有理数单元培优测试卷
七上《有理数》单元培优测试卷(含答案)
第2章《有理数》单元培优测试卷(含答案)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间60分钟,试题共28题,选择8道、填空10道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题2分,共16分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•盐城)2020的相反数是()A.﹣2020 B.2020 C.D.2.(2020•徐州模拟)据统计,徐州市2020年参加中考人数共有11.8万人,11.8万用科学记数法表示为()A.11.8×103B.1.18×104C.1.18×105D.0.118×106 3.(2019秋•江苏省海安市校级月考)在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是()A.4个B.3个C.2个D.1个4.(2019秋•江苏省镇江期末)在数,1.010010001,,0,﹣2π,﹣2.6266266…,3.1415中,无理数的个数是()A.1 B.2 C.3 D.45.(2019秋•江苏省泰兴市期末)数轴上标出若干个点,每相邻两点相距一个单位长度,点A、B,C,D分别表示整数a,b,c,d,且a+b+c+d=6,则点D表示的数为()A.﹣2 B.0 C.3 D.56.(2019秋•江苏省镇江期末)能使等式|2x﹣3|+2|x﹣2|=1成立的x的取值可以是()A.0 B.1 C.2 D.37.(2020春•江苏省如皋市期末)将九个数分别填在3×3 (3行3列)的方格中,如果满足每个横行,每个竖列和每条对角线上的三个数之和都等于m,则将这样的图称为“和m幻方”.如图①为“和15幻方”,图②为“和0幻方”,图③为“和39幻方”,若图④为“和m幻方”,则m的值等于()A.6 B.3 C.﹣6 D.﹣98.(2019秋•江苏省南京期末)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:如图所示.如果自然数m恰好经过7步运算可得到1,则所有符合条件的m的值有()A.3个B.4个C.5个D.6个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在横线上)9.(2020春•江苏省太仓市期中)我国开展的月球探测工程(即“嫦娥工程“)为人类和平使用月球作出了新的贡献.地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为.10.(2019秋•江苏省海州区校级期中)如图,小明有五张写着不同数字的卡片,请你从中抽出2张卡片,使这两张卡片上数字乘积最大,这个最大值是.11.(2019秋•江苏省宿豫区期中)若三个互不相等的有理数,既可以表示为3,a+b,b的形式,也可以表示为0,,a的形式,则4a﹣b的值.12.(2019秋•江苏省宿豫区期中)规定a⊕b=a﹣b+1,则(3⊕2)⊕5=.13.(2019秋•江苏省海陵区校级期中)|m+n|+(m+3)2=0,则m n的值是.14.(2019秋•江苏省连云港期中)有理数a,b,c在数轴上的位置如图所示,则|a﹣b|﹣|c ﹣b|+|a+c|=.15.(2019秋•江苏省武进区期中)已知在纸面上有一数轴,折叠纸面,数轴上﹣2表示的点与8表示的点重合.若数轴上A、B两点之间的距离为2014(A在B的左侧),且A、B 两点经以上方法折叠后重合,则A点表示的数是.16.(2019秋•江苏省海安市期中)若m、n满足|m﹣3|+(n﹣2)2=0,则(m﹣n)2019的值等于.17.(2019秋•江苏省海陵区校级期中)已知数轴上三点A,B,C所对应的数分别为m,n,2+n,当其中一点到另外两点的距离相等时,则m﹣n的值是.18.(2020春•江苏省鼓楼区期中)(1)()﹣(1)()=.三、解答题(本大题共8题,共54分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•江苏省海州区校级期中)把下列各数填入相应的集合中:10,﹣2π,3.14,,﹣0.6,0,﹣75%,﹣(﹣5),0.正数集合:{…};负数集合:{…};整数集合:{…};有理数集合:{…}.20.(2019秋•江苏省连云港期中)计算(1)(﹣2)3﹣(﹣5)+(﹣3)×2 (2)()×(﹣60)(3)(﹣5)(﹣4)(4)﹣32÷[()×(﹣3)22] 21.(2019秋•江苏省建湖县期中)计算:(1)28﹣(+34)+(﹣51)﹣(﹣42);(2);(3);(4).22.(2019秋•江苏省广陵区校级期中)某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶纪录如下.(单位:km)第一次第二次第三次第四次第五次第六次第七次+15 ﹣8 +6 +12 ﹣4 +5 ﹣10 (1)巡逻车在巡逻过程中,第次离A地最远.(2)B地在A地哪个方向,与A地相距多少千米?(3)若每千米耗油0.2升,每升汽油需7元,问这一天交通巡逻车所需汽油费多少元?23.(2020春•江苏省兴化市期中)(1)计算:0×1×2×3+1=()2;1×2×3×4+1=()2;2×3×4×5+1=()2;3×4×5×6+1=()2;……(2)根据以上规律填空:4×5×6×7+1=()2;×××+1=(55)2.(3)小明说:“任意四个连续自然数的积与1的和都是某个奇数的平方”.你认为他的说法正确吗?请说明理由.24.(2019秋•江苏省崇川区校级期中)同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在上所应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是;(2)数轴上表示x与2的两点之间的距离可以表示为.\;(3)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.25.(2019秋•江苏省崇川区校级期中)已知b是最小的正整数,且a,b满足(c﹣5)2+|a+b|=0,请回答:(1)请直接写出a,b,c的值:a=,b=,c=;(2)在(1)的条件下,若点P为一动点,其对应的数为x,点P在0到2之间运动,即0≤x≤2时,化简:|x+1|﹣|x﹣1|+3|x﹣2|;(3)在(1)(2)的条件下,a,b,c分别对应的点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.26.(2019秋•江苏省海州区校级期中)【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把记作a©,读作“a的圈c次方”.(1)【初步探究】直接写出计算结果:3③=,;(2)关于除方,下列说法错误的是;A.任何非零数的圈2次方都等于1;B.对于任何正整数n,1□=1;C.3④=4③;D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(3)【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=;5⑥=;;Ⅱ.想一想:将一个非零有理数a的圈n次方写成幂的形式等于;Ⅲ.算一算:.一、选择题(本大题共8小题,每小题2分,共16分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•盐城)2020的相反数是()A.﹣2020 B.2020 C.D.【分析】根据a的相反数是﹣a,直接得结论即可.【解析】2020的相反数是﹣2020.故选:A.2.(2020•徐州模拟)据统计,徐州市2020年参加中考人数共有11.8万人,11.8万用科学记数法表示为()A.11.8×103B.1.18×104C.1.18×105D.0.118×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解析】11.8万=118000=1.18×105故选:C.3.(2019秋•江苏省海安市校级月考)在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是()A.4个B.3个C.2个D.1个【分析】先化简原题中的各数,然后即可判断哪些数是负数,本题得以解决.【解析】∵﹣22=﹣4,(﹣2)2=4,﹣(﹣2)=2,﹣|﹣2|=﹣2,∴在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是2个,故选:C.4.(2019秋•江苏省镇江期末)在数,1.010010001,,0,﹣2π,﹣2.6266266…,3.1415中,无理数的个数是()A.1 B.2 C.3 D.4【分析】根据无理数的三种形式求解.【解析】无理数有:﹣2π,﹣2.6266266…共2个.故选:B.5.(2019秋•江苏省泰兴市期末)数轴上标出若干个点,每相邻两点相距一个单位长度,点A、B,C,D分别表示整数a,b,c,d,且a+b+c+d=6,则点D表示的数为()A.﹣2 B.0 C.3 D.5【分析】设出其中的一个数,根据各个数在数轴的位置,表示出其它的数,列方程求解即可.【解析】设点D表示的数为x,则点C表示的数为x﹣3,点B表示的数为x﹣4,点A 表示的数为x﹣7,由题意得,x+(x﹣3)+(x﹣4)+(x﹣7)=6,解得,x=5,故选:D.6.(2019秋•江苏省镇江期末)能使等式|2x﹣3|+2|x﹣2|=1成立的x的取值可以是()A.0 B.1 C.2 D.3【分析】直接利用绝对值的性质把x的值分别代入求出答案.【解析】A、当x=0时,原式=3+4=7,不合题意;B、当x=1时,原式=1+2=3,不合题意;C、当x=2时,原式=1+0=1,符合题意;D、当x=3时,原式=3+2=5,不合题意;故选:C.7.(2020春•江苏省如皋市期末)将九个数分别填在3×3 (3行3列)的方格中,如果满足每个横行,每个竖列和每条对角线上的三个数之和都等于m,则将这样的图称为“和m幻方”.如图①为“和15幻方”,图②为“和0幻方”,图③为“和39幻方”,若图④为“和m幻方”,则m的值等于()A.6 B.3 C.﹣6 D.﹣9【分析】根据定义,图④中,由第1行与第1列三数和相等,便可求得第3行第1个数为﹣2,由对角线三数的和与中间数的关系可求m的值.【解析】图④中,由第1行与第1列三数和相等,便可求得第3行第1个数为﹣2,∵﹣2﹣4=﹣6,∴中间数是﹣6÷2=﹣3,∴m=﹣6﹣3=﹣9.故选:D.8.(2019秋•江苏省南京期末)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:如图所示.如果自然数m恰好经过7步运算可得到1,则所有符合条件的m的值有()A.3个B.4个C.5个D.6个【分析】首先根据题意,应用逆推法,用1乘以2,得到2;用2乘以2,得到4;用4乘以2,得到8;用8乘以2,得到16;然后分类讨论,判断出所有符合条件的m的值为多少即可.【解析】根据分析,可得则所有符合条件的m的值为:128、21、20、3.故选:B.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在横线上)9.(2020春•江苏省太仓市期中)我国开展的月球探测工程(即“嫦娥工程“)为人类和平使用月球作出了新的贡献.地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为 3.84×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解析】将384000用科学记数法表示为3.84×105.故答案是:3.84×105.10.(2019秋•江苏省海州区校级期中)如图,小明有五张写着不同数字的卡片,请你从中抽出2张卡片,使这两张卡片上数字乘积最大,这个最大值是15.【分析】根据有理数乘法法则,可得﹣3与﹣5的乘积最大.【解析】(﹣3)×(﹣5)=15,∴这个最大值是15.故答案为:1511.(2019秋•江苏省宿豫区期中)若三个互不相等的有理数,既可以表示为3,a+b,b的形式,也可以表示为0,,a的形式,则4a﹣b的值15.【分析】根据分母不等于0判断出b≠0,从而得到a+b=0,再求出3,从而得到b=﹣3,a=3,然后代入代数式进行计算即可得解.【解析】∵三个互不相等的有理数,既可以表示为1、a+b、b的形式,也可以表示为0、、a的形式,∴b≠0,∴a+b=0,∴3,∴b=﹣3,a=3,∴4a﹣b=12+3=15,故答案为15.12.(2019秋•江苏省宿豫区期中)规定a⊕b=a﹣b+1,则(3⊕2)⊕5=﹣2.【分析】根据a⊕b=a﹣b+1,可以求得所求式子的值.【解析】∵a⊕b=a﹣b+1,∴(3⊕2)⊕5=(3﹣2+1)⊕5=2⊕5=2﹣5+1=﹣2,故答案为:﹣2.13.(2019秋•江苏省海陵区校级期中)|m+n|+(m+3)2=0,则m n的值是﹣27.【分析】根据非负数的性质,可以求得m、n的值,从而可以求得m n的值,本题得以解决.【解析】∵|m+n|+(m+3)2=0,∴m+n=0,m+3=0,解得,m=﹣3,n=3,∴m n=(﹣3)3=﹣27,故答案为:﹣27.14.(2019秋•江苏省连云港期中)有理数a,b,c在数轴上的位置如图所示,则|a﹣b|﹣|c ﹣b|+|a+c|=﹣2a.【分析】先根据各点在数轴上的位置判断出其符号,再根据绝对值的性质去绝对值符号,合并同类项即可.【解析】∵由图可知,c<﹣1<0<a<1<b,∴a﹣b<0,c﹣b<0,a+c<0,∴原式=﹣a+b+(c﹣b)﹣(a+c)=﹣a+b+c﹣b﹣a﹣c=0.故答案为:0.15.(2019秋•江苏省武进区期中)已知在纸面上有一数轴,折叠纸面,数轴上﹣2表示的点与8表示的点重合.若数轴上A、B两点之间的距离为2014(A在B的左侧),且A、B 两点经以上方法折叠后重合,则A点表示的数是﹣1004.【分析】根据数轴上两点间的距离为这两个数差的绝对值,若﹣2表示的点与8表示的点重合,则折痕经过3;若数轴上A、B两点之间的距离为2014(A在B的左侧),则两个点分别距离中点是3,进一步得到A点表示的数.【解析】依题意得:两数是关于﹣2和8的中点对称,即关于(﹣2+8)÷2=3对称,∵A、B两点之间的距离为2014(A在B的左侧),且A、B两点经以上方法折叠后重合,则A、B关于3对称,∴A:3﹣2014÷2=3﹣1007=﹣1004.故答案为:﹣1004.16.(2019秋•江苏省海安市期中)若m、n满足|m﹣3|+(n﹣2)2=0,则(m﹣n)2019的值等于1.【分析】根据非负数的性质列出方程求出m、n的值,代入所求代数式计算即可;【解析】∵|m﹣3|+(n﹣2)2=0,∴m﹣3=0,n﹣2=0,∴m=3,n=2,∴(m﹣n)2019=(3﹣2)2019=1.故答案为:1.17.(2019秋•江苏省海陵区校级期中)已知数轴上三点A,B,C所对应的数分别为m,n,2+n,当其中一点到另外两点的距离相等时,则m﹣n的值是﹣2或1或4.【分析】用m、n的代数式表示线段AB、BC、AC的长,再分三种情况分别进行解答即可.【解析】数轴上三点A,B,C所对应的数分别为m,n,2+n,则点C一定在点B的右边两个单位,①如图1,当点B是AC的中点时,,有AB=BC,即m﹣n=n﹣(2+n),∴m﹣n=﹣2;②如图2,当点A是BC的中点时,,有AB=AC,即m﹣n=2+n﹣m,∴m﹣n=1;③如图3,当点C是AB的中点时,,有BC=AC,即(2+n)﹣n=m﹣(2+n),∴m﹣n=4,故答案为:﹣2或1或4.18.(2020春•江苏省鼓楼区期中)(1)()﹣(1)()=.【分析】根据乘法分配律变形,再抵消后进行计算即可求解.【解析】(1)()﹣(1)()()()﹣()+()().故答案为:.三、解答题(本大题共8题,共64分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•江苏省海州区校级期中)把下列各数填入相应的集合中:10,﹣2π,3.14,,﹣0.6,0,﹣75%,﹣(﹣5),0.正数集合:{10,3.14,,﹣(﹣5),0.…};负数集合:{﹣2π,﹣0.6,﹣75%…};整数集合:{10,0,﹣(﹣5)…};有理数集合:{10,3.14,,﹣0.6,0,﹣75%,﹣(﹣5),0.…}.【分析】根据实数的分类即可求出答案.【解析】正数集合:{ 10,3.14,,﹣(﹣5),0.};负数集合:{﹣2π,﹣0.6,﹣75% …};整数集合:{10,0,﹣(﹣5)…};有理数集合:{10,3.14,,﹣0.6,0,﹣75%,﹣(﹣5),0.}.故答案为:10,3.14,,﹣(﹣5),0.;﹣2π,﹣0.6,﹣75%;10,0,﹣(﹣5);10,3.14,,﹣0.6,0,﹣75%,﹣(﹣5),0..20.(2019秋•江苏省连云港期中)计算(1)(﹣2)3﹣(﹣5)+(﹣3)×2(2)()×(﹣60)(3)(﹣5)(﹣4)(4)﹣32÷[()×(﹣3)22]【分析】(1)根据有理数的乘方、有理数的乘法和加减法可以解答本题;(2)根据乘法分配律可以解答本题;(3)根据有理数的乘除法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解析】(1)(﹣2)3﹣(﹣5)+(﹣3)×2=(﹣8)+5+(﹣6)=﹣9;(2)()×(﹣60)=(﹣36)+(﹣30)+5=﹣61;(3)(﹣5)(﹣4)=5;(4)﹣32÷[()×(﹣3)22]=﹣9÷(1)=﹣9÷(1)=﹣9÷(1)=﹣9=﹣9=﹣15.21.(2019秋•江苏省建湖县期中)计算:(1)28﹣(+34)+(﹣51)﹣(﹣42);(2);(3);(4).【分析】各式根据有理数的运算法则依次计算即可.【解析】(1)原式=28﹣34﹣51+42=28+42﹣34﹣51=70﹣85=﹣15;(2)原式=4.8 1.8+4﹣1=4.8﹣1.8+41=3+4﹣1=6;(3)原式0.250.25=0.25;(4)原式=﹣9﹣(12+8)=﹣9﹣20=﹣9﹣8=﹣17.22.(2019秋•江苏省广陵区校级期中)某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶纪录如下.(单位:km)第一次第二次第三次第四次第五次第六次第七次+15 ﹣8 +6 +12 ﹣4 +5 ﹣10 (1)巡逻车在巡逻过程中,第6次离A地最远.(2)B地在A地哪个方向,与A地相距多少千米?(3)若每千米耗油0.2升,每升汽油需7元,问这一天交通巡逻车所需汽油费多少元?【分析】(1)根据有理数的加法运算,分别计算出每次距A地的距离,可得离A地最远距离;(2)根据有理数的加法运算,可得正数或负数,根据向东记为正,向西记为负,可得答案;(3)根据行车就耗油,可得耗油量,再根据总价=单价×数量即可求解.【解析】(1)第一次距A地:15千米,第二次距A地:15﹣8=7千米,第三次距A地:7+6=13千米,第四次距A地:13+12=25千米,第五次距A地:25﹣4=21千米,第六次距A地:21+5=26千米,第七次距A地:26﹣10=16千米,26>25>21>16>15>13>7,答:巡逻车在巡逻过程中,第6次离A地最远;(2)15﹣8+6+12﹣4+5﹣10=16(千米),答:B地在A地东方,与A地相距16千米;(3)|+15|+|﹣8|+|+6|+|+12|+|﹣4|+|+5|+|﹣10|=60(千米),60×0.2=12(升),12×7=84(元).答:这一天交通巡逻车所需汽油费84元.故答案为:6.23.(2020春•江苏省兴化市期中)(1)计算:0×1×2×3+1=(1)2;1×2×3×4+1=(5)2;2×3×4×5+1=(11)2;3×4×5×6+1=(19)2;……(2)根据以上规律填空:4×5×6×7+1=(29)2;6×7×8×9+1=(55)2.(3)小明说:“任意四个连续自然数的积与1的和都是某个奇数的平方”.你认为他的说法正确吗?请说明理由.【分析】(1)通过有理数的运算便可得结果;(2)由已知等式得到规律:任意四个连续自然数的积与1的和等于较小数与比它大3的数的积与1的和的平方.按此规律解答便可;(3)根据题意可得第n个等式应是n(n+1)(n+2)(n+3)+1=[n(n+3)+1]2=(n2+3n+1)2,再证明n2+3n+1是否为奇数便可.【解析】(1)0×1×2×3+1=0+1=1=12;1×2×3×4+1=24+1=25=52;2×3×4×5+1=120+1=121=112;3×4×5×6+1=360+1=361=192,故答案为:1;5;11;19;(2)由已知等式知,任意四个连续自然数的积与1的和等于较小数与比它大3的数的积与1的和的平方.∴4×5×6×7+1=(4×7+1 )2=292;∵55=6×9+1,∴6×7×8×9+1=552;故答案为:29;6;7;8;9;(3)正确.证明:设四个自然数分别为n,n+1,n+2,n+3,则有n(n+1)(n+2)(n+3)+1=[n(n+3)][(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2=[n(n+1)+2n+1]2,∵n为自然数,∴n(n+1)为偶数,2n+1为奇数,∴n(n+1)+2n+1必为奇数,故(n2+3n+1)2是一个奇数的平方,即任意四个连续自然数的积与1的和都是某个奇数的平方.24.(2019秋•江苏省崇川区校级期中)同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在上所应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|.\;(3)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是﹣3、﹣2、﹣1、0、1.【分析】(1)根据距离公式即可解答;(2)根据距离公式即可解答;(3)利用绝对值和数轴求解即可.【解析】(1)数轴上表示5与﹣2两点之间的距离是:5﹣(﹣2)=7,(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,(3)∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,∴这样的整数有﹣3、﹣2、﹣1、0、1.故答案为:7;|x﹣2|;﹣2、﹣1、0、1.25.(2019秋•江苏省崇川区校级期中)已知b是最小的正整数,且a,b满足(c﹣5)2+|a+b|=0,请回答:(1)请直接写出a,b,c的值:a=﹣1,b=1,c=5;(2)在(1)的条件下,若点P为一动点,其对应的数为x,点P在0到2之间运动,即0≤x≤2时,化简:|x+1|﹣|x﹣1|+3|x﹣2|;(3)在(1)(2)的条件下,a,b,c分别对应的点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据x的范围,确定x+1,x﹣3,5﹣x的符号,然后根据绝对值的意义即可化简;(3)先求出BC=3t+4,AB=3t+2,从而得出BC﹣AB=2.【解析】(1)∵b是最小的正整数,∴b=1.根据题意得:c﹣5=0且a+b=0,∴a=﹣1,b=1,c=5.故答案是:﹣1;1;5;(2)当0≤x≤1时,x+1>0,x﹣1≤0,x﹣2<0,则:|x+1|﹣|x﹣1|+3|x﹣2|=x+1﹣(1﹣x)+2(2﹣x)=x+1﹣1+x+4﹣2x=4;当1<x≤2时,x+1>0,x﹣1>0,x﹣2≤0.|x+1|﹣|x﹣1|+3|x﹣2|=x+1﹣(x﹣1)+2(2﹣x)=x+1﹣x+1+4﹣2x=﹣2x+6;(3)不变.理由如下:t秒时,点A对应的数为﹣1﹣t,点B对应的数为2t+1,点C对应的数为5t+5.∴BC=(5t+5)﹣(2t+1)=3t+4,AB=(2t+1)﹣(﹣1﹣t)=3t+2,∴BC﹣AB=(3t+4)﹣(3t+2)=2,即BC﹣AB值的不随着时间t的变化而改变.(另解)∵点A以每秒1个单位长度的速度向左运动,点B每秒2个单位长度向右运动,∴A、B之间的距离每秒钟增加3个单位长度;∵点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴B、C之间的距离每秒钟增加3个单位长度.又∵BC﹣AB=2,∴BC﹣AB的值不随着时间t的变化而改变解.26.(2019秋•江苏省海州区校级期中)【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把记作a©,读作“a的圈c次方”.(1)【初步探究】直接写出计算结果:3③=,﹣27;(2)关于除方,下列说法错误的是C;A.任何非零数的圈2次方都等于1;B.对于任何正整数n,1□=1;C.3④=4③;D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(3)【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=()2;5⑥=()4;(﹣2)8;Ⅱ.想一想:将一个非零有理数a的圈n次方写成幂的形式等于aⓝ=()n﹣2;Ⅲ.算一算:﹣131.【分析】【概念学习】(1)分别按公式进行计算即可;(2)根据定义依次判定即可;【深入思考】(3)Ⅰ.把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;Ⅱ.结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n﹣1;Ⅲ.将第二问的规律代入计算,注意运算顺序.【解析】【概念学习】(1)3③=3÷3÷3,()⑤=()÷()÷()÷()÷()=﹣27.故答案为:,﹣27;(2)A、任何非零数的圈2次方就是两个相同数相除,所以都等于1;所以选项A正确;B、因为多少个1相除都是1,所以对于任何正整数n,1ⓝ都等于1;所以选项B正确;C、3④=3÷3÷3÷3,4③=4÷4÷4,则3④≠4③;所以选项C错误;D、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D正确;本题选择说法错误的,故选C;【深入思考】(3)Ⅰ.(﹣3)④=(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)=()2;5⑥=5÷5÷5÷5÷5÷5=()4;同理得:()⑩=(﹣2)8;故答案为:()2;()4;(﹣2)8;(2)aⓝ=()n﹣2;(3)=144÷(﹣3)2×(﹣2)3﹣(﹣3)4÷33=144(﹣8)﹣81÷27=16×(﹣8)﹣3=﹣128﹣3=﹣131.故答案为:,﹣27;C;,,(﹣2)8 ;aⓝ;﹣131.。
有理数单元检测卷(培优)
…○…………密…………封…………线…………内…………不…………要…………答…………题…………○………班级: 姓名: 考场 考号:第 1 页 共 2 页2018—2019学年度初一年级第一学期数学《有理数》测试卷题号 (一) (二) (三) (四) 总分 得分评卷人一.选择题(每题3分,共10小题) 1.下列说法正确的是( ) A .所有的整数都是正数 B .不是正数的数一定是负数 C .0不是最小的有理数D .正有理数包括整数和分数2.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为( ) A .15×106B .1.5×107C .1.5×108D .0.15×1083.下列各组数中,互为相反数的是( ) A .﹣1与(﹣1)2B .1与(﹣1)2C .2与D .2与|﹣2|4.如图,的倒数在数轴上表示的点位于下列两个点之间( )A .点E 和点FB .点F 和点GC .点G 和点HD .点H 和点I5.质检员抽查某种零件的质量,超过规定长度的记为正数,短于规定长度的记为负数,检查结果如下:第一个为0.13豪米,第二个为﹣0.12毫米,第三个为﹣0.15毫米,第四个为0.11毫米,则质量最差的零件是( )A .第一个B .第二个C .第三个D .第四个6.在﹣0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的字是( ) A .1B .2C .4D .87.已知a ,b ,c 在数轴上的位置如图所示,化简|a+c|﹣|a ﹣2b|﹣|c+2b|的结果是( )A .4b+2cB .0C .2cD .2a+2c8.绝对值大于﹣2且小于5的所有的整数的和是( ) A .7B .﹣7C .0D .59.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB ,则线段AB 盖住的整点的个数是( ) A .2018或2019B .2019或2020C .2020或2021D .2021或202210.若ab <0,且a >b ,则a ,|a ﹣b|,b 的大小关系为( )A .a >|a ﹣b|>bB .a >b >|a ﹣b|C .|a ﹣b|>a >bD .|a ﹣b|>b >a 二、填空题(每题3分,共30分)11.一艘潜艇正在﹣50米处执行任务,其正上方10米处有一条鲨鱼在游弋,则鲨鱼所处的高度为 米.12.若()22120x y -++=,则2x y += . 13. 已知|a|=5,|-b|=-7,且ab <0,则a-b= .14. 设n 是正整数,则1﹣(﹣1)n 的值是 .15. 绝对值小于2018的整数有 个,和为 ,积为 .…………○…………密…………封…………线…………内…………不…………要…………答…………题…………○…第 2 页 共 2 页16. 在,﹣(﹣1),3.14,﹣|﹣8﹣22|,﹣3,﹣32,﹣(﹣)3,0中有理数有m 个,自然数有n 个,分数有k 个,负数有t 个,则m ﹣n ﹣k+t= . 17. 已知a 的倒数是﹣,b 与c 互为相反数,m 与n 互为倒数,则b ﹣a+c ﹣mn= .18. 定义一种新运算:a ※b=,则当x=3时,2※x ﹣4※x 的结果为 .19. 若31=3,32=9,33=27,34=81,35=243,…,那么2015201233-的末位数字= . 20.如果a a =-,下列说法正确的是( ) ①﹣a 一定是负数 ②﹣a 一定是非正数 ③|a|一定是正数④|a|不能是0三、解答题(共40分)21.(5分) 画一条数轴.在数轴上表示下列各数:20, 2.5,2,2,5---+,并按从小到大的顺序用“<”号把这些数连接起来:22.计算下列各题(每小题5分,共20分)()1 1.5 1.4 4.3 5.2 3.6-+--+ ()()()942813249-÷⨯÷-()()421316233⎛⎫---÷-⨯-⎪⎝⎭ ()()()2222443350.30.95⎛⎫-+-+-⨯--÷- ⎪⎝⎭23.(7分)已知三个有理数a ,b ,c 的积是正数,它们的和是负数,当x=++时,求代数式:2005x 19﹣2008x+2010 的值.24. (8分)某自行车厂一周计划生产700辆自行车,平均每天生产100辆.由于各种原因,实际上每天的生产量与计划量相比有出入.表是某周的生产情况(增产为正,减产为负): 星期 一 二三四 五 六 日 增减+5﹣2 ﹣7+13﹣11+18﹣9(1)根据记录的数据可知前四天共生产 辆; (2)产量最多的一天比产量最少的一天多生产 辆;(3)该厂实行每周计件工资制,每生产一辆得60元,超额完成则每辆再奖10元,少生产一辆则扣20元,那么该厂工人这一周的工资总额是多少?。
人教版七年级数学单元测试(含答案)——第1章有理数单元培优试题
人教版七年级数学单元测试(含答案)——第1章有理数单元培优试题一、选择题1.下列各数中,不是负数的是( ) A .-2 B .3 C .-85D .-0.102.在数轴上距离原点8个单位长度的点所表示的数是( ) A. 8 B. -8 C. 8或-8 D. 4或-43.大于-0.5而小于4的整数共有 ( )A.6个B.5个C.4个D.3个 4.计算1-(-1)的结果是( )A .2B .1C .0D .-2 5.-2.5、0、2、-3这四个数中最小的是 A. 2 B. 0 C. -2 D. -3 6.下列各式计算正确的是( ) A .(-14)-5=-9 B .0-(-3)=3C .(-3)-(-3)=-6D .|5-3|=-(5-3)7.图1所示的数轴的单位长度为1,若点A ,B 表示的两个数的绝对值相等,则点A 表示的数是( ) A .4 B .0 C .-2 D .-48.下列各式结果为负数的是()A. -(-1)B. (-1)2C. -|-1|D. [-(-1)3]29.数学家斐波那契的《计算书》中有这样一个问题:在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘,则刀鞘数为( )A .42只B .49只C .76只D .77只10.有理数a ,b 在数轴上对应的位置如图2所示,则下列结论中正确的是( ) A .a+b >0 B .a-b=0 C .a-b >0 D .ab <0二、填空题11.下列各数中:-6,+2.5,5,0,-1,,100,10%.正数有:________;负数有:14.-的相反数是_____,-的倒数是_____,-的绝对值是_____.15.已知n 为正整数,计算:()[]20171-11-++⨯n = .17.|a |=5,b =-2,且ab >0,则a +b 等于________。
三、简答题20.计算(1) -20+(-14)-(-18)-13; (2)(4) (-81)÷+÷(-16);(5)21. 我国约有9 600 000平方千米的土地,平均1平方千米的土地一年从太阳得到的能量相当于燃烧150 000吨煤所产生的能量.(1)一年内我国土地从太阳得到的能量相当于燃烧多少吨煤所产生的能量?(2)若1吨煤大约可以发出8000度电,那么(1)中的煤大约发出多少度电?(结果用科学记数法表示)22. 在某次抗险救灾中,消防官兵的冲锋舟沿东西方向的河流营救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:km):+14,-9,+8,-7,+13,-6,+10,-5.(1)通过计算说明B地在A地的什么方向,与A地相距多远.(2)救灾过程中,最远处离出发点A有多远?(3)若冲锋舟每千米耗油0.5 L,油箱容量为29 L,则途中还需补充多少升油?答案1. B2. C3. C4. A5. D6. B7. C8. C9. C10. D11. +2.5,5,100,10%;-6,-1,12.点D13. 1.8114. ; -3;15. 2016或201716. 20917. -718. 解:在数轴上表示如图1所示.)=6×(=-20-14-13+18=-47+18=-29;(2)原式=-32+21-4= -15;(3)原式==;(4)原式===;(5)原式=====;(6)原式==-1-1=-2.21. 解:(1)9 600 000×150 000=1 440 000 000 000=1.44×1012(吨).答:一年内我国土地从太阳得到的能量相当于燃烧1.44×1012吨煤所产生的能量.(2)1 440 000 000 000×8000=1.152×1016(度).答:(1)中的煤大约发出1.152×1016度电.22. 解:(1)14-9+8-7+13-6+10-5=18(千米),因为18>0,所以B地在A地的东边18千米处.(2)各点离出发点的距离分别为:14千米,5千米,13千米,6千米,19千米,13千米,23千米,18千米,所以最远处离出发点23千米.(3)这一天走的总路程为:|+14|+|-9|+|+8|+|-7|+|+13|+|-6|+|+10|+|-5|=72(千米),应耗油:72×0.5=36(升),还需补充的油量为:36-29=7(升).所以途中还需补充7升油.人教版初中数学七年级上册第1章《有理数》 单元测试题(一、选择题(本大题有12小题,每小题3分,共36分) 下面每小题给出的四个选项中,只有一个是正确的.1.若海平面以上1045米,记做+1045米,则海平面以下155米,记做( ) A. ﹣1200米 B. ﹣155米 C. 155米 D. 1200米2.下列关于0的说法正确的是( )A. 0是正数B. 0是负数C. 0是有理数D. 0是无理数 3.的相反数是( )A. 2019B. -2019C. 20191D. -201914.如图,数轴上点A 表示的数是( )A. -1B. 0C. 1D. 2 5.在21,0,1,-9四个数中,负数是( ) A.21B. 0C. 1D. -9 6.5的相反数是( )A. -5B. 5C. 51D. 51 7.9的倒数是( ) A.91 B. ﹣91C. 9D. ﹣9 8.某市决定为全市中小学教室安装空调,今年预计投入资金126000000元,其中数字126000000用科学记数法可表示为( )A. 12.6×107B. 1.26×108C. 1.26×109D. 0.126×10109.已知有理数 ,我们把称为a 的差倒数,如:2的差倒数是,-1的差倒数是.如果,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么的值是( )A. -7.5B. 7.5C. 5.5D. -5.5 10.下列比较大小,正确的是( )A. -3<-4B. -(-3)<|-3|C. -21 >-31D. 61 >-7111.已知a <-b ,且ba>0,化简|a|-|b|+|a+b|+|ab|=( ) A. 2a+2b+ab B. -ab C. -2a-2b+ab D. -2a+ab 12.四个互不相等的整数的积为9,则它们的和为( )A. 0B. 8C. 4D. 不能确定二、填空题(本大题有6小题,每小题3分,共18分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.13.|﹣2|的相反数是________.14.计算的结果为________.15.若5x-5的值与2x-9的值互为相反数,则x=________ 16.已知|x ﹣2y|+(y ﹣2)2=0,则x y =________.17.计算:32×3.14+3×(-9.42)=________;-5.4×-1.6×=________.18.已知|a ﹣1|=9,|b+2|=6,且a+b <0,求a ﹣b 的值________.三、解答题(本大题有7小题,共66分) 解答应写出文字说明,证明过程或推演步骤. 19.(8分)计算.(1)-12019-71×[2-(-3)2] (2)(-2)2+(-2)÷(-32 )+|-161 |×(-24)20.(9分)把下列各数填在相应的大括号内: 1,﹣5,|﹣43|,﹣12,0,﹣3.14,+1.99,﹣(﹣6),722 正数集合:{ …} 负数集合:{ …} 整数集合:{ …} 分数集合:{ …}.21.(9分)在数轴上表示下列有理数,并把这些数用“<”排列. 21,+(-23) ,|﹣2.5|,0,﹣1,﹣|﹣3|.22.(6分)已知a 、b 互为相反数,c 、d 互为倒数,求 的值.23.(10分)已知某粮库已存有粮食100吨,本周内粮库进出粮食的记录如下(运进为正):(1)通过计算,说明本周内哪天粮库剩余的粮食最多?(2)若运进的粮食为购进的,购买价格为每吨2000元,运出的粮食为卖出的,卖出的价格为每吨2300元,则这一周的利润为多少?(3)若每周平均进出的粮食大致相同,则再过几周粮库存的粮食可达到200吨?24.(12分)如图,在数轴上有A、B、C三点,A、B两点所表示的有理数分别是2k-4和-2k+4,且k为最大的负整数.点C在A、B之间,且C到B的距离是到A点距离的2倍,动点P从点A出发,以每秒3个单位长度的速度向右运动,到达点B后立即返回,以每秒3个单位长度的速度向左运动;动点Q从点C出发,以每秒l个单位长度的速度向右运动,设它们同时出发,运动时间为t秒,当点P与点Q第二次重合时,P、Q两点停止运动,(1)直接写出A、B、C三点所代表的数值;A:________B:________C:________(2)当t为何值时,P到点A与点Q的距离相等;(3)当t为何值时,P、Q两点间的距离为1个单位长度.25.(12分)观察下列等式=1- ,= - ,= - ,将以上三个等式两边分别相加得:+ + =1- + - + - =1- = .(1)猜想并写出:的结果.(2)直接写出下列各式的计算结果:① + + +…+ .② + + +…+ .(3)探究并计算:+ + +…+ .(参考答案)一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1. B2. C3. A4. C5. D6. A7. A8. B9. A10. D11.D12. A二、填空题(本大题有6小题,每小题3分,共18分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.13. -214. 215. 216. 1617.0;-218. ﹣12或0三、解答题(本大题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤.19. (1)解:-12019- ×[2-(-3)2] =(2)解:(-2)2+(-2)÷(-)+I-l×(-24) =4+3+×(-16)=7-1=6.20.解:正数集合:{1,|﹣|,+1.99,﹣(﹣6),…};负数集合:{﹣5,﹣12,﹣3.14 …};整数集合:{1,﹣5,﹣12,0,﹣(﹣6)…};分数集合:{|﹣|,﹣3.14,+1.99,…}21. 解:如图所示,这些数在数轴上表示如下:把这些数用“<”排列为:﹣|﹣3|<﹢(﹣)<﹣1<0<<|﹣2.5|.22. 解:∵a、b互为相反数,∴a+b=0,∵c、d互为倒数,∴cd=1,∴=(a+b)(a-b)+2cd=0+2=223. (1)解:星期一100+35=135吨;星期二135-20=115吨;星期三115-30=85吨;星期四85+25=110吨;星期五110-24=86吨;星期六86+50=136吨;星期日136-26=110吨.故星期六最多,是136吨。
部编数学七年级上册专题有理数单元测试(培优提升卷)2023年7上册同步培优(解析版)【人教版】含答案
【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题1.19第1章有理数单元测试(培优提升卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021•荣昌区校级模拟)下列各数中,最小的数是( )A.﹣4B.﹣3C.0D.1【分析】根据有理数的大小比较解答即可.【解析】根据有理数比较大小法则:正数大于零,零大于负数,两个负数绝对值大的反而小,∴0、1不符合题意,∵|﹣4|>|﹣3|,∴﹣4<﹣3.故选:A.2.(2022•连山区一模)下列四个数中,最大的负整数是( )A.﹣1.5B.﹣3C.0D.﹣2【分析】根据题中要求是负整数,﹣1.5,0不符合题意;根据两个负数比较大小,绝对值大的反而小即可得出答案.【解析】题中要求是负整数,﹣1.5,0不符合题意;∵2<3,∴﹣2>﹣3,∴最大的负整数是﹣2,故选:D.3.(2022•聊城)实数a的绝对值是54,a的值是( )A.54B.―54C.±45D.±54【分析】根据绝对值的意义直接进行解答【解析】∵|a|=5 4,∴a=±5 4.故选:D.4.(2020秋•津南区期中)有理数a,b在数轴上的位置如图所示,则下列式子中正确的个数是( )①a+b>0;②a﹣b<0;③|a|﹣|b|>0;④﹣a>﹣b.A.2B.3C.4D.1【分析】先根据数轴得出a<0,b>0,且|a|>|b|,再根据有理数的加减法则逐一判断即可.【解析】由数轴知a<0,b>0,且|a|>|b|,①a+b<0,此结论错误;②a﹣b<0,此结论正确;③|a|﹣|b|>0,此结论正确;④﹣a>﹣b,此结论正确;故选:B.5.(2021秋•蔡甸区期中)已知|a|=2,(b+1)2=25,且a<b,则a+b的值是( )A.﹣2或﹣8B.﹣8或6C.2或6D.2或﹣8【分析】根据绝对值和有理数的乘方求出a,b的值,根据a<b分两种情况分别计算即可.【解析】∵|a|=2,(b+1)2=25,∴a=±2,b+1=±5,∴b=4或﹣6,∵a<b,∴当a=2,b=4时,a+b=6;当a=﹣2,b=4时,a+b=2;故选:C.6.(2021秋•栖霞市期末)在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是( )甲:9﹣32÷8=0÷8=0乙:24﹣(4×32)=24﹣4×6=0丙:(36﹣12)÷32=36×23―12×23=16丁:(﹣3)2÷13×3=9÷1=9A.甲B.乙C.丙D.丁【分析】先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解析】甲:9﹣32÷8=9﹣9÷8=778,原来没有做对;乙:24﹣(4×32)=24﹣4×9=﹣12,原来没有做对;丙:(36﹣12)÷32=36×23―12×23=16,做对了;丁:(﹣3)2÷13×3=9÷13×3=81,原来没有做对.故选:C.7.(2021秋•姑苏区校级期末)如果实数﹣1<a<0,那么a,﹣a,a2,1a自小到大顺序排列正确的是( )A.a<﹣a<a2<1aB.﹣a<a<a2<1aC.1a<a<a2<﹣a D.1a<a2<a<﹣a【分析】用特殊值法比较大小即可.【解析】若a=―1 2,﹣a=1 2,a2=1 4,1a=―2,∵﹣2<―12<14<12,∴1a<a<a2<﹣a,故选:C.8.(2018秋•市北区期中)下面关于有理数的说法正确的是( )A.整数和分数统称为有理数B.﹣a一定是负数C.绝对值相等的两个数互为相反数D.两个有理数的和与积均为负数,那么这两个数绝对值较大的数是正数,另一个是负数【分析】利用有理数的加法,乘法法则,相反数,相反数,以及绝对值的性质判断即可.【解析】A、整数和分数统称为有理数,符合题意;B、﹣a不一定是负数,不符合题意;C、绝对值相等的两个数互为相反数或相等,不符合题意;D、两个有理数的和与积均为负数,那么这两个数绝对值较大的数是负数,另一个是正数,不符合题意,故选:A.9.(2021秋•安居区期末)若a与b互为相反数,c与d互为倒数,m的绝对值为2,则|m|﹣c×d+a bm的值为( )A.1B.﹣2C.1或﹣3D.32或52【分析】根据a与b互为相反数,c与d互为倒数,m的绝对值为2,可以求得所求式子的值,本题得以解决.【解析】∵a与b互为相反数,c与d互为倒数,m的绝对值为2,∴a+b=0,cd=1,|m|=2,∴|m|﹣c×d+a b m=2﹣1+0 m=2﹣1+0=1,故选:A.10.(2019秋•滦南县期中)如图,点A在数轴上表示的数是﹣16,点B在数轴上表示的数是8.若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动.问:当AB=8时,运动时间为多少秒?( )A.2秒B.4秒C.2秒或4秒D.2秒或6秒【分析】设当AB=8时,运动时间为t秒,根据题意列方程即可得到结论.【解析】设当AB=8时,运动时间为t秒,由题意得6t+2t+8=8﹣(﹣16)或6t+2t=8﹣(﹣16)+8,解得:t=2或t=4.故选:C.二.填空题(共8小题)11.(2021秋•建华区期末)国家统计局2021年5月11日公布第七次全国人口普查数据结果:2020年全国人口共141178万人,约占世界总人口18%,仍然是世界第一人口大国,我国人口10年来继续保持低速增长态势.数据141178万人用科学记数法可表示为 1.41178×109 人.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解析】141178万人=1411780000人=1.41178×109人.故答案为:1.41178×109.12.(2021秋•巴彦县期末)计算:﹣(23)2+19= ―13 .【分析】先算乘方,再算加法即可.【解析】﹣(23)2+19=―49+19=―1 3.故答案为:―1 3.13.(2020秋•郫都区校级月考)若|x﹣3|+|y+2|=0,则x= 3 ,y= ﹣2 .【分析】根据非负数的性质列出算式,求出x、y的值即可.【解析】根据题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,答案为:3,﹣2.14.(2022•蒲城县一模)请写出一个比﹣4.5大的负整数是 ﹣4(答案不唯一) .(写出一个即可)【分析】两个负数,绝对值大的数反而小,所以写出一个符合条件的负整数即可.【解析】∵两个负数绝对值大的数反而小,∴|﹣4.5|>|﹣4|,∴﹣4>﹣4.5.故答案为:﹣4(答案不唯一).15.(2021秋•普陀区校级月考)三个有理数a、b、c之积是负数,其和也是负数;当x=|a| a+|b|b+|c|c时,则x+1= ±2. .【分析】根据a,b,c的积是负数,它们的和是负数,可分a,b,c有两数是正数,一数是负数;或三数是负数的情况进行讨论.【解析】∵a,b,c的积是负数,它们的和是负数,∴a,b,c有两个数是正数,一个数是负数;或三个数均是负数.①当a,b,c有两个数是正数,一个数是负数时,设a,b是正数,c是负数,∴x=1+1﹣1=1,∴x+1=1+1=2,②当三个数均是负数时,x =﹣1﹣1﹣1=﹣3,∴x +1=﹣3+1=﹣2,综上,x +1=±2,故答案为:±2.16.(2021秋•黔东南州期中)在(﹣2)3,﹣(+5),﹣(﹣3),(﹣1)2020,﹣|6|中,负数有 3 个.【分析】根据有理数的乘方、相反数、绝对值、负数的定义解决此题.【解析】∵(﹣2)3=﹣8<0,﹣(+5)=﹣5<0,﹣(﹣3)=3>0,(﹣1)2020=1>0,﹣|6|=﹣6<0,∴负数有(﹣2)3,﹣(+5),﹣|6|,共3个.故答案为:3.17.(2018秋•兴化市校级期中)下列说法:①若a b =―1,则a 、b 互为相反数;②若a +b <0,且ba>0,则|a +2b |=﹣a ﹣2b ;③一个数的立方是它本身,则这个数为0或1;④若a +b +c <0,ab >0,c >0,则|﹣a |=﹣a ,其中正确的是 ①②④ .【分析】根据相反数、绝对值、乘方、有理数的加法法则、有理数的乘法法则解决此题.【解析】①若ab =―1,则a +b =0.根据相反数的定义,符号相反、绝对值相等的两个数互为相反数,那么①正确.②若a +b <0,且ba>0,则a <0,b <0,即a +2b <0,故|a +2b |=﹣a ﹣2b ,那么②正确.③根据乘方的定义,﹣1、0、1的立方均等于本身,那么③不正确.④根据有理数的乘方、加法法则,由a +b +c <0,ab >0,c >0,得a <0,b <0,故|﹣a |=﹣a ,那么④正确.综上:正确的有①②④.故答案为:①②④.18.(2022春•房县期末)我们知道:相同加数的和用乘法表示,相同因数的积用乘方表示.类比拓展:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”.一般地,我们把n 个a (a ≠0)相除记作an ,读作“a 的圈n 次方”.根据所学概念,求(﹣4)③的值是 ―14 .【分析】根据新定义内容列出算式,然后将除法转化为乘法,再根据乘法和乘方的运算法则进行化简计算.【解析】(﹣4)③=(﹣4)÷(﹣4)÷(﹣4)=﹣4×14×14=―14.故答案为:―14.三.解答题(共6小题)19.(2021秋•云梦县校级月考)把下列各数分别填入相应的集合:+6,0,﹣8,π,﹣4.8,﹣7,227,0.6,―58.整数集合{ +6,0,﹣8,﹣7 };分数集合{ ﹣4.8,227,0.6,―58 };正有理数集合{ +6,227,0.6 };负有理数集合{ ﹣8,﹣4.8,﹣7,―58 };非负有理数集合{ +6,0,227,0.6 };自然数集合{ +6,0 }.【分析】根据有理数的分类进行填空即可.【解析】整数集合{+6,0,﹣8,﹣7};分数集合{﹣4.8,227,0.6,―58};正有理数集合{+6,227,0.6};负有理数集合{﹣8,﹣4.8,﹣7,―58};非负有理数集合{+6,0,227,0.6};自然数集合{+6,0}.故答案为:+6,0,﹣8,﹣7;﹣4.8,227,0.6,―58;+6,227,0.6;﹣8,﹣4.8,﹣7,―58;+6,0,227,0.6;+6,0.20.(2022春•龙凤区期末)计算:(1)(―12―59+23)÷118;(2)﹣14﹣(―13)2×(﹣3)3﹣(﹣1)2.【分析】(1)将除法变为乘法,再根据乘法分配律简便计算;(2)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算.【解析】(1)(―12―59+23)÷118=(―12―59+23)×18=―12×18―59×18+23×18=﹣9﹣10+12=﹣7;(2)﹣14﹣(―13)2×(﹣3)3﹣(﹣1)2=﹣1―19×(﹣27)﹣1=﹣1+3﹣1=1.21.(2021秋•赵县月考)某集团公司对所属甲.乙两分厂下半年经营情况记录(其中“+”表示盈利,“﹣”表示亏损,单位:亿元)如下表.月份七月份八月份九月份十月份十一月份十二月份甲厂﹣0.2﹣0.4+0.50+1.2+1.3乙厂+1.0﹣0.7﹣1.5+1.8﹣1.80(1)计算八月份乙厂比甲厂多亏损多少亿元?(2)分别计算下半年甲、乙两个工厂平均每月盈利或亏损多少亿元?【分析】(1)由图可得出乙厂亏0.7亿元,甲厂亏0.4亿元,由此可得出结果.(2)将甲乙两场每个月的盈利相加即可得出结果.【解析】(1)由图可得出乙厂亏0.7亿元,甲厂亏0.4亿元,∴可得出乙比甲多亏0.3亿元.(2)甲:﹣0.2﹣0.4+0.5+0+1.2+1.3=2.4亿元;乙:1.0﹣0.7﹣1.5+1.8﹣1.8+0=﹣1.2亿元.∴甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元答:八月份乙厂比甲厂多亏损0.3亿元;甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元22.(2018秋•钟楼区校级月考)阅读理解:小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子|x+1|+|x﹣2|取最小值时,相应的x取值范围是 ﹣1≤x≤2 ,最小值是 3 ”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:①当式子|x﹣2|+|x﹣4|+|x﹣6|取最小值时,相应x= 4 ,最小值是 4 .②已知y=|2x+8|﹣|4x+2|,求相应的x的取值范围及y的最大值,写出解答过程.【分析】阅读理解:根据线段上的点与线段的端点的距离最小,可得答案;(1)根据线段上的点与线段的端点的距离最小,可得答案;(2)根据两个绝对值,可得分类的标准,根据每一段的范围,可得到答案.【解析】阅读理解:当式子|x+1|+|x﹣2|取最小值时,相应的x取值范围是﹣1≤x≤2,最小值是3,故答案为﹣1≤x≤2,3;(1)当式子|x﹣2|+|x﹣4|+|x﹣6|取最小值时,相应的x=4,最小值是4;故答案为4,4;(2)当x≥―12时y=﹣2x+6,当x=―12时,y最大=7;当﹣4≤x≤―12时,y=6x+10,当x=―12时,y最大=7;当x≤﹣4,时y=2x﹣6,当x=﹣4时,y最大=﹣14,所以x=―12时,y有最大值y=7.23.(2021秋•如皋市期末)定义:数轴上有A,B两点,若点A到原点的距离为点B到原点的距离的两倍,则称点A为点B的2倍原距点.已知点A,M,N在数轴上表示的数分别为4,m,n.(1)若点A是点M的2倍原距点,①当点M在数轴正半轴上时,则m= 2 ;②当点M在数轴负半轴上,且为线段AN的中点时,判断点N是否是点A的2倍原距点,并说明理由;(2)若点M,N分别从数轴上表示数10,6的点出发向数轴负半轴运动,点M每秒运动速度为2个单位长度,点N每秒运动速度为a个单位长度.若点M为点A的2倍原距点时,点A恰好也是点N的2倍原距点,请直接写出a所有可能的值.【分析】(1)①点A到原点的距离为4,根据定义可知点M到原点距离为2,点M在数轴正半轴,进而可求出m.②m<0,则m=﹣2,4﹣(﹣2)=﹣2﹣n得出n的值,再根据定义来判断.(2)设t秒时,点M为点A的2倍原距点,点A恰好也是点N的2倍原距点;由|10﹣2t|=2×4求出t的值,将t代入4=2×|6﹣at|,求出a的所有可能值即可.【解析】(1)①4|m|=2,∴m=±2.∵m>0,∴m=2.故答案为:2.②∵m<0,∴m=﹣2.∵点M为线段AN的中点,∴4﹣(﹣2)=﹣2﹣n,解得n=﹣8.∴ON=8,ON=2OA,故N点是点A的2倍原距点.(2)设t秒时,点M为点A的2倍原距点,点A恰好也是点N的2倍原距点.∴|10―2t|=2×4①4=2×|6―at|②,解①得:t1=9,t2=1.将t1=9代入②得:4=2×|6﹣9t|,解得:a1=89,a2=49;将t2=1代入②得:4=2×|6﹣a|,解得:a3=4,a4=8.故a所有的可能值为:4,8,49,89.24.(2020秋•诸暨市期中)阅读下列材料:|x|=x,x>00,x=0―x,x<0,即当x<0时,x|x|=xx=―1.用这个结论可以解决下面问题:(1)已知a,b是有理数,当ab≠0时,求a|a|+b|b|的值;(2)已知a,b,c是有理数,当abc≠0时,求a|a|+b|b|+c|c|的值;(3)已知a,b,c是有理数,a+b+c=0,abc<0,求b c|a|+a c|b|+a b|c|的值.【分析】(1)对a、b进行讨论,即a、b同正,a、b同负,a、b异号,根据绝对值的意义计算a|a|+b|b|得到结果;(2)对a、b、c进行讨论,即a、b、c同正、同负、两正一负、两负一正,然后计算a|a|+b|b|+c|c|得结果;(3)根据a,b,c是有理数,a+b+c=0,把求b c|a|+a c|b|+a b|c|转化为求a|a|+b|b|+c|c|的值,根据abc<0得结果.【解析】(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,a|a|+b|b|=―1﹣1=﹣2;②a>0,b>0,a|a|+b|b|=1+1=2;③a,b异号,a|a|+b|b|=0.故a|a|+b|b|的值为±2或0.(2)已知a,b,c是有理数,当abc≠0时,①a<0,b<0,c<0,a|a|+b|b|+c|c|=―1﹣1﹣1=﹣3;②a>0,b>0,c>0,a|a|+b|b|+c|c|=1+1+1=3;③a,b,c两负一正,a|a|+b|b|+c|c|=―1﹣1+1=﹣1;④a,b,c两正一负,a|a|+b|b|+c|c|=―1+1+1=1.故a|a|+b|b|+c|c|的值为±1,或±3.(3)已知a,b,c是有理数,a+b+c=0,abc<0.所以b+c=﹣a,a+c=﹣b,a+b=﹣c,a,b,c两正一负,所以b c|a|+a c|b|+a b|c|=a|a|+b|b|+c|c|=﹣[a|a|+b|b|+c|c|]=﹣1.。
第一章有理数培优测试卷2022-2023学年人教版七年级数学上册
第一章 有理数 培优测试卷一.选择题1. 一个数和它的倒数相等,则这个数是( )A .1B .C .±1D .±1和02. 有理数a ,b 在数轴上的位置如图,下列选项正确的是( )A .a +b >a -bB .ab >0C .|b -1|<1D .|a -b|>13. 若y x =,则y x 、的关系是( )A 、相等B 、互为相反数C 、都为0D 、相等或互为相反数4. 明明家为起点,向东走记为正,向西走记为负.明明从家出发,先走了+20米,又走了-30米,这时明明离家的距离是( )米.A .20B .10C .-10D .-205. 在有理数中﹣(﹣4),﹣42,﹣,0,(﹣5)3,﹣中,负数有( )A .1个B .2个C .3个D .4个6. 某商品的原价为a 元,提价10%后发现销售量锐减,欲恢复原价出售,则应约降价( )A 、10%B 、9%C 、9.1%D 、11.3%7.的值是( ) A . B . C . D .8. 将数1.4960用四舍五入法取近似数,若精确到百分位,则得到的近似数是( )A .1.49B .1.50C .1.496D .1.4 9. 下列说法正确的是( )A 、负数的绝对值比正数的绝对值小 ()()111022-+-2-()212-0102-B 、一个数的绝对值越大,表示它的点在数轴上就越靠右C 、一个数的绝对值越大,表示它的点在数轴上离原点越远D 、任意一个数的绝对值一定大于零10. 去年 11 月份我市某一天的最高气温是 10∘C ,最低气温是 −1∘C ,那么这一天的最高气温比最低气温高 ( )A. −9 ∘CB. −11 ∘CC. 9 ∘CD. 11∘C11. 若数轴上点 A ,B 表示的数分别为 8 和 −15,则点 A ,B 之间的距离可以表示为 ( )A. 8+(−15)B. 8−(−15)C. (−8)+15D. (−8)−15 12. 已知n 为正整数,从1开始,连续n 个正整数的平方和有如下的公式:12+22+32+…+n 2=1 6n (n +1)(2n +1).请根据这个公式计算:从2开始,连续10个偶数的平方和22+42+62+82+…+202的值等于( )A .2870B .1540C .770D .385二.填空题13. 在数轴上与-3距离四个单位的点表示的数是__________. 14. a =3,则a = 若x =-2,则x = 若,02=-m 则m 的值为15. 已知数轴上A 、B 表示的数互为相反数,并且两点间的距离是6,点A 在点B 的左边,则点A 、B 表示的数分别是 .16. 近似数69.65010⨯精确到___________位.17. 计算:−2×3= ,(−2)÷(−4)= ,(−4)2= .18. 如果, 那么 (填“>”、“<”或“=”).三.解答题19. 计算: (1)212525-⨯+-(2)()2127322⎛⎫---+-⨯- ⎪⎝⎭20. 已知|a ﹣3|+|b +5|=0,求:(1)a +b 的值;(2)|a |+|b |的值.21.有理数y x ,在数轴上的对应点如下图所示,图中0为原点,且A 到原点的距离比B 到原点的距离大.(1)在数轴上表示出x -和y -;(2)试把y x y x --,,0,,这五个数从大到小用“>”连接起来.22. 某粮油公司3天内进出库的粮食吨数如下(“+“表示进库,“”表示出库):+26,﹣32,﹣20,+34,﹣28,﹣30.(1)经过这3天,如果粮库里还有粮食450吨,那么3天前粮库里存粮多少吨?(2)如果进出库粮食的装卸费都是15元/吨,那么这3天公司支付的装卸费共多少元?23. 对于有理数a ,b ,n ,d ,若|-||-|a n b n d +=,则称a 和b 关于n 的“相对关系值”为d ,例如:21313-+-=,则2和3关于1的“相对关系值”为3.(1)3-和5关于1的“相对关系值”为__________.(2)若a 和2关于3的“相对关系值”为10,求a 的值.24. a ,b 分别是数轴上两个不同点A ,B 所表示的有理数,且|a|=5,|b|=2,A ,B 两点在数轴上的位置如图所示:(1)试确定数a ,b ;(2)A ,B 两点相距多少个单位长度?(3)若C 点在数轴上,C 点到B 点的距离是C 点到A 点距离的13,求C 点表示的数;(4)点P从A点出发,先向左移动一个单位长度,再向右移动2个单位长度,再向左移动3个单位长度,再向右移动4个单位长度,依次操作2 019次后,求P点表示的数.。
浙教版(2024)七年级上册第二章 有理数的运算 培优(含答案)
浙教版七年级上册第二章有理数的运算培优一、选择题1.2024年4月25号,我国神舟十八号载人飞船发射取得圆满成功,在发射过程中,飞船的速度约为每小时29000千米,数据29000用科学记数法表示为()A.2.9×106B.2.9×105C.2.9×104D.29×1052.根据有理数加法法则,计算2+(﹣3)过程正确的是( )A.+(3+2)B.+(3﹣2)C.﹣(3+2)D.﹣(3﹣2)3.有一只蜗牛从数轴的原点出发,先向左(负方向)爬行9个单位长度,再向右爬行3个单位长度,用算式表示上述过程与结果,正确的是( )A.−9+3=−6B.−9−3=−12C.9−3=6D.9+3=124.实数a,b,c在数轴上的位置如图所示,下列结论正确的是( )A.b+c>3B.a﹣c<0C.|a|>|c|D.﹣2a<﹣2b5.若式子x−2+(y+3)2=0,则(x+y)2025等于( )A.−1B.1C.−32025D.320256.计算:(−517)2023×(−325)2024=( )A.−1B.1C.−517D.−1757.22023个位上的数字是( )A.2B.4C.8D.68.求1+2+22+23+⋯+22018的值,可令S=1+2+22+23+⋯+22018,则2S=2+22+23+⋯+ 22019,因此2S−S=22019−1,仿照以上推理,计算出1+5+52+53+⋯+52018的值为( )A.52018−1B.52019−1C.52019−14D.52018−149.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为( )A.(12)3米B.(12)5米C.(12)6米D.(12)12米10.方程(x2+x﹣1)x+3=1的所有整数解的个数是( )A.5个B.4个C.3个D.2个二、填空题11.用四舍五入法对0.618取近似数(精确到0.1)是 .12.小明在电脑中设置了一个有理数运算程序:输入数a,加*键,再输入数b,就可以得到运算a*b=3a+2b,请照此程序运算(−4)*3= .13.定义一种新的运算“(a,b)”,若a c=b,则(a,b)=c,如:(2,16)=4.已知(3,9)=x,(3,y)=4,则x−y= .14.已知|3a+b+5|+(2a−2b−2)2=0,那么2a2−3ab的值为 .15.“转化”是一种解决数学问题的常用方法,有时借助几何图形可以帮助我们找到转化的方法.例如,借助图(1)可以把算式1+3+5+7+9+11转化为62=36.这是将数字求和问题转化为面积求和问题,从而建立数与形的联系,使问题易于解决.利用这样的方法,请观察图(2)计算12+14+18+116+132+164= .16.《算法统宗》是我国明代数学著作,它记载了多位数相乘的方法,如图1给出了34×25=850的步骤:①将34,25分别写在方格的上边和右边;②把上述各数字乘积的十位(不足写0)与个位分别填入小方格中斜线两侧;③沿斜线方向将数字相加,记录在方格左边和下边;④将所得数字从左上到右下依次排列(满十进一).若图2中a,b,c,d均为正整数,且c,d都不大于8,则b的值为 ,该图表示的乘积结果为 .三、解答题17.(1)计算:(−34−59+712)÷(−136).(2)计算:−12022−|12−1|÷3×[2−(−3)2].18.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)19.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.20.用“※”定义一种新运算,规定a※b=b2−a,如1※3=32−1=8,(1)求1※2的值;(2)求(1※2)※(−5)的值.21.老师设计了一个有理数运算的游戏.规则如下:(1)若黑板上的有理数为“−4”,求应写在纸条上的有理数;(2)学习委员发现:若正确计算后写在纸条上的结果为正数,则老师在黑板上写的最大整数是多少?22.为了增强市民的节约用水意识,自来水公司实行阶梯收费,具体情况如表:每月用水量收费不超过10吨的部分水费1.6元/吨10吨以上至20吨的部分水费2元/吨20吨以上的部分水费2.4元/吨(1)若小刚家6月份用水15吨,则小刚家6月份应缴水费_____ 元.(直接写出结果)(2)若小刚家7月份的平均水费为1.75元/吨,则小刚家7月份的用水量为多少吨?(3)若小刚家8月、9月共用水40吨,9月底共缴水费79.6元,其中含2元滞金(水费为每月底缴纳.因8月份的水费未按时缴,所以收取了滞纳金),已知9月份用水比8月份少,求小明算8、9月各用多少吨水?四、综合题23.阅读理解:计算(1+12+13)(12+13+14)−(1+12+13+14)(12+13)时,若把分别(12+13)与(12+13+14)看作一个整体,再利用乘法分配律进行计算,可以大大简化难度,过程如下:解:令12+13=x,12+13+14=y,则原式=.(1+x)y−(1+y)x=y+xy−x−xy=y−x=1 4(1)上述过程使用了什么数学方法? ;体现了什么数学思想? ;(填一个即可)(2)用上述方法计算:①(1+12+13+14)(12+13+14+15)−(1+12+13+14+15)(12+13+14);②(1+12+13+…+1n−1)(12+13+14+…+1n)−(1+12+13+…+1n)(12+13+14…+1n−1);③计算:1×2×3+2×4×6+3×6×9+4×8×12+5×10×151×3×5+2×6×10+3×9×15+4×12×20+5×15×25.答案解析部分1.【答案】C2.【答案】D3.【答案】A4.【答案】B5.【答案】A6.【答案】D7.【答案】C8.【答案】C9.【答案】C10.【答案】B11.【答案】0.612.【答案】−613.【答案】−7914.【答案】−415.【答案】636416.【答案】3;72817.【答案】(1)26;(2)1618.【答案】图见解答,−3<3<−(−2)<|−3|<(−2)2219.【答案】(1)5,2(2)①8或−2;②9;③102313220.【答案】(1)3(2)2221.【答案】(1)4(2)322.【答案】(1)解:∵小刚家6月份用水15吨,∴小刚家6月份应缴水费为10×1.6+(15-10)×2=26(元),故答案为:26.(2)解:由题意知小刚家7月份的用水量超过10吨而不超过20吨,设小刚家7月份用水量为x吨,依题意得:1.6×10+2(x-10)=1.75x ,解得:x =16,答:小刚家7月份的用水量为16吨.(3)解:因小刚家8月、9月共用水40吨,9月份用水比8月份少,所以8月份的用水量超过了20吨.设小刚家9月份的用水量为x 吨,则8月份的用水量为(40-x )吨,①当x≤10时,依题意可得方程:1.6x+16+20+2.4(40-x-20)+2=79.6解得:x =8,②当10<x <20时,依题意得:16+2(x-10)+16+20+2.4(40-x-20)+2=79.6解得:x =6不符合题意,舍去.综上:小刚家8月份用水32吨,9月份用水8吨.23.【答案】(1)换元法;整体思想(转化思想)(2)解:①令12+13+14=a ,12+13+14+15=b ,∴b-a=15,∴原式=(1+a )b-(1+b )a=b+ab-a-ab=b-a=15;②令12+13+…+1n−1=m ,12+13+14+1n =t ,∴t-m=1n,∴原式=(1+m )t-(1+t )m=t+mt-m-mt=t-m=1n;③令1×2×3=x ,1×3×5=y ,∴x y =615=25∴原式=x +2x +3x +4x +5x y +2y +3y +4y +5y =15x 15y =x y =25.。
有理数单元培优测试卷
一、初一数学有理数解答题压轴题精选(难)1.如图,在数轴上每相邻两点间的距离为一个单位长度,点、、、对应的数分别是,且 .(1)那么 ________, ________:(2)点以个单位/秒的速度沿着数轴的正方向运动,秒后点以个单位/秒的速度也沿着数轴的正方向运动,当点到达点处立刻返回,与点在数轴的某点处相遇,求这个点对应的数;(3)如果、两点以(2)中的速度同时向数轴的负方向运动,点从图上的位置出发也向数轴的负方向运动,且始终保持,当点运动到时,点对应的数是多少?【答案】(1)-6;-8(2)解:由(1)可知:,,,,点运动到点所花的时间为,设运动的时间为秒,则对应的数为,对应的数为: .当、两点相遇时,,,∴ .答:这个点对应的数为;(3)解:设运动的时间为对应的数为:对应的数为:∴∵∴∵对应的数为∴①当,;②当,,不符合实际情况,∴∴答:点对应的数为【解析】【解答】解:(1)由图可知:,∵,∴,解得,则;【分析】(1)由a、d在数轴上的位置可得d=a+8,代入已知的等式可求得a的值,再根据数轴可确定原点的位置;(2)根据相遇问题可求得相遇时间,然后结合题意可求解;(3)根据AB=AC列方程,解含绝对值的方程可求解.2.如图1,A、B两点在数轴上对应的数分别为﹣12和4.(1)直接写出A、B两点之间的距离;(2)若在数轴上存在一点P,使得AP= PB,求点P表示的数.(3)如图2,现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP=4OQ时的运动时间t的值.【答案】(1)解:A、B两点之间的距离是:4﹣(﹣12)=16(2)解:设点P表示的数为x.分两种情况:①当点P在线段AB上时,∵AP= PB,∴x+12=(4﹣x),解得x=﹣8;②当点P在线段BA的延长线上时,∵AP= PB,∴﹣12﹣x=(4﹣x),解得x=﹣20.综上所述,点P表示的数为﹣8或﹣20(3)解:分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,∵OP=4OQ,∴12﹣5t=4(4﹣2t),解得t=,符合题意;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,∵OP=4OQ,∴|12﹣5t|=4×3(t﹣2),∴12﹣5t=12t﹣24,或5t﹣12=12t﹣24,解得t=,符合题意;或t=,不符合题意舍去.综上所述,当OP=4OQ时的运动时间t的值为或秒【解析】【分析】(1)根据两点间的距离公式即可求出A、B两点之间的距离;(2)设点P表示的数为x.分两种情况:①点P在线段AB上;②点P在线段BA的延长线上.根据AP= PB列出关于x的方程,求解即可;(3)根据点Q的运动方向分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,根据OP=4OQ列出关于t的方程,解方程即可.3.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【答案】(1)解:∵a,b,c满足|a+5|+|b﹣2|+|c﹣3|=0,∴a=﹣5,b=2,c=3.设点P对应的数为x.当x<﹣5时,﹣5﹣x+2﹣x=3﹣x,解得:x=﹣6;当﹣5≤x<2时,x﹣(﹣5)+2﹣x=3﹣x,解得:x=﹣4;当2≤x<3时,x﹣(﹣5)+x﹣2=3﹣x,解得:x=0(舍去);当x≥3时,x﹣(﹣5)+x﹣2=x﹣3,解得:x=﹣6(舍去).综上所述:在数轴上存在点P,使得PA+PB=PC,点P对应的数为﹣6或﹣4.(2)解:AB﹣BC的值不变,理由如下:当运动时间为t秒时,点A对应的数为t﹣5,点B对应的数为3t+2,点C对应的数为5t+3,∴AB﹣BC=3t+2﹣(t﹣5)﹣[5t+3﹣(3t+2)]=6.∴AB﹣BC的值不变.【解析】【分析】由绝对值的非负性可求出a,b,c的值.(1)设点P对应的数为x,分x <﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况考虑,由PA+PB=PC利用两点间的距离公式,即可得出关于x的一元一次方程,解之即可得出结论;(2)找出当运动时间为t秒时点A,B,C对应的数,进而可求出AB﹣BC=6,此题得解.4.同学们,我们都知道:|5-2|表示5与2的差的绝对值,实际上也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|表示5与-2的差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)|﹣4+6|=________;|﹣2﹣4|=________;(2)找出所有符合条件的整数x,使|x+2|+|x-1|=3成立;(3)若数轴上表示数a的点位于﹣4与6之间,求|a+4|+|a﹣6|的值;(4)当a=________时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是________;(5)当a=________时,|a﹣1|+|a+2|+|a﹣3|+|a+4|+|a﹣5|+…+|a+2n|+|a﹣(2n+1)|的值最小,最小值是________.【答案】(1)2;6(2)解:此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,故当-2≤x≤1的时候即可满足条件,又因为x是整数,所以x的值可以为:-2,-1,0,1.(3)解:∵数轴上表示数a的点位于﹣4与6之间,∴a+4>0,a﹣6<0,∴|a+4|+|a﹣6|=a+4-a+6=10;(4)1;9(5)1;2n2+3n【解析】【解答】(1)|﹣4+6|=|2|=2,|﹣2﹣4|=|-6|=6;(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a表示的数是1的时候,|a﹣1|+|a+5|+|a﹣4|的值最小,当a=1的时候,|a﹣1|+|a+5|+|a﹣4|=|1﹣1|+|1+5|+|1﹣4|=9;(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1当a=1时原式=3+2+5+4+……+(2n+1)+2n=2+3+4+5+……+2n+(2n+1)== 2n2+3n故:答案为1, 2n2+3n .【分析】(1)由于绝对值符号具有括号的作用,先按有理数的加减法法则算出绝对值符号里面的,再根据绝对值的意义去掉绝对值符号即可;(2)此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,从而找出1到-2 的整数即可;(3)根据有理数的加减法法则,首先判断出a+4>0,a﹣6<0,再根据绝对值的意义去掉绝对值符号合并同类项即可;(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a表示的数是介于4和-5之间的数1的时候,即可使其值最小,然后将a=1代入再根据绝对值的意义化简即可;(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)| 表示的是a到1,-2,3,-4,5,……-2n,2n+1的距离和,故要使,|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1,把a=1代入根据绝对值的意义即可求出答案。
人教版七年级数学第1章 有理数 单元培优测试卷两套附答案解析
人教版七年级数学 第1章 有理数 培优测试卷一附答案解析(全卷总分150分)一、选择题(每小题3分,共30分)1. 如图,数轴上的两个点A 、B 所表示的数分别是a 、b ,那么a ,b ,—a ,—b 的大小关系是( )A. b<—a<—b<aB. b<—b<—a<aC. b<—a<a<—bD. —a<—b<b<a 2. 如果b a ,互为相反数,那么下面结论中不一定正确的是( )A. 0=+b aB. 1-=b aC. 2a ab -=D. b a =3. 若│a│=│b│,则a 、b 的关系是( )A. a=bB. a=-bC. a+b=0或a -b=0D. a=0且b=04. 已知数轴上两点A 、B 到原点的距离是2和7,则A ,B 两点间的距离是 A. 5 B. 9 C. 5或9 D. 75. 若a<0,则下列各式不正确的是( )A. 22)(a a -=B. 22a a =C. 33)(a a -=D.)(33a a --=6. -52表示( )A. 2个-5的积B. -5与2的积C. 2个-5的和D. 52的相反数7. -42+ (-4) 2的值是( )A. –16B. 0C. –32D. 32 8. 已知a 为有理数时,1122++a a =( )A. 1B. -1C. 1±D. 不能确定9. 设n 是自然数, 则n n 1(1)(1)2+-+-的值为( )A. 0B. 1C. -1D. 1或-110. 已知|x|=5,|y|=3,且x>y ,则x +y 的值为( )A . 8B . 2C . -8或-2D . 8或211. 我国西部地区面积约为640万平方公里,640万用科学记数法表示为( )0 AGF E D C BA A. 464010⨯ B. 56410⨯ C. 66410⨯.D. 6410⨯7. 12. 京九铁路的全长用四舍五入法得到近似数为2.5×106m ,则它精确到( )A. 万位B. 十万位C. 百万位D. 千位二、填空题(每小题3分,共48分)1. 已知a 是绝对值最小的负整数,b 是最小正整数,c 是绝对值最小的有理数,则c+a+b= .2. 数轴上点A 表示的数为-2,若点B 到点A 的距离为3个单位,则点B 表示的数为 .3. 如图所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A 表示-4,点G 表示8.(1)点B 表示的有理数是 ;表示原点的是点 .(2)图中的数轴上另有点M 到点A ,点G 距离之和为13,则这样的点M 表示的有理数是 .4.-⎪⎪⎪⎪⎪⎪-23的相反数是 .5. 如果x 2=9,那么x 3= .6. 如果2-=-x ,则x = .7. 化简:|π-4|+|3-π|= .8. 绝对值小于2.5的所有非负整数的和为 ,积为 . 9.使25++-x x 值最小的所有符合条件的整数x有 .10. 若 a 、b 互为相反数,c 、d 互为倒数,则 (a +b )10 -(cd ) 10 = . 11. 若a 、b 互为相反数,c 、d 互为倒数,3=x ,则式子2(a +b )-(-cd )2016+x 的值为 .12. 已知()0422=-++y x ,求x y 的值为 .13. 近似数2.40×104精确到 位,它的有效数字是 . 14. 观察下列算式发现规律:71=7,72=49,73=343,74=2401,75=16807,76=117649,……,用你所发现的规律写出:72017的个位数字是 . 15. 观察等式:1+3=4=22,1+3+5=9=32 ,1+3+5+7=16=42 ,1+3+5+7+9=25=52 ,……猜想:(1)1+3+5+7…+99 = ;(2) 1+3+5+7+…+(2n -1)= .(结果用含n 的式子表示,其中n =1,2,3,……).16. 一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是 个单位. 三、解答题(共82分)1. (12分)计算:(1))49()2115()375()25.4(37153)371012(+---+--++-(2)10.12512(16)(2)2-⨯⨯-⨯-(3)51)716(5)31112(5)31137(51)7111(⨯++÷++÷-+⨯-(4)+-+-+-31412131121 (999)110001-2. (5分)计算1-3+5-7+9-11+…+97-99.3. (5分)已知数轴上有A 和B 两点,它们之间的距离为1,点A 和原点的距离为2,那么所有满足条件的点B 对应的数有哪些?4. (6分)“*”代表一种新运算,已知a ba b ab+*=,求x y *的值.其中x 和y 满足21()|13|02x y ++-=.5. (6分)已知()0212=-++b a ,求(a +b)2016+a 2017.6. (6分)已知a ,b 互为相反数,c 、d 互为倒数,x 的绝对值为5.试求下式的值:20162)2017+x-a++-.b++cd)()((cdab7. (6分)已知│a│=4,│b│=3,且a>b,求a、b的值.8. (6分)已知│a│=2,│b│=5,且ab<0,求a+b的值.9. (6分)探索规律:将连续的偶2,4,6,8,…,排成如下表:2 4 6 8 1012 14 16 18 2022 24 26 28 3032 34 36 38 40… …(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五个数的和能等于2010吗?如能,写出这五位数,如不能,说明理由。
有理数单元测试题及答案
有理数单元测试题及答案一、选择题(每题2分,共20分)1. 下列各数中,不是有理数的是()。
A. -3.14B. √2C. 0D. π2. 若a是有理数,b是有理数,那么a+b一定是()。
A. 有理数B. 无理数C. 整数D. 分数3. 有理数-1.5和2.5的和是()。
A. 1B. 0C. -1D. 1.54. 下列哪个数是负数?()A. 5B. -5C. 0D. 3.145. 有理数的乘法中,负负得正,那么-3×(-2)等于()。
A. 6B. -6C. 3D. -3二、填空题(每题2分,共20分)1. 有理数-7和5的差是_________。
2. 若两个有理数的积为0,则这两个数中至少有一个是__________。
3. 有理数-4的绝对值是__________。
4. 若a是有理数,且a²=a,则a可以是__________或__________。
5. 有理数的除法中,0除以任何非零有理数都等于__________。
三、计算题(每题5分,共30分)1. 计算下列表达式的值:(-2)×(-3) + 4÷(-2) - 5。
2. 计算下列表达式的值:(-7)×3 - (-4)×2 + 6。
3. 计算下列表达式的值:(-1)^2 + √4 - 2×(-3)。
4. 计算下列表达式的值:(-3)×(-2)×(-4) - 2^3。
四、解答题(每题10分,共30分)1. 某商店在一天内销售了三种商品,分别获得了利润-150元、200元和-100元。
请问这家商店当天的总利润是多少?2. 已知有理数a、b、c,其中a=-2,b=3,c=-4,求a+b+c的值。
3. 一个数的平方等于它自身,这个数可以是哪些有理数?答案:一、选择题1. B2. A3. C4. B5. A二、填空题1. -122. 03. 44. 0,15. 0三、计算题1. -32. -53. 74. -24四、解答题1. 总利润=-150+200-100=-50元2. a+b+c=-2+3-4=-33. 这个数可以是0或1。
第2章有理数单元测试
2022-2023学年七年级数学上学期复习备考高分秘籍【苏科版】专题2.5第2章有理数单元测试(培优提升卷)(七上苏科)注意事项:本试卷满分120分,试题共26题,其中选择8道、填空10道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题2分,共16分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·江苏·七年级期中)冰箱冷藏室的温度零上3℃,记作+3℃,冷冻室的温度零下8℃,应记作( )A.8℃B.﹣8℃C.11℃D.﹣5℃【答案】B【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】冰箱冷藏室的温度零上3℃,记作+3℃,冷冻室的温度零下8℃,应记作﹣8℃.故选:B.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.(2022·江苏·扬州市江都区实验初级中学七年级阶段练习)下列运算中,正确的是( )A.-32=(-3)2B.(-1)2022=-2022×(-4)=4×(-4)C.7-(-3)=7+3D.143.(2021·江苏南京·七年级期末)有理数a、b、c在数轴上对应点的位置如图所示,若|b|>|c|,则下列结论中正确的是()A .abc <0B .b +c <0C .a +c >0D .ac >ab 【答案】B 【分析】根据题意,a 和b 是负数,但是c 的正负不确定,根据有理数加减乘除运算法则讨论式子的正负.【详解】解:∵|b |>|c |,∴数轴的原点应该在表示b 的点和表示c 的点的中点的右边,∴c 有可能是正数也有可能是负数,a 和b 是负数,ab >0,但是abc 的符号不能确定,故A 错误;若b 和c 都是负数,则b +c <0,若b 是负数,c 是正数,且|b |>|c |,则b +c <0,故B 正确;若a 和c 都是负数,则a +c <0,若a 是正数,c 是负数,且|a |>|c |,则a +c <0,故C 错误;若b 是负数,c 是正数,则ac <ab ,故D 错误.故选:B .【点睛】本题考查数轴和有理数的加减乘除运算法则,解题的关键是通过有理数加减乘除运算法则判断式子的正负.4.(2022·江苏无锡·七年级阶段练习)在简便运算时,把24×(-994748)变形成最合适的形式是( )A .24×(148-100)B .24×(-100-148)C .24×(100-148)D .24×(-99+4748)5.(2022·江苏扬州·七年级阶段练习)如图,半径为1个单位长度的圆从A 点沿数轴向左滚动(无滑动)两周到达点B ,则点B 表示的数是( )A.2πB.-4πC.-4π+1D.-4π-1【答案】D【分析】先求出滚动两周的距离,然后根据数轴上的点与实数一一对应,可得B点表示的数.【详解】解:滚动两周的距离为2×2π×1=4π,∴点B表示的数是-4π-1,故选:D.【点睛】本题考查了数轴上的动点问题,求出滚动两周的距离是解题的关键.6.(2022·江苏·七年级专题练习)下列说法中,正确的个数是( )①若|1a|=1a,则a≥0;②若|a|>|b|,则有(a+b)(a﹣b)是正数;③A、B、C三点在数轴上对应的数分别是﹣2、6、x,若相邻两点的距离相等,则x=2;④若代数式2x+|9﹣3x|+|1﹣x|+2011的值与x无关,则该代数式值为2021;⑤a+b+c=0,abc<0,则b c|a|+a c|b|+a b|c|的值为±1.A.1个B.2个C.3个D.4个7.(2022·江苏·七年级专题练习)如图所示,在这个数据运算程序中,若开始输入的x的值为4,输出的结果是2,返回进行第二次运算则输出的是1,…,则第2020次输出的结果是( )A.﹣1B.-2C.-4D.-68.(2018·江苏·铜山进修学校七年级期中)我们平常用的是十进制,如:1967=1×103+9×102+6×101+7,表示十进制的数要用10个数码:0,1,2,3,4,5,6,7,8,9.在计算机中用的是二进制,只有两个数码:0,1.如:二进制中111=1×22+1×21+1相当于十进制中的7,又如:11011=1×24+1×23+0×22+1×21+1相当于十进制中的27.那么二进制中的1011相当于十进制中的()A.9B.10C.11D.12【答案】C【分析】根据题意得出1011=1×23+0×22+1×21+1,求出即可【详解】1011=1×23+0×22+1×21+1=11,即二进制中的1011相当于十进制中的11.故答案选C.【点睛】考查了有理数的乘方,结合计算机教学,主要考查学生的理解能力、阅读能力和计算能力.第II卷(非选择题)二、填空题9.(2022·江苏·南京市第二十九中学七年级阶段练习)-3的绝对值是___________,-11的倒数是___________.510.(2022·江苏镇江·七年级阶段练习)镇江西津渡古街是镇江文物古迹保存最多、最集中、最好的街区,其占地约50万平方米,50万平方米这个数字用科学记数法可记为____________平方米.【答案】5×105【分析】根据科学记数法的公式a×10n,1≤a<10书写即可;【详解】50万=5×105;故答案是5×105.【点睛】本题主要考查了科学记数法的表示,准确书写是解题的关键.11.(2021·江苏宿迁·七年级阶段练习)某粮店出售的三种品牌的面粉袋上,分别标有质量为(50±0.1)kg, (50±0.2)kg,(50±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差__________.【答案】0.6kg【分析】先找出质量的最大值和最小值,根据有理数的减法法则计算.【详解】解:质量最小值是50-0.3=49.7(kg),最大值是50+0.3=50.3(kg),∴50.3-49.7=0.6(kg).故答案为:0.6kg.【点睛】本题考查有理数减法的实际应用,是基础考点,掌握相关知识是解题关键.12.(2022·江苏·南京市第二十九中学七年级阶段练习)若|a|=7,b=5,且a+b<0,那么a-b=___________.【答案】-12【分析】根据绝对值的性质求出a,再根据有理数的加法运算法则判断出a的情况,然后根据有理数的减法运算法则进行计算即可得解.【详解】解:∵|a|=7,∴a=±7,∵a+b<0,b=5,∴a=-7,∴a-b=-7-5=-12,故答案为:-12.【点睛】本题考查了有理数的减法,主要利用了减去一个数等于加上这个数的相反数,确定出a的对应情况是解题的关键.13.(2022·江苏·南京市第二十九中学七年级阶段练习)小亮有5张卡片,上面分别写有-3、-5、0、+3、+4,他想从这5张卡片中取出2张,使得这2张卡片上的数字相除的商最小,商的最小值是___________.14.(2022·江苏·南京市第二十九中学七年级阶段练习)如图,一远古牧人在从右到左依次排列的绳子上打结,满4进1,用来记录他所放牧的羊的只数.由图可知,他所放牧的羊的只数是___________.【答案】27【分析】根据题意“满4进1”可知,从右到左第一根绳子上一个结代表一个1,第二根绳子上一个结代表4,第三根绳子一个结代表42,再进行计算即可.【详解】解:1×42+2×4+3×1=27,故答案为:27.【点睛】本题主要考查了用数字表示事件,解题的关键是正确理解“满4进1”的计数规则.15.(2019·江苏南通·七年级阶段练习)当x=_____时,﹣10+|x﹣1|有最小值,最小值为_____.【答案】 1 -10【分析】(1)要使﹣10+|x﹣1|最小,则|x﹣1|最小,即|x﹣1|=0,解出答案,(2)根据(1)中,求出最小值.【详解】|x﹣1|=0,解得:x=1,最小值=-10,故答案为(1)1,(2)-10.【点睛】本题主要考查了绝对值的基本性质,绝对值最小值为0.16.(2022·江苏·南闸实验学校七年级阶段练习)如果有理数a,b满足|ab﹣2|+(1﹣b)2=0,则1ab +1(a1)(b1)+1(a2)(b2)+⋯+1(a2022)(b2022)的值为______.17.(2020·江苏·南京师范大学附属中学树人学校七年级阶段练习)观察下列等式:第1层1+2=3第2层4+5+6=7+8第3层9+10+11+12=13+14+15第4层16+17+18+19+20=21+22+23+24…在上述的数字宝塔中,从上往下数,2020在第_____层.【答案】44.【分析】根据题目中每层最大数字的特点,发现数字变化的特点,从而解答本题.【详解】解:由题意可得,第1层最大数是22-1,第2层最大数是32-1,第3层最大数是42-1,第4层最大数是52-1,……∵442-1<2020<452-1,∴2020在第44层,故答案为:44.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的层数.18.(2022·江苏·七年级期中)已知点O是数轴的原点,点A、B、C在数轴上对应的数分别是﹣12、b、c,且b、c满足(b﹣9)2+|c﹣15|=0,动点P从点A出发以2单位/秒的速度向右运动,同时点Q从点C出发,以1个单位/秒速度向左运动,O 、B 两点之间为“变速区”,规则为从点O 运动到点B 期间速度变为原来的一半,之后立刻恢复原速,从点B 运动到点O 期间速度变为原来的3倍,之后立刻恢复原速,运动时间为 _____秒时,P 、Q 两点到点B 的距离相等.三、解答题19.(2022·江苏无锡·七年级阶段练习)把下列各数填入表示它所在的数集的大括号:-25,3,-2020,-103,0.101001001…,0,-(-30%),π3,-|-4|,-2.3(1)正数集合: {____________________________...};(2)无理数集合: {____________________________...};(3)分数集合: {____________________________...};(4)非正整数集合:{____________________________...}.20.(2021·江苏镇江·七年级期中)计算:(1)4×(―3)―5×(―2)+6(2)(―24)×12―3×2―(―3)2(3)―12021―(1―0.5)×13(4)(―2)3×6―8×+8÷1821.(2017·江苏连云港·七年级期中)已知(x+3)2与|y﹣2|互为相反数,z是绝对值最小的有理数,求(x+y)y +xyz的值.【答案】1【分析】根据题意z是绝对值最小的有理数可知,z=0,且互为相反数的两数和为0,注意平方和绝对值都具有非负性.【详解】解:因为(x+3)2与|y﹣2|互为相反数,所以(x+3)2+|y﹣2|=0,因为(x+3)2≥0,|y﹣2|≥0,所以(x+3)2=0,|y﹣2|=0,即x+3=0,y﹣2=0,所以x=﹣3,y=2,因为z是绝对值最小的有理数,所以z=0.所以(x+y)y+xyz=(﹣3+2)2+(﹣3)×2×0=1.故答案为:1【点睛】本题考查有理数的混合运算、非负数的性质、绝对值的性质等知识,解题的关键是熟练掌握非负数的性质.22.(2020·江苏·兴化市乐吾实验学校七年级期中)网购的盛行,带动了快递行业的快速发展.一天快递员小李骑车从快递公司出发,在一条东西方向的马路上来回送件,规定在快递公司东边记为正,快递公司西边记为负,小李一天所走的路程记录如下:(单位:千米):+4,-3,+5,-2.5,2.5,-3,-2.8,+1.5,+1.5,-1.2.(1)该快递员最后到达的地方在快递公司的哪个方向?距快递公司多远?(2)该快递员在这次送件过程中,共走了多少千米?【答案】(1)东边,2千米;(2)27千米【分析】(1)根据题目中的数据,可以解答本题;(2)将题目中的数据的绝对值相加,即可解答本题.【详解】解:(1)4+(-3)+5+(-2.5)+2.5+(-3)+(-2.8)+1.5+1.5+(-1.2)=2(千米),答:该快递员最后到达的地方在快递公司的东边,距快递公司2千米;(2)4+|-3|+5+|-2.5|+2.5+|-3|+|-2.8|+1.5+1.5+|-1.2|=27(千米),答:该快递员在这次送件过程中,共走了27千米.【点睛】本题考查了正数和负数,解答本题的关键是明确正负数在题目中的实际意义.23.(2019·江苏·泰州市姜堰区张甸初级中学七年级期中)下面是一个数值转换机的示意图.(1)当输入x=-4,y=1时,则输出结果为 ,当输入x=-1,y=2,则输出结果为 .(2)用含x、y的代数式表示输出结果为 .(3)若输入x的值为1,输出结果为11时,求输入y的值.(4)若(1)中输出的两个结果依次对应数轴上的点A,B,点C为A、B之间的一个动点,若将数轴以点C为折点,将此数轴向右对折,若A点与数轴上的D点重合,且B、D两点之间的距离为1,则点C在数轴上表示的数为.(直接写出答案)【答案】(1)-7, 2;(2)2x+y2;(3)±3;(4)-2或-3【分析】(1)将x,y的值分别代入流程图进行计算即可;(2)通过(1)即可总结出代数式;(3)令x=1,代数式的值为11,解关于y的一元一次方程即可;(4)先求出A、B两点,然后折叠,通过线段的和差即可完成解答.【详解】(1)将x=-4,y=1代入流程图得:-7;将x=-1,y=2代入流程图得:2,故答案为-7,2;(2)由(1)得代数式为(3)令x=1,代数式2x+y2的值为11,得:2×1+ y2=11,解得y=±3(4)①如图:当D在AB上时:则C为-3;①如图:当D在AB延长线上时:则C为-2;故C为-2或-3.【点睛】本题考查了流程图、代数式以及数轴的相关知识,正确的识别流程图并灵活运用数轴是解答本题的关键.24.(2018·江苏泰州·七年级期中)有4张写着以下数字的卡片,请按要求抽出卡片,完成下列各题:(1)从中取出2张卡片,使这2张卡片上数字之积最大,最大值是________.(2)从中取出2张卡片,使这2张卡片上数字之差最小,最小值是________.(3)从中取出4张卡片,将这4个数字进行加、减、乘、除或乘方等混合运算,使结果为24,请写出一种符合要求的运算式子________.(注:4个数字都必须用到且只能用一次.)【答案】 10 -12 (―5―7)×(―2)×1【分析】(1)观察这四个数,要找乘积最大的就要找符号相同且绝对值最大的数,所以选-5和-2;(2)根据题意可知卡片中的最大数与最小数之间的差值即为所求;(3)从中取出4张卡片,用学过的运算方法,使结果为24,这就不唯一,用加减乘除只要答数是24即可,比如(―5―7)×(―2)×1=24.【详解】解:(1)根据题意得:(-5)×(-2)=10,故答案为10;(2)由题意可得,从中取出2张卡片,使这2张卡片上数字的差最小,最小值是:-5-7=-12,故答案为-12;(3)(答案不唯一)如(―5―7)×(―2)×1=24.【点睛】此题实际上是有理数的混合运算的逆运算,先给你数,让你列混合运算的式子,所以学生平时要培养自己的逆向思维能力.25.(2022·江苏·七年级期中)概念学习现规定:求若干个相同的有理数(均不等于0)的商的运算叫做除方,比如2÷2÷2,(―3)÷(―3)÷(―3)÷(―3)等,类比有理数的乘方,我们把2÷2÷2写作2③,读作“2的圈3次方”,(―3)÷(―3)÷(―3)÷(―3)写作(―3)④,读作“(―3)的圈4次方”,一般地,把a ÷a ÷a ÷⋅⋅⋅÷a ︸n 个a(a ≠0)写作a ⓝ,读作“a 的圈n 次方”.初步探究(1)直接写出计算结果:3②=________,=________;(2)下列关于除方说法中,错误的有________;(在横线上填写序号即可)A .任何非零数的圈2次方都等于1B .任何非零数的圈3次方都等于它的倒数C .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数D .圈n 次方等于它本身的数是1或―1深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?除方→→乘方幂的形式(3)归纳:请把有理数a(a ≠0)的圈n(n ≥3)次方写成幂的形式为:a ⓝ=________;(4)比较:(―2)⑧________(―4)⑥;填“>”“<”或“=”)(5)计算:―1⑳+14②÷―×(―7)⑥―(―48)÷.26.(2022·江苏·七年级期中)已知数轴上有A、B、C三点,分别对应有理数-26、-10、10,动点P从B出发,以每秒1个单位的速度向终点C移动,同时,动点Q从A出发,以每秒3个单位的速度向终点C移动,设点P的移动时间为t秒.(1)当t=5秒时,数轴上点P对应的数为,点Q对应的数为;P、Q两点间的距离为.(2)用含t的代数式表示数轴上点P对应的数为.(3)在点P运动到C点的过程中(点Q运动到C点后停止运动),请用含t的代数式表示P、Q两点间的距离.【答案】(1)-5,-11;6.(2)-10+t.(3)当0≤t≤8时,PQ=-2t+16;当8<t≤12时,PQ=2t-16;当12<t≤20时,PQ=20-t.【分析】(1)由题意根据数轴上动点向正方向移动用加法以及两点间距离公式进行分析计算;(2)根据题意点P的移动时间为t秒列出代数式即可;(3)根据题意分当0≤t≤8时,当8<t≤12时,当12<t≤20时三种情况进行分析即可.【详解】解:(1)由题意可得当t=5秒时,数轴上点P对应的数为:―10+1×5=―5,点Q对应的数为:―26+3×5=―11,P、Q两点间的距离为:|―5―(―11)|=6,故答案为:-5, -11;6.(2)用含t的代数式表示数轴上点P对应的数为:-10+t.故答案为:-10+t.(3)当0≤t≤8时,PQ=(-10+t)-(-26+3t) =-2t+16;当8<t≤12时,PQ=(-26+3t)-(-10+t)=2t-16;当12<t≤20时,PQ=10-(-10+t) =20-t.【点睛】本题考查数轴上的动点问题,熟练掌握列代数式表示动点以及两点间距离公式,运用数形结合思维和分类讨论思维进行分析是解题的关键.27.(2022·江苏·七年级期中)(1)尝试:比较下列各式的大小关系:(用>,<,=,≥,≤填空)①|―2|+|3|___________|―2+3|;②|―6|+|4|_________|―6+4|;③|―3|+|―4|_________|―3―4|;④|0|+|―7|__________|0―7|;(2)归纳:观察上面的数量关系,可以得到:|a|+|b|___________|a+b|(用>,<,=,≥,≤填空)(3)应用:利用上面得到的结论解决下面问题:若|m|+|n|=16,|m+n|=2,则m=______________.(4)拓展:当a、b、c满足什么条件时,|a|+|b|+|c|>|a+b+c|(请直接写出结果,不需过程)【答案】(1)①>;②>;③=;④=;(2)≥;(3)±9或±7;(4)1个正数,2个负数;2个正数,1个负数;1个0,1个正数,1个负数.【分析】(1)①根据绝对值运算、有理数的加法即可得;②根据绝对值运算、有理数的加法即可得;③根据绝对值运算、有理数的加减法即可得;④根据绝对值运算、有理数的加减法即可得;(2)根据(1)的结果归纳类推即可得;(3)先根据上述结论得出m、n异号,再分m为正数,n为负数和m为负数,n为正数两种情况,然后代入解绝对值方程即可得;(4)先根据a,b,c中0的个数进行分类,再结合上述结论、绝对值运算分析即可得.【详解】(1)①|―2|+|3|=2+3=5,|―2+3|=|1|=1,则|―2|+|3|>|―2+3|,故答案为:>;②|―6|+|4|=6+4=10,|―6+4|=|―2|=2,则|―6|+|4|>|―6+4|,故答案为:>;③|―3|+|―4|=3+4=7,|―3―4|=|―7|=7,则|―3|+|―4|=|―3―4|,故答案为:=;④|0|+|―7|=0+7=7,|0―7|=|―7|=7,则|0|+|―7|=|0―7|,故答案为:=;(2)由(1)的结果,归纳类推得:|a|+|b|≥|a+b|,故答案为:≥;(3)∵|m|+|n|=16,|m+n|=2,∴|m|+|n|>|m+n|,由上述结论可得:m、n异号,①当m为正数,n为负数时,则|m|+|n|=m―n=16,即n=m―16,将n=m―16代入|m+n|=2得:|m+m―16|=2,解得m=9或m=7,符合题设;②当m为负数,n为正数时,则|m|+|n|=―m+n=16,即n=m+16,将n=m+16代入|m+n|=2得:|m+m+16|=2,解得m=―9或m=―7,符合题设;综上,m=±9或m=±7,故答案为:±9或±7;(4)由题意,分以下四类:第一类:当a,b,c三个数都不等于0时,①1个正数,2个负数,此时|a|+|b|+|c|>|a+b+c|,②2个正数,1个负数,此时|a|+|b|+|c|>|a+b+c|,③3个正数,此时|a|+|b|+|c|=|a+b+c|,不符题意,舍去,④3个负数,此时|a|+|b|+|c|=|a+b+c|,不符题意,舍去;第二类:当a,b,c三个数中有1个等于0时,①1个0,2个正数,此时|a|+|b|+|c|=|a+b+c|,不符题意,舍去,②1个0,2个负数,此时|a|+|b|+|c|=|a+b+c|,不符题意,舍去,③1个0,1个正数,1个负数,此时|a|+|b|+|c|>|a+b+c|;第三类:当a,b,c三个数中有2个等于0时,①2个0,1个正数,此时|a|+|b|+|c|=|a+b+c|,不符题意,舍去,②2个0,1个负数,此时|a|+|b|+|c|=|a+b+c|,不符题意,舍去;第四类:当a,b,c三个数都等于0时,此时|a|+|b|+|c|=|a+b+c|,不符题意,舍去;综上,|a|+|b|+|c|>|a+b+c|成立的条件是:1个正数,2个负数;2个正数,1个负数;1个0,1个正数,1个负数.【点睛】本题考查了绝对值、有理数的加减运算,熟练掌握绝对值运算,并正确归纳出规律是解题关键.。
2021-2022学年第一学期七年级数学第2章《有理数》单元培优卷(含答案)
2021-2022学年第一学期七年级数学第2章《有理数》单元培优卷一.选择题(每小题2分,共12分)1.若m为有理数,则m m-的值为()A.大于0B.大于等于0C.小于0D.小于等于02.从新华网获悉:商务部5 月27 日发布的数据显示,一季度,中国与“一带一路”沿线国家在经贸合作领域保持良好发展势头,双边货物贸易总额超过16553 亿元人民币,16553 亿用科学记数法表示为()A.1.6553×108B.1.6553×1011C.1.6553×1012D.1 .6553×10133.5个城市的国际标准时间(单位:时)在数轴上表示如图所示,那么北京时间2020年10月15日20时应是()A.纽约时间2020年10月15日5时B.巴黎时间2020年10月15日13时C.汉城时间2020年10月15日19时D.伦敦时间2020年10月15日11时4.如图,A、B两点在数轴上表示的数分别为a、b,下列式子成立的是()A.ab>0 B.a+b<0 C.(b﹣1)(a+1)>0 D.(b﹣1)(a﹣1)>0 5.下列计算正确的是( )A.2÷43×34=2÷1=2B.-24+22÷20=-24+4÷20=-20÷20=-1C.223-2×(13-12)=43-2×(-16)=43+13=53D.-12÷(6×3)=-2×3=-66.为求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+3+32+33+…+32018的值是( )A.32019-1 B.32018-1 C.2019312-D.2018312-二.填空题(每小题2分,共20分) 7.( 3.14)π-的相反数是_______________.8.已知25x y ==,,且x y >,则x y +=______.9..大于43-且小于3的所有整数的和为______. 10.已知p 是数轴上表示-2的点,把p 点移动3个单位长度后,p 点表示的数是________ 11.在等式3215⨯-⨯=的两个方格中分别填入一个数,使这两个数互为相反数且使等式成立,则第一个方格内的数是________.12.现有四个有理数3,4,-6,10,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其运算的结果是24,请你写出一个符合条件的算式___________. 13.512.7310⨯是________位数. 14.在算式1-23-中的里,填入运算符号________,可使得算式的值最小(在符号+,-,×,÷中选择一个).15.我们常用的数是十进制的数,而计算机程序处理中使用的是只有数码0和1的二进制数.这两者可以相互换算,如将二进制数1101换算成十进制数应为1×23+1×22+0×21+l×20=13,按此方式,则将十进制数25换算成二进制数应为_____. 16.观察下列各式:2+23=22×23,3+38=32×38,4+415=42×415,…,若8+a b =82×a b(a ,b 为正整数),则(a -b -1)÷a 的值为_______. 三.解答题(共68分) 17.(12分)计算:(1)3+50÷22×(-15)-1; (2)[135×(1-49)]2÷[(1-16)×(-25)]3.18.(8分)如图,雷达可用于飞机导航,也可用来监测飞机的飞行.假设某时刻雷达向飞机发射电磁波,电磁波遇到飞机后反射,又被雷达接收,两个过程共用了0.0000524秒.已知电磁波的传播速度为83.010⨯米/秒,求该时刻飞机与雷达站的距离.(结果用科学记数法表示)19.(10分)在数轴上画出表示下列各数的点,并把它们按从小到大的顺序用“<”连接起来.|4|-,2(2)--,0,2,94 -.20.(8分)某学校开展了“环保知识”抢答比赛活动,一共分为五个小组,规定答对一题加50分,答错一题扣10分,活动结束时,记分员公布了各个小组的情况得分如下:1组2组3组4组5组100 150 ﹣400 350 ﹣100(1)第一名超出第二名多少分?(2)第一名超出第五名多少分?21.(10分)小明在学习有理数运算时发现以下三个等式:(a•b)2=a2•b2,(a•b)3=a3•b3,(a•b)4=a4•b4.(1)他把a=﹣2,b=3代入到第一个等式的左右两边验证:因为,左=(﹣2×3)2=36,右=(﹣2)2×32=36,左=右,所以成立.请你帮他把a=﹣2,b=3代入到后两个等式的左右两边验证是否成立;(2)通过上述验证,请你猜想直接写出结果:(a•b)365等于多少,归纳得出:(a•b)n等于多少(n为正整数);(3)请应用(2)中归出的结论计算:(﹣111)2017×11201822.(10分)阅读与理解:如图,一只甲虫在5×5的方格(每个方格边长均为1)上沿着网格线爬行.若我们规定:在如图网格中,向上(或向右)爬行记为“+”,向下(或向左)爬行记为“﹣”,并且第一个数表示左右方向,第二个数表示上下方向.例如:从A到B记为:A→B(+1,+4),从D到C记为:D→C(﹣1,+2).思考与应用:(1)图中B→C(,)C→D(,)(2)若甲虫从A到P的行走路线依次为:(+3,+2)→(+1,+3)→(+1,﹣2),请在图中标出P的位置.(3)若甲虫的行走路线为A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),请计算该甲虫走过的总路程S.23.(10分)观察下列每对数在数轴上的对应点间的距离:4与2-,3与5,2-与6-,4-与3.回答问题:()1你能发现所得距离与这两个数的差的绝对值有什么关系吗?()2若数轴上的点A表示的数为x,点B表示的数为1-,则A与B两点间的距离可以表示为________;()3结合数轴可得23-++的最小值为________.x x一.选择题(每小题2分,共12分)的值为()1.若m为有理数,则m mA.大于0B.大于等于0C.小于0D.小于等于0【答案】B【解析】①当m>0时,原式=m-m=0;②当m=0时,原式=0-0=0;③当m<0时,原式=-m-m=-2m>0.∴|m|-m的值大于等于0.故选B.2.从新华网获悉:商务部5 月27 日发布的数据显示,一季度,中国与“一带一路”沿线国家在经贸合作领域保持良好发展势头,双边货物贸易总额超过16553 亿元人民币,16553 亿用科学记数法表示为()A.1.6553×108B.1.6553×1011C.1.6553×1012D.1 .6553×1013【答案】C【解析】将16553亿用科学记数法表示为:1.6553×1012.故选C.3.5个城市的国际标准时间(单位:时)在数轴上表示如图所示,那么北京时间2020年10月15日20时应是()A.纽约时间2020年10月15日5时B.巴黎时间2020年10月15日13时C.汉城时间2020年10月15日19时D.伦敦时间2020年10月15日11时【答案】B【解析】A.纽约时间比北京时间晚13个小时,所以纽约时间应该为2020年10月15日7时,故本选项错误;B.巴黎时间比北京时间晚7个小时,所以巴黎时间应该为2020年10月15日13时,故本选项正确;C.汉城时间比北京时间早1个小时,所以汉城时间应该为2020年10月15日21时,故本选项错误;D.伦敦时间比北京时间晚8个小时,所以伦敦时间应该为2020年10月15日12时,故本选项错误.故选D.4.如图,A、B两点在数轴上表示的数分别为a、b,下列式子成立的是()A.ab>0 B.a+b<0 C.(b﹣1)(a+1)>0 D.(b﹣1)(a﹣1)>0 【答案】C【解析】根据a、b两点在数轴上的位置判断出其取值范围,再对各选项进行逐一分析即可:由a、b两点在数轴上的位置可知:﹣1<a<0,b>1,∴ab<0,a+b>0,故A、B错误;∵﹣1<a<0,b>1,∴b﹣1>0,a+1>0,a﹣1<0.故C正确,D错误.故选C.5.下列计算正确的是( )A.2÷43×34=2÷1=2B.-24+22÷20=-24+4÷20=-20÷20=-1C.223-2×(13-12)=43-2×(-16)=43+13=53D.-12÷(6×3)=-2×3=-6 【答案】C【解析】解:A 2÷43×34=2×34×34=98;B-24+22÷20=-24+4÷20=-24+15=-2345;C.223-2×(13-12)=43-2×(-16)=43+13=53;D. -12÷(6×3)=-12÷18=-12×118=-2 3;故选:C6.为求1+2+22+23+…+22008的值,可令S =1+2+22+23+…+22008,则2S =2+22+23+24+…+22009,因此2S -S =22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+3+32+33+…+32018的值是 ( ) A .32019-1 B .32018-1C .2019312-D .2018312-【答案】C【解析】设232018S 13333=+++++,则23420193S 33333=+++++,因此3S -S=201931-,则S=2019312-,∴201923201831133332-+++++=.故选C .二.填空题(每小题2分,共20分) 7.( 3.14)π-的相反数是_______________. 【答案】3.14π- 【解析】由相反数的定义可知, 3.14π-的相反数是-( 3.14)π-=3.14π-. 故答案为:3.14π-.8.已知25x y ==,,且x y >,则x y +=______.【答案】-3或-7.【解析】解:∵|x|=2,|y|=5,且x >y , ∴x=2,y=-5或x=-2,y=-5, 则x+y=-3或-7. 故答案为-3或-7. 9..大于43-且小于3的所有整数的和为______. 【答案】2【解析】解:∵大于-43且小于3的整数为-1,0,1,2, ∴它们的和为-1+0+1+2=2. 故答案为2.10.已知p 是数轴上表示-2的点,把p 点移动3个单位长度后,p 点表示的数是________【答案】-5或1【解析】解:若向左平移3个单位长度,则为:-2-3=-5; 若是向右平移3个单位长度,则为-2+3=1.此题注意可能有两种情况,计算的时候是左减右加. 11.在等式3215⨯-⨯=的两个方格中分别填入一个数,使这两个数互为相反数且使等式成立,则第一个方格内的数是________. 【答案】3【解析】根据乘法分配律可得:332(3)15⨯-⨯-= 故答案为312.现有四个有理数3,4,-6,10,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其运算的结果是24,请你写出一个符合条件的算式___________. 【答案】3×(10-4)-(-6)=24.【解析】3×[(-6)+4+10]=24;4-(-6)÷3×10=24;3×(10-4)-(-6)=24. 13.512.7310⨯是________位数. 【答案】52【解析】51152+=,512.7310⨯是52位数. 故答案为:52.14.在算式1-23-中的里,填入运算符号________,可使得算式的值最小(在符号+,-,×,÷中选择一个). 【答案】×【解析】∵在减法运算中,若被减数的值为固定值,则当减数最大时,差最小, ∴在123--□中,当23-的值最大时,差最小, ∵当在内填上“×”号时,23-的值最大, ∴当在内填上“×”号时,123--□的值最小.故答案为:×. 15.我们常用的数是十进制的数,而计算机程序处理中使用的是只有数码0和1的二进制数.这两者可以相互换算,如将二进制数1101换算成十进制数应为1×23+1×22+0×21+l×20=13,按此方式,则将十进制数25换算成二进制数应为_____. 【答案】11001.【解析】解:25=16+8+1=1×24+1×23+0×22+0×21+1×20, ∴十进制数25换算成二进制数应为11001. 故答案为:11001. 16.观察下列各式:2+23=22×23,3+38=32×38,4+415=42×415,…,若8+a b =82×a b(a ,b 为正整数),则(a -b -1)÷a 的值为_______. 【答案】-7 【解析】解:2+23=22×23,3+38 =32×38,4+415=42×415,…∴ 8+863=28×863; 若8+a b =82×ab (a ,b 为正整数);∴a=8,b=63; ∴(a -b -1)÷a=86318--=568-=-7; 故答案为:-7.三.解答题(共68分) 17.(12分)计算:(1)3+50÷22×(-15)-1; (2)[135×(1-49)]2÷[(1-16)×(-25)]3. 【答案】(1)12-;(2)643-.【解析】解:(1)原式=3+50÷4×(-15)-1=3+50×14×(-15)-1=3-50×14×15-1=3-52-1=-12 (2)原式=[85×59]2÷[56×(-25)]3=(89)2÷(-13)3=6481×(-27)=-643.18.(8分)如图,雷达可用于飞机导航,也可用来监测飞机的飞行.假设某时刻雷达向飞机发射电磁波,电磁波遇到飞机后反射,又被雷达接收,两个过程共用了0.0000524秒.已知电磁波的传播速度为83.010⨯米/秒,求该时刻飞机与雷达站的距离.(结果用科学记数法表示)【答案】该时刻飞机与雷达站的距离是37.8610⨯米.【解析】解:83 3. 0100.000052427.8610⨯⨯÷=⨯(米).所以该时刻飞机与雷达站的距离是37.8610⨯米.19.(10分)在数轴上画出表示下列各数的点,并把它们按从小到大的顺序用“<”连接起来.|4|-,2(2)--,0,2,94-. 【答案】如图所示见解析. 29(2)02|4|4--<-<<<-. 【解析】解:如图所示:由数轴可知:29(2)02|4|4--<-<<<-. 20.(8分)某学校开展了“环保知识”抢答比赛活动,一共分为五个小组,规定答对一题加50分,答错一题扣10分,活动结束时,记分员公布了各个小组的情况得分如下: 1组 2组 3组 4组 5组 100 150﹣400350﹣100(1)第一名超出第二名多少分? (2)第一名超出第五名多少分?【答案】(1)第一名超出第二名200分;(2)第一名超出第五名750分. 【解析】解:(1)350﹣150=200(分), 答:第一名超出第二名200分;(2)350﹣(﹣400)=350+400=750(分),答:第一名超出第五名750分.21.(10分)小明在学习有理数运算时发现以下三个等式:(a•b)2=a2•b2,(a•b)3=a3•b3,(a•b)4=a4•b4.(1)他把a=﹣2,b=3代入到第一个等式的左右两边验证:因为,左=(﹣2×3)2=36,右=(﹣2)2×32=36,左=右,所以成立.请你帮他把a=﹣2,b=3代入到后两个等式的左右两边验证是否成立;(2)通过上述验证,请你猜想直接写出结果:(a•b)365等于多少,归纳得出:(a•b)n等于多少(n为正整数);(3)请应用(2)中归出的结论计算:(﹣111)2017×112018【答案】(1)成立;(2)(a•b)365=a365b365,(a•b)n=a n b n;(3)﹣1.【解析】解:(1)当a=﹣2,b=3时,左边=(﹣2×3)2=(﹣6)2=36,右边=(﹣2)2×32=4×9=36,∴左边=右边,所以等式成立;(2)根据以上验证,知:(a•b)365=a365b365,归纳得出:(a•b)n=a n b n,(3)原式=(﹣111)2017×112017×11=(﹣111×11)2017×11=(﹣1)2017×1=﹣1×1=﹣1.22.(10分)阅读与理解:如图,一只甲虫在5×5的方格(每个方格边长均为1)上沿着网格线爬行.若我们规定:在如图网格中,向上(或向右)爬行记为“+”,向下(或向左)爬行记为“﹣”,并且第一个数表示左右方向,第二个数表示上下方向.例如:从A到B记为:A→B(+1,+4),从D到C记为:D→C(﹣1,+2).思考与应用:(1)图中B→C(,)C→D(,)(2)若甲虫从A到P的行走路线依次为:(+3,+2)→(+1,+3)→(+1,﹣2),请在图中标出P的位置.(3)若甲虫的行走路线为A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),请计算该甲虫走过的总路程S.【答案】(1)+2,0,+1,﹣2;(2)若甲虫从A到P的行走路线依次为:A→E→F→P,图中P的即为所求.见解析;(3)甲虫走过的总路程为16.【解析】(1)图中B→C(+2.0),C→D(+1,﹣2).故答案为:+2,0,+1,﹣2.(2)若甲虫从A到P的行走路线依次为:A→E→F→P,图中P的即为所求.(3)若甲虫的行走路线为A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),甲虫走过的总路程S=1+4+2+1+2+4+2=16.23.(10分)观察下列每对数在数轴上的对应点间的距离:4与2-,3与5,2-与6-,4-与3.回答问题:()1你能发现所得距离与这两个数的差的绝对值有什么关系吗?()2若数轴上的点A表示的数为x,点B表示的数为1-,则A与B两点间的距离可以表示为________;()3结合数轴可得23-++的最小值为________.x x【答案】(1)由观察可知:所得距离与这两个数的差的绝对值相等;(2) |x+1|;(3) 5;【解析】(1)由观察可知:所得距离与这两个数的差的绝对值相等;(2)结合数轴,我们发现应分以下三种情况进行讨论.当x<−1时,距离为−x−1,当−1<x<0时,距离为x+1,当x>0,距离为x+1.综上,我们得到A 与B 两点间的距离可以表示为|x+1|;(3)当x<−3时,|x−2|+|x+3|=2−x−(3+x)=−2x−1,此时最小值大于5; 当32x -≤≤时,|x−2|+|x+3|=2−x+x+3=5;当x>2时,|x−2|+|x+3|=x−2+x+3=2x+1,此时最小值大于5;所以|x−2|+|x+3|的最小值为5,取得最小值时x 的取值范围为32x -≤≤;。
七年级数学上册有理数单元培优测试题及答案
第一章 有理数单元培优测试题姓名 得分一、选一选:1、a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( C )(A)a+b<0 (B)a+c<0(C)a -b>0 (D)b -2、若两个有理数的和是正数,那么一定有结论( D )(A )两个加数都是正数; (B )两个加数有一个是正数;(C )一个加数正数,另一个加数为零; (D )两个加数不能同为负数3、654321-+-+-+……+2005-2006的结果不可能是: ( B )A 、奇数B 、偶数C 、负数D 、整数4、两个非零有理数的和是0,则它们的商为: ( B )A 、0B 、-1C 、+1D 、不能确定5.如果0a b +>,且0ab <,那么( D )A.0,0a b >> ;B.0,0a b << ;C.a 、b 异号; D. a 、b 异号且负数和绝对值较小6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.•2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( B )A .0.8kgB .0.6kgC .0.5kgD .0.4kg*7、已知数轴上的三点A 、B 、C 分别表示有理数a ,1,1-,那么1+a 表示( D ).A .A 、B 两点的距离 B .A 、C 两点的距离C .A 、B 两点到原点的距离之和D . A 、C 两点到原点的距离之和 (江苏省竞赛题)8、已知m m -=,化简21---m m 所得的结果是__-1______.*9.3028864215144321-+-+-+-+-+-+- 等于( D ). A .41 B .41- C .21 D .21- (“希望杯”邀请赛试题) 13.若ab ≠0,则b a a b+的取值不可能是 ( B ) A 0 B 1 C 2 D -2二.填空题:(每题3分、计57分)1、如果数轴上的点A 对应的数为-1.5,那么与A 点相距3个单位长度的点所对应的有理数为_-4.5,1.5__________。
有理数单元培优测试卷
有理数单元培优测试卷一、初一数学有理数解答题压轴题精选(难)1.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a ﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5(3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.2.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点。
浙教版七年级上册数学第一单元《有理数》培优检测卷(含解析)
2023年7月2日初中数学作业学校:___________姓名:___________班级:___________考号:___________A .B .. . ..,,,则下列不等关系式中正确的是( )342018a =2019b =2020c =则翻转2022次后,点C 所对应的数是( )A .2020B .2021C .2022D .202310.一只小球落在数轴上的某点处,第一次从处向右跳1个单位到处,第二次从向左跳2个单位到处,第三次从向右跳3个单位到处,第四次从向左跳4个单位到处…,若小球按以上规律跳了次时,它落在数轴上的点处所表示的数恰好是,则这只小球的初始位置点所表示的数是( )A .B .C .D .二、填空题15.已知、均为数轴上的点,到原点的距离为长度,且在的左边,则点表示的数为18.如果物体从A 点出发,按照A→B (第1步)→C (第二步)0P 0P 1P 1P 2P 2P 3P 3P 4P ()23n +23n P +3n -0P 4-5-6n +3n +A B A B A B三、解答题21.有20筐红萝卜,以每筐25千克为标准,超过记正不足记负来表示,记录如下:(1)求m、n的值;(2)①情境:有一个玩具火车如图1所示,放置在数轴上,将火车沿数轴左右水平移AB参考答案:故选:D .【点睛】本题主要考查了绝对值的应用,数轴上两点之间的距离,理解绝对值的意义,掌握距离的求法是解题的关键.4.B【分析】由图可知,和实数之间的距离是6,因此要知道的值,只需要加6即可.【详解】解:将刻度尺放在数轴上(数轴的单位长度是),刻度尺上的和分别对应数轴上表示和实数的两点,∵0到6之间是6个单位,∴,∴,故答案为:B .【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.5.C【分析】分别根据有理数的分类以及正数和负数的定义逐一判断即可.【详解】解:A .整数分为正整数、零和负整数,原说法错误,故本选项不合题意;B .有理数包括分数,原说法错误,故本选项不合题意;C .正分数和负分数统称为分数,说法正确,故本选项符合题意;D .不带“-”号的数就是正数,说法错误,如0既不是正数,也不是负数,故本选项不合题意.故选:C .【点睛】本题考查了正数和负数以及有理数,掌握相关定义是解答本题的关键.6.C【分析】用加上时差,再根据有理数的加法运算求解,然后解答即可.【详解】解:∵,∴如果北京时间是月日,那么巴黎时间是月日故选:C .【点睛】本题考查了有理数的加法,理解时差的正、负的意义是解题的关键.2-x x 2-1cm 0cm 6cm 2-x (2)6x --=4x =5()572+-=-1026500:102522:00【点睛】本题主要考查了数轴的知识、绝对值的知识,难度不大,分情况讨论是解答的关键.13.【分析】根据正负数的实际意义,利用有理数加法运算法则求解即可得到答案.【详解】解:根据题意得:,冰箱冷冻室的温度为℃,调高了℃后的温度是℃,故答案为:.【点睛】本题考查正负数的实际意义解决实际问题,掌握有理数加法运算法则是解决问题的关键.14./【分析】求出圆的周长,再根据实数与数轴上的点的对应关系解答即可.【详解】解:由题意,该圆沿数轴向左滚动1周的距离为个单位长度,则该圆沿数轴向左滚动1周时,点A 的对应点表示的数是,故答案为:.【点睛】本题考查实数与数轴、圆的周长公式,理解数与数轴上的点的对应关系是解答的关键.15.或【分析】根据题意得到点所表示的数是,根据两点间的距离,求得点所表示的数.【详解】∵点到原点的距离等于,∴点所表示的数是,∵点到点的距离是,且在的左边,∴点表示的数是:或,综上所述,点表示的数是或,故答案为:或.【点睛】此题考查数轴,解题的关键是数形结合思想,进行分类讨论.16.6【分析】在数轴上找出点和,找出两点之间的整数即可得出结论.【详解】解:依照题意,画出图形,如图所示.1-321-+=-3-21-1-1π-1π-+πA '1π-1π-15-A 3±B A 3A 3±B A 2B A B 321-=325--=-B 15-15- 2.1- 3.3在和两点之间的整数有:,,0,1,2,3,共6个,故答案为:6.【点睛】本题考查了数轴,解题的关键是画出数轴,利用数形结合的方法解答.17.4或5或6【分析】由线段总长度及三条线段的长度之比,可得三条线段的长度,再分情况讨论即可.【详解】解:∵线段长为8,这三条线段的长度之比为,,∴这三条线段的长度分别为2,2,4,若剪下的第一条线段长为2,第2条线段长度也为2,则折痕表示的数为:;若剪下的第一条线段长为2,第2条线段长度为4,则折痕表示的数为:;若剪下的第一条线段长为4,第2条线段长度为2,则折痕表示的数为:;∴折痕表示的数为4或5或6,故答案为:4或5或6.【点睛】本题考查数轴与线段综合,列出三条线段所有可能的顺序是解题的关键.18.252【分析】先求出由A 点开始按照A→B (第1步)→C (第2步)→D→A→E→F→G→A→B→…的顺序循环运动走一圈所走的步数,再用2013除以此步数即可.【详解】解:∵如图物体从点A 出发,按照A→B (第1步)→C (第2步)→D→A→E→F→G→A→B→…的顺序循环运动,此时一个循环为8步,即一个循环经过B 一次,∴2013÷8=251…5.即2013=251×8+5∴经过第2013步后物体共经过B 处252次.故答案为:252.【点睛】本题考查的是根据运动顺序找规律的题目,理解题意是解题的关键,找到规律是本题的重点.2.1-3.32-1-1:1:2()81122∴÷++=1214++=1225++=1416++=,。
2024年七年级数学上册《有理数及其运算》单元测试及答案解析
第2章 有理数及其运算(单元培优卷 北师大版)考试时间:120分钟,满分:120分一、选择题:共10题,每题3分,共30分。
1.有理数2−的相反数是( ) A .2B .12C .2−D .12−2.13与14的和的倒数是( )A .7B .517C .17D .1433.32−的绝对值是( )A .23−B .32−C .23D .324.下列说法正确的个数为( ) ①有理数与无理数的差都是有理数; ②无限小数都是无理数; ③无理数都是无限小数;④两个无理数的和不一定是无理数; ⑤无理数分为正无理数、零、负无理数. A .2个B .3个C .4个D .5个5.亚洲、欧洲、非洲和南美洲的最低海拔如下表:大洲 亚洲欧洲 非洲南美洲最低海拔/m415− 28−156− 40−其中最低海拔最小的大洲是( ) A .亚洲B .欧洲C .非洲D .南美洲6.数轴上的点M 和点N 分别表示3−与4,如果把点N 向左移动6个单位长度,那么点N 现在表示的数比点M 表示的数( ) A .大2B .大1C .小2D .小17.如果把一个人先向东走5m 记作5m +,那么接下来这个人又走了6m −,此时他距离出发点有多远?下面选项中正确的是( ) A .6m −B .1m −C .1mD .6m8.在0.65,58,35,916这四个数中,最大的是()A .0.65B .58C .35D .9169.物理是上帝的游戏,而数学是上帝的游戏规则.不管多大或多小的数,都得靠数学来表示呢!来自2024年综合运输春运工作专班的数据显示,2月10日~17日(农历正月初一至初八),全社会跨区域人员流动量累计22.93亿人次.客流量大已成为2024年春运的最显著特征,铁路、公路、民航等客运频频刷新纪录.用科学记数法表示22.93亿,正确的是( ). A .822.9310×B .922.9310×C .82.29310×D .92.29310×10.一个天平配有重量分别为1,5,25,125,625克的砝码各5个,则为了准确称出重量为2024克的某物品(砝码只能放一侧),所需砝码数量的值为( )A .11B .12C .13D .14二、填空题:共6题,每题3分,共18分。
人教版七年级上册数学 第一章 有理数 单元培优练习
人教版七年级上册数学第一章有理数单元培优练习一.选择题1. 下列各组的两个数中,运算后结果相等的是A.和B.和C.和D.和2. 在,,,四个数中,最大的数与最小的数的和等于A.B.C.D.3.是第五代移动通信技术,网络下载速度可以达到每秒以上,这意味着下载一部高清电影只需秒.将用科学记数法表示应为A.B.C.D.4. 如果向东走千米记为千米,那么走了千米表示A.向东走了千米 B.向南走了千米 C.向西走了千米 D.向北走了千米5. 按括号内的要求用四舍五入法取近似数,其中正确的是A.(精确到个位)B.(精确到十个位)C.(精确到)D.(精确到)6. 质检员抽查个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的足球是A.B.C.D.7.下列说法:①有理数是正数和小数的统称;②一个有理数不是整数就是分数;③到原点距离相等的点所表示的数相等;④有最小的正整数但没有最小的正有理数;⑤数轴上的点离原点越远,表示的数越大;⑥相反数、绝对值都等于它本身的数只有.其中正确的个数有A.个B.个C.个D.个8. 适合的整数的值有A.个B.个C.个D.个9. 不论取什么值,下列代数式的值总是正数的是A.B.C.D.10.如图,四个有理数,,,在数轴上对应的点分别为,,,,若,则,,,四个有理数中,绝对值最小的一个是A.B.C.D.二.填空题11. 数轴上表示与之间的所有整数之和是.12. 一个小虫在数轴上先向右爬个单位,再向左爬个单位,正好停在的位置,则小虫的起始位置所表示的数是.13. 如图所示是一个运算程序,若输入的,则输出的的值为.14. 如图,是图纸上个零件的标注, 表示这个零件直径的标准尺寸是,实际产品的直径最大可以是,最小可以是.15. 若,则.16. 点,,和原点在数轴上的位置如图所示,点,,对应的有理数为,,(对应顺序暂不确定).如果,,那么表示数的点为点.三.解答题17.把下列各数在数轴上表示出来,再按从小到大的顺序用“”连接起来:,,,,.18.计算:(1) (2)(3)19.请回答:(1) 如图,在数轴上点表示的数是.(1) 指出点所表示的数.(2) 在数轴上有一点,到点的距离为个单位长度,求点表示的数.20. 如图,下面两个圈分别表示负数集和分数集,请你把下列各数填入它所在数集的圈里.,,,,,.(2)上图中,这两个圈的重叠部分表示什么数集合?(3)列式并计算:在()的数据中,求最大的数与最小的数的和.21. 计算:已知,.(1) 当时,求的值.(2) 求的最大值.22.我们已经学过有理数的加减乘除以及乘方运算,下面再给出有理数的一种新运算-“*运算”,定义是.根据定义,解决下面的问题:(1) 计算:;(2) 我们知道,加法具有交换律,请猜想“*运算”是否具有交换律,并说明你的猜想是否正确;(3) 类比数的运算,整式也有“*运算”.若的值为,求.23. 一名快递员骑电动车从饭店出发送外卖,向东走了千米到达琪琪家,继续向东走了千米到达婷婷家,然后又向西走了千米到达乐乐家,最后回到饭店.以饭店为原点,以向东的方向为正方向,用一个单位长度表示千米,点,,,分别表示饭店、琪琪家、婷婷家和乐乐家.(1)请你画出数轴,并在数轴上表示出点,,,的位置;(2) 乐乐家距琪琪家多远?(3)若琪琪步行到婷婷家每小时走千米;乐乐骑自行车到婷婷家每小时骑千米,若两个人同时分别从自己家出发,问两个人能否同时到达婷婷家,若不能同时,谁先到达?24.如图,已知数轴上点表示的数为,是数轴上在左侧的一点,且,两点间的距离为.动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为秒,数轴上点表示的数是,点表示的数是(用含的代数式表示);(2)若点,同时出发,求:①当点运动多少秒时,点与点相遇?②当点运动多少秒时,点与点间的距离为个单位长度?。
第一章 有理数【单元培优卷】(原卷版)
第一章 有理数(单元培优卷)一、选择题(每小题3分,共30分)1.下列各式成立的是( )A. 23=(-2)3B. 22=(-2)2C. -22=|-22|D. (-2)3=∣(-2)3| 2.实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误的是( )A. 0ab >B. 0a b +<C. 0a b -<D. 1a b< 3.若a ,b 互为相反数,则下列各对数中不是互为相反数的是( )A .﹣2a 和﹣2bB .a +1和b +1C .a +1和b ﹣1D .2a 和2b 4.已知点A 是数轴上的一点,且点A 到原点的距离为2,把点A 沿数轴向右移动5个单位得到点B ,则点B 表示的有理数是( )A. 7B. -3C. 7或3D. -7或-3 5.(2021·浙江衢州市·中考真题)2021年5月国家统计局公布了第七次人口普查结果,我国人口数约为1412000000,其中数据1412000000用科学记数法表示为( )A .814.1210⨯B .100.141210⨯C .91.41210⨯D .81.41210⨯ 6.下面说法错误的个数是( )①a -一定是负数;②若||||a b =,则a b =;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数.A. 1个B. 2个C. 3个D. 4个 7.(2021·河北中考真题)能与3645⎛⎫--⎪⎝⎭相加得0的是( ) A .3645-- B .6354+ C .6354-+ D .3645-+ 8.在﹣2,3,4,﹣5这四个数中,任取两个数相乘,所得积中最大的是( ) A. 20B. ﹣20C. 12D. 109.若ab ≠0,则的值不可能是( ) A .0 B .1 C .2 D .﹣210.(2021·镇江中考题改编)输入数值1922,按如图Z1-4-4所示的程序运算(完成一个方框内的运算后,把结果输入下一个方框继续进行运算),输出的结果为( )A. 1840B. 2022C. 1949D. 2021二、填空题(每题3分,共15分)11. 绝对值小于2022的所有整数之和为________.12.在﹣8,2020,237,0,﹣5,+13,,﹣6.9中,正整数有m 个,负数有n 个,分数有p 个,则m +n+p 的值为 .13.如图所示,有理数a ,b 在数轴上对应的点分别为A ,B ,则a ,-a ,b ,-b 按由小到大的顺序排列是________________.14.若(a -1)2+|b +1|=0,则2a 2+4b +2018=________.15.一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到O 1A 的中点2A 处,第三次从2A 点跳动到O 2A 的中点3A 处,如此不断跳动下去,则第8次跳动后,该质点到原点O 的距离为_____________.三、解答题(共75分)16.(8分)画出数轴,在数轴上表示下列各数,并用“>”把它们连接起来.142⎛⎫-- ⎪⎝⎭,﹣2,0,()21-,3-,133-17.(12分)计算(1)(2021·广西来宾市·中考真题)计算:3121(13)2⎫⎛⨯-+÷- ⎪⎝⎭. (2)(2021·山西中考真题)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭.(3)-24×5316812⎛⎫-+- ⎪⎝⎭; (4)-42÷3(1)5--[3531()()642⨯---].18.(9分)若|x|=5,y 2=4,且xy<0,求x +y 的值19.(9分)已知a 、b 均为有理数,现定义一种新的运算,规定:25a b a ab ⊗=+-,例如2111115⊗=+⨯-,求:(1)()-36⊗的值;(2)()32---592⎡⎤⎛⎫⎡⎤⊗⊗ ⎪⎢⎥⎣⎦⎝⎭⎣⎦的值20. (9分)已知:a ,b 互为相反数,c ,d 互为倒数,x 的绝对值是2,求x 2﹣(a +b +cd )x +(a +b )2011+(﹣cd )2012的值.21.(9分)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?22.(9分)观察下列等式:第1个等式:a 1=11×3=12×(1-13); 第2个等式:a 2=13×5=12×(13-15); 第3个等式:a 3=15×7=12×(15-17); 第4个等式:a 4=17×9=12×(17-19). 请解答下列问题:(1)按以上规律列出第5个等式:a 5=_______=____________;(2)用含有n 的式子表示第n 个等式:a n =____________________________________________;(3)求a 1+a 2+a 3+a 4+…+100a 的值.23. (10分)阅读下面材料:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为|AB |.当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,|AB |=|OB |=|b |=|a ﹣b |;当A 、B 两点都不在原点时,如图2,点A 、B 都在原点的右边|AB |=|OB |﹣|OA |=|b |﹣|a |=b ﹣a =|a ﹣b |;如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|;回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是.(2)数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;(3)当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学有理数解答题压轴题精选(难)1.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.2.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点。
(1)点A表示的数为________,点B表示的数为________,线段AB的长为________。
(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为________。
(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?【答案】(1)30;﹣6;36(2)6或﹣42(3)解:①当点Q未出发,P、Q两点相距4个单位长度,此时t×1=4,所以t=4;②点P用了6秒移动到O点时,点Q才从B点出发。
当点Q在点P后面,P、Q两点相距4个单位长度,此时3(t﹣6)= t﹣4,所以t=7;③点P用了6秒移动到O点时,点Q才从B点出发。
当点Q在点P前面,P、Q两点相距4个单位长度,此时3(t﹣6)= t+4,所以t=11;所以t=4或t=7或t=11。
【解析】【分析】(1)根据非负数的性质求出a、b表示的数,然后将点A和点B表示在数轴上,容易求出线段AB的长;(2)分两种情况讨论:①若点C在线段AB上,则点C为线段AB的三等分点,此时BC=AB=12,易得点C在数轴上表示的数为6;②若点C在线段AB的延长线上,则点B 为线段AC的中点,此时BC=AB=36,易得点C在数轴上表示的数为-42.(3)先求出t秒后点P、Q所对应的数分别是t、3(t-3),然后分三种情况分别列出方程解出t的值即可:①当点Q未出发(0<t≤6)时,P、Q之间的距离即为点P移动的距离;②点p用了6秒移动到O点(t>6)时,点Q才开始从B点出发。
当点Q在点P的后面时,点Q表示的数比点P表示的数小4;③点P用了6秒移动到O点(t>6)时,点Q才开始从B点出发。
当点Q在点P的前面时,点Q表示的数比点P表示的数大4。
3.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC 称作互为圆周率伴侣线段.(1)若AC=3,则AB=________;(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC________BD;(填“=”或“≠”)(3)【解决问题】如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.【答案】(1)3+3(2)=(3)解:∵d=1,∴c=d=,∴C点表示的数为:+1,∵M、N都是线段OC的圆周率点,设点M离O点近,且OM=x,则CM=x,∵OC=OM+ MC,∴+1=x+x,解得:x=1,∴OM=CN=1,∴MN=OC-OM-CN=+1-1-1=-1.(4)解:设点D表示的数为x,则OD=x,①若CD=OD,如图1,∵OC=OD+CD,∴+1=x+x,解得:x=1,∴点D表示的数为1;②若OD=CD,如图2,∵OC=OD+CD,∴+1=x+,解得:x=,∴点D表示的数为;③若OC=CD,如图3,∵CD=OD-OC=x--1,∴+1=(x--1),解得:x=++1,∴点D表示的数为++1;④若CD=OC,如图4,∵CD=OD-OC=x--1,∴x--1=(+1),解得:x=2+2+1,∴点D表示的数为2+2+1;综上所述:点D表示的数为:1、、++1、2+2+1.【解析】【解答】解:(1)∵AC=3,BC=AC,∴BC=3∴AB=AC+CB=3+3.故答案为:3+3.(2)∵点D、C都是线段AB的圆周率点且不重合,∴BC=AC,AD=BD,设AC=x,BD=y,则BC=x,AD=y,∵AB=AC+CB=AD+DB,∴x+x=y+y,∴x=y,∴AC=BD.故答案为:=.【分析】(1)由已知条件求得BC长,再由AB=AC+CB即可求得答案.(2)根据题意可得BC=AC,AD=BD,由此设AC=x,BD=y,则BC=x,AD=y,由AB=AC+CB=AD+DB即可得AC=BD.(3)根据题意可得C点表示的数为+1,根据M、N都是线段OC的圆周率点,设点M 离O点近,且OM=x,则CM=x,由OC=OM+ MC列出方程+1=x+x,解之可得OM=CN=1,由MN=OC-OM-CN即可求得.(4)设点D表示的数为x,则OD=x,根据题意分情况讨论:①若CD=OD,②若OD=CD,③若OC=CD,④若CD=OC,根据题中定义分别列出方程,解之即可得出答案.4.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是________;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是________;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O 不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值. 【答案】(1)-4(2)0(3)解:① 当点O是线段AB的中点时,OB=OA4-3t=2+tt=0.5② 当点B是线段OA的中点时, OA = 2 OB2+t=2(3t-4)t=2③ 当点A是线段OB的中点时, OB = 2 OA3t--4=2(2+t)t=8综上所述,符合条件的t的值是0.5,2或8.【解析】【解答】(1)点B表示的数是-4;(2)2秒后点B表示的数是 0 ;【分析】(1)根据数轴上所表示的数的特点即可直接得出答案;(2)用点B开始所表示的数+点B运动的路程=经过t秒后点B表示的数,即可得出结论;(3)找出t秒后点A、B表示的数,分①点O为线段AB的中点,②当点B是线段OA的中点,③点A是线段OB的中点,根据线段中点的数学语言列出方程,求解即可求出此时的t值,综上即可得出结论。
5.观察下列等式:第1个等式:a1=,第2个等式:a2=,第3个等式:a3=,…请解答下列问题:(1)按以上规律列出第5个等式:a5=________=________;(2)用含有n的代数式表示第n个等式:a n=________=________(n为正整数);(3)求a1+a2+a3+…+a2019的值.【答案】(1);(2);(3)解:a1+a2+a3+…+a2019=+…+=【解析】【解答】第1个等式:a1=,第2个等式:a2=,第3个等式:a3=,∴第4个等式:a4=,第5个等式:a5=,故答案为: (2)第n个等式:a n=故答案为:;【分析】(1)根据规律,得出第5个等式:a5=;(2)根据规律,得出第5个等式:a n=;(3)将提出后,括号里进行加减,即可求出结果.6.[背景知识]数轴是初中数学的一个重要工具,利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.[问题情境]已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).[综合运用](1)运动开始前,A、B两点的距离为________;线段AB的中点M所表示的数________.(2)点A运动t秒后所在位置的点表示的数为________;点B运动t秒后所在位置的点表示的数为________;(用含t的代数式表示)(3)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B 两点重合,则中点M也与A,B两点重合)【答案】(1)18;-1(2)﹣10+3t;8﹣2t(3)解:设它们按上述方式运动,A、B两点经过x秒会相遇,根据题意得﹣10+3x=8﹣2x,解得x= ,﹣10+3x= .答:A、B两点经过秒会相遇,相遇点所表示的数是;(4)解:由题意得, =0,解得t=2,答:经过2秒A,B两点的中点M会与原点重合.M点的运动方向向右,运动速度为每秒个单位长度.故答案为18,﹣1;﹣10+3t,8﹣2t.【解析】【解答】解:(1)运动开始前,A、B两点的距离为8﹣(﹣10)=18;线段AB的中点M所表示的数为 =﹣1;(2)点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;【分析】(1)根据A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b及线段AB的中点M表示的数为即可求解;(2)点A运动t秒后所在位置的点表示的数=运动开始前A点表示的数+点A运动的路程,点B运动t秒后所在位置的点表示的数=运动开始前B点表示的数﹣点B运动的路程;(3)设它们按上述方式运动,A、B两点经过x秒会相遇,等量关系为:点A运动的路程+点B运动的路程=18,依此列出方程,解方程即可;(4)设A,B按上述方式继续运动t秒线段AB的中点M能否与原点重合,根据线段AB的中点表示的数为0列出方程,解方程即可.7.阅读下列材料:我们给出如下定义:数轴上给定两点,以及一条线段,若线段的中点在线段上(点可以与点或重合),则称点与点关于线段径向对称.下图为点与点关于线段径向对称的示意图.解答下列问题:如图1,在数轴上,点为原点,点表示的数为-1,点表示的数为2.(1)①点,,分别表示的数为-3,,3,在,,三点中,________与点关于线段径向对称;②点表示的数为,若点与点关于线段径向对称,则的取值范围是________;(2)在数轴上,点,,表示的数分别是-5,-4,-3,当点以每秒1个单位长度的速度向正半轴方向移动时,线段同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为()秒,问为何值时,线段上至少存在一点与点关于线段径向对称.【答案】(1)点C和点D;1≤x≤5(2)解:移动时间t(t>0)秒时,点H,K,L表示的数分别是-5+t,-4+3t,-3+3t,此时,线段HK的中点设为R1,表示的数为,线段HL的中点设为R2,表示的数为,当线段R1R2,在线段OM上运动时,线段KL上至少存在一点与点H关于线段OM径向对称,当R2经过点O时,2t-4=0时,t=2,当R1经过点M时,时,,所以当时,线段R1 R2在OM上运动,所以当时,线段KL上至少存在一点与点H关于线段OM径向对称.【解析】【解答】解:(1)①与点A点关于线段径向对称需要满足:这个点与A点的中点在线段OM上,点B表示的数是-3,与点A表示的-1的中点是-2,不在线段OM上,所以点B不是;点C表示的数,与点A表示的-1的中点是,在线段OM上,所以点C 是;点D表示的3与点A表示的-1的中点是1,在线段OM上,所以点D是;综上,答案为点C,点D;②结合数轴可知当点x与点A的中点落在点O与点M之间时(包括端点O与M)正确,即,解得,故答案为;【分析】(1)根据题干中给出的径向对称的定义,进行验证解答即可;(2)根据题干中给出的径向对称的定义,列出点x与点A中点的取值范围,即可求出答案;(3)用含t的代数式分别表示出点H,K,L和线段HK与线段HL的中点列式计算即可.8.(阅读理解):A,B,C为数轴上三点,若点C到A的距离CA是点C到B的距离CB的2倍,我们就称点C是(A,B)的好点.例如,如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离CA是2,到点B的距离CB是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离DA是1,到点B的距离DB是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.(知识运用):(1)如图1,表示数______和_______的点是(A,B)的好点;【答案】1|5(1)如图2,M、N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.①表示数________的点是(M,N)的好点;②表示数________的点是(N,M)的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为-20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动.当t为何值时,P、A和B中恰有一个点为其余两点的好点?【答案】(1)2或10;0或(2)解:设点P表示的数为n,则①P为(A,B)的好点时,有:,解得:,则秒;②P为(B,A)好点时,有两种情况:当点P在A、B之间时,有:,解得:,则秒;当点P在A点左边时,有:,解得:,则秒;③点B是(A、P)的好点时,有:,解得:,则秒;④点A是(B,P)的好点时,有:,解得:,则秒;⑤点A是(P,B)的好点时,有:,解得:,则秒.综合上述,当t为10秒或15秒或20秒或50秒或60秒或80秒时,P、A和B中恰有一个点为其余两点的好点.【解析】【解答】解:(1)设所求数为x,则①当好点在A、B之间时,有:,解得:;②当好点在B的右边时,有:,解得:;∴表示数1和数5的点是(A,B)的好点;故答案为:1;5.当好点在M、N之间时,有:,解得:;当好点在N的右边时,有:,解得:;∴表示数2或10的点是(M,N)的好点;故答案为:2或10;②设所求数为z,则当好点在M、N之间时,有:,解得:;当好点在M的左边时,有:,解得:;∴表示数0或的点是(N,M)的好点;故答案为:0或;【分析】(1)设所求数为x,可分为:①当好点在A、B之间;②当好点在B点右边,根据好点的定义,列出方程,解方程即可;(2)①与(1)同理,可分为好点在M、N之间和N的右边,两种情况进行计算即可;②与(1)同理,可分为好点在M、N之间和点M 的左边,两种情况进行计算即可;(3)根据好点的定义可知分五种情况:①P为(A,B)的好点;②P为(B,A)的好点;③点B是(A、P)的好点;④点A是(B,P)的好点;⑤点A是(P,B)的好点;设点P表示的数为n,根据好点的定义列出方程,进而得出t的值.9.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.【答案】(1)3;3;4;;1或-3;-1≤x≤2;解:④.④由③可知,要使最小,则在1和2015之间即可,要使最小,则在2和2014之间即可…… 以此类推,要使最小,则在1007和1009之间即可,最后还剩余最小时,取即可,当时,原式【解析】【解答】解:①表示2和5的两点间的距离为,表示-2和-5的两点之间的距离为,表示1和-3的两点之间的距离为;②表示和-1的两点和之间的距离为,若,则,∴,∴或③ ,是到的距离,表示到的距离,当在和2之间时,距离之和最小,∴取最小值时,相应的的取值范围是【分析】①根据(1)中的两点间距离公式可求答案;②根据(1)中的两点间距离公式列出方程求解;③根据线段上的点到两端的距离之和最小可得结果;④根据线段上的点到两端的距离之和最小列出算式计算即可;10.在数轴上有A、B、C、D四个点,分别对应的数为a,b,c,d,且满足a,b到点-7的距离为1 (a<b),且(c﹣12)2与|d﹣16|互为相反数.(1)填空:a=________、b=________、c=________、d=________;(2)若线段AB以3个单位/秒的速度向右匀速运动,同时线段CD以1单位长度/秒向左匀速运动,并设运动时间为t秒,A、B两点都运动在CD上(不与C,D两个端点重合),若BD=2AC,求t得值;(3)在(2)的条件下,线段AB,线段CD继续运动,当点B运动到点D的右侧时,问是否存在时间t,使BC=3AD?若存在,求t得值;若不存在,说明理由.【答案】(1)-8;-6;12;16(2)解:AB、CD运动时,点A对应的数为:−8+3t,点B对应的数为:−6+3t,点C对应的数为:12−t,点D对应的数为:16−t,∴BD=|16−t−(−6+3t)|=|22−4t|AC=|12−t−(−8+3t)|=|20−4t|∵BD=2AC,∴22−4t=±2(20−4t)解得:t=或t=当t=时,此时点B对应的数为,点C对应的数为,此时不满足题意,故t=(3)解:当点B运动到点D的右侧时,此时−6+3t>16−t∴t>,BC=|12−t−(−6+3t)|=|18−4t|,AD=|16−t−(−8+3t)|=|24−4t|,∵BC=3AD,∴|18−4t|=3|24−4t|,解得:t=或t=经验证,t=或t=时,BC=3AD【解析】【解答】(1)∵|x+7|=1,∴x=−8或−6∴a=−8,b=−6,∵(c−12)2+|d−16|=0,∴c=12,d=16,故答案为:−8;−6;12;16.【分析】(1)根据方程与非负数的性质即可求出答案.(2)AB、CD运动时,点A对应的数为:−8+3t,点B对应的数为:−6+3t,点C对应的数为:12−t,点D对应的数为:16−t,根据题意列出等式即可求出t的值.(3)根据题意求出t的范围,然后根据BC=3AD 求出t的值即可.11.已知多项式,次数是b,3a与b互为相反数,在数轴上,点A表示数a,点B表示数b.(1)数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.【答案】(1)解:由多项式的次数是6可知,又3a和b互为相反数,故.①当C在A左侧时,,,;②C在A和B之间时,,点C不存在;③点C在B点右侧时,,,;故答案为或8.(2)解:依题意得:.点P对应的有理数为.(3)解:①甲、乙两小蚂蚁均向左运动,即时,此时,,,解得,;甲向左运动,乙向右运动时,即时,此时,,依题意得,,解得,.答:甲、乙两小蚂蚁到原点的距离相等时经历的时间是秒或8秒.【解析】【分析】(1)根据题意可得,;(2)对点C的位置进行分类讨论,并用x表示出和的长度,利用“ ”列出方程即可求出答案;(3)对乙蚂蚁运动的方向进行分类讨论,根据到原点距离相等列出方程求解即可.12.已知数轴上有A.B. C三点,分别表示有理数−26,−10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒。