动态规划DynamicProgramming
动态规划

多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状 态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化 问题的方法为动态规划方法 。
任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适 用动态规划的问题必须满足最优化原理和无后效性 。
动态规划
运筹学的分支
01 原理
03 局限性
目录
02 分类
动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年 代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理, 从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域, 并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了 显著的效果 。
最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成 的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足 最优化原理又称其具有最优子结构性质 。
将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来 的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又 称为无后效性 。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因 素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点 。
第6章动态规划

第6章 动态规划动态规划(Dynamic Programming )是解决多阶段决策过程最优化的一种有用的数学方法。
它是由美国学者Richard .Bellman 在1951年提出的,1957年他的专著《动态规划》一书问世,标志着运筹学的一个重要分支-动态规划的诞生.动态规划也是一种将多变量问题转化为单变量问题的一种方法。
在动态规划中,把困难的多阶段决策问题变换成一系列相互联系的比较容易的单阶段问题一个个地求解。
动态规划是考察解决问题的一种途径 ,而不是一种特殊的算法,不像线性规划那样有统一的数学模型和算法(如单纯形法).事实上,在运用其解决问题的过程中还需要运用其它的优化算法。
因此,动态规划不像其它方法局限于解决某一类问题,它可以解决各类多阶段决策问题。
动态规划在工程技术、经济管理等社会各个领域都有着广泛的应用,并且获得了显著的效果。
在经济管理方面,动态规划可以用来解决最优路径问题、资源分配问题、生产调度问题、库存管理问题、排序问题、设备更新问题以及生产过程最优控制问题等,是经济管理中一种重要的决策技术。
许多规划问题用动态规划的方法来处理,常比线性规划或非线性规划更有效。
特别是对于离散的问题,由于解析数学无法发挥作用,动态规划便成为了一种非常有用的工具。
动态规划可以按照决策过程的演变是否确定分为确定性动态规划和随机性动态规划;也可以按照决策变量的取值是否连续分为连续性动态规划和离散性动态规划。
本教材主要介绍动态规划的基本概念、理论和方法,并通过典型的案例说明这些理论和方法的应用。
6.1动态规划的基本理论6.1.1多阶段决策过程的数学描述有这样一类活动过程,其整个过程可分为若干相互联系的阶段,每一阶段都要作出相应的决策,以使整个过程达到最佳的活动效果。
任何一个阶段(stage ,即决策点)都是由输入(input )、决策(decision )、状态转移律(transformation function )和输出(output )构成的,如图6-1(a )所示.其中输入和输出也称为状态(state ),输入称为输入状态,输出称为输出状态。
动态规划的基本原理和基本应用

动态规划的基本原理和基本应用动态规划(Dynamic Programming)是一种通过将一个问题分解为较小的子问题并存储子问题的解来解决复杂问题的方法。
动态规划的基本原理是通过记忆化或自底向上的迭代方式来求解问题,以减少不必要的重复计算。
它在计算机科学和数学中具有广泛的应用,尤其是在优化、组合数学和操作研究等领域。
1.确定最优子结构:将原问题分解为较小的子问题,并且子问题的最优解能够推导出原问题的最优解。
2.定义状态:确定存储子问题解的状态变量和状态方程。
3.确定边界条件:确定初始子问题的解,也称为边界状态。
4.递推计算:利用状态方程将子问题的解计算出来,并存储在状态变量中。
5.求解最优解:通过遍历状态变量找到最优解。
1.背包问题:背包问题是动态规划的经典应用之一、它有多种变体,其中最基本的是0/1背包问题,即在限定容量的背包中选择物品,使得所选物品的总价值最大。
可以使用动态规划的思想来解决背包问题,确定状态为背包容量和可选物品,递推计算每个状态下的最优解。
2. 最长递增子序列:最长递增子序列(Longest Increasing Subsequence)是一种常见的子序列问题。
给定一个序列,找到其中最长的递增子序列。
可以使用动态规划来解决这个问题,状态可以定义为以第i个元素为结尾的最长递增子序列的长度,并递推计算每个状态的解。
3.矩阵链乘法:矩阵链乘法是一种优化矩阵连乘计算的方法。
给定一系列矩阵,求解它们相乘的最小计算次数。
可以使用动态规划解决矩阵链乘法问题,状态可以定义为矩阵链的起始和结束位置,递推计算每个状态下最小计算次数。
4.最短路径问题:最短路径问题是在有向图或无向图中找到两个节点之间最短路径的问题。
可以使用动态规划解决最短路径问题,状态可以定义为起始节点到一些节点的最短距离,递推计算每个状态的最优解。
动态规划的原理及应用

动态规划的原理及应用1. 什么是动态规划动态规划(Dynamic Programming)是解决多阶段决策问题的一种优化方法。
它通过把原问题分解为相互重叠的子问题,并保存子问题的解,以避免重复计算,从而实现对问题的高效求解。
2. 动态规划的基本思想动态规划的基本思想可以归纳为以下几步:•确定问题的状态:将原问题分解为若干子问题,确定子问题的状态。
•定义状态转移方程:根据子问题的状态,确定子问题之间的关联关系,建立状态转移方程。
•确定初始条件和边界条件:确定子问题的初始状态和界限条件。
•计算最优解:采用递推或迭代的方式计算子问题的最优解。
•构造最优解:根据最优解的状态转移路径,构造原问题的最优解。
3. 动态规划的应用场景动态规划广泛应用于以下领域:3.1 图论在图论中,动态规划可以用来解决最短路径问题、最小生成树问题等。
通过保存子问题的最优解,可以避免重复计算,提高求解效率。
3.2 数值计算在数值计算中,动态规划可以用来解决线性规划、整数规划等问题。
通过将原问题分解为子问题,并利用子问题的最优解求解原问题,可以快速求解复杂的数值计算问题。
3.3 操作研究在操作研究中,动态规划可以用来解决最优调度问题、最优分配问题等。
通过将原问题拆分为若干子问题,并保存子问题的最优解,可以找到全局最优解。
3.4 自然语言处理在自然语言处理中,动态规划可以用来解决句法分析、语义理解等问题。
通过构建动态规划表,可以有效地解析复杂的自然语言结构。
3.5 人工智能在人工智能领域,动态规划可以用来解决机器学习、强化学习等问题。
通过利用动态规划的状态转移特性,可以训练出更加高效和智能的机器学习模型。
4. 动态规划的优势和限制动态规划的优势在于可以高效地解决复杂的多阶段决策问题,通过保存子问题的最优解,避免了重复计算,提高了求解效率。
同时,动态规划提供了一种清晰的问题分解和解决思路,可以帮助人们理解和解决复杂的问题。
然而,动态规划也有其应用的限制。
dp计算公式

dp计算公式动态规划(Dynamic Programming,简称DP)是一种常用的算法思想,它通过将大问题划分为子问题,并保存子问题的解,最终得到整个问题的解。
DP算法的核心思想是“最优子结构”和“重叠子问题”。
动态规划算法在实际应用中非常广泛,比如在路径规划、背包问题、字符串匹配等领域都有广泛的应用。
下面以路径规划为例,介绍一下动态规划的计算公式。
假设有一个网格地图,其中每个格子都有一个非负的权值,表示从起点到该格子的路径上的权值之和。
要求从左上角的格子出发,到达右下角的格子,找到一条路径,使得路径上的权值之和最小。
我们可以定义一个二维数组dp,dp[i][j]表示从起点到达格子(i, j)的路径上的最小权值之和。
那么,dp[i][j]的计算公式可以表示为:dp[i][j] = grid[i][j] + min(dp[i-1][j], dp[i][j-1])其中,grid[i][j]表示格子(i, j)的权值,dp[i-1][j]表示从上方格子到达格子(i, j)的路径上的最小权值之和,dp[i][j-1]表示从左方格子到达格子(i, j)的路径上的最小权值之和。
取两者中的较小值再加上当前格子的权值,即可得到dp[i][j]的值。
通过不断计算dp数组的值,最终可以得到从起点到达右下角的格子的路径上的最小权值之和。
具体的计算过程可以使用一个双重循环来实现,从起点开始,逐个计算dp数组的值,直到到达右下角的格子。
动态规划算法的时间复杂度一般为O(N^2),其中N为问题规模。
在实际应用中,可以通过优化计算过程或者使用一些剪枝策略来提高算法的效率。
总结起来,动态规划是一种非常实用的算法思想,可以用来解决各种复杂的问题。
通过将大问题划分为子问题,并保存子问题的解,动态规划算法能够高效地求解整个问题的最优解。
在实际应用中,我们需要根据具体问题来设计计算公式,并通过适当的优化策略提高算法的效率。
希望通过这篇文章的介绍,读者能够对动态规划算法有一个基本的了解,并能够在实际问题中灵活运用。
动态规划算法

动态规划算法
动态规划算法(Dynamic Programming)是一种解决多阶段最优化决策问题的算法。
它将问题分为若干个阶段,并按照顺序从第一阶段开始逐步求解,通过每一阶段的最优解得到下一阶段的最优解,直到求解出整个问题的最优解。
动态规划算法的核心思想是将问题划分为子问题,并保存已经解决过的子问题的解,以便在求解其他子问题时不需要重新计算,而是直接使用已有的计算结果。
即动态规划算法采用自底向上的递推方式进行求解,通过计算并保存子问题的最优解,最终得到整个问题的最优解。
动态规划算法的主要步骤如下:
1. 划分子问题:将原问题划分为若干个子问题,并找到问题之间的递推关系。
2. 初始化:根据问题的特点和递推关系,初始化子问题的初始解。
3. 递推求解:按照子问题的递推关系,从初始解逐步求解子问题的最优解,直到求解出整个问题的最优解。
4. 得到最优解:根据子问题的最优解,逐步推导出整个问题的最优解。
5. 保存中间结果:为了避免重复计算,动态规划算法通常会使
用一个数组或表格来保存已经求解过的子问题的解。
动态规划算法常用于解决最优化问题,例如背包问题、最长公共子序列问题、最短路径问题等。
它能够通过将问题划分为若干个子问题,并通过保存已经解决过的子问题的解,从而大大减少计算量,提高算法的效率。
总之,动态规划算法是一种解决多阶段最优化决策问题的算法,它通过将问题划分为子问题,并保存已经解决过的子问题的解,以便在求解其他子问题时不需要重新计算,从而得到整个问题的最优解。
动态规划算法能够提高算法的效率,是解决最优化问题的重要方法。
动态规划复杂度分析

动态规划复杂度分析动态规划(Dynamic Programming)是一种常用的解决优化问题的方法,通过将问题分解为若干子问题,并将子问题的答案保存起来,避免重复计算,从而提高算法效率。
在实际应用中,我们需要对动态规划算法的时间复杂度和空间复杂度进行准确的分析,以便评估算法的性能和可行性。
一、动态规划的时间复杂度分析动态规划算法的时间复杂度取决于以下两个因素:1. 子问题数量:动态规划算法将原问题分解为若干子问题,并通过求解子问题的答案来解决原问题。
因此,子问题的数量直接关系到算法的时间复杂度。
如果每个子问题的求解时间相同且规模相等,那么子问题数量的增加会导致时间复杂度的线性增长。
2. 单个子问题的求解时间:每个子问题的求解时间是动态规划算法时间复杂度的另一个重要因素。
在实际应用中,子问题的求解时间可能不同,这取决于子问题之间的关系和具体的求解方法。
一般来说,如果每个子问题的求解时间相同,则总体的时间复杂度为子问题数量乘以单个子问题的求解时间。
基于以上分析,可以得出结论:动态规划算法的时间复杂度与子问题数量和单个子问题的求解时间相关,可以用O(N*M)表示,其中N 为子问题的数量,M为单个子问题的求解时间。
二、动态规划的空间复杂度分析动态规划算法的空间复杂度取决于以下两个因素:1. 子问题数量:与时间复杂度类似,子问题的数量也会影响算法的空间复杂度。
每个子问题需要保存其对应的答案,因此子问题的数量直接关系到算法的空间需求。
2. 单个子问题的空间需求:每个子问题需要保存其对应的答案,因此单个子问题的空间需求是算法空间复杂度的重要因素。
不同的子问题可能需要不同的空间来保存求解结果。
根据以上讨论,可以得出结论:动态规划算法的空间复杂度与子问题数量和单个子问题的空间需求相关,可以用O(N*M)表示,其中N为子问题的数量,M为单个子问题的空间需求。
三、动态规划算法的优化和改进在实际应用中,为了降低动态规划算法的时间复杂度和空间复杂度,可以采取以下优化和改进措施:1. 优化状态转移方程:动态规划算法的核心是状态转移方程,通过优化方程的表达和求解方式,可以减少算法的时间复杂度。
马尔可夫决策过程中的动态规划算法解析(四)

马尔可夫决策过程(Markov Decision Process,MDP)是一种用于描述随机决策问题的数学框架。
在MDP中,代理需要根据环境状态的随机变化做出决策,使得长期累积奖励最大化。
动态规划(Dynamic Programming,DP)是一种解决优化问题的方法,可以应用于求解MDP的最优策略。
本文将对马尔可夫决策过程中的动态规划算法进行解析。
首先,我们来了解一下马尔可夫决策过程的基本概念。
在MDP中,环境被建模成一组状态空间S和一组动作空间A。
代理根据当前状态和选择的动作,转移到下一个状态并获得相应的奖励。
状态转移过程是随机的,且受到当前状态和选择的动作的影响。
这种随机性是MDP与其他决策问题的显著区别,也是其求解的难点之一。
在MDP中,我们通常定义状态转移概率函数P(s'|s, a)和奖励函数R(s, a, s')。
其中,P(s'|s, a)表示在状态s下选择动作a后转移到状态s'的概率;R(s, a, s')表示在状态s下选择动作a后转移到状态s'并获得的奖励。
基于这些定义,我们可以使用动态规划算法求解MDP的最优策略。
动态规划算法通常包括价值迭代和策略迭代两种方法。
在MDP中,我们可以利用这两种方法求解最优价值函数和最优策略。
首先,我们来看价值迭代算法。
该算法通过迭代更新状态的价值函数来逼近最优价值函数。
我们定义状态s的价值函数V(s)为从状态s开始遵循最优策略所能获得的期望累积奖励。
价值迭代算法的核心思想是利用Bellman最优方程递归地更新状态的价值函数,直到收敛为止。
Bellman最优方程表示了最优价值函数之间的关系,可以用于迭代更新状态的价值函数。
通过不断迭代更新,最终可以得到最优价值函数,从而得到最优策略。
接下来,我们来看策略迭代算法。
与价值迭代算法不同,策略迭代算法首先需要初始化一个初始策略,然后交替进行策略评估和策略改进。
五大常见算法策略之——动态规划策略(DynamicProgramming)

五⼤常见算法策略之——动态规划策略(DynamicProgramming)Dynamic Programming Dynamic Programming是五⼤常⽤算法策略之⼀,简称DP,译作中⽂是“动态规划”,可就是这个听起来⾼⼤上的翻译坑苦了⽆数⼈,因为看完这个算法你可能会觉得和动态规划根本没太⼤关系,它对“动态”和“规划”都没有太深的体现。
举个最简单的例⼦去先浅显的理解它,有个⼤概的雏形,找⼀个数组中的最⼤元素,如果只有⼀个元素,那就是它,再往数组⾥⾯加元素,递推关系就是,当你知道当前最⼤的元素,只需要拿当前最⼤元素和新加⼊的进⾏⽐较,较⼤的就是数组中最⼤的,这就是典型的DP策略,将⼩问题的解保存起来,解决⼤问题的时候就可以直接使⽤。
刚刚说的如果还是感觉有点迷糊,不⽤慌,下⾯⼏个简单的⼩栗⼦让你明⽩这句话的意思。
第⼀个数是1,第⼆个数也是1,从第三个数开始,后⾯每个数都等于前两个数之和。
要求:输⼊⼀个n,输出第n个斐波那契数。
还是我们上节讨论递归与分治策略时候举的第⼀个例⼦——Fibonacci数列问题,它实在太经典了,所以将其反复拿出来说。
我们如果深⼊分析⼀下上节说过的递归⽅法解决Fibonacci数列,就会发现出现了很多重复运算,⽐如你在计算f(5)的时候,你要计算f(4)和f(3),计算f(4)⼜要计算(3)和f(2),计算f(3),⼜要计算f(2)和f(1),看下⾯这个图对f(3)和f(2)进⾏了重复运算,这还是因为5⽐较⼩,如果要计算f(100),那你可能要等到天荒地⽼它还没执⾏完(⼿动滑稽),感兴趣的朋友可以试试,反正我已经试过了。
public static int fibonacci(int n){//递归解法if(n == 1) return 1;else if(n == 2) return 1;else return fibonacci(n - 1) + fibonacci(n - 2);}上⾯就是递归的解法,代码看着很简单易懂,但是算法复杂度已经达到了O(2^n),指数级别的复杂度,再加上如果n较⼤会造成更⼤的栈内存开销,所以⾮常低效。
动态规划求解方法

动态规划求解方法动态规划(Dynamic Programming)是一种常见的求解优化问题的方法,它通过将问题分解成更小的子问题,并保存子问题的解来降低时间复杂度。
动态规划通常使用一个表格来记录子问题的解,然后根据递推关系计算出更大问题的解。
动态规划的求解方法一般包含以下几个步骤:1.定义问题:首先,需要明确要解决的问题是什么。
动态规划通常适用于求解具有最优子结构性质的问题,即原问题的最优解可以通过一系列子问题的最优解得到。
2.确定状态:接下来,需要确定动态规划的状态。
状态是问题中会变化的量,它包含了问题的关键信息。
在动态规划中,状态可以是一个或多个变量。
3.建立转移方程:然后,需要建立问题的转移方程。
转移方程描述了问题状态之间的关系,用来计算子问题的最优解。
转移方程可以通过观察问题的特点或者使用递推关系得到。
4.确定初始条件:接下来,需要确定边界条件或初始条件。
边界条件是问题中的一些特殊情况,它们通常是一些最小子问题的解。
初始条件是指将边界条件中的解赋值给表格中对应的位置。
5.使用递推关系计算:最后,使用递推关系将表格中的其他位置的解计算出来。
通常,可以使用自底向上的方法,从表格的第一个位置开始计算,依次填充整个表格。
动态规划的优点在于它可以将一个复杂的问题分解成多个子问题,然后通过记录子问题的解来减少重复计算。
这样,可以大大提高求解问题的效率。
动态规划通常适用于求解满足最优化原理和无后效性条件的问题。
最优化原理是指问题的最优解具有递归的结构,即解可以通过子问题的最优解得到。
无后效性条件是指问题的当前状态决定了未来的决策,与过去的决策无关。
动态规划在算法设计和实现中有很多经典的应用,例如最长公共子序列问题、0/1背包问题、最短路径问题等。
下面简要介绍其中的两个经典应用。
1.最长公共子序列问题:给定两个字符串s1和s2,求它们的最长公共子序列。
最长公共子序列是指在两个字符串中以相同的顺序出现的最长的子序列。
计算机基础知识了解计算机算法的动态规划和贪心算法

计算机基础知识了解计算机算法的动态规划和贪心算法计算机基础知识:了解计算机算法的动态规划和贪心算法计算机算法是指在计算机科学中为解决问题而设计的一系列计算步骤。
它是实现特定功能的工具,在计算机科学和软件工程中扮演着重要的角色。
动态规划和贪心算法是计算机算法中常见的两种策略。
本文将详细介绍这两种算法的原理和应用。
一、动态规划算法动态规划算法(Dynamic Programming),又称动态优化算法,是一种将复杂问题分解为更简单子问题的方法,并使用子问题的解来构建原问题的解。
它通常适用于具有重叠子问题和最优子结构性质的问题。
动态规划算法的基本步骤如下:1. 定义问题的状态:将原问题划分为若干个子问题,找出子问题与原问题之间的关系;2. 构造状态转移方程:通过递推或迭代的方式,计算出子问题的解;3. 解决问题:根据状态转移方程,从子问题的解中推导出原问题的最优解;4. 构建解的过程:根据所得的最优解,记录下每一步的决策,以便后续的重建。
动态规划算法的经典应用之一是背包问题。
背包问题是在限定容量的背包中选择合适的物品,使得物品的总价值最大。
通过动态规划算法,我们可以通过计算子问题的解来得到背包问题的最优解。
二、贪心算法贪心算法(Greedy Algorithm)是一种基于贪心策略的算法。
它通过每一步的局部最优选择来达到整体最优解。
贪心算法在每一步的选择中都做出当前最好的选择,而不考虑对后续步骤的影响。
贪心算法的基本思想是:1. 定义问题的解空间和评价标准:确定问题的解空间以及如何评价每个解的好坏;2. 构建解的过程:逐步构建解,每一步都选择当前最优的子解,直到得到最终的解;3. 检查解的有效性:验证得到的解是否符合问题的要求。
贪心算法的经典应用之一是最小生成树问题。
最小生成树问题是在一张无向连通图中选择一棵权值最小的生成树。
贪心算法可以通过每次选择权值最小的边来构建最小生成树。
三、动态规划与贪心算法的比较动态规划算法和贪心算法有相似之处,但也存在一些明显的差异。
Python中的动态规划解析

Python中的动态规划解析动态规划是一种常用的算法思想,可以解决许多实际问题。
在Python中,动态规划的应用广泛,无论是求解最优解还是优化算法效率,都离不开动态规划的思想。
本文将对Python中的动态规划进行解析,并介绍其基本原理、常见应用和实现方法。
一、动态规划的基本原理动态规划(Dynamic Programming,简称DP)是一种通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推(或递归)的方式去解决的算法思想。
它通常适用于有重叠子问题和最优子结构性质的问题。
具体来说,动态规划的基本原理可以概括为以下几步:1. 找到问题的最优子结构,即将原问题分解为若干个子问题;2. 定义问题状态,即确定需要存储的信息,以便用于子问题之间的转移;3. 确定状态转移方程,即问题状态之间的递推关系;4. 确定边界条件,即最小的子问题的解;5. 通过状态转移方程和边界条件,计算出原问题的解。
二、动态规划的应用动态规划在解决实际问题中有着广泛的应用。
以下是一些常见的动态规划问题及其解决方法:1. 斐波那契数列斐波那契数列是一个常见的动态规划问题,其定义如下:F(0) = 0F(1) = 1F(n) = F(n-1) + F(n-2) (n ≥ 2)2. 背包问题背包问题是求解在有限的背包容量下,如何选择装入背包的物品,使得物品的价值最大化或重量最小化的问题。
常见的背包问题包括01背包问题、完全背包问题和多重背包问题。
3. 矩阵链乘法问题矩阵链乘法问题是求解如何在给定的一系列矩阵相乘的情况下,使得计算乘法的次数最少的问题。
4. 最长公共子序列问题最长公共子序列问题是求解两个序列中最长的公共子序列的问题,常见的解决方法是使用动态规划。
三、动态规划的实现方法在Python中,可以使用递归或迭代的方式来实现动态规划。
1. 基于递归的实现基于递归的实现方式通常会利用递归的性质来解决问题,但由于递归会导致重复计算,因此需要使用记忆化搜索(Memoization)来优化递归过程。
7动态规划

动态规划动态规划(Dynamic Programming)是运筹学的一个重要分支,它是分析解决多阶段决策过程最优化问题的一种方法。
这种方法是由美国数学家R.贝尔曼(R.Bellman)等人在20世纪50年代初提出的。
他们针对多阶段决策问题的特点,提出了解决这类问题的最优化原理,并成功地解决了生产管理、工程技术等方面的许多实际问题,从而建立了运筹学的一个新分支,即动态规划。
1957年,R.贝尔曼发表了动态规划方面的第一本专著“动态规划”。
动态规划适用的范围十分广泛,几乎可以涉足运筹学的所有分支。
例如,它可用于解决资源分配问题、运输问题、生产计划、投资策略、可靠性理论、设备更新、库存问题、网络问题、经济计划以及生产过程的最优控制问题等等。
由于它有独特的解题思路,在处理某些优化问题时,比线性规划或非线性规划方法更有效。
动态规划模型的类型根据多阶段决策过程的不同可有很多种,例如,根据决策变量时间上的变化可分为连续型与离散型两种;根据决策过程性质可分为确定型与随机型两类;根据决策的相互关系可以分为时间的(即决策过程具有时间变化的动态型)与空间的(即决策过程没有时间变化的静态型),此外还有阶段的个数是有限的与无限的,确定的与不确定等等。
由于实际问题常常是复合的,因而动态规划模型的类型也会有很多种组合。
下面我们主要研究动态与静态确定型的决策过程,不过,由此而建立的概念、理论和方法,也是整个动态规划的基本内容。
第一节多阶段决策过程的最优化一、多阶段决策问题动态规划是把多阶段决策问题作为研究对象。
所谓多阶段决策问题,是指这样一类活动过程:根据问题本身的特点,可以将其求解的全过程划分为若干个相互联系的阶段(即将问题划分为许多个相互联系的子问题),在它的每一阶段都需要作出决策,并且在一个阶段的决策确定以后再转移到下一个阶段。
往往前一个阶段的决策要影响到后一个阶段的决策,从而影响整个过程。
人们把这样的决策过程称作多阶段决策过程(Multi—Stage decision process)。
动态规划的基本原理和基本应用

动态规划的基本原理和基本应用
一、动态规划的基本原理
动态规划(Dynamic Programming)是一种运用在运筹学中的一种数
学规划方法。
它的基本思路是:将一个复杂的求解问题分解成若干个更简
单的子问题,再从这些子问题出发,求出各子问题的解,回溯到原问题求
出原问题的解,通常情况下,动态规划的核心是对于每一个子问题只求解
一次,存储子问题的解,避免了重复求解子问题。
1.最优子结构性质:具有最优子结构性质的问题可以用动态规划求解,即如果一些问题的求解最优解由其子问题的最优解组合而成,那么该问题
也是最优的;
2.重复子问题性质:具有重复子问题性质的问题可以用动态规划求解,即一些问题的解可以由重复的子问题的解组合而成;
3.边界条件:求解动态规划的问题要求有边界条件,即知道求解问题
的初始和终止条件;
4.最优化原理:即求解问题的全局最优解可以由求子问题的最优解组
合而成,求解问题从最优解的最终状态开始,逐渐迭代至初始状态;
5.无后效性:即状态仅取决于其之前的几个状态,不受其之后状态的
影响。
二、动态规划的基本应用
1.适用于短路径问题:在交通运输、通信网络中。
动态规划的三个实施步骤

动态规划的三个实施步骤什么是动态规划动态规划(Dynamic Programming)是一种解决复杂问题的算法思想,它通常用于求解最优化问题。
动态规划的核心思想是将复杂问题分解成较简单的子问题,并通过子问题的最优解推导出原问题的最优解。
动态规划的三个实施步骤动态规划的实施步骤通常包括以下三个阶段:1.划分阶段:将原问题划分成若干个子问题,通过划分可以简化问题的复杂度。
2.确定状态:定义状态表示问题的不同阶段和状态,以及状态之间的关系。
状态的选择对最终解决问题的效率和准确性有很大影响。
3.推导方程:根据子问题的最优解和状态之间的关系,推导出原问题的最优解,并通过递推和迭代求解。
下面将详细介绍每个步骤。
1. 划分阶段在划分阶段,我们需要将原问题划分成若干个子问题。
通常,问题的划分可以基于以下两种方式之一:•递归划分:将原问题拆分成规模更小的相同类型的子问题,直到问题规模较小,可以直接得到解答。
•迭代划分:通过迭代的方式,逐步处理原问题的不同阶段,每个阶段都可以看作是一个子问题。
划分阶段可以大大减少问题的复杂度,使得问题的求解更加可行和高效。
2. 确定状态确定状态是动态规划的核心步骤,它需要定义状态并建立状态之间的关系。
状态表示问题的不同阶段和状态,以及状态之间的关联关系。
在确定状态时,通常需要考虑以下几个因素:•问题的边界状态:例如,问题的起始状态和最终状态。
•中间状态的定义:例如,问题的中间阶段的状态。
•状态之间的转移方程:即状态之间的关联关系,包括过程中的选择和决策。
通过合理地确定状态,可以将复杂问题简化成易于求解的子问题,并能够快速推导出原问题的最优解。
3. 推导方程在推导方程阶段,我们通过子问题的最优解和状态之间的关系,推导出原问题的最优解。
根据问题的具体特点和状态定义,推导方程可以采用不同的方式,例如:•递推方程:通过递归地求解子问题,逐步推导出原问题的最优解。
•迭代方程:通过迭代地更新状态,逐步得到原问题的最优解。
运筹学课件(动态规划)

(二)、动态规划的基本思想 1、动态规划方法的关键在于正确地写出基本的递推 关系式和恰当的边界条件(简称基本方程)。要做到 这一点,就必须将问题的过程分成几个相互联系的阶 段,恰当的选取状态变量和决策变量及定义最优值函 数,从而把一个大问题转化成一组同类型的子问题, 然后逐个求解。即从边界条件开始,逐段递推寻优, 在每一个子问题的求解中,均利用了它前面的子问题 的最优化结果,依次进行,最后一个子问题所得的最 优解,就是整个问题的最优解。
d( B1,C1 ) + f1 (C1 ) 3+1 f2 ( B1 ) = min d( B1,C2 ) + f1 (C2 ) = min 3+3 d( B1,C3 ) + f1 (C3 ) 1+4 4 = min 6 = 4 (最短路线为B1→C1 →D) 5
3
2 A 4 B2 B1 2 1 3
最优策略为(30,20),此时最大利润为105万元。
f 2 ( 40)
g2 ( y) y 0 ,10 ,, 40
max
f1 ( 40 y )
90
最优策略为(20,20),此时最大利润为90万元。
f 2 (30)
g2 ( y) y 0 ,10 , 20 , 30
max
f1 (30 y )
70
最优策略为(20,10),此时最大利润为70万元。
f 2 ( 20) ma 0 ,10 , 20
50
最优策略为(20,0),此时最大利润为50万元。
f 2 (10) maxg 2 ( y ) f1 (10 y )
3 2 A 4 B2 B1 2 3 1 3 1
C1 C2 4 3
动态规划(DynamicProgramming)LeetCode经典题目

动态规划(DynamicProgramming)LeetCode经典题⽬
动态规划(DP)概述:
动态规划是运筹学的⼀个分⽀。
(运筹学,是现代管理学的⼀门重要专业基础课。
该学科利⽤统计学、数学模型和算法等⽅法,去寻找复杂问题中的最佳或近似最佳的解答。
)
以局部最优解最终求得全局最优解。
在设计动态规划算法时,需要确认原问题与⼦问题、动态规划状态、边界状态结值、状态转移⽅程等关键要素。
在算法⾯试中,动态规划是最常考察的题型之⼀,⼤多数⾯试官都以是否可较好地解决动态规划相关问题来区分候选者是否“聪明”。
下⾯就让我们开始8道经典的动态规划相关题⽬吧!!
1、LeetCode70 爬楼梯
2、LeetCode198 打家劫舍
3、LeetCode53 最⼤⼦序和
4、LeetCode322 找零钱
5、LeetCode120 三⾓形
6、LeetCode300 最长上升⼦序列
7、LeetCode64 最⼩路径和
8、LeetCode174 地下城游戏
(题解稍后会在博客随笔分类“动态规划”中⼀⼀给出,耐⼼等待哦!!)
欢迎评论,共同进步!!。
noip动态规划讲解课件

用f[x,i,j]表示走到第x步时,第1条路线走到横坐标为i的地方,第2条路线走到了横坐标为j的地方。这样,我们只要枚举x,i,j,就能递推出来了。
For x:=3 To m+n Do For i:=1 To Min(x,n) Do For j:=1 To Min(x,n) Do Begin f[x,i,j]:=Max(f[x-1,i,j],f[x-1,i-1,j],f[x-1,i,j-1],f[x-1,i-1,j-1]); If i=j Then Inc(f[x,i,j],a[i,x-i]) Else Begin Inc(f[x,i,j],a[x-i,i]); Inc(f[x,i,j],a[x-j,j]); End; End;
动态规划实质:
枚举
+
递推
状态
状态转移方程
Sample Problem1
1
3
5
9
1
从树的根到树的叶节点,最多能取多少数?
贪心:答案错误
暴力搜索:如果数据大会超时
我们先将NOIp里的动态规划分分类:
最长不降子序列 背包 方格取数 石子归并 状态压缩 数学递推 顺序递推
合唱队形(NOIp2004) 【问题描述】 N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K位同学排成合唱队形。 合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1,2…,K,他们的身高分别为T1,T2,…,TK, 则他们的身高满足T1<...<Ti>Ti+1>…>TK(1<=i<=K)。 你的任务是,已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。 【输入文件】 输入文件第一行是一个整数N(2<=N<=100),表示同学的总数。第一行有n个整数,用空格分隔,第i个整数Ti(130<=Ti<=230)是第i位同学的身高。 【输出文件】 输出文件包括一行,这一行只包含一个整数,就是最少需要几位同学出列。
动态规划的空间复杂度

动态规划的空间复杂度动态规划(Dynamic Programming)是一种解决复杂问题的算法思想,它通过将问题分解为子问题,并保存子问题的解来解决整体问题。
其中,空间复杂度是评估算法在使用内存方面的效率。
本文将探讨动态规划算法中的空间复杂度,并分析如何在实际应用中优化空间利用。
一、动态规划算法概述动态规划算法通常用于解决具有重叠子问题和最优子结构性质的问题。
它的核心思想是将原问题分解为若干个子问题,并分别求解这些子问题的最优解,然后通过求解子问题的最优解,得到原问题的最优解。
二、动态规划算法的基本步骤动态规划算法通常包括以下几个基本步骤:1. 定义状态:将问题抽象为一个数学模型,并定义状态表示问题的一种描述方式。
2. 状态转移方程:为了求解原问题的最优解,需要找到子问题之间的关系,并建立状态转移方程,即将原问题的求解过程表示为子问题的求解过程。
3. 初始条件:确定问题的边界条件,即最简单的情况。
4. 计算顺序:按照一定的顺序计算各个子问题的最优解。
5. 填表求解:根据状态转移方程和初始条件,计算各个子问题的最优解,并填表保存。
6. 构造解:根据填表求解的结果,构造原问题的最优解。
三、动态规划算法的空间复杂度分析在动态规划算法中,空间复杂度是评估算法使用内存的量。
由于动态规划算法通常采用填表的方式记录子问题的解,因此在空间复杂度分析中,主要考虑所需的额外空间。
1. 状态表空间:动态规划算法通常使用一个二维数组或一维数组来保存子问题的解。
如果问题的规模为n,状态数为m,则状态表的大小为m*n。
因此,状态表空间复杂度为O(m*n)。
2. 状态变量空间:有些动态规划问题只需要保存前一状态的解,而不需要保存全部子问题的解。
此时,可以只使用一个变量来保存前一状态的解,从而减少空间复杂度。
3. 优化空间利用:有时候,可以通过观察问题的特点,找到一种更加紧凑的存储方式,从而节省空间。
例如,对于一些只与前一状态相关的问题,可以使用滚动数组技巧,只保存最近的几个状态,从而将空间复杂度降低至常数级。
对动态优化设计的认识及其应用

对动态优化设计的认识及其应用动态规划(Dynamic Programming)是一种解决多阶段决策问题的优化方法。
它适用于那些具有重叠子问题和最优子结构性质的问题。
动态规划的核心思想是将问题分解成若干个子问题,并通过解决子问题的最优解来解决原始问题。
动态规划设计的关键是确定状态转移方程、初始条件和边界条件。
状态转移方程指的是如何根据已知信息推导出新的状态,并将其存储起来。
初始条件是问题中已知的最小规模的子问题的解。
边界条件是限制问题空间的条件,在状态转移时需要遵守边界条件。
动态规划的应用非常广泛,以下是几个常见的例子:1. 背包问题:给定一个容量为C的背包和N个物品,每个物品有重量和价值,要求选择一些物品放入背包中,使得总重量不超过C,且总价值最大。
可以使用动态规划来解决该问题,定义一个二维数组dp[i][j]表示前i个物品放入容量为j的背包中所能取得的最大价值,然后根据不同的情况推导状态转移方程。
2. 最长递增子序列:给定一个序列,找到其中的一个最长递增子序列。
可以使用动态规划来解决该问题,定义一个一维数组dp[i]表示以第i个元素结尾的最长递增子序列的长度,然后根据不同的情况推导状态转移方程。
3. 最短路径问题:给定一个有向图和两个顶点,要求找出两个顶点之间的最短路径。
可以使用动态规划来解决该问题,定义一个二维数组dp[i][j]表示从顶点i到顶点j的最短路径长度,然后根据不同的情况推导状态转移方程。
动态规划的优势在于它可以避免重复计算,通过存储中间状态的结果来提高计算效率。
这个特性可以帮助我们解决一些复杂度较高的问题,如旅行商问题、图的最小生成树问题等。
此外,动态规划还可以用来解决一些组合优化问题,如一些排列组合的计数问题。
然而,动态规划也有一些限制和注意事项。
首先,动态规划只适用于满足最优子结构性质的问题。
其次,动态规划的时间和空间复杂度都比较高,需要花费较多的计算资源。
另外,动态规划的设计需要一定的经验和技巧,需要根据具体问题来确定状态转移方程和初始条件。