王老师培优系列有理数

合集下载

最新人教版七年级上册数学 有理数(培优篇)(Word版 含解析)

最新人教版七年级上册数学 有理数(培优篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.通过学习绝对值,我们知道的几何意义是数轴上表示数在数轴上的对应点与原点的距离,如:表示在数轴上的对应点到原点的距离. ,即表示、在数轴上对应的两点之间的距离,类似的, ,即表示、在数轴上对应的两点之间的距离;一般地,点,在数轴上分别表示数、,那么,之间的距离可表示为 .请根据绝对值的几何意义并结合数轴解答下列问题:(1)数轴上表示和的两点之间的距离是________;数轴上、两点的距离为,点表示的数是,则点表示的数是________.(2)点,,在数轴上分别表示数、、 ,那么到点 .点的距离之和可表示为_ (用含绝对值的式子表示);若到点 .点的距离之和有最小值,则的取值范围是_ __.(3)的最小值为_ __.【答案】(1)2;1或7(2)|x+1|+|x-2||-1≤x≤2(3)3【解析】【解答】解:(1)数轴上表示2和4的两点之间的距离是4-2=2;数轴上P、Q两点的距离为3,点P表示的数是4,则点Q表示的数是4-3=1或4+3=7;( 2 )A到B的距离与A到C的距离之和,可表示为|x+1|+|x-2|,∵|x-3|+|x+2|=7,当x<-1时,|x+1|+|x-2|=2-x-x-1=1-2x无最小值,当-1≤x≤2时,|x+1|+|x-2|=x+1+2-x=3,当x>2时,x+1+x-2=2x-1>3,故若A到点B、点C的距离之和有最小值,则x的取值范围是-1≤x≤2;(3)原式=|x-1|+|x-4|.当1≤x≤4时,|x-1|+|x-4|有最小值为|4-1|=3故答案为:(1)2,1或7;(2)|x+1|+|x-2|,-1≤x≤2;(3)3【分析】(1)根据数轴上两点间的距离的求法“数轴上两点间的距离即数轴上表示两个点的数的差的绝对值.”可求解;(2)同理可求解;(3)由(2)中求得的x的取值范围去绝对值,然后合并同类项即可求解.2.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值;②当a=﹣2,且AM=3BM时,小安演算发现代数式3b﹣4m是一个定值.老师点评:你的演算发现还不完整!请通过演算解释:为什么“小安的演算发现”是不完整的?【答案】(1)2(2)解:①当m=2,b>2时,点M在点A,B之间,∵AM=2BM,∴m﹣a=2(b﹣m),∴2﹣a=2(b﹣2),∴a+2b=6,∴a+2b+20=6+20=26;②小安只考虑了一种情况,故老师点评“小安的演算发现”是不完整的.当点M在点A,B之间时,a=﹣2,∵AM=3BM,∴m+2=3(b﹣m),∴m+2=3b﹣3m,∴3b﹣4m=2,∴代数式3b﹣4m是一个定值.当点M在点B右侧时,∵AM=3BM,∴m+2=3(m﹣b),∴m+2=3m﹣3b,∴2m﹣3b=2,∴代数式2m﹣3b也是一个定值.【解析】【解答】解:(1)由题意得出,线段AB的中点对应的数是2,故答案为:2.【分析】(1)首先根据数轴的性质,即可得出中点对应的数值;(2)①首先判定点M 在点A,B之间,然后根据等式列出关系式,即可得解;②根据题意,分两种情况进行求解:点M在点A,B之间和点M在点B右侧时,通过列出等式,即可判定.3.同学们都知道,|3-(-1)∣表示3与-1的差的绝对值,其结果为4,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离,其距离同样是4;同理,∣x-5|也可以理解为x与5两数在数轴上所应的两点之间的距离,试利用数轴探索:(1)试用“| |”符号表示:4与-2在数轴上对应的两点之间的距离,并求出其结果;(2)若|x-2|=4,求x的值;(3)同理,|x-3|+|x+2|表示数轴上有理数x所对应的点到3和-2所对应的两点距离之和,请你直接写出所有符合条件的整数x,使得|x-3|+|x+2|=5;试求代数式|x-3|+|x+2|的最小值.【答案】(1)解:|4-(-2)|=6(2)解:x与2的距离是4,在数轴上可以找到x=-2或6(3)解:当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5,∴符合条件的整数x=-2,-1,0,1,2,3;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,∴|x-3|+|x+2|的最小值是5【解析】【分析】(1)根据已知列式求解即可;(2)按照已知去绝对值符号即可求解.(3)当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,由此即可得出结论.4.阅读填空,并完成问题:“绝对值”一节学习后,数学老师对同学们的学习进行了拓展.数学老师向同学们提出了这样的问题:“在数轴上,一个数的绝对值就是表示这个数的点到原点的距离.那么,如果用P(a)表示数轴上的点P表示有理数a,Q(b)表示数轴上的点Q表示有理数b,那么点P与点Q的距离是多少?”(1)聪明的小明经过思考回答说:这个问题应该有两种情况.一种是点P和点Q在原点的两侧,此时点P与点Q的距离是a和b的绝对值的和,即∣a∣+∣b∣.例如:点A(-3)与点B(5)的距离为∣-3∣+∣-5∣=________;另一种是点P和点Q在原点的同侧,此时点P与点Q的距离的a和b中,较大的绝对值减去较小的绝对值,即∣a∣-∣b∣或∣b∣-∣a∣.例如:点A(-3)与点B(-5)的距离为∣-5∣-∣-3∣=________;你认为小明的说法有道理吗?如果没有道理,请你指出错误之处;如果有道理,请你模仿求出数轴上点M()与N()之间和点C(-2)与D(-7)之间的距离. ________(2)小颖在听了小明的方法后,提出了不同的方法,小颖说:我们可以不考虑点P和点Q 所在的位置,无论点P与点Q的位置如何,它们之间的距离就是数a与b的差的绝对值,即∣a-b∣.例如:点A(-3)与点B(5)的距离就是∣-3-5∣=________;点A(-3)与点B(-5)的距离就是∣(-3)-(-5)∣= ________;你认为小颖的说法有道理吗?如果没有道理,请你指出错误之处;如果有道理,请你模仿求出数轴上点M()与N()之间和点C(-1.5)与D(-3.5)之间的距离.________【答案】(1)解:8;2;有道理;点M与点N之间的距离为点C与点D之间的距离为(2)解:8;2;有道理;点M与点N之间的距离为点C与点的之间的距离为【解析】【分析】(1)数轴上的点,原点两侧两点之间的距离即点到原点绝对值的相加之和。

培优第二讲--有理数的运算与巧算含答案

培优第二讲--有理数的运算与巧算含答案

第二讲 有理数的巧算技巧与巧算答案基础夯实: 一、填空题1、计算1+(-2)+3+(-4)+ … +99+(-100)=___-50_______2、计算1-3+5-7+9-11+…+97-99=_____-50_____3、若m <0,n >0,且| m |>| n |,则m +n ___<_____ 0.(填>、<号)4、如果|a |=3,|b |=2,若ab <0,那么a -b =_____5_____5、25.2-减去85-与83-的差,所得的结果 =______-2____212-、+3、-1.2的和比它们绝对值的和小=_____7.4_____6、若实数a 、b 满足0a b a b +=,则abab =_____-1______.7、如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111248163264128256+++++++=____256255______. 8、已知数轴上有A 、B 两点,A 、B 之间的距离为2,点A 与原点O 的距离为6,则所有满足条件的点B 与原点O 的距离的和为___0______;9、计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测1-22018的个位数字是______3____.10..、.3...05..万是精确到.....__..百______......位的近似数.......11、地球到太阳的距离大约是150000000千米,用科学记数法表示为__11101.5⨯_______ 米. 12..、测得某同学的身高约是...........1...66..米,那么意味着他的身高的精确值...............h .的取值范围是在.......1.665h 1.655<≤ ..二、选择题1、在1,-1,-2这三个数中,任意两数之和的最大值是( B )A . 1B .0C .-1D .-3 2、若a <0,则|a -(-a )|等于( D )A .-aB .0C .2aD .-2a 3、两个有理数的和是正数,下面说法中正确的是( D )A .两数一定都是正数B .两数都不为0C .至少有一个为负数D .至少有一个为正数 4、三个有理数相乘,积为负数,则负因数的个数为( D )A .1个B .2个C .3个D .1个或3个 5、如果a <0,b >0,a +b <0,那么下列关系中正确的是( D )A .a >b >-b >-aB .a >-a >b >-bC .b >a >-b >-aD .-a >b >-b >a6、已知两个有理数a 、b ,如果ab <0,且a +b <0,那么( D )A .a >0,b <0B .a <0,b >0C .a 、b 异号D .a 、b 异号且负数的绝对值较大7、如果a +b <0,0ba>,则下列结论成立的是(B )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0 8、、下列命题正确的是( C )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若ab =0,则a =0或b =0D .若ab =0,则a =0且b =0 9、若a +b +c =0,且b <c <0,则下列各式中,错误的是( C )A .a +b >0B .b +c <0C .ab +ac >0D .a +bc >010、若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式a bm cd m+-+的值为( D )A .-3B .1C .±3D .-3或1 11、有理数a 等于它的倒数,有理数b 等于它的相反数,则20102011a b +等于( B )A .0B .1C .-1D .212、如果20012002()1,()1a b a b +=--=,则ab 的值是( D )A .2B .1C .0D .-113、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过( A )小时?7A .2B .2.5C .3D .3.5 三、计算(1))217(75.2)413()5.0(+-+---=-2;(2)1853432877431---+-=-1.25;(3){})]8()3()7[()5()2(4---+-------=1(4)2164118214837--+--+-=878-(5))711()12787431(-⨯--=-31;(6)9.18.174)88(74.8)37(48.17⨯--⨯+-⨯=-1748;(7) 2011)1(524)436183(212-⨯÷⎥⎦⎤⎢⎣⎡⨯-+-=-1.5(8)[]22)3(231)5.01(1--⨯⨯---=61 ※典例剖析【例1】计算:)51413121()61514131211()6151413121()514131211(+++⨯+++++-++++⨯++++=61【例2】、阅读材料,解答问题.求201932222221++++++ 的值. 解:令201932222221++++++= S ① ∴ 21204322222222++++++= S ②② - ①得12221-=-S S ∴1222222121201932-=++++++ 运用材料以上方法计算:7201620132555551++∙∙∙++++=4122018-【例3】计算12+(13+23)+(14+24+34)+(15+25+35+45)+ … +(150+250+…+4850+4950)==612.5【例4】某儿童服装店老板以30元的价格买进20件连衣裙,针对不同的顾客,30件连衣裙的售价完全不请问,该服装店售完这20件连衣裙后,赚了多少钱?答案:328元 三、培优检测A 组 一、计算题.....1.、.|)3(2|31)5.01(124--⨯⨯-+-=.612.、.5]43)436183(2411[÷÷-+-=72193.、.22)32(3|)411()52(2|-⨯--÷-⨯ =2593-4.、.+⨯+⨯+⨯751531311……..200720051⨯+=200710035、2232318)52()5()3(-÷--⨯-+--=-31;6、]})2(34[)75.0(5.0{)4725.0(124--⨯--÷++-=312-5343332313二、今抽查10袋盐,每袋盐的标准质量是100克,超出部分记为正,统计成下表:问:这10袋盐一共有多重?答案:1000千克 B 组: 1、1999199********⨯++⨯+⨯ = 5997995;2、若l 3+23+33+…+153=14400,则23+43+63+…+303= 115200 .3、352172515515935312114715105963321⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯= 52;4、计算:201954322222222+-⋅⋅⋅----- = 6 5、若||1m m =+,则()201041m +=( B )A .-1B .1C .12-D .126、设0a b c ++=,0abc >,则||||||b c a c a b a b c +++++的值是( B ) A .-3 B .1 C . 3或-1 D .-3或17、请你从右表归纳出13+23+33+43+…+n 3的公式并计算出思考题:计算:6059)60585958()602524232()601413121(+++∙∙∙+∙∙∙+++++∙∙∙+++=885第二讲 有理数的加减运算中的巧算考点·方法·破译1.理解有理数加法、减法、乘法、除法、乘方法则,并能熟练进行有理数的运算.2.掌握有理数加减乘除乘方混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算. 3.能用有理数运算律进行简便运算.常用运算技巧⑴巧用运算律 ⑵凑整法 ⑶拆项法(裂项相消) ⑷分组相约法 ⑸倒写相加法 ⑹错位相减法 ⑺换元法 ⑻观察探究、归纳法 基础夯实: 二、填空题1、计算1+(-2)+3+(-4)+ … +99+(-100)=__________2、计算1-3+5-7+9-11+…+97-99=__________3、若m <0,n >0,且| m |>| n |,则m +n ________ 0.(填>、<号)4、如果|a |=3,|b |=2,若ab <0,那么a -b =__________5、25.2-减去85-与83-的差,所得的结果 =__________212-、+3、-1.2的和比它们绝对值的和小=__________6、若实数a 、b 满足0a b a b+=,则abab =___________.7、如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111248163264128256+++++++=__________. 8、已知数轴上有A 、B 两点,A 、B 之间的距离为2,点A 与原点O 的距离为6,则所有满足条件的点B 与原点O 的距离的和为_________;9、计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测1-22018的个位数字是__________.10、3.05万是精确到________位的近似数.11、地球到太阳的距离大约是150000000千米,用科学记数法表示为_________ 米.12、测得某同学的身高约是1.66米,那么意味着他的身高的精确值h 的取值范围是在 .二、选择题1、在1,-1,-2这三个数中,任意两数之和的最大值是( )A . 1B .0C .-1D .-32、若a <0,则|a -(-a )|等于( )A .-aB .0C .2aD .-2a 3、两个有理数的和是正数,下面说法中正确的是( )A .两数一定都是正数B .两数都不为0C .至少有一个为负数D .至少有一个为正数 4、三个有理数相乘,积为负数,则负因数的个数为( )A .1个B .2个C .3个D .1个或3个 5、如果a <0,b >0,a +b <0,那么下列关系中正确的是( )A .a >b >-b >-aB .a >-a >b >-bC .b >a >-b >-aD .-a >b >-b >a6、已知两个有理数a 、b ,如果ab <0,且a +b <0,那么( )A .a >0,b <0B .a <0,b >0C .a 、b 异号D .a 、b 异号且负数的绝对值较大7、如果a +b <0,0ba>,则下列结论成立的是( )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0 8、、下列命题正确的是( )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若ab =0,则a =0或b =0D .若ab =0,则a =0且b =0 9、若a +b +c =0,且b <c <0,则下列各式中,错误的是( )A .a +b >0B .b +c <0C .ab +ac >0D .a +bc >010、若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式a bm cd m+-+的值为( )A .-3B .1C .±3D .-3或1 11、有理数a 等于它的倒数,有理数b 等于它的相反数,则20102011a b +等于( )A .0B .1C .-1D .212、如果20012002()1,()1a b a b +=--=,则ab 的值是( )A .2B .1C .0D .-113、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过( )小时?7A .2B .2.5C .3D .3.5 三、计算(1))217(75.2)413()5.0(+-+---; (2)1853432877431---+-;(3){})]8()3()7[()5()2(4---+------- (4)2164118214837--+--+-(5))711()12787431(-⨯--; (6)9.18.174)88(74.8)37(48.17⨯--⨯+-⨯;(7) 2011)1(524)436183(212-⨯÷⎥⎦⎤⎢⎣⎡⨯-+- (8)[]22)3(231)5.01(1--⨯⨯---※典例剖析【例1】计算:)51413121()61514131211()6151413121()514131211(+++⨯+++++-++++⨯++++【例2】、阅读材料,解答问题.求201932222221++++++ 的值. 解:令201932222221++++++= S ① ∴ 21204322222222++++++= S ②② - ①得12221-=-S S ∴1222222121201932-=++++++运用材料以上方法计算:7201620132555551++∙∙∙++++【例3】计算12+(13+23)+(14+24+34)+(15+25+35+45)+ … +(150+250+…+4850+4950)【例4】某儿童服装店老板以30元的价格买进20件连衣裙,针对不同的顾客,30件连衣裙的售价完全不请问,该服装店售完这20件连衣裙后,赚了多少钱?三、培优检测A 组 一、计算题1、|)3(2|31)5.01(124--⨯⨯-+- 2、5]43)436183(2411[÷÷-+-3、22)32(3|)411()52(2|-⨯--÷-⨯ 4、+⨯+⨯+⨯751531311 (2007)20051⨯+5、2232318)52()5()3(-÷--⨯-+--; 6、]})2(34[)75.0(5.0{)4725.0(124--⨯--÷++-5343332313B 组: 4、199919971751531⨯++⨯+⨯ = ;5、若l 3+23+33+…+153=14400,则23+43+63+…+303= .6、352172515515935312114715105963321⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯= ;4、计算:201954322222222+-⋅⋅⋅----- =5、若||1m m =+,则()201041m +=( )A .-1B .1C .12-D .126、设0a b c ++=,0abc >,则||||||b c a c a b a b c +++++的值是( )A .-3B .1C . 3或-1D .-3或17、请你从右表归纳出13+23+33+43+…+n 3的公式并计算出13+23+33+43+…+1003的值=__________..8、已知c b a 、、都不等于零,且abc abc c c b b a a +++的最大值是m ,最小值为n ,求mnn m的值.思考题:计算:6059)60585958()602524232()601413121(+++∙∙∙+∙∙∙+++++∙∙∙+++。

最新人教版数学七年级上册 有理数(培优篇)(Word版 含解析)

最新人教版数学七年级上册 有理数(培优篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.阅读材料,并回答问题如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.(单位:cm)由此可得,木棒长为__________cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。

灰太狼计划为全家抓5只羊,综合考虑口感和生长周期等因素,决定所抓羊的年龄之和不超过112岁且高于34岁。

请问灰太狼有几种抓羊方案?【答案】(1)解:如图:点A表示美羊羊现在的年龄,点B表示村长爷爷现在的年龄,木棒MN的两端分别落在点A、B.由题意可知,当点N移动到点A时,点M所对应的数为-40,当点M移动到点B时,点N 所对应的数为116.可求MN=52.所以点A所对应的数为12,点B所对应的数为64.即美羊羊今年12岁,村长爷爷今年64岁.(2)解:设抓小羊x只,则老羊为(5-x)只,依题意得:解得:,则x=4,或x=5,即抓四只小羊一只老羊或抓五只小羊【解析】【分析】(1)由数轴观察知三根木棒长是20-5=15(cm),则此木棒长为5cm;(2)在求村长爷爷年龄时,借助数轴,把美羊羊与村长爷爷的年龄差看做木棒MN,类似村长爷爷比美羊羊大时看做当N点移动到A点时,此时M点所对应的数为-40,美羊羊比村长爷爷大时看做当M点移动到B点时,此时N点所对应的数为116,所以可知爷爷比美羊羊大[116-(-40)]÷3=52,可知爷爷的年龄.(3)设抓小羊x只,则老羊为(5-x)只,根据“ 所抓羊的年龄之和不超过112岁且高于34岁”列不等式组,求解.2.阅读下面的材料:如图1,在数轴上A点表示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b-a.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动3cm到达A点,再向左移动1cm到达B 点,然后向右移动6cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A、B、C三点的位置:(2)点C到点A的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示数________;(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示);(4)若点B以每秒3cm的速度向左移动,同时A、C点分别以每秒1cm、5cm的速度向右移动.设移动时间为t秒,试探索:CA-AB的值是否会与t的值有关?请说明理由.【答案】(1)解:点A表示-3,点B表示-4,点C表示2,如图所示,(2)5;1或-7(3)-3+x(4)解:CA-AB的值与t的值无关.理由如下:由题意得,点A所表示的数为-3+t,点B表示的数是-4-3t,点C表示的数是2+5t,∵点C的速度比点A的速度快,∴点C在点A的右侧,∴CA=(2+5t)-(-3+t)=5+4t,∵点B向左移动,点A向右移动,∴点A在点B的右侧,∴AB=(-3+t)-(-4-3t)=1+4t,∴CA-AB=(5+4t)-(1+4t)=4.【解析】【解答】(2)CA=2-(-3)=2+3=5;当点D在点A右侧时,点D表示的数是:4+(-3)=1;当点D在点A左侧时,点D表示的数是:-3-4=-7;故答案为5;1或-7.( 3 )点A表示的数为-3,则向右移动xcm,移动到(-3+x)处.【分析】(1)在数轴上进行演示可分别得出点A,点B,点C所表示的数;(2)由题中材料可知CA的距离可用右边的数减去左边的数,即CA=2-(-3);由AD=4,且点A,点D的位置不明确,则需分类讨论:当点D在点A右侧时,和当点D 在点A左侧时,两种情况;(3)向右移动x,在原数的基础上加“x”;(4)由字母t分别表示出点A,点B,点C的数,由它们的移动方向不难得出点C在点A 的右侧,点A在点B的右侧,依此计算出CA,AB的长度,计算CA-AB的值即可.3.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).【答案】(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,∵a+b+c=0,即-2+a=0,∴a=2,则2b -c - (a - 4c - b).=2b -c - a + 4c + b=3(b+c)-2=【解析】【解答】解:(1)根据题意得:c<0<b<1<a∴a+1>0;c-b<0;b-1<0【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.4.对于有理数,定义一种新运算“ ”,观察下列各式:,,.(1)计算: ________, ________.(2)若,则 ________ (填入“ ”或“ ”).(3)若有理数,在数轴上的对应点如图所示且,求的值.【答案】(1)19;(2)(3)解:由数轴可得,,,则,,∵,∴,∴,∴,∴.【解析】【解答】(1),;(2)∵,,,∴,或综上可知,【分析】(1)根据定义计算即可;(2)分别根据定义计算a b和b a,判断是否相等;(3)由定义计算得到|a+b|=5,再根据数轴上点的位置关系判断a+b<0,再计算[(a+b)(a+b)][a+b]5.已知数轴上A,B两点对应的有理数分别是,15,两只电子蚂蚁甲,乙分别从A,B两点同时出发相向而行,甲的速度是3个单位/秒,乙的速度是6个单位/秒(1)当乙到达A处时,求甲所在位置对应的数;(2)当电子蚂蚁运行秒后,甲,乙所在位置对应的数分别是多少?(用含的式子表示)(3)当电子蚂蚁运行()秒后,甲,乙相距多少个单位?(用含的式子表示)【答案】(1)解:乙到达A处时所用的时间是(秒),此时甲移动了个单位,所以甲所在位置对应的数是(2)解:∵甲的速度是3个单位/秒,乙的速度是6个单位/秒,∴移动秒后,甲所在位置对应的数是:,乙所在位置对应的数是(3)解:由(2)知,运行秒后,甲,乙所在位置对应的数分别是,,当时,,,所以,运行()秒后,甲,乙间的距离是:个单位【解析】【分析】(1)根据有理数的减法算出AB的长度,再根据路程除以速度等于时间算出乙到达A处时所用的时间,接着利用速度乘以时间算出甲移动的距离,用甲移动的距离减去其离开原点的距离即可算出其即可得出答案;(2)根据移动的方向,用甲移动的距离减去其距离原点的距离即可得出移动秒后,甲所在位置对应的数;用乙距离原点的距离减去其移动的距离即可得出移动秒后,乙所在位置对应的数;(3)由(2)知,运行秒后,甲,乙所在位置对应的数分别是,,当时甲已经移动到原点右边了,乙也移动到原点左边了,即,,根据两点间的距离公式即可算出它们之间的距离.6.快递员小王下午骑摩托车从总部出发,在一条东西走向的街道上来回收送包裹.他行驶的情况记录如下(向东记为“ ”,向西记为“ ”,单位:千米):,,,,,,(1)小王最后是否回到了总部?(2)小王离总部最远是多少米?在总部的什么方向?(3)如果小王每走米耗油毫升,那么小王下午骑摩托车一共耗油多少毫升?【答案】(1)解:+2-3.5+3-4-2+2.5+2=0,∴小王最后回到了总部(2)解:第一次离总部2=2千米;第二次:2-3.5=-1.5千米;第三次:-1.5+3=1.5千米;第四次:1.5-4=-2.5千米;第五次:-2.5-2=-4.5千米;第六次:-4.5+2.5=-2千米;第七次:-2+2=0千米.所以离总部最远是4.5千米,在总部的西方向(3)解:|+2|+|-3.5|+|+3|+|-4|+|-2|+|+2.5|+|+2|=2+3.5+3+4+2+2.5+2=19千米又∵摩托车每行驶1千米耗油30毫升,∴19×30=570(毫升)∴这一天下午共耗油570毫升.【解析】【分析】(1)根据有理数的加减法,再根据正负数即可;(2)根据有理数的加减法,再根据正负数即可;(3)根据绝对值的性质,再根据正负数即可;7.已知:b是最小的正整数,且a、b满足+=0,请回答问题:(1)请直接写出a、b、c的值;(2)数轴上a、b、c所对应的点分别为A、B、C,点M是A、B之间的一个动点,其对应的数为m,请化简(请写出化简过程);(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动.若点A以每秒1个单位长度的速度向左运动.同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)解:∵b是最小的正整数∴b=1∵+=0∴a = -1,c=5故答案为:-1;1;5;(2)解:由(1)知,a = -1,b=1,a、b在数轴上所对应的点分别为A、B,①当m<0时,|2m|=-2m;②当m≥0时,|2m|=2m;(3)解:BC-AB的值不随着时间t的变化而变化,其值是2,理由如下:∵点A以每秒一个单位的速度向左移动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右移动,∴BC=3t+4,AB=3t+2∴BC-AB=3t+4-(3t+2)=2【解析】【分析】(1)先根据b是最小的正整数,求出b,再根据+=0,即可求出a、c的值;(2)先得出点A、C之间(不包括A点)的数是负数或0,得出m≤0,在化简|2m|即可;(3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.8.甲、乙、丙三个教师承担本学期期末考试的第17题的网上阅卷任务,若由这三人中的某一人独立完成阅卷任务,则甲需要15小时,乙需要10小时,丙需要8小时。

初中七年级数学培优有理数的巧算含答案

初中七年级数学培优有理数的巧算含答案

第一讲有理数的巧算有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上;能根据法则、公式等正确、迅速地进行运算.不仅如此;还要善于根据题目条件;将推理与计算相结合;灵活巧妙地选择合理的简捷的算法解决问题;从而提高运算能力;发展思维的敏捷性与灵活性.1.括号的使用在代数运算中;可以根据运算法则和运算律;去掉或者添上括号;以此来改变运算的次序;使复杂的问题变得较简单.例1计算:分析中学数学中;由于负数的引入;符号“+”与“-”具有了双重涵义;它既是表示加法与减法的运算符号;也是表示正数与负数的性质符号.因此进行有理数运算时;一定要正确运用有理数的运算法则;尤其是要注意去括号时符号的变化.注意在本例中的乘除运算中;常常把小数变成分数;把带分数变成假分数;这样便于计算.例2计算下式的值:211×555+445×789+555×789+211×445.分析直接计算很麻烦;根据运算规则;添加括号改变运算次序;可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算.解原式=211×555+211×445+445×789+555×789=211×555+445+445+555×789=211×1000+1000×789=1000×211+789=1000000.说明加括号的一般思想方法是“分组求和”;它是有理数巧算中的常用技巧.例3计算:S=1-2+3-4+…+-1n+1·n.分析不难看出这个算式的规律是任何相邻两项之和或为“1”或为“-1”.如果按照将第一、第二项;第三、第四项;…;分别配对的方式计算;就能得到一系列的“-1”;于是一改“去括号”的习惯;而取“添括号”之法.解S=1-2+3-4+…+-1n+1·n.下面需对n的奇偶性进行讨论:当n为偶数时;上式是n/2个-1的和;所以有当n为奇数时;上式是n-1/2个-1的和;再加上最后一项-1n+1·n=n;所以有例4在数1;2;3;…;1998前添符号“+”和“-”;并依次运算;所得可能的最小非负数是多少分析与解因为若干个整数和的奇偶性;只与奇数的个数有关;所以在1;2;3; (1998)前任意添加符号“+”或“-”;不会改变和的奇偶性.在1;2;3;…;1998中有1998÷2个奇数;即有999个奇数;所以任意添加符号“+”或“-”之后;所得的代数和总为奇数;故最小非负数不小于1.现考虑在自然数n;n+1;n+2;n+3之间添加符号“+”或“-”;显然n-n+1-n+2+n+3=0.这启发我们将1;2;3;…;1998每连续四个数分为一组;再按上述规则添加符号;即1-2-3+4+5-6-7+8+…+1993-1994-1995+1996-1997+1998=1.所以;所求最小非负数是1.说明本例中;添括号是为了造出一系列的“零”;这种方法可使计算大大简化.有这种竞赛讲义一整套小学初中的含答案最新的需要的可以联系我46~8453~607微信13699~77~10742.用字母表示数我们先来计算100+2×100-2的值:100+2×100-2=100×100-2×100+2×100-4=1002-22.这是一个对具体数的运算;若用字母a代换100;用字母b代换2;上述运算过程变为a+ba-b=a2-ab+ab-b2=a2-b2.于是我们得到了一个重要的计算公式a+ba-b=a2-b2;①这个公式叫平方差公式;以后应用这个公式计算时;不必重复公式的证明过程;可直接利用该公式计算.例5计算3001×2999的值.解3001×2999=3000+13000-1=30002-12=8999999.例6计算103×97×10009的值.解原式=100+3100-310000+9=1002-91002+9=1004-92=99999919.例7计算:分析与解直接计算繁.仔细观察;发现分母中涉及到三个连续整数:12345;12346;12347.可设字母n=12346;那么12345=n-1;12347=n+1;于是分母变为n2-n-1n+1.应用平方差公式化简得n2-n2-12=n2-n2+1=1;即原式分母的值是1;所以原式=24690.例8计算:2+122+124+128+1216+1232+1.分析式子中2;22;24;…每一个数都是前一个数的平方;若在2+1前面有一个2-1;就可以连续递进地运用a+ba-b=a2-b2了.解原式=2-12+122+124+128+1×216+1232+1=22-122+124+128+1216+1×232+1=24-124+128+1216+1232+1=……=232-1232+1=264-1.例9计算:分析在前面的例题中;应用过公式a+ba-b=a2-b2.这个公式也可以反着使用;即a2-b2=a+ba-b.本题就是一个例子.通过以上例题可以看到;用字母表示数给我们的计算带来很大的益处.下面再看一个例题;从中可以看到用字母表示一个式子;也可使计算简化.例10计算:我们用一个字母表示它以简化计算.3.观察算式找规律例11某班20名学生的数学期末考试成绩如下;请计算他们的总分与平均分.87;91;94;88;93;91;89;87;92;86;90;92;88;90;91;86;89;92;95;88.分析与解若直接把20个数加起来;显然运算量较大;粗略地估计一下;这些数均在90上下;所以可取90为基准数;大于90的数取“正”;小于90的数取“负”;考察这20个数与90的差;这样会大大简化运算.所以总分为90×20+-3+1+4+-2+3+1+-1+-3+2+-4+0+2+-2+0+1+-4+-1+2+5+-2=1800-1=1799;平均分为90+-1÷20=89.95.例12计算1+3+5+7+…+1997+1999的值.分析观察发现:首先算式中;从第二项开始;后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000;于是可有如下解法.解用字母S表示所求算式;即S=1+3+5+…+1997+1999.①再将S各项倒过来写为S=1999+1997+1995+…+3+1.②将①;②两式左右分别相加;得2S=1+1999+3+1997+…+1997+3+1999+1=2000+2000+…+2000+2000500个2000=2000×500.从而有S=500000.说明一般地;一列数;如果从第二项开始;后项减前项的差都相等本题3-1=5-3=7-5=…=1999-1997;都等于2;那么;这列数的求和问题;都可以用上例中的“倒写相加”的方法解决.例13计算1+5+52+53+…+599+5100的值.分析观察发现;上式从第二项起;每一项都是它前面一项的5倍.如果将和式各项都乘以5;所得新和式中除个别项外;其余与原和式中的项相同;于是两式相减将使差易于计算.解设S=1+5+52+…+599+5100;①所以5S=5+52+53+…+5100+5101.②②—①得4S=5101-1;说明如果一列数;从第二项起每一项与前一项之比都相等本例中是都等于5;那么这列数的求和问题;均可用上述“错位相减”法来解决.例14计算:分析一般情况下;分数计算是先通分.本题通分计算将很繁;所以我们不但不通分;反而利用如下一个关系式来把每一项拆成两项之差;然后再计算;这种方法叫做拆项法.解由于所以说明本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项;这种方法在有理数巧算中很常用.练习一1.计算下列各式的值:1-1+3-5+7-9+11-…-1997+1999;211+12-13-14+15+16-17-18+…+99+100;31991×1999-1990×2000;44726342+4726352-472633×472635-472634×472636;61+4+7+ (244)2.某小组20名同学的数学测验成绩如下;试计算他们的平均分.81;72;77;83;73;85;92;84;75;63;76;97;80;90;76;91;86;78;74;85.。

人教版七年级上册数学《有理数》培优说课教学复习课件

人教版七年级上册数学《有理数》培优说课教学复习课件
我们以前学过的数,
像1,2,3……称为正整数;
2 4 1
, , ……称为正分数.
3 5 4
那么在以上这些数的前面添上“-”号后,还有小数呢?
-1,-2,-3……称为负整数;
2 4 1
, , ……称为负Байду номын сангаас数.
3 5 4
特别提示:零既不是正数,也不是负数!
分类的时候
别丢了0哦
正整数、零和负整数统称整数.
第一章 有理数
有理数
课件
学习目标
1.掌握有理数的概念.(重点)
2.会对有理数按一定的标准进行分类,培养分类能力.(难点)
引入
下表是某日《信息早报》上刊登的几支股票的涨跌情况.
代码
股票名称
昨收盘
今收盘
涨跌(%)
600828
A集团
8.83
9.71
+9.97
600829
B股份
10.43
10.65
+2.11
(2)自然数一定是整数.( √ )
(3)0一定是正整数.( × )
(4)整数一定是自然数.( × )
课堂检测
4.填空:
负整数和0
(1)有理数中,是整数而不是正数的是___________;
负整数
是负数而不是分数的是__________.
整数
正数
有理数
(2)零是_________,还是______,但不是_____,也不
链接中考
1.下列四个数中,是正整数的是( D )
A.-1
B.0
1
C.
2
D.1
2. 四个数-3, 0, 1, 2,其中负数是( A )
A. -3

有理数经典培优训练含答案

有理数经典培优训练含答案

专训一:有理数的比较大小的方法 名师点金:有理数大小的比较需要根据有理数的特征灵活地选择适当的方法,除了常规的比较大小的方法外,还有几种特殊的方法:作差法、作商法、找中间量法、倒数法、变形法、数轴法、特殊值法、分类讨论法等.)利用作差法比较大小1.比较1731和5293的大小.*利用作商法比较大小;2.比较-172 016和-344 071的大小.;利用找中间量法比较大小3.比较1 0072 016与1 0092 017的大小.[利用倒数法比较大小· 4.比较1111 111和1 11111 111的大小.)利用变形法比较大小5.比较-2 0142 015,-1415,-2 0152 016,-1516的大小.]6.比较-623,-417,-311,-1247的大小.}、利用数轴法比较大小7.已知a >0,b <0,且|b|<a ,试比较a ,-a ,b ,-b 的大小.%利用特殊值法比较大小8.已知a,b是有理数,且a,b异号,则|a+b|,|a-b|,|a|+|b|的大小关系为_______________________________________________.【利用分类讨论法比较大小9.比较a与a3的大小.专训二:有理数中6种易错类型-对有理数有关概念理解不清造成错误1.下列说法正确的是()A.最小的正整数是0B.-a是负数\C.符号不同的两个数互为相反数D.-a的相反数是a2.已知|a|=7,则a=W.误认为|a|=a,忽略对字母a分情况讨论3.如果一个数的绝对值等于它本身,那么这个数一定是()·A.负数B.负数或零C.正数或零D.正数4.已知a=8,|a|=|b|,则b的值等于()B.-8D.±8对括号使用不当导致错误!5.计算:-7-5.[6.计算:2-⎝ ⎛⎭⎪⎫-15+14-12.}忽略或不清楚运算顺序[7.计算:-81÷94×49÷(-16).。

培优专题(第2讲 有理数的加 减法)

培优专题(第2讲 有理数的加    减法)

第2讲有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐山)某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A这天的收盘价为()A.0.3元 B.16.2元 C.16.8元 D.18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-1.5)+(0.3)=16.8,故选C.【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()A.8℃ B.-8℃ C.6℃ D.2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________03.(浙江)珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155m,则它们的平均海拔高度为__________【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】01.(-2.5)+(-3)+(-1)+(-1)02.(-13.6)+0.26+(-2.7)+(-1.06)03.0.125+3+(-3)+11+(-0.25)【例3】计算【解法指导】依进行裂项,然后邻项相消进行化简求和.解:原式====【变式题组】01.计算1+(-2)+3+(-4)+ … +99+(-100)02.如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的正方形,再把面积为的正方形等分成两个面积为的长方形,如此进行下去,试利用图形揭示的规律计算=__________.【例4】如果a<0,b>0,a+b<0,那么下列关系中正确的是()A.a>b>-b>-a B.a>-a>b>-bC.b>a>-b>-a D.-a>b>-b>a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论.解:∵a<0,b>0,∴a+b是异号两数之和又a+b<0,∴a、b中负数的绝对值较大,∴| a |>| b |将a、b、-a、-b表示在同一数轴上,如图,则它们的大小关系是-a>b>-b>a【变式题组】01.若m>0,n<0,且| m |>| n |,则m+n ________ 0.(填>、<号)02.若m<0,n>0,且| m |>| n |,则m+n ________ 0.(填>、<号)03.已知a<0,b>0,c<0,且| c |>| b |>| a |,试比较a、b、c、a+b、a+c的大小【例5】4-(-33)-(-1.6)-(-21)【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.解:4-(-33)-(-1.6)-(-21)=4+33+1.6+21=4.4+1.6+(33+21)=6+55=61【变式题组】01.02.4-(+3.85)-(-3)+(-3.15)03.178-87.21-(-43)+153-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少?第n个数是多少?⑵这列数中有多少个数是正数?从第几个数开始是负数?⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n个数为25-2(n-1)⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】01.(杭州)观察下列等式1-=,2-=,3-=,4-=…依你发现的规律,解答下列问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少?02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n(n≥1的自然数)的等式表示这个规律;⑵当这个等式的右边等于2008时求n.【例7】(第十届希望杯竞赛试题)求+(+)+(++)+(+++)+ … +(++…++)【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=+(+)+(++)+ … +(++…++)则有S=+(+)+(++)+ … +(++…++)将原式和倒序再相加得2S=++(+++)+(+++++)+… +(++…+++++…++)即2S=1+2+3+4+…+49==1225∴S=【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.(第8届希望杯试题)计算(1---…-)(+++…++)-(1---…-)(+++…+)演练巩固·反馈提高01.m是有理数,则m+|m|()A.可能是负数 B.不可能是负数C.比是正数 D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为()A. 5 B.1 C.1或5 D.±1或±503.在1,-1,-2这三个数中,任意两数之和的最大值是()A. 1 B.0 C.-1 D.-304.两个有理数的和是正数,下面说法中正确的是()A.两数一定都是正数B.两数都不为0C.至少有一个为负数D.至少有一个为正数05.下列等式一定成立的是()A.|x|- x=0 B.-x-x=0 C.|x|+|-x| =0 D.|x|-|x|=006.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是()A.-4℃B.4℃C.-3℃D.-5℃07.若a<0,则|a-(-a)|等于()A.-a B.0 C.2a D.-2a08.设x是不等于0的有理数,则值为()A.0或1 B.0或2 C.0或-1 D.0或-209.(济南)2+(-2)的值为__________10.用含绝对值的式子表示下列各式:⑴若a<0,b>0,则b-a=__________,a-b=__________⑵若a>b>0,则|a-b|=__________⑶若a<b<0,则a-b=__________11.计算下列各题:⑴23+(-27)+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-3+2.75-7 ⑷33.1-10.7-(-22.9)-|-|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A地多远?⑵若每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克?14.将1997减去它的,再减去余下的,再减去余下的,再减去余下的……以此类推,直到最后减去余下的,最后的得数是多少?15.独特的埃及分数:埃及同中国一样,也是世界著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如+来表示,用++表示等等.现有90个埃及分数:,,,,…,,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测01.(第16届希望杯邀请赛试题)等于()A.B.C.D.02.自然数a、b、c、d满足+++=1,则+++等于()A.B.C.D.03.(第17届希望杯邀请赛试题)a、b、c、d是互不相等的正整数,且abcd=441,则a+b+c+d值是()A.30 B.32 C.34 D.3604.(第7届希望杯试题)若a=,b=,c=,则a、b、c大小关系是()A.a<b<c B.b<c<a C.c<b<a D.a<c<b 05.的值得整数部分为()A.1 B.2 C.3 D.406.(-2)2004+3×(-2)2003的值为()A.-22003B.22003C.-22004D.2200407.(希望杯邀请赛试题)若|m|=m+1,则(4m+1)2004=__________ 08.+(+)+(++)+ … +(++…+)=__________09.=__________10.1+2-22-23-24-25-26-27-28-29+210=__________11.求32001×72002×132003所得数的末位数字为__________12.已知(a+b)2+|b+5|=b+5,且|2a-b-1|=0,求aB.13.计算(-1)(-1) (-1) … (-1) (-1)14.请你从下表归纳出13+23+33+43+…+n3的公式并计算出13+23 33+43+…+1003的值.。

七年级上册《有理数》知识点总结及培优练习

七年级上册《有理数》知识点总结及培优练习

《有理数》知识点总结主讲:王老师1.数轴:(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向.(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.2.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n 的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.3.绝对值:(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.(2)如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)4.非负数的性质:绝对值:任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.根据上述的性质可列出方程求出未知数的值.5.倒数:(1)倒数:乘积是1的两数互为倒数.一般地,a•1/a=1 (a≠0),就说a(a≠0)的倒数是1/a.(2)方法指引:①倒数是除法运算与乘法运算转化的“桥梁”和“渡船”.正像减法转化为加法及相反数一样,非常重要.倒数是伴随着除法运算而产生的.②正数的倒数是正数,负数的倒数是负数,而0 没有倒数,这与相反数不同.【规律方法】求相反数、倒数的方法:注意:0没有倒数.求一个数的相反求一个数的相反数时,只需在这个数前面加上“﹣"即可数求一个数的倒数求一个整数的倒数,就是写成这个整数分之一求一个分数的倒数,就是调换分子和分母的位置6.有理数的加减混合运算(1)有理数加减混合运算的方法:有理数加减法统一成加法.(2)方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.7.有理数的乘法(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.(2)任何数同零相乘,都得0.(3)多个有理数相乘的法则:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0.(4)方法指引:①运用乘法法则,先确定符号,再把绝对值相乘.②多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简单.8.有理数的乘方:(1)有理数乘方的定义:求n个相同因数积的运算,叫做乘方.乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数.a n读作a的n次方.(将a n看作是a的n次方的结果时,也可以读作a的n次幂.)(2)乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.(3)方法指引:①有理数的乘方运算与有理数的加减乘除运算一样,首先要确定幂的符号,然后再计算幂的绝对值;②由于乘方运算比乘除运算又高一级,所以有加减乘除和乘方运算,应先算乘方,再做乘除,最后做加减.9.有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.【规律方法】有理数混合运算的四种运算技巧:1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式再进行计算.4.巧用运算律:在计算中巧妙运用加法或乘法运算律往往使计算更简便.10.近似数和有效数字:(1)有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有数字都是这个数的有效数字.(2)近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.(3)规律方法总结:“精确到第几位"和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.11.代数式求值;(1)代数式的:用数值代替代数式里的字母,计算后所得的结果叫代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种: ①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.12.幂的乘方与积的乘方:(1)幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘"指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加"的区别.(2)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.(ab)n=a n b n(n是正整数)注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.七年级上册《有理数》培优一.选择题(共10小题)1.若x的相反数是3,|y|=5,则x+y的值为()﹣8 B.2C.8或﹣2 D.﹣8或2A.2.下列各组数中,数值相等的是()A34和43B.﹣42和(﹣4)2.C﹣23和(﹣2)3D.(﹣2×3)2和﹣22×32.3.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()A2002或2003 B.2003或2004 C.2004或2005 D.2005或2006.4.某种鲸的体重约为1.36×105kg.关于这个近似数,下列说法正确的是()A精确到百分位,有3个有效数字.精确到个位,有6个有效数字B.精确到千位,有6个有效数字C.D精确到千位,有3个有效数字.5.(﹣2)100比(﹣2)99大()2 B.﹣2 C.299D.3×299A.6.下列说法正确的是()A倒数等于它本身的数只有1 B.平方等于它本身的数只有1.立方等于它本身的数只有1 D.正数的绝对值是它本身C.7.两个互为相反数的有理数相乘,积为()正数B.负数C.零D.负数或零A.8.一个有理数与它的相反数的乘积()一定是正数B.一定是负数C.一定不大于0 D.一定不小于0A.9.的所有可能的值有()A1个B.2个C.3个D.4个.10.若|a﹣3|﹣3+a=0,则a的取值范围是()A a≤3 B.a<3 C.a≥3 D.a>3.二.填空题(共6小题)11.如果数轴上的点A对应的数为﹣1,那么与A点相距3个单位长度的点所对应的有理数为.12.如图,在长方形草地内修建了宽为2米的道路,则草地面积为米13.平方等于的数是.14.若n为自然数,那么(﹣1)2n+(﹣1)2n+1=.15.760 340(精确到千位)≈,640。

有理数培优题有答案解析

有理数培优题有答案解析

有理数培优题 基础训练题一、填空:1、在数轴上表示-2的点到原点的距离等于( )。

2、若∣a ∣=-a,则a ( )0.3、任何有理数的绝对值都是( )。

4、如果a+b=0,那么a 、b 一定是( )。

5、将0.1毫米的厚度的纸对折20次,列式表示厚度是( )。

6、已知||3,||2,||a b a b a b ==-=-,则a b +=( )7、|2||3|x x -++的最小值是( )。

8、在数轴上,点A 、B 分别表示2141,-,则线段AB 的中点所表示的数是( )。

9、若,a b 互为相反数,,m n 互为倒数,P 的绝对值为3,则()20102a b mn p p++-=( )。

10、若abc ≠0,则||||||a b c a b c++的值是( ) . 11、下列有规律排列的一列数:1、43、32、85、53、…,其中从左到右第100个数是( )。

二、解答问题:1、已知x+3=0,|y+5|+4的值是4,z 对应的点到-2对应的点的距离是7,求x 、y 、 z 这三个数两两之积的和。

3、若2|45||13|4x x x +-+-+的值恒为常数,求x 满足的条件及此时常数的值。

4、若,,a b c 为整数,且20102010||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。

5、计算:-21 +65-127+209-3011+4213-5615+72176、应用拓展:将七只杯子放在桌上,使三只口朝上,四只口朝下。

现要求每次翻转其中任意四只,使它们杯口朝向相反,问能否经有限次翻转后,让所有杯子杯口朝下?能力培训题知识点一:数轴例1:已知有理数a 在数轴上原点的右方,有理数b 在原点的左方,那么( ) A .b ab < B .b ab > C .0>+b a D .0>-b a 拓广训练:1、如图b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有( )(“祖冲之杯”邀请赛试题)A .1B .2C .3D .43、把满足52≤<a 中的整数a 表示在数轴上,并用不等号连接。

人教版七年级上册培优01 第1章 有理数(要点梳理+典例变式+课后检测)有答案

人教版七年级上册培优01 第1章 有理数(要点梳理+典例变式+课后检测)有答案

第1章有理数学生年级七年级姓名编号数学授课教师授课日期授课时段一、课前衔接(一)上次课堂作业检查讲解(二)课前小测(错题本错题再练)二、教学过程专题01 有理数1、教学重点、难点:有理数的加减法、乘除法及乘方的计算;2、教学易错点:有理数的加减法、乘除法及乘方的计算;3、教学目标:(1)理解正负数的意义,掌握有理数的概念;(2)理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算;(3)学会借助数轴来理解绝对值、有理数比较大小等相关知识;(4)理解科学记数法及近似数的相关概念并能灵活应用;(5)体会数学知识中体现的一些数学思想;【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;(2)有理数“0”的作用:2.数轴:规定了原点、正方向和单位长度的直线.要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可. (3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负. 4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a 的绝对值记作a .(2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离. 要点二、有理数的运算 1 .法则: (1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.(0)||0(0)(0)aa a a a a >⎧⎪==⎨⎪-<⎩③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) . (3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘. ②任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a ÷b=a ·1b (b ≠0) .(5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数; ②正数的任何次幂都是正数,0的任何非零次幂都是0. (6)有理数的混合运算顺序: ①先乘方,再乘除,最后加减; ②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36. (3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-. 2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ;(2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc) (3)分配律:a(b+c)=ab+ac 要点三、有理数的大小比较 比较大小常用的方法有: (1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法. (3)作商比较法; (5)倒数比较法.要点四、科学记数法、近似数及精确度1.科学记数法:把一个大于10的数表示成10n a ⨯的形式(其中110a ≤<,n 是正整数),此种记法叫做科学记数法.例如:200 000=5210⨯.2.近似数:接近准确数而不等于准确数的数,叫做这个精确数的近似数或近似值.如长江的长约为6300㎞,这里的6300㎞就是近似数.要点诠释:一般采用四舍五入法取近似数,只要看要保留位数的下一位是舍还是入. 3.精确度:一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确到的这一位也叫做这个近似数的精确度. 要点诠释:(1)精确度是指近似数与准确数的接近程度.(2)精确度有两种形式:①精确到哪一位.②保留几个有效数字.这两种的形式的意义不一样,一般来说精确到哪一位可以表示误差绝对值的大小,例如精确到0.1米,说明结果与实际数相差不超过0.05米,而有效数字往往用来比较几个近似数哪个更精确些.【典型例题】类型一、有理数相关概念1.下列说法正确的是( )A 、 在一个数前面加“−”号就得到负数B 、 0既不是正数,也不是负数,但0是有理数C 、 非负数就是正数D 、 不带“−”号的数是正数解析:A 反例:在“0”前面加“−”号,不能得到负数.B 正确.C ,0是非负数,但不是正数.D 、0不带“−”号,但也不是正数;变式1、下面的说法正确的是( ) A 、 正有理数和负有理数统称有理数B 、 整数和分数统称有理数C 、 正整数和负整数统称整数D 、 有理数包括整数、自然数、零、负数和分数解析:A 、正有理数、0和负有理数统称有理数,故本选项错误;B 、整数和分数统称为有理数,故本选项正确;C 、整数还包括0,故本选项错误;D 、零属于自然数的范围,这样的表达不正确,故本选项错误2.某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 ;如果这种油的原价是76元,那么现在的卖价是 .变式 1.如果自行车车条长度超过标准长度 2 mm ,记作+2 mm ,那么比标准长度短1.5 mm ,记作 .变式2.如果全班某次数学成绩的平均成绩为83分,某同学考了85分,记作+2分,那么得90分记作 分,-5分表示的是 分.3. 若a 、b 互为相反数,c 、d 互为倒数,则=++)(323b a cd .变式1.已知a 、b 互为相反数,c 、d 互为倒数,|m|=2,求代数式2m ﹣(a+b ﹣1)+3cd 的值.4.近似数0.4062精确到 位,近似数5.47×105精确到 位,近似数3.5万精确到 位, 3.4030×105精确到千位是 .变式1.我市今年参加中考人数约为42000人,将42000用科学记数法表示为( ) A.4.2×104 B. 0.42×105 C. 4.2×103 D. 42×1035.(2015春•射洪县月考)如果|x+3|+|y ﹣4|=0,求x+2y 的值.变式1.若|x|=5,则x= ;若|x-3|=2,x= 。

有理数的计算(培优)

有理数的计算(培优)

有理数的计算(培优)
上次作业处理
引入
1、有理数的计算与算术数的计算有很大的不同:首先,有理数计算每一步要确定符号; 其次,代数与算术不同的是“字母代数”,所以有理数的计算很多是字母运算,也就是通 常说的符号演算.
数学竞赛中的计算通常与推理相结合,这不但要求我们能正确地算出结果,而且要善 于观察问题的结构特点,将推理与计算相结合,灵活选用算法和技巧,提高计算的速 度.有理数的计算常用的技巧与方法有:
1.利用运算律. 2.以符代数. 3.裂项相消. 4.分解相约. 5.巧用公式等.
例题讲解
Hale Waihona Puke 2、例题讲解3、例题讲解
3、
例题讲解
4、
例题讲解
5、
课堂总结: 1、让学生总结本节课的收获 2、老师点评本节课学生的表现 3、学生的努力方向
作业:
作业:
作业:
下课了啦! 继续努力! 下次课见!

七年级数学上册有理数(培优篇)(Word版 含解析)

七年级数学上册有理数(培优篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为8个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是________;(2)当t=3秒时,点A与点P之间的距离是________个长度单位;(3)当点A表示的数是-3时,用含t的代数式表示点P表示的数;(4)若点P到点A的距离是点P到点B的距离的2倍,请直接写出t的值.【答案】(1)-4(2)6(3)解:当点A为-3时,点P表示的数是-3+2t;(4)解:当点P在线段AB上时,AP=2PB,即2t=2(8−2t),解得,t=,当点P在线段AB的延长线上时,AP=2PB,即2t=2(2t−8),解得,t=8,∴当t=或8秒时,点P到A的距离是点P到B的距离的2倍.【解析】【解答】解:(1)设点A表示的数是a,点B表示的数是b,则|a|+|b|=8,又|a|=|b|,∴|a|=4,∴a=−4,则点A表示的数是−4;( 2 )∵P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴当t=3秒时,点A与点P之间的距离为6个单位长度;【分析】(1)设点A表示的数是a,点B表示的数是b,两点间的距离是8及互为相反数的两个数分别位于原点的两侧,到原点的距离相等即可判断得出答案;(2)根据路程等于速度乘以时间即可得出答案;(3)由点A表示的数结合AP的长度,即可得出点P表示的数;(4)分当点P在线段AB上时,AP=2t,BP=(8-2t),根据AP=2PB 列出方程,求解即可;当点P在线段AB的延长线上时,AP=2t,BP=(2t-8),根据 AP=2PB 列出方程,求解即可,综上所述即可得出答案.2.同学们,我们都知道:|5-2|表示5与2的差的绝对值,实际上也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|表示5与-2的差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)|﹣4+6|=________;|﹣2﹣4|=________;(2)找出所有符合条件的整数x,使|x+2|+|x-1|=3成立;(3)若数轴上表示数a的点位于﹣4与6之间,求|a+4|+|a﹣6|的值;(4)当a=________时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是________;(5)当a=________时,|a﹣1|+|a+2|+|a﹣3|+|a+4|+|a﹣5|+…+|a+2n|+|a﹣(2n+1)|的值最小,最小值是________.【答案】(1)2;6(2)解:此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,故当-2≤x≤1的时候即可满足条件,又因为x是整数,所以x的值可以为:-2,-1,0,1.(3)解:∵数轴上表示数a的点位于﹣4与6之间,∴a+4>0,a﹣6<0,∴|a+4|+|a﹣6|=a+4-a+6=10;(4)1;9(5)1;2n2+3n【解析】【解答】(1)|﹣4+6|=|2|=2,|﹣2﹣4|=|-6|=6;(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a表示的数是1的时候,|a﹣1|+|a+5|+|a﹣4|的值最小,当a=1的时候,|a﹣1|+|a+5|+|a﹣4|=|1﹣1|+|1+5|+|1﹣4|=9;(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1当a=1时原式=3+2+5+4+……+(2n+1)+2n=2+3+4+5+……+2n+(2n+1)== 2n2+3n故:答案为1, 2n2+3n .【分析】(1)由于绝对值符号具有括号的作用,先按有理数的加减法法则算出绝对值符号里面的,再根据绝对值的意义去掉绝对值符号即可;(2)此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,从而找出1到-2 的整数即可;(3)根据有理数的加减法法则,首先判断出a+4>0,a﹣6<0,再根据绝对值的意义去掉绝对值符号合并同类项即可;(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a表示的数是介于4和-5之间的数1的时候,即可使其值最小,然后将a=1代入再根据绝对值的意义化简即可;(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)| 表示的是a到1,-2,3,-4,5,……-2n,2n+1的距离和,故要使,|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1,把a=1代入根据绝对值的意义即可求出答案。

七年级有理数(培优篇)(Word版 含解析)

七年级有理数(培优篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________;表示-3和2两点之间的距离是________;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.(2)如果|x+1|=3,那么x=________;(3)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是________.(4)若数轴上表示a的点位于-4与2之间,则|a+4|+|a-2=________.【答案】(1)3;5(2)2或-4(3)8(4)6【解析】【解答】解:数轴上表示4和1的两点之间的距离是:;表示和两点之间的距离是:故答案为:或或故答案为:或(3)或或当时,则两点间的最大距离是,当a=5,b=-1时,A、B两点间的距离是6,当a=1,b=-3时,A、B两点间的距离是4,当时,则两点间的最小距离是,则两点间的最大距离是,最小距离是故答案为:(4)数轴上表示a的点位于-4与2之间,则故答案为:【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的绝对值即可算出答案;(2)根据绝对值的意义去绝对值的符号,再解方程即可;(3)根据绝对值的意义去绝对值的符号,再解方程求出a,b的值,然后分四种情况求出ab 之间的距离,再比大小即可;(4)根据数轴上的点所表示的数的特点可知-4<a<2,所以a+4>0,a-2<0,再根据绝对值的意义去绝对值符号并合并同类项即可.2.如图,数轴的单位长度为1,点,,,是数轴上的四个点,其中点,表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置,并用点表示;(2)点表示的数是________,点表示的数是________,,两点间的距离是________;(3)将点先向右移动4个单位长度,再向左移动2个单位长度到达点,点表示的数是________,在数轴上距离点3个单位长度的点表示的数是________.【答案】(1)解:距离A点和B点的距离相等的点即AB的中点,点 .如图所示,点即为所求.(2);5;9(3);或1【解析】【解答】解:(2)点表示的数是,点表示的数是5,所以,两点间的距离是 .故答案为9.( 3 )如图,将点先向右移动4个单位长度是0,再向左移动2个单位长度到达点,得点表示的数是 .到点距离3个单位长度的点表示的数是-2-3= 或-2+3=1.故答案为,或1.【分析】(1)由点A和点B表示的数互为相反数,因此原点到点A和点B的距离相等,可得到原点的位置。

培优训练——有理数新【人教版】七年级数学(上册)精品PPT课件

培优训练——有理数新【人教版】七年级数学(上册)精品PPT课件
(1)将最后一批乘客送到目的地时,李师傅位于第一 批乘客出发地的东面还是西面?距离出发地多少千 米?
(2)若的士的收费标准为:起步价10元(不超过2.5千 米),超过2.5千米的部分每千米2.6元.则李师傅 在上午9∶00~10∶15一共收入多少元?(精确到1 元)
培优训练——有理数新人教版七年级 数学上 册课件- 精品课 件ppt( 实用版 )
培优训练——有理数新人教版七年级 数学上 册课件- 精品课 件ppt( 实用版 )
培优训练——有理数新人教版七年级 数学上 册课件- 精品课 件ppt( 实用版 )
解:(1)-6-2+8-3+6-4+6+3=8(km). 答:这辆小汽车完成巡逻后位于该岗亭的东侧, 距离岗亭有8千米. (2)(|-6|+|-2|+|+8|+|-3|+|+6|+|-4|+|+6|+ |+3|)×0.15=(6+2+8+3+6+4+6+3)×0.15= 38×0.15=5.7(度). 答:这天下午小汽车共耗电5.7度.
培优训练——有理数新人教版七年级 数学上 册课件- 精品课 件ppt( 实用版 )
培优训练——有理数新人教版七年级 数学上 册课件- 精品课 件ppt( 实用版 )
11. 的士司机李师傅从上午9∶00~10∶15在东西方向 的九洲大道上营运,共连续运载八批乘客.若规定 向东为正,向西为负,李师傅营运八批乘客里程如 下:(单位:千米)+2, -3, +3, -4, +5, +4, -7, -2.
(1)根据记录的数据可知该厂星期四生产玩具多少件? (2)产量最多的一天比产量最少的一天多生产玩具多

七年级上培优第3讲 有理数综合培优

七年级上培优第3讲  有理数综合培优

七年级上数学培优第3讲 有理数综合培优一.选择题:1. 已知数轴上的三点A 、B 、C 分别表示有理数,1,1a -,那么|1|a +表示( )A . A 、B 两点的距离 B .A 、C 两点的距离C .A 、B 两点到原点的距离之和D .A 、C 两点到原点的距离之和2. 若||5,||3,0a b a b ==+>,那么a b -的值是( )A .2或8B .2或-2C .8或-8D .-2或-83. 定义运算符号“*”的意义为:abb a b a +=*(其中a 、b 均不为0)。

下面有两个结论 (1)运算“*”满足交换律;(2)运算“*”满足结合律。

其中( )A .只有(1)正确B .只有(2)正确C .(1)和(2)都正确D .(1)和(2)都不正确4. 如果,,a b c 为非零有理数,则||||||a b c a b c++的值有( ) A .1个 B .2个 C .3个 D .4个5. 设0a b c ++=,0abc >,则||||||b c a c a b a b c +++++的值是( ) A .-3 B .1 C . 3或-1 D .-3或16. 有理数a 等于它的倒数,有理数b 等于它的相反数,则20102011a b +等于( )A .0B .1C .-1D .27. 若||1m m =+,则()201041m +=( )A .-1B .1C .12-D .128. 初一“数学晚会”上,有10个同学藏在10个大盾牌后面。

男同学的盾牌前面写的是一个正数,女同学的盾牌前面写的是一个负数。

这10个盾牌如下所示:3030)(-、255--、12+a 、200912009)(-、97198-、8-、2--、333)(-,)(24-⨯、15-⨯。

则盾牌后面的同学中,男同学有 个,女同学有 个。

9.已知|4||1|0x y -++=,则32011x y 的值为_________;10. 数轴上有A 、B 两点,如果点A 对应的数是-2,且A 、B 两点的距离为3,则点B 对应的数是_________;11.已知数轴上有A 、B 两点,A 、B 之间的距离为2,点A 与原点O 的距离为6,则所有满足条件的点B 与原点O 的距离的和为_________;12.|2||3|x x -++的最小值是_________;13.在数轴上,点A 、B 分别表示2141,-,则线段AB 的中点所表示的数是_________;14.若,a b 互为相反数,,m n互为倒数,P 的绝对值为3,则()20102a b mn p p ++-=_________;15.若||5,||3x y ==,且||x y y x -=-,求()||x y x y ++的值。

七年级数学《有理数》经典培优(含答案)

七年级数学《有理数》经典培优(含答案)

1.数轴上,点A的初始位置表示的数为2,现点A做如下移动:第1次点A向左移动1个单位长度至点A1,第2次从点A1向右移动2个单位长度至点A2,第3次从点A2向左移动3个单位长度至点A3,按照这种移动方式进行下去,点A2019表示的数是_______.2.如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,如果点An与原点的距离不小于26,那么n的最小值是________.3.在一条可以折叠的数轴上,A,B表示的数分别是﹣9,4,如图,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=1,则C点表示的数是.4.数轴上的点A、B、C、O、D、E分别表示3,﹣1.5,﹣3,﹣4,0,2.5,(1)在图所示的数轴上画出点A、B、C、O、D、E;(2)比较这六点所表示的数的大小,用“<”号连接起来;_____ <_____ < ______ <______<_________ <______(3)有同学说:“这六个点中,其中有两个点之间的距离恰好与另外两个点之间的距离相等”,你觉得这位同学的说法正确吗?请你作出判断,并说明理由.5.【阅读理解】如果点M,N在数轴上分别表示实数m,n,在数轴上M,N两点之间的距离表示为MN=m﹣n(m>n)或MN=n﹣m(n>m)或|m﹣n|.利用数形结合思想解决下列问题:已知数轴上点A与点B的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B在点A的右侧,点C表示的数与点B 表示的数互为相反数,动点P从A出发,以每秒2个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为____,点B表示的数为_______.(2)用含t的代数式表示P到点A和点C的距离:PA=_______,PC=________.(3)当点P运动到B点时,点Q从A点出发,以每秒4个单位的速度向C点运动,Q点到达C点后,立即以同样的速度返回,运动到终点A,在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.6.【阅读理解】点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.【知识运用】如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数______所表示的点是{M,N}的奇点;数_______所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?7.阅读下面材料在数轴上4与﹣1所对的两点之间的距离:|4﹣(﹣1)|=5在数轴上﹣2与3所对的两点之间的距离|(﹣2)﹣3|=5;在数轴上﹣7与﹣5所对的两点之间的距离:|(﹣7)﹣(﹣5)|=2在数轴上点A、B 分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|依据材料知识解答下列问题(1)数轴上表示﹣3和﹣5的两点之间的距离是_______,数轴上表示数x和3的两点之间的距离表示为_________;(2)七年级研究性学习小组进行如下探究:①请你在草稿纸上面出数轴当表示数x的点在﹣3与2之间移动时,|x+3|+|x﹣2|的值总是一个固定的值为:________,式子|x+3|+|x+2|的最小值是.②请你在草稿纸上画出数轴,当x等于_________时,|x﹣4|+|x+3|+|x﹣2|的值最小,且最小值是__________.8.研究下列算式,你会发现什么规律?1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52…(1)请你找出规律井计算7×9+1=_____=(_______)2(2)用含有n的式子表示上面的规律:______.9.如图,数轴上每相邻两刻度线间的距离为1个单位长度,请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C表示的数是多少?图中5个点表示的数的乘积是多少?(3)求|x+1.5|+|x﹣0.5|+|x﹣4.5|的最小值10.我们知道数轴上两点间的距离等于这两点所对应的数的差的绝对值,例:点A、B 在数轴上分别对应的数为a、b,则A、B两点间的距离表示为AB=|a﹣b|根据以上知识解题:(1)若数轴上两点A、B表示的数为x、﹣1,①A、B之间的距离可用含x的式子表示为__________;②若两点之间的距离为2,那么x值为________;(2)在(1)的条件下,是否存在点P,使得点P到点A的距离等于点P到点B的距离的三倍.。

七年级上册数学培优讲义(有理数的运算)第二讲

七年级上册数学培优讲义(有理数的运算)第二讲

有理数的运算模块一.有理数加法运算有理数加法法则:①同号两数相加.取相同的符号.并把绝对值相加.②绝对值不相等的异号两数相加.取绝对值较大的加数符号.并用较大的绝对值减去较小的绝对值.③一个数同0相加.仍得这个数.有理数加法的运算步骤:法则是运算的依据.根据有理数加法的运算法则.可以得到加法的运算步骤:①确定和的符号;②求和的绝对值.即确定是两个加数的绝对值的和或差.有理数加法的运算律:①两个加数相加.交换加数的位置.和不变.a b b a+=+(加法交换律)②三个数相加.先把前两个数相加.或者先把后两个数相加.和不变.++=++(加法结合律)()()a b c a b c有理数加法的运算技巧:①分数与小数均有时.应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时.若有互为相反数的两个数.可先结合相加得零.④若有可以凑整的数.即相加得整数时.可先结合相加.⑤若有同分母的分数或易通分的分数.应先结合在一起.⑥符号相同的数可以先结合在一起.【经典例题1】同号两数相加某人从原点0出发.如果第一次走了5米.第二次接着又走了3米.求两次行走后某人在什么地方?为区别向东还是向西走.这里规定向东走为正.向西走为负.这两数相加有以下三种情况:(1)某人向东走5米.再向东走3米.两次一共走了多少米?(2)某人向西走5米.再向西走3米.两次一共向东走了多少米?总结:__________________________________________________.异号两数相加(3)某人向东走5米.再向西走5米.两次一共向东走了多少米?(4)某人向东走5米.再向西走3米.两次一共向东走了多少米?(5)某人向东走3米.再向西走5米.两次一共向东走了多少米?总结:_______________________________________________________.【题目难度】★【解题思路】利用实际情境来推导加法法则.强调和的符号及和与绝对值的关系.进而总结出加法法则【经典例题2】计算下列各题:(1) (一11)+(一9); (2) (一3.5)+(+7);(3)(一1.08)+0; (4)(23+)+(23-)(5)[(-22)+(-27)]+(+27); (6)(-22)+[(-27)+(+27)].【题目难度】★【解题思路】利用加法法则计算.【题目答案】()()()()209119111-=+-=-+- ()()()()5.35.3775.32=-+=++- ()()()08.1008.1008.13-=--=+-()0323232324=⎪⎭⎫⎝⎛-+=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+ ()()()[]()()()22274927492722272727225-=--=+-=++-=++-+- ()()()()[]()22222727226-=+-=++-+-【巩固练习】计算:(1)()()()()()-+++-+-++36475 ()2()()-⎛⎝ ⎫⎭⎪+-+-⎛⎝ ⎫⎭⎪++++⎛⎝ ⎫⎭⎪234025*********..()3+⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪5751432527225914【题目难度】★★【解题思路】利用加法交换律把同分母的分数相加.如果有分数的先化为分数再计算. 【题目答案】(1)()()()()()-+++-+-++36475 ()2()()-⎛⎝ ⎫⎭⎪+-+-⎛⎝ ⎫⎭⎪++++⎛⎝ ⎫⎭⎪234025*********..()()31114111456743-=--=+-=++++-=)( 8138138133813041432813818141432=⎪⎭⎫ ⎝⎛-+=+-=++⎪⎭⎫⎝⎛+-=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=()()5151112522531491451252253149145727514925272253145753-=⎪⎭⎫⎝⎛-+-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+【经典例题 3】小明家冰箱冷冻室的温度为-5℃.调高4℃后的温度为( ) A.4℃ B.9℃ C.-1℃ D.-9℃ 【题目难度】★【解题思路】原来的温度为-5℃.调高4℃.实际就是转换成有理数的加法运算. 【题目答案】解:-5+4=-1 故选C .点评:本题主要考查从实际问题抽象出有理数的加法运算.【经典例题 4】绝对值不大于10的所有整数的和等于( )A.-10 B.0 C.10 D.20 【题目难度】★★【解题思路】根据绝对值的意义.结合数轴找到所有符合条件的数.再进一步根据数的运算法则进行计算.互为相反数的两个数的和为0.【题目答案】解:绝对值不大于10的所有整数有±10.±9.±8.±7.…±1.0.共有21个. 再根据互为相反数的两个数的和为0.得它们的和是0. 故选B .点评:此类题中.符合条件的数一般是成对相反数出现的.根据互为相反数的两个数的和是0.进行计算.【经典例题 5】已知a.b.c的位置如图.化简:|a-b|+|b+c|+|c-a|= ______________【题目难度】★★★【解题思路】先根据数轴上的大小关系确定绝对值符号内代数式的正负情况a-b<0.b+c<0.c-a>0.再根据绝对值的性质去掉绝对值符号进行有理数运算即可求解.注意:数轴上的点右边的总比左边的大.【题目答案】解:由数轴可知a<c<0<b.所以a-b<0.b+c<0.c-a>0.则|a-b|+|b+c|+|c-a|=b-a-b-c+c-a=-2a.点评:此题综合考查了数轴.绝对值的有关内容.用几何方法借助数轴来求解.非常直观.且不容易遗漏.体现了数形结合的优点.要注意先确定绝对值符号内代数式的正负情况.再根据绝对值的性质去掉绝对值符号进行有理数运算.模块二.有理数减法运算有理数减法法则:减去一个数.等于加这个数的相反数.()a b a b-=+-有理数减法的运算步骤:①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号) ③把减法转化为加法.按照加法运算的步骤进行运算. 有理数加减混合运算的步骤:①把算式中的减法转化为加法; ②省略加号与括号;③利用运算律及技巧简便计算.求出结果.注意:根据有理数减法法则.减去一个数等于加上它的相反数.因此加减混合运算可以依据上述法则转变为只有加法的运算.即为求几个正数.负数和0的和.这个和称为代数和.为了书写简便.可以把加号与每个加数外的括号均省略.写成省略加号和的形式.【经典例题 6】 计算 ()()()531+-- ()702- ()()()953--+ ()()()1264--- 【题目难度】★ 【解题思路】()()()()()853531-=-+-=+-- ()()770702-=-+=- ()()()()()1495953=+++=--+ ()()()()()()66121261264=-+=++-=---【巩固】 ⑴21(4)(3)33-+-⑵21(6)(9)|3|7.49.2(4)55-+-+-+++-⑶17(14)(5)( 1.25)88-+++-⑷111(8.5)3(6)11332-++-+【题目难度】★()()()()0101432.92.94.74.6=-++=-+++-++-=8-=⑶17(14)(5)( 1.25)88-+++-⑷111(8.5)3(6)11332-++-+ 2194114184118758913-=⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=0333163132111218=-=⎪⎭⎫⎝⎛-+++⎪⎭⎫⎝⎛-=【经典例题 7】对于任何有理数a.下列各式中一定为负数的是()A.-(-3+a)B.-aC.-|a+1|D.-|a|-1【题目难度】★★【解题思路】负数一定小于0.可将各项化简.然后再进行判断.【题目答案】解:A.-(-3+a)=3-a.a≤3时.原式不是负数.故A错误;B.-a.当a≤0时.原式不是负数.故B错误;C.∵-|a+1|≤0.∴当a≠-1时.原式才符合负数的要求.故C错误;D.∵-|a|≤0.∴-|a|-1≤-1<0.所以原式一定是负数.故D正确.故选D.点评:掌握负数的定义以及绝对值的性质是解答此题的关键.【经典例题 8】a.b在数轴上的位置如图所示.则a.b.a+b.a-b中.负数的个数是()A.1个B.2个C.3个D.4个【题目难度】★★【解题思路】在数轴上右边的数总是大于左边的数.即可确定a.b的符号.再根据有理数的加法与减法法则确定a+b.a-b的符号.从而确定负数的个数.【题目答案】解:根据数轴可得:a<0.b>0.且|a|>|b|.∴a+b<0.a-b<0.则在这四个数中的负数有:a.a+b.a-b.共3个.故选C.点评:本题主要考查了数轴上的点的特点.右边的数总是大于左边的数.以及有理数的加法与减法法则.【经典例题 9】两个数的差是负数.则这两个数一定是()A.被减数是正数.减数是负数B.被减数是负数.减数是正数C.被减数是负数.减数也是负数D.被减数比减数小【题目难度】★★【解题思路】两个数的差是负数.说明是较小的数减较大的数的结果.应该是被减数比减数小.【题目答案】解:如果两个数的差是负数.则这两个数一定是被减数比减数小.故选D.点评:考查有理数的运算方法.有理数减法法则:减去一个数等于加上这个数的相反数.【经典例题 10】如果a.b均为有理数.且b<0.则a.a-b.a+b的大小关系是()A.a<a+b<a-bB.a<a-b<a+bC.a+b<a<a-bD.a-b<a+b<a【题目难度】★★【解题思路】首先根据b<0来判定-b>0.a-b>a.a+b<a.据此.很容易比较a.a-b.a+b的大小.【题目答案】解:∵b<0∴-b>0∴a-b>a>a+b.故选C.点评:实数运算性质与大小顺序关系它是比较两实数大小的依据.也是求差法的依据:(1)a>b时.则a-b>0;(2)a=b时.则a-b=0;(3)a<b时.则a-b<0.模块三.有理数的乘法有理数乘法法则:两数相乘.同号得正.异号得负.并把绝对值相乘.任何数同0相乘.都得0.有理数乘法运算律:①两个数相乘.交换因数的位置.积相等. ab ba=(乘法交换律)②三个数相乘.先把前两个数相乘.或者先把后两个数相乘.积相等. ()=(乘法结合律)abc a bc③一个数同两个数的和相乘.等于把这个数分别同这两个数相乘.再把积相加.+=+(乘法分配律)a b c ab ac()有理数乘法法则的推广:①几个不等于0的数相乘.积的符号由负因数的个数决定.当负因数的个数是偶数时.积为正数;负因数的个数是奇数时.积为负数.②几个数相乘.如果有一个因数为0.则积为0.③在进行乘法运算时.若有带分数.应先化为假分数.便于约分;若有小数及分数.一般先将小数化为分数.或凑整计算;利用乘法分配律及其逆用.也可简化计算.在进行有理数运算时.先确定符号.再计算绝对值.有括号的先算括号里的数.【经典例题 11】下面计算正确的是()A.-5×(-4)×(-2)×(-2)=5×4×2×2=80B.12×(-5)=-50C.(-9)×5×(-4)×0=9×5×4=180D.(-36)×(-1)=-36【题目难度】★【解题思路】①两数相乘.同号为正.异号为负.并把绝对值相乘;②任何数同0相乘.都得0.【题目答案】解:A.-5×(-4)×(-2)×(-2)=5×4×2×2=80.故本选项正确;B.12×(-5)=-60.故本项错误;C.(-9)×5×(-4)×0=0.故本项错误;D.(-36)×(-1)=36.故本项错误; 故选A .点评:(1)几个不等于零的数相乘.积的符号由负因数的个数决定:①当负因数有奇数个数.积为负;②当负因数的个数为偶数个时.积为正;(2)几个数相乘.有一个因数为0时.积为0.【巩固练习】(- )× =________ (-)×(-)=___________分析:根据乘法算式的特点.先将符号放在一边计算两个正数的乘法.最后再加上符号.计算出结果.符号规则:--=+.++=+.+-=-.-+=-. 【题目难度】★【解题思路】解:(- )× =- × =- ;(-)×(-)=×= .故答案为:- . .点评:在进行有理数的乘法运算时.要灵活运用运算律.【巩固练习】4113(3)11559211⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11171113()71113⨯⨯⨯++;()()999812512412161616⎛⎫⎛⎫⎛⎫-⨯---⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 111112211142612⎛⎫-⨯-+- ⎪⎝⎭【题目难度】★【解题思路】4113(3)11559211⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11171113()71113⨯⨯⨯++;9113211910593-=⎪⎭⎫⎝⎛⨯⨯⨯⨯-= 3117791143117137131113113117111131177113117=++=⨯+⨯+⨯=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=()()999812512412161616⎛⎫⎛⎫⎛⎫-⨯---⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 111112211142612⎛⎫-⨯-+- ⎪⎝⎭ ()1691211691245816912-=⨯⎪⎭⎫⎝⎛-=++-⨯⎪⎭⎫ ⎝⎛-= ()()()()1013141827121312671223124912-=+-+-=⨯--⨯-+⨯--⨯-=【经典例题 12】若两个有理数的和与积都是正数.则这两个有理数( ) A.都是负数 B.一正一负且正数的绝对值大 C.都是正数 D.无法确定 【题目难度】★★【解题思路】根据有理数的乘法法则.可知负因数为偶数个.由有理数的加法法则知.两个数相加.其中的负数是0个或1个.且负数的绝对值小于正数的绝对值.【题目答案】解:因为两个数的积是正数.所以负因数为偶数个.是0个或2个;又∵两个有理数的和是正数.所以负数为0个或1个; 所以.这两个有理数的负数是0个.即两个数都是正数. 故选C .点评:本题主要考查了有理数的乘法与加法.几个不等于零的数相乘.积的符号由负因数的个数决定:当负因数有奇数个数.积为负;当负因数的个数为偶数个时.积为正.【经典例题 13】 a .b .c 为非零有理数.它们的积必为正数的是( )A .0a >.b .c 同号B .0b >.a .c 异号C .0c >.a .b 异号D .a .b .c 同号 【题目难度】★★ 【题目答案】A【经典例题 14】 已知|x|=3.|y|=2.且x•y<0.则x+y 的值等于( ) A.5或-5 B.1或-1 C.5或1 D.-5或-1 【题目难度】★★【解题思路】先根据绝对值的性质.求出x.y 的值.然后根据x•y <0.进一步确定x.y 的值.再代值求解即可.【题目答案】解:∵|x|=3.|y|=2.x•y <0.∴x=3时.y=-2.则x+y=3-2=1; x=-3时.y=2.则x+y=-3+2=-1. 故选B .点评:此题主要考查了绝对值的性质.能够根据已知条件正确的判断出x.y 的值是解答此题的关键.【经典例题 15】有理数a.b.c 在数轴上对应的点的位置如图所示.给出下面四个命题:(1)abc <0 (2)|a-b|+|b-c|=|a-c| (3)(a-b )(b-c )(c-a )>0 (4)|a|<1-bc 其中正确的命题有( )A.4个B.3个C.2个D.1个 【题目难度】★★★【解题思路】对于命题①②③.先确定a.b.c 的正负情况.以及a-b.b-c.a-c.c-a 的正负情况就可以判断;而在命题④中要分别判断|a|与1和1-bc 与1的大小情况.【题目答案】解:由图可知a<-1<0.0<b<c<1.(1)命题abc<0正确;(2)在命题中a-b<0.b-c<0.所以|a-b|+|b-c|=-(a-b)+[-(b-c)]=-a+b-b+c=-a+c.又因为a-c<0.所以|a-c|=-(a-c)=-a+c.左边=右边.故正确;(3)在该命题中.因为a-b<0.b-c<0.c-a>0.所以(a-b)(b-c)(c-a)>0.故正确;(4)在命题中.|a|>1.0<bc<1.1-bc<1.所以|a|>1-bc.故该命题不正确.所以正确的有命题①②③这三个.故选B.点评:本题主要考查了数轴.去绝对值以及有理数的乘法等知识点;解答本题的关键是掌握绝对值的意义:|a|= .模块四.有理数的除法有理数除法法则:除以一个不等于0的数.等于乘这个数的倒数.1a b ab÷=⋅.(0b≠)两数相除.同号得正.异号得负.并把绝对值相除;0除以任何一个不等于0的数.都得0.有理数除法的运算步骤:首先确定商的符号.然后再求出商的绝对值.【经典例题 16】下列关于0的说法中.正确的个数是()①0既不是正数.也不是负数;②0既是整数也是有理数;③0没有倒数;④0没有绝对值.A.1B.2C.3D.4【题目难度】★【解题思路】根据正负数.有理数.倒数.绝对值的定义作答.【题目答案】A.由正数.负数的定义可知0既不是正数.也不是负数.正确;B.由有理数的定义可知0既是整数也是有理数.正确;C.由倒数的定义可知0没有倒数.正确;D.由绝对值的定义可知0的绝对值还是0.错误.所以有3个正确.故选C.点评:此题考查了正负数.有理数.倒数.绝对值的定义.学生要做好这类题必须对其定义理解透彻.【经典例题 17】-8的倒数的绝对值是()A.8 B. C.-8 D.【题目难度】★【解题思路】根据倒数的定义.两数的乘积为1.这两个数互为倒数.先求出-8的倒数.然后根据负数的绝对值等于它的相反数即可求出所求的值.【题目答案】∵-8的倒数是- .∴|- |= .则-8的倒数的绝对值是.故选B点评:此题考查了倒数的求法及绝对值的代数意义.其中求倒数的方法就是用“1”除以这个数得到商即为这个数的倒数(0除外).绝对值的代数意义是:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0.【经典例题 18】下列运算有错误的是( ) A. ÷(-3)=3×(-3) B. C.8-(-2)=8+2 D.2-7=(+2)+(-7)【题目难度】★【解题思路】根据有理数的运算法则判断各选项的计算过程.减去一个数等于加上这个数的相反数;除以一个数等于乘以这个数的倒数.【题目答案】只有A 中的计算是错误的.理由: ÷(-3)= ×(- )=- .3×(-3)=-9. 故选A .点评:本题主要考查了有理数的减法与除法法则.注意.乘法是除法的逆运算.加法是减法的逆运算.【巩固练习】计算:111321335⎛⎫⎛⎫⎛⎫-÷÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭231(4)()324+÷⨯÷-; 71()2(3)93-÷⨯+;【题目难度】★【题目答案】111321335⎛⎫⎛⎫⎛⎫-÷÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭7125673310=⎪⎭⎫ ⎝⎛-⨯⨯⎪⎭⎫ ⎝⎛-= 615131010125-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⨯⎪⎭⎫ ⎝⎛-=231(4)()324+÷⨯÷-; 71()2(3)93-÷⨯+;()()36423234-=-⨯⨯⨯+= 91317397-=⨯⨯⎪⎭⎫ ⎝⎛-=【经典例题 19】两个有理数的商为正.则( )A.和为正B.和为负C.至少一个为正D.积为正数 【题目难度】★【解题思路】本题可根据有理数的除法规则进行解题.两个有理数的商为正.说明这两个有理数同正同负.从而得出正确的结果.【题目答案】∵两个有理数的商为正.∴这两个有理数有两种情况:①都为正;②都为负;所以C错误;当它们都为负时.它们的和为负.所以A错误;当它们都为正时.它们的和为正.所以B错误;但是不管它们同正还是同负.它们的积都为正.所以D正确.故选D.点评:主要考查了有理数的除法.商为正.则两个有理数的符号相同.【经典例题 20】用“>”或“<”填空⑴如果abc>.0ac<那么b _____ 0 ;⑵如果ab>.bc<那么ac_______0 .【题目难度】★★【解题思路】根据乘除法确定符合口诀“同号得正.异号得负”【题目答案】< <模块五.有理数的乘方求n 个相同因数的积的运算叫做乘方.乘方的结果叫做幂.在na 中.a 叫做底数.n 叫做指数.读作a 的n 次幂.注意: ()()1n 21n 2n 2n2a a a a ++-=-=-【经典例题 21】计算:(1)3)4(- (2)4)2(-【题目难度】★【解题思路】(1)64)4()4()4()4(3-=-⨯-⨯-=- (2)16)2()2()2()2()2(4=-⨯-⨯-⨯-=-【经典例题 22】 计算:)2()3(]2)4[()3()2(223-÷--+-⨯-+- 【题目难度】★【解题思路】原式)2(9)216()3(8-÷-+⨯-+-= 5.57)5.4(18)3(8-=--⨯-+-=【经典例题 23】 观察下面三行数:2-.4.8-.16.32-.64…… ①0.6.6-.18.30-.66…… ②1-.2.4-.8.16-.32…… ③(1)第①行按什么规律排列?(2)第②③行与第①行分别有什么关系? (3)取每行第10个数求这几个数的和? 【题目难度】★★【解题思路】(1)第①行数是2-.2)2(-.3)2(-.4)2(-……(2)对比①②两行数第②行数是第①行数加2.对比①③两行数第③行数是第一行数的0.5倍.(3)每行数中.第10个数的和是5.0)2(]2)2[()2(101010⨯-++-+- 256251210261024=++=模块六.有理数的混合运算要正确掌握运算顺序.即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级.后二级.再一级;有()()()22101423212125.0-⨯-+--⎪⎭⎫ ⎝⎛-÷-(-32 )×(-1115 )-32 ×(-1315 )+32 ×(-1415)2112531514503-=--=-⎪⎭⎫ ⎝⎛-⨯÷+= ()()()677617651926111-=-⨯=-⨯⎥⎦⎤⎢⎣⎡-=-⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=()()()22101423212125.0-⨯-+--⎪⎭⎫ ⎝⎛-÷-()33374361164194116141=+-=++⨯-=⨯+--÷-=(-32 )×(-1115 )-32 ×(-1315 )+32 ×(-1415)模块七.有理数的大小比较1575125710131011=-=-+=【经典例题 24】下列各数中.比-1小的数是( )A.0B.1C.-2D.2 【题目难度】★【解题思路】根据有理数比较大小的法则进行比较即可. 【题目答案】∵-1是负数. ∴-1<0.故A 错误; ∵2>1>0.∴2>1>0>-1.故B.D 错误; ∵|-2|>|-1|.∴-2<-1.故C 正确. 故选C .点评:本题考查的是有理数大小比较的法则: ①正数都大于0; ②负数都小于0; ③正数大于一切负数;④两个负数.绝对值大的其值反而小.【经典例题 25】比较41,31,21--的大小.结果正确的是( )A. B. C.D.【题目难度】★【解题思路】根据有理数大小比较的方法即可求解.【题目答案】∵- <0.- <0. >0.∴最大;又∵>.∴- <- ;∴.故选A.点评:本题考查有理数比较大小的方法:①正数都大于0.负数都小于0.正数大于一切负数;②两个负数.绝对值大的反而小.【经典例题 26】给出两个结论:(1)|a-b|=|b-a|.(2).其中()A.只有(1)正确B.只有(2)正确C.(1)和(2)都正确D.(1)和(2)都不正确【题目难度】★【解题思路】(1)根据绝对值的性质解得;(2)先通分.再根据两个负数比较大小的原则进行比较.【题目答案】(1)正确.∵a-b与b-a互为相反数.∴|a-b|=|b-a|;(2)错误.∵- =- <0.- =- <0.|- |>|- |.∴- <- .即- <- .故选A.点评:本题考查的是绝对值的性质及有理数的大小比较.熟知以下知识是解答此题的关键:(1)互为相反数的两个数的绝对值相等;(2)两个负数相比较.绝对值大的反而小.【经典例题 27】a.b.c在数轴上的位置如图.则在- .-a.c-b.c+a中.最大的一个是()A.-aB.c-bC.c+aD.-【题目难度】★★【解题思路】先根据数轴上各点的位置确定出各数的取值范围.再根据不等式的基本性质及有理数比较大小的法则即可求解.【题目答案】由图可见.-1<a<0.0<b<c<1∴-1<c+a<1.又∵c-b<1-0=1∵-1<a<0.∴0<-a<1.∴- >1.∴- .-a.c-b.c+a中最大的一个是- .故选D.点评:本题考查的是有理数的大小比较及数轴的特点.不等式的基本性质.比较简单.【28】若b<0.则a+b.a.a-b的大小关系为()A.a+b>a>a-bB.a-b>a>a+bC.a>a-b>a+bD.a-b>a+b>a【题目难度】★★【解题思路】由已知.b<0.可得-b>0.又a+b=a-(-b).a-b=a+(-b).由此即可得出答案.【题目答案】∵b<0.∴-b>0.a-(-b)<a.a<a+(-b).又a+b=a-(-b).a-b=a+(-b).∴a+b<a.a<a-b.即a-b>a>a+b.故选:B.点评:此题考查了有理数大小的比较.解题的关键是一个正数加上一个正数大于本身且一个正数本身小于加上一个正数.课堂检测练习1. 式子-2-(-1)+3-(+2)省略括号后的形式是()A.2+1-3+2B.-2+1+3-2C.2-1+3-2D.2-1-3-2【题目难度】★【解题思路】①括号前面有“+”号.把括号和它前面的“+”号去掉.括号里各项的符号不改变;②括号前面是“-”号.把括号和它前面的“-”号去掉.括号里各项的符号都要改变为相反的符号.【题目答案】原式=-2+1+3-2.故选B.点评:本题主要考查了有理数的加减混合运算.要注意.括号前面是“-”时.去掉括号后.括号内的各项均要改变符号.不能只改变括号内第一项或前几项的符号.而忘记改变其余的符号;若括号前是数字因数时.应利用乘法分配律先将数与括号内的各项分别相乘再去括.以免发生错误;遇到多层括号一般由里到外.逐层去括号.也可由外到里.数“-”的个数.练习2. 计算:1+2-3+4+5-6+7+8-9+…+97+98-99+100= 1684_______【题目难度】★★【解题思路】观察可得这组数是从1到100的数的绝对值的数相加.其中.3的倍数都为负数.那么这组数的和等于5050加上2×(-3-6-9…-99).【题目答案】1+2-3+4+5-6+7+8-9+…+97+98-99+100=5050-3×(1+2+3…+33)×2=5050- =1684.点评:解决本题的关键是得到相应规律.并利用已知结论求解.练习3.请你列出一个至少有加数是正整数且和为-5的算式: _________【题目难度】★【解题思路】本题属于比较开放的试题.根据加减运算的知识即可得出答案.【题目答案】由题意得:有加数是正整数.且和为-5的算式可以为:3+(-8)=-5.故填:3+(-8)=-5.点评:本题考查有理数的混合运算.属于开放题.难度不大.同学们要注意尽量列举比较简单的式子.练习4. 计算4 之值为何()A.-1.1B.-1.8C.-3.2D.-3.9【题目难度】★【解题思路】遇到乘除加减混合运算.应先算乘除再算加减.所以这道题应先把-1.6和2.5变成分数.然后把除法变成乘法计算后.再算减法.算减法时根据减法法则减去一个数等于加上这个数的相反数把其变成加法.最后利用同号两数相加的加法法则计算即可得出值.【题目答案】原式=- - ×.=-2.5-0.7.=(-2.5)+(-0.7).=-3.2.故选C.点评:此题考查有理数的混合运算.是一道基础题.做题时注意运算顺序.练习5. 下列判断:①若ab=0.则a=0或b=0;②若a2=b2.则a=b;③若ac2=bc2.则a=b;④若|a|>|b|.则(a+b)•(a-b)是正数.其中正确的有()A.①④B.①②③C.①D.②③【题目难度】★★【解题思路】①两数之积为0.说明至少有一个数为0;②两数的平方相等.说明两数相等.或为相反数;③若c=0.则a.b可为任意数;④若|a|>|b|.(a+b)与(a-b)同号.【题目答案】①若ab=0.则a=0或b=0.故正确;②若a2=b2.则|a|=|b|.故原判断错误;③若ac2=bc2.当c≠0时a=b.故原判断错误;④若|a|>|b|.则(a+b)•(a-b)是正数.故正确.故选A.点评:主要考查了等式的基本性质的运用.要求掌握平方和绝对值的定义.并会熟练运用.当判断一个式子是否正确.最好的方法就是举出反例.能举出反例的不正确.不能举出反例的则正确.练习6. 对于两个非零有理数a.b定义运算*如下:a*b= .则(-3)*(- )=()A.-3 B. C.3 D.-【题目难度】★★★【解题思路】根据题中给出的新定义运算法则计算.【题目答案】:由题意得.(-3)*(- )= = .故选B.点评:本题为信息题.要严格按照所给的方法列式运算才能算对.课后练习练习1. 下列计算正确的是()A. B.-32-(-2)3=1 C.6÷3× =6 D. -(-1)2005=3 【题目难度】★【解题思路】按照有理数混合运算的顺序.先算乘方.再算乘除.最后算加减;如果有括号.就先算括号里面的.计算过程中注意正负符号的变化.【题目答案】A. - ×3= - =-1.错误;B.-32-(-2)3=-9+8=-1.错误;C.6÷3×=2×= .错误;D. -(-1)2005= +1=3 .正确.故本题选D.点评:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序.即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级.后二级.再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.练习 2. 下列算式中:(1)0-(-3)=-3;(2)(-2)×|-3|=-6;(3)5÷ ×5=5;(4)23=6.正确的个数有( )A.4个 B.3个 C.2个 D.1个【题目难度】★【解题思路】根据有理数的运算法则分别计算各式.再与结果比较.【题目答案】(1)0-(-3)=0+3=3.错误;(2)(-2)×|-3|=(-2)×3=-6.正确;(3)5÷ ×5=25×5=125.错误;(4)23=2×2×2=8.错误.∴只有(2)正确.故选D .点评:本题考查了绝对值的意义.有理数的减法.乘法.乘方及乘除混合运算.牢记运算法则是解题的关键.注意:同级运算应按从左往右的顺序进行.练习3. 已知|x|=0.19.|y|=0.99.且0 yx .则x-y 的值为( ) A.1.18或-1.18 B.0.8或-1.18 C.0.8或-0.8 D.1.18或-0.8【题目难度】★★★【解题思路】|x|=0.19.则x=±0.19;|y|=0.99.则y=±0.99.由于 <0.所以x.y 异号.分两种情况求代数式的值.【题目答案】由题意得.x=±0.19.y=±0.99.又0<yx .∴x.y 异号. ①当x=0.19.y=-0.99时.x-y=0.19+0.99=1.18;②当x=-0.19.y=0.99时.x-y=-0.19-0.99=-1.18.故选A .点评:注意由0<yx .得出x.y 异号后要分类讨论计算.练习4.(1)计算:-2-(-3)+(-8)+42= ______;(2)计算:()×(-42)= ________.【题目难度】★【解题思路】(1)先乘方运算.再进行加减计算;(2)先根据乘法分配律展开.再进行运算更为简便.【题目答案】(1)-2-(-3)+(-8)+42=-2+3-8+16=19-10=9.(2) ( )×(-42) = ×(-42)+ ×(-42)+(- )×(-42)=-7-28+12=-35+12=-23.点评:本题旨在考查(1)有理数的混合运算;(2)乘法分配律使运算更为简便.练习5. 若a.b.c 在数轴上位置如图所示.则必有( )c b a -110A.abc >0B.ab-ac >0C.(a+b )c >0D.(a-c )b >0【题目难度】★★★【解题思路】根据图示得知.a <-1<0<b <1<c.然后根据有理数的混合运算法则进行计算.【题目答案】根据图示知.a <-1.0<b <1.1<c .A.∵a 是负数.b.c 是正数.∴abc <0.故本选项错误;B.∵b <c.a <0.∴ab >ac.∴ab-ac >0.故本选项正确;C.∵a <-1.0<b <1.1<c.∴ac <-1.0<bc <1.∴ac+bc <0.即(a+b )c <0.故本选项错误;D.∵a <-1.0<b <1.1<c.∴a-c <-2.∴(a-c )b <-2.故本选项错误.故选B .点评:本题考查了数轴.有理数的混合运算.解答此题的关键是根据图示找出a.b.c 的取值范围:a <-1.0<b <1.1<c .练习6.有理数a.b 在数轴上的位置如图所示.则在a+b.a-b.ab.a 3.a 2b 3这五个数中.正数的个数是( )A.2B.3C.4D.5【题目难度】★★★【解题思路】首先由数轴得出a b的正负:-1<a<0.b>1>0.再根据有理数的运算法则进行计算即可得出选项.【题目答案】由数轴可知-1<a<0.b>1>0.根据有理数的加法.减法.乘法.乘方法则得:a+b>0.a-b<0.ab<0.a3<0.a2b3>0.所以正数的个数是2个.故选A.点评:本题主要考查了有理数的加法.减法.乘法.乘方法则等知识点.解此题的关键是正确观察数轴确定a b的范围和利用法则进行计算.练习7.定义a※b=a2-b.则(1※2)※3= _________【题目难度】★★【解题思路】按照定义的规则计算.【题目答案】根据题意可知.(1※2)※3=(1-2)※3=-1※3=1-3=-2.答案:-2.点评:此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.7. 如图.是一个有理数混合运算程序的流程图.请根据这个程序回答问题:当输入的x为-16时.最后输出的结果y是____________【题目难度】★★★【解题思路】先根据流程图列出算式.然后根据有理数混合运算的顺序.先算乘方再算乘除最后算加减.有括号的先算括号里面的.【题目答案】根据题意.得[x+4-(-32)]×(- )÷(-0.5)=(x+13)×(- )×(-2)=∴当x=-16时.(-16+13)÷3=-1当x=-1时.(-1+13)÷3=4当x=4时.(4+13)÷3= >5.所以.最后输出的结果y是.点评:本题属于信息给予题.应为运算的结果不大于5.所以要经过多次运算.才能最后输出结果.。

初一数学培优专题讲义二--有理数和整式的加减

初一数学培优专题讲义二--有理数和整式的加减

初一数学培优专题讲义二 有理数和整式的加减一(单项式、多项式、求代数式的值)一、 有理数的混合运算要点:有理数的加减法要注意几个优先:凑整优先,同分母优先,相反数优先,同号优先;有理数的乘法要注意:先定符号,倒数优先,分配律优先。

交换加数的位置时连同符号一并移动。

连减取负当加算。

1. 填一填,注意运算的小节点:(1) )22(15-+= (2) 1015--= (3) )7()8.3(---=(4) 2(2)-= ;=-3)21( ; (—2)3= ;23-= ; =⎪⎭⎫ ⎝⎛-343 ,=-433 2.计算:(观察结构最优先,确定符号是关键,先后顺序要理清)(1)(-12)÷4×(-6)÷2; (2)(-58)×(-4)2-0.25×(-5)×(-4)3; (3)-22-(-2)2+(-3)2×(-32)-42÷|-4| (4)⎥⎦⎤⎢⎣⎡-⨯-⨯+-⨯÷-)31(24)32(41232222 (5)(注意观察,用巧算) 1+3+5+…+99-(2+4+6+…+98).2. 突破绝对值的化简:(一)利用数轴,注意数形结合,变绝对值号为括号,再去括号3.有理数a ,b ,c ,d 在数轴上的对应点如图所示,则它们从小到大的顺序是____________________。

4.已知a 、b 、c 在数轴上表示的数如图,化简:|b+c|-|b-a|-|a-c|-|c-b|+|b|+|-2a|。

(二)根据限定条件化简:5.已知b a >,化简:a b b a ---=________6.若x =2,y =3,则x y +的值为 ( )A .5B .-5C .5或1D .以上都不对7.化简: (1)|3.14-π| (2)|8-x|(x ≥8)8.已知a 、b 、c 是有理数,且a+b+c=0,abc >0,求||||||c b a b a c a c b +++++的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

王老师培优系列有理数一 填空题1.-(-14)的倒数是__________,相反数是__________,绝对值是__________。

2.若|x |+|y|=0,则x =__________,y =__________。

3.若|a |=|b|,则a 与b __________。

4.因为到点2和点6距离相等的点表示的数是4,有这样的关系()62214+=,那么到点100和到点999距离相等的数是_______;到点76,54-距离相等的点表示的数是________;到点m 和点–n 距离相等的点表示的数是________。

通过反思本题你能得出什么结论?5.计算:()()()200021111-+-+- =_________。

6.已知()02|4|2=-++b a a ,则b a 2+=_________。

通过反思本题你能得出什么结论?7.如果3-x =2,那么x= .8.到点3距离4个单位的点表示的有理数是_____________。

9.__________________范围内的有理数经过四舍五入得到的近似数是3.142。

10.小于3的正整数有_____.11. 如果m <0,n >0,|m |>|n |,那么m +n _____0。

12.你能很快算出22005吗?为了解决这个问题,我们考察个位上的数为5的正整数的平方,任意一个个位数为5的正整数可写成10n +5(n 为正整数),即求()2105n +的值,试分析1n =,2,3……这些简单情形,从中探索其规律。

⑴通过计算,探索规律:215225=可写成()10011125⨯⨯++; 225625=可写成()10022125⨯⨯++;2351225=可写成()10033125⨯⨯++; 2452025=可写成()10044125⨯⨯++;………………2755625=可写成________________________________2857225=可写成________________________________⑵根据以上规律,试计算2105=13.观察下面一列数,根据规律写出横线上的数, -11;21;-31;41; ; ;……;第2003个数是 。

14. 把下列各数填在相应的集合内。

整数集合:{ ……}负数集合:{ ……}分数集合:{ ……}非负数集合:{ ……}正有理数集合:{ ……}负分数集合:{ ……}二 选择题15.下列说法正确的是( )A .绝对值较大的数较大;B .绝对值较大的数较小;C .绝对值相等的两数相等;D .相等两数的绝对值相等。

16. 已知a <c <0,b >0,且|a |>|b |>|c |,则|a |+|b |-|c |+|a +b |+|b +c |+|a +c |等于( )A .-3a +b +cB .3a +3b +cC .a -b +2cD ..-a +3b -3c17.下列结论正确的是( )A. 近似数1.230和1.23的有效数字一样B. 近似数79.0是精确到个位的数,它的有效数字是7、9C. 近似数3.0324有5个有效数字D. 近似数5千与近似数5000的精确度相同18.两个有理数相加,如果和比其中任何加数都小,那么这两个加数( )A .都是正数B .都是负数C .互为相反数D .异号19. 如果有理数( )A. 当B.C. D. 以上说法都不对 20.两个非零有理数的和为正数,那么这两个有理数为( )A .都是正数B .至少有一个为正数C .正数大于负数D .正数大于负数的绝对值,或都为正数。

三计算题21. 求下面各式的值⑴(-48)÷6-(-25)×(-4) (2)5.6+[0.9+4.4-(-8.1)];(3)120×(5375616815-+-); (4)200019991431321211⨯++⨯+⨯+⨯22. 某单位一星期内收入和支出情况如下:+853.5元,+237.2元,-325元,+138.5元,-280元,-520元,+103元,那么,这一星期内该单位是盈余还是亏损?盈余或亏损多少元?23. 某地一周内每天的最高气温与最低气温记录如下表,哪天的温差最大哪天的温差最小? 星期 一 二 三 四 五 六 七最高气温 10º C 11º C 12º C 9ºC 8ºC 9ºC 8ºC最低气温2ºC 0ºC 1ºC -1º C -2º C -3º C -1º C24、正式排球比赛,对所使用的排球的重量是有严格规定的。

检查5个排球的重量,超过规定重量的克数记作正数,不足规定重量的克数记作负数,检查结果如下表:+1-1+3-2-45 0 0 0 0指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题?25. 已知32211124=⨯⨯; 33221129234+==⨯⨯;(1)猜想填空:=+-++++33333)1(321n n(2)计算 26.探索规律:将连续的偶数2,4,6,8,…,排成如下表:2 4 6 8 1012 14 16 18 2022 24 26 28 3032 34 36 38 40… …(1) 十字框中的五个数的和与中间的数和16有什么关系?(2) 设中间的数为x ,用代数式表示十字框中的五个数的和.(3) 若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于201吗?如能,写出这五位数,如不能,说明理由。

27.设y=ax 5+bx 3+cx -5,其中a,b,c ,为常数,已知当x = -5时,y=7,求当x =5时,求y 的值。

有理数练习题参考答案一 填空题1. 4, -14,14.提示:题虽简单,但这类概念题在七年级的考试中几乎必考。

2. 0,0.提示:|x|≥0,|y|≥0.∴x=0,y=0.3.相等或者互为相反数。

提示:互为相反数的绝对值相等 。

4. 549.5,135-,2m n -.提示:到数轴上两点相等的数的中点等于这两数和的一半. 5. 0.提示:每相邻的两项的和为0。

6. -8.提示:()2|4|0,20a a b +≥-≥,4+a=0,a-2b=0,解得:a= -4,b= -2. b a 2+= -8.7. x-3=±2。

x=3±2,x=5或x=1.8. -1或7。

提示:点3距离4个单位的点表示的有理数是3±4。

9. 3.1415-3.1424.提示:按照四舍五入的规则。

10.1,2.提示:大于零的整数称为正整数。

11. <0.提示:有理数的加法的符号取决于绝对值大的数。

12. 275=5625=100×5×(5+1)+25; 285=7225=100×8×(8+1)+25;2105=100×10×(10+1)+25=11025.13. 15-,16,12003-.提示:这一列数的第n 项可表示为(-1)n1n. 14. 提示:(1)集合是指具有某一特征的一类事物的全体,注意不要漏掉数0,题目中只是具体的几个符合条件的数,只是一部分,所以通常要加省略号。

(2)非负数表示不是负数的所有有理数,应为正数和零,那么非正数表示什么呢?(答:负数和零)答案:整数集合:{……}负数集合:{ ……}分数集合:{……}非负数集合:{……}正有理数集合:{……}负分数集合:{ ……} 二 选择题15. D.提示:对于两个负数来说,绝对值小的数反而大,所以A 错误。

对于两个正数来说,绝对值大的数大,所以B 错误。

互为相反数的两个数的绝对值相等。

16.A.提示:-a+b-(-c)-(a+b)+(b+c)-(a+c)= -3a+b+c17. C.提示:有效数字的定义是从左边第一位不为零的数字起,到右边最后一个数字结束。

18.B19.C 提示:当n 为奇数时,1(1)0,0n n m +-<> ,1(1)n n m +-∙<0. 当n 为偶数时,1(1)0,0n n m +->< ,1(1)n n m +-∙<0.所以n 为任意自然数时,总有1(1)n n m +-<0成立.20. D.提示:两个有理数想加,所得数的符号由绝对值大的数觉得决定。

三计算题21. 求下面各式的值(1)-108(2)19 .提示:先去括号,后计算。

(3)-111 .提示: 120×(5375616815-+-) 120×(5375616815--++--) =120×(-56)+120×38-120×715= -111(4)19992000.提示; 200019991431321211⨯++⨯+⨯+⨯ =1-12+1111 (2319992000)-++- =1999200022. 提示:本题中正数表示收入,负数表示支出,将七天的收入或支出数相加后,和为正数表示盈余,和为负数表示亏损。

解:(+853.5)+(+237.2)+(-325)+(+138.5)+(-520)+(-280)+(+103) =[(+853.5)+(+237.2)+(+138.5)+(+103)]+[(-325)+(-520)+(-280)]=(+1332.2)+(-1125)=+207.2故本星期内该单位盈余,盈余207.2元。

23. 提示:求温差利用减法,即最高温度的差,再比较它们的大小。

解:周一温差:10-2=8(ºC )周二温差:11-0=11(ºC )周三温差:12-1=11(ºC )周四温差:9-(-1)=10(ºC )周五温差:8-(-2)=10(ºC )周六温差:9-(-3)=12(ºC )周日温差:8-(-1)=9(ºC )所以周六温差最大,周一温差最小。

24、解:第二只排球质量好一些,利用这些数据的绝对值的大小来判断排球的质量,绝对值越小说明越接近规定重量,因此质量也就好一些。

25.(1)(2)①25502500;提示:原式=221100(1001)4②原式==23×13+23×23+23×33+23×43+23×53+……+23×503=23(13+23+33+43+53+ (503)=8×22150514⨯⨯=1300500026.(1) 十字框中的五个数的和等于中间的5倍。

相关文档
最新文档