2020-2021中考数学易错题精选-圆与相似练习题附详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021中考数学易错题精选-圆与相似练习题附详细答案
一、相似
1.如图,在△ABC中,∠C=90°,AC=8,BC=6。
P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足为M、N设AP=x.
(1)在△ABC中,AB= ________;
(2)当x=________时,矩形PMCN的周长是14;
(3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等?请说出你的判断,并加以说明。
【答案】(1)10
(2)5
(3)解:∵PM⊥AC,PN⊥BC,
∴∠AMP=∠PNB=∠C=90º.
∴AC∥PN,∠A=∠NPB.
∴△AMP∽△PNB∽△ABC.
当P为AB中点时,可得△AMP≌△PNB
此时S△AMP=S△PNB= ×4×3=6
而S矩形PMCN=PM·MC=3×4=12.
所以不存在x的值,能使△AMP的面积、△PNB的面积与矩形PMCN面积同时相等.
【解析】【解答】(1)∵△ABC为直角三角形,且AC=8,BC=6,
( 2 )∵PM⊥AC PN⊥BC
∴MP∥BC,AC∥PN(垂直于同一条直线的两条直线平行),
∴,
∵AP=x,AB=10,BC=6,AC=8,BP=10-x,
∴矩形PMCN周长=2(PM+PN)=2( x+8- x)=14,解得x=5;
【分析】在△ABC中,∠C=90°,AC=8,BC=6根据勾股定理,可求出AB的长;AP=x,可以得到矩形PMCN的周长的表达式,构造方程,解方程得到x值.可以证明
△AMP∽△PNB∽△ABC,只有当P为AB中点时,可得△AMP≌△PNB,此时S△AMP=S△PNB,分别求出当P为AB中点时△PAM的面积、△PBN的面积与矩形PMCN的面积比较即可.
2.如图,在⊙O中,直径AB经过弦CD的中点E,点M在OD上,AM的延长线交⊙O于点G,交过D的直线于F,且∠BDF=∠CDB,BD与CG交于点N.
(1)求证:DF是⊙O的切线;
(2)连结MN,猜想MN与AB的位置有关系,并给出证明.
【答案】(1)证明:∵直径AB经过弦CD的中点E,
, = ,
即
是的切线
(2)解:猜想:MN∥AB.
证明:连结CB.
∵直径AB经过弦CD的中点E,
∴ = , = ,
∴
∵
∴
∴
∵
∴
∵
∵
∴
∴
∴MN∥AB.
【解析】【分析】(1)要证DF是⊙O的切线,由切线的判定知,只须证∠ODF=即可。
由垂径定理可得AB⊥CD,则∠BOD+∠ODE=,而∠ODF=∠CDF+∠ODE,由已知易得∠BOD=∠CDF,则结论可得证;
(2)猜想:MN∥AB.理由:连结CB,由已知易证△CBN∽△AOM,可得比例式
,于是由已知条件可转化为,∠ODB是公共角,所以可得△MDN∽△ODB,则∠DMN=∠DOB,根据平行线的判定可得MN∥AB。
3.
(1)【探索发现】如图1,△ABC中,点D,E,F分别在边BC,AC,AB上,且AD,BE,CF相交于同一点O.用”S”表示三角形的面积,有S△ABD:S△ACD=BD:CD,这一结论可通过以下推理得到:过点B作BM⊥AD,交AD延长线于点M,过点C作CN⊥AD于点N,可得
S△ABD:S△ACD=,又可证△BDM~△CDN,∴BM:CN=BD:CD,∴S△ABD:S△ACD=BD:CD.由此可得S△BAO:S△BCO=________;S△CAO:S△CBO=________;若D,E,F分别是BC,AC,AB的中点,则S△BFO:S△ABC=________.
(2)【灵活运用】如图2,正方形ABCD中,点E,F分别在边AD,CD上,连接AF,BE 和CE,AF分别交BE,CE于点G,M.
若AE=DF.判断AF与BE的位置关系与数量关系,并说明理由;
(3)若点E,F分别是边AD,CD的中点,且AB=4.则四边形EMFD的面积是多少?(4)【拓展应用】如图3,正方形ABCD中,AB=4,对角线AC,BD相交于点O.点F是边CD的中点.AF与BD相交于点P,BG⊥AF于点G,连接OG,请直接写出S△OGP的值.
【答案】(1)AE:EC;AF:BF;1:6
(2)解:结论:AF=BE,AF⊥BE.
理由:如图2中,
∵四边形ABCD是正方形,
∴AB=AD,∠BAE=∠ADF=90°,
∵AE=DF,
∴△BAE≌△ADF(SAS),
∴BE=AF,∠ABE=∠DAF,
∵∠ABE+∠AEB=90°,
∴∠DAF+∠AEB=90°,
∴∠AGE=90°,
∴AF⊥BE.
(3)解:如图2﹣1中,连接DM.
根据对称性可知△DME,△DMF,关于直线DM对称,
∴S△DME=S△DMF,
∵AE=DE,
∴S△AEM=S△DME=S△DMF,
∵S△ADF= ×4×2=4,
∴S△AEM=S△DME=S△DMF=,
∴S四边形EMFD= .
故答案为 .
(4)拓展应用:如图3中,
∵四边形ABCD是正方形,
∴AB=BC=CD=AD=4,AC=BD=4 ,OA=OB=OD=OC=2 ,∵DF=FC,
∴DF=FC=2,
∵DF∥AB,
∴,
∴OP:OB=OP:OA=1:3,
∵BG⊥PA,AO⊥OB,
∴∠AGB=∠AOB=90°,
∵∠OAP+∠APO=90°,∠PBG+∠BPG=90°,
∴∠PAO=∠PBG,
∵∠APO=∠BPG,
∴△AOP∽△BGP,
∴
∴,∵∠GPO=∠BPA,
∴△GPO∽△BPA,
∴,
∴S△ABP= S△ABD=,
∴S△GOP= .
【解析】【解答】(1)探索发现:由题意:S△BAO:S△BCO=AE:EC;S△CAO:S△CBO=AF:BF;若D,E,F分别是BC,AC,AB的中点,则S△BFO:S△ABC=1:6,
故答案为:AE:EC,AF:BF,1:6.
【分析】【探索发现】利用等高模型,解决问题即可.【灵活运用】(1)结论:AF=BE,AF⊥BE.证明△BAE≌△ADF(SAS)即可解决问题.(2)根据对称性可知△DME,△DMF,关于直线DM对称,推出S△DME=S△DMF,由AE=DE,推出S△AEM=S△DME=S△DMF,求出
△ADF的面积即可解决问题.【拓展应用】由△GPO∽△BPA,推出即可解决问题.
4.
(1)问题发现:如图①,
正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.
①写出线段CF与DG的数量关系;
②写出直线CF与DG所夹锐角的度数.
(2)拓展探究:
如图②,
将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.
(3)问题解决
如图③,
△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE的长的最小值.(直接写出结果)
【答案】(1)①CF= DG,②45
(2)解:如图:
①连接AC、AF,在正方形ABCD中,延长CF交DG与H点,
∠CAD= ∠BCD=45 ,
设AD=CD=a,易得AC= a= AD,
同理在正方形AEFG中,∠FAG=45 ,AF= AG,
∠CAD=∠FAG, ∠CAD-∠2=∠FAG-∠2,
∠1=∠3
又
△CAF∽DAG,
= , CF= DG;
②由△CAF∽DAG,∠4=∠5,
∠ACD=∠4+∠6=45 , ∠5+∠6=45 ,
∠5+∠6+∠7=135 ,
在△CHD中,∠CHD=180 -135 =45 ,(1)中的结论仍然成立
(3)OE的最小值为 .
【解析】【解答】(3)如图:
由∠BAC=∠DAE=90 ,可得∠BAD=∠CAE,又AB=AC,AD=AE,
可得△BAD≌△CAE,
∠ACE=∠ABC=45 ,
又∠ACB=45 , ∠BCE=90 ,即CE⊥BC,
根据点到直线的距离垂线段最短,
OE⊥CE时,OE最短,此时OE=CE,△OEC为等腰直角三角形,
OC= AC=2,
由等腰直角三角形性质易得,OE= ,
OE的最小值为 .
【分析】(1)①易得CF= DG;②45 ;(2)连接AC、AF,在正方形ABCD中,可得
△CAF∽DAG, = , CF= DG,在△CHD中,∠CHD=180 -135 =45 ,(1)中的结论是否仍然成立;(3)OE⊥CE时,OE最短,此时OE=CE,△OEC为等腰直角
三角形,OC= AC=2,可得OE的值.
5.如图:在中,BC=2,AB=AC,点D为AC上的动点,且 .
(1)求AB的长度;
(2)求AD·AE的值;
(3)过A点作AH⊥BD,求证:BH=CD+DH. 【答案】(1)解:作AM⊥BC,
∵AB=AC,BC=2,AM⊥BC,
∴BM=CM= BC=1,
在Rt△AMB中,
∵cosB= ,BM=1,
∴AB=BM÷cosB=1÷ = .
(2)解:连接CD,
∵AB=AC,
∴∠ACB=∠ABC,
∵四边形ABCD内接于圆O,
∴∠ADC+∠ABC=180°,
又∵∠ACE+∠ACB=180°,
∴∠ADC=∠ACE,
∵∠CAE=∠CAD,
∴△EAC∽△CAD,
∴ ,
∴AD·AE=AC2=AB2=()2=10.
(3)证明:在BD上取一点N,使得BN=CD,
在△ABN和△ACD中
∵
∴△ABN≌△ACD(SAS),
∴AN=AD,
∵AH⊥BD,AN=AD,
∴NH=DH,
又∵BN=CD,NH=DH,
∴BH=BN+NH=CD+DH.
【解析】【分析】(1)作AM⊥BC,由等腰三角形三线合一的性质得BM=CM= BC=1,在
Rt△AMB中,根据余弦定义得cosB= ,由此求出AB.
(2)连接CD,根据等腰三角形性质等边对等角得∠ACB=∠ABC,再由圆内接四边形性质和等角的补角相等得∠ADC=∠ACE;由相似三角形的判定得△EAC∽△CAD,根据相似三角形的性质得
;从而得AD·AE=AC2=AB2.
(3)在BD上取一点N,使得BN=CD,根据SAS得△ABN≌△ACD,再由全等三角形的性质得AN=AD,根据等腰三角形三线合一的性质得NH=DH,从而得BH=BN+NH=CD+DH.
6.如图,已知△ABC的顶点坐标分别为A(3,0),B(0,4),C(-3,0)。
动点M,N 同时从A点出发,M沿A→C,N沿折线A→B→C,均以每秒1个单位长度的速度移动,当一个动点到达终点C时,另一个动点也随之停止移动,移动时间记为t秒。
连接MN。
(1)求直线BC的解析式;
(2)移动过程中,将△AMN沿直线MN翻折,点A恰好落在BC边上点D处,求此时t值及点D的坐标;
(3)当点M,N移动时,记△ABC在直线MN右侧部分的面积为S,求S关于时间t的函数关系式。
【答案】(1)解:设直线BC解析式为:y=kx+b,
∵B(0,4),C(-3,0),
∴,
解得:
∴直线BC解析式为:y= x+4.
(2)解:依题可得:AM=AN=t,
∵△AMN沿直线MN翻折,点A与点点D重合,
∴四边形AMDN为菱形,
作NF⊥x轴,连接AD交MN于O′,
∵A(3,0),B(0,4),
∴OA=3,OB=4,
∴AB=5,
∴M(3-t,0),
又∵△ANF∽△ABO,
∴ = = ,
∴ = = ,
∴AF= t,NF= t,
∴N(3- t, t),
∴O′(3- t, t),
设D(x,y),
∴ =3- t, = t,
∴x=3- t,y= t,
∴D(3- t, t),
又∵D在直线BC上,
∴ ×(3- t)+4= t,
∴t= ,
∴D(- ,).
(3)①当0<t≤5时(如图2),
△ABC在直线MN右侧部分为△AMN,
∴S= = ·AM·DF= ×t× t= t ,
②当5<t≤6时,△ABC在直线MN右侧部分为四边形ABNM,如图3
∵AM=AN=t,AB=BC=5,
∴BN=t-5,CN=-5-(t-5)=10-t,
又∵△CNF∽△CBO,
∴ = ,
∴ = ,
∴NF= (10-t),
∴S= - = ·AC·OB- ·CM·NF,
= ×6×4- ×(6-t)× (10-t),
=- t + t-12.
【解析】【分析】(1)设直线BC解析式为:y=kx+b,将B、C两点坐标代入即可得出二元一次方程组,解之即可得出直线BC解析式.(2)依题可得:AM=AN=t,根据翻折性质得四边形AMDN为菱形,作NF⊥x轴,连接AD交MN于O′,结合已知条件得M(3-t,0),
又△ANF∽△ABO,根据相似三角形性质得 = = ,
代入数值即可得AF= t,NF= t,从而得N(3- t, t),根据中点坐标公式得O′(3- t,
t),
设D(x,y),再由中点坐标公式得D(3- t, t),又由D在直线BC上,代入即可得D点坐标.(3)①当0<t≤5时(如图2),△ABC在直线MN右侧部分为△AMN,根据三角形面积公式即可得出S表达式.
②当5<t≤6时,△ABC在直线MN右侧部分为四边形ABNM,由△CNF∽△CBO,根据相似三角形性质得 = ,代入数值得NF= (10-t),最后由S= - = ·AC·OB- ·CM·NF,代入数值即可得表达式.
7.已知二次函数y=ax2+bx+3的图象分别与x轴交于点A(3,0),C(-1,0),与y轴交于点B.点D为二次函数图象的顶点.
(1)如图①所示,求此二次函数的关系式:
(2)如图②所示,在x轴上取一动点P(m, 0),且1<m<3,过点P作x轴的垂线分别交二次函数图象、线段AD,AB于点Q、F,E,求证:EF=EP;
(3)在图①中,若R为y轴上的一个动点,连接AR,则BR+AR的最小值________(直接写出结果).
【答案】(1)解:将A(3,0),C(-1,0)代入y=ax2+bx+3,得:
,解得:,
∴此二次函数的关系式为y=-x2+2x+3
(2)证明:∵y=-x2+2x+3=-(x-1)2+4,
∴点D的坐标为(1,4).
设线段AB所在直线的函数关系式为y=kx+c(k≠0),
将A(3,0),C(0,3)代入y=kx+c,得:
,解得:,
∴线段AB所在直线的函数关系式为y=-x+3.
同理,可得出:线段AD所在直线的函数关系式为y=-2x+6.
∵点P的坐标为(m,0),
∴点E的坐标为(m,-m+3),点F的坐标为(m,-2m+6),
∴EP=-m+3,EF=-m+3,
∴EF=EP.
(3)
【解析】【解答】解(3)如图③,连接BC,过点R作RQ⊥BC,垂足为Q.
∵OC=1,OB=3,
∴BC= .(勾股定理)
∵∠CBO=∠CBO,∠BOC=∠BQR=90°,
∴△BQR∽△AOB,
∴ ,即 ,
∴RQ= BR,
∴AR+ BR=AR+RQ,
∴当A,R,Q共线且垂直AB时,即AR+ BR=AQ时,其值最小.
∵∠ACQ=∠BCO,∠BOC=∠AQC,
∴△CQA∽△COB,
∴ ,即
∴AQ= ,
∴ BR+CR的最小值为.
故答案为:.
【分析】(1)根据A,C点的坐标,利用待定系数法可求出二次函数的关系式;(2)利用待定系数法求出线段AB,AD所在直线的函数关系式,用m表示EF,EP的长,可证得结论;(3)连接BC,过点R作RQ⊥BC,垂足为Q,则△BQR∽△AOB,利用相似三角形
的性质可得出RQ= BR,结合点到直线之间垂直线段最短可得出当A,R,Q共线且垂直
AB时,即AR+ BR=AQ时,其值最小,由∠ACQ=∠BCO,∠BOC=∠AQC可得出△CQA∽△COB,利用相似三角形的性质可求出AQ的值,此题得解.
8.如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
(1)求∠AHC与∠ACG的大小关系(“>”或“<”或“=”)
(2)线段AC,AG,AH什么关系?请说明理由;
(3)设AE=m,
①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
②请直接写出使△CGH是等腰三角形的m值.
【答案】(1)∵四边形ABCD是正方形,
∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=45°,
∴AC=,
∵∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,
∴∠AHC=∠ACG.
故答案为=.
(2)解:结论:AC2=AG•AH.
理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135°,
∴△AHC∽△ACG,
∴,
∴AC2=AG•AH.
(3)解:①△AGH的面积不变.
理由:∵S△AGH=•AH•AG=AC2= ×(4 )2=16.
∴△AGH的面积为16.
②如图1中,当GC=GH时,易证△AHG≌△BGC,
可得AG=BC=4,AH=BG=8,
∵BC∥AH,
∴ ,
∴AE=AB=.
如图2中,当CH=HG时,
易证AH=BC=4,
∵BC∥AH,
∴=1,
∴AE=BE=2.
如图3中,当CG=CH时,易证∠ECB=∠DCF=22.5.
在BC上取一点M,使得BM=BE,
∴
∠BME=∠BEM=45°,
∵∠BME=∠MCE+∠MEC,
∴∠MCE=∠MEC=22.5°,
∴CM=EM,设BM=BE=m,则CM=EM m,
∴m+ m=4,
∴m=4(﹣1),
∴AE=4﹣4(﹣1)=8﹣4 ,
综上所述,满足条件的m的值为或2或8﹣4 .
【解析】【分析】(1)证明∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,即可推出∠AHC=∠ACG;(2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;(3)①△AGH的面积不变.理由三角形的面积公式计算即可;②分三种情形分别求解即可解决问题.
二、圆的综合
9.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC.
(1)若∠G=48°,求∠ACB的度数;
(2)若AB=AE,求证:∠BAD=∠COF;
(3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若
tan∠CAF=1
2
,求1
2
S
S的值.
【答案】(1)48°(2)证明见解析(3)3 4
【解析】
【分析】
(1)连接CD,根据圆周角定理和垂直的定义可得结论;
(2)先根据等腰三角形的性质得:∠ABE=∠AEB,再证明∠BCG=∠DAC,可得
»»»
CD PB PD
==,则所对的圆周角相等,根据同弧所对的圆周角和圆心角的关系可得结论;
(3)过O作OG⊥AB于G,证明△COF≌△OAG,则OG=CF=x,AG=OF,设OF=a,则
OA=OC=2x-a,根据勾股定理列方程得:(2x-a)2=x2+a2,则a=3
4
x,代入面积公式可得结
论.
【详解】
(1)连接CD,
∵AD是⊙O的直径,
∴∠ACD=90°,
∴∠ACB+∠BCD=90°,
∵AD⊥CG,
∴∠AFG=∠G+∠BAD=90°,
∵∠BAD=∠BCD,
∴∠ACB=∠G=48°;
(2)∵AB=AE,
∴∠ABE=∠AEB,
∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,
∴∠BCG=∠DAC,
∴»»
CD PB
=,
∵AD是⊙O的直径,AD⊥PC,
∴»»
CD PD
=,
∴»»»
CD PB PD
==,
∴∠BAD=2∠DAC,
∵∠COF=2∠DAC,
∴∠BAD=∠COF;
(3)过O作OG⊥AB于G,设CF=x,
∵tan∠CAF=1
2=
CF AF
,
∴AF=2x,
∵OC=OA,由(2)得:∠COF=∠OAG,∵∠OFC=∠AGO=90°,
∴△COF≌△OAG,
∴OG=CF=x,AG=OF,
设OF=a,则OA=OC=2x﹣a,
Rt△COF中,CO2=CF2+OF2,
∴(2x﹣a)2=x2+a2,
a=3
4 x,
∴OF=AG=3
4 x,
∵OA=OB,OG⊥AB,
∴AB=2AG=3
2
x,
∴1
2
13
··3
22
1·24
·
2
AB OG x x
S
S x x
CF AF
===.
【点睛】
圆的综合题,考查了三角形的面积、垂径定理、角平分线的性质、三角形全等的性质和判定以及解直角三角形,解题的关键是:(1)根据圆周角定理找出∠ACB+∠BCD=90°;(2)根据外角的性质和圆的性质得:»»»
CD PB PD
==;(3)利用三角函数设未知数,根据勾股定理列方程解决问题.
10.如图,在△ABC中,AB=AC,以AB为直径作⊙O,⊙O交BC于点D,交CA的延长线于点E.过点D作DF⊥AC,垂足为F.
(1)求证:DF为⊙O的切线;
(2)若AB=4,∠C=30°,求劣弧»BE的长.
【答案】(1)证明见解析(2)
4
3
π
【解析】
分析:(1)连接AD、OD,根据直径所对的圆周角为直角,可得∠ADB=90°,然后根据等腰三角形的性质求出BD=CD,再根据中位线的性质求出OD⊥DF,进而根据切线的判定证明即可;
(2)连接OE,根据三角形的外角求出∠BAE的度数,然后根据圆周角定理求出∠BOE的度数,根据弧长公式求解即可.
详解:(1)连接AD、OD.∵AB是直径,∴∠ADB=90°.
∵AB=AC,∴BD=CD,
又∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,
∵DF⊥AC,∴OD⊥DF
即∠ODF=90°.∴DF为⊙O的切线;
(2)连接OE.∵AB=AC,∴∠B=∠C=30°,∴∠BAE=60°,
∵∠BOE=2∠BAE,∴∠BOE=120°,
∴=·4π=π.
点睛:本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、圆周角定理,灵活添加辅助线是解题关键.
11.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.
(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P'CB的过程中边PA所扫过区域(图中阴影部分)的面积;
(2)若PA=2,PB=4,∠APB=135°,求PC的长.
【答案】(1) S阴影=(a2-b2);(2)PC=6.
【解析】
试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.
(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.
试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,
∴△PAB≌△P'CB,
∴S△PAB=S△P'CB,
S阴影=S扇形BAC-S扇形BPP′=(a2-b2);
(2)连接PP′,根据旋转的性质可知:△APB≌△CP′B,
∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,
∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;
又∵∠BP′C=∠BPA=135°,
∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.
PC==6.
考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.
12.如图,△ABC内接于⊙O,弦AD⊥BC垂足为H,∠ABC=2∠CAD.
(1)如图1,求证:AB=BC;
(2)如图2,过点B作BM⊥CD垂足为M,BM交⊙O于E,连接AE、HM,求证:AE∥HM;(3)如图3,在(2)的条件下,连接BD交AE于N,AE与BC交于点F,若NH=25,AD=11,求线段AB的长.
【答案】(1)证明见解析;(2)证明见解析;(3)AB的长为10.
【解析】
分析:(1)根据题意,设∠CAD=a,然后根据直角三角形的两锐角互余的关系,推导出
∠BAC=∠ACB,再根据等角对等边得证结论;
(2)延长AD、BM交于点N,连接ED.根据圆周角定理得出∠N=∠DEN=∠BAN,进而根据等角对等边,得到DE=DN,BA=BN,再根据等腰三角形和直角三角形的性质,求得
MH∥AE;
(3)连接CE,根据(2)的结论,由三角形全等的判定与性质证得HF=HC,然后结合勾股定理求出AC2-AH2=CD2-DH2,解得CD=5,CH=4,AH=8,最后根据锐角三角函数的性质得到AB.详解:(1)证明:设∠CAD=a,
则∠ABC=2a,∠C=90°-a,∠BAD=90°-2a,
∴∠BAC=90°-2a+a=90°-a
∴∠BAC=∠ACB.∴AB=BC
(2)证明:延长AD、BM交于点N,连接ED.
∵∠DEN=∠DAB,∠N=∠BCD,∠BCD=∠BAN
∴∠N=∠DEN=∠BAN
∴DE=DN,BA=BN
又∵BH⊥AN,DM⊥EN
∴EM=NM,HN=HA,∴MH∥AE
(3)连接CE.
∠BDA=∠BCA,∠BDM=∠BAC,由(1)知∠BCA=∠BAC
∴∠BDA=∠BDM,∴△BDM≌△BDH,
∴DH=MH,∠MBD=∠HBD,∴BD⊥MH
又∵MH∥AE,∴BD⊥EF,∴△FNB≌△ENB,
同理可证△AFH≌△ACH,∴HF=HC,又∵FN=NE
∴NH∥EC,EC=2NH,又∵NH=25∴EC=45
∠EAC=2∠AEC=2a=∠ABC,可证弧AC=弧EC,
∴AC=EC=5
设HD=x,AH=11-x,
∵∠ADC=2∠CAD,翻折△CHD至△CHG,可证CG=CD=AG
AH=CD+DH,CD=AH-DH=11-x-x=11-2x
又∵AC 2-AH 2=CD 2-DH 2,∴(45)2-(11-x)2=(11-2x)2-x 2
∴x 1=3,x 2=
272(舍去)∴CD=5,CH=4,AH=8. 又∵tan2AH CH a BH DH
==,∴BH=6 ∴AB=22226810BM AH +=+= 点睛:此题主要考查了圆的综合,结合圆周角定理,勾股定理,全等三角形的判定与性质,解直角三角形的性质,综合性比较强,灵活添加辅助线,构造方程求解是解题关键.
13.如图1
O e ,的直径12AB P =,是弦BC 上一动点(与点B C ,不重合)30ABC o ,∠=,过点P 作PD OP ⊥交O e 于点D .
()1如图2,当//PD AB 时,求PD 的长;
()2如图3,当»»DC AC =时,延长AB 至点E ,使12
BE AB =,连接DE . ①求证:DE 是O e 的切线;
②求PC 的长.
【答案】(1)26;(2)333-①见解析,②.
【解析】
分析:()1根据题意首先得出半径长,再利用锐角三角函数关系得出OP PD ,的长; ()2①首先得出OBD V 是等边三角形,进而得出ODE OFB 90∠∠==o ,求出答案即可;
②首先求出CF 的长,进而利用直角三角形的性质得出PF 的长,进而得出答案. 详解:()1如图2,连接OD ,
//OP PD PD AB ⊥Q ,,
90POB ∴∠=o ,
O Q e 的直径12AB =,
6OB OD ∴==,
在Rt POB V 中,30ABC o ∠=,
3tan30623OP OB ∴=⋅=⨯
=o , 在Rt POD V 中, 22226(23)26PD OD OP =-=-=;
()2①证明:如图3,连接OD ,交CB 于点F ,连接BD ,
»»DC AC =Q ,
30DBC ABC ∴∠=∠=o ,
60ABD o ∴∠=,
OB OD =Q ,
OBD ∴V 是等边三角形, OD FB ∴⊥,
12
BE AB =Q , OB BE ∴=,
//BF ED ∴,
90ODE OFB o ∴∠=∠=,
DE ∴是O e 的切线;
②由①知,OD BC ⊥,
3cos306332
CF FB OB ∴==⋅=⨯
=o 在Rt POD V 中,OF DF =, 13(2
PF DO ∴==直角三角形斜边上的中线,等于斜边的一半), 333CP CF PF ∴=-=.
点睛:此题主要考查了圆的综合以及直角三角形的性质和锐角三角函数关系,正确得出OBD V 是等边三角形是解题关键.
14.某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径.如图,若这个输水管道有水部分的水面宽AB=16cm ,水最深的地方的高度为
4cm,求这个圆形截面的半径.
【答案】10cm
【解析】
分析:先过圆心O作半径CO⊥AB,交AB于点D设半径为r,得出AD、OD的长,在Rt△AOD中,根据勾股定理求出这个圆形截面的半径.
详解:解:过点O作OC⊥AB于D,交⊙O于C,连接OB,
∵OC⊥AB
∴BD=1
2
AB=
1
2
×16=8cm
由题意可知,CD=4cm
∴设半径为xcm,则OD=(x﹣4)cm
在Rt△BOD中,
由勾股定理得:OD2+BD2=OB2
(x﹣4)2+82=x2
解得:x=10.
答:这个圆形截面的半径为10cm.
点睛:此题考查了垂经定理和勾股定理,关键是根据题意画出图形,再根据勾股定理进行求解.
15.如图,在以点O为圆心的两个同心圆中,小圆直径AE的延长线与大圆交于点B,点D在大圆上,BD与小圆相切于点F,AF的延长线与大圆相交于点C,且CE⊥BD.找出图中相等的线段并证明.
【答案】见解析
【解析】
试题分析:由AE是小⊙O的直径,可得OA=OE,连接OF,根据切线的性质,可得
OF⊥BD,然后由垂径定理,可证得DF=BF,易证得OF∥CE,根据平行线分线段成比例定理,可证得AF=CF,继而可得四边形ABCD是平行四边形,则可得AD=BC,AB=CD.然后连接OD、OC,可证得△AOD≌△EOC,则可得BC=AD=CE=AE.
试题解析:
图中相等的线段有:OA=OE,DF=BF,AF=CF,AB=CD,BC=AD=CE=AE.
证明如下:
∵AE是小⊙O的直径,
∴OA=OE.
连接OF,
∵BD与小⊙O相切于点F,
∴OF⊥BD.
∵BD是大圆O的弦,
∴DF=BF.
∵CE⊥BD,
∴CE∥OF,
∴AF=CF.
∴四边形ABCD是平行四边形.
∴AD=BC,AB=CD.
∵CE:AE=OF:AO,OF=AO,
∴AE=EC.
连接OD、OC,
∵OD=OC,
∴∠ODC=∠OCD.
∵∠AOD=∠ODC,∠EOC=∠OEC,
∴∠AOC=∠EOC,
∴△AOD≌△EOC,
∴AD=CE.
∴BC=AD=CE=AE.
【点睛】考查了切线的性质,垂径定理,平行线分线段成比例定理,平行四边形的判定与
性质以及全等三角形的判定与性质等知识.此题综合性很强解题的关键是注意数形结合思想的应用,注意辅助线的作法,小心不要漏解.
16.在平面直角坐标系xOy中,对于点P和图形W,如果以P为端点的任意一条射线与图形W最多只有一个公共点,那么称点P独立于图形W.
(1)如图1,已知点A(-2,0),以原点O为圆心,OA长为半径画弧交x轴正半轴于
点 B.在P1(0,4),P2(0,1),P3(0,-3),P4(4,0)这四个点中,独立于»AB的点是;
(2)如图2,已知点C(-3,0),D(0,3),E(3,0),点P是直线l:y=2x+8上的一个动点.若点P独立于折线CD-DE,求点P的横坐标x p的取值范围;
(3)如图3,⊙H是以点H(0,4)为圆心,半径为1的圆.点T(0,t)在y轴上且t>-3,以点T为中心的正方形KLMN的顶点K的坐标为(0,t+3),将正方形KLMN在x轴及x轴上方的部分记为图形W.若⊙H上的所有点都独立于图形W,直接写出t的取值范围.
【答案】(1)P2,P3;(2)x P<-5或x P>-
5
3
.(3)-3<t<2或2<t<2【解析】
【分析】
(1)根据点P独立于图形W的定义即可判断;
(2)求出直线DE,直线CD与直线y=2x+8的交点坐标即可判断;
(3)求出三种特殊位置时t的值,结合图象即可解决问题.
【详解】
(1)由题意可知:在P1(0,4),P2(0,1),P3(0,-3),P4(4,0)这四个点中,独立于»AB的点是P2,P3.
(2)∵C(-3,0),D(0,3),E(3,0),
∴直线CD的解析式为y=x+3,直线DE的解析式为y=-x+3,
由
28
3
y x
y x
+
⎧
⎨
+
⎩
=
=
,解得
5
2
x
y
-
⎧
⎨
-
⎩
=
=
,可得直线l与直线CD的交点的横坐标为-5,
由
28
3
y x
y x
+
⎧
⎨
-+
⎩
=
=
,解得
5
3
14
3
x
y
⎧
-
⎪⎪
⎨
⎪
⎪⎩
=
=
,可得直线l与直线DE的交点的横坐标为-
5
3
,
∴满足条件的点P的横坐标x p的取值范围为:x P<-5或x P>-5
3
.
(3)如图3-1中,当直线KN与⊙H相切于点E时,连接EH,则EH=EK=1,HK=2,
∴OT=KT+HK-OH=3+2-4=2-1,
∴T(0,1-2),此时t=1-2,
∴当-3<t<1-2时,⊙H上的所有点都独立于图形W.
如图3-2中,当线段KN与⊙H相切于点E时,连接EH.
22
∴T(0,22
如图3-3中,当线段MN与⊙H相切于点E时,连接EH.
22
∴T(0,22
∴当2<t<2时,⊙H上的所有点都独立于图形W.
综上所述,满足条件的t的值为-3<t<2或2<t<2
【点睛】
本题属于圆综合题,考查了切线的性质,一次函数的应用,点P独立于图形W的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用特殊位置解决实际问题.。