最新高考物理一轮复习课时试题解析 第6章 试题解析29
物理试题 人教版高考一轮复习第6章 动量动量守恒定律
第1讲 动量 动量定理[A 组 基础题组]一、单项选择题1.下列解释正确的是( )A .跳高时,在落地处垫海绵是为了减小冲量B .在码头上装橡皮轮胎,是为了减小渡船靠岸过程受到的冲量C .动量相同的两个物体受相同的制动力作用,质量小的先停下来D .人从越高的地方跳下,落地时越危险,是因为落地时人受到的冲量越大解析:跳高时,在落地处垫海绵是为了延长作用时间减小冲力,不是减小冲量,故选项A 错误;在码头上装橡皮轮胎,是为了延长作用时间,从而减小冲力,不是减小冲量,故选项B 错误;动量相同的两个物体受相同的制动力作用,根据动量定理Ft =mv ,可知运动时间相等,故选项C 错误;人从越高的地方跳下,落地前瞬间速度越大,动量越大,落地时动量变化量越大,则冲量越大,故选项D 正确。
答案:D2.如图所示,AB 为固定的光滑圆弧轨道,O 为圆心,AO 水平,BO 竖直,轨道半径为R ,将质量为m 的小球(可视为质点)从A 点由静止释放,在小球从A 点运动到B 点的过程中( )A .小球所受合力的冲量方向为弧中点指向圆心B .小球所受支持力的冲量为0C .小球所受重力的冲量大小为m 2gRD .小球所受合力的冲量大小为m 2gR解析:小球受到竖直向下的重力和垂直切面指向圆心的支持力,所以合力不指向圆心,故合力的冲量也不指向圆心,故A 错误;小球的支持力不为零,作用时间不为零,故支持力的冲量不为零,故B 错误;小球在运动过程中只有重力做功,所以根据机械能守恒定律可得mgR =12mv B 2,故v B =2gR ,根据动量定理可得I 合=Δp =mv B =m 2gR ,故C 错误,D 正确。
答案:D3.一小球从水平地面上方无初速度释放,与地面发生碰撞后反弹至速度为零。
假设小球与地面碰撞没有机械能损失,运动时的空气阻力大小不变,则下列说法正确的是( ) A .上升过程中小球动量改变量等于该过程中空气阻力的冲量 B .小球与地面碰撞过程中,地面对小球的冲量为零 C .下落过程中小球动能的改变量等于该过程中重力做的功D .从释放到反弹至速度为零的过程中,小球克服空气阻力做的功等于重力做的功解析:根据动量定理可知,上升过程中小球动量改变量等于该过程中重力和空气阻力的合力的冲量,选项A 错误;小球与地面碰撞过程中,由动量定理得Ft -mgt =mv 2-(-mv 1),可知地面对小球的冲量Ft 不为零,选项B 错误;下落过程中小球动能的改变量等于该过程中重力和空气阻力做功的代数和,选项C 错误;由能量守恒关系可知,从释放到反弹至速度为零的过程中,小球克服空气阻力做的功等于重力做的功,选项D正确。
最新2020版高考物理一轮复习:第六章_静电场_第1讲习题_含解析
选修3-1 第六章 第1讲一、选择题(本题共10小题,1~5题为单选,6~10题为多选)1.(2016·江西赣中南五校上学期联考)一带电粒子在电场中只受电场力作用时,它不可能出现的运动状态是导学号 51342665( A )A .匀速直线运动B .匀加速直线运动C .匀变速曲线运动D .匀速圆周运动[解析] 一带电粒子在电场中只受电场力作用时,合力不为零,不可能做匀速直线运动。
粒子所受合力不为零,当初速度方向与加速度方向相同,而且合外力恒定时,粒子做匀加速直线运动。
粒子所受合力不为零,当初速度方向与加速度方向不在一条直线上,而且合力恒定时,粒子做匀变速曲线运动。
粒子所受合力不为零,当合力与速度方向始终垂直时,就可能做匀速圆周运动。
不可能出现的运动状态为A 。
2.(2016·重庆名校联盟第一次联考)真空中有两个相同的带电金属小球(可看成点电荷),带电荷量分别为9Q 、-Q ,当它们静止于空间某两点时,静电力大小为F 。
现用绝缘手柄将两球接触后再放回原处,则它们间静电力的大小为导学号 51342666( C )A .259FB .925FC .169FD .916F[解析] 接触前F =k ·9Q ·Qr2,接触后两金属小球带等量的同种电荷,各带+4Q 电荷量,相互作用力F ′=k ·4Q ·4Q r 2,则F ′=169F ,C 正确。
3.(2016·河北邯郸三校(上)期中联考)A 、B 是一条电场线上的两个点,一带正电的粒子仅在电场力作用下以一定的初速度从A 点沿电场线运动到B 点,其v -t 图象如图所示。
则该电场的电场线分布可能是下列选项中的导学号 51342667( D )[解析] 根据v -t 图象,带电粒子的加速度逐渐增大,速度逐渐减小,故带正电的粒子应该逆着电场线且向着电场线密的方向运动,选项D 正确。
4.(2016·湖北武汉武昌区元月调研)如图所示,以O 点为圆心的圆周上有六个等分点a 、b 、c 、d 、e 、f 。
高三物理一轮复习专题实验6 验证机械能守恒定律(含解析)
实验6:验证机械能守恒定律一、实验目的验证机械能守恒定律.二、实验原理在只有重力做功的自由落体运动中,物体的重力势能和动能互相转化,但总的机械能守恒。
若物体从静止开始下落,下落高度为h 时的速度为v,恒有mgh=错误!m v2。
故只需借助打点计时器,通过纸带测出重物某时刻的下落高度h和该时刻的瞬时速度v,即可验证机械能守恒定律。
测定第n点的瞬时速度的方法是:测出第n点相邻的前、后两段相等时间间隔T内下落的高度x n-1和x n+1(或用h n-1和h n+1),然后由公式v n=错误!或由v n=错误!可得v n(如图所示)。
三、实验器材铁架台(带铁夹)、电磁打点计时器与低压交流电源(或电火花打点计时器)、重物(带纸带夹子)、纸带数条、复写纸片、导线、毫米刻度尺。
四、实验步骤1.安装器材:如图所示,将打点计时器固定在铁架台上,用导线将打点计时器与低压电源相连,此时电源开关应为断开状态。
2.打纸带:把纸带的一端用夹子固定在重物上,另一端穿过打点计时器的限位孔,用手竖直提起纸带,使重物停靠在打点计时器下方附近,先接通电源,待计时器打点稳定后再松开纸带,让重物自由下落,打点计时器就在纸带上打出一系列的点,取下纸带,换上新的纸带重打几条(3~5条)纸带。
3.选纸带:分两种情况说明(1)若选第1点O到下落到某一点的过程,即用mgh=错误!m v2来验证,应选点迹清晰,且1、2两点间距离小于或接近2 mm的纸带,若1、2两点间的距离大于2 mm,这是由于打点计时器打第1个点时重物的初速度不为零造成的(如先释放纸带后接通电源等错误操作会造成此种结果)。
这样第1个点就不是运动的起始点了,这样的纸带不能选。
(2)用错误!m v错误!-错误!m v错误!=mgΔh验证时,由于重力势能的相对性,处理纸带时选择适当的点为基准点,这样纸带上打出的第1、2两点间的距离是否为2 mm就无关紧要了,所以只要后面的点迹清晰就可以选用。
2021届山东新高考物理一轮复习讲义:第6章 第2节 动量守恒定律及其应用 Word版含答案
第2节动量守恒定律及其应用一、动量守恒定律1.动量守恒定律的内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变。
2.动量守恒的数学表达式(1)p=p′(系统相互作用前总动量p等于相互作用后总动量p′)。
(2)Δp=0(系统总动量变化为零)。
(3)Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量增量大小相等,方向相反)。
3.动量守恒的条件(1)系统不受外力或所受外力之和为零时,系统的动量守恒。
(2)系统所受外力之和不为零,但当内力远大于外力时系统动量近似守恒。
(3)系统所受外力之和不为零,但在某个方向上所受合外力为零或不受外力,或外力可以忽略,则在这个方向上,系统动量守恒。
二、碰撞、反冲和爆炸1.碰撞(1)概念:碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象。
(2)特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的物体组成的系统动量守恒。
(3)分类:2.(1)物体在内力作用下分裂为两个不同部分,并且这两部分向相反方向运动的现象。
(2)反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理。
3.爆炸问题(1)爆炸与碰撞类似,物体间的相互作用力很大,且远大于系统所受的外力,所以系统动量守恒。
(2)爆炸过程中位移很小,可忽略不计,作用后从相互作用前的位置以新的动量开始运动。
1.思考辨析(正确的画“√”,错误的画“×”)(1)系统所受合外力的冲量为零,则系统动量一定守恒。
(√)(2)动量守恒是指系统在初、末状态时的动量相等。
(×)(3)物体相互作用时动量守恒,但机械能不一定守恒。
(√)(4)在爆炸现象中,动量严格守恒。
(×)(5)在碰撞问题中,机械能也一定守恒。
(×)(6)反冲现象中动量守恒、动能增加。
(√)2.(人教版选修3-5P16T1改编)(多选)如图所示,在光滑的水平面上有一辆平板车,人和车都处于静止状态。
(通用版)2020版高考物理一轮复习第六章第2讲动量守恒定律及其应用课时作业(含解析)(最新整理)
(通用版)2020版高考物理一轮复习第六章第2讲动量守恒定律及其应用课时作业(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((通用版)2020版高考物理一轮复习第六章第2讲动量守恒定律及其应用课时作业(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(通用版)2020版高考物理一轮复习第六章第2讲动量守恒定律及其应用课时作业(含解析)的全部内容。
动量守恒定律及其应用一、选择题(本题共10小题,1~6题为单选题,7~10题为多选题)1.如图所示,物块A静止在光滑水平面上,将小球B从物块顶端由静止释放,从小球开始沿物块的光滑弧面(弧面末端与水平面相切)下滑到离开的整个过程中,对小球和物块组成的系统,下列说法正确的是( )A.动量守恒,机械能守恒B.动量守恒,机械能不守恒C.动量不守恒,机械能守恒D.动量不守恒,机械能不守恒解析:C 对于A、B组成的系统,在B下滑的过程中,只有重力做功,则小球和物块组成的系统机械能守恒.A、B组成的系统在竖直方向上合外力不为零,则该系统动量不守恒,C正确.2.如图所示,光滑水平面上有质量均为m的物块A和B,B上固定一轻质弹簧,B静止,A 以速度v0水平向右运动,从A与弹簧接触至弹簧被压缩到最短的过程中( )A.A、B的动量变化量相同B.A、B的动量变化率相同C.A、B系统的总动能保持不变D.A、B系统的总动量保持不变解析:D 两物块相互作用过程中系统的合外力为零,系统的总动量守恒,则A、B动量变化量大小相等、方向相反,所以动量变化量不同,但总动量保持不变,A错误,D正确.由动量定理Ft=Δp可知,动量的变化率等于物块所受的合外力,A、B两物块所受的合外力大小相等、方向相反,则A、B所受的合外力不同,动量的变化率不同,B错误.A、B和弹簧组成的系统总机械能不变,弹性势能在变化,则总动能在变化,C错误.3。
高考物理一轮复习 第6章 动量守恒定律及其应用 第1讲 动量 动量定理课时作业(含解析)新人教版-新
第1讲动量动量定理时间:45分钟总分为:100分一、选择题(此题共10小题,每一小题7分,共70分。
其中1~7题为单项选择,8~10题为多项选择)1.下面关于物体动量和冲量的说法错误的答案是()A.物体所受合外力的冲量越大,它的动量也越大B.物体所受合外力的冲量不为零,它的动量一定要改变C.物体动量增量的方向,就是它所受冲量的方向D.物体所受合外力越大,它的动量变化就越快答案 A解析Ft越大,Δp越大,但动量不一定越大,它还与初态的动量有关,故A错误;Ft =Δp,Ft不为零,Δp一定不为零,B正确;冲量不仅与Δp大小相等,而且方向一样,C 正确;物体所受合外力越大,速度变化越快,即动量变化越快,D正确。
此题选说法错误的,应当选A。
2.将质量为0.5 kg的小球以20 m/s的初速度竖直向上抛出,不计空气阻力,g取10 m/s2,以下判断正确的答案是()A.小球从抛出至最高点受到的冲量大小为10 N·sB.小球从抛出至落回出发点动量的增量大小为0C.小球从抛出至落回出发点受到的冲量大小为0D.小球从抛出至落回出发点受到的冲量大小为10 N·s答案 A解析小球在最高点速度为零,取向下为正方向,小球从抛出至最高点受到的冲量:I =0-(-mv0)=10 N·s,A正确;因不计空气阻力,所以小球落回出发点的速度大小仍等于20 m/s,但其方向变为竖直向下,由动量定理知,小球从抛出至落回出发点受到的冲量为:I′=Δp=mv0-(-mv0)=20 N·s,如此冲量大小为20 N·s,B、C、D错误。
3.(2019·四川自贡高三一诊)校运会跳远比赛时在沙坑里填沙,这样做的目的是可以减小()A.人的触地时间B.人的动量变化率C.人的动量变化量D.人受到的冲量答案 B解析 跳远比赛时,运动员从与沙坑接触到静止,动量的变化量Δp 一定,由动量定理可知,人受到的合力的冲量I =Δp 是一定的,在沙坑中填沙延长了人与沙坑的接触时间,即t 变大,由动量定理:Δp =Ft ,可得Δpt=F ,Δp 一定,t 越大,动量变化率越小,人受到的合外力越小,人越安全,B 正确。
高考物理一轮复习 课练29 电磁感应现象 楞次定律(含解析)新人教版-新人教版高三全册物理试题
课练29 电磁感应现象楞次定律1.(多项选择)如下列图,将带铁芯的线圈A通过滑动变阻器和开关连接到电源上,线圈B的两端连接到灵敏电流计上,把线圈A放进线圈B的里面.下面几种情况,灵敏电流计指针可能有偏转的是( )A.闭合开关瞬间B.开关闭合且电路稳定后C.开关闭合,拔出线圈A的过程D.开关闭合,将滑动变阻器的滑片P向左滑动的过程2.(多项选择)如下列图是研究性学习小组的同学设计的防止电梯坠落的应急安全装置,在电梯轿厢上安装永久磁铁,电梯的井壁上铺设线圈,能在电梯突然坠落时减小对人员的伤害.关于该装置,如下说法正确的答案是 ( )A.当电梯突然坠落时,该安全装置可起到阻碍电梯下落的作用B.当电梯突然坠落时,该安全装置可使电梯停在空中C.当电梯坠落至永久磁铁在图示位置时,闭合线圈A、B中电流方向一样D.当电梯坠落至永久磁铁在图示位置时,闭合线圈A、B都在阻碍电梯下落3.如下列图为一个简易的电磁弹射玩具.线圈、铁芯组合充当炮筒,硬币充当子弹.现将一个金属硬币放在铁芯上(金属硬币半径略大于铁芯半径),电容器刚开始时处于无电状态,如此如下说法正确的答案是( )A.要将硬币射出,可直接将开关拨到2B.当开关拨向1时,电路中有短暂电流出现,且电容器上极板带负电C.开关由1拨向2的瞬间,铁芯中的磁通量减小D.开关由1拨向2的瞬间,硬币中会产生向上的感应磁场4.(多项选择)如图甲所示,虚线abcd(在水平面内)为矩形匀强磁场区域,磁场方向竖直向下,圆形闭合金属线圈以某初速度沿光滑绝缘水平面向磁场区域运动.图乙给出的是圆形闭合金属线圈四个可能到达的位置,不计空气阻力,如下说法正确的答案是 ( )A.①位置线圈中感应电流方向为顺时针B.②位置线圈中一定没有感应电流C.①④位置线圈的速度可能为零D.②③位置线圈的速度可能为零5.(多项选择)如下列图,M、N为两个有一定质量的载流超导线圈,M放置在水平桌面上,N悬停于M正上方,假设增大N的质量,使得N向下运动,如此如下说法正确的答案是( ) A.线圈M和N中的电流绕行方向相反B.线圈N受到的作用力减小C.线圈M中的电流增大D.线圈M对桌面的压力减小6.如下列图,一个U形金属导轨水平放置,其上放有一个金属导体棒ab,有一磁感应强度为B的匀强磁场斜向上穿过导轨平面,且与竖直方向的夹角为θ.在如下过程中,一定能在导轨与导体棒构成的回路中产生感应电流的是( )A.ab向右运动,同时使θ减小B.使磁感应强度B减小,θ同时也减小C.ab向左运动,同时增大磁感应强度BD.ab向右运动,同时增大磁感应强度B和θ(0°<θ<90°)练高考小题7.[2016·海南卷,4]如图,一圆形金属环与两固定的平行长直导线在同一竖直面内,环的圆心与两导线距离相等,环的直径小于两导线间距.两导线中通有大小相等、方向向下的恒定电流.假设( )A.金属环向上运动,如此环上的感应电流方向为顺时针方向B.金属环向下运动,如此环上的感应电流方向为顺时针方向C.金属环向左侧直导线靠近,如此环上的感应电流方向为逆时针方向D.金属环向右侧直导线靠近,如此环上的感应电流方向为逆时针方向8.[2016·江苏卷,6](多项选择)电吉他中电拾音器的根本结构如下列图,磁体附近的金属弦被磁化,因此弦振动时,在线圈中产生感应电流,电流经电路放大后传送到音箱发出声音.如下说法正确的有( )A.选用铜质弦,电吉他仍能正常工作B.取走磁体,电吉他将不能正常工作C.增加线圈匝数可以增大线圈中的感应电动势D.弦振动过程中,线圈中的电流方向不断变化9.[2019·全国卷Ⅲ,14]楞次定律是如下哪个定律在电磁感应现象中的具体表现?( )A.电阻定律 B.库仑定律C.欧姆定律 D.能量守恒定律10.[2016·全国卷Ⅱ,20](多项选择)法拉第圆盘发电机的示意图如下列图.铜圆盘安装在竖直的铜轴上,两铜片P、Q分别与圆盘的边缘和铜轴接触.圆盘处于方向竖直向上的匀强磁场B中.圆盘旋转时,关于流过电阻R的电流,如下说法正确的答案是( ) A.假设圆盘转动的角速度恒定,如此电流大小恒定B.假设从上向下看,圆盘顺时针转动,如此电流沿a到b的方向流动C.假设圆盘转动方向不变,角速度大小发生变化,如此电流方向可能发生变化D.假设圆盘转动的角速度变为原来的2倍,如此电流在R上的热功率也变为原来的2倍练模拟小题11.[2019·江苏省泰州市黄桥中学模拟]如下列图,匀强磁场垂直圆形线圈指向纸内,a、b、c、d为圆形线圈上等距离的四点,现用外力在上述四点将线圈拉成正方形,且线圈仍处在原平面内,如此在线圈发生形变的过程中( )A.线圈中将产生abcda方向的感应电流B.线圈中将产生adcba方向的感应电流C.线圈中的感应电流方向无法判断D.线圈中无感应电流12.[2019·江西省景德镇模拟](多项选择)如下列图,一根长导线弯曲成“〞形,通以直流电流I,正中间用绝缘线悬挂一金属环C,环与导线处于同一竖直平面内.在电流I 增大的过程中,如下判断正确的答案是( )A.金属环中无感应电流产生B.金属环中有逆时针方向的感应电流C.悬挂金属环C的绝缘线的拉力大于环的重力D.悬挂金属环C的绝缘线的拉力小于环的重力13.[2019·湖北省武汉调研]如下列图,竖直长导线通有恒定电流,一矩形线圈abcd可绕其竖直对称轴O1O2转动.当线圈绕轴以角速度ω沿逆时针(沿轴线从上往下看)方向匀速转动,从图示位置开始计时,如下说法正确的答案是( )A.t=0时,线圈产生的感应电动势最大B.0~π2ω时间内,线圈中感应电流方向为abcdaC.t=π2ω时,通过线圈的磁通量为零,线圈产生的感应电动势也为零D.线圈每转动一周电流方向改变一次14.[2019·山东省枣庄八中模拟](多项选择)如下列图,水平放置的圆形闭合铜线圈沿着固定的条形磁铁的竖直轴线自由下落.如此在它穿过条形磁铁的过程中( )A.线圈中感应电流的方向从上向下看先顺时针再逆时针B.线圈中感应电流方向没有改变C.线圈所受的安培力始终为阻力D.线圈的机械能增加15.[2019·江苏省南京模拟](多项选择)匀强磁场方向垂直纸面,规定垂直纸面向里的方向为正,磁感应强度B随时间t变化的规律如图甲所示.在磁场中有一细金属圆环,圆环平面位于纸面内,如图乙所示(磁场未画出).用I1、I2、I3分别表示Oa、ab、bc段的感应电流,F1、F2、F3分别表示电流为I1、I2、I3时,金属圆环上很小一段受到的安培力,如此( )A.I1沿逆时针方向,I2沿顺时针方向B.I2沿逆时针方向,I3沿顺时针方向C.F1方向指向圆心,F2方向指向圆心D.F2方向背离圆心向外,F3方向指向圆心16.[2019·安徽省宣城模拟]如图甲所示,水平面上的平行导轨MN、PQ上放着两根导体棒ab、cd,两棒间用绝缘细线系住.开始匀强磁场垂直纸面向里,磁感应强度B随时间t的变化如图乙所示,图线与t轴的交点为t0.I和F T分别表示通过导体棒中的电流和细线的拉力(不计电流间的相互作用).如此在t0时刻( )A.I=0,F T=0 B.I=0,F T≠0C.I≠0,F T=0 D.I≠0,F T≠0———[综合测评提能力]———一、单项选择题(此题共8小题,每一小题3分,共24分)1.[2019·西安模拟]如下列图,导轨间的磁场方向垂直于纸面向里,圆形金属环B正对带铁芯的线圈A,当金属棒MN在导轨上向右加速滑动时,如此( )A.MN无电流,B环无感应电流B.MN有向上电流,B环无感应电流C.MN有向下电流,从左向右看B有逆时针方向电流D.MN有向上电流,从左向右看B有顺时针方向电流2.[2019·武汉联考]如下列图,金属棒ab置于水平放置的U形光滑导轨上,导轨左端接一定值电阻R,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef内有一半径很小的金属圆环L,圆环与导轨在同一平面内.金属棒ab在水平恒力F的作用下从磁场左边界ef处由静止开始向右运动,导轨电阻不计,在金属棒匀速运动前,如下有关圆环的说法正确的答案是( )A.圆环内产生变大的感应电流,圆环有收缩的趋势B.圆环内产生变小的感应电流,圆环有收缩的趋势C.圆环内产生变大的感应电流,圆环有扩张的趋势D.圆环内产生变小的感应电流,圆环有扩张的趋势3.如图甲所示,绕在铁棒上的线圈ab中通有按如图乙所示规律变化的电流,以电流方向从a到b为正,在0~t0时间内,用丝线悬挂的铝环M始终静止不动,如此( )A.铝环M中有方向变化的感应电流B.铝环M中感应电流先减小后增大C.铝环M受到的摩擦力一直向右D.铝环M中感应电流的大小保持不变4.[2019·吉林长春质检]电动汽车越来越被人们所喜爱,某种无线充电方式的根本原理如下列图,路面上依次铺设圆形线圈,相邻两个线圈由供电装置通以反向电流,车身底部固定感应线圈,通过充电装置与蓄电池相连,汽车在此路面上行驶时,就可以进展充电,假设汽车正在匀速行驶,如下说法正确的答案是 ( )A.感应线圈中电流的磁场方向一定与路面线圈中电流的磁场方向相反B.感应线圈中产生的是方向改变、大小不变的电流C.感应线圈一定受到路面线圈磁场的安培力,会阻碍汽车运动D.给路面上的线圈通以同向电流,不会影响充电效果5.某同学学习了电磁感应相关知识之后,做了探究性实验:将闭合线圈按图示方式放在电子秤上,线圈上方有一N极朝下竖直放置的条形磁铁,手握磁铁在线圈的正上方静止,此时电子秤的示数为m0.如下说法正确的答案是( )A.将磁铁N极加速插向线圈的过程中,电子秤的示数小于m0B.将静止于线圈内的磁铁匀速抽出的过程中,电子秤的示数大于m0C.将磁铁N极加速插向线圈的过程中,线圈中产生的电流沿逆时针方向(俯视)D.将磁铁N极匀速插向线圈的过程中,磁铁减少的重力势能等于线圈中产生的焦耳热6.[2019·河南周口检测]如下列图,A为水平放置的胶木圆盘,在其侧面均匀分布着负电荷,在A的正上方用绝缘丝线悬挂一个金属圆环B,使B的环面水平且与圆盘面平行,其轴线与胶木圆盘A的轴线OO′重合.现使胶木圆盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,如此( )A.金属环B的面积有扩大的趋势,丝线受到的拉力增大B.金属环B的面积有缩小的趋势,丝线受到的拉力减小C.金属环B的面积有扩大的趋势,丝线受到的拉力减小D.金属环B的面积有缩小的趋势,丝线受到的拉力增大7.[2019·浙江五校联考]如图1所示的是工业上探测物件外表层内部是否存在缺陷的涡流探伤技术.其原理是用电流线圈使物件内产生涡电流,借助探测线圈测定涡电流的改变,从而获得构件内部是否断裂与位置的信息.如图2所示的是一个带铁芯的线圈L、开关S和电源用导线连接起来的跳环实验装置,将一个套环置于线圈L上且使铁芯穿过其中,闭合开关S 的瞬间,套环将立刻跳起.关于对以上两个运用实例理解正确的答案是( )A.涡流探伤技术运用了互感原理,跳环实验演示了自感现象B.能被探测的物件和实验所用的套环必须是导电材料C.以上两个案例中的线圈所连接电源都必须是变化的交流电源D.以上两个案例中的线圈所连接电源也可以都是稳恒电源8.[2019·福建泉州检测]水平放置的光滑绝缘杆上挂有两个铜环M和N,通电密绕长螺线管穿过两环,如下列图,螺线管中部区域的管外磁场可以忽略,当滑动变阻器的滑片P向左移动时,两环将( )A.一起向左移动 B.一起向右移动C.相互靠拢 D.相互别离二、多项选择题(此题共2小题,每一小题4分,共8分)9.如下列图,光滑水平面上存在有界匀强磁场,直径与磁场宽度一样的圆形金属线框以一定的初速度斜向上匀速通过磁场.在必要的时间段内施加必要的水平拉力保证其做匀速运动,如此如下说法中正确的答案是( )A.金属线框内感应电流经历两次先增大后减小B.金属线框内感应电流方向先沿顺时针方向再沿逆时针方向C.拉力方向与速度方向一样D.拉力方向与速度方向无关10.[2019·安徽黄山八校联考]如图甲所示,等离子气流(由等电量的正、负离子组成)从左端连续不断地以速度v0射入P1和P2两极板间的匀强磁场中,ab直导线通过滑动变阻器与P1、P2相连接,线圈A与直导线cd相连接,线圈A内存在按图乙所示规律变化的磁场,且磁感应强度B的正方向规定为向左,如此如下表示正确的答案是( )A.0~1 s内ab、cd导线互相排斥B.1~2 s内ab、cd导线互相吸引C.2~3 s内ab、cd导线互相排斥D.3~4 s内ab、cd导线互相吸引三、非选择题(此题共3小题,共32分)11.(10分)如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=37°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度B=1 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得最大速度为v m.改变电阻箱的阻值R,得到v m与R的关系如图乙所示.导轨间距L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计.(1)杆ab 下滑过程中,判断感应电流的方向.(2)求R =0时,闭合电路中的感应电动势E 的最大值.(3)求金属杆的质量m 和阻值r .12.(12分)[2019·重庆检测]如下列图,匀强磁场的磁感应强度方向垂直纸面向里,宽度为l ,上、下边界与地面平行,下边界与地面相距72l .将一个边长为l ,质量为m ,总电阻为R 的正方形刚性导电线框ABCD 置于匀强磁场区域上方,线框CD 边与磁场上边界平行,从高于磁场上边界h 的位置由静止释放,h 的值能保证AB 边匀速通过磁场区域.从AB 边离开磁场到CD 边落到地面所用时间是AB 边通过磁场时间的2倍(重力加速度为g ).求:(1)线框通过磁场过程中电流的方向;(2)磁场区域内磁感应强度的大小;(3)CD边刚进入磁场时线框加速度与h的函数关系,分析h在不同情况下加速度的大小和方向,计算线框通过磁场区域产生的热量.13.(11分)如图甲所示,两根足够长的平行光滑金属导轨间距L=0.5 m,导轨电阻不计.导轨与水平面成30°角固定在一范围足够大的匀强磁场中,磁场方向垂直导轨平面向上,两根一样的金属杆MN、PQ垂直放在金属导轨上,金属杆质量均为m=0.12 kg,电阻均为R=0.1 Ω.用长为d=1.0 m的绝缘细线OO′将两金属杆的中点相连,在下述运动中,金属杆与金属导轨始终接触良好.(1)在MN上施加平行于导轨的拉力,使MN保持静止,穿过回路的磁场的磁感应强度变化规律如图乙所示,如此在什么时刻回路MNQP的面积发生变化?(2)假设磁场的方向不变,磁感应强度大小恒为B=0.4 T,将细线OO′剪断,同时用平行于导轨的拉力使金属杆MN以v1=2 m/s的速度沿导轨向上做匀速运动,求拉力的最大功率与回路电阻的最大发热功率.课练29 电磁感应现象楞次定律[狂刷小题夯根底]1.ACD 感应电流产生的条件是闭合回路中通过线圈的磁通量发生变化,闭合开关瞬间有磁通量变化,有感应电流,A项正确;开关闭合且电路稳定后,电流不再发生变化,通过线圈B的磁通量无变化,无感应电流,B项错误;拔出线圈A,如此通过线圈B的磁通量减小,有感应电流,C项正确;滑片P滑动,滑动变阻器接入电路的电阻发生变化,电流发生变化,线圈A产生的磁场发生变化,如此通过线圈B的磁通量发生变化,有感应电流,D项正确.2.AD 假设电梯突然坠落,线圈内的磁感应强度发生变化,将在线圈中产生感应电流,感应电流会阻碍磁铁的相对运动,可起到应急避险作用,故A正确;感应电流会阻碍磁铁的相对运动,但不能阻止磁铁的运动,故B错误;当电梯坠落至题图位置时,闭合线圈A中向上的磁场减弱,感应电流的方向从上向下看是逆时针方向,线圈B中向上的磁场增强,感应电流的方向从上向下看是顺时针方向,可知线圈A与线圈B中感应电流的方向相反,故C错误;结合A选项的分析可知,当电梯坠落至题图位置时,闭合线圈A、B都在阻碍电梯下落,故D正确.3.D 电容器刚开始时处于无电状态,直接将开关拨到2,如此不能将硬币射出,选项A错误;当开关拨向1时,电容器充电,电路中有短暂电流出现,电容器上极板带正电,选项B错误;当开关由1拨向2瞬间,电容器放电,铁芯中产生向下增大的磁场,根据楞次定律,如此硬币中会产生向上的感应磁场,选项C错误,D正确.4.BC 根据楞次定律,①位置,线圈中感应电流方向为逆时针,选项A错误;②位置,线圈完全进入磁场,磁通量不变,没有感应电流产生,选项B正确;①④位置,线圈进或出磁场时,磁通量变化,线圈中会产生感应电流,线圈受到与速度方向相反的安培力的作用而减速运动,速度可能为零,故C正确;②③位置,线圈已完全进入磁场,磁通量不变,没有感应电流产生,不再受安培力,线圈在磁场中做匀速运动,所以②③位置线圈的速度不可能2.B 金属棒ab在水平恒力F的作用下从磁场左边界ef处由静止开始向右运动,金属棒ab切割磁感线产生感应电动势和感应电流,由于受到与速度成正比的安培力作用,金属棒ab的速度逐渐增大,加速度逐渐减小,左侧金属圆环内的磁通量逐渐增大,但磁通量变化率逐渐减小,根据法拉第电磁感应定律可知,圆环内产生逐渐变小的感应电流;根据楞次定律可知,圆环有收缩的趋势,选项B正确,A、C、D三项错误.3.D 此题考查安培定如此、楞次定律知识,意在考查考生的分析推理能力.根据题意可知,当电流从a流向b时,由右手螺旋定如此可知,穿过铝环M的磁场方向水平向右,由于ab中电流均匀减小,所以穿过M的磁通量均匀变小,根据楞次定律和法拉第电磁感应定律可得,铝环M的感应电流方向为顺时针方向(从左向右看),且大小不变;后半段时间电流从b 流向a,由右手螺旋定如此可知,穿过铝环M的磁场方向水平向左,ba中电流增大,如此穿过M的磁通量变大,根据楞次定律可知,感应电流方向为顺时针方向(从左向右看),故铝环M 中感应电流大小、方向均不变,A、B错误,D正确;铝环M中感应电流的大小、方向均保持不变,但线圈ab中产生磁场的方向变化,所以铝环M受到的摩擦力方向也变化,C错误.4.C 由安培定如此知路面上相邻圆形线圈内部的磁场方向相反,分析可知汽车在行驶过程中,感应线圈中感应电流产生的磁场方向与地面线圈产生的磁场方向时而一样,时而相反,故A项错误;由于路面线圈中的电流不知如何变化,产生的磁场也无法确定,所以感应线圈中的电流大小不能确定,故B项错误;感应线圈随汽车一起运动过程中会产生感应电流,在路面线圈的磁场中受到安培力,根据“来拒去留〞可知,此安培力一定阻碍相对运动,即阻碍汽车运动,故C项正确;给路面线圈通以同向电流,多个路面线圈内部产生一样方向的磁场,感应线圈中的磁通量的变化率与路面线圈通以反向电流时相比变小,所以会影响充电效果,故D项错误.5.C 此题以探究性实验为载体,考查感应电流的产生和方向判定、楞次定律的推论与应用,考查考生的理解能力和推理能力.将条形磁铁插入线圈或从线圈中抽出的过程,穿过线圈的磁通量发生了变化,线圈中产生了感应电流,线圈与条形磁铁会发生相互作用,根据楞次定律的推论“来拒去留〞可知,在将磁铁插入线圈(无论是匀速、加速还是减速)的过程中,线圈与磁铁相互排斥,导致电子秤的示数大于m0,在抽出磁铁(无论是匀速、加速还是减速)的过程中,线圈与磁铁相互吸引,导致电子秤的示数小于m0,A、B错误.根据楞次定律可判断,将一条形磁铁的N极加速插向线圈时,线圈中产生的感应电流方向为逆时针方向(俯视),C正确;磁铁N极匀速插向线圈的过程中,磁铁受到重力、拉力、斥力作用,重力和拉力的合力做的功等于线圈中产生的焦耳热,D错误.6.B 胶木圆盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,形成环形电流,。
2022年高考物理总复习第一部分常考考点复习第六章动量守恒定律第2讲动量守恒定律及其应用
第2讲动量守恒定律及其应用【课程标准】1.通过实验和理论推导,理解动量守恒定律,能用其解释生活中的有关现象。
知道动量守恒定律的普适性。
2.探究并了解物体弹性碰撞和非弹性碰撞的特点。
定量分析一维碰撞问题并能解释生产生活中的弹性碰撞和非弹性碰撞现象。
3.体会用动量守恒定律分析物理问题的方法,体会自然界的和谐与统一。
【素养目标】物理观念:能正确区分内力与外力。
科学思维:理解动量守恒定律的确切含义和表达式,知道定律的适用条件。
会用动量守恒定律解决碰撞、爆炸等问题。
一、动量守恒定律1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变,这就是动量守恒定律。
2.表达式:(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′。
(2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。
(3)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向。
3.适用条件:(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒。
(2)近似守恒:系统受到的合外力不为零,但当内力远大于外力时,系统的动量可近似看成守恒。
(3)某方向守恒:系统在某个方向上所受合外力为零时,系统在该方向上动量守恒。
二、弹性碰撞和非弹性碰撞1.碰撞:碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象。
2.特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒。
3.分类:动量是否守恒机械能有无损失弹性碰撞守恒无损失非弹性碰撞守恒有损失完全非弹性碰撞守恒有损失且损失最大命题·传统文化情境如图是《三国演义》中的“草船借箭”,若草船的质量为m1,每支箭的质量为m,草船以速度v1返回时,对岸士兵万箭齐发,n支箭同时射中草船,箭的速度皆为v,方向与船行方向相同。
由此,草船的速度会增加多少?(不计水的阻力)提示:船与箭的作用过程系统动量守恒:m 1v1+nmv=(m1+nm)(v1+Δv)得Δv=nmm1+nm(v-v1)。
2018版高考物理新课标一轮复习习题:第六章 静电场 课
课时作业(二十九) 电场的能的性质[基础训练]1.(2018·河北石家庄二模)如图所示,实线为某电场的电场线,虚线表示该电场的等势面,A 、B 、C 是电场中的三点,下列说法正确的是( )A .三点中,B 点的场强最大B .三点中,A 点的电势最高C .将一带负电的检验电荷从A 移动到B ,电势能增大D .将一带正电的检验电荷从A 移动到B 和从A 移动到C ,电势能的变化相同答案:D 解析:电场线的疏密表示电场强度的大小,所以三点中,A 点场强最大,A 错误;沿电场线方向,电势逐渐降低,A 点电势最低,B 错误;将一带负电的检验电荷从A 移动到B ,电场力做正功,电势能减小,C 错误;因为B 、C 两点在同一等势面上,所以将一带正电的检验电荷从A 移动到B 和从A 移动到C ,电场力做的功相同,电势能变化相同,D 正确.2.(2018·山东滨州二模)电子束焊接机中的电场线如图中虚线所示.K 为阴极,A 为阳极,两极之间的距离为d ,在两极之间加上高压U ,有一电子在K 极由静止加速.不考虑电子重力,元电荷为e ,电子的质量为m ,下列说法正确的是( )A .阴极K 应接高压电源的正极B .电子从K 到A 的过程中,加速度大小为Ue mdC .电子由K 到A 电子的电势能减小了eUD .电子由K 到A 电场力做负功答案:C 解析:由图可知A 极电势高,应接电源正极,选项A 错误;由于是非匀强电场,加速度大小在变化,选项B 错误;从K 到A ,电场力做功W =eU ,所以电势能减少了eU ,C 正确,D 错误.3.(2018·湖南十校共同体联考)如图所示,P 、Q 是两个电荷量相等的异种电荷,在其电场中有a 、b 、c 三点在一条直线上,平行于P 、Q 的连线,b 在P 、Q 连线的中垂线上,ab=bc,下列说法正确的是( )A.电势:φa>φb>φc B.电势:φa>φc>φbC.电场强度:E a>E b>E c D.电场强度:E b>E a>E c答案:A 解析:根据等量异种电荷电场线分布特点知,a、c两点对称,场强大小相等,又a、c两点处的电场线分布比b点处的密,故a、c两点处的场强大于b点处的场强,又沿着电场线方向电势逐渐降低,故选项A正确,其他选项错误.4.(2018·河南洛阳高三统考)如图所示,虚线表示某电场的等势面,实线表示一带电粒子仅在电场力作用下运动的径迹.粒子在A点的加速度为a A、动能为E k A、电势能为E p A;在B点的加速度为a B、动能为E k B、电势能为E p B.则下列结论正确的是( )A.a A>a B,E k A>E k B B.a A<a B,E p A>E p BC.a A<a B,E p A<E p B D.a A>a B,E k A<E k B答案:C 解析:根据等电势差等势面稀疏处电场强度小、密集处电场强度大可知,A 处电场强度小于B处.由电场力公式和牛顿第二定律可得qE=ma,由此可知a A<a B.根据带电粒子仅在电场力作用下由A运动到B的径迹可知,带电粒子由A运动到B,克服电场力做功,电势能增加,动能减小,故E k A>E k B,E p A<E p B,所以选项C正确.5.(多选)如图所示的虚线为电场中的三个等势面,三条虚线平行等间距,电势值分别为10 V、19 V、28 V,实线是仅受静电力的带电粒子的运动轨迹,A、B、C是轨迹上的三个点,A到中心虚线的距离大于C到中心虚线的距离,下列说法正确的是( )A.粒子在三点受到的静电力方向相同B.粒子带负电C.粒子在三点的电势能大小关系为E p C>E p B>E p AD.粒子从A运动到B与从B运动到C,静电力做的功可能相等答案:ABC 解析:根据电场线垂直于等势面可知,粒子在三点受到的静电力方向相同,A 正确;由粒子的运动轨迹得知,所受静电力垂直等势面向左下,且为引力,则粒子带负电,B 正确;A 、B 、C 三点电势大小关系为φA >φB >φC ,因粒子带负电,则有E p A <E p B <E p C ,故C 正确;根据静电力做功W =qU ,A 、B 两点之间的电势差大于B 、C 两点之间的电势差,则W AB >W BC ,故D 错误.6.(2018·江苏南通一模)(多选)四个点电荷位于正方形四个角上,电荷量及其附近的电场线分布如图所示.ab 、cd 分别是正方形两组对边的中垂线,O 为中垂线的交点,P 、Q 分别为ab 、cd 上的两点,OP >OQ ,则( )A .P 点的电场强度比Q 点的小B .P 点的电势比M 点的低C .OP 两点间的电势差小于OQ 两点间的电势差D .一带正电的试探电荷在Q 点的电势能比在M 点大答案:AD 解析:根据电场的对称性知P 点场强小于Q 点场强,选项A 正确;ab 和cd 是两条等势线,所以φP =φQ ,B 错误;U OP =U OQ =0,C 错误;由于φQ >φM ,所以正试探电荷在Q 点电势能大,D 正确.7.如图所示,在O 点放置一个正电荷,在过O 点的竖直平面内的A 点,自由释放一个带正电的小球,小球的质量为m 、电荷量为q .小球落下的轨迹如图中虚线所示,它与以O 为圆心、R 为半径的圆(图中实线表示)相交于B 、C 两点,O 、C 在同一水平线上,∠BOC =30°,A 距离OC 的竖直高度为h .若小球通过B 点的速度为v ,试求:(1)小球通过C 点的速度大小;(2)小球由A 运动到C 的过程中电势能的增加量.答案:(1)v 2+gR (2)mgh -12mv 2-12mgR 解析:(1)因为B 、C 两点电势相等,小球由B 到C 只有重力做功,由动能定理得:mgR ·sin 30°=12mv 2C -12mv 2 得v C =v 2+gR .(2)小球由A 运动到C 应用动能定理得: W AC +mgh =12mv 2C -0得W AC =12mv 2C -mgh =12mv 2+12mgR -mgh . 由电势能变化与电场力做功的关系得:ΔE p =-W AC =mgh -12mv 2-12mgR . [能力提升]8.(2018·安徽合肥一模)四个等量异种点电荷,分别放在正方形的四个顶点处,A 、B 、C 、D 为正方形四条边的中点,O 为正方形的中心,如图所示.下列说法中正确的是( )A .O 点电场强度为零B .A 、B 、C 、D 四点的电场强度相同C .将一带负电的试探电荷从B 点匀速移动到D 点,电场力做功为零D .将一带负电的试探电荷从A 点匀速移动到C 点,其电势能减小答案:C 解析:根据电场强度的叠加可知两正电荷在O 点处的合场强沿AO 连线指向右,两负电荷在O 点的合场强方向沿OC 连线指向右,所以O 点场强方向水平指向右,A 错误;同理,根据电场强度的叠加可知:A 、C 两点电场强度相同,B 、D 两点电场强度相同,但A 、C 和B 、D 电场强度方向相同,大小不同,B 错误;BD 连线为一条等势线,将一带负电的试探电荷从B 匀速移动到D 点,电场力不做功,C 正确;AC 是一条电场线,电场强度方向水平向右,将一带负电的试探电荷从A 匀速移动到C 点,电场力做负功,电势能增大,D 错误.9.如图所示,两个带等量正电荷的点电荷固定于P 、Q 两点,它们连线的中点是O ,A 、B 是PQ 连线中垂线上的两点,OA <OB .则下列说法正确的是( )A.A点电场强度一定大于B点的电场强度B.A、B是一条等势线,等势线左右对称点电势相等C.将一正试探电荷置于A和B点,该试探电荷在A点的电势能等于在B点的电势能D.将一负试探电荷置于A和B点,该试探电荷在A点的电势能小于在B点的电势能答案:D 解析:O点电场强度大小为零,由O点沿中垂线向外,电场强度先增大后减小,无法判断两点电场强度大小,选项A错误;A、B两点的电场强度方向相反,A点的电势高于B点的电势,正试探电荷在A点的电势能大于在B点的电势能,负试探电荷在A点的电势能小于在B点的电势能,选项B、C错误,选项D正确.10.(2018·河南濮阳油田教育中心一模)如图所示,真空中等量同种正点电荷放置在M、N两点,在MN连线上有对称点a、c,MN连线的中垂线上有对称点b、d,则下列说法正确的是( )A.正电荷+q在c点的电势能大于在a点的电势能B.正电荷+q在c点的电势能小于在a点的电势能C.在MN连线的中垂线上,O点电势最高D.负电荷-q从d点由静止释放,在它从d点运动到b点的过程中,加速度先减小再增大答案:C 解析:根据电场线的分布情况和对称性可知,a、c两点的电势相等,则点电荷在a点的电势能一定等于在c点的电势能,故A、B错误;沿电场线方向电势降低,在MN 连线的中垂线上,O点电势最高,故C正确;由对称性知O点的场强为零,电荷-q从d点由静止释放,在它从d点运动到b点的过程中,加速度可能先减小再增大,也可能按增大→减小→增大→减小变化,故D错误.11.(多选)一带负电的粒子在电场中做直线运动的vt图象如图所示,在第2 s末和第8 s末分别经过M、N两点,已知运动过程中粒子仅受电场力的作用,则以下判断正确的是( )A .该电场一定是匀强电场B .M 点的电势低于N 点的电势C .从M 点到N 点的过程中,粒子的电势能逐渐增大D .带电粒子在M 点所受电场力大于在N 点所受电场力答案:AB 解析:由速度—时间图象可知:粒子在电场中做匀变速直线运动,加速度是一个定值,所以电场力不变,是匀强电场,故A 正确;由图象可知,粒子在M 点的速率小于在N 点的速率,根据只有电场力做功,电势能与动能之和恒定,则粒子在M 点的电势能高于在N 点的电势能,即从M 点到N 点的过程中,动能先减小后增大,那么电势能先增大后减小,又由于是负电荷,所以M 点的电势低于N 点的电势,故B 正确,C 错误;由上可知,粒子在M 点所受电场力等于在N 点所受电场力,则D 错误.12.如图所示,在竖直平面内,一匀强电场方向竖直向上,一电荷量为q 、质量为m 的带电微粒以水平初速度v 0由P 点射入,入射方向与电场线垂直.带电微粒从Q 点射出电场时,其速度方向与电场线夹角为30°.已知匀强电场的宽度为d ,P 、Q 两点的电势差为U ,设P 点的电势为零,重力加速度为g .(1)求带电微粒在Q 点的电势能;(2)求匀强电场的电场强度大小;(3)当该带电微粒电势能为-12qU 时,机械能变化了多少? 答案:(1)-qU (2)3mv 20+mgd qd (3)12qU 解析:(1)根据带电微粒的偏转方向,知该微粒带正电,P 、Q 两点的电势差为U =φP -φQ ,电场力做正功,电势能减少,而P 点的电势能为零根据φ=E p q得E p Q =-qU .(2)建立直角坐标系,垂直于电场线方向为x 轴,平行于电场线方向为y 轴,由平抛运动的规律和几何知识可得tan 30°=v 0v yv y =atd =v 0ta =Eq -mg m解得E =3mv 20+mgd qd. (3)当该带电微粒电势能为-12qU 时,电场力做了12qU 的正功,所以机械能增加了12qU .。
2021版高考物理一轮复习第六章碰撞与动量守恒2动量守恒定律及其应用创新练1(含解析)
动量守恒定律及其应用4.如图所示,甲、乙两船的总质量(包括船、人和货物) 分别为10m、12m,两船沿同一直线同一方向运动,速度分别为2v0、v0。
为避免两船相撞,乙船上的人将一质量为m的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度。
(不计水的阻力)【解析】设乙船上的人抛出货物的最小速度大小为v min,抛出货物后船的速度为v1,甲船上的人接到货物后船的速度为v2,由动量守恒定律得12mv0=11mv1-mv min①10m·2v0-mv min=11mv2②为避免两船相撞应满足v1=v2③联立①②③式得v min=4v0答案:4v0【补偿训练】假设火箭喷气发动机每次喷出m=200 g的气体,气体离开发动机喷出时的速度v=1 000 m/s,设火箭质量M=300 kg,发动机每秒喷气20次。
(1)当第三次气体喷出后,火箭的速度多大。
(2)运动第1 s末,火箭的速度多大。
【解析】方法一:喷出气体运动方向与火箭运动方向相反,系统动量守恒。
(M-m)v1-mv=0,所以v1=。
第二次气体喷出后,火箭速度为v2,有(M-2m)v2-mv=(M-m)v1,所以v2=第三次气体喷出后,火箭速度为v3,有(M-3m)v3-mv=(M-2m)v2所以v3== m/s=2 m/s。
依次类推,第n次气体喷出后,火箭速度为v n,有(M-nm)v n-mv=[M-(n-1)m],所以v n=因为每秒喷气20次,所以1 s末火箭速度为v20== m/s=13.5 m/s方法二:整体选取研究对象,运用动量守恒定律求解(1)设喷出三次气体后火箭的速度为v3,以火箭和喷出的三次气体为研究对象,据动量守恒定律得:(M-3m)v3-3mv=0,所以v3==2 m/s(2)以火箭和喷出的20次气体为研究对象(M-20m)v20-20mv=0所以v20==13.5 m/s答案:(1)2 m/s (2)13.5 m/s。
高考物理一轮复习课时作业29定律与能量综合专题含解析新人教版
定律与能量综合专题一、选择题1.(2018·河南模拟)如图所示,质量为M 的足够高光滑斜槽静止在光滑水平面上,质量为m 的小球以一定的水平初速度冲上斜槽且不脱离斜槽,后又返回斜槽底部,则下列说法正确的是( )A .小球获得的最大重力势能等于小球初始动能B .小球到达斜槽最高点处,小球的速度为零C .小球回到斜槽底部时,小球速度方向一定向右D .小球回到斜槽底部时,小球速度方向可能向左 答案 D解析 A 项,小球冲上斜槽的过程中,斜槽向左运动,获得了动能,所以小球获得的最大重力势能小于小球初始动能,故A 项错误.B 项,小球到达斜槽最高点处时速度与斜槽速度相同,由水平动量守恒得mv =(M +m)v′,可得v′=mvM +m≠0,故B 项错误.C 、D 两项,设小球回到斜槽底部时,由水平动量守恒得mv =mv 1+Mv 2.根据机械能守恒定律得12mv 2=12mv 12+12Mv 22.解得v 1=m -MM +m v ,若m >M ,得v′>0,说明小球速度方向向左,故C 项错误,D 项正确.2.(2018·海南)如图,用长为l 的轻绳悬挂一质量为M 的沙箱,沙箱静止.一质量为m 的弹丸以速度v 水平射入沙箱并留在其中,随后与沙箱共同摆动一小角度.不计空气阻力.对子弹射向沙箱到与其共同摆过一小角度的过程( ) A .若保持m 、v 、l 不变,M 变大,则系统损失的机械能变小 B .若保持M 、v 、l 不变,m 变大,则系统损失的机械能变小 C .若保持M 、m 、l 不变,v 变大,则系统损失的机械能变大 D .若保持M 、m 、v 不变,l 变大,则系统损失的机械能变大 答案 C解析 弹丸击中沙箱过程系统水平方向动量守恒,以弹丸的初速度方向为正方向,由动量守恒定律得:mv =(M +m)v′,解得:v′=mv M +m,弹丸与沙箱一起摆动过程系统机械能守恒,由能量守恒定律可知,整个过程系统损失的机械能:ΔE=12mv 2-12(M +m)v′2=Mmv 22(M +m );由此判断,只有C 项正确.3.(2018·新乡一模)(多选)如图所示,两个质量和速度均相同的子弹分别水平射入静止在光滑水平地面上质量相同、材料不同的两矩形滑块A 、B 中,射入A 中的深度是射入B 中深度的两倍.上述两种射入过程相比较( )A .射入滑块A 的子弹速度变化大B .整个射入过程中两滑块受的冲量一样大C .射入滑块A 中时阻力对子弹做功是射入滑块B 中时的两倍D .两个过程中系统产生的热量相同 答案 BD解析 A 项,设子弹的初速度为v ,共同速度为v′,则根据动量守恒定律,有:mv =(M +m)v′,解得:v′=mvM +m;由于两矩形滑块A 、B 的质量相同,故最后子弹与滑块的速度都是相同的,故A 项错误;B 项,滑块A 、B 的质量相同,初速度均为零,末速度均为mv M +m,故动量改变量相等,根据动量定理,冲量相等,故B 项正确;C 项,根据动能定理,射入滑块中时阻力对子弹做功等于动能的变化量,故射入滑块A 中时阻力对子弹做功与射入B 中时相等,故C 项错误;D 项,根据能量守恒定律,两个过程中系统产生的热量等于系统减小的机械能,故两个过程中系统产生的热量相同,故D 项正确.4.(多选)如图所示,在质量为M(含支架)的小车中用轻绳悬挂一小球,小球的质量为m 0,小车和小球以恒定速度v 沿光滑水平地面运动,与位于正对面的质量为m 的静止木块发生碰撞,碰撞的时间极短.在此碰撞过程中,下列哪个或哪些说法是可能发生的?( )A .在此过程中小车、木块、摆球的速度都发生变化,分别变为v 1、v 2、v 3,满足(M +m 0)v =Mv 1+mv 2+m 0v 3B .在此碰撞过程中,小球的速度不变,小车和木块的速度分别为v 1和v 2,满足(M +m 0)v =Mv 1+mv 2C .在此碰撞过程中,小球的速度不变,小车和木块的速度都变成u ,满足Mv =(M +m)uD .碰撞后小球摆到最高点时速度变为v 1,木块的速度变为v 2,满足(M +m 0)v =(M +m 0)v 1+mv 2 答案 CD解析 A 项,碰撞的瞬间小车和木块组成的系统动量守恒,摆球的速度在瞬间不变,若碰后小车和木块的速度变为v 1和v 2,根据动量守恒有:Mv =Mv 1+mv 2.若碰后小车和木块速度相同,根据动量守恒定律有:Mv =(M +m)u.故C 项正确,A 、B 两项错误;D 项,碰撞后,小车和小球水平方向动量守恒,则整个过程中,系统动量守恒,则有:(M +m 0)v =(M +m 0)v 1+mv 2,故D 项正确.5.(2018·赣州一模)如图所示,静止在光滑水平面上的木板,右端有一根轻质弹簧沿水平方向与木板相连,木板质量M =3 kg.质量m =1 kg 的铁块以水平速度v 0=4 m/s ,从木板的左端沿板面向右滑行,压缩弹簧后又被弹回,最后恰好停在木板的左端.在上述过程中弹簧具有的最大弹性势能为( )A .3 JB .6 JC .20 JD .4 J答案 A解析 设铁块与木板速度相同时,共同速度大小为v ,铁块相对木板向右运动时,滑行的最大路程为L ,摩擦力大小为f.根据能量守恒定律得: 铁块相对于木板向右运动过程:12mv 02=fL +12(M +m)v 2+E p铁块相对于木板运动的整个过程:12mv 02=2fL +12(M +m)v 2又根据系统动量守恒可知,mv 0=(M +m)v 联立得到:E p =3 J.6.(2018·宜昌模拟)如图,质量为M 的小车静止在光滑的水平面上,小车AB 段是半径为R 的四分之一光滑圆弧轨道,BC 段是长为L 的水平粗糙轨道,两段轨道相切于B 点,一质量为m 的滑块在小车上从A 点静止开始沿轨道滑下,然后滑入BC 轨道,最后恰好停在C 点.已知小车质量M =3m ,滑块与轨道BC 间的动摩擦因数为μ,重力加速度为g.则( )A .全程滑块水平方向相对地面的位移R +LB .全程小车相对地面的位移大小s =14(R +L)C .滑块m 运动过程中的最大速度v m =2gRD .μ、L 、R 三者之间的关系为R =4μL 答案 B解析 A 、B 两项,设全程小车相对地面的位移大小为s ,则滑块水平方向相对地面的位移x =R +L -s.取水平向右为正方向,由水平动量守恒得:m x t -M s t =0,即m R +L -s t -M st =0,结合M =3m ,解得s =14(R +L),x =34(R +L).故A 项错误,B 项正确.C 项,滑块刚滑到B 点时速度最大,取水平向右为正方向,由动量守恒定律和机械能守恒分别得: 0=mv m -Mv.mgR =12mv m 2+12Mv 2.联立解得v m =32gR ,故C 项错误. D 项,对整个过程,由动量守恒定律得:0=(m +M)v′,得v′=0 由能量守恒定律得mgR =μmgL,得R =μgL,故D 项错误.7.(2018·安徽二模)(多选)如图所示,水平光滑轨道宽度和轻质弹簧自然长度均为 d.两物体m 1和m 2与弹簧连接,m 2的左边有一固定挡板.m 1由图示位置静止释放,当m 1与m 2相距最近时m 1速度为v 1,则在以后的运动过程中,可能的情况是( )A .m 1的最小速度是0B .存在某段时间m 1向左运动C .m 2的最大速度一定是v 1D .m 2的最大速度是2m 1m 1+m 2v 1答案 ABD解析 A 、C 、D 项,从小球m 1到达最近位置后继续前进,此后拉到m 2前进,m 1减速,m 2加速,达到共同速度时两者相距最远,此后m 1继续减速,m 2加速,当两球再次相距最近时,m 1达到最小速度,m 2达最大速度:取向右为正方向.根据动量守恒定律和机械能守恒定律分别得 m 1v 1=m 1v 1′+m 2v 2 12m 1v 12=12m 1v 12′+12m 2v 22; 解得:v 1′=m 1-m 2m 1+m 2v 1,v 2=2m 1m 1+m 2v 1故m 2的最大速度为2m 1m 1+m 2v 1,m 1的最小速度为m 1-m 2m 1+m 2v 1,当m 1=m 2时,m 1的最小速度是0,故A 、D 两项正确,C 项错误.B 项,若m 1<m 2,由上得v 1′<0,知存在某段时间m 1向左运动,故B 项正确.8.(2018·漳州三模)(多选)如图甲,长木板A 静放在光滑的水平面上,质量为m =1 kg 的物块B 以v 0=3 m/s 的速度滑上A 的左端,之后A 、B 速度随时间变化情况如图乙所示,取g =10 m/s 2,由此可得( )A .A 的质量m A =1 kgB .A 、B 间的动摩擦因数为0.2C .木板A 的长度至少为2 mD .0~2 s 内,A 、B 系统机械能的损失为3 J 答案 BD解析 A 项,取向右为正方向,由动量守恒定律得mv 0=(m +m A )v ,由图知v =1 m/s ,解得m A =2 kg ,故A 项错误.B 项,由图像可知,木板A 的加速度为a =v t =1 m/s 2,根据μmg=m A a 得出动摩擦因数为μ=0.2,故B 项正确.C 项,木板A 的最小长度等于0~1 s 内A 与B 间相对位移的大小,为L =3×12=1.5 m ,故C 项错误.D 项,0~2 s 内,A 、B 系统机械能的损失为:ΔE=12mv 02-12(m +m A )v 2,解得:ΔE=3 J ,故D 项正确.9.(2018·孝感一模)(多选)如图所示,在光滑水平地面上有一长木板,其左端放有一质量为2m 的木块(可视为质点),木块与长木板之间的动摩擦因数为μ.开始时,长木板和木块都静止,现有一质量为m 的子弹以初速度v 0击中木块并停留其中,设长木板撞到前方固定的障碍物前,长木板和木块的速度已经相等.已知长木板与障碍物发生弹性碰撞,经足够长的时间后,木块始终不从长木板上掉下来,则(重力加速度为g)( )A .木板与障碍物碰撞前,子弹、木块、木板三者组成的系统动量守恒B .木板与障碍物碰撞前,子弹、木块、木板三者组成的系统机械能守恒C .若木板的质量为6m ,木板可能与障碍物发生两次碰撞D .若木板的质量为2m ,木板的长度至少为v 0218μg答案 AD解析 A 、B 两项,木板与障碍物碰撞前,子弹、木块、木板三者组成的系统所受的外力之和为零,所以系统的动量守恒.由于有机械能转化为内能,所以系统的机械能不守恒,故A 项正确,B 项错误.C 项,设木板的质量为M.木板要能与障碍物发生两次碰撞,碰撞前子弹和木块的总动量应大于木板的动量,即有(m +2m)v >Mv ,得M <3m ,所以若木板的质量为6m ,木板不可能与障碍物发生两次碰撞,故C 项错误.D 项,子弹射入木块的过程,取向右为正方向,由动量守恒定律得:mv 0=(m +2m)v 1,得:v 1=13v 0,木块在木板上多次滑行,最终静止在障碍物处,由能量守恒定律得:μ·3mgL=12×3mv 12,木板的长度至少为:L =v 0218μg .故D 项正确.10.(2018·湖北二模)(多选)质量为2m 的两个相同小球A 、B 穿在水平光滑细杆上,用两根长度为L 的轻绳与C 球相连,已知C 的质量为m ,一开始A 、B 相距2L ,现将系统从静止释放,A 与B 相碰前瞬间,A 、B 球的速度大小分别为v A 、v B ,下列说法正确的是( )A .v A =vB =122gLB .v A =v B =2gLC .从释放到A 、B 两球碰前,两轻绳对C 球所做的总功为-mgLD .当A 、B 间距为L 的时候,A 、B 、C 三球速度大小相等 答案 AC解析 A 项,由系统水平方向的动量守恒得2mv A -2mv B =0 v A =v B ,由A 、B 、C 为系统,由机械能守恒定律:mgL =12·2mv A 2+12·2mv B 2,解得:v A =v B =122gL ,故A 项正确,B 项错误;C 项,C 球重力做功W G =mgL ,则两轻绳对C 球所做的总功为-mgL ,故C 项正确.D 项,根据运动的分解沿绳方向速度应该相等,即当A 、B 间距为L 的时候,v C cos30°=v A sin30°,所以C 点速度和A 点速度大小肯定不同,故D 项错误.11.(2018·聊城一模)(多选)如图甲所示,一轻弹簧的两端与质量分别是m 1和m 2的两物块相连,它们静止在光滑水平地面上.现给物块m 1一个瞬时冲量,使它获得水平向右的速度v 0,从此时刻开始计时,两物块的速度随时间变化的规律如图乙所示,则下列判断正确的是( )A .t 1时刻弹簧长度最短B .在t 1~t 3时间内,弹簧处于压缩状态C .在0~t 2时间内,弹簧对m 1冲量的大小为m 1(v 0-v 3)D .m 1、m 2的动量满足:m 1v 0=(m 1+m 2)v 2=m 2v 1-m 1v 3 答案 AD解析 A 项,从图像可以看出,从0到t 1的过程中,m 1的速度比m 2的大,弹簧被压缩,t 1时刻两物块达到共同速度,此后,m 1的速度比m 2的小,两者间距增大,弹簧的压缩量减小,所以t 1时刻弹簧长度最短,故A 项正确.B 项,t 2时刻m 2的速度最大,此后m 2的速度减小,弹簧被拉伸,则t 2时刻弹簧恢复原长,则知在t 1~t 2时间内,弹簧处于压缩状态.t 2~t 3时间内,弹簧处于拉伸状态.故B 项错误.C 项,在0~t 2时间内,根据动量定理得:弹簧对m 1冲量为I =-m 1v 3-m 1v 0,冲量大小为m 1(v 0+v 3),故C 项错误.D 项,两个物体组成的系统外力之和为零,系统的动量守恒,则有:m 1v 0=(m 1+m 2)v 2=m 2v 1-m 1v 3.故D 项正确.12.如图所示,质量为m 的半圆轨道小车静止在光滑的水平地面上,其水平直径AB 长度为2R ,现将质量也为m 的小球从距A 点正上方h 0高处由静止释放,然后由A 点经过半圆轨道后从B 冲出,在空中能上升的最大高度为34h 0(不计空气阻力),则( )A .小球和小车组成的系统动量守恒B .小车向左运动的最大距离为12RC .小球离开小车后做斜上抛运动D .小球第二次能上升的最大高度12h 0<h<34h 0答案 D解析 A 项,小球与小车组成的系统在水平方向所受外力之和为零,水平方向系统动量守恒,但系统整体所受外力之和不为零,系统动量不守恒,故A 项错误;B 项,系统水平方向动量守恒:mv -mv′=0,m 2R -x t -m xt =0,解得,小车的位移:x =R ,故B 项错误;C 项,小球与小车组成的系统在水平方向动量守恒,小球由B 点离开小车时系统水平方向动量为零,小球与小车水平方向速度为零,小球离开小车后做竖直上抛运动,故C 项错误;D 项,小球第一次从释放到上升到最高点运动过程中,由动能定理得:mg(h 0-34h 0)-W f =0,W f 为小球克服摩擦力做功大小,解得:W f =14mgh 0,即小球第一次在车中滚动损失的机械能为14mgh 0,由于小球第二次在车中滚动时,对应位置处速度变小,因此小车给小球的弹力变小,摩擦力变小,摩擦力做功小于14mgh 0,机械能损失小于14mgh 0,因此小球再次离开小车时,能上升的高度大于:34h 0-14h 0=12h 0,而小于34h 0,故D 项正确.二、非选择题13.(2018·乐山模拟)如图所示,可看成质点的A 物体叠放在上表面光滑的B 物体上,一起以v 0的速度沿光滑的水平轨道匀速运动,与静止在同一光滑水平轨道上的木板C 发生完全非弹性碰撞,B 、C 的上表面相平且B 、C 不粘连,A 滑上C 后恰好能到达C 板的最右端,已知A 、B 、C 质量均相等,且为m ,木板C 长为L ,求:(1)A 物体的最终速度; (2)A 、C 之间的摩擦力f ; (3)A 在木板C 上滑行的时间t. 答案 (1)34v 0 (2)mv 0216L (3)4Lv 0解析 (1)B 、C 碰撞过程中动量守恒,令B 、C 碰后的共同速度为v 1,以B 的初速度方向为正方向,由动量守恒定律得: mv 0=2mv 1, 解得:v 1=v 02,B 、C 共速后A 以v 0的速度滑上C ,A 滑上C 后,B 、C 脱离A 、C 相互作用过程中动量守恒, 设最终A 、C 的共同速度v 2,以向右为正方向,由动量守恒定律得: mv 0+mv 1=2mv 2, 解得:v 2=34v 0;(2、3)在A 、C 相互作用过程中,由能量守恒定律得: fL =12mv 02+12mv 12-12·2mv 22,解得:f =mv 0216L,此过程中对C ,由动量定理得:ft =mv 2-mv 1, 解得:t =4Lv 0.14.如图所示,有一倾角为α=30°的光滑斜面固定在水平面上,质量为m A =1 kg 的滑块A(可以看做质点)在水平向左的恒力F 作用下静止在距离斜面底端x =5 m 的位置上,水平面上有一质量为m B =1 kg 的表面光滑且足够长的木板B ,B 的右端固定一轻质弹簧,一质量为m C =3 kg 的物块C 与弹簧的左端拴接,开始时,B 、C 静止且弹簧处于原长状态,今将水平力F 变为水平向右,当滑块A 刚好滑到斜面底端时撤去力F ,不考虑A 滑上水平面过程的能量损失.滑块A 运动到水平面上后与滑块B 发生对心碰撞(碰撞时间极短)粘在一起,并拉伸弹簧使滑块C 向前运动,不计一切摩擦,g 取10 m/s 2,求:(1)水平力F 的大小及滑块A 滑到斜面底端时的速度v A ; (2)被拉伸弹簧的最大弹性势能E p 及滑块C 的最大速度v C . 答案 (1)1033 N 10 m/s (2) 15 J 4 m/s解析 (1)滑块处于平衡状态:F =m A gtan α 代入数据解得:F =1033NA 向下运动的过程中只有重力和拉力F 做功,由动能定理得:Fxcosα+m A gx ·sin α=12m A v A 2代入数据得:v A =10 m/s(2)A 与B 在水平面上碰撞的过程中,系统的动量守恒,选取向右为正方向,得:m A v A =(m A +m B )v 1代入数据得:v 1=5 m/s在ABC 相互作用的过程中,当它们的速度相等时,弹簧的弹性势能最大,由系统的动量守恒,则:(m A +m B )v 1=(m A +m B +m C )v 2 代入数据得:v 2=2 m/s由功能关系得:E p =12(m A +m B )v 12-12(m A +m B +m C )v 22代入数据得:E p =15 J开始时弹簧被拉长,C 一直向右加速,当弹簧恢复原长时,C 的速度最大,设此时AB 的速度为v 3,C 的速度为v C ,则:(m A +m B )v 1=(m A +m B )v 3+m C v C 由机械能守恒得:12(m A +m B )v 12=12(m A +m B )v 32+12m C v C 2.代入数据得:v C =4 m/s.。
高考物理一轮复习 专题06 研究平抛运动规律(含解析)-人教版高三全册物理试题
研究平抛运动规律【纲要导引】研究平抛运动规律在新课标卷中从未出现,但其他自主命题的高考中偶尔考察,难度不大。
【点拨练习】1.〔2013•〕在实验操作前应该对实验进展适当的分析.研究平抛运动的实验装置示意如图.小球每次都从斜槽的同一位置无初速度释放,并从斜槽末端水平飞出.改变水平板的高度,就改变了小球在板上落点的位置,从而可描绘出小球的运动轨迹.某同学设想小球先后三次做平抛,将水平板依次放在如图1、2、3的位置,且1与2的间距等于2与3的间距.假设三次实验中,小球从抛出点到落点的水平位移依次为x1、x2、x3,机械能的变化量依次为△E1、△E2、△E3,忽略空气阻力的影响,下面分析正确的答案是〔〕A.x2﹣x1=x3﹣x2,△E1=△E2=△E3B.x2﹣x1>x3﹣x2,△E1=△E2=△E3C.x2﹣x1>x3﹣x2,△E1<△E2<△E3D.x2﹣x1<x3﹣x2,△E1<△E2<△E3【答案】B【解析】因为平抛运动在竖直方向上做自由落体运动,下落的速度越来越快,如此下落相等位移的时间越来越短,水平方向上做匀速直线运动,所以x2﹣x1>x3﹣x2,因为平抛运动的过程中,只有重力做功,所以机械能守恒,如此,△E1=△E2=△E3.故B正确,A、C、D错误。
2.〔2014•江苏〕为了验证平抛运动的小球在竖直方向上做自由落体运动,用如下列图的装置进展试验,小锤打击弹性金属片,A球水平抛出,同时B球被松开,自由下落,关于该实验,如下说法中正确的答案是〔〕A.两球的质量应相等B.两球应同时落地C.应改变装置的高度,屡次实验D.实验也能说明A球在水平方向上做匀速直线运动【答案】BC【解析】根据装置图可知,两球由一样高度同时运动,A做平抛运动,B做自由落体运动,因此将同时落地,由于两球同时落地,因此说明A、B在竖直方向运动规律是一样的,故根据实验结果可知,平抛运动在竖直方向的分运动是自由落体运动,不需要两球质量相等,要屡次实验,观察现象,如此应改变装置的高度,屡次实验,故BC正确。
近年届高考物理一轮复习第6章动量守恒定律第2讲动量守恒定律的综合应用课时作业(含解析)(2021年
2019届高考物理一轮复习第6章动量守恒定律第2讲动量守恒定律的综合应用课时作业(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考物理一轮复习第6章动量守恒定律第2讲动量守恒定律的综合应用课时作业(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考物理一轮复习第6章动量守恒定律第2讲动量守恒定律的综合应用课时作业(含解析)的全部内容。
2、动量守恒定律的综合应用[基础训练]1.(2018·黑龙江哈三中二模)如图所示,在光滑水平面上质量为m的物体A以速度v0与静止的物体B发生碰撞,物体B的质量为2m,则碰撞后物体B 的速度大小可能为( )A.v0 B。
错误! C.0 D.错误!答案:D 解析:物体A与物体B碰撞的过程中动量守恒,选物体A原来的运动方向为正方向:如果发生的是完全非弹性碰撞,由动量守恒定律得mv0=(m+2m)v,计算得出v=错误!v0;如果发生的是完全弹性碰撞,由动量守恒定律得mv0=mv1+2mv2,由能量守恒定律得错误!mv错误!=错误!mv错误!+错误!·2mv错误!,计算得出v2=错误!v0.碰撞后物体B的速度满足错误!v0≤v B≤错误!v0,选项D正确.2.如图所示,静止在光滑水平面上的木板,右端有一根轻质弹簧沿水平方向与木板相连,木板质量M=3 kg.质量m=1 kg的铁块以水平速度v0=4 m/s,从木板的左端沿板面向右滑行,压缩弹簧后又被弹回,最后恰好停在木板的左端.在上述过程中弹簧具有的最大弹性势能为( )A.3 J B.4 J C.6 J D.20 J答案:A 解析:设铁块与木板速度相同时,共同速度大小为v,铁块相对木板向右运动时,滑行的最大路程为L,摩擦力大小为F f。
全品复习方案高考物理一轮复习 第6单元 动量课时作业(含解析)-人教版高三全册物理试题
动量课时作业课时作业(十七)第17讲动量动量定理时间/40分钟根底达标1.如下关于冲量与动量的说法中正确的答案是()A.物体所受合外力越大,其动量变化一定越快B.物体所受合外力越大,其动量变化一定越大C.物体所受合外力的冲量大,其动量变化可能小D.物体所受合外力的冲量越大,其动量一定变化越快2.游乐场里,质量为m的小女孩从滑梯上由静止滑下.空气阻力不计,滑梯可等效为直斜面,与水平面的夹角为θ,小女孩与滑梯间的动摩擦因数为μ,重力加速度为g,如此如下判断中正确的答案是()A.小女孩下滑过程中弹力的冲量为零B.小女孩下滑过程中受到的摩擦力与其反作用力总冲量为零,总功也为零C.小女孩下滑过程中动量的变化为mg sinθ·tD.小女孩下滑至底端时动量的大小为mg(sinθ-μcosθ)t图K17-13.甲、乙两同学做了一个小游戏,如图K17-1所示,用棋子压着纸条,放在水平桌面上接近边缘处.第一次甲同学慢拉纸条将纸条抽出,棋子掉落在地上的P点.第二次将棋子、纸条放回原来的位置,乙同学快拉纸条将纸条抽出,棋子掉落在地上的N点.两次现象相比()A.第二次棋子的惯性更大B.第二次棋子受到纸带的摩擦力更小C.第二次棋子受到纸带的冲量更小D.第二次棋子离开桌面时的动量更大4.[2018·成都二模]一枚30g的鸡蛋从17楼(离地面人的头部为45m高)落下,能砸破人的头骨.假设鸡蛋壳与人头部的作用时间为4.5×10-4s,人的质量为50kg,重力加速度g取10m/s2,如此头骨受到的平均冲击力约为()A.1700NB.2000NC.2300ND.2500N图K17-25.质量m=3kg的小物体放在水平地面上,在水平力F=15N的作用下开始运动.在0~2s的时间内,拉力F的功率P随时间变化的关系图像如图K17-2所示,如此小物体与水平面间的动摩擦因数为(重力加速度g取10m/s2) ()A.B.C.D.6.如图K17-3所示,a、b、c是三个一样的小球,a从光滑斜面顶端由静止开始自由滚下,同时b、c 从同一高度分别开始自由下落和平抛.如下说法正确的答案是()图K17-3A.它们同时到达同一水平面B.它们动量变化的大小相等C.它们的末动能一样D.重力对它们的冲量相等图K17-47.(多项选择)[2018·常德模拟]如图K17-4所示,质量为m的小球从距离地面高H的A点由静止开始释放,落到地面上后又陷入泥潭中,由于受到阻力作用,到达距地面深度为h的B点时速度减为零.不计空气阻力,重力加速度为g.关于小球下落的整个过程,如下说法正确的答案是()A.小球的机械能减少了mg(H+h)B.小球抑制阻力做的功为mghC.小球所受阻力的冲量大于mD.小球动量的改变量等于所受阻力的冲量8.(多项选择)如图K17-5所示,斜面除AB段粗糙外,其余局部都是光滑的,物体与AB段间的动摩擦因数处处相等.物体从斜面顶点滑下,经过A点时的速度与经过C点时的速度相等,且AB=BC,如此如下说法中正确的答案是()图K17-5A.物体在AB段和BC段的加速度大小相等B.物体在AB段和BC段的运动时间相等C.物体在以上两段运动中重力做的功相等D.物体在以上两段运动中的动量变化量一样技能提升9.(多项选择)[2019·湖北恩施模拟]几个水球可以挡住一颗子弹?CCTV(国家地理频道)的实验结果是:四个水球足够!完全一样的水球紧挨在一起水平排列,子弹在水球中沿水平方向做匀变速直线运动,恰好能穿出第4个水球.如下判断正确的答案是()图K17-6A.子弹在每个水球中的速度变化一样B.子弹在每个水球中运动的时间不同C.每个水球对子弹的冲量不同D.子弹在毎个水球中的动能变化一样10.(多项选择)[2018·辽宁五校模拟]一个静止的质点在t=0到t=4s这段时间内仅受到力F的作用,F的方向始终在同一直线上,F随时间t的变化关系如图K17-7所示.如下说法中正确的答案是()图K17-7A.在t=0到t=4s这段时间内,质点做往复直线运动B.在t=1s时,质点的动量大小为1kg·m/sC.在t=2s时,质点的动能最大D.在t=1s到t=3s这段时间内,力F的冲量为零11.(多项选择)水平面上有质量为m a的物体a和质量为m b的物体b,分别在水平推力F a和F b作用下开始运动,运动一段时间后撤去推力,两个物体都将再运动一段时间后停下.两物体运动的v-t图线如图K17-8所示,图中线段AC∥BD.以下说法正确的答案是()图K17-8A.假设m a>m b,如此F a<F b,且物体a抑制摩擦力做功小于物体b抑制摩擦力做功B.假设m a>m b,如此F a>F b,且物体a抑制摩擦力做功大于物体b抑制摩擦力做功C.假设m a<m b,如此可能有F a<F b,且物体a所受摩擦力的冲量大于物体b所受摩擦力的冲量D.假设m a<m b,如此可能有F a>F b,且物体a所受摩擦力的冲量小于物体b所受摩擦力的冲量12.(多项选择)[2018·南宁期末]如图K17-9甲所示,一质量为m的物块在t=0时刻以初速度v0从倾角为θ的足够长的粗糙斜面底端向上滑行,物块速度随时间变化的图像如图乙所示.t0时刻物块到达最高点,3t0时刻物块又返回底端.重力加速度为g.如下说法正确的答案是()图K17-9A.物块从开始运动到返回底端的过程中重力的冲量大小为3mgt0sinθB.物块从t=0时刻开始运动到返回底端的过程中动量变化量大小为mv0C.斜面倾角θ的正弦值为D.不能求出3t0时间内物块抑制摩擦力所做的功13.某同学研究重物与地面撞击的过程,利用传感器记录重物与地面的接触时间.他让质量为m=9kg的重物(包括传感器)从高H=0.45m处自由下落撞击地面,重物反弹高度h=0.20m,重物与地面接触时间t=0.1s.假设重物与地面的形变很小,可忽略不计.g取10m/s2,求:(1)重物受到地面的平均冲击力大小.(2)重物与地面撞击过程中损失的机械能.挑战自我14.为估算池中睡莲叶面承受雨滴撞击产生的平均压强,小明在雨天将一圆柱形水杯置于露台,测得1小时内杯中水位上升了45mm.查询得知,当时雨滴竖直下落速度约为12m/s,据此估算该压强约为(设雨滴撞击睡莲叶后无反弹,不计雨滴重力,雨水的密度为1×103kg/m3) ()A.0.15PaB.0.54PaC.1.5PaD.5.4Pa课时作业(十八)A第18讲动量守恒定律与其应用时间/40分钟根底达标1.如图K18-1所示,质量为m的光滑弧形槽静止在光滑水平面上,槽底部与水平面平滑连接,一个质量也为m的小球从槽上高h处由静止开始下滑,如此小球下滑过程中()图K18-1A.小球和槽组成的系统动量守恒B.槽对小球的支持力不做功C.重力对小球做功的瞬时功率一直增大D.地球、小球和槽组成的系统机械能守恒2.如图K18-2甲所示,一枚火箭搭载着卫星以速率v0进入太空预定位置,由控制系统使箭体与卫星别离.前局部的卫星质量为m1,后局部的箭体质量为m2,别离后箭体以速率v2沿火箭原方向飞行,如图乙所示,假设忽略空气阻力与别离前后系统质量的变化,如此别离后卫星的速率v1为()图K18-2A.v0-v2B.v0+v2C.v0-v2D.v0+(v0-v2)图K18-33.如图K18-3所示,光滑水平桌面上有两个大小一样的小球,质量之比m1∶m2=2∶1,球1以3m/s的速度与静止的球2发生正碰并粘在一起,桌面距离地面的高度h=1.25m,g取10m/s2,如此落地点到桌面边沿的水平距离为()A.0.5mB.1.0mC.1.5mD.2.0m图K18-44.如图K18-4所示,一辆小车静止在光滑水平面上,A、B两人分别站在车的两端,当两人同时相向运动时,如下说法正确的答案是 ()A.假设小车不动,如此两人速率一定相等B.假设小车向左运动,如此A的动量一定比B的小C.假设小车向左运动,如此A的动量一定比B的大D.假设小车向右运动,如此A的动量一定比B的大图K18-55.(多项选择)A、B两球沿同一条直线运动,如图K18-5所示的x-t图像记录了它们碰撞前后的运动情况,其中a、b分别为A、B两球碰撞前的x-t图像,c为碰撞后它们的x-t图像.假设A球质量为1kg,如此B球质量与碰后它们的速度大小分别为()A.2kgB.kgC.4m/sD.1m/s技能提升图K18-66.(多项选择)质量分别为M和m0的两滑块甲、乙用轻弹簧连接,以恒定的速度v沿光滑水平面运动,与位于正对面的质量为m的静止滑块丙发生碰撞,如图K18-6所示,碰撞时间极短.在此过程中,如下情况可能发生的是()A.甲、乙、丙的速度均发生变化,分别为v1、v2、v3,而且满足(M+m0)v=Mv1+m0v2+mv3B.乙的速度不变,甲和丙的速度变为v1和v2,而且满足Mv=Mv1+mv2C.乙的速度不变,甲和丙的速度都变为v',且满足Mv=(M+m)v'D.甲、乙、丙速度均发生变化,甲、乙的速度都变为v1,丙的速度变为v2,且满足(M+m)v0=(M+m)v1+mv27.(多项选择)质量为M的某机车拉着一辆质量与它一样的拖车在平直路面上以v0=10m/s的速度匀速行驶.途中某时刻拖车突然与机车脱钩.假设脱钩后机车牵引力始终保持不变,而且机车与拖车各自所受阻力也不变.如下说法中正确的答案是()A.脱钩后某时刻机车与拖车的速度可能分别是15m/s、5m/sB.脱钩后某时刻机车与拖车的速度可能分别是25m/s、-2m/sC.从脱钩到拖车停下来,机车与拖车组成的系统动量不变,动能增加D.从脱钩到拖车停下来,机车与拖车组成的系统动量减少,动能减少8.(多项选择)A、B两船的质量均为m,都静止在平静的湖面上,现A船上质量为m的人以对地水平速度v从A船跳到B船,再从B船跳到A船,经n次跳跃后,人停在B船上,不计水的阻力,如此()A.A、B两船的速度大小之比为2∶3B.A、B(包括人)两船的动量大小之比为1∶1C.A、B(包括人)两船的动能之比为3∶2D.A、B(包括人)两船的动能之比为1∶19.(多项选择)在冰壶比赛中,某队员利用红壶去碰撞对方的蓝壶,两者在大本营中心发生对心碰撞,如图K18-7甲所示,碰后运动员用冰壶刷摩擦蓝壶前进方向的冰面来减小阻力,碰撞前后两壶运动的v-t图线如图乙中实线所示,其中红壶碰撞前后的图线平行,两冰壶质量均为19kg,如此()图K18-7A.碰后蓝壶速度为0.8m/sB.碰后蓝壶移动的距离为2.4mC.碰撞过程两壶损失的动能为7.22JD.碰后红、蓝两壶所滑过的距离之比为1∶2010.(多项选择)如图K18-8所示,用轻弹簧相连的质量均为1kg的A、B两物块都以v=4m/s的速度在光滑水平地面上运动,弹簧处于原长,质量为2kg的物块C静止在前方,B与C碰撞后二者粘在一起运动.在以后的运动中,如下说法正确的答案是()图K18-8A.当弹簧的形变量最大时,物块A的速度为2m/sB.弹簧的弹性势能的最大值为JC.弹簧的弹性势能的最大值为8JD.在以后的运动中,A的速度不可能向左11.(多项选择)如图K18-9所示,光滑水平面上有大小一样的A、B两球在同一直线上运动.两球质量的关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4kg·m/s,如此()图K18-9A.该碰撞为弹性碰撞B.该碰撞为非弹性碰撞C.左方是A球,碰撞后A、B两球的速度大小之比为2∶5D.右方是A球,碰撞后A、B两球的速度大小之比为1∶1012.汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F0时,安全气囊会爆开.某次试验中,质量m1=1600kg的试验车以速度v1=36km/h正面撞击固定试验台,经时间t1=0.10s碰撞完毕,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I0的大小与F0的大小;(2)假设试验车以速度v1撞击正前方另一质量m2=1600kg、速度v2=18km/h、同向行驶的汽车,经时间t2=0.16s两车以一样的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.挑战自我13.如图K18-10所示,质量为m、带有半圆形轨道的小车静止在光滑的水平地面上,其水平直径AB 长度为2R.现将质量也为m的小球从距A点正上方h0的位置由静止释放,然后由A点进入半圆形轨道后从B点冲出,在空中上升的最大高度为h0(不计空气阻力),如此()图K18-10A.小球和小车组成的系统动量守恒B.小车向左运动的最大距离为RC.小球离开小车后做斜上抛运动D.小球第二次能上升的最大高度h满足h0<h<h0课时作业(十八)B第18讲动量守恒定律与其应用时间/40分钟根底达标图K18-111.[2018·株洲质检]如图K18-11所示,长为l的轻杆两端固定两个质量相等的小球甲和乙,初始时它们直立在光滑的水平地面上,后由于受到微小扰动,系统从图示位置开始倾倒.当小球甲刚要落地时,其速度大小为(重力加速度为g)()A.B.C.D.02.如图K18-12所示,木块A的右侧为光滑曲面,曲面下端极薄,其质量m A=2.0kg,原来静止在光滑的水平面上.质量m B=2.0kg的小球B以v=2m/s的速度从右向左冲上木块A,如此B球沿木块A的曲面向上运动中可上升的最大高度是(设B球不能飞出去,g取10m/s2)()图K18-12A.0.40mB.0.10mC.0.20mD.0.50m图K18-133.如图K18-13所示,放在光滑水平面上的矩形滑块是由不同材料的上、下两层粘在一起组成的.质量为m的子弹以速度v水平射向滑块,假设击中上层,如此子弹刚好不穿出;假设击中下层,如此子弹嵌入其中.比拟这两种情况,以下说法中不正确的答案是()A.滑块对子弹的阻力一样大B.子弹对滑块做的功一样多C.滑块受到的冲量一样大D.系统产生的热量一样多4.如图K18-14甲所示,长木板A静止在光滑的水平面上,质量为m=1kg的物块B以v0=3m/s的速度滑上A的左端,之后A、B的速度随时间变化情况如图乙所示,g取10m/s2,由此可得()图K18-14A.A的质量等于B的质量B.A的质量小于B的质量C.0~2s内,A、B组成的系统损失的机械能为4JD.0~2s内,A、B组成的系统损失的机械能为3J技能提升图K18-155.(多项选择)如图K18-15所示,质量为M的三角形斜劈置于光滑水平地面上,三角形的底边长为L,斜面也光滑.质量为m的滑块(可看作质点)由静止开始沿斜面下滑的过程中 ()A.斜劈与滑块组成的系统动量守恒,机械能也守恒B.滑块沿斜面滑到底端时,斜劈移动的位移大小为C.滑块对斜劈的冲量大小等于斜劈的动量变化量D.滑块抑制支持力做的功等于斜劈增加的动能6.(多项选择)在光滑的水平面上,两物体A、B的质量分别为m1和m2,且m1<m2,它们用一根轻质弹簧相拴接.开始时,整个系统处于静止状态,弹簧处于自然长度.第一次给物体A一个沿弹簧轴线方向水平向右的初速度v,第二次给物体B一个沿弹簧轴线方向水平向左的等大的初速度v,如图K18-16所示.弹簧的形变未超出弹性限度,比拟这两种情况,如下说法正确的答案是()图K18-16A.两种情况下物体A、B的共同速度大小相等B.第一次物体A、B的共同速度较小C.两种情况下弹簧的最大弹性势能一样D.第二次弹簧的最大弹性势能较大7.(多项选择)如图K18-17所示,一个质量为M的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量为m=2M的小物块.现使木箱瞬间获得一个水平向左、大小为v0的初速度,如下说法正确的答案是()图K18-17A.最终小物块和木箱都将静止B.最终小物块和木箱组成的系统损失的机械能为C.木箱的速度水平向左、大小为时,小物块的速度大小为D.木箱的速度水平向左、大小为时,小物块的速度大小为8.(多项选择)如图K18-18甲所示,轻弹簧的两端与质量分别是m1和m2的A、B两物块相连,它们静止在光滑水平地面上.现给物块A一个瞬时冲量,使它获得水平向右的速度v0,从此时刻开始计时,两物块的速度随时间变化的规律如图乙所示,如此如下判断正确的答案是 ()图K18-18A.t1时刻弹簧长度最短B.在t1~t3时间内,弹簧处于压缩状态C.在0~t2时间内,弹簧对A的冲量大小为m1(v0-v3)D.物块A、B的动量满足m1v0=(m1+m2)v2=m2v1-m1v39.(多项选择)如图K18-19所示,水平光滑轨道宽度和轻质弹簧自然长度均为d.质量分别为m1和m2的A、B两物体与弹簧连接,B物体的左边有一固定挡板.A物体从图示位置由静止释放,当两物体相距最近时,A物体的速度为v1,如此在以后的运动过程中,可能的情况是()图K18-19A.A物体的最小速度是0B.在某段时间内A物体向左运动C.B物体的最大速度一定是v1D.B物体的最大速度是v1挑战自我10.[2018·汉中质检]如图K18-20所示,竖直平面内的轨道ABCD由水平局部AB与光滑的四分之一圆弧轨道CD组成,AB恰与圆弧轨道CD在C点相切,其总质量M=4kg,其右侧紧靠在固定挡板上,静止在光滑水平面上.在轨道的左端有一质量为m=1kg的小滑块(可视为质点)以v0=3m/s的初速度向右运动,小滑块刚好能冲到D点.小滑块与AB间的动摩擦因数μ=0.5,轨道水平局部AB的长度L=0.5m,g取10m/s2.(1)求小滑块经过C点时对轨道的压力大小;(2)通过计算分析小滑块最终能否从轨道上掉下.图K18-2011.如图K18-21所示,一个轻弹簧水平放置,左端固定在A点,右端与一质量为m1=1kg的物块P接触但不拴接.AB是水平轨道,B端与半径R=0.8m的竖直光滑半圆轨道BCD底部相切,D是半圆轨道的最高点.另一质量为m2=1kg的物块Q静止于B点.用外力缓慢向左推动物块P,将弹簧压缩(弹簧处于弹性限度内),使物块P静止于距B端L=2m处.现撤去外力,物块P被弹簧弹出后与物块Q发生正碰,碰撞前物块P已经与弹簧分开,且碰撞时间极短,碰撞后两物块粘到一起,并恰好能沿半圆轨道运动到D点.物块P与AB间的动摩擦因数μ=0.5,物块P、Q均可视为质点,g取10m/s2.求:(1)与物块Q发生碰撞前瞬间物块P的速度大小;(2)释放物块P时弹簧的弹性势能E p.图K18-21课时作业(十七)1.A[解析]由动量定理得FΔt=Δp,如此F=,即合力为动量的变化率,不等于动量的变化量,选项A正确.2.D[解析]小女孩下滑过程中弹力的冲量为mg cosθ·t,选项A错误;小女孩下滑过程中受到的摩擦力与其反作用力的总冲量为零,总功为负值,选项B错误;由动量定理知,小女孩下滑过程中动量的变化为mg(sinθ-μcosθ)t,选项C错误;因从静止开始滑下,所以小女孩下滑到底端时动量的大小为mg(sinθ-μcosθ)t,选项D正确.3.C[解析]惯性由质量决定,与速度无关,选项A错误;先后两次将纸条抽出,棋子受到的滑动摩擦力相等,由动量定理得μmgt=mv,第二次时间更短,棋子受到纸带的冲量更小,离开桌面时的动量更小,选项B、D错误,选项C正确.4.B[解析]鸡蛋自由下落的时间t1==3s,对鸡蛋运动的全过程,由动量定理得mg(t1+t2)=t2,解得=2000N,选项B正确.5.B[解析]由图像可知,t=2s时,P=30W,可得v==2m/s,由动量定理得(F-μmg)t=mv,解得μ=0.4,选项B正确.6.B[解析]b做自由落体运动,c的竖直分运动是自由落体运动,b、c的加速度都为g,设斜面的倾角为θ,如此a的加速度为g sinθ,下落一样高度,设高度为h,a运动时间为t1,如此=g sinθ,所以t1=,b、c下落时间为t2=,a与b、c所用时间不同,选项A错误;a的动量变化为mg sinθ·t1=m,b、c的动量变化为mgt2=m,故三球动量变化大小相等,选项B正确;由机械能守恒定律可知,c的末动能大于a、b的末动能,选项C错误;由于t1>t2,所以重力对它们的冲量大小不相等,选项D错误.7.AC[解析]小球在整个过程中,动能变化量为零,重力势能减少了mg(H+h),如此小球的机械能减少了mg(H+h),故A正确;对小球下落的全过程,由动能定理得mg(H+h)-W f=0,如此小球抑制阻力做功W f=mg(H+h),故B错误;小球落到地面时的速度v=,对进入泥潭的过程,由动量定理得I G-I f=0-m,解得I f=I G+m,可知阻力的冲量大于m,故C正确;对全过程分析,由动量定理知,动量的改变量等于重力的冲量和阻力冲量的矢量和,故D错误.8.ABC[解析]根据运动学公式=+2ax,对AB段,有=+2a AB x AB,对BC段,有=+2a BC x BC,因为v C=v A,x AB=x BC,所以a AB=-a BC,即两段运动中加速度大小相等,方向相反,A正确;根据动量定理,对AB段,有F合t AB=m(v B-v A),对BC段,有F合't BC=m(v C-v B),因为两段运动中速度变化量大小相等,方向相反,合外力大小相等,方向相反,所以t AB=t BC,B正确;因为x AB=x BC,所以在两段运动中竖直方向的位移分量相等,故重力做功相等,C正确;物体在以上两段运动中动量变化量大小相等,方向相反,D错误.9.BCD[解析]子弹在水球中沿水平方向做匀减速直线运动,通过四个水球的平均速度不同,运动位移一样,如此时间不等,由Δv=aΔt可得,子弹在每个水球中的速度变化不一样,由I=mat可得,每个水球对子弹的冲量不同,由ma·l=ΔE k可得,子弹在毎个水球中的动能变化一样,选项A错误,选项B、C、D正确.10.CD[解析]0~4s内,质点先做加速运动后做减速运动,由动量定理得I总=mv,由图像可得0~4s内合力的冲量为0,如此4s末的速度恰减为0,选项A错误;0~1s内合力的冲量为I1=0.5N·s,如此t=1s时质点的动量为0.5kg·m/s,选项B错误;由动量定理可得,在t=2s时质点速度最大,动能最大,选项C正确;1~3s内图像与时间轴所围的面积为0,F的冲量为0,选项D正确.11.BD[解析]v-t图线中线段AC∥BD,故两物体与水平面间的动摩擦因数一样,设动摩擦因数为μ,在a、b加速的过程中,由牛顿第二定律得F a-μm a g=m a a a,F b-μm b g=m b a b,解得F a=m a a a+μm a g,F b=m b a b+μm b g,由v t图像知,在a、b加速的过程中,a a>a b,假设m a>m b,如此F a>F b;整个运动过程中a、b的位移分别为x a=×2v0×2t0=2v0t0和x b=v0×3t0=v0t0,物体a抑制摩擦力做功W fa=μm a gx a,物体b抑制摩擦力做功W fb=μm b gx b,假设m a>m b,如此物体a抑制摩擦力做功大于物体b 抑制摩擦力做功,选项A错误,B正确.假设m a<m b,如此F a、F b的大小关系不确定;物体a所受摩擦力的冲量大小I a=μm a g×2t0,物体b所受摩擦力的冲量大小I b=μm b g×3t0,假设m a<m b,如此物体a 所受摩擦力的冲量小于物体b所受摩擦力的冲量,选项C错误,D正确.12.BC[解析]物块从开始运动到返回底端的过程中重力的冲量大小I G=3mgt0,选项A错误;设物块返回底端的速度为v,如此有=,即v=,物块从开始运动到返回底端的过程中动量变化量大小Δp=mv0,选项B正确;由动量定理知,对上滑和下滑过程,分别有-(mg sinθ+μmg cos θ)·t0=-mv0和(mg sinθ-μmg cosθ)·2t0=mv0,联立可得sinθ=,选项C正确;在3t0时间内物块抑制摩擦力做的功W f=m-mv2=m,选项D错误.13.(1)540N(2)22.5J[解析](1)重物自由下落,设落地前瞬间的速度为v1,有H=gt2,v1=gt,解得v1=3m/s设反弹瞬间速度为v2,有=2gh,解得v2=2m/s规定向上为正方向,由动量定理得(F-mg)t=mv2+mv1,解得F=540N(2)损失的机械能ΔE=m-m=22.5J.14.A[解析]设雨滴受到支持面的平均作用力为F,在Δt时间内有质量为Δm的雨水的速度由v=12m/s减为零.以向上为正方向,对这局部雨水,由动量定理得FΔt=0-(-Δmv)=Δmv,解得F=v,设水杯的横截面积为S,对水杯里的雨水,在Δt时间内水面上升Δh高度,有Δm=ρSΔh,F=ρSv,产生的压强p==ρv=0.15Pa,故A正确.课时作业(十八)A1.D[解析]小球下滑过程中,小球与槽组成的系统所受合外力不为零,系统动量不守恒,选项A错误;小球下滑过程中,小球的位移方向与槽对小球的支持力方向的夹角为钝角,故支持力做负功,选项B错误;刚开始时小球速度为零,重力的功率为零,当小球到达底端时,速度水平,与重力方向垂直,重力的功率为零,所以重力的功率先增大后减小,选项C错误;小球下滑过程中,地球、小球和槽组成的系统机械能守恒,选项D正确.2.D[解析]对于火箭和卫星组成的系统,在别离前后沿原运动方向上动量守恒,由动量守恒定律得(m1+m2)v0=m1v1+m2v2,解得v1=v0+(v0-v2),D正确.3.B[解析]小球1在桌面上滑动的过程,速度不变,与小球2碰撞过程,由动量守恒定律得m1v0=(m1+m2)v,解得v=2m/s,两球脱离桌面后做平抛运动,运动时间t==0.5s,水平位移x=vt=1m,选项B正确.4.C[解析]A、B两人与小车组成的系统受合外力为零,系统动量守恒,根据动量守恒定律得m A v A+m B v B+m车v车=0,假设小车不动,如此m A v A+m B v B=0,由于不知道A、B的质量关系,所以两人的速率不一定相等,故A错误;假设小车向左运动,如此A、B的动量之和必须向右,而A向右运动,B向左运动,所以A的动量一定比B的大,故B错误,C正确;假设小车向右运动,如此A、B的动量之和必须向左,而A向右运动,B向左运动,所以A的动量一定比B的小,故D错误.5.BD[解析]由图像可知,碰撞前A、B两球都做匀速直线运动,v a=m/s=-3m/s,v b=m/s=2m/s,碰撞后二者合在一起做匀速直线运动,v c=m/s=-1m/s,碰撞过程中动量守恒,即m A v a+m B v b=(m A+m B)v c,可解得m B=kg,选项B、D正确.6.BC[解析]碰撞的瞬间滑块甲和丙组成的系统动量守恒,滑块乙的速度在瞬间不变,以滑块甲的初速度方向为正方向,假设碰后滑块甲和丙的速度分别变为v1和v2,由动量守恒定律得Mv=Mv1+mv2;假设碰后滑块甲和丙的速度一样,由动量守恒定律得Mv=(M+m)v',故B、C正确.7.AC[解析]机车牵引力不变,脱钩后机车做加速运动,拖车做减速运动,拖车最后速度为0,对运动的整体,由动量守恒定律得2Mv0=Mv1+Mv2,当v1=15m/s时,v2=5m/s,选项A正确,B错误;对系统,由动。
2022届新教材高考物理一轮复习课时练29磁场的描述磁吃电流的作用含解析新人教版
磁场的描述磁场对电流的作用1.(电流的相互作用)(2020浙江名校联盟模拟创新卷)如下列图是一位同学制作的实验装置:柔软弹簧竖直悬挂,下端恰与铜片接触。
当开关闭合后,弹簧时伸时缩,灯泡时明时暗。
关于这个实验现象,以下说法中正确的选项是()A.有电流通过弹簧时,各匝环形电流互相吸引致使弹簧收缩B.有电流通过弹簧时,各匝环形电流互相排斥致使弹簧伸长C.弹簧收缩与铜片分离时,通过灯泡的电流较小,灯泡暗淡D.弹簧伸长与铜片接触时,通过灯泡的电流较大,灯泡明亮2.(多项选择)(安培定那么、磁场的叠加)(2020山东济南高三下学期检测)无限长通电直导线在周围某一点产生的磁场的磁感应强度B的大小与电流成正比,与导线到这一点的距离成反比,即B=k I(式中k为常数)。
如下列图,两根相距L的无限长直导线MN通有大小相等、方向相反I的电流,a点在两根导线连线的中点,b点在a点正上方且距两根直导线的距离均为L,以下说法正确的选项是()A.a点和b点的磁感应强度方向相同B.a点和b点的磁感应强度方向相反C.a点和b点的磁感应强度大小之比为4∶√3D.a点和b点的磁感应强度大小之比为4∶13.(安培力)(2020山东多市高三下学期线上模拟)正三角形金属框架ABC边长为a,将其放置在水平绝缘桌面上,俯视图如下列图。
现施加竖直向上的磁感应强度为B的匀强磁场,将AC接入电路,图中电流表示数为I,金属框架静止。
那么()A.金属框架所受的安培力为0B.金属框架所受摩擦力大小为BIaC.金属框架所受摩擦力方向水平向左D.假设增大磁感应强度B,金属框架一定静止4.(多项选择)(安培力作用下导体的平衡)(2020陕西西安高三下学期模拟)如下列图,在倾角θ=30°的光滑轨道上,质量m=0.1 kg的AB杆放在轨道上,轨道间距l=0.2 m,电流I=0.5 A。
当加上垂直于杆AB的某一方向的匀强磁场后,杆AB处于静止状态,那么所加磁场的磁感应强度可能为()A.1 TB.5.5 TC.4 TD.7.5 T5.(安培力作用下导体的运动)如下列图,一通电金属环固定在绝缘的水平面上,在其左端放置一可绕中点O自由转动且可在水平方向自由移动的竖直金属棒,中点O与金属环在同一水平面内,当在金属环与金属棒中通有如图所示方向的电流时,那么()A.金属棒始终静止不动B.金属棒的上半局部向纸面外转,下半局部向纸面里转,同时靠近金属环C.金属棒的上半局部向纸面里转,下半局部向纸面外转,同时靠近金属环D.金属棒的上半局部向纸面里转,下半局部向纸面外转,同时远离金属环6.(多项选择)(安培力作用下物体的平衡及运动)如下列图,水平放置的光滑平行金属导轨,左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20 cm的光滑圆弧金属导轨相接,导轨宽度为20 cm,电阻不计。
2021高考物理一轮复习第6章动量守恒定律及其应用第2讲动量守恒定律课时作业含解析
第2讲 动量守恒定律时间:70分钟 满分:100分一、选择题(本题共11小题,每小题6分,共66分。
其中1~6题为单选,7~11题为多选)1. (2019·某某摸底考试)如图所示,静止在光滑水平面上的质量为2m 的滑块B 与轻质弹簧拴接,轻弹簧另一端固定,质量为m 的滑块A 以速度v 0向右运动,滑块A 、B 相碰瞬间粘在一起。
此后弹簧弹性势能的最大值为( )A.12mv 20B.16mv 20 C.14mv 20D.19mv 20 答案 B解析 滑块A 、B 发生碰撞,由动量守恒定律,mv 0=(m +2m )v ,解得v =v 03。
碰撞后的动能E k =12·3mv 2=16mv 20,滑块压缩弹簧,动能转化为弹性势能,由能量守恒定律可知弹簧的最大弹性势能E p =E k =16mv 20,B 正确。
2. 如图所示,竖直平面内的四分之一光滑圆弧轨道下端与光滑水平桌面相切,小滑块B 静止在圆弧轨道的最低点。
现将小滑块A 从圆弧轨道的最高点无初速度释放。
已知圆弧轨道半径R =1.8 m ,小滑块的质量关系是m B =2m A ,重力加速度g =10 m/s 2。
则碰后小滑块B 的速度大小不可能是( )A .5 m/s B.4 m/sC.3 m/sD.2 m/s答案 A解析 设小滑块A 到达最低点时的速度为v 0,根据动能定理:mgR =12mv 20-0,可得v 0=6 m/s 。
若是弹性碰撞,m A v 0=m A v 1+m B v 2,12m A v 20=12m A v 21+12m B v 22,联立解得v 2=4 m/s ;若是完全非弹性碰撞,m A v 0=(m A +m B )v ,解得v =2 m/s ,所以碰后小滑块B 的速度X 围为2 m/s ≤v ≤4 m/s ,B 的速度不可能是5 m/s ,故选A 。
3.两名质量相等的滑冰人甲和乙都静止在光滑的水平冰面上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学案29 场强与电势差的关系电容器及其电容一、概念规律题组1.对公式E =U abd的理解,下列说法正确的是( )A .此公式适用于计算任何电场中a 、b 两点间的电势差B .a 点和b 点距离越大,则这两点的电势差越大C .公式中d 是指a 点和b 点之间的距离D .公式中的d 是a 、b 所在匀强电场的两个等势面间的垂直距离图12.如图1所示,实线为电场线,虚线为等势面,φa =50 V ,φc =20 V ,则a 、c 连线中点b 的电势φb 为( )A .等于35 VB .大于35 VC .小于35 VD .等于15 V3.由电容器电容的定义式C =QU可知( )A .若电容器不带电,则电容C 为零B .电容C 与电容器所带电荷量Q 成反比,与电压U 成反比 C .电容C 与所带电荷量Q 多少无关D .电容在数值上等于使两板间的电压增加1 V 时所需增加的电荷量 4.对于水平放置的平行板电容器,下列说法中正确的是( ) A .将两极板的间距加大,电容将增大B .将两极板平行等距错开,使正对面积减小,电容将减小C .在下极板的内表面上放置一面积和极板相等、厚度小于极板间距的陶瓷板,电容将增大D .在下极板的内表面上放置一面积和极板相等、厚度小于极板间距的铝板,电容将增大二、思想方法题组图25.a、b、c、d是匀强电场中的四个点,它们正好是一个矩形的四个顶点.电场线与矩形所在平面平行.已知a点的电势为20 V,b点的电势为24 V,d点的电势为4 V,如图2所示,由此可知c点的电势为()A.4 V B.8 V C.12 V D.24 V图36.如图3所示,电容器两极板与电源正负极相连,当电容器两极板间的距离由d迅速增大为2d的过程中,下列说法正确的是()A.电容器两板间电压始终不变B.电容器两板间电压瞬时升高后又恢复原值C.根据Q=CU可知,电容器带电荷量先增大后减小D.电路中电流由A板经电源流向B板一、静电现象1.处于静电平衡状态的导体具有以下特点(1)导体内部的场强(E0与E′的合场强)处处为零,E内=0;(2)整个导体是等势体,导体的表面是等势面;(3)导体外部电场线与导体表面垂直;(4)静电荷只分布在导体外表面上,且与导体表面的曲率有关.2.静电屏蔽:如果用金属网罩(或金属壳)将一部分空间包围起来,这一包围空间以外的区域里,无论电场强弱如何,方向如何,空间内部电场强度均为零.因此金属网罩(或金属壳)对外电场有屏蔽作用.图4【例1】如图4所示为空腔球形导体(不带电),现将一个带正电的小金属球A放入腔内,静电平衡时,图中a、b、c三点的场强E和电势φ的关系是()A.E a>E b>E c,φa>φb>φcB.E a=E b>E c,φa=φb>φcC.E a=E b=E c,φa=φb>φcD.E a>E c>E b,φa>φb>φc[规范思维][针对训练1] 请用学过的电学知识判断下列说法正确的是( ) A .电工穿绝缘衣比穿金属衣安全B .制作汽油桶的材料用金属比用塑料好C .小鸟停在单根高压输电线上会被电死D .打雷时,呆在汽车里比呆在木屋里要危险 二、匀强电场中电场强度与电势差的关系1.公式E =Ud 反映了电场强度与电势差之间的关系,由公式可知,电场强度的方向就是电场中电势降低最快的方向.图52.公式中d 可理解为电场中两点所在等势面之间的距离,由此可得出一个结论:在匀强电场中,两长度相等且相互平行的线段的端点间的电势差相等.如图5所示,AB 、CD 平行且相等,则U AB =U CD3.利用等分电势法画等势线及电场线的方法例如:φA =6 V ,φB =-2 V ,φC =4 V ,试画出图6中的等势线及电场线图6方法:(1)求出电势差最大的两点间电势差 U max =U AB =φA -φB =8 V(2)求出电势差最小的两点间的电势差 U min =U AC =2 V (3)计算U maxU min=4(4)连接AB ,并将AB 四等分,在AB 上找到C 点的等势点D ,即φD =φC (5)连接CD 即为等势线;过CD 作垂线为电场线.图7【例2】为使带负电的点电荷q在一匀强电场中沿直线匀速地由A运动到B,必须对该电荷施加一个恒力F,如图7所示,若AB=0.4 m,α=37°,q=-3×10-7 C,F=1.5×10-4 N,A点的电势φA=100 V.(不计负电荷受到的重力)(1)在图中用实线画出电场线,用虚线画出通过A、B两点的等势线,并标明它们的电势.(2)求q在由A到B的过程中电势能的变化量是多少?[规范思维][针对训练2]图8空间有一匀强电场,在电场中建立如图8所示的直角坐标系O-xyz,M、N、P为电场中的三个点,M点的坐标(0,a,0),N点的坐标为(a,0,0),P点的坐标为(a,a/2,a/2).已知电场方向平行于直线MN,M点电势为0,N点电势为1 V,则P点的电势为()A.22V B.32V C.14V D.34V三、平行板电容器的动态分析运用电容的定义式和决定式分析电容器相关量变化的思路(1)确定不变量,分析是电压不变还是所带电荷量不变.电容器的两极板与电源连接时,电容器两极板间的电压保持不变;电容器先充电后与电源断开,电容器的电荷量保持不变.(2)用决定式C =εrS4πkd分析平行板电容器电容的变化. (3)用定义式C =QU 分析电容器所带电荷量或两极板间电压的变化.(4)用E =Ud分析电容器极板间场强的变化.图9【例3】 如图9所示,用电池对电容器充电,电路a 、b 之间接有一灵敏电流表,两极板间有一个电荷q 处于静止状态.现将两极板的间距变大,则( )A .电荷将向上加速运动B .电荷将向下加速运动C .电流表中将有从a 到b 的电流D .电流表中将有从b 到a 的电流 [规范思维]图10[针对训练3] 平行板电容器的两极板A 、B 接于电池两极,一带正电小球悬挂在电容器内部.闭合开关S ,电容器充电,这时悬线偏离竖直方向的夹角为θ,如图10所示,则( )A .保持开关S 闭合,带正电的A 板向B 板靠近,则θ增大 B .保持开关S 闭合,带正电的A 板向B 板靠近,则θ不变C .开关S 断开,带正电的A 板向B 板靠近,则θ增大D .开关S 断开,带正电的A 板向B 板靠近,则θ不变【基础演练】图111.用控制变量法,可以研究影响平行板电容器电容的因素(如图11).设两极板正对面积为S,极板间的距离为d,静电计指针偏角为θ.实验中,极板所带电荷量不变,若() A.保持S不变,增大d,则θ变大B.保持S不变,增大d,则θ变小C.保持d不变,减小S,则θ变小D.保持d不变,减小S,则θ不变2.图12如图12所示,M、N是平行板电容器的两个极板,R0为定值电阻,R1、R2为可调电阻,用绝缘细线将质量为m、带正电的小球悬于电容器内部.闭合电键S,小球静止时受到悬线的拉力为F.调节R1、R2,关于F的大小判断正确的是()A.保持R1不变,缓慢增大R2时,F将变大B.保持R1不变,缓慢增大R2时,F将变小C.保持R2不变,缓慢增大R1时,F将变大D.保持R2不变,缓慢增大R1时,F将变小3.图13如图13所示,平行直线AA′、BB′、CC′、DD′、EE′,分别表示电势-4 V、-2 V、0 V、2 V、4 V的等势线,若AB=BC=CD=DE=2 cm,且与直线MN成30°角,则()A.该电场是匀强电场,场强方向垂直于AA′,且右斜下B.该电场是匀强电场,场强大小E=2 V/mC.该电场是匀强电场,距C点距离为2 cm的所有点中,最高电势为4 V,最低电势为-4 VD.若一个正电荷从A点开始运动到E点,通过AB段损失动能E,则通过CD段损失动能也为E4.有一静电场,其电场强度方向平行于x轴.其电势φ随坐标x的改变而变化,变化的图线如图14所示,则图中正确表示该静电场的场强E随x变化的图线是(设场强沿x轴正方向时取正值)()图14图155.如图15所示,足够长的两平行金属板正对着竖直放置,它们通过导线与电源E、定值电阻R、开关S相连.闭合开关后,一个带电的液滴从两板上端的中点处无初速释放,最终液滴落在某一金属板上.下列说法中正确的是()A.液滴在两板间运动的轨迹是一条抛物线B.电源电动势越大,液滴在板间运动的加速度越大C.电源电动势越大,液滴在板间运动的时间越短D.定值电阻的阻值越大,液滴在板间运动的时间越长图166.一平行板电容器充电后与电源断开,负极板接地,在两极板间有一正电荷(电荷量很小)固定在P点,如图16所示.以E表示两极板间的场强,U表示电容器的电压,Ep表示正电荷在P点的电势能,若保持负极板不动,将正极板移到图中虚线所示的位置,则() A.U变小,E不变B.E变大,Ep变大C.U变小,Ep不变D.U不变,Ep不变7.板间距为d的平行板电容器所带电荷量为Q时,两极板间电势差为U1,板间场强为E 1.现将电容器所带电荷量变为2Q ,板间距变为12d ,其他条件不变,这时两极板间电势差为U 2,板间场强为E 2,下列说法正确的是( )A .U 2=U 1,E 2=E 1B .U 2=2U 1,E 2=4E 1C .U 2=U 1,E 2=2E 1D .U 2=2U 1,E 2=2E 1 【能力提升】图178.图17中A 、B 、C 三点都在匀强电场中,已知AC ⊥BC ,∠ABC =60°,BC =20 cm ,把一个电荷量q =10-5 C 的正电荷从A 移到B ,电场力做功为零;从B 移到C ,电场力做功为-1.73×10-3 J ,则该匀强电场的场强大小和方向是( )A .865 V/m ,垂直AC 向左B .865 V/m ,垂直AC 向右 C .1 000 V/m ,垂直AB 斜向上 题号 1 2 3 4 5 6 7 8 答案图189.如图18所示,水平放置的两平行金属板A 、B 接在U =4 000 V 的直流电源上,两极板间距离为2 cm ,A 极板接地,电场中a 点距B 极板1 cm ,b 点和c 点均距A 极板0.5 cm ,求:(1)a 点的电场强度; (2)a 、c 之间的电势差; (3)电子在b 点的电势能;(4)电子从a 点运动到c 点,电场力做的功.10.图19如图19所示的电场,等势面是一簇互相平行的竖直平面,间隔均为d,各面电势已在图中标出,现有一质量为m的带电小球以速度v0,方向与水平方向成45°角斜向上射入电场,要使小球做直线运动.问:(1)小球应带何种电荷?电荷量是多少?(2)在入射方向上小球最大位移量是多少?(电场足够大)11.图20如图20所示,两个带等量异种电荷、竖直放置、电容为C、间距为d的平行金属板,两板之间的电场可视为匀强电场.此外两板之间还存在一种物质,使小球受到一个大小为F =kv(k为常数,v为小球速率)、方向总是背离圆心的力. 一个质量为m,带电荷量为-q的小球,用长为L(L<d)的不可伸长的细线悬挂于O点,将小球拉至水平位置M,由静止释放,当小球向下摆过60°到达N点时,速度恰为零(细线始终处于伸直状态).则:(1)左极板带电量Q是多少?(2)小球到达N点时的加速度大小是多少?(3)小球的最大速度是多少?此时细线上的拉力是多少?学案29 场强与电势差的关系 电容器及其电容【课前双基回扣】 1.D2.C [从电场线疏密可以看出E a >E b >E c ,由公式U =Ed 可以判断U ab >U bc ,所以φb <φa +φc 2=35 V .]3.CD [电容器电容的大小由电容器自身决定,与带电与否、所带电荷量Q 的多少均无关;根据C =QU 可知,当电容器电压发生变化时,所带电荷量也发生变化,但两者比值保持不变,即C =Q +ΔQU +ΔU,所以有ΔQ =C·ΔU.综上所述,本题正确选项为C 、D.]4.BCD [平行板电容器的电容C =εrS4kπd ,因此加大极板间距d ,导致C 减小,A 项错误;正对面积S 减小,C 减小,B 项正确;插入陶瓷板,相当于增大介电常数εr ,C 增大,C 项正确;插入铝板,相当于减小极板间距d ,C 增大,D 项正确.]5.B [由公式U =Ed 可知,在匀强电场中相互平行的两线段端点所对应电势差之比恰好等于两线段长度之比.则由图知ab ∥dc ,必有U ab /U dc =ab/dc =1/1,故 V =(4-φc ) V ,则φc =8 V .]6.B [当将电容器两极板间距离迅速增大的过程中,电容器极板上的电荷量未来得及变化,即Q 不变,则C =Q U =Q Ed ,又C =εrS 4πkd ,所以Q Ed =εrS 4πkd ,所以E =4πkQεrS 也不变,而U=Ed ,故U 增大,但最终电压U 要与电源电压相等,故选项B 正确.因为C =εrS4πkd,所以d 增大时,C 减小.由Q =CU ,所以Q 减小,电路中有瞬时电流,方向由B 板经电源流向A 板,故D 不对.]思维提升1.公式U =dE 只适用于匀强电场的计算,且d 为沿场强方向的距离.但对于非匀强电场,可应用该公式定性分析问题.2.电容是电容器本身的属性,由电容器本身因素决定,与电容器是否带电以及带电多少无关.3.对于不含源的电容器,两极板间距离发生改变时,板间匀强电场的场强不变,这一结论应熟记.【核心考点突破】例1 D[空腔球形导体在正电荷A的电场中感应的结果如图所示,从电场线的疏密可确定a 点场强大于c点场强,而b点场强为零,故E a>E c>E b,而沿着电场线电势降低,故φa>φb >φc,D正确.][规范思维]先画出电场线,再分析各点场强大小及电势高低.本题中很多同学易认为:E b=0,则φb=0,其实空腔球形导体处于静电平衡后导体是等势体,内外表面是等势面,再考虑沿场强方向电势降低可以得到φa>φb>φc.例2 见解析解析(1)负电荷在匀强电场中做匀速运动说明受的电场力与外力F等大反向因此该电场方向与F的方向同向,如图所示等势线与场强垂直,过A、B两点的等势线如图所示A、B两点间的电势差U AB=E·d AB·cos α匀强电场的场强E =F 电q =F q所以U AB =F qd AB ·cos α =1.5×10-43×10-7×0.4×0.8 V =160 V则B 点的电势φB =φA -U AB =-60 V.(2)由A 到B 克服电场力做功W =q·U AB =160×3×10-7 J =4.8×10-5 J即:电势能变化量为4.8×10-5 J.[规范思维] 由带电点电荷做匀速直线运动,所受合外力为零,确定电场力方向和电场方向;由E =U d计算电场强度,然后再由两点沿电场线方向的距离计算电势差大小. 例3 B[如图所示,取ab 的中点O 为圆心,作△abc 的外接圆,O 即为外接圆的圆心,且φO =2 V ,O 、c 在同一个等势面上.连接圆心O 和c ,并通过b 、a 两点分别作Oc 的平行线,因为Oa =Ob =Oc =R ,所以三条平行线是等势差的.再过O 点作三条平行线的垂线,交三角形abc 的外接圆于d 、e 两点,则d 点电势最高,e 点电势最低.由ERcos 30°=φb -φc ,ER =φd -φc ,ER =φc -φe 且φb =(2+3)V ,φc =2 V 得φd =4 V ,φe =0 V ,所以B 正确,A 、C 、D 均错误.][规范思维] 本题中先由几个点的电势,找出等势点,再由等势线画出电场线,而寻找等势点是解题的关键.例4 BD [充电后电容器的上极板A 带正电.不断开电源,增大两板间距,U 不变、d增大.由E =U d知两极板间场强减小.场强减小会使电荷q 受到的电场力减小,电场力小于重力,合力向下,电荷q 向下加速运动.由C =εrS 4πkd知电容C 减小.由Q =CU 知极板所带电荷量减少.会有一部分电荷返回电源,形成逆时针方向的电流.电流表中将会有由b 到a 的电流,选项B 、D 正确.][规范思维] 求与平行板电容器有关的问题时,应从平行板电容器的电容决定式入手,首先确定不变量,然后根据电容决定式C =εrS 4πkd,进行推导讨论,找出各物理量之间的关系,从而得出正确结论.[针对训练]1.B 2.D 3.AD【课时效果检测】1.A 2.B 3.CD 4.A5.BC [在水平方向液滴受电场力作用,做初速度为零的匀加速运动;在竖直方向为自由落体运动,故液滴在两板间运动的轨迹不是抛物线,A 错;电源电动势越大,液滴受电场力越大,液滴在板间运动的加速度就越大;由于水平运动距离一定,为中心线到板的水平距离,故加速度越大,时间越短,所以选项B 、C 对;定值电阻的大小不会改变板间电压,故D 错.]6.AC [当平行板电容器充电后与电源断开时,E =U d =Q Cd =4πk εr .Q S,带电荷量Q 不变,两极板间场强E 保持不变,由于板间距离d 减小,由U =Ed 可知,电容器的电压U 变小.由于场强E 保持不变,因此P 点与接地的负极板间的电势差保持不变,即P 点的电势保持不变,因此电荷在P 点的电势能Ep 保持不变.A 、C 正确.]7.C [由C =Q U 和C =εS 4kπd 及E =U d 得,E =4kπQ εS,由电荷量由Q 增为2Q ,板间距由d 减为d 2,得E 2=2E 1;又U =Ed 可得U 1=U 2,故A 、B 、D 错,C 对.] 8.D [把电荷q 从A 移到B ,电场力不做功,说明A 、B 两点在同一等势面上,因该电场为匀强电场,等势面应为平面,故图中直线AB 即为等势线,场强方向应垂直于等势面,可见,选项A 、B 不正确.U BC =W BC q =-1.73×10-310-5V =-173 V .B 点电势比C 点低173 V ,因电场线指向电势降低的方向,所以场强方向必垂直于AB 斜向下.场强大小E =U d =U BC sin 60°=1730.2×32V·m -1=1 000 V·m -1,因此选项D 正确,C 错误.]9.(1)2×105 V/m (2)-1 000 V (3)1.6×10-16 J(4)1.6×10-16 J解析 (1)a 点的电场强度为:E =U AB d AB = 4 0002×10-2V/m =2×105 V/m. (2)a 、c 两点间的电势差为:U ac =-U ca =-Ed ba =-2×105×(2-1-0.5)×10-2 V =-1 000 V.(3)b 点的电势为:φb =-U Ab =-Ed Ab =-2×105×0.5×10-2 V =-1 000 V ,电子在b 点的电势能为:E Pb =eφb =-1.6×10-19×(-1 000) J =1.6×10-16 J.(4)电子从a 点运动到c 点,电场力做的功为:W =eU ac =-1.6×10-19×(-1 000) J =1.6×10-16 J. 10.(1)正电 q =mgd U (2)2v 204g解析 (1)作电场线如图(a)所示,由题意得,只有小球受到向左的电场力,电场力和重力的合力与初速度才可能在一条直线上,如图(b)所示,只有当F 合与v 0在一条直线上才可能使小球做直线运动.所以小球带正电,小球沿v 0方向做匀减速运动.由图(b)知qE =mg.相邻等势面间的电势差用U 表示,所以E =U d ,所以q =mg E =mgd U.(2)由图(b)知F 合=(qE )2+(mg )2=2mg(因为qE =mg).由动能定理-F 合·lmax =0-12mv 20,所以l max =mv 2022mg=2v 204g . 11.(1)3mgCd q(2)g (3)(3-1)gL (6-23)mg +k(3-1)gL解析 (1)设两板间电势差为U ,场强为E由C =Q U 和E =U d 得E =Q Cd① 对球,从M 到N 由动能定理有mgLsin 60°-qEL(1-cos 60°)=0所以qE =3mg ②由①②得:Q =3mgCd q(2)球在N 点的加速度方向垂直ON 沿切线向上,在N 点受力分析,将电场力和重力正交分解,在切线方向有qEsin 60°-mgsin 30°=ma得a =qEsin 60°-mgsin 30°m=g (或由单摆的对称性得M 、N 两处加速度大小相等均为g)(3)小球速度最大位置在MN 弧的中点P 处,对球从M 到P 由动能定理有:mgLsin 30°-qEL(1-cos 30°)=12mv 2-0 解得v =2(2-3)gL =(3-1)gL在P 点对球受力分析,设线上的拉力为F ′,合力充当向心力,有 F ′-kv -(mg )2+(qE )2=m v 2L解得:F ′=(6-23)mg +k(3-1)gL易错点评1.电容器两板间的电压不能用电压表测量,因为电容器可通过电压表内的线圈放电.一般用静电计测量电容器两板间的电压.2.电容器充放电时,在电路中有短暂的充电电流或放电电流,要特别注意放电电流的方向.另外要理解充放电时,并不是电荷通过了电容器.3.在电容器两板间插入金属板时,相当于电容器两板间距离减小,即电容要变大.。