⎣⎡⎦⎤34,72.变式2:解:画出不等式组⎩⎪⎨⎪⎧ 2x -y +2≥0,x +y -2≤0,2y -1≥0所表示的平面区域,x 2+(y +2)2=1所表示的曲线为以(0,-2)为圆心,1为半径的一个圆.如图所示,只有当点P 在点A ⎝⎛⎭⎫0,12,点Q 在点B (0,-1)时,|PQ |取最小值32.例3:解:设需要预订满足要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费用为z 元,则依题意得:z =2.5x +4y ,且x ,y 满足⎩⎪⎨⎪⎧ x ≥0,y ≥0,12x +8y ≥64,6x +6y ≥42,6x +10y ≥54.即⎩⎪⎨⎪⎧ x ≥0,y ≥0,3x +2y ≥16,x +y ≥7,3x +5y ≥27.让目标函数表示的直线2.5x +4y =z 在可行域上平移.由此可知z =2.5x +4y 在B (4,3)处取得最小值.因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.变式3:解:设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,总收益为z 元,由题意得⎩⎪⎨⎪⎧x +y ≤300,500x +200y ≤90 000,x ≥0,y ≥0.即⎩⎪⎨⎪⎧ x +y ≤300,5x +2y ≤900,x ≥0,y ≥0. 目标函数为z =3 000x +2 000y .作出可行域如图所示:作直线l :3 000x +2 000y =0,即3x +2y =0.平移直线l ,由图可知当l 过点M 时,目标函数z 取得最大值.由⎩⎪⎨⎪⎧x +y =300,5x +2y =900.得M (100,200). ∴z max =3 000×100+2 000×200=700 000(元).答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.课堂检测:1.【解析】作出不等式组⎩⎪⎨⎪⎧-1≤x +y ≤42≤x -y ≤3表示的可行域,如图中阴影部分所示.在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值,z min =2×3-3×1=3;当直线经过x+y=-1与x-y=3的交点B(1,-2)时,目标函数有最大值,z max=2×1+3×2=8.所以z∈[3,8].【答案】[3,8]2.【解析】由z=3x-y得y=3x-z,在该方程中-z表示直线的纵截距,因此z表示该直线的纵截距的相反数.故选C.【答案】C3.【解析】如图点(x,y)在阴影部分区域内,设2x-y=z,则y=2x-z.当直线y=2x-z过点A(2,-2)时-z最小,此时z最大.z最大=2×2-(-2)=6.故选C.【答案】C。
《3.3.2简单的线性规划问题》教案
简单的线性规划学习内容总析线性规划位于不等式和直线方程的结合点上,是培养学生转化能力和熟练运用数形结合能力的重要内容。
这一节的知识内容形成了一条结构紧密的知识链条:以二元一次不等式(组)表示的平面区域为基础,根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法解决简单的线性规划问题。
学情总析本节内容是在学习了直线方程、二元一次不等式(组)所表示的平面区域的基础上,强调应用转化思想和数形结合思想来解决线性规划问题。
三维教学目标知识与技能:①了解线性规划的意义以及约束条件、线性目标函数、可行域、最优解等相关的基本概念;②在巩固二元一次不等式(组)所表示的平面区域的基础上,能从实际优化问题中抽象出约束条件和目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;③掌握对一些实际优化问题建立线性规划数学模型并运用图解法进行求解的基本方法和步骤。
过程与方法:①培养学生的形象思维能力、绘图能力和探究能力;②强化数形结合的数学思想方法;③提高学生构建(不等关系)数学模型、解决简单实际优化问题的能力。
情感、态度与价值观:①在感受现实生产、生活中的各种优化、决策问题中体验应用数学的快乐;②在运用求解线性规划问题的图解方法中,感受动态几何的魅力;③在探究性练习中,感受多角度思考、探究问题并收获探究成果的乐趣。
教学重点及应对策略1、教学重点:根据实际优化问题准确建立目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;2、应对策略:将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题,然后借助直线方程的知识进行解决。
教学难点及应对策略1、教学难点:①借助线性目标函数的几何含义准确理解线性目标函数在y轴上的截距与z最值之间的关系;②用数学语言表述运用图解法求解线性规划问题的过程。
2、应对策略:在理论解释的同时,可用动画进行演示辅助理解。
教学过程设计。
教学设计4:3.3.2 简单的线性规划问题(二)
3.3.2 简单的线性规划问题(二)教学目标1.了解实际生活中线性规划问题的最优整数解求法.2.会解决生活中常见的线性规划问题. 教学引导知识点一 求解线性规划最优整数解的方法1.平移找解法:先打网络、描整点、平移直线l ,最先经过或最后经过的整点便是最优解,这种方法需充分利用非整数最优解的信息,结合精确的作图进行.当可行域是有限区域且整点个数又较少时,可逐个将整点坐标代入目标函数求值,经比较求最优解.2.调整优值法:先求非整点最优解及最优值,再借助不定方程知识调整最优解,最后筛选出整点最优解.3.由于作图有误差,有时由图形不一定能准确而迅速地找到最优解,此时将可能的解逐一检验即可.知识点二 线性规划问题的实际应用1.线性规划的理论和方法主要用于解决以下两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、财力、物力、资金等资源来完成该项任务. 2.求解线性规划应用题的步骤教学检测1.可行域内的整点指横坐标、纵坐标均为整数的点.( √ ) 2.在线性规划问题中,最优解一定是边界点.( × ) 教学案例题型一 求目标函数的最优整数解例1 画出2x -3<y ≤3表示的平面区域,并求出所有横坐标、纵坐标都为正整数的点.解 所给不等式等价于不等式组⎩⎪⎨⎪⎧y >2x -3,y ≤3,其表示的平面区域如图(1).对于2x -3<y ≤3的正整数解,再画出不等式组⎩⎪⎨⎪⎧y >2x -3,y ≤3,x >0,y >0表示的平面区域,如图(2)所示.由图可知,在该区域内的横坐标、纵坐标都为正整数的点为(1,1),(1,2),(1,3),(2,2),(2,3). 反思感悟 目标函数的最优整数解可能不止一个,有多个,注意不要漏写.跟踪训练1 若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )(整点是指横、纵坐标都是整数的点)恰有9个,则整数a 的值为( ) A .-3 B .-2 C .-1 D .0 【答案】C【解析】不等式组所表示的平面区域如图阴影部分(含边界)所示,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0).当a =-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1),5个整点.再加上a =0时的四个整点,共9个整点,故选C.题型二 生活中的线性规划问题例2 某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品A ,B ,要根据该产品的研制成本、产品质量、搭载实验费用和预计产生的收益来决定具体安排.通过调查,有关数据如下表:产品A 产品B 搭载要求研制成本与搭载实验费用之和(万元/件)20 30 计划最大资金额300万元 产品质量(千克/件) 10 5 最大搭载质量110千克预计收益(万元/件)8060试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少? 解 设搭载A 产品x 件,B 产品y 件,预计总收益为z 万元,则目标函数为z =80x +60y .由题意,得⎩⎪⎨⎪⎧20x +30y ≤300,10x +5y ≤110,x ≥0,y ≥0,x ,y ∈N ,即⎩⎪⎨⎪⎧2x +3y ≤30,2x +y ≤22,x ≥0,y ≥0,x ,y ∈N .画出可行域,如图阴影部分(含边界)所示.将z =80x +60y 变形为y =-43x +z60.作出直线l 0:4x +3y =0,并将其向右上方平移,由图象可知, 当直线l 0经过点M (整点)时,z 能取得最大值.由⎩⎪⎨⎪⎧ 2x +3y =30,2x +y =22,解得⎩⎪⎨⎪⎧x =9,y =4,即M (9,4). 所以z max =80×9+60×4=960(万元).即搭载9件产品A,4件产品B ,可使得总预计收益最大,最大为960万元.反思感悟 (1)从实际问题抽象出约束条件时要选择适当的决策变量作为x ,y .并用x ,y 把约束条件准确表达出来.(2)实际问题有时会要求整数解,但高考很少涉及.有兴趣的同学可以自行搜索相关资料. 跟踪训练2 某厂拟用集装箱托运甲、乙两种货物,集装箱的体积、重量、可获利润和托运能力等限制数据列在下表中,那么为了获得最大利润,甲、乙两种货物应各托运的箱数为________.货物 体积(m 3/箱)重量(50 kg/箱)利润(百元/箱)甲 5 2 20 乙 4 5 10 托运限制2413【答案】4,1【解析】设甲、乙两种货物应各托运的箱数为x ,y , 则⎩⎪⎨⎪⎧5x +4y ≤24,2x +5y ≤13,x ≥0,x ∈N ,y ≥0,y ∈N .目标函数z =20x +10y ,画出可行域如图阴影部分(含边界)所示.由⎩⎪⎨⎪⎧2x +5y =13,5x +4y =24,得A (4,1). 易知当直线z =20x +10y 平移经过点A 时,z 取得最大值,即甲、乙两种货物应各托运的箱数分别为4和1时,可获得最大利润.如何从实际问题中建立线性规划模型从实际问题中建立线性规划模型一般有3个步骤 1.根据影响目标的因素找到决策变量. 2.由决策变量与目标的关系确定目标函数. 3.由决策变量所受限制确定约束条件.典例 某人准备投资1 200万兴办一所民办中学,对教育市场进行调查后,他得到了下面的数据表格(以班级为单位):学段 班级学生人数配备教师数 硬件建设/万元 教师年薪/万元初中 45/班 2/班 26/班 2/人 高中40/班3/班54/班2/人因生源和环境等因素,办学规模以20到30个班为宜,试用数学关系式表示上述的限制条件. 解 设开设初中班x 个,开设高中班y 个,根据题意,总共招生班数应限制在20至30之间,所以有20≤x +y ≤30.考虑到所投资金的限制,得到26x +54y +2×2x +2×3y ≤1 200,即x +2y ≤40. 另外,开设的班数应为自然数,则x ∈N ,y ∈N . 把上面的四个不等式合在一起,得到⎩⎪⎨⎪⎧20≤x +y ≤30,x +2y ≤40,x ∈N ,y ∈N .[素养评析] 1947年美国数学家G.B.Dantzing 为线性规划奠定基础,却水花不起;1951年美国经济学家T.C.库普曼斯把线性规划应用到经济领域,为此获1975年诺贝尔经济学奖.由此可见应用实践能力的重要.认识数学模型在科学、社会、工程等诸多领域的作用,提升应用能力、实践能力,是数学模型核心素养的培养目标之一.当堂检测1.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有( )A .0个B .1个C .2个D .无数个 【答案】B【解析】画出不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的可行域,如图中阴影部分所示(含边界).因为直线2x +y -10=0过点A (5,0),且其斜率为-2,小于直线4x +3y =20的斜率-43,所以只有一个公共点(5,0),故选B.2.设点P (x ,y ),其中x ,y ∈N ,则满足x +y ≤3的点P 有( ) A .10个 B .9个 C .3个 D .无数个 【答案】A【解析】作出⎩⎪⎨⎪⎧x +y ≤3,x ,y ∈N所表示的平面区域,如图中阴影部分的整点所示,由图知,符合要求的点P 有10个,故选A.3.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用为400元,可装洗衣机20台;每辆乙型货车运输费用为300元,可装洗衣机10台.若每辆货车至多运一次,则该厂所花的最少运输费用为( )A .2 000元B .2 200元C .2 400元D .2800元【答案】B【解析】设需使用甲型货车x 辆,乙型货车y 辆,运输费用为z 元,根据题意,得线性约束条件为⎩⎪⎨⎪⎧20x +10y ≥100,0≤x ≤4,0≤y ≤8,x ∈N ,y ∈N ,目标函数为z =400x +300y ,画出可行域(图略)可知,当x =4,y =2时z 取得最小值,z min =2 200,故选B. 4.若目标函数z =x +y +1在约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -y +2≤0,y ≤n ,x ≥-3下取得最大值的最优解有无穷多个,则n 的取值范围是________. 【答案】(2,+∞)【解析】作出不等式组⎩⎪⎨⎪⎧x +y -2≤0,x -y +2≤0,x ≥-3所表示的可行域,如图中阴影部分所示,要使目标函数z =x +y +1取得最大值的最优解有无穷多个,只需使目标函数对应的直线能平移到与可行域的边界直线x +y -2=0重合,所以当n >2时,目标函数的最优解有无穷多个. 课堂小结1.画图对解决线性规划问题至关重要,关键步骤基本上是在图上完成的,所以作图应尽可能准确,图上操作尽可能规范.2.在解决与线性规划相关的问题时,首先考虑目标函数的几何意义,利用数形结合方法可迅速解决相关问题.。
高中数学 3.3.2简单的线性规划(一)新人教A版必修5
3.3.2简单的线性规划【教学过程】 2.讲授新课1.引例:某工厂有A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天8h 计算,该厂所有可能的日生产安排是什么? (1)用不等式组表示问题中的限制条件:设甲、乙两种产品分别生产x 、y 件,又已知条件可得二元一次不等式组:2841641200x y x y x y +≤⎧⎪≤⎪⎪≤⎨⎪≥⎪≥⎪⎩ ……………………….(1) (2)画出不等式组所表示的平面区域:如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。
(3)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?(4)尝试解答:设生产甲产品x 件,乙产品y 件时,工厂获得的利润为z ,则z=2x+3y .这样,上述问题就转化为:当x,y 满足不等式(1)并且为非负整数时,z 的最大值是多少?把z=2x+3y 变形为233z y x =-+,这是斜率为23-,在y 轴上的截距为3z的直线。
当z 变化时,可以得到一族互相平行的直线,如图,由于这些直线的斜率是确定的,因此只要给定一个点,(例如(1,2)),就能确定一条直线(2833y x =-+),这说明,截距3z可以由平面内的一个点的坐标唯一确定。
可以看到,直线233zy x =-+与不等式组(1)的区域的交点满足不等式组(1),而且当截距3z最大时,z 取得最大值。
因此,问题可以转化为当直线233zy x =-+与不等式组(1)确定的平面区域有公共点时,在区域内找一个点P ,使直线经过点P 时截距3z最大。
(5)获得结果:由上图可以看出,当实现233zy x =-+经过直线x=4与直线x+2y-8=0的交点M (4,2)时,截距3z 的值最大,最大值为143,这时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元。
高中数学优质教案2:3.3.2 简单的线性规划问题
3.3.2 简单的线性规划问题教学目标:1.解线性约束条件、线性目标函数、线性规划概念;2.在线性约束条件下求线性目标函数的最优解;3.了解线性规划问题的图解法.教学重点:线性规划问题.教学难点:线性规划在实际中的应用.教学过程:导入新课 前面我们学习了目标函数、线性目标函数、线性规划问题、可行解、可行域、最优解等概念. 同学们回忆一下用图解法解决简单的线性规划问题的基本步骤.(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域);(2)设t =0,画出直线l 0;(3)观察、分析,平移直线l 0,从而找到最优解;(4)最后求得目标函数的最大值及最小值.推进新课 例1:已知x 、y 满足不等式组⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+,0,0,2502,3002y x y x y x 试求z =300x +900y 的最大值时的整点的坐标及相应的z 的最大值.分析:先画出平面区域,然后在平面区域内寻找使z =300x +900y 取最大值时的整点. 解:如图所示平面区域AOBC ,点A (0,125),点B (150,0),点C 的坐标由方程组⇒⎩⎨⎧=+=+25023002y x y x ⎪⎪⎩⎪⎪⎨⎧==,3200,3350y x 得C (3350,3200), 令t =300x +900y ,即,90031t xy +-=, 欲求z =300x +900y 的最大值,即转化为求截距900t 的最大值,从而可求t 的最大值,因直线90031t x y +-=与直线x y 31-=平行,故作x y 31-=的平行线,当过点A (0,125)时,对应的直线的截距最大,所以此时整点A 使z 取最大值,z max =300×0+900×125=112 500. 例2:求z =600x +300y 的最大值,使式中的x 、y 满足约束条件3x +y ≤300,x +2y ≤250, x ≥0,y ≥0的整数值.分析:画出约束条件表示的平面区域即可行域再解.解:可行域如图所示.四边形AOBC ,易求点A (0,126),B (100,0),由方程组⇒⎩⎨⎧=+=+25223003y x y x ⎪⎪⎩⎪⎪⎨⎧==.5191,5369y x 得点C 的坐标为(5369,5191).因题设条件要求整点(x ,y )使z =600x +300y 取最大值,将点(69,91),(70,90)代入z =600x +300y ,可知当x =70,y =90时,z 取最大值为z max =600×70+300×900=69 000.例3:已知x 、y 满足不等式⎪⎩⎪⎨⎧≥≥≥+≥+,0,0,12,22y x y x y x 求z =3x +y 的最小值.分析:可先找出可行域,平行移动直线l 0:3x +y =0找出可行解,进而求出目标函数的最小值. 解:不等式x +2y ≥2表示直线x +2y =2上及其右上方的点的集合;不等式2x +y ≥1表示直线2x +y =1上及其右上方的点的集合.可行域如图所示.作直线l 0:3x +y =0,作一组与直线l 0平行的直线l :3x +y =t (t ∈R ).∵x 、y 是上面不等式组表示的区域内的点的坐标. 由图可知:当直线l :3x +y =t 通过P (0,1)时,t 取到最小值1,即z min =1.评述:简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域;(3)在可行域内求目标函数的最优解.课堂练习:请同学们通过完成练习来掌握图解法解决简单的线性规划问题.1.求z =2x +y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y解:不等式组表示的平面区域如图所示:当x =0,y =0时,z =2x +y =0,点(0,0)在直线l 0:2x +y =0上.作一组与直线l 0平行的直线l :2x +y =t ,t ∈R.可知在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (2,-1)的直线所对应的t 最大.所以z max =2×2-1=3.2.求z =3x +5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x解:不等式组所表示的平面区域如图所示.从图示可知直线3x +5y =t 在经过不等式组所表示的公共区域内的点时,以经过点(-2,-1)的直线所对应的t 最小,以经过点(89,817)的直线所对应的t 最大. 所以z min =3×(-2)+5×(-1)=-11,z max =3×89+5×817=14. 3.某工厂生产甲、乙两种产品.已知生产甲种产品1 t ,需耗A 种矿石10 t 、B 种矿石5 t 、煤4 t ;生产乙种产品需耗A 种矿石4 t 、B 种矿石4 t 、煤9 t.每1 t甲种产品的利润是600元,每1 t 乙种产品的利润是1 000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过360 t 、B 种矿石不超过200 t 、煤不超过300 t ,甲、乙两种产品应各生产多少(精确到0.1 t ),能使利润总额达到最大?【解析】将已知数据列成下表:解:设生产甲、乙两种产品分别为x t 、y t ,利润总额为z 元,那么⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+;0,0,36094,20045,300410y x y x y x y x目标函数为z =600x +1 000y .作出以上不等式组所表示的平面区域,即可行域.作直线l :600x +1 000y =0,即直线:3x +5y =0,把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z =600x +1 000y 取最大值.解方程组⎩⎨⎧=+=+,36094,20045y x y x 得M 的坐标为x =29360≈12.4,y =291000≈34.4. 答:应生产甲产品约12.4 t ,乙产品34.4 t ,能使利润总额达到最大.课堂小结用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).(2)设t=0,画出直线l0.(3)观察、分析,平移直线l0,从而找到最优解.(4)最后求得目标函数的最大值及最小值.以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义布置作业课本习题3、4.。
教学设计3:3.3.2 简单的线性规划问题(一)
3.3.2 简单的线性规划问题(一)教学目标1.了解线性规划的意义.2.理解约束条件、目标函数、可行解、可行域、最优解等基本概念.3.掌握线性规划问题的图解法.4.会画常见非线性约束条件的可行域及解释其目标函数的几何意义.教学引导知识点一线性约束条件及目标函数1.在上述问题中,不等式组①是一组对变量x,y的约束条件,这组约束条件都是关于x,y的一次不等式,故又称线性约束条件.2.在上述问题中,②是要研究的目标,称为目标函数.因为它是关于变量x,y的一次解析式,这样的目标函数称为线性目标函数.知识点二可行解、可行域和最优解满足线性约束条件的解(x,y)叫做可行解.由所有可行解组成的集合叫做可行域.其中,使目标函数取得最大值或最小值的可行解叫做线性规划问题的最优解.在上述问题的图中,阴影部分叫可行域,阴影区域中的每一个点对应的坐标都是一个可行解,其中能使②式取最大值的可行解称为最优解.知识点三线性规划问题与图解法一般地,在线性约束条件下求线性目标函数的最大值或最小值问题,统称为线性规划问题.在确定了线性约束条件和线性目标函数的前提下,用图解法求最优解的步骤概括为“画、移、求”.(1)画:在直角坐标平面上画出可行域和直线ax+by=0(目标函数为z=ax+by);(2)移:平行移动直线ax+by=0,确定使z=ax+by取得最大值或最小值的点;(3)求:求出取得最大值或最小值时的点的坐标(解方程组)及最大值或最小值.教学检测1.可行解是可行域的一个元素.(√)2.最优解一定是可行解.(√)3.目标函数z=ax+by中,z为在y轴上的截距.(×)4.当直线z=ax+by在y轴上的截距最大时,z也最大.(×)教学案例题型一 求线性目标函数的最值例1 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤8,4x ≤16,4y ≤12,x ≥0,y ≥0,该不等式组所表示的平面区域如图阴影部分(含边界)所示,求2x +3y 的最大值.解 设区域内任一点P (x ,y ),z =2x +3y ,则y =-23x +z3,这是斜率为-23,在y 轴上的截距为z3的直线,如图.由图可以看出,当直线y =-23x +z3经过直线x =4与直线x +2y -8=0的交点M (4,2)时,截距z3的值最大,此时2x +3y =14. 反思感悟 (1)由于求最优解是通过图形来观察的,故画图要准确,否则观察的结果可能有误.(2)作可行域时要注意特殊点与边界.(3)在可行域内求最优解时,通常转化为直线在y 轴上的截距的最值问题来研究,故一定要注意直线在y 轴上的截距的正负,否则求出的结果恰好相反. 跟踪训练1 若x ,y 满足x +1≤y ≤2x ,则2y -x 的最小值是________. 【答案】3【解析】由条件得⎩⎪⎨⎪⎧ x +1≤y ,y ≤2x ,即⎩⎪⎨⎪⎧x -y +1≤0,2x -y ≥0,作出可行域,如图中阴影部分(含边界)所示.设z =2y -x ,即y =12x +12z ,作直线l 0:y =12x 并向上平移,显然当l 0过点A (1,2)时,z 取得最小值,z min =2×2-1=3.题型二 已知线性目标函数的最值求参数例2 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧1≤x +y ≤4,-2≤x -y ≤2,若目标函数z =ax +y (a >0)仅在点(3,1)处取得最大值,则a 的取值范围为________. 【答案】(1,+∞)【解析】作出不等式组表示的平面区域,即可行域(如图阴影部分含边界所示).解方程组⎩⎪⎨⎪⎧ x -y =2,x +y =4,得⎩⎪⎨⎪⎧x =3,y =1,即C (3,1),目标函数为z =ax +y (a >0),由题意可知,当直线y =-ax +z 经过点C 时,z 取得最大值, ∴-a <k CD ,即-a <-1,则a 的取值范围为(1,+∞).反思感悟 (1)线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +zb ,在y 轴上的截距是zb,当z 变化时,方程表示一组互相平行的直线.(2)若b >0,则当截距最大时,z 取得最大值,当截距最小时,z 取得最小值;若b <0,则当截距最大时,z 取得最小值,当截距最小时,z 取得最大值.跟踪训练2 在本例条件下,若使目标函数z =ax +y (a >0)取得最大值的点有无数个,则a 的值为________. 【答案】1【解析】如上例中图形,若使z =ax +y (a >0)取得最大值的点有无数个,则必有直线z =ax+y 与直线x +y =4重合,所以-a =k CD ,即-a =-1,此时a =1. 题型三 求非线性目标函数的最值例3 已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,3x -y -3≤0.则z =y +1x +1的最大值为________,最小值为________. 【答案】3 12【解析】作出不等式组表示的平面区域如图阴影部分(包含边界)所示,由于z =y +1x +1=y -(-1)x -(-1),故z 的几何意义是点(x ,y )与点M (-1,-1)连线的斜率, 因此y +1x +1的最值是点(x ,y )与点M (-1,-1)连线的斜率的最值,由图可知,直线MB 的斜率最大,直线MC 的斜率最小, 又∵B (0,2),C (1,0),∴z max =k MB =3,z min =k MC =12.∴z 的最大值为3,最小值为12.反思感悟 对于形如cx +dy +fax +b 的目标函数,可变形为定点到可行域上的动点连线斜率问题.跟踪训练3 设x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y ≥0,x +y -2≥0,x -y -2≤0,则y +2x +2的最大值为( ) A .1 B .45 C .12 D .23【答案】B【解析】画出可行域如图(阴影部分含边界)所示:联立⎩⎪⎨⎪⎧x -2y =0,x +y -2=0,解得⎩⎨⎧x =43,y =23,则B ⎝⎛⎭⎫43,23.y +2x +2表示可行域内的点(x ,y )与C (-2,-2)连线的斜率,从图象可以看出,经过点B ⎝⎛⎭⎫43,23时,y +2x +2有最大值45.类比:思想方法的迁移方式之一典例 若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≤0,x -y +1≥0,y ≥-1,则z =2|x |+y 的取值范围是( )A .[-1,3]B .[1,11]C .[1,3]D .[-1,11] 【答案】D【解析】作出不等式组对应的平面区域如图阴影部分(含边界)所示,当x ≥0时,z =2x +y ,即y =-2x +z ,由图象可知其经过A (0,-1)时,z min =-1,经过B (6,-1)时,z max =11;当x ≤0时,y =2x +z ,由图象可知其经过C (-2,-1)时,z max =3,经过A (0,-1)时,z min =-1,综上所述,-1≤z ≤11.[素养评析] 逻辑推理主要有两类:演绎是从一般到特殊,归纳与类比是从特殊到一般.其中类比是从此类到彼类,找到两类之间的关联.本例中的目标函数乍看新颖,但只要去掉绝对值,就变成常规的截距型,我们只要把解截距型问题的思想方法迁移过来即可.当堂检测1.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2x ,x +y ≤1,y ≥-1,则x +2y 的最大值是( )A .-52B .0C .53D .52【答案】C【解析】画出可行域如图阴影部分(含边界)所示.设z =x +2y ,即y =-12x +12z ,平行移动直线y =-12x +12z ,当直线y =-12x +z2过点B ⎝⎛⎭⎫13,23时,z 取最大值53,所以(x +2y )max =53.2.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的最小值为( )A .6B .7C .8D .23 【答案】B【解析】作出可行域如图阴影部分(含边界)所示.由图可知,z =2x +3y 经过点A (2,1)时,z 有最小值,z 的最小值为7. 3.已知a ,b 是正数,且满足2<a +2b <4,那么b +1a +1的取值范围是( )A.⎝⎛⎭⎫15,3B.⎝⎛⎭⎫13,2C.⎝⎛⎭⎫15,2D.⎝⎛⎭⎫13,3 【答案】A【解析】画出不等式组⎩⎪⎨⎪⎧2<a +2b <4,a >0,b >0表示的平面区域,如图阴影部分所示(不含边界).b +1a +1的几何意义是可行域内的点M (a ,b )与点P (-1,-1)连线的斜率,由图得,当点M 与点B (0,2)重合时,b +1a +1最大;当点M 与点A (4,0)重合时,b +1a +1最小.由图知k PB =2+10+1=3,k P A =0+14+1=15,因为a ,b 是正数,且点A ,B 不在可行域内,所以15<b +1a +1<3,故选A.4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( )A.⎣⎡⎦⎤-32,6 B.⎣⎡⎦⎤-32,-1 C .[-1,6] D.⎣⎡⎦⎤-6,32 【答案】A【解析】作出不等式组表示的平面区域,如图阴影部分(含边界)所示,由z =3x -y ,可得y =3x -z ,则-z 为直线y =3x -z 在y 轴上的截距,截距越大,z 越小,结合图形可知,当直线y =3x -z 平移到B 时,z 最小,平移到C 时,z 最大,可得B ⎝⎛⎭⎫12,3,z min =-32,C (2,0),z max =6,∴-32≤z ≤6.5.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥6,x ≤4,y ≤4,则z =y -1x -1的最大值是________.【答案】3【解析】作出不等式组表示的平面区域如图中阴影部分所示(包括边界).z =y -1x -1可看作可行域上的点(x ,y )与定点B (1,1)连线的斜率.由图可知z =y -1x -1的最大值为k AB =3. 课堂小结1.用图解法解决简单的线性规划问题的基本步骤 (1)寻找线性约束条件,线性目标函数;(2)作图——画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l ;(3)平移——将直线l 平行移动,以确定最优解所对应的点的位置;(4)求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值. 2.作不等式组表示的可行域时,注意标出相应的直线方程,还要给可行域的各顶点标上字母,平移直线时,要注意线性目标函数的斜率与可行域中边界直线的斜率进行比较,确定最优解.3.对于非线性约束条件,仍然用“方程定界,特殊点定域”.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题名称:简单的线性规划问题 (教案)
高一数学备课组(潘洪存)
三维教学目标
知识与技能:①了解线性规划的意义以及约束条件、线性目标函数、可行域、最优解等相关的基本概念;
②在巩固二元一次不等式(组)所表示的平面区域的基础上,能从实际优化问题中抽象出约束条件和目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;③掌握对一些实际优化问题建立线性规划数学模型并运用图解法进行求解的基本方法和步骤。
过程与方法:①培养学生的形象思维能力、绘图能力和探究能力;②强化数形结合的数学思想方法;
③提高学生构建(不等关系)数学模型、解决简单实际优化问题的能力。
情感、态度与价值观:①在感受现实生产、生活中的各种优化、决策问题中体验应用数学的快乐;②在运用求解线性规划问题的图解方法中,感受动态几何的魅力;③在探究性练习中,感受多角度思考、探究问题并收获探究成果的乐趣。
教学重点及应对策略
1、教学重点:根据实际优化问题准确建立目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;
教学难点:①借助线性目标函数的几何含义准确理解线性目标函数在y轴上的截距与z最值之间的关系;②用数学语言表述运用图解法求解线性规划问题的过程。
教学过程设计。