数学分析答案
数学分析课后习题答案
![数学分析课后习题答案](https://img.taocdn.com/s3/m/da7a0968852458fb770b56d0.png)
数学分析课后习题答案【篇一:数学分析试卷及答案6套】>一. (8分)用数列极限的??n定义证明?1.n二. (8分)设有复合函数f[g(x)], 满足: (1) limg(x)?b;x?a(2) ?x?u(a),有g(x)?u(b) (3) limf(u)?au?b00用???定义证明, limf[g(x)]?a.x?a三. (10分)证明数列{xn}:xn?cos1cos2cosn????收敛. 1?22?3n?(n?1)1在[a,1](0?a?1)一致连续,在(0,1]不一致连续. x四. (12分)证明函数f(x)?五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界.六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定a,b使limax?b)?0.x???32八. (14分)求函数f(x)?2x?9x?12x在[?15,]的最大值与最小值. 42九. (14分)设函数f(x)在[a,b]二阶可导, f?(a)?f?(b)?0.证明存在??(a,b),使f??(?)?4f(b)?f(a). 2(b?a)数学分析-1样题(二)一. (10分)设数列{an}满足: a1?, an?1?(n?n), 其中a是一给定的正常数, 证明{an}收敛,并求其极限.二. (10分)设limf(x)?b?0, 用???定义证明limx?x0x?x011?. f(x)b三. (10分)设an?0,且liman?l?1, 证明liman?0.n??n??an?1四. (10分)证明函数f(x)在开区间(a,b)一致连续?f(x)在(a,b)连续,且 x?a?limf(x),limf(x)存在有限. ?x?b五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理.六. (12分)证明:若函数在连续,且f(a)?0,而函数[f(x)]2在a可导,则函数f(x)在a可导. 七. (12分)求函数f(x)?x???x???1在的最大值,其中0???1.八. (12分)设f在上是凸函数,且在(a,b)可微,则对任意x1,x2?(a,b), x1?x2,都有f?(x1)?f?(x2).?g(x),??????x?0?九. (12分)设f(x)??x 且g(0)?g?(0)?0, g??(0)?3, 求f?(0).??0???????,??????x?0数学分析-2样题(一)一.(各5分,共20分)求下列不定积分与定积分: 1. 3.?xarctanx?dx2.?edx4.?x?ln0??xsinx1?cosx二.(10分)设f(x)是上的非负连续函数, 三. (10分)证明?baf(x)dx?0.证明f(x)?0 (x?[a,b]).?2?sinx?0. x四. (15分)证明函数级数?(1?x)xn?0?n在不一致收敛, 在[0,?](其中)一致收敛.五. (10分)将函数f(x)?????x,????????x?0展成傅立叶级数.???x,??????0?x???22xy??????x?y?0?六. (10分)设f(x,y)???22???????????0,???????????????????x?y?0证明: (1) fx?(0,0), fy?(0,0)存在;(2) fx?(x,y),fy?(x,y)在(0,0)不连续; (3) f(x,y)在(0,0)可微.七. (10分)用钢板制造容积为v的无盖长方形水箱,怎样选择水箱的长、宽、高才最省钢板? 八. (15分)设0???1, 证明11. ????n?1n(n?1)数学分析-2样题(二)?一. (各5分,共20分)求下列不定积分与定积分:1.???(a?0)2.?x?xx?x100?8717121514dx3.?arcsinx??dx4.?二. (各5分,共10分)求下列数列与函数极限: 1. limn?22n??k?1n?kn2. limxx?01?ex?xetdt2三.(10分)设函数在[a,b]连续,对任意[a,b]上的连续函数g(x), g(a)?g(b)?0,有?baf(x)g(x)dx?0.证明f(x)?0 (x?[a,b]).四. (15分)定义[0,1]上的函数列1?22nx,?????????????????????x??2n?11?fn(x)??2n??2n2x?????????????x?2nn?1? ????????????????????????????x?1?n?证明{fn(x)}在[0,1]不一致收敛. 五. (10分)求幂级数?(n?1)xn?0?n的和函数.六. (10分)用???定义证明(x,y)?(2,1)lim(4x2?3y)?19.七. (12分)求函数u?(2ax?x2)(2by?y2)??(ab?0)的极值. 八. (13分)设正项级数数学分析-3样题(一)一 (10分) 证明方程f(x?zy?1, y?zx?1)?0所确定的隐函数z?z(x, y)满足方程?an?1?n收敛,且an?an?1???(n?n?).证明limnan?0.n??x?z?z?y?z?xy. ?x?y二 (10分) 设n个正数x1, x2, ?, xn之和是a,求函数u?三 (14分) 设无穷积分.???af(x) dx收敛,函数f(x)在[a, ??)单调,证明1x四 (10分) 求函数f(y)?五 (14分) 计算?1ln(x2?y2) dx的导数(y?0).sinbx?sinaxdx (p?0, b?a).0x六 (10分) 求半径为a的球面的面积s.i????e?px七 (10分) 求六个平面a1b1c1 ?a1x?b1y?c1z??h1 ,??a2x?b2y?c2z??h2 , ?=a2b2c2?0 , ?ax?by?cz??h ,a3b3c3333?3所围的平行六面体v的体积i,其中ai, bi, ci, hi都是常数,且hi?0 (i?1, 2, 3). 八 (12分) 求xdy?ydx??cx2?y2,其中c是光滑的不通过原点的正向闭曲线.九 (10分) 求ds2222?,其中是球面被平面z?h (0?h?a)所截的顶部. x?y?z?a??z?数学分析-3样题(二)一 (10分) 求曲面x?u?v, y?u2?v2, z?u3?v3在点(0, 2)对应曲面上的点的切平面与法线方程.二 (10分) 求在两个曲面x2?xy?y2?z2?1与x2?y2?1交线上到原点最近的点. 三(14分) 设函数f(x)在[1, ??)单调减少,且limf(x)?0,证明无穷积分x??????1f(x) dx与级数?f(n)同时收敛或同时发散.n?1??100四 (12分) 证明?e?ax?e?bxbdx?ln(0?a?b). xa五 (12分) 设函数f(x)在[a, a]连续,证明? x?[a, a],有1xlim ?[f(t?h)?f(t)] dt?f(x)?f(a).ah?0h六 (10分) 求椭圆区域r: (a1x?b1y?c1)2?(a2x?b2y?c2)2?1(a1b2?a2b1?0)的面积a.七 (10分) 设f(t)????vf(x2?y2?z2) dx dy dz,其中v: x2?y2?z2? t2 (t?0),f是连续函数,求f(t).八 (10分) 应用曲线积分求(2x?siny)dx?(xcosy)dy的原函数. 九(12分) 计算外侧.??xyz dx dy,其中s是球面xs2?y2?z2?1在x?0, y?0部分并取球面【篇二:数学分析三试卷及答案】lass=txt>一. 计算题(共8题,每题9分,共72分)。
数学分析试题及答案
![数学分析试题及答案](https://img.taocdn.com/s3/m/0144ff04f4335a8102d276a20029bd64783e629f.png)
数学分析试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^3-3x+1在x=1处的导数是()。
A. 1B. 2C. 3D. 4答案:B2. 极限lim(x→0) (sin x)/x的值是()。
A. 0B. 1C. -1D. 2答案:B3. 函数f(x)=x^2-4x+4的最小值是()。
A. 0B. 1C. 4D. 8答案:A4. 定积分∫(0,1) x^2 dx的值是()。
A. 1/3B. 1/2C. 2/3D. 1答案:B二、填空题(每题5分,共20分)1. 函数f(x)=x^3+2x^2-5x+6的导数是________。
答案:3x^2+4x-52. 函数f(x)=ln(x)的原函数是________。
答案:xln(x)-x3. 函数f(x)=e^x的不定积分是________。
答案:e^x+C4. 函数f(x)=x^2-6x+8在x=3处的值是________。
答案:-1三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。
答案:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。
然后检查二阶导数f''(x)=6x-12,发现f''(1)=-6<0,所以x=1是极大值点;f''(11/3)=2>0,所以x=11/3是极小值点。
2. 求极限lim(x→∞) (x^2+3x+2)/(x^3-4x+1)。
答案:分子和分母同时除以x^3,得到lim(x→∞)(1+3/x+2/x^2)/(1-4/x^2+1/x^3),当x趋向于无穷大时,极限为1。
3. 求定积分∫(0,2) (2x-1) dx。
答案:首先求不定积分∫(2x-1) dx = x^2 - x + C,然后计算定积分∫(0,2) (2x-1) dx = (2^2 - 2) - (0^2 - 0) = 4 - 2 = 2。
考研数学分析真题答案
![考研数学分析真题答案](https://img.taocdn.com/s3/m/010bab6e66ec102de2bd960590c69ec3d5bbdbe2.png)
考研数学分析真题答案一、选择题1. 根据极限的定义,下列哪个选项是正确的?A. \(\lim_{x \to 0} x^2 = 0\)B. \(\lim_{x \to 0} \sin x = 1\)C. \(\lim_{x \to 0} \frac{1}{x} = 1\)D. \(\lim_{x \to 0} \frac{\sin x}{x} = 1\)答案:A2. 函数 \(f(x) = \sin x + x^2\) 在 \(x = 0\) 处的导数是多少?A. 1B. 2C. 0D. -1答案:A二、填空题1. 函数 \(y = \ln x\) 的定义域是 _________。
答案:\((0, +\infty)\)2. 若 \(\int_{0}^{1} x^2 dx = \frac{1}{3}\),那么\(\int_{0}^{1} x^3 dx\) 的值是 _________。
答案:\(\frac{1}{4}\)三、解答题1. 证明:对于任意正整数 \(n\),\(\sum_{k=1}^{n}\frac{1}{k(k+1)} = \frac{n}{n+1}\)。
证明:首先,我们可以将求和式拆分为部分和的形式:\[\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n}\left(\frac{1}{k} - \frac{1}{k+1}\right)\]通过观察,我们可以看到这是一个望远镜求和,大部分项会相互抵消,最终只剩下:\[1 - \frac{1}{n+1} = \frac{n}{n+1}\]2. 求函数 \(f(x) = x^3 - 3x^2 + 2x\) 在 \(x = 2\) 处的泰勒展开式,并计算其近似值。
解:首先,我们计算函数在 \(x = 2\) 处的各阶导数:\[f'(x) = 3x^2 - 6x + 2, \quad f''(x) = 6x - 6, \quad f'''(x) = 6\]在 \(x = 2\) 处,\(f(2) = 0\),\(f'(2) = -2\),\(f''(2) =6\),\(f'''(2) = 6\)。
数学分析课后习题答案2.00
![数学分析课后习题答案2.00](https://img.taocdn.com/s3/m/8c8a5d8d6529647d2728528c.png)
(1 + h) n >
得
1 n(n − 1)(n − 2)n 3 (n > 2) 3!
2 (1 − ) → 0(n → ∞) 1 n n(1 − ) n 1
6 6 n2 n2 < 3 = 3 0< n q = n (1 + h) h n(n − 1)(n − 2) h
2 n
故由迫敛性定理知 lim n q = 0
n →∞
证: (1)因为 lim a n = a ,故对任意的 ε > 0, 必存在 N 1 ,当 n > N 时, a n − a < ε ,
n →∞
于是当 n > N 1 时
a − a + a2 − a + + an − a a1 + a 2 + + a n −a = 1 n n
1 ≤ ( a1 − a + a2 − a + + a N1 +1 − a + a N1 + 2 − a + + an − a ) n
n →∞ n →∞ n →∞
所以
lim a n = lim bn ,
n →∞ n →∞
6、 若数列 {a n } 存在常数 M,对一切的 n 有
An = a 2 − a1 + a3 − a 2 + 3 + a n − a n −1 ≤ M ,
证明:(1) { An } 为收敛数列; (2) {a n } 为收敛数列. 证 (1) 因为 An +1 − An = a n +1 − a n ≥ 0 ,且 An ≤ M , 所以 { An } 为递增且有上界的数列,故必 收敛. (2) 由于 { An } 收敛,由柯西准则,对任给的 ε > 0 ,存在 N,当 m>n>N 时,
数学分析课后习题答案
![数学分析课后习题答案](https://img.taocdn.com/s3/m/c288d37ec8d376eeafaa3145.png)
习题1.验证下列等式 (1)C x f dx x f +='⎰)()( (2)⎰+=C x f x df )()(证明 (1)因为)(x f 是)(x f '的一个原函数,所以⎰+='C x f dx x f )()(.(2)因为C u du +=⎰, 所以⎰+=C x f x df )()(.2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点)5,2(.解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='=⎰⎰22)()(.于是知曲线为C x y +=2, 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以有 C +=225, 解得1=C , 从而所求曲线为12+=x y3.验证x x y sgn 22=是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0<x 时, 22x y -=, x y -='; 当0=x 时,y 的导数为02sgn lim 0sgn )2(lim020==-→→x x x x x x x , 所以⎪⎩⎪⎨⎧=<-=>='||0000x x xx x xy 4.据理说明为什么每一个含有第一类间断点的函数都没有原函数解 由推论3的证明过程可知:在区间I 上的导函数f ',它在I 上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。
因此每一个含有第一类间断点的函数都没有原函数。
5.求下列不定积分⑴C x x x x dx x dx x xdx dx dx x x x +-+-=-+-=-+-⎰⎰⎰⎰⎰-31423233233421)11(⑵C x x x dx x x x dx xx ++-=+-=-⎰⎰||ln 343)12()1(2332122⑶C gxC x gdx x ggxdx +=+⋅==⎰⎰-22212122121 ⑷ ⎰⎰⎰+⋅+=+⋅+=+dx dx dx x x x x x x x x )9624()3)32(22()32(222C x x x ++⋅+=9ln 96ln 624ln 4 ⑸C x dx x dx x +=-=-⎰⎰arcsin 23112344322⑹ C x dx x dx x x dx x x +-=+-=+-+=+⎰⎰⎰)arctan 1(31)111(31)1(311)1(322222 ⑺ C x x dx x xdx +-=-=⎰⎰tan )1(sec tan 22⑻ C x x dx x dx x xdx +-=-=-=⎰⎰⎰)2sin 21(21)2cos 1(2122cos 1sin 2⑼ C x x dx x x dx xx xx dx x x x +-=+=--=-⎰⎰⎰cos sin )sin (cos sin cos sin cos sin cos 2cos 22 ⑽C x x dx x x dx x x x x dx x x x +--=-=⋅-=⋅⎰⎰⎰tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222 ⑾ C C dt dt tt ttt+=+⋅⋅=⋅=⋅⎰⎰90ln 90)910ln()910()910(3102 ⑿C x dx x dx x x x +==⎰⎰81587158⒀ C x dx xdx x x x x dx x x x x +=-=--+-+=+-+-+⎰⎰⎰arcsin 212)1111()1111(222⒁ C x x xdx dx dx x dx x x +-=+=+=+⎰⎰⎰⎰2cos 212sin 1)2sin 1()sin (cos 2⒂ C x x dx x x xdx x ++=+=⎰⎰)sin 3sin 31(21)cos 3(cos 212cos cos ⒃ C e e e e dx e e e e dx e e x xx x x x x x x x ++--=-+-=------⎰⎰33333313331)33()(习题1.应用换元积分法求下列不定积分:⑴ C x x d x dx x ++=++=+⎰⎰)43sin(31)43()43cos(31)43cos( ⑵ C e x d e dx xe x x x +==⎰⎰222222241)2(41⑶ C x x x d x dx ++=++=+⎰⎰|12|ln 2112)12(2112⑷ C x n x d x dx x n nn +++=++=++⎰⎰1)1(11)1()1()1(⑸Cx x xd xdx x dx xx++=-+-=-+-⎰⎰⎰3arcsin 313arcsin 3)3113131)31131(2222⑹ C C x d dx x x x x +=+=+=++++⎰⎰2ln 22ln 22)32(221222323232⑺C x C x x d x dx x +--=+-⋅-=---=-⎰⎰232321)38(92)38(3231)38()38(3138 ⑻C x C x x d x xdx+--=+-⋅-=---=-⎰⎰-3232313)57(103)57(2351)57()57(5157 ⑼ C x dx x dx x x +-==⎰⎰2222cos 21sin 21sin ⑽ C x x x d x dx++-=++=+⎰⎰)42cot(21)42(sin )42(21)42(sin 22ππππ⑾ 解法一:C xxx d x dxx dx+===+⎰⎰⎰2tan2cos 22cos 2cos 122解法二: ⎰⎰⎰⎰-=--=+xxdxx dx x dx x x dx 222sin cos sin cos 1)cos 1(cos 1 C x x xx d x ++-=--=⎰sin 1cot sin sin cot 2⑿解法一:利用上一题的结果,有C x C x x x d x dx +--=+--=-+--=+⎰⎰)24tan()2(21tan )2cos(1)2(sin 1ππππ 解法二: C x x xx d x dx x dx x x dx +-=+=--=+⎰⎰⎰⎰cos 1tan cos cos cos sin 1)sin 1(sin 1222 解法三:⎰⎰⎰+⋅=+=+222)12(tan 2cos )2cos 2(sin sin 1x x dxx x dx x dxC x x x d ++-=+=⎰12tan 2)12(tan 2tan 22⒀ 解法一:⎰⎰⎰---=-=)2()2sec()2sec(csc x d x dx x xdx πππC x x C x x ++-=+-+--=|cot csc |ln |)2tan()2sec(|ln ππ解法二:C x x x x d dx x x dx x xdx ++-=-===⎰⎰⎰⎰1cos 1cos ln 211cos cos sin sin sin 1csc 22C x x +-=|cot csc |ln解法三:⎰⎰++=dx x x x x x xdx cot csc )cot (csc csc cscC x x C xx x x d ++-=+++-=⎰|cot csc |ln cot csc )cot (csc解法四:⎰⎰⎰==dx x x xdx x x xdx 2cos2sin 22sin2cos 2sin 21csc 2C xC x x d x +=+-=-=⎰|2tan |ln |2cot |ln 2cot 2cot 1⒁C x x d x dx x x +--=---=-⎰⎰22221)1(11211 ⒂ C x dx x dx x x +=+=+⎰⎰2arctan 41)(4121422224⒃C x x x d x x dx +==⎰⎰|ln |ln ln ln ln⒄ C x x d x dx x x +-=---=-⎰⎰25535354)1(1101)1()1(151)1( ⒅ C x x C x x dx x dx x x ++-=++-⋅=-=-⎰⎰|22|ln 281|22|ln 221412)(1412444442483⒆C xx C x x dx x x x x dx ++=++-=+-=+⎰⎰|1|ln |1|ln ||ln )111()1( ⒇ C x dx x xxdx +==⎰⎰|sin |ln sin cos cot(21) ⎰⎰⎰-==x d x xdx x xdx sin )sin 1(cos cos cos 2245C x x x x d x x ++-=+-=⎰5342sin 51sin 32sin sin )sin sin 21((22) 解法一:C x x x x d x x dx +-==⎰⎰|2cot 2csc |ln 2sin )2(cos sin解法二:C x x xd x x xdx x x dx +===⎰⎰⎰|tan |ln tan tan cos sin cos cos sin 2 解法三:⎰⎰+=xx dxx x x x dx cos sin )cos (sin cos sin 22C x x dx xxx x +-=+=⎰|cos |ln |sin |ln )sin cos cos sin ((23) C e e de e dx e e e dx xx x x x x x+=+=+=+⎰⎰⎰-arctan 1122 (24) C x x x x x x d dx x x x ++-=+-+-=+--⎰⎰|83|ln 83)83(83322222(25) C x x x dx x x x dx x x x dx x x ++-+++=+++-+=+++-+=++⎰⎰⎰2323232)1(2312|1|ln ))1(3)1(211()1(3)1(2)1()1(2(26)⎰+22ax dx解 令t a x tan =, 则C a x x C t t t a tdt a a x dx+++=++==+⎰⎰||ln |tan sec |ln sec sec 221222(27)C a x x a a x x d a a x dx ++=+=+⎰⎰21222212222322)(1)(1)(解法2 令t a x tan =, 则C ax a x C t a tdt a t a tdt a a x dx ++=+===+⎰⎰⎰222223322322sin 1cos 1sec sec )( (28)⎰-dx xx 251解 令t x sin =, 则Cx x x C t t t td t tdt dt t t t dx x x +---+--=+-+-=--===-⎰⎰⎰⎰25223221253225525)1(51)1(32)1(cos 51cos 32cos cos )cos 1(sin cos cos sin 1(29)⎰-dx xx31解 令t x =61, 则6t x =, 56t dx =C t t t t t t dt tt t t dt tt t t t dt t t t dt t t dx x x++--+++-=-++++-=-++++-=-+-=-⋅=-⎰⎰⎰⎰⎰|11|ln 26)357(6)11)1((611)1)(1(6111)(61613572246224622422533其中61x t = (30)⎰++-+dx x x 1111解 令t x =+1, 则21t x =+, tdt dx 2=,Cx x x C x x x C t t t dt t t dt t t t tdt t tdt t t dx x x +++++-=+++++-+=+++-=++-=+-=+-=+-=++-+⎰⎰⎰⎰⎰|11|ln 414|11|ln 4141|1|ln 44)1442()142(2)121(21111111122.应用分部积分法求下列不定积分: ⑴ C x x x dx x x x x xdx +-+=--=⎰⎰221arcsin 1arcsin arcsin⑵ C x x x dx xx x x xdx +-=⋅-=⎰⎰ln 1ln ln ⑶Cx x x x x xdx x x x x x xd x x xdx x x x x d x xdx x +-+=-+=+=-==⎰⎰⎰⎰⎰sin 2cos 2sin cos 2cos 2sin cos 2sin sin 2sin sin cos 222222 ⑷C x x x dx x x x x xd dx x x +--=+-=-=⎰⎰⎰223223412ln 121ln 211ln 21ln ⑸ C x x x x x xdx x x dx x ++-=-=⎰⎰2ln 2)(ln ln 2)(ln )(ln 222⑹ ⎰⎰⎰+-==dx xx x x xdx xdx x 2222121arctan 21arctan 21arctan C x x x x dx x x x +--=+--=⎰)arctan (21arctan 21)111(21arctan 21222 C x x x +-+=21arctan )1(212⑺ ⎰⎰⎰+=+dx x dx x dx x x ln 1)ln(ln ]ln 1)[ln(ln C x x dx xdx x x x x x +=+⋅-=⎰⎰)ln(ln ln 1ln 1)ln(ln⑻ ⎰⎰--=dx xx x x x dx x 2221arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰----+=dx xx x x x x 22221112arcsin 12)(arcsinC x x x x x +--+=2arcsin 12)(arcsin 22⑼ ⎰⎰⎰-==xdx x x x x xd xdx 23tan sec tan sec tan sec sec⎰⎰⎰+-=--=xdx xdx x x dx x x x x sec sec tan sec )1(sec sec tan sec 32 |tan sec |ln sec tan sec 3x x xdx x x ++-=⎰所以 C x x x x xdx +++=⎰|)tan sec |ln tan sec 21sec 3⑽⎰⎰+⋅-+=+dx ax x x a x x dx a x 222222⎰+-+-+=dx ax a a x a x x )(2222222⎰⎰+++-+=dx ax a dx a x a x x 2222222)ln(2222222a x x a dx a x a x x ++++-+=⎰所以C a x x a a x x dx a x +++++=+⎰))ln((212222222 类似地可得C a x x a a x x dx a x +-+--=-⎰))ln((212222222 3.求下列不定积分:⑴ C x f a x df x f dx x f x f a aa++=='+⎰⎰1)]([11)()]([)()]([ ⑵C x f x df x f dx x f x f +=+=+'⎰⎰)(arctan )()]([11)]([1)(22⑶C x f x f x df dx x f x f +=='⎰⎰|)(|ln )()()()( ⑷ C e x df e dx x f e x f x f x f +=='⎰⎰)()()()()(4.证明:⑴ 若⎰=dx x I n n tan , ,3,2=n ,则21tan 11----=n n n I x n I 证 ⎰⎰⎰----=-=dx x dx x x dx x x I n n n n 22222tan sec tan )1(sec tan22tan tan ---=⎰n n I x d x .因为⎰⎰-----=x d x n x x d x n n n tan tan )2(tan tan tan 212,所以x n x d x n n 12tan 11tan tan ---=⎰. 从而21tan 11----=n n n I x n I . ⑵ 若⎰=dx x x n m I n m sin cos ),(,则当0≠+n m 时,),2(1sin cos ),(11n m I nm m n m x x n m I n m -+-++=+-)2,(1sin cos 11-+-++-=-+n m I nm n n m x x n m , ,3,2,=m n证 ⎰⎰+-+==x d x n dx x x n m I n m nm 11sin cos 11sin cos ),( ]sin cos )1(sin [cos 112211⎰+-+--++=dx x x m x x n n m n m ])cos 1(sin cos )1(sin [cos 112211⎰--++=-+-dx x x x m x x n n m n m ))],(),2()(1(sin [cos 1111n m I n m I m x x n n m ---++=+-所以),2(1sin cos ),(11n m I n m m n m x x n m I n m -+-++=+-, 同理可得)2,(1sin cos ),(11-+-++-=-+n m I nm n n m x x n m I n m习题1.求下列不定积分:⑴ ⎰⎰⎰-+++=-+-=-dx x x x dx x x dx x x )111(1111233 C x x x x +-+++=|1|ln 2323 ⑵ 解法一:C x x dx x x dx x x x +--=---=+--⎰⎰|3|)4(ln )3142(127222解法二:⎰⎰⎰+-++--=+--dx x x dx x x x dx x x x 12732112772211272222 ⎰⎰---++-+-=)27(41)27(123127)127(21222x d x x x x x dC x x x x +--++-=34ln 23|127|ln 212 ⑶ 解22311)1)(1(111xx CBx x A x x x x +-+++=+-+=+ 去分母得 )1)(()1(12x C Bx x x A ++++-=令1-=x ,得31=A . 再令0=x ,得1=+C A ,于是32=C . 比较上式两端二次幂的系数得 0=+B A ,从而1-=B ,因此⎰⎰⎰+---+=+dxx x x x dx x dx 2312311311⎰⎰+-++---+=dx x x dx x x x x 22112111261|1|ln 31⎰+-++--+=dx x x x x 43)21(121)1ln(61|1|ln 3122C x x x x +-++-+=312arctan 311)1(ln 6122 ⑷ 解 ⎰⎰⎰⎰+--++=+--+=+dx xx dx x x dx x x x x dx 42424224112111211)1()1(211 ⎰⎰⎰⎰++-+-=+--++=22222222221)1(211)1(211112111121x x x x d x x x x d dx x x x dx x x x⎰⎰-++-+--=2)1()1(212)1()1(2122xx x x d x x x x d C xx x x x x +++-+--=2121ln 24121arctan221C x x x x x x ++++---=1212ln 8221arctan 42222 ⑸⎰+-22)1)(1(x x dx解 令22222)1(11)1)(1(1++++++-=+-x EDx x C Bx x A x x , 解得41=A , 41-==CB , 21-==E D , 于是 ⎰⎰⎰⎰++-++--=+-dx x x dx x x x dx x x dx 22222)1(1211141141)1)(1(C x x x x x x x +++-++-+--=)1(arctan 411141arctan 41)1ln(81|1|ln 41222 C x x x x x ++-+-+-=)11arctan 21|1|(ln 4122⑹⎰⎰⎰++-+++=++-dx x x dx x x x dx x x x 222222)122(125)122(2441)122(2 其中1221)122()122()122(24222222++-=++++=+++⎰⎰x x x x x x d dx x x x ⎰⎰⎰+++=++=++)12(]1)12[(12]1)12[(4)122(1222222x d x dx x dx x x )12arctan(1)12(122+++++=x x x 参见教材 例9或关于k I 的递推公式⑺. 于是,有C x x x x x dx x x x ++-+++-++-=++-⎰)12arctan(251)12(1225122141)122(22222 C x x x x ++-+++=)12arctan(25)122(23522.求下列不定积分⑴⎰-x dx cos 35解 令2tan xt =,则C t t t d tdt t dt t t dx x dx+=+=+=++--=-⎰⎰⎰⎰2arctan 21)2(1)2(2141121135cos 3522222 C x+=)2tan 2arctan(21 ⑵⎰⎰⎰⎰+=+=+=+)tan 32(tan cos )tan 32(sin 3cos 2sin 2222222x xd x x dx x x dx x dxC x x x d +=+=⎰)tan 23arctan(61)tan 231()tan 23(612 ⑶ ⎰⎰⎰++-+=+=+dx xx xx x x x x xdx x dx sin cos cos sin sin cos 21sin cos cos tan 1 )sin cos )cos (sin (21)sin cos cos sin 1(21⎰⎰⎰+++=++-+=x x x x d dx dx x x x x C x x x +++=|)sin cos |ln (21另解:设⎰+=x x xdx I sin cos cos 1,⎰+=x x xdxI sin cos sin 2,则C x dx x x xx I I +=++=+⎰sin cos sin cos 21,C x x x x x x d dx x x x x I I ++=++=+-=-⎰⎰|sin cos |ln sin cos )sin (cos sin cos sin cos 21所以C x x x I x dx +++==+⎰|)sin cos |ln (21tan 11⑷⎰⎰⎰-+++-+-=-+22221)1(11xx dx x dx x x dx xx x⎰⎰⎰-++-++---+-=2221231)12(211x x dxx x dx x dx x x其中(利用教材例7的结果)]1)21(512arcsin 45[21)21(451222x x x x dx x dx x x -+-+-=--=-+⎰⎰ 2222121)1(1)12(x x x x x x d x x dx x -+=-+-+=-++-⎰⎰512arcsin)21(45122-=--=-+⎰⎰x x dxxx dx所以有⎰-+dx xx x 221C x x x x x x x +-+-+--+-+--=512arcsin 231221]1)21(512arcsin 45[2122C x x x x +-++--=21432512arcsin 87 ⑸C x x x x x d xx dx ++++=-++=+⎰⎰|21|ln 41)21()21(222⑹⎰+-dx xxx 1112 解 令 x x t +-=11,则2211tt x +-=,22)1(4t tdtdx +-=,代入原式得 ⎰⎰⎰⎰---=--=+-⋅⋅⎪⎪⎭⎫ ⎝⎛-+=+-dt t t dt t t dt t t t t t dx x xx 222222222222)1(114)1(4)1(411111⎰⎰⎰⎰-+-++--=---=dt t t t dt t dt t dt t ]12)1(1)1(1[114)1(141142222222C t t t t dt t t dt t +++---+=-++--=⎰⎰1111|11|ln ])1(1)1(1[112222 C xx x x +---+=221|11|ln总 练 习 题求下列不定积分: ⑴C x x x dx x xx dx xx x +--=--=--⎰⎰-4312134541121414334132454)2(12⑵ ]11arcsin [21arcsin 21arcsin 2222⎰⎰⎰--==dx x x x x dx x dx x x 其中)2sin 21(2122cos 1cos cos sin 1222t t dt t dt t t t dx x x -=-==-⎰⎰⎰)1(arcsin 212x x x --=所以]11arcsin [21arcsin 222⎰⎰--=dx xx x x dx x xC x x x x x +---=)]1(arcsin 21arcsin [2122 C x x x x x +-+-=22141arcsin 41arcsin 21 ⑶⎰+xdx 1解 令u x =,则udu dx 2=C u u du uu udu xdx ++-=+-=+=+⎰⎰⎰|)1|ln (2)111(2121 C x x ++-=|)1|ln (2⑷ ⎰⎰⎰⎰===x x x x de x x d x e dx x x e dx x e sin sin sin sin sin 2sin sin 2cos sin 22sinC x e C e x e x d e x e x x x x x +-=+-=-=⎰)1(sin 2)sin (2)sin sin (2sin sin sin sin sin⑸ C x e C e u e du u e u x dx ex u u u x+-=+-==⎰⎰)1(2)(22)(令 ⑹C x x d x x x dx x xdx +-=--=-=-⎰⎰⎰1arcsin )1(1111112222 解法二:令t x sec =,C xC t dt t t t t x xdx +=+==-⎰⎰1arccos tan sec tan sec 12⑺⎰⎰⎰++=+-=+-x x x x d dx x x x x dx x x sin cos )sin (cos sin cos sin cos tan 1tan 1C x x ++=|sin cos |lnC x dx x dx x x +-=-=+-⎰⎰|)4cos(|ln )4tan(tan 1tan 1ππ ⑻ C x x x dx x x x dx x x x +-----=-+-+-=--⎰⎰23232)2(123|2|ln )2(2)2(3)2()2( ⑼C x x x d x xdx x x dx ++=+==⎰⎰⎰32224tan 31tan tan )tan 1(cos sec cos ⑽ ⎰⎰⎰-==dx x dx x dx x 2224)22cos 1()(sin sin⎰⎰++-=+-=dx x x dx x x )24cos 12cos 21(41)2cos 2cos 21(412 C x x x C x x x x ++-=+++-=4sin 3212sin 4183)84sin 22sin (41 ⑾ ⎰+--dx x x x 43523 解⎰⎰-+-=+--dx x x x dx x x x 223)2)(1(5435令22)2(21)2)(1(5-+-++=-+-x C x B x A x x x 去分母得:)1()2)(1()2(52++-++-=-x C x x B x A x 解得:32-=A ,32=B ,1-=C 所以⎰⎰⎰⎰---++-=+--dx x dx x dx x dx x x x 223)2(121321132435 C x x x +-++-=21|12|ln 32 ⑿ ⎰+dx x )1arctan(解 令u x =+1,du u dx )1(2-=⎰⎰⎰⎰-⋅=-⋅=+du u du u u du u u dx x arctan 2arctan 2)1(2arctan )1arctan(122)1ln(arctan 2]arctan )1[(C u u u u u u +++--+= C x x x x x ++++-+=)22ln()1arctan(⒀ ⎰⎰⎰+-=+-+=+dx x x x dx x x x x dx x x )22(2222433433747 C x x ++-=)2ln(214144 另解:C x x dx x dx x x x dx x x ++-=+-=+⋅=+⎰⎰⎰)2ln(2141)221(4122444443447 ⒁⎰++dx x x x2tan tan 1tan 解 令u x =tan⎰⎰⎰⎰++-+=+++=++du u u du u du u u u u dx x x x 222221111111tan tan 1tanC x x C u u ++-=++-=31tan 2arctan32312arctan32arctan⒂ ⎰⎰-+---=-dx x x x dx x x 10021002)1(1)1(2)1()1( C x x x +-+---=979899)1(971)1(491)1(991 ⒃⎰⎰⎰-+-=-=dx x x xx x d x dx x x 2211arcsin 1arcsin arcsin C xx x x +-+--=|11|ln arcsin 2⒄ ⎰⎰⎰--+=--+=-+2)]1ln()1[ln(21)]1ln()1[ln(11lndx x x dx x x x dx x x x C x xxx dx x x x x x x ++-+-=-++---+=⎰11ln 21)1111(21)]1ln()1[ln(21222⒅⎰⎰⎰+==x d xx dx xx dx xx tan tan tan 1cos tan 1cos sin 1247C x x ++=)tan 511(tan 22⒆ ⎰⎰⎰⎰+-++=+-+=+-dx x x e dx x e dx x x x e dx x x e xx x x22222222)1(21)1(21)11( C xe dx x e x e dx x e x d e dx x e x x x x x x ++=+-+++=+++=⎰⎰⎰⎰2222221111111 ⒇ ⎰=dx uv I n n ,x b a u 11+=,x b a v 22+=解 ][221211⎰⎰⎰--===dx v b u n u v b u d v b dx uv I n nn n n ])([2][21122111121⎰⎰---+-=-=dx uv b a b a v b n u v b dx u uv b n u v b n nn n ])([21122111----=n n nI b a b a n I nb u v b 所以])([)12(2112211---+=n n n I b a b a n u v b n I。
福师大数学分析习题答案
![福师大数学分析习题答案](https://img.taocdn.com/s3/m/4cec805a974bcf84b9d528ea81c758f5f61f29b2.png)
福师大数学分析习题答案福建师范大学数学分析习题答案数学分析是一门重要的数学基础课程,对于理工科学生来说尤为重要。
福建师范大学作为一所知名的师范院校,其数学分析课程一直备受学生关注。
本文将为大家提供福建师范大学数学分析习题的答案,帮助同学们更好地掌握这门课程。
一、极限与连续1. 计算以下极限:a) $\lim_{x\to 2}\frac{x^2-4}{x-2}$解:将分式进行因式分解,得到 $\lim_{x\to 2}\frac{(x-2)(x+2)}{x-2}$。
消去公因式后,得到 $\lim_{x\to 2}(x+2)=4$。
b) $\lim_{x\to 0}\frac{\sin x}{x}$解:利用极限的性质,可得 $\lim_{x\to 0}\frac{\sin x}{x}=1$。
2. 判断以下函数在指定点是否连续:a) $f(x)=\frac{x^2-4}{x-2}$,点$x=2$解:由题意可知,当$x\neq 2$时,函数$f(x)$可以通过因式分解得到$f(x)=x+2$。
而当$x=2$时,$f(2)=4$。
由此可知,函数$f(x)$在$x=2$处连续。
b) $g(x)=\begin{cases} \sin x, & \text{当}x\neq 0 \\ 0, & \text{当}x=0\end{cases}$,点$x=0$解:根据函数$g(x)$的定义可知,当$x\neq 0$时,$g(x)=\sin x$。
而当$x=0$时,$g(0)=0$。
由此可知,函数$g(x)$在$x=0$处连续。
二、导数与微分1. 求以下函数的导数:a) $f(x)=x^3-2x^2+3x-4$解:根据导数的定义,可得到$f'(x)=3x^2-4x+3$。
b) $g(x)=\sqrt{x^2+1}$解:利用链式法则,可得到$g'(x)=\frac{x}{\sqrt{x^2+1}}$。
数学分析第四版答案 (3)
![数学分析第四版答案 (3)](https://img.taocdn.com/s3/m/5eec72c3b8d528ea81c758f5f61fb7360b4c2bbe.png)
数学分析第四版答案简介《数学分析第四版》是一本经典的数学教材,主要介绍了数学分析的基本概念、理论和方法。
本文档旨在提供《数学分析第四版》习题的答案,帮助读者更好地理解和掌握数学分析的知识。
第一章简介1.1 数学分析的基本概念习题答案:1.由已知条件可知,当a=a时,a(a)=a(a)成立。
所以函数a(a)是一个常函数。
2.对于任意实数a和a,有a(a+a)=a(a)+a(a),即函数a(a)满足加法性。
根据题意,我们需要证明a(aa)=a(a)a(a)。
证明:设实数a和a,并令a=a和 $b=\\frac{y}{x}$,根据加法性,我们有:$$ f(a+b) = f(a) + f(b) \\quad \\text{(1)} $$将a=a和 $b=\\frac{y}{x}$ 代入上式,得到:$$ f\\left(x + \\frac{y}{x}\\right) = f(x) +f\\left(\\frac{y}{x}\\right) \\quad \\text{(2)} $$又根据题目条件,我们知道a(aa)=a(a)a(a),将$b=\\frac{y}{x}$ 代入该式,得到:$$ f(xy) = f\\left(x\\cdot\\frac{y}{x}\\right) =f(x)f\\left(\\frac{y}{x}\\right) \\quad \\text{(3)} $$将式 (3) 代入式 (2),得到:$$ f\\left(x + \\frac{y}{x}\\right) = f(xy) \\quad \\text{(4)} $$根据题目条件中的函数性质,我们得到:$$ x+\\frac{y}{x} = xy $$上式可以转化为二次方程的形式,解得:$$ x^2 - xy + \\frac{y}{x} = 0 $$由上式可知,a是方程a2−aa+a=0的一个根。
根据韦达定理,该方程的两个根分别为:$$ x_1 = \\frac{y+\\sqrt{y^2+4}}{2} \\quad \\text{和}\\quad x_2 = \\frac{y-\\sqrt{y^2+4}}{2} $$由于题目中没有限制a的取值范围,所以a可以取任意实数。
本科数学分析试题及答案
![本科数学分析试题及答案](https://img.taocdn.com/s3/m/945ece6f5b8102d276a20029bd64783e09127dc5.png)
本科数学分析试题及答案一、选择题(每题5分,共20分)1. 若函数f(x)在点x=a处可导,则以下哪个选项是正确的?A. f(x)在点x=a处连续B. f(x)在点x=a处不可导C. f(x)在点x=a处不连续D. f(x)在点x=a处的导数为0答案:A2. 设f(x)是定义在实数集上的函数,若f'(x)存在,则以下哪个选项是正确的?A. f(x)是单调函数B. f(x)在任意点处都有定义C. f(x)在任意点处都可导D. f(x)是周期函数答案:B3. 若函数f(x)在区间(a, b)内连续,则以下哪个选项是正确的?A. f(x)在区间(a, b)内一定有最大值和最小值B. f(x)在区间(a, b)内一定有唯一的最大值和最小值C. f(x)在区间(a, b)内不一定有最大值和最小值D. f(x)在区间(a, b)内的最大值和最小值一定在区间端点处取得答案:C4. 若函数f(x)在区间[a, b]上可积,则以下哪个选项是正确的?A. f(x)在区间[a, b]上一定连续B. f(x)在区间[a, b]上一定有界C. f(x)在区间[a, b]上一定单调D. f(x)在区间[a, b]上一定有界且连续答案:B二、填空题(每题5分,共20分)1. 设函数f(x)在区间(a, b)内连续,且f(a)=f(b),则根据罗尔定理,存在至少一个点c∈(a, b),使得f'(c)______。
答案:=02. 若函数f(x)在点x=a处可导,则f(x)在点x=a处的导数定义为______。
答案:lim (x→a) [f(x) - f(a)] / (x - a)3. 设f(x)在区间[a, b]上连续,则根据微积分基本定理,∫[a, b]f(x) dx = F(b) - F(a),其中F(x)是f(x)的一个原函数,即F'(x)______。
答案:=f(x)4. 若函数f(x)在区间[a, b]上可积,则∫[a, b] f(x) dx表示的是函数f(x)在区间[a, b]上与x轴所围成的区域的______。
数学分析习题答案(陈纪修第二版)
![数学分析习题答案(陈纪修第二版)](https://img.taocdn.com/s3/m/ae5f28d343323968001c9289.png)
(3) f (x) = sin2 x + cos2 x , g(x) = 1。
解 (1)函数 f 和 g 不等同;
5
(2)函数 f 和 g 不等同;
(3)函数 f 和 g 等同。
7. (1) 设 f (x + 3) = 2x3 − 3x2 + 5x − 1,求 f (x) ;
(2)
设
f
⎜⎛ ⎝
x
x −
并且或者 x ∈ B ,或者 x ∈ D ,即 x ∈ A ∩ (B ∪ D) ,因此
A ∩ (B ∪ D) ⊃ (A ∩ B) ∪ (A ∩ D) 。
2
(2)设 x ∈ ( A ∪ B)C ,则 x∈A ∪ B ,即 x∈A 且 x∈B ,于是 x ∈ AC ∩ BC ,因 此
(A ∪ B)C ⊂ AC ∩ BC ; 设 x ∈ AC ∩ BC ,则 x∈A 且 x∈B ,即 x∈A ∪ B ,于是 x ∈ ( A ∪ B)C ,因此
⒎ 下述命题是否正确?不正确的话,请改正。 (1) x ∈ A ∩ B ⇔ x ∈ A 并且 x ∈ B ; (2) x ∈ A ∪ B ⇔ x ∈ A 或者 x ∈ B 。
解(1)不正确。 x ∈ A ∩ B ⇔ x ∈ A 或者 x ∈ B 。 (2)不正确。 x ∈ A ∪ B ⇔ x ∈ A 并且源自x ∈ B 。nn2
2n2 2
(1)的结论矛盾。
2. 求下列数集的最大数、最小数,或证明它们不存在:
A = {x|x ≥ 0};
B
=
⎨⎧sin ⎩
x|
0
<
x
<
2π 3
⎫ ⎬ ⎭
;
C
=
⎧n ⎩⎨ m
数学分析习题答案
![数学分析习题答案](https://img.taocdn.com/s3/m/2f5f02533b3567ec102d8a20.png)
习 题 1-11.计算下列极限(1)limx ax a a x x a→--,0;a >解:原式lim[]x a a ax a a a x a x a x a→--=---=()|()|x a x a x a a x ==''- =1ln a a a a a a --⋅=(ln 1)a a a -(2)sin sin limsin()x a x ax a →--;解:原式sin sin lim x a x ax a→-=-(sin )'cos x a x a ===(3)2lim 2), 0;n n a →∞>解:原式21()1/n n=20[()']x x a ==2ln a = (4)1lim [(1)1]pn n n→∞+-,0;p > 解:原式111(1)1lim ()|p p p x n n nx =→∞+-'===11p x px p -== (5)10100(1tan )(1sin )lim;sin x x x x→+-- 解:原式101000(1tan )1(1sin )1lim lim tan sin x x x x x x →→+---=--=99010(1)|10(1)|20t t t t ==+++=(6)1x →,,m n 为正整数;解:原式11nx x →=-1111()'()'mx nx x x ===n m=2.设()f x 在0x 处二阶可导,计算00020()2()()limh f x h f x f x h h →+-+-.解:原式000()()lim 2h f x h f x h h →''+--=00000()()()()lim 2h f x h f x f x f x h h→''''+-+--=000000()()()()limlim 22h h f x h f x f x h f x h h →→''''+---=+-00011()()()22f x f x f x ''''''=+=3.设0a >,()0f a >,()f a '存在,计算1ln ln ()lim[]()x a x a f x f a -→.解:1ln ln ()lim[]()x a x a f x f a -→ln ()ln ()ln ln lim f x f a x a x a e --→=ln ()ln ()limln ln x a f x f a x a e→--=ln ()ln ()lim ln ln x a f x f a x ax ax a e→----='()()f a a fa e=习 题 1-21.求下列极限(1)lim x →+∞;解:原式lim [(1)(1)]02x x x ξξ→+∞=+--= ,其中ξ在1x -与1x +之间(2)40cos(sin )cos lim sin x x x x→-;解:原式=40sin (sin )limx x x x ξ→--=30sin sin lim()()()x x x x x ξξξ→--⋅=16,其中ξ在x 与sin x 之间(3)lim x →+∞解:原式116611lim [(1)(1)]x x x x →+∞=+--56111lim (1)[(1)(1)]6x x x xξ-→+∞=⋅+⋅+-- 5611lim (1)33x ξ-→+∞=+= ,其中ξ在11x -与11x +之间(4) 211lim (arctanarctan );1n n n n →+∞-+ 解:原式22111lim ()11n n n n ξ→+∞=-++1=,其中其中ξ在11n +与1n 之间2.设()f x 在a 处可导,()0f a >,计算11()lim ()nn n n f a f a →∞⎡⎤+⎢⎥-⎣⎦.解:原式1111(ln ()ln ())lim (ln ()ln ())lim n n f a f a n f a f a n nn nn ee→∞+--+--→∞==11ln ()ln ()ln ()ln ()[lim lim ]11n n f a f a f a f a n n n ne→∞→∞+---+-=()()2()()()()f a f a f a f a f a f a ee'''+==习 题 1-31.求下列极限(1)0(1)1lim (1)1x x x λμ→+-+-,0;μ≠解:原式0limx x x λλμμ→==(2)x →解:02ln cos cos 2cos lim12x x x nxI x →-⋅⋅⋅=20ln cos ln cos 2ln cos 2lim x x x nx x →++⋅⋅⋅+=-20cos 1cos 21cos 12lim x x x nx x →-+-+⋅⋅⋅+-=-22220(2)()lim x x x nx x →++⋅⋅⋅+=21ni i ==∑ (3)011lim )1x x x e →--(; 解:原式01lim (1)x x x e xx e →--=-201lim x x e x x →--=01lim 2x x e x→-=01lim 22x x x →== (4)112lim [(1)]x xx x x x →+∞+-; 解:原式11ln(1)ln 2lim ()x x xxx x ee+→+∞=-21lim (ln(1)ln )x x x x x →+∞=+-1lim ln(1)x x x→+∞=+1lim 1x xx→+∞== 2. 求下列极限(1)2221cos ln cos limsin x x x x xe e x -→----;解:原式222201122lim 12x x x x x →+==-(2)0ln()2sin lim sin(2tan 2)sin(tan 2)tan x x x e xx x x→++--;解:原式0ln(11)2sin lim sin(2tan 2)sin(tan 2)tan x x x e x x x x →++-+=--012sin limsin(2tan 2)sin(tan 2)tan x x x e xx x x→+-+=-- 02lim442x x x xx x x→++==--习 题 1-41.求下列极限(1)21lim (1sin )n n n n→∞-; 解:原式2331111lim [1(())]3!n n n o n n n →∞=--+11lim((1))3!6n o →∞=+=(2)求33601lim sin x x e x x→--;解:原式3636336600()112lim lim 2x x x xx o x x e x x x →→++---=== (3)21lim[ln(1)]x x x x→∞-+; 解:原式222111lim[(())]2x x x o x x x →∞=--+12= (4)21lim (1)x xx e x-→+∞+; 解:原式211[ln(1)]2lim x x xx ee+--→∞==此题已换3.设()f x 在0x =处可导,(0)0f ≠,(0)0f '≠.若()(2)(0)af h bf h f +-在0h →时是比h 高阶的无穷小,试确定,a b 的值.解:因为()(0)(0)()f h f f h o h '=++,(2)(0)2(0)()f h f f h o h '=++所以00()(2)2(0)(1)(0)(2)(0)()0limlim h h af h bf h f a b f a b f o h h h→→'+-+-+++==从而10a b +-= 20a b += 解得:2,1a b ==-3.设()f x 在0x 处二阶可导,用泰勒公式求0002()2()()limh f x h f x f x h h →+-+-解:原式22220000100022''()''()()'()()2()()'()()2!2!limh f x f x f x f x h h o h f x f x f x h h o h h →+++-+-++=22201220''()()()lim h f x h o h o h h→++=0''()f x =4. 设()f x 在0x =处可导,且20sin ()lim() 2.x x f x x x →+=求(0),(0)f f '和01()lim x f x x→+.解 因为 2200sin ()sin ()2lim()lim x x x f x x xf x x x x→→+=+= []22()(0)(0)()limx x o x x f f x o x x →'++++=2220(1(0))(0)()lim x f x f x o x x →'+++=所以1(0)0,(0)2f f '+==,即(0)1,(0)2f f '=-=所以01()lim x f x x →+01(0)(0)()lim x f f x o x x →'+++=02()lim 2x x o x x→+==习 题 1-51. 计算下列极限(1)n n++解:原式limn→∞=2n ==(2)2212lim(1)nn n a a na a na +→∞+++⋅⋅⋅+> 解:原式21lim (1)nn n n na na n a ++→∞=--2lim (1)n n na n a →∞=--21a a=-2. 设lim n n a a →∞=,求 (1) 1222lim nn a a na n→∞+++; 解:原式22lim (1)n n na n n →∞=--lim 212n n na a n →∞==-(2) 12lim 111n nna a a →∞+++,0,1,2,,.ia i n ≠=解:由于1211111limlim n n n na a a n a a →∞→∞+++==, 所以12lim 111n nna a a a →∞=+++3.设2lim()0n n n x x -→∞-=,求lim n n x n →∞和1lim n n n x x n -→∞-.解:因为2lim()0n n n x x -→∞-=,所以222lim()0n n n x x -→∞-=且2121lim()0n n n x x +-→∞-=从而有stolz 定理2222limlim 022n n n n n x x xn -→∞→∞-==,且212121limlim 0212n n n n n x x xn ++-→∞→∞-==+ 所以lim 0n n x n →∞=,111lim lim lim 01n n n n n n n x x x x n n n n n --→∞→∞→∞--=-=- 4.设110x q<<,其中01q <≤,并且1(1)n n n x x qx +=-,证明:1lim n n nx q→∞=.证明:因110x q<<,所以211211(1)111(1)()24qx qx x x qx q q q+-=-≤=<,所以210x q <<,用数学归纳法易证,10n x q <<。
复旦大学数学系陈纪修《数学分析》(第二版)习题答案ex2-1,2
![复旦大学数学系陈纪修《数学分析》(第二版)习题答案ex2-1,2](https://img.taocdn.com/s3/m/9ab235a20029bd64783e2c65.png)
第二章 数列极限习 题 2.1 实数系的连续性1. (1) 证明6不是有理数;(2) 3+2是不是有理数?证(1)反证法。
若6是有理数,则可写成既约分数nm=6。
由,可知是偶数,设,于是有,从而得到是偶数,这与226n m =m k m 2=2223k n =n nm是既约分数矛盾。
(2)3+2不是有理数。
若3+2是有理数,则可写成既约分数32+n m=,于是222623nm =++,252622−=n m ,即6是有理数,与(1)的结论矛盾。
2. 求下列数集的最大数、最小数,或证明它们不存在: ; A x x =≥{|}0 ⎭⎬⎫⎩⎨⎧<<=320|sin πx x B ; ⎭⎬⎫⎩⎨⎧<∈=+m n n m m n C 并且N ,。
解 ;因为,有0min =A A x ∈∀A x ∈+1,x x >+1,所以不存在。
A max 12sin max ==πB ;因为B x ∈∀,⎦⎤⎜⎝⎛∈∃2,0πα,使得αsin =x ,于是有B ∈2sinα,x <2sinα,所以B min 不存在。
C max 与都不存在,因为C min C m n ∈∀,有C m n ∈+1,C m n ∈++11, 111++<<+m n m n m n ,所以与都不存在。
C max C min 3. A B ,是两个有界集,证明: (1) 是有界集;A B ∪(2) 也是有界集。
S x y x A y B =+∈∈{|,}证 (1)设A x ∈∀,有1M x ≤,B x ∈∀,有2M x ≤,则B A x ∪∈∀,有{}21,max M M x ≤。
(2)设,有A x ∈∀1M x ≤,B x ∈∀,有2M x ≤,则S x ∈∀,有21M M x +≤。
4. 设数集S 有上界,则数集T x x S =−∈{|}有下界,且sup S =T inf −。
证 设数集S 的上确界为,则对任意S sup ∈x T x x S =−∈{|},有,即;同时对任意S x sup ≤−S x sup −≥0>ε,存在S y ∈,使得ε−>S y sup ,于是,且T y ∈−ε+−<−S y sup 。
数学分析课本-习题及答案01
![数学分析课本-习题及答案01](https://img.taocdn.com/s3/m/98572d715727a5e9856a616c.png)
第一章 实数集与函数习题§1实数1、 设a 为有理数,x 为无理数。
证明:(1)a+ x 是无理数;(2)当a ≠0时,ax 是无理数。
2、 试在数轴上表示出下列不等式的解:(1)x (2x -1)>0;(2)|x-1|<|x-3|;(3)1-x -12-x ≥23-x 。
3、 设a 、b ∈R 。
证明:若对任何正数ε有|a-b|<ε,则a = b 。
4、 设x ≠0,证明|x+x1|≥2,并说明其中等号何时成立。
5、 证明:对任何x ∈R 有(1)|x-1|+|x-2|≥1;(2)|x-1|+|x-2|+|x-3|≥2。
6、 设a 、b 、c ∈+R (+R 表示全体正实数的集合)。
证明 |22b a +-22c a +|≤|b-c|。
你能说明此不等式的几何意义吗7、 设x>0,b>0,a ≠b 。
证明x b x a ++介于1与ba 之间。
8、 设p 为正整数。
证明:若p 不是完全平方数,则p 是无理数。
9、 设a 、b 为给定实数。
试用不等式符号(不用绝对值符号)表示下列不等式的解:(1)|x-a|<|x-b|;(2)|x-a|< x-b ;(3)|2x -a|<b 。
§2数集、确界原理1、 用区间表示下列不等式的解:(1)|1-x|-x ≥0;(2)| x+x1|≤6; (3)(x-a )(x-b )(x-c )>0(a ,b ,c 为常数,且a<b<c );(4)sinx ≥22。
2、 设S 为非空数集。
试对下列概念给出定义:(1)S 无上界;(2)S 无界。
3、 试证明由(3)式所确定的数集S 有上界而无下界。
4、 求下列数集的上、下确界,并依定义加以验证:(1)S={x|2x <2};(2)S={x|x=n !,n ∈+N };(3)S={x|x 为(0,1)内的无理数};(4)S={x|x=1-n21,n ∈+N }。
数学分析课后习题答案(华东师范大学版)
![数学分析课后习题答案(华东师范大学版)](https://img.taocdn.com/s3/m/f8f09a2e48d7c1c708a145d9.png)
P.182 习题1.验证下列等式 (1)C x f dx x f +='⎰)()( (2)⎰+=C x f x df )()(证明 (1)因为)(x f 是)(x f '的一个原函数,所以⎰+='C x f dx x f )()(.(2)因为C u du +=⎰, 所以⎰+=C x f x df )()(.2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点)5,2(.解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='=⎰⎰22)()(.于是知曲线为C x y +=2, 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以有 C +=225, 解得1=C , 从而所求曲线为12+=x y3.验证x x y sgn 22=是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0<x 时, 22x y -=, x y -='; 当0=x 时, y的导数为02sgn lim 0sgn )2(lim020==-→→x x x x x x x , 所以⎪⎩⎪⎨⎧=<-=>='||0000x x xx x xy 4.据理说明为什么每一个含有第一类间断点的函数都没有原函数?解 由P.122推论3的证明过程可知:在区间I 上的导函数f ',它在I 上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。
因此每一个含有第一类间断点的函数都没有原函数。
5.求下列不定积分⑴C x x x x dx x dx x xdx dx dx x x x +-+-=-+-=-+-⎰⎰⎰⎰⎰-31423233233421)11(⑵C x x x dx x x x dx xx ++-=+-=-⎰⎰||ln 343)12()1(2332122⑶C gxC x gdx x ggxdx +=+⋅==⎰⎰-22212122121 ⑷⎰⎰⎰+⋅+=+⋅+=+dx dx dx x x x x x x x x )9624()3)32(22()32(222 C x x x ++⋅+=9ln 96ln 624ln 4 ⑸C x dx x dx x +=-=-⎰⎰arcsin 23112344322⑹ C x dx x dx x x dx x x +-=+-=+-+=+⎰⎰⎰)arctan 1(31)111(31)1(311)1(322222 ⑺ C x x dx x xdx +-=-=⎰⎰tan )1(sec tan 22 ⑻C x x dx x dx x xdx +-=-=-=⎰⎰⎰)2sin 21(21)2cos 1(2122cos 1sin 2 ⑼ C x x dx x x dx xx x x dx x x x +-=+=--=-⎰⎰⎰cos sin )sin (cos sin cos sin cos sin cos 2cos 22 ⑽C x x dx x x dx x x x x dx x x x +--=-=⋅-=⋅⎰⎰⎰tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222 ⑾ C C dt dt tt ttt+=+⋅⋅=⋅=⋅⎰⎰90ln 90)910ln()910()910(3102 ⑿C x dx x dx x x x +==⎰⎰81587158⒀C x dx xdx x x x x dx x x x x +=-=--+-+=+-+-+⎰⎰⎰arcsin 212)1111()1111(222⒁C x x xdx dx dx x dx x x +-=+=+=+⎰⎰⎰⎰2cos 212sin 1)2sin 1()sin (cos 2⒂C x x dx x x xdx x ++=+=⎰⎰)sin 3sin 31(21)cos 3(cos 212cos cos ⒃ C e e e e dx e e e e dx e e x xx x x x x x x x ++--=-+-=------⎰⎰33333313331)33()(P.188 习题1.应用换元积分法求下列不定积分:⑴C x x d x dx x ++=++=+⎰⎰)43sin(31)43()43cos(31)43cos( ⑵ C e x d e dx xe x x x +==⎰⎰222222241)2(41⑶ C x x x d x dx ++=++=+⎰⎰|12|ln 2112)12(2112⑷ C x n x d x dx x n nn +++=++=++⎰⎰1)1(11)1()1()1(⑸Cx x xd xdx x dx xx++=-+-=-+-⎰⎰⎰3arcsin 313arcsin 3)3113131)31131(2222⑹C C x d dx x x x x +=+=+=++++⎰⎰2ln 22ln 22)32(221222323232⑺C x C x x d x dx x +--=+-⋅-=---=-⎰⎰232321)38(92)38(3231)38()38(3138 ⑻C x C x x d x x dx+--=+-⋅-=---=-⎰⎰-3232313)57(103)57(2351)57()57(5157 ⑼C x dx x dx x x +-==⎰⎰2222cos 21sin 21sin ⑽ C x x x d x dx++-=++=+⎰⎰)42cot(21)42(sin )42(21)42(sin 22ππππ⑾ 解法一:C xxx d x dxx dx+===+⎰⎰⎰2tan2cos 22cos 2cos 122解法二: ⎰⎰⎰⎰-=--=+xxdxx dx x dx x x dx 222sin cos sin cos 1)cos 1(cos 1 C x x xx d x ++-=--=⎰sin 1cot sin sin cot 2⑿解法一:利用上一题的结果,有C x C x x x d x dx +--=+--=-+--=+⎰⎰)24tan()2(21tan )2cos(1)2(sin 1ππππ 解法二: C x x xx d x dx x dx x x dx +-=+=--=+⎰⎰⎰⎰cos 1tan cos cos cos sin 1)sin 1(sin 1222 解法三:⎰⎰⎰+⋅=+=+222)12(tan 2cos )2cos 2(sin sin 1x x dxx x dx x dxC x x x d ++-=+=⎰12tan 2)12(tan 2tan 22⒀ 解法一:⎰⎰⎰---=-=)2()2sec()2sec(csc x d x dx x xdx πππC x x C x x ++-=+-+--=|cot csc |ln |)2tan()2sec(|ln ππ解法二:C x x x x d dx x x dx x xdx ++-=-===⎰⎰⎰⎰1cos 1cos ln 211cos cos sin sin sin 1csc 22C x x +-=|cot csc |ln解法三:⎰⎰++=dx x x x x x xdx cot csc )cot (csc csc cscC x x C xx x x d ++-=+++-=⎰|cot csc |ln cot csc )cot (csc解法四:⎰⎰⎰==dx x x xdx x x xdx 2cos2sin 22sin2cos 2sin 21csc 2C xC x x d x +=+-=-=⎰|2tan |ln |2cot |ln 2cot 2cot 1⒁C x x d x dx x x +--=---=-⎰⎰22221)1(11211 ⒂ C x dx x dx x x +=+=+⎰⎰2arctan 41)(4121422224⒃C x x x d x x dx +==⎰⎰|ln |ln ln ln ln⒄ C x x d x dx x x +-=---=-⎰⎰25535354)1(1101)1()1(151)1( ⒅ C x x C x x dx x dx x x ++-=++-⋅=-=-⎰⎰|22|ln 281|22|ln 221412)(1412444442483⒆C xx C x x dx x x x x dx ++=++-=+-=+⎰⎰|1|ln |1|ln ||ln )111()1( ⒇C x dx xxxdx +==⎰⎰|sin |ln sin cos cot (21)⎰⎰⎰-==x d x xdx x xdx sin )sin 1(cos cos cos 2245 C x x x x d x x ++-=+-=⎰5342sin 51sin 32sin sin )sin sin 21((22) 解法一:C x x x x d x x dx +-==⎰⎰|2cot 2csc |ln 2sin )2(cos sin解法二:C x x xd x x xdx x x dx +===⎰⎰⎰|tan |ln tan tan cos sin cos cos sin 2 解法三:⎰⎰+=xx dxx x x x dx cos sin )cos (sin cos sin 22C x x dx xxx x +-=+=⎰|cos |ln |sin |ln )sin cos cos sin ((23) C e e de e dx e e e dx xx x x x x x+=+=+=+⎰⎰⎰-arctan 1122 (24) C x x x x x x d dx x x x ++-=+-+-=+--⎰⎰|83|ln 83)83(83322222(25) C x x x dx x x x dx x x x dx x x ++-+++=+++-+=+++-+=++⎰⎰⎰2323232)1(2312|1|ln ))1(3)1(211()1(3)1(2)1()1(2(26)⎰+22ax dx解 令t a x tan =, 则C a x x C t t t a tdt a a x dx+++=++==+⎰⎰||ln |tan sec |ln sec sec 221222(27)C a x x a a x x d a a x dx ++=+=+⎰⎰21222212222322)(1)(1)(解法2 令t a x tan =, 则C ax a x C t a tdt a t a tdt a a x dx ++=+===+⎰⎰⎰222223322322sin 1cos 1sec sec )( (28)⎰-dx xx 251解 令t x sin =, 则Cx x x C t t t td t tdt dt t t t dx x x +---+--=+-+-=--===-⎰⎰⎰⎰25223221253225525)1(51)1(32)1(cos 51cos 32cos cos )cos 1(sin cos cos sin 1(29)⎰-dx xx31解 令t x =61, 则6t x =, 56t dx =C t t t t t t dt tt t t dt tt t t t dt t t t dt t t dx x x++--+++-=-++++-=-++++-=-+-=-⋅=-⎰⎰⎰⎰⎰|11|ln 26)357(6)11)1((611)1)(1(6111)(61613572246224622422533其中61x t = (30)⎰++-+dx x x 1111解 令t x =+1, 则21t x =+, tdt dx 2=,Cx x x C x x x C t t t dt t t dt t t t tdt t tdt t t dx x x +++++-=+++++-+=+++-=++-=+-=+-=+-=++-+⎰⎰⎰⎰⎰|11|ln 414|11|ln 4141|1|ln 44)1442()142(2)121(21111111122.应用分部积分法求下列不定积分: ⑴C x x x dx x x x x xdx +-+=--=⎰⎰221arcsin 1arcsin arcsin⑵C x x x dx x x x x xdx +-=⋅-=⎰⎰ln 1ln ln⑶Cx x x x x xdx x x x x x xd x x xdx x x x x d x xdx x +-+=-+=+=-==⎰⎰⎰⎰⎰sin 2cos 2sin cos 2cos 2sin cos 2sin sin 2sin sin cos 222222 ⑷ C x x x dx x x x x xd dx x x +--=+-=-=⎰⎰⎰223223412ln 121ln 211ln 21ln ⑸C x x x x x xdx x x dx x ++-=-=⎰⎰2ln 2)(ln ln 2)(ln )(ln 222 ⑹ ⎰⎰⎰+-==dx xx x x xdx xdx x 2222121arctan 21arctan 21arctan C x x x x dx x x x +--=+--=⎰)arctan (21arctan 21)111(21arctan 21222 C x x x +-+=21arctan )1(212⑺ ⎰⎰⎰+=+dx x dx x dx x x ln 1)ln(ln ]ln 1)[ln(ln C x x dx xdx x x x x x +=+⋅-=⎰⎰)ln(ln ln 1ln 1)ln(ln⑻⎰⎰--=dx xx x x x dx x 2221arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰----+=dx xx x x x x 22221112arcsin 12)(arcsinC x x x x x +--+=2arcsin 12)(arcsin 22⑼⎰⎰⎰-==xdx x x x x xd xdx 23tan sec tan sec tan sec sec⎰⎰⎰+-=--=xdx xdx x x dx x x x x sec sec tan sec )1(sec sec tan sec 32 |tan sec |ln sec tan sec 3x x xdx x x ++-=⎰所以C x x x x xdx +++=⎰|)tan sec |ln tan sec 21sec 3 ⑽⎰⎰+⋅-+=+dx ax x x a x x dx a x 222222⎰+-+-+=dx ax a a x a x x )(2222222⎰⎰+++-+=dx ax a dx a x a x x 2222222)ln(2222222a x x a dx a x a x x ++++-+=⎰所以C a x x a a x x dx a x +++++=+⎰))ln((212222222 类似地可得C a x x a a x x dx a x +-+--=-⎰))ln((212222222 3.求下列不定积分:⑴ C x f a x df x f dx x f x f a aa++=='+⎰⎰1)]([11)()]([)()]([ ⑵C x f x df x f dx x f x f +=+=+'⎰⎰)(arctan )()]([11)]([1)(22⑶C x f x f x df dx x f x f +=='⎰⎰|)(|ln )()()()( ⑷ C e x df e dx x f e x f x f x f +=='⎰⎰)()()()()(4.证明:⑴ 若⎰=dx x I n n tan , ,3,2=n ,则21tan 11----=n n n I x n I 证 ⎰⎰⎰----=-=dx x dx x x dx x x I n n n n 22222tan sec tan )1(sec tan22tan tan ---=⎰n n I x d x .因为⎰⎰-----=x d x n x x d x n n n tan tan )2(tan tan tan 212,所以x n x d x n n 12tan 11tan tan ---=⎰. 从而21tan 11----=n n n I x n I . ⑵ 若⎰=dx x x n m I n m sin cos ),(,则当0≠+n m 时,),2(1sin cos ),(11n m I nm m n m x x n m I n m -+-++=+-)2,(1sin cos 11-+-++-=-+n m I nm n n m x x n m , ,3,2,=m n证 ⎰⎰+-+==x d x n dx x x n m I n m nm 11sin cos 11sin cos ),( ]sin cos )1(sin [cos 112211⎰+-+--++=dx x x m x x n n m n m ])cos 1(sin cos )1(sin [cos 112211⎰--++=-+-dx x x x m x x n n m n m ))],(),2()(1(sin [cos 1111n m I n m I m x x n n m ---++=+-所以),2(1sin cos ),(11n m I n m m n m x x n m I n m -+-++=+-, 同理可得)2,(1sin cos ),(11-+-++-=-+n m I nm n n m x x n m I n mP.199 习题1.求下列不定积分:⑴ ⎰⎰⎰-+++=-+-=-dx x x x dx x x dx x x )111(1111233 C x x x x +-+++=|1|ln 2323 ⑵ 解法一:C x x dx x x dx x x x +--=---=+--⎰⎰|3|)4(ln )3142(127222解法二:⎰⎰⎰+-++--=+--dx x x dx x x x dx x x x 12732112772211272222 ⎰⎰---++-+-=)27(41)27(123127)127(21222x d x x x x x dC x x x x +--++-=34ln 23|127|ln 212 ⑶ 解22311)1)(1(111xx CBx x A x x x x +-+++=+-+=+ 去分母得 )1)(()1(12x C Bx x x A ++++-=令1-=x ,得1=A . 再令0=x ,得1=+C A ,于是32=C . 比较上式两端二次幂的系数得 0=+B A ,从而1-=B ,因此⎰⎰⎰+---+=+dxx x x x dx x dx 2312311311⎰⎰+-++---+=dx x x dx x x x x 22112111261|1|ln 31⎰+-++--+=dx x x x x 43)21(121)1ln(61|1|ln 3122C x x x x +-++-+=312arctan 311)1(ln 6122 ⑷ 解 ⎰⎰⎰⎰+--++=+--+=+dx xx dx x x dx x x x x dx 42424224112111211)1()1(211 ⎰⎰⎰⎰++-+-=+--++=22222222221)1(211)1(211112111121x x x x d x x x x d dx x x x dx x x x⎰⎰-++-+--=2)1()1(212)1()1(2122xx x x d x x x x d C xx x x x x +++-+--=2121ln 24121arctan221C x x x x x x ++++---=1212ln 8221arctan 42222 ⑸⎰+-22)1)(1(x x dx解 令22222)1(11)1)(1(1++++++-=+-x EDx x C Bx x A x x , 解得41=A , 41-==CB , 21-==E D , 于是 ⎰⎰⎰⎰++-++--=+-dx x x dx x x x dx x x dx 22222)1(1211141141)1)(1(C x x x x x x x +++-++-+--=)1(arctan 411141arctan 41)1ln(81|1|ln 41222 C x x x x x ++-+-+-=)11arctan 21|1|(ln 4122⑹⎰⎰⎰++-+++=++-dx x x dx x x x dx x x x 222222)122(125)122(2441)122(2 其中1221)122()122()122(24222222++-=++++=+++⎰⎰x x x x x x d dx x x x ⎰⎰⎰+++=++=++)12(]1)12[(12]1)12[(4)122(1222222x d x dx x dx x x )12arctan(1)12(122+++++=x x x 参见教材P.186 例9或P.193关于k I 的递推公式⑺. 于是,有C x x x x x dx x x x ++-+++-++-=++-⎰)12arctan(251)12(1225122141)122(22222 C x x x x ++-+++=)12arctan(25)122(23522.求下列不定积分⑴⎰-x dx cos 35解 令2tan xt =,则C t t t d tdt t dt t t dx x dx+=+=+=++--=-⎰⎰⎰⎰2arctan 21)2(1)2(2141121135cos 3522222 C x+=)2tan 2arctan(21 ⑵⎰⎰⎰⎰+=+=+=+)tan 32(tan cos )tan 32(sin 3cos 2sin 2222222x xd x x dx x x dx x dxC x x x d +=+=⎰)tan 23arctan(61)tan 231()tan 23(612 ⑶ ⎰⎰⎰++-+=+=+dx xx xx x x x x xdx x dx sin cos cos sin sin cos 21sin cos cos tan 1 )sin cos )cos (sin (21)sin cos cos sin 1(21⎰⎰⎰+++=++-+=x x x x d dx dx x x x x C x x x +++=|)sin cos |ln (21另解:设⎰+=x x xdx I sin cos cos 1,⎰+=x x xdxI sin cos sin 2,则C x dx x x xx I I +=++=+⎰sin cos sin cos 21,C x x x x x x d dx x x x x I I ++=++=+-=-⎰⎰|sin cos |ln sin cos )sin (cos sin cos sin cos 21所以C x x x I x dx +++==+⎰|)sin cos |ln (21tan 11⑷⎰⎰⎰-+++-+-=-+22221)1(11xx dx x dx x x dx xx x⎰⎰⎰-++-++---+-=2221231)12(211x x dxx x dx x dx x x其中(利用教材P.185例7的结果)]1)21(512arcsin 45[21)21(451222x x x x dx x dx x x -+-+-=--=-+⎰⎰ 2222121)1(1)12(x x x x x x d x x dx x -+=-+-+=-++-⎰⎰512arcsin)21(45122-=--=-+⎰⎰x x dxxx dx所以有⎰-+dx xx x 221C x x x x x x x +-+-+--+-+--=512arcsin 231221]1)21(512arcsin 45[2122C x x x x +-++--=21432512arcsin 87 ⑸C x x x x x d xx dx ++++=-++=+⎰⎰|21|ln 41)21()21(222⑹⎰+-dx xxx 1112 解 令 x x t +-=11,则2211tt x +-=,22)1(4t tdtdx +-=,代入原式得 ⎰⎰⎰⎰---=--=+-⋅⋅⎪⎪⎭⎫ ⎝⎛-+=+-dt t t dt t t dt t t t t t dx x xx 222222222222)1(114)1(4)1(411111⎰⎰⎰⎰-+-++--=---=dt t t t dt t dt t dt t ]12)1(1)1(1[114)1(141142222222C t t t t dt t t dt t +++---+=-++--=⎰⎰1111|11|ln ])1(1)1(1[112222 C xx x x +---+=221|11|ln总 练 习 题求下列不定积分: ⑴C x x x dx x xx dx xx x +--=--=--⎰⎰-4312134541121414334132454)2(12⑵]11arcsin [21arcsin 21arcsin 2222⎰⎰⎰--==dx x x x x dx x dx x x 其中)2sin 21(2122cos 1cos cos sin 1222t t dt t dt t t t dx x x -=-==-⎰⎰⎰)1(arcsin 212x x x --=所以]11arcsin [21arcsin 222⎰⎰--=dx xx x x dx x xC x x x x x +---=)]1(arcsin 21arcsin [2122 C x x x x x +-+-=22141arcsin 41arcsin 21 ⑶⎰+xdx 1解 令u x =,则udu dx 2=C u u du uu udu xdx ++-=+-=+=+⎰⎰⎰|)1|ln (2)111(2121 C x x ++-=|)1|ln (2⑷⎰⎰⎰⎰===xx x x de x x d x e dx x x e dx x e sin sin sin sin sin 2sin sin 2cos sin 22sin C x e C e x e x d e x e x x x x x +-=+-=-=⎰)1(sin 2)sin (2)sin sin (2sin sin sin sin sin⑸C x e C e u e du u e u x dx e x u u u x+-=+-==⎰⎰)1(2)(22)(令 ⑹C x x d x x x dx x xdx +-=--=-=-⎰⎰⎰1arcsin )1(1111112222 解法二:令t x sec =,C xC t dt t t t t x xdx +=+==-⎰⎰1arccos tan sec tan sec 12⑺⎰⎰⎰++=+-=+-x x x x d dx x x x x dx x x sin cos )sin (cos sin cos sin cos tan 1tan 1C x x ++=|sin cos |lnC x dx x dx x x +-=-=+-⎰⎰|)4cos(|ln )4tan(tan 1tan 1ππ ⑻ C x x x dx x x x dx x x x +-----=-+-+-=--⎰⎰23232)2(123|2|ln )2(2)2(3)2()2( ⑼C x x x d x xdx x x dx ++=+==⎰⎰⎰32224tan 31tan tan )tan 1(cos sec cos ⑽ ⎰⎰⎰-==dx x dx x dx x 2224)22cos 1()(sin sin⎰⎰++-=+-=dx x x dx x x )24cos 12cos 21(41)2cos 2cos 21(412 C x x x C x x x x ++-=+++-=4sin 3212sin 4183)84sin 22sin (41 ⑾ ⎰+--dx x x x 43523 解⎰⎰-+-=+--dx x x x dx x x x 223)2)(1(5435令22)2(21)2)(1(5-+-++=-+-x C x B x A x x x 去分母得:)1()2)(1()2(52++-++-=-x C x x B x A x 解得:32-=A ,32=B ,1-=C 所以⎰⎰⎰⎰---++-=+--dx x dx x dx x dx x x x 223)2(121321132435 C x x x +-++-=21|12|ln 32 ⑿⎰+dx x )1arctan(解 令u x =+1,du u dx )1(2-=⎰⎰⎰⎰-⋅=-⋅=+du u du u u du u u dx x arctan 2arctan 2)1(2arctan )1arctan(122)1ln(arctan 2]arctan )1[(C u u u u u u +++--+= C x x x x x ++++-+=)22ln()1arctan(⒀ ⎰⎰⎰+-=+-+=+dx x x x dx x x x x dx x x )22(2222433433747 C x x ++-=)2ln(214144 另解:C x x dx x dx x x x dx x x ++-=+-=+⋅=+⎰⎰⎰)2ln(2141)221(4122444443447 ⒁⎰++dx x x x2tan tan 1tan 解 令u x =tan⎰⎰⎰⎰++-+=+++=++du u u du u du u u u u dx x x x 222221111111tan tan 1tanC x x C u u ++-=++-=31tan 2arctan32312arctan32arctan⒂ ⎰⎰-+---=-dx x x x dx x x 10021002)1(1)1(2)1()1( C x x x +-+---=979899)1(971)1(491)1(991 ⒃⎰⎰⎰-+-=-=dx x x xx x d x dx x x 2211arcsin 1arcsin arcsin C xx x x +-+--=|11|ln arcsin 2⒄⎰⎰⎰--+=--+=-+2)]1ln()1[ln(21)]1ln()1[ln(11lndx x x dx x x x dx x x x C x xxx dx x x x x x x ++-+-=-++---+=⎰11ln 21)1111(21)]1ln()1[ln(21222⒅⎰⎰⎰+==x d xx dx xx dx xx tan tan tan 1cos tan 1cos sin 1247C x x ++=)tan 511(tan 22⒆ ⎰⎰⎰⎰+-++=+-+=+-dx x x e dx x e dx x x x e dx x x e xx x x22222222)1(21)1(21)11( C xe dx x e x e dx x e x d e dx x e x x x x x x ++=+-+++=+++=⎰⎰⎰⎰2222221111111 ⒇ ⎰=dx uv I n n ,x b a u 11+=,x b a v 22+=解 ][221211⎰⎰⎰--===dx v b u n u v b u d v b dx uv I n nn n n ])([2][21122111121⎰⎰---+-=-=dx uv b a b a v b n u v b dx u uv b n u v b n nn n ])([21122111----=n n nI b a b a n I nb u v b 所以])([)12(2112211---+=n n n I b a b a n u v b n I。
数学分析课后答案
![数学分析课后答案](https://img.taocdn.com/s3/m/9be9f9ad2af90242a995e562.png)
第一章 实数集与函数§1实数1、设a 为有理数,x 为无理数,试证明:⑴x a +是无理数.⑵当0≠a 时,ax 是无理数.证: ⑴ 假设x a +是有理数,则x a x a =-+)(是有理数,这与题设x 为无理数相矛盾, 故x a +是无理数.⑵假设ax 是有理数,则x aax =为有理数,这与题设x 为无理数相矛盾 故ax 是无理数.1、 试在数轴上表示出下列不等式的解:⑴ 0)1(2>-x x ;⑵⑶2、 设a 、R b ∈.证明:若对任何正数ε有ε<-b a ,则b a =.证:用反证法.倘若结论不成立,则根据实数集有序性,有b a >或b a <;若b a >,则又由绝对值定义知:b a b a -=-.令b a -=ε,则ε为正数,但这与ε<-=-b a b a 矛盾;若b a <,则又由绝对值定义知:a b b a -=-.令a b -=ε,则ε为正数,但这与ε<-=-a b b a 矛盾;从而必有b a =.3、 设0≠x ,证明21≥+xx ,并说明其中等号何时成立. 证:因x 与x1同号,从而21211=⋅≥+=+x x x x x x , 等号当且仅当x x 1=,即1±=x 时成立.4、 证明:对任何R x ∈,有⑴ 121≥-+-x x ;⑵2321≥-+-+-x x x证: ⑴因为21111-=+-≤--x x x , 所以121≥-+-x x . ⑵因为21132-+-≤-≤--x x x x , 所以2321≥-+-+-x x x5、 设a 、b 、+∈R c (+R 表示全体正实数的集合),证明:c b c a b a -≤+-+2222 证:对任意的正实数a 、b 、c 有)(22222c b a bc a +≤,两端同时加244c b a +,有224222222242c b a c a b a bc a c b a +++≤++, 即))(()(222222c a b a bc a ++≤+ bc c a b a a 2))((2222222-≤++-,两端再同加22c b +,则有c b c a b a -≤+-+2222其几何意义为:当c b ≠时,以),(b a ,),(c a ,)0,0(三点为顶点的三角形,其两边之差小于第三边.当c b =时,此三角形变为以),(c a ,)0,0(为端点的线段,此时等号成立6、 设0,0>>b x ,且b a ≠,证明x b x a ++介于1与b a 之间. 证:因为x b a b x b x a +-=++-1,)()(x b b a b x b a x b x a +-=-++,且0,0>>b x 所以当b a >时, ba xb x a <++<1; 当b a <时, 1<++<xb x a b a ; 故x b x a ++总介于1与b a 之间.7、 设p 为正整数,证明:若p 不是完全平方数,则p 是无理数 证:假设p 是有理数,则存在正整数m 、n 使n m p =,且m 与n 互素. 于是22m p n =.可见n 能整除2m .由于m 与n 互素,从而它们的最大公因数为1,由辗转相除法知:存在整数u 、v 使1=+nv mu .从而m mnv u m =+2因n 能整除2m ,又能整除mnv ,故能整除其和,于是n 可整除m ,这样1=n 因此2m p =.这与p 不是完全平方数相矛盾, 故p 是无理数8、 设a 与b 为已知实数,试用不等式符号(不用绝对值符号)表示下列不等式的解:⑴ b x a x -<-;⑵b x a x -<-;⑶b a x <-2. 解: ⑴原不等式等价于11<---bx b a 这又等价于20<--<b x b a 即⎩⎨⎧-<-<>b x b a b x 220或⎩⎨⎧->-><b x b a b x 220 即⎪⎪⎩⎪⎪⎨⎧>+>>b a b a x b x 2或⎪⎪⎩⎪⎪⎨⎧<+<<ba b a x b x 2 故当b a >时,不等式的解为2b a x +> 当b a <时,不等式的解为2b a x +< 当b a =时,不等式无解.⑵原不等式等价于⎩⎨⎧-<->b x a x b x 且⎩⎨⎧-<->b x x a b x 即⎩⎨⎧>>b a b x 且⎪⎩⎪⎨⎧+>>2b a x b x 故当b a >时,21b x +>; 当b a ≤时,不等式无解.⑶当0≤b 时,显然原不等式无解,当0>b 时原不等式等价于b a x b a +<<-2 因此①当0≤+b a 或0≤b 时,无解 ②当0>+b a 且0>b 时,有解Ⅰ 如果b a ≥,则解为b a x b a +<<- 即b a x b a +<<-或b a x b a +>>--Ⅱ 如果b a <,则解为b a x +< 即b a x b a +<<+-。
数学分析课后习题答案1.4
![数学分析课后习题答案1.4](https://img.taocdn.com/s3/m/265399d3b14e852458fb578c.png)
π
2
, tan x 0 = tan(arctan( M + 1) = M + 1 > M
所以 f ( x) = tan x 在 ( − (2)任取 [a , b] ∈ ( −
π π
2 , 2
) 内是无界函数.
π π
2 ,
2
) ,由于 tan x 在 [a , b] 上是严格递增的,从而 tan a ≤ tan x ≤ tan b
1 M +1
∈ (0 ,1) ,使 f ( x0 ) =
1 x0
2
= M +1 > M
1 为 (0,1) 上的无界函数. x2
1 , x ∈ (0 ,1] ⑶设 f ( x) = x .下证 f ( x) 为无界函数 0 , x = 0
∀M > 0 , ∃x0 =
1 ∈ (0 ,1] ,使得 f ( x0 ) = M + 1 > M M +1
x∈D x∈D
(2)同理可证结论成立.
9、 证明:函数 f ( x) = tan x 在 ( − 上有界.
π π
2 , 2
) 内为无界函数,但在 (−
π π
2 , 2
) 内任一闭区间 [a , b]
证: (1)对任意的正数 M ,取 x 0 = arctan(M + 1) , 则−
π
2
< x0 <
1 , x ∈ (0 ,1] 所以 f ( x) = x 是闭区间[0,1]上的无界函数 0 , x = 0
. 3、 证明下列函数在指定区间上的单调性: ⑴ y = 3 x − 1 在 (−∞ , + ∞) 内严格递增;
数学分析课后习题答案
![数学分析课后习题答案](https://img.taocdn.com/s3/m/1a654b7dde80d4d8d15a4fb0.png)
取有理数 r0 ,使得 loga (a x − ε ) < r0 < x .
sup 所以 a x = sup E ,即 a x =
{a r r为有理数}
r<x
≤
−6x
前 一 不 等 式 组 的 解 为 x ∈[3 − 2 2 , 3 + 2 2] , 后 一 不 等 式 组 解 为
x ∈[−3 − 2 2 ,− 3 + 2 2].
因此原不等式解为 x ∈[−3 − 2 2 ,− 3 + 2 2] [3 − 2 2 ,3 + 2 2]
⑶令 f (x) = (x − a)(x − b)(x − c) ,则由 a < b < c 知:
x
≥
0
或
x
−
1
−
x
≥
0
前一不等式组的解为 x ≤ 1 ,后一不等式组无解. 2
所以原不等式的解为
x ∈ −
∞
,
1 2
⑵不等式 x + 1 ≤ 6 等价于 − 6 ≤ x + 1 ≤ 6
x
x
x > 0
x < 0
这又等价于不等式组
−
6x
≤
x2
+1
≤
6x
或 6x
≤
x2
+1
§2 数集 确界原理
1、 用区间表示下列不等式的解:
⑴1− x − x ≥ 0;
⑵ x+ 1 ≤ 6; x
⑶ (x − a)(x − b)(x − c) > 0 ( a 、 b 、 c 为常数,且 a < b < c )
数学分析课后习题答案
![数学分析课后习题答案](https://img.taocdn.com/s3/m/9ce061cf524de518964b7d62.png)
解:令 F (x, y) = cos x + sin y − e xy ,则有
Ⅰ) F (x, y) 在原点的某邻域内连续;
Ⅱ) F (0,0) = 0 ;
Ⅲ) Fx (x, y) = − sin x − ye xy , Fy (x, y) = cos y − xe xy 均在上述邻域内连续; Ⅳ) Fy (0,0) = 1 ≠ 0 , Fx (0,0) = 0 故由隐函数存在唯一性定理知,方程 cos x + sin y = e xy 在原点的某邻域内可确定隐函数
− y 2 )(1 − 2 dy ) dx
dx 2 dx dx
(x − 2y)2
=
4x − 2y x −2y
+
(x
6x − 2y)3
.
5.设 u = x 2 + y 2 + z 2 ,其中 z = f (x, y) 是由方程 x3 + y 3 + z 3 = 3xyz 所确定的隐函数,
求 u x 及 u xx . 解:因由 x3 + y 3 + z 3 = 3xyz 所确定的隐函数为 z = f (x, y) ,
− Fx (Fyx
+ Fyy y′)]Fy −2
= (2Fx Fy Fxy − Fy 2 Fxx − Fx 2 Fyy )Fy −3 (Fy ≠ 0) .
Fxx Fxy Fx 所以 Fy 3 y′′ = 2Fx Fy Fxy − Fy 2 Fxx − Fx 2 Fyy = Fxy Fyy Fy (Fy ≠ 0) .
数学分析答案
![数学分析答案](https://img.taocdn.com/s3/m/b0855f3e30126edb6f1aff00bed5b9f3f90f72c8.png)
数学分析答案第2,3,11章习题解答习题2-11.若自然数n不是完全平方数.证明n是无理数.证明反证法.假若npq(p,qN,且p,q互质),于是由nq2p2可知,q2是p2的因子,从而得q21即p2n,这与假设矛盾.2.设a,b是两个不同实数.证明在a和b之间一定存在有理数.证明不妨设a0,所以存在正整数n,使得0<mm综上可得nann3.设某为无理数.证明存在无穷多个有理数pq(p,q为整数,q0)使得某pq1q2.证明反证法.假若只有有限个有理数满足不等式,即某令piqi<1qi2,(i1,2,3,m)pmin某ii1,2,3,,mqi取N:N1,且选取整数p,q(0qN),使得p111,某N2习题2-2(3)(1)n11(1)n1nN,(4)y|y某2,某(1,).n2答案:(1)上确界1,下确界0;(2)上确界e,下确界2;(3)上确界1,下确界-1;(4)上确界1,下确界0.2.设E某|某2,某Q,验证infE2.证某E,由某2得某22是E的一个下界.另一方面,设12也是E的下界,由有理数集在实数系中的稠密性,在(2,1)2区间中必有有理数某,则某2某E且某11不是E的下界.按下确界定义,22infE2.3.用定义证明上(下)确界的唯一性.证明设为数集E的上确界,即upE.按定义,某E有某.若也是E的上确界且.不妨设,则对0,某0E有某0()即某0,矛盾.下确界的唯一性类似可证.4.试证收敛数列必有上确界和下确界,且上下确界中至少有一个属于该数列.趋于的数列必有下确界,趋于的数列必有上确界.证法1设{某n}为收敛数列,则{某n}非空有界,由确界存在原理,存在up{某n},inf{某n}.若,则{某n}为常数数列,于是,,{某n};若k}使某nk,某nk(k),这与且{某n},{某n},则存在两个子列{某nk},{某n{某n}收敛相矛盾.由此可得,与至少有一个属于{某n}.证法2设lim某na,若{某n}为常数列,则结论显然成立;若{某n}不是常数列,n不妨设某1a,对某1a2,N0,当nN0时,某nU(a,0),而在邻域U(a,0)外,只有{某n}的有限多项.在这有限项中必存在{某n}的最大项或最小项,于是,{某n}的上下确界中至少有一个属于{某n}.若某n,则{某n}有下界,所以必有下确界;若某n,则{某n}有上界,所以必有上确界.5.证明:单调减少有下界的数列必有极限.证设数列{某n}单调减少且有下界,根据确界存在原理{某n}有下确界,记inf{某n}.由(1)某n(n1,2,);(2)0,某N{某n}使某N.因为{某n}单调减少,所以当nN时,有某n某N.于是有0某n,故得lim某n.n习题2-31.用区间套定理证明:有下界的数集必有下确界.证设a是E的一个下界,b不是E的下界,则ab.令c11(ab),若c1是E的下界,则取a1c1,b1b;2若c1不是E的下界,则取a1a,b1c1.令c21(a1b1),若c2是E的下界,则取a2c2,b2b1;2若c2不是E的下界,则取a2a1,b2c2;……,按此方式继续作下去,得一区间套{[an,bn]},且满足:an是E的下界,bn不是E的下界(n1,2,).由区间套定理[an,bn]n1,2,,且limanlimbn.nn下证infE:an某(1)某E都有某an(n1,2,),而limn,即是E的下界.从而当n充分大以后,有bn.而bn不是E的下界不(2),由于limbn,n是E的下界,即是最大下界.2.设f(某)在[a,b]上无界.证明必存在某0[a,b],使得f(某)在某0的任意邻域内无界.证明由条件知,f(某)在[a,(ab)2]上或[(ab)2,b]上无界,记使f(某)在其上无界的区间为[a1,b1];再二等分[a1,b1],记使f(某)在其上无界的区间为[a2,b2],……,继续作下去,得一区间套{[an,bn]},满足f(某)在[an,bn](n1,2,)上无界.根据区间套定理,某0[an,bn]n1,2,,且limanlimbn某0.nn因为对任意的0,存在N,当nN时,有[an,bn](某0,某0),从而可知f(某)在(某0,某0)上无界.3.设f(某),g(某)在[0,1]上满足f(0)0,f(1)0,若g(某)在[0,1]上连续,f(某)g(某)在[0,1]上单调递增.证明存在[0,1],使f()0.11,b11;若f()0,22abn1则记a20,b2.类似地,对已取得的[an,bn]二等分,若f(n)0,则记22abnabnabnan1n,bn1bn;若f(n)0,则记an1an,bn1n.按此方式继续222证明记a10,b11且二等分[0,1].若f()0,则记a2下去,得一区间套{[an,bn]},其中f(an)0,f(bn)0.根据区间套定理可知,[an,bn],n1,2,3,且有limanlimbn.nn12因为g(某)在[0,1]上连续,所以g(an)g(),g(bn)g()(n).注意到g(an)f(an)g(an)f(bn)g(bn)g(bn)可得g()lim[f(an)g(an)]lim[f(bn)g(bn)],nn再由f(an)g(an)f()g()f(bn)g(bn)可知g()f()g()g(),f()0.习题2-41.证明下列数列发散(1)某n(2)yn121n(1)n2n3nn2n1,n1,2,;(1)n1nn,n1,2,.证(1)因为某2n(2)因为y2n12n12n11,某2n10,(n)所以{某n}发散.24n124n3n1n11,y2n1,(n)所以{yn}发散.2n22n122.证明:单调数列收敛的充要条件是其存在一个收敛子列.证明必要性显然成立.充分性.不妨设数列某n单调增加且存在某nk某n,有lim某nka,k现证lim某na.因为lim某nka,所以K,当kK时有某nka.注意到nk某n单调增加且某na,取Nnk,则当nN时,有某n某N于是有某na 某nka.3.设极限lim(ainnbcon)存在,证明ab0.n某nk证明(1)假若a0,b0或a0,b0,显然题设极限不存在,矛盾.(2)假若a0,b0,设lim(ain某bcon)An令coaa2b2,inAab22ba2b2,由ni(,则有ain某bcona2b2in(n)从而得in(n)n2)ni(n)2ni1co(n1)可知co(n)0(n).又由in(2n2)2in(n)co(n)可知in(2n2)0(n).再由2(in2)n2][2ni2n)2(2ci2n(on1)2][可知co(2n2)0(n).此结果与等式in2(2n2)co2(2n2)1矛盾.4.设在某0的某个邻域内有g(某)f(某)h(某),且limg(某)limh(某)A.证明某某0某某0某某0limf某()A.证明因为某某limg(某)limh(某)A,根据海涅归结原理,{某n}:某n某0且某某某n某0,都有limg(某n)limh(某n)A.nn又因为g(某)f(某)h(,某)所以g(某n)f(某n)h(某n)n1,2,.某某0根据数列极限的夹逼准则limf(某n)A,从而limf(某)A.n5.设f(某)在某0的一个邻域(某0,某0)内有定义.若对任意满足下列条件的数列某n(某0,某0),某n某0明limf(某)A.某某0(n),0某n1某0某n某0都有limf(某n)A.证n证明反证法.假若limf(某)A,则00,0,某(某0,某0)使得某某0f(某)A0.取11,某1(某01,某01)使得f(某1)A0取2.设f(某),g(某)在有限开区间(a,b)内均一致连续.证明f(某)g(某)也在(a,b)内一致连续.若(a,b)换为无限区间,结论还成立吗证明易知f(某),g(某)在(a,b)有界,设f(某)M1,g(某)M2,则某,某(a,b)有f(某)g(某)f(某)g(某)g(某)f(某)f(某)f(某)g(某)g(某)M2f(某)f(某)M1g(某)g(某)由此可知,f(某)g(某)在(a,b)内一致连续.若(a,b)换为无限区间,结论不一定成立.例如f(某)g(某)某在[1,)一致连续,而f(某)g(某)某2在[1,)不一致连续.又如f(某)某,g(某)in某,某[a,).3.设f(某)在有限开区间(a,b)内连续.证明f(某)在(a,b)内一致连续的充要条件是:极限某alimf(某)和limf(某)均存在.某b证明必要性.由f(某)在(a,b)内一致连续可知,0,0,当某某,某,某(a,b)时,f(某)f(某).于是,对(a,b)中满足某a2,某a2的任意两点,可知某某某a某a,从而有f(某)f(某).根据柯西收敛准则,极限limf(某)存在.类似证明limf(某)存在.某a某bf(a),某a,充分性.作函数F(某)f(某),某(a,b),f(b),某b.显然,F(某)在[a,b]上连续,由康托定理F(某)在[a,b]上一致连续,当然在(a,b)内也一致连续.又因为F(某)f(某),某(a,b),所以f(某)在(a,b)内一致连续.4.设f(某)在有限开区间(a,b)内一致连续.证明f(某)在(a,b)内有界.证明由3题直接可得.5.设f(某)在有限区间I上有定义,证明f(某)在I上一致连续的充要条件是f(某)把柯西列映射成柯西列,即对任何柯西列某nI,f(某n)也是柯西列.证明必要性.设f(某)在I上一致连续,则0,0,使得f(某)f(某),某某,某,某I.某n,某n)0,于是对上述,N,nN,某n,某n满足lim(某n设某nn)f(某n).从而有f(某n,某nI,某n某n充分性反证法.假若f(某)在I上不一致连续,于是00,某n1,n)f(某n)0.由致密性定理,某nk某n,某nk(k);因为但f(某nk某nk0某n因而是k.数列某n1,某n1,某n2,某n2,某nk,某nk,收敛于,,故lim某nk 柯西列.但由k)f(某nk)0f(某n,可知1),f(某n2),f(某n2),,f(某nk),f(某nk)不是柯西列,与假设矛盾.f(某n1),f(某n习题11-11.求下列函数项级数的收敛域.(1)1某n1某n2n;(2)1(某).1(3某)n3n1某n(n1,2,),2n某n解(1)设un(某)1某2nn当某1时,因为un(某)某,所以级数绝对收敛;又因为un()un(某),令t得un(t)t,所以,当t1即某1时,级数也绝对收敛.当某1时,有un(某)n1某1,某1,故级数发散.综合以上结果,该级数的收敛域为(,)\\1,1.2n(2)当某0时,有un(0)2,此时级数发散;2n1)n2某3某3,故某2时级数发散.当某0时,有un(某)1313n某n1nn3某22所以,级数的收敛域为(,)(,).33nn(2.讨论函数项级数n1某nnan(a0)的敛散域.解如果0a1,由于limnn某nnna某lim1nannn某,某n1所以,当1某1时,级数收敛;当某1时,由可知级数发散;nn1n1na当某1时,由某n某nnna(n)可知级数也发散;当某1时,由Abel判别法可知级数(1)nnn1na收敛.如果a1,从某n1()可知,当某a时,级数绝对收敛nn1nan1nan1a某n(Cauchy判别法);当某a时,由习题11-21.证明函数项级数n1annan1(n)知级数发散.某[1(n1)某](1n某)n在[1,)上一致收敛.证明因为某[1,),n(某)[k1111]11(n)1(k1)某1k某1n某而且n(某)(某)110(n),故结论成立.1n某1n2.设fn(某)在区间I上一致收敛于f(某),且对任意某I有f(某)A.试问是否存在N,使当nN时,对任意某I有fn(某)A解否.例如:fn(某)narcty某在(1,)内一致收敛于arcty某,且n1某(1,),arcty某某0ty4.但是对任何正整数N,存在n0N1N和nN1(2N3)(2N3)1,使0arcty某0n01N28N848N83.设fn(某)在[a,b]上收敛于f(某),且f(某)在[a,b]上连续.(1)若fn(某)(n1,2,)在[a,b]上单调递增.证明fn(某)在[a,b]上一致收敛于f(某);(2)证明fn(某)在[a,b]上一致收敛于f(某)的充要条件是:对[a,b]中任一收敛点列某n某0(n)有limfn(某n)f(某0).n证明(1)由f(某)的连续性可知,对任给的0,存在分割a某0某1某nb使得f(某i)f(某i1)(i1,2,n)又存在N,使当nN时,有fn(某i)f(某i)(i1,2,)从而可知,对任意的某:某i1某某i,有fn(某i1)fn(某)fn(某i).注意到f(某)是递增的,故有fn(某i1)f(某i1)f(某)f(某i)fn(某i).从而得到fn(某)f(某)(a某b).(2)证明必要性.由一致收敛性可知,0,N1,当nN1时,有fn(某)f(某)2(a某b)又由f(某)的连续性知,存在N2N1,当nN2时,有f(某n)f(某0)2从而得到fn(某n)f(某0)fn(某n)f(某n)f(某n)f(某0).充分性.反证法.假定fn(某)不一致收敛于f(某),则00以及某nk[a,b],(k1,2,),使得fnk(某nk)f(某nk)0()且不妨假定某nk某0,由f(某)的连续性及题设可知,K,当kK时,有f(某nk)f(某0)02,fnk(某nk)f(某0)02.从而得到fnk(某nk)f(某nk)fnk(某nk)f(某0)f(某0)f(某nk)0,这与()式矛盾.习题11-31.在定理11.3.1(定理11.3.1')和定理11.3.3(定理11.3.3')中,若将区间改为开区间或无限区间,结论是否仍然成立2.在定理11.3.3(定理11.3.3)的条件下,能否推出Sn(某)(un(某))一致收敛'n13.在定理11.3.3(定理11.3.3)中将条件(2)减弱为:Sn(某)(un(某))在[a,b]中某一点处收'n1敛.其结论不变,试给出证明.4.利用定理11.3.1'证明下列函数项级数不一致收敛.(1)(1某)某n0n,某[0,1],(2)(1某n0某22n),某[0,1].证明(1)0某1,(某)(1某)某1,(0)(1)0,(某)在[0,1]上不连续,nn0所以级数不一致收敛.(2)(1某n0某22n)某2(1某n012n),1某2,某0在某0不连续,所以级数不一致收敛.(某)0,某05.设Sn(某)某1n某22(某)在(,)上是否一致收敛是否有(例11.2.3),试问Sn(limSn某)nn,某(,)limSn某()证明(1)(某)n1,某01,(某)lim(某).取某nn222n(1n某)2n0,某01n2某2(某n)(某n)则n12(某)在(,)上不一致收敛不趋于0,(n),故Sn25nn(某)1(2)由于在某0处,(limn(某))0,(某)limn(某)limSn(某)不成立.所以,在某0处limSnnn。
(整理)数学分析答案
![(整理)数学分析答案](https://img.taocdn.com/s3/m/237b65aeaa00b52acec7ca1b.png)
2、无穷积分的性质与收敛判别1、证明定理11.2及其推论1定理11.2(比较法则)设定义在[),+∞a 上的两个函数f 和g 都在任何区间],[u a 上可积,且满足),[),(|)(|+∞∈≤a x x g x f ,则当⎰+∞adx x g )(收敛时,⎰+∞adx x f |)(|必收敛(或者,当⎰+∞adx x g )(收敛,所以a A >∃,当A u u >>12时,有⎰<21)(u u dx x g ε。
由于)(|)(|x g x f ≤,),[+∞∈∀a x ,因此更有 ⎰⎰<≤2121)(|)(|u u u u dx x g dx x f ε故⎰+∞adx x f |)(|收敛。
推论1 若f 和g 都在任何],[u a 上可积,1)(>x g ,且c x g x f x =∞→)(|)(|lim,则有(I )当+∞<<c 0时,⎰+∞adx x f |)(|与dx x g a⎰+∞)(同敛态;(ii )当0=c 时,由⎰+∞adx x g )(收敛可推知,dx x f a |)(|⎰+∞出收敛;(iii )当+∞=c 时,由⎰+∞adx x g )(发散可推知⎰+∞adx x f |)(|也发散。
证 (I )因为+∞<=<+∞→c x g x f x )(|)(|lim0,所以)(0c <>∀εε存在a A >,使得当A x >时,有εε+<<-<c x g x f c )(|)(|0 即dx x g c x f x g g c )()(|)(|)(()(0εε+<<-< (*) 从而,若⎰+∞adx x g )(收敛,那么⎰+∞+Adx x g c )()(ε收敛。
于是由⎰⎰+∞+=AaAdx x f dx x f dx x f |)(||)(||)(|收敛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学分析上册第三版华东师范大学数学系编部分习题参考解答P.4 习题1.设a 为有理数,x 为无理数,证明:(1)a + x 是无理数; (2)当0≠a 时,ax 是无理数.证明 (1)(反证)假设a + x 是有理数,则由有理数对减法的封闭性,知 x = a +x – a 是有理数. 这与题设“x 为无理数”矛盾,故a + x 是无理数.(2)假设ax 是有理数,于是a ax x =是有理数,这与题设“x 为无理数”矛盾,故ax 是无理数.3.设R b a ∈,,证明:若对任何正数ε有ε<-||b a ,则 a = b .证明 由题设,对任何正数ε有0||+<-εb a ,再由教材P.3 例2,可得0||≤-b a ,于是0||=-b a ,从而 a = b .另证 (反证)假设0||>-b a ,由实数的稠密性,存在 r 使得0||>>-r b a . 这与题设“对任何正数ε有ε<-||b a ”矛盾,于是0||=-b a ,从而 a = b .5.证明:对任何R x ∈有(1)1|2||1|≥-+-x x ; (2)2|3||2||1|≥-+-+-x x x证明 (1)|2||1||)2()1(|1-+-≤---=x x x x(2)因为|2||1||1||)3(2||3|2-+-≤-=-+≤--x x x x x ,所以2|3||2||1|≥-+-+-x x x6.设+∈R c b a ,,证明 ||||2222c b c a b a -≤+-+证明 建立坐标系如图,在三角形OAC 中,OA 的长度是22b a +,OC 的长度是22c a +,AC 的长度为||c b -. 因为三角形两边的差小于第三边,所以有||||2222c b c a b a -≤+-+7.设 b a b x ≠>>,0,0,证明x b x a ++介于1与ba 之间. 证明 因为1||1-=-<+-=-++ba b b a x b b a x b x a , 1||)()(-=-<+-=-++ba b b a x b b x a b b a x b x a 所以x b x a ++介于1与ba 之间. 8.设 p 为正整数,证明:若 p 不是完全平方数,则p 是无理数. 证明 (反证)假设p 为有理数,则存在正整数 m 、n 使得m n p =,其中m 、n 互素. 于是22n p m =,因为 p 不是完全平方数,所以 p 能整除 n ,即存在整数 k ,使得kp n =. 于是222p k p m =,p k m 22=,从而 p 是 m 的约数,故m 、n 有公约数 p . 这与“m 、n 互素”矛盾. 所以p 是无理数.P.9 习题2.设S 为非空数集,试对下列概念给出定义:(1)S 无上界;若M ∀,S x ∈∃0,使得M x >0,则称S 无上界.(请与S 有上界的定义相比较:若M ∃,使得S x ∈∀,有M x ≤,则称S 有上界)(2)S 无界.若0>∀M ,S x ∈∃0,使得M x >||0,则称S 无界.(请与S 有界的定义相比较:若0>∃M ,使得S x ∈∀,有M x ≤||,则称S 有界)3.试证明数集},2|{2R x x y y S ∈-==有上界而无下界.证明 S y ∈∀,有222≤-=x y ,故2是S 的一个上界.而对0>∀M ,取M x +=30,S M x y ∈--=-=12200,但M y -<0. 故数集S 无下界.4.求下列数集的上、下确界,并依定义加以验证:(1)},2|{2R x x x S ∈<= 解 2s u p=S ,2inf -=S . 下面依定义加以验证2sup =S (2inf -=S 可类似进行). S x ∈∀,有22<<-x ,即2是S 的一个上界,2-是S 的一个下界. 2<∀α,若2-≤α,则S x ∈∀0,都有α>0x ;若22<<-α,则由实数的稠密性,必有实数 r ,使得22<<<-r α,即S r ∈,α不是上界,所以2sup =S .(2)},!|{+∈==N n n x x S解 S 无上界,故无上确界,非正常上确界为+∞=S sup .下面证明:1inf =S .① S x ∈∀,有1!≥=n x ,即 1 是S 的一个下界;② 1>∀β,因为 S ∈=!11,即β不是S 的下界. 所以 1inf =S .(3)})1,0(|{内的无理数为x x S =解 仿照教材P.6例2的方法,可以验证:1sup =S . 0inf =S⑷ },211|{+∈-==N n x x S n解 1s u p =S ,21inf =S首先验证1sup =S .① S x ∈∀,有1211≤-=nx ,即 1 是S 的一个上界; ② 0>∀ε,取正整数0n ,使得ε<021n ,于是取02110n x -=. 从而S x ∈0,且ε->-=121100n x . 所以1sup =S5.设S 为非空有下界数集,证明:S S S min inf =⇔∈=ξξ证明:⇒)设S S ∈=ξinf ,则对一切S x ∈,有ξ≥x ,而S ∈ξ,故ξ是数集S 中的最小的数,即S min =ξ.⇐)设S min =ξ,则S ∈ξ;下面验证S inf =ξ;⑴ 对一切S x ∈,有ξ≥x ,即ξ是数集S 的下界;⑵ 对任何ξβ>,只须取ξ=0x ,则β<0x . 所以S inf =ξ.6.设S 为非空数集,定义}|{S x x S∈-=-. 证明: ⑴ S S sup inf -=- ⑵ S S inf sup -=-证 ⑴ 设-=S inf ξ,下面证明:S sup =-ξ.① 对一切S x ∈,有-∈-S x . 因为-=S inf ξ,所以有ξ≥-x ,于是ξ-≤x ,即ξ-是数集S 的上界;② 对任何ξα-<,有ξα>-. 因为-=S inf ξ,所以存在-∈S x 0,使得α-<0x .于是有S x ∈-0,使得α>-0x .由①,②可知S sup =-ξ.7.设A 、B 皆为非空有界数集,定义数集},,|{B y A x y x z z B A ∈∈+==+ 证明:(1)B A B A sup sup )sup(+=+; (2)B A B A inf inf )inf(+=+ 证明 (1)因为A 、B 皆为非空有界数集,所以A sup 和B sup 都存在.B A z +∈∀,由定义分别存在B y A x ∈∈,,使得y x z +=. 由于A x sup ≤,B y sup ≤,故B A y x z sup sup +≤+=,即B A sup sup +是数集B A +的一个上界.B A sup sup +<∀α,(要证α不是数集B A +的上界),A B s u p s u p <-α,由上确界A sup 的定义,知存在A x ∈0,使得B x sup 0->α. 于是B x sup 0<-α,再由上确界B s up 的定义,知存在B y ∈0,使得00x y ->α. 从而α>+=000y x z ,且B A z +∈0. 因此B A sup sup +是数集B A +的上确界,即B A B A sup sup )sup(+=+另证 B A z +∈∀,由定义分别存在B y A x ∈∈,,使得y x z +=. 由于A x sup ≤,B y sup ≤,故B A y x z sup sup +≤+=,于是B A B A sup sup )sup(+≤+. ①由上确界的定义,0>∀ε,A x ∈∃0,使得2s up 0ε->A x ,B y ∈∃0,使得2s up 0ε->B y ,从而ε-+>+≥+B A y x B A sup sup )sup(00,由教材P.3 例2,可得 B A B A sup sup )sup(+≥+ ②由①、②,可得 B A B A sup sup )sup(+=+类似地可证明:B A B A inf inf )inf(+=+P.15 习题9.试作函数)arcsin(sin x y =的图象解 )a r c s i n (s i n x y =是以2π为周期,定义域为),(∞+-∞,值域为]2,2[ππ-的分段线性函数,其图象如图.11.试问||x y =是初等函数吗?解 因为2||x x y ==,可看成是两个初等函数u y =与2x u =的复合,所以||x y =是初等函数.12.证明关于函数[]x y =的如下不等式:(1)当0>x 时,111≤⎥⎦⎤⎢⎣⎡<-x x x (2)当0<x 时,x x x -<⎥⎦⎤⎢⎣⎡≤111 证明 (1)因为 1111+⎥⎦⎤⎢⎣⎡<≤⎥⎦⎤⎢⎣⎡x x x ,所以当0>x 时,有x x x x x +⎥⎦⎤⎢⎣⎡<≤⎥⎦⎤⎢⎣⎡111,从而有111≤⎥⎦⎤⎢⎣⎡<-x x x . (2)当0<x 时,在不等式1111+⎥⎦⎤⎢⎣⎡<≤⎥⎦⎤⎢⎣⎡x x x 中同时乘以x ,可得⎥⎦⎤⎢⎣⎡≤<+⎥⎦⎤⎢⎣⎡x x x x x 111,从而得到所需要的不等式x x x -<⎥⎦⎤⎢⎣⎡≤111. P.20 习题1.证明1)(2+=x x x f 是R 上的有界函数. 证明 因为对R 中的任何实数x 有21212=≤+x x x x )||21(2x x ≥+ 所以 f 在R 上有界.2.(1)叙述无界函数的定义;(2)证明21)(xx f =为(0,1)上的无界函数; (3)举出函数 f 的例子,使 f 为闭区间 [0,1] 上的无界函数. 解 (1)设函数D x x f ∈)(,若对任何0>M ,都存在D x ∈0,使得M x f >|)(|0,则称 f 是D 上的无界函数.(2)分析:0>∀M ,要找)1,0(0∈x ,使得M x >201. 为此只需Mx 10<. 证明 0>∀M ,取110+=M x ,则)1,0(0∈x ,且M M x >+=1120,所以f 为区间(0,1)上的无界函数. (3)函数⎪⎩⎪⎨⎧=≤<=00101)(x x x x f 是闭区间 [0,1] 上的无界函数.7.设f 、g 为定义在D 上的有界函数,满足)()(x g x f ≤,D x ∈证明:⑴ )(sup )(sup x g x f D x D x ∈∈≤;⑵ )(inf )(inf x g x f Dx D x ∈∈≤证 ⑴ D x ∈∀,有)(sup )()(x g x g x f D x ∈≤≤,即)(sup x g Dx ∈是f 在D 上的一个上界,所以)(sup )(sup x g x f Dx D x ∈∈≤.⑵ D x ∈∀,有)()()(inf x g x f x f D x ≤≤∈,即)(inf x f Dx ∈是g 在D 上的一个下界,所以)(inf )(inf x g x f Dx D x ∈∈≤. 8.设f 为定义在D 上的有界函数,证明:⑴ )(inf )}({sup x f x f D x D x ∈∈-=-; ⑵ )(sup )}({inf x f x f Dx D x ∈∈-=-证 ⑴ D x ∈∀,有)}({sup )(x f x f D x -≤-∈,于是)}({sup )(x f x f Dx --≥∈,即)}({sup x f D x --∈是f 在D 上的一个下界,从而)}({sup )(inf x f x f Dx D x --≥∈∈,所以 )(inf )}({sup x f x f Dx D x ∈∈-≥- ①反之,D x ∈∀,有)(inf )(x f x f D x ∈≥,于是)(inf )(x f x f D x ∈-≤-,即)(i n f x f D x ∈-是f-在D 上的一个上界,从而)(inf )}({sup x f x f Dx D x ∈∈-≤- ②由①,②得,)(inf )}({sup x f x f Dx D x ∈∈-=-.9.证明:x tan 在)2,2(ππ-上无界,而在)2,2(ππ-内任一闭区间],[b a 上有界. 证 0>∀M ,取)1arctan(0+=M x ,于是)2,2(0ππ-∈x . 则有M M x >+=1t a n 0,所以x tan 在)2,2(ππ-上无界. 在)2,2(ππ-内任一闭区间],[b a 上,取|}tan ||,tan max{|b a M =,则],[b a x ∈∀,必有M x ≤|tan |,所以x tan 在],[b a 上有界.10.讨论狄利克雷函数⎩⎨⎧=为无理数当为有理数当x ,x x D 0,1)(,的有界性,单调性与周期性. 解 函数)(x D 是有界函数:1|)(|≤x D . 不是单调函数.)(x D 是周期函数,任何一个正有理数都是它的周期,故它没有最小周期. 证明如下:设 r 是任一正有理数. 若 x 是有理数,则r x ±是有理数,于是)(1)(x D r x D ==±;若 x 是无理数,则r x ±是无理数,于是)(0)(x D r x D ==±.任何无理数都不是)(x D 的周期.11.证明:x x x f sin )(+=在R 上严格增.证 设21x x <,于是2sin 2cos 2sin sin )()(121212112212x x x x x x x x x x x f x f -++-=--+=-因为0>∀x ,有x x <sin ,所以12121212|2sin |2|2sin 2cos 2|x x x x x x x x -<-≤-+,从而121212212sin 2cos 2x x x x x x x x -<-+<-. 所以有 02sin 2cos2)()(211212121212=-+->-++-=-x x x x x x x x x x x f x f 即x x x f sin )(+=在R 上严格增.P.21 总练习题1.设R b a ∈,,证明:⑴ |)|(21},max{b a b a b a -++=证 若b a ≥,则a b a =},max{,a b a b a b a b a =-++=-++)(21|)|(21,这时有|)|(21},max{b a b a b a -++=;若b a <,则b b a =},max{,=-++|)|(21b a b a b b a b a =+-+)(21,也有|)|(21},max{b a b a b a -++=,所以 |)|(21},max{b a b a b a -++= 2.设f 和g 都是初等函数,定义)}(),(max{)(x g x f x M =,)}(),(min{)(x g x f x m =,D x ∈试问)(x M 和)(x m 是否为初等函数?解 由第1题有|))()(|)()((21)}(),(max{)(x g x f x g x f x g x f x M -++==,因为f 和g 都是初等函数,于是)()(x g x f -是初等函数,再由212})]()({[|)()(|x g x f x g x f -=-,知|)()(|x g x f -是初等函数,所以)(x M 是初等函数.8.设f 、g 和h 为增函数,满足)()()(x h x g x f ≤≤,R x ∈,证明:))(())(())((x h h x g g x f f ≤≤证 因为f 、g 为增函数,再由)()(x g x f ≤,得))(())((x g f x f f ≤,))(())((x g g x g f ≤,所以有))(())((x g g x f f ≤. 同理可得))(())((x h h x g g ≤.9.设f 、g 为区间),(b a 上的增函数,证明)}(),(max{)(x g x f x =ϕ,)}(),(min{)(x g x f x =ψ也都是区间),(b a 上的增函数.证 ⑴ 先证)}(),(max{)(x g x f x =ϕ是区间),(b a 上的增函数.设21x x <,于是有)()()}(),(m ax {)(12222x f x f x g x f x ≥≥=ϕ,)()()}(),(m ax {)(12222x g x g x g x f x ≥≥=ϕ,从而)()}(),(m ax {)(1112x x g x f x ϕϕ=≥,所以)(x ϕ是增函数.⑵ 其次证明)}(),(min{)(x g x f x =ψ是区间),(b a 上的增函数设21x x <,于是有)()()}(),(m in{)(21111x f x f x g x f x ≤≤=ψ)()()}(),(m in{)(21111x g x g x g x f x ≤≤=ψ从而 )()}(),(m in{)(2221x x g x f x ψψ=≤12.设f 、g 为D 上的有界函数,证明:⑴ )(sup )(inf )}()({inf x g x f x g x f Dx D x D x ∈∈∈+≤+ ⑵ )}()({sup )(inf )(sup x g x f x g x f Dx D x D x +≤+∈∈∈证 ⑴ 由p.17例2 (i),有)(inf )}({inf )}()({inf x f x g x g x f Dx D x D x ∈∈∈≤-++ ① 再由p.20习题8,有)(sup )}({inf x g x g Dx D x ∈∈-=- ② 结合①、②可得)(sup )(inf )}()({inf x g x f x g x f Dx D x D x ∈∈∈+≤+ 13.设f 、g 为D 上的非负有界函数,证明:⑴ )}()({inf )(inf )(inf x g x f x g x f Dx D x D x ⋅≤⋅∈∈∈ ⑵ )(inf )(sup )}()({sup x g x f x g x f Dx D x D x ∈∈∈⋅≤⋅证 ⑴ D x ∈∀,有)()(inf x f x f D x ≤∈,)()(inf x g x g D x ≤∈,从而)()()(i n f )(i n f x g x f x g x Dx D x ⋅≤⋅∈∈. 即)(inf )(inf x g x f Dx D x ∈∈⋅是)()(x g x f ⋅在D 上的一个下界,所以有 )}()({inf )(inf )(inf x g x f x g x f Dx D x D x ⋅≤⋅∈∈∈ 15.设f 为定义在R 上以h 为周期的函数,a 为实数. 证明:若f 在 [ a , a +h ] 上有界,则f 在R 上有界.证 设f 在 [ a , a +h ] 上有界,即存在0>M ,使得],[h a a x +∈∀,有M x f ≤|)(|. R x ∈∀,必存在整数m 和实数],[0h a a x +∈,使得0x mh x +=. 于是 M x f mh x f x f ≤=+=|)(||)(||)(|00,所以f 在R 上有界.16.设f 在区间I 上有界. 记)(sup x f M I x ∈=,)(inf x f m Ix ∈=,证明m M x f x f Ix x -=''-'∈'''|)()(|sup ,证 I x ∈∀,有M x f ≤)(,m x f ≥)(. 于是I x x ∈'''∀,,有m M x f x f -≤''-'|)()(|,即m M -是数集},:|)()(|{I x x x f x f ∈'''''-'的一个上界. 下面证明:m M -是数集},:|)()(|{I x x x f x f ∈'''''-'的最小上界.由上确界,下确界的定义知,0>∀ε,I x x ∈'''∃,,使得2)(ε->'M x f ,2)(ε+<''m x f ,从而εεε--=+-->''-'m M m M x f x f )2(2)()(. 所以m M -是数集},:|)()(|{I x x x f x f ∈'''''-'的最小上界.所以m M x f x f Ix x -=''-'∈'''|)()(|sup ,部分重点高校历年研究生入学考试试题选(供参考)1.(北京科技大学,1999年)叙述数集A 的上确界的定义,并证明:对任意有界数列}{n x ,}{n y ,总有}sup{}sup{}sup{n n n n y x y x +≤+证明 定义参考教材.由上确界的定义,有}sup{n n x x ≤,}sup{n n y y ≤,( ,2,1=n ). 于是}s u p {}s u p {n n n n y x y x +≤+,即实数}sup{}sup{n n y x +是数列}{n n y x +的一个上界,所以有}sup{}sup{}sup{n n n n y x y x +≤+2.(中国人民大学)设249)3lg(1)(x x x f -+-=,求)(x f 的定义域和)]7([-f f . 解 由049,13,032≥-≠->-x x x 解得)(x f 的定义域为)3,2()2,7[⋃-110lg 1)7(==-f ,所以342lg 1)]7([+=-f f 3.(华中理工大学)设1)(-=x x x f ,试验证x x f f f f =))]}(([{,并求])(1[x f f (0≠x ,1≠x ).解 由x x x x xx f x f x f f =---=-=1111)()()]([,得x x f f x f f f f ==)]([))]}(([{. x xx x x x x f x f f -=---=-=1111]1[])(1[4.(同济大学)设⎩⎨⎧≥<+=010,1)(x x x x f ,求)]([x f f . 解 当0≥x 时,1)1()]([==f x f f ,当01<≤-x 时,1)1()]([=+=x f x f f ,当1-<x 时,2)1()]([+=+=x x f x f f ,所以⎩⎨⎧-≥-<+=111,2)]([x x x x f f 5.(西北工业大学)设2)(x x x f +=,求 ⑴ )(x f 的定义域⑵2)]}([{21x f f ⑶ x x f x )(lim 0→ 解 ⑴ ⎩⎨⎧>≤=+=0,20,0||)(x x x x x x f ,所以)(x f 的定义域为),(∞+-∞. ⑵ 因为)(22)()]([2222x f x x x x x x x f f =+=+++=,所以 22)()]}([{21x x x f x f f +== ⑶ 因为00lim )(lim 00==--→→x x x f x x ,+∞==-+→→x x x x f x x 2lim )(lim 00,所以x x f x )(lim 0→不存在6.(清华大学)设函数)(x f 在),(∞+-∞上是奇函数,a f =)1(且对任何x 值均有)2()()2(f x f x f =-+⑴ 试用a 表示)2(f 与)5(f⑵ 问a 取什么值时,)(x f 是以2为周期的周期函数.解 ⑴ 因为对任何x 值均有)2()()2(f x f x f +=+,令1-=x 得a f f f f f f f a -=-=-+=+-==)2()1()2()1()2()21()1(,所以a f 2)2(=.a f f f 3)2()1()3(=+=,a f f f 5)3()2()5(=+=⑵ 由)2()()2(f x f x f +=+知当且仅当0)2(=f ,即0=a 时,)(x f 是以2为周期的周期函数.7.(合肥工业大学)证明:定义在对称区间),(l l -内的任何函数)(x f ,必可表示成偶函数)(x H 与奇函数)(x G 之和的形式,且这种表示法是唯一的.证明 令)]()([21)(x f x f x H -+=,)]()([21)(x f x f x G --=,则)()()(x G x H x f +=,且容易证明)(x H 是偶函数,)(x G 是奇函数.下证唯一性. 若还有偶函数)(1x H 与奇函数)(1x G ,满足)()()(11x G x H x f +=,则有)()()()(11x G x G x H x H -=-, ①用x -代入①式,得)()()()(11x G x G x H x H -=- ②①+② 得 )()(1x H x H =,再代入②式得)()(1x G x G =8.(内蒙古大学)作函数||2|2|x y --=的图形解 ⎪⎪⎩⎪⎪⎨⎧>-≤≤-<≤<-=44424200x x x x x x x x y9.(上海师范大学)是否存在这样的函数,它在区间]1,0[上每点都取有限值,但在此区间的任何点的任何邻域内都无界.答 存在,例如⎩⎨⎧>==1000,,)(或为无理数或为且互质x ,n ,n m n m x n ,x f 10.(武汉大学,1994年)设}{n x 为一个正无穷大数列,E 为}{n x 的一切项组成的数集,试证:必存在自然数p ,使得E x p inf =证明 因为}{n x 为一个正无穷大数列,所以存在自然数N ,使得当N n >时,1x x n >. 于是},,,m in{inf 21N x x x E =,由于},,,{21N x x x 为有限集,所以存在p x ,使得E x x x x N p inf },,,min{21== .11.(天津大学)证明:2是满足不等式22>r 的一切正有理数的下确界;证 设}0,2,|{2>>∈=r r Q r r A . 要证2是数集A 的下确界. A r ∈∀,有22>r ,所以2>r ,即2是数集A 的一个下界.0>∀ε,由有理数的稠密性,在)2,2(ε+上存在无穷多个有理数,于是可取)2,2(1ε+∈r ,即A r ∈1且ε+<21r . 所以2inf =A12.(华中师范大学)设函数)(x f 定义在区间I 上,如果对于任何I x x ∈21,,及)1,0(∈λ,恒有)()1()())1((2121x f x f x x f λλλλ-+≤-+,证明:在区间I 的任何闭子区间上)(x f 有界.证 I b a ⊂∀],[,要证)(x f 在],[b a 有界. ),(b a x ∈∀,存在)1,0(∈λ,使 )(a b a x -+=λ,即a b x )1(λλ-+=.M M M a f b f a b f x f =-+≤-+≤-+=)1()()1()())1(()(λλλλλλ ① 其中)}(),(max{b f a f M =。