交巡警服务平台的设置与调度
交巡警服务平台的设置与调度-2011年全国大学生数学建模赛题

交巡警服务平台的设置与调度摘要本文是在一个原有区域交警平台的基础上,分析讨论在该市警务资源有限的情况下,如何实现城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源的实际问题。
实现最优化管理的方案。
以图论最优路径理论为基础,建立图的最优化模型。
针对问题(1),将A区路口和道路抽象成图,分别以交巡警服务平台对应的点为起点求小于等于3min的路径,再将同一起点的路径的终点相连,围成一个区域,便是交巡警服务平台的管辖范围。
在此基础上综合考虑各个路口发案率的大小、区域人口密集程度,从而建立一个图中路径最优化模型。
再根据各个区域之间的所产生的空白区,即交巡警的管辖盲区。
为其添加交巡警服务平台。
实现其管理最优化的目的。
针对问题(2),结合交巡警服务平台的设置原则,充分考虑全市各区不同的状况,如:人口密度、区域面积等,并以A区的分区标准为基础,实现对全市各区的交巡警服务平台的设置。
对于P点的逃犯,建立一个以P点为中心的最优逃跑路径所组成的图,然后在算出罪犯的最佳逃跑路线,再调度相应的交巡警,实现对他的围堵。
从而实现交巡警服务平台设置和调度的最优化的方案。
关键词:图论;最优化路径; 交巡警服务平台;MATLAB;数据结构1、问题重述“有困难找警察”,是家喻户晓的一句流行语。
警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。
为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。
每个交巡警服务平台的职能和警力配备基本相同。
由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。
试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:(1)附件1中的附图1给出了该市中心城区A的交通网络和现有的20个交巡警服务平台的设置情况示意图,相关的数据信息见附件2。
请为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。
交巡警服务平台的设置与调度(数学建模)

交巡警服务平台的设置与调度
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。
为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。
应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。
另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:
(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2) 通过数据分析,说明重金属污染的主要原因。
(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?。
服务平台的设置与调度(7)

交巡警服务平台的设置与调度摘要针对问题一的第一小问,根据已知数据,使用Floyd算法,用C语言程序求解,得出任意两点间的最短路径,再根据题目要求将A区所有路口纳入20个巡警平台的管辖下,具体分配方式见表1。
针对问题一得第二小问,根据第一小问中Floyd算法得到的数据,建立0-1规划模型,用Lingo对模型求解,得出最短全封锁时间为8.0155分钟,调度方案见表2。
针对问题一的第三小问,由第一小问的分配结果可知,在现有巡警服务台的设置下:1、还有6个路口在案发时巡警不能在3min之内到达,即某些地方出警时间过长;2、我们根据巡警服务台的工作量的方差定义工作量不均衡度,结果显示:此时服务台的工作量的不均衡度为8.4314。
我们建立集合覆盖的0—1规划模型,求解结果表明:在增加4个巡警服务台的情况下,使平台的工作量不均衡度降为3.0742。
增加的4个巡警服务台的路口标号见表8。
针对问题二的第一小问,本文定义了两个评价原则,原则一:巡警能在3min 之内到达案发路口;原则二:巡警服务台的工作量均衡度尽量小。
根据以上两个原则对该市现有巡警服务台的设置方案的合理性进行评价,评价结果显示:①全市有138个路口,在案发时巡警不能在3min之内到达;②此时的不均衡度已达40.3。
基于上述两点,现有的巡警服务台设置不合理。
在现有巡警服务台设置不合理的情况下,本文提出改进方案对设置进行优化调整。
保持现有巡警服务台的个数和位置,再在其他路口增设巡警服务台。
具体方案见表11。
针对问题二的第二小问,我们建立了二分图模型,并用匈牙利算法求解最大匹配。
解得了最佳围堵方案见表13。
最短用时为4.1911分钟。
关键词:Floyd算法0-1规划不均衡度二分图匈牙利算法一问题重述为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。
每个交巡警服务平台的职能和警力配备基本相同。
由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。
2011数学建模优秀论文——交巡警服务平台的设置与调度

交巡警服务平台的设置与调度摘要本文对交巡警服务平台的设置与调度问题,应用Dijstra最短路算法,多目标规划,0-1整数规划,时间步长法,针对不同情况的具体问题,分别建立了相应的数学模型,给出了合理的交巡警服务平台的设置与调度方案。
对A区交巡警服务平台管辖范围的分配问题,首先根据节点坐标计算出节点邻接对称矩阵,然后利用Dijstra算法求解出各节点到每个平台的最短距离,并根据到平台最短距原则分配各节点给相应的平台管辖,最后得到了各平台管辖的范围(见表1),同时给出了各平台管辖范围内3分钟路程外的节点(见表1)。
对封锁A区13条要道节点的交巡警服务平台警力调度问题,考虑到各平台出警时间的同步,出警的平台数量最少以及一个平台警力最多封锁一个路口的约束,运用多目标规划,0-1整数规划建立了一个封锁13条要道节点最长时间最小化模型,并运用Lingo 求解出平台3,4,5,6,7,9,10,11,12,13,14,15,16分别封锁要道节点16,38,62,48,29,30,12,24,22,21,23,28,14,得到了A区13条要道全部封锁完成的最短时间为8分钟。
对确定需要增加交巡警服务平台的个数及位置问题,考虑到各平台工作量的均衡及出警时间,运用各平台工作量(所管辖范围内的发案数和)的标准差来衡量其工作量的均衡,建立了一个对每个节点的出警时间不超过3分钟,且各服务平台工作量的标准差最小(各平台工作量越均衡)的数学模型,并得到可在本区增加4个平台,分别增加在节点28,39,48,87.对评价全市现有交巡警服务平台设置方案的合理性问题,首先根据主城区以及最短距原则将全市各区节点分配给本区现有的平台,然后根据各平台工作量的均衡、出警时间、本区人口密度及发案率对现有平台设置进行了评价,并对明显不合理处进行了调整,给出了新的平台设置方案,同时对新方案各平台工作量,所辖3分钟路程节点数进行了比较,验证了新的平台设置方案明显优于现有平台的设置方案(见表3)。
交巡警服务平台的设置与调度

2)每个节点到最近的交巡警平台距离(仅保留小数点后两位,距离单位千米) 。 22 23 24 25 26 27 节点编号 21 9.06 5.00 23.85 17.89 9.00 16.43 与 平 台 距 27.08 离 29 30 31 32 33 34 节点编号 28 57.01 5.83 20.56 11.40 8.28 5.02 与 平 台 距 47.52 离 36 37 38 39 40 41 节点编号 35 6.08 11.18 34.06 36.82 19.14 8.50 与 平 台 距 4.24 离 43 44 45 46 47 48 节点编号 42 8.00 9.49 10.95 9.30 12.81 12.90 与 平 台 距 9.85 离 50 51 52 53 54 55 节点编号 49 8.49 12.29 16.59 11.71 22.71 12.66 与 平 台 距 5.00 离 57 58 59 60 61 62 节点编号 56 18.68 23.02 15.21 17.39 41.90 3.50 与 平 台 距 20.84 离 64 65 66 67 68 69 节点编号 63 19.36 15.24 18.40 16.19 12.07 5.00 与 平 台 距 10.31 离 71 72 73 74 75 76 节点编号 70 11.40 16.06 10.30 6.26 9.30 12.84 与 平 台 距 8.60 离 78 79 80 81 82 83 节点编号 77 6.40 4.47 8.06 6.71 10.79 5.39 与 平 台 距 9.85 离 85 86 87 88 89 90 节点编号 84 4.47 3.61 14.65 12.95 9.49 13.02 与 平 台 距 11.75 离 92 节点编号 91 36.01 与 平 台 距 15.99 离
第18章 交巡警服务平台的设置与调度问题

第十八章 n=length(x7); path=zeros(n); for k=1:n for i=1:n for j=1:n if x7(i,j)>x7(i,k)+x7(k,j) x7(i,j)=x7(i,k)+x7(k,j); % 最短距离 path(i,j)=k; % 路径 end end end end
第十八章
Matlab数学建模案例分析
特别对于问题一的求解,很明显有些节点到所有的交巡警服务平台的 距离都不会小于3km,所以很显然不能满足每个地方发生突发事件时都 会有交巡警在3分钟内到达,本文考虑到交巡警平台的重新铺设,将20 个交巡警平台重新在网络中铺设,得到最优结果。对于增设平台数,增 设平台后,各交巡警平台最大的得分为3.4529,而最小的为2.7016,很 明显之间的差距缩小了,可以看出增加平台是有必要的也是有效的。 对于问题二,针对全市(主城六区A,B,C,D,E,F)的具体情况 ,按照设置交巡警服务平台的原则和任务,分析研究该市现有交巡警服 务平台设置方案,首先先建立模型确定B区8个平台的管辖范围,建立 以各交巡警平台的工作量和人口密度为指标进行打分,可求得C、D、E 、F区,得到各区得分情况。针对于不平衡这个问题我们仅从增加平台 的角度考虑,没有考虑原有平台的移动,而解决不平衡的问题可以考虑 在不增加平台数量的基础上将现有平台进行移动来实现。本文针对移动 和不移动以及增设平台问题给出了求解模型以及LINGO求解程序,可有 效解决各交巡警平台设置问题。
第十八章
Matlab数学建模案例分析
第18章 交巡警服务平台的设置与调度问题
第十八章
Matlab数学建模案例分析
“有困难找警察”,是家喻户晓的一句流行语。本章以某地方交通网络 图为例,进行网络优化平台设置,主要针对交巡警平台进行设计,从而达 到合理的调度各处的交巡警,使得各处的交巡警工作量尽可能相当,并且 执行任务相应的能够更快,从而提高执行效率。 学些目标: (1)学习和掌握图论处理方法; (2)掌握MATLAB求解交巡警服务平台设置问题等; (3)掌握LINGO优化设置平台点位置问题等; (4)学习和掌握优化设计交巡警服务网络平台设置。 本文研究了交巡警服务平台的设聋与调度问题。 问题一中,要求在A区现有的20个交巡警服务平台的基础上,建立一种 数学模型,通过对模型的求解得出一种最优调度。根据实际情况,我们 首先需要对数据进行处理,利用Floyd算法,借助MATLAB软件对其进行 求解,求出20 个交巡警服务平台到各节点的实际距离。然后建立优化模 型,找出目标函数,并找出其相应的约束条件,借助LINGO对其进行求 解,得出结论。
全国大学生数学建模大赛 交巡警服务平台的设置和调度

交巡警服务平台的设置和调度摘要本文针对交巡警服务平台的设置和调度问题,通过题目给出的全市交通信息,采用弗洛伊德算法思想、借助矩阵、MATBLE和LINGO软件,求出最短距离矩阵和最短路径矩阵,再过数据的分析、筛选和计算,将目标函数进行优化。
针对A区问题一:根据最短路径原则,利用弗洛伊德算法计算A区92个路口任意两个之间的最短路径距离。
首先,根据距离最短原则建立数学模型,即根据最短路径进行分配;其次,对模型进行优化,对模型增加各平台的工作量,即为平台到节点的距离和该节点的案发频率的乘积。
为使达到相对工作量均衡(大于10的即为不公平),将其大于10的进行调整。
针对A区问题二:将问题转化为求所有方案中到达指定A区出入口路径最长的交巡警平台的最小值问题,建立目标规划模型,即对13个出入A区的节点实现最短时间封锁,同时一个交巡警服务平台只能封锁一个出入路口。
运用LINGO 程序,进行求解,最优解为Km。
MIN0155.8针对A区问题三:对于该问题主要总结上面两小问,在满足各交巡警服务平台到达各管辖节点最长时间小于三分钟且工作量相对均衡下,求交巡警服务平台增加数的最小值。
建立在符合相应约束条件求最小值的线性规划问题,求得最优解为新增四个交巡警服务平台。
关键词Floyd算法整体规划优化决策问题重述为了有效地贯彻实施警察刑事执法、治安管理、交通管理、服务群众的职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台,且各职能和警力配备基本相同。
警务资源是有限的,问题在于根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源。
1.中心城区A要解决的问题(1)根据题目给出的各附表,为各交巡警服务平台分配管辖范围,使其在所管辖的有突发事件尽量能在三分钟内到达。
(2)调度全区20个交巡警服务平台的警力资源,对进出该区的13条范围内出现突发事件时,要道实现快速全封锁。
设计该区交巡警服务平台警力合理的调度方案。
最新数学建模:交巡警平台的设置与调度

交巡警服务平台的设置与调度一、问题重述“有困难找警察”,是家喻户晓的一句流行语。
警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。
为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。
每个交巡警服务平台的职能和警力配备基本相同。
由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。
试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:(1)附件1中的附图1给出了该市中心城区A的交通网络和现有的20个交巡警服务平台的设置情况示意图,相关的数据信息见附件2。
请为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。
对于重大突发事件,需要调度全区20个交巡警服务平台的警力资源,对进出该区的13条交通要道实现快速全封锁。
实际中一个平台的警力最多封锁一个路口,请给出该区交巡警服务平台警力合理的调度方案。
根据现有交巡警服务平台的工作量不均衡和有些地方出警时间过长的实际情况,拟在该区内再增加2至5个平台,请确定需要增加平台的具体个数和位置。
(2)针对全市(主城六区A,B,C,D,E,F)的具体情况,按照设置交巡警服务平台的原则和任务,分析研究该市现有交巡警服务平台设置方案(参见附件)的合理性。
如果有明显不合理,请给出解决方案。
如果该市地点P(第32个节点)处发生了重大刑事案件,在案发3分钟后接到报警,犯罪嫌疑人已驾车逃跑。
为了快速搜捕嫌疑犯,请给出调度全市交巡警服务平台警力资源的最佳围堵方案。
二、问题分析2.1问题一(1)问要求为A区的20个交巡警服务平台划分管辖范围,使每个路口尽量在3分钟内能够由交巡警赶到。
根据实际情况,每个交巡警服务平台的资源是基本均衡且有限的。
我们规定路口被平台管辖,则此问题可看作是一个多目标0—1规划问题。
交巡警服务平台模型的设置与调度

. l { ∑ ,
x= o l  ̄O r ,
( 4 I )
设 计 合 理 围 堵 方 案
如果在 某地点 P发 生了重大刑事案件 .在案发 3分钟后接 到报 警 , 罪嫌疑人已驾车逃跑 . 犯 制定一个调度全 市交巡警服务平 台警力 其 中 d 表示第 号平 台到第 i 号节点 的距 离 , 表 示第 i 号节点 资源的最佳 围堵方案 , 实现对嫌疑犯 的快速搜捕 。 由第 号平 台管辖时 , 1 否则 = ; = , O 可直接封锁全市的所有 1 个 出市节点 。 可能 的节约警力资源 , 7 尽 2 快速全封锁的平台调 度 优化模型如下 :
i1 2 … ,2j 12 … ,0 = , , 9 ,= , , 2
针对 突发事件 . 城区 A需要调度所有服务平 台的警力 . 对进 出该 区的 1 条交通要道的路 口节点实现快速全 面封锁 。实 际中一个 平台 3 的警力 只能封锁一个路 口 . 要为该 区制定合理 的服务平台调度方 需 案。 在 2 O个平台 中抽调 1 个 到达 进出城 区节点 .需要 建立优化模 3 型. 找到使 到达全部节点 的时间的最大值 为最小 的方案
MiT ma{ ̄ l nቤተ መጻሕፍቲ ባይዱ= xdx
∑%n :
“.
I
(I) I I
i xj 3 mat≤
I 1 ∑ ≥,
i= I 2 0
【 o, f Ol x r  ̄ =
i:12 … ,2, 12 … ,. , ,, 9 j ,, n =
采取够用原则 , 尽可能的少增加平 台数 , 降低了人力 、 财力成 本。
21 年 01
第 3 期 1
S IN E&T C N L G F R TO CE C E H O O YI O MA IN N
交巡警服务平台的设置与调度

交巡警服务平台的设置与调度——云南师范大学 谭海云马 娟陈久毅摘要本文可分为五大问题,第一问首先通过用Matlab 软件把各线段的距离求出并标出92个交叉路口所对应的编号,由交巡警服务平台的原则:快速处警原则——城区接警后确保快速到达现场。
可知,所有的92个路口都应该属于距离它们最近的交巡警服务平台的管辖范围,然后用图论中的Dijkstra 矩阵算法,找出距离各个交叉路口最近的交巡警服务平台,建立了到达最远且用时最短的模型,及在最小的响应时间范围内,到达需求点所配备的服务平台数量最少,由此,建立了0-1规划模型。
结果发现,大多数交叉路口突发事件发生时,三分钟之内,都有交巡警到达事发点,只有28、29、38、39、61、92六个路口在事发三分钟内没有交巡警到达,但最长时间也只要5分36秒,比较合理。
第二个问题中,要调动全区的服务台来封锁交通要道,涉及到每个服务台的出警时间和工作量的不均衡。
于是,本文建立以最大相应量最小原则建立了责任划分模型,使得各个 服务区的工作量不是很大。
在第一个问题中,按交巡警服务平台的快速处警原则可以发现各个交警服务平台的负荷不平衡,而且有的交叉路口处案发率不同。
所以,第三个问题中可通过各个交巡警服务平台所管辖的路口平均每天的案发次数,结合A 区地图,分别假设交巡警服务平台可迁移和不可迁移的不同情况,分别可增加3个或者5个服务平台,使得每个交巡警服务平台所管辖的范围内平均每天的案发次数大多都在4—6次之间,且在遇突发事件的时候,几乎都能在3分钟之内到达。
第四个问题,我们根据A 、B 、C 、D 、E 、F 各个区域的平均每天案发次数和人口密度所占该市的比率12i i γγ和,通过定义一个指标——交警服务率:12(1)i i γαγαγ=+-来将80个交巡警服务平台重新分配到不同的区域,其中,权重α是已知的,且在不同人心目中的值不同。
经过计算人口密度的时候发现,A 区平均人口密度过大,达到2.72万人/平方千米。
2011数学建模B题

2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题交巡警服务平台的设置与调度“有困难找警察”,是家喻户晓的一句流行语。
警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。
为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。
每个交巡警服务平台的职能和警力配备基本相同。
由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。
试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:(1)附件1中的附图1给出了该市中心城区A的交通网络和现有的20个交巡警服务平台的设置情况示意图,相关的数据信息见附件2。
请为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。
对于重大突发事件,需要调度全区20个交巡警服务平台的警力资源,对进出该区的13条交通要道实现快速全封锁。
实际中一个平台的警力最多封锁一个路口,请给出该区交巡警服务平台警力合理的调度方案。
根据现有交巡警服务平台的工作量不均衡和有些地方出警时间过长的实际情况,拟在该区内再增加2至5个平台,请确定需要增加平台的具体个数和位置。
(2)针对全市(主城六区A,B,C,D,E,F)的具体情况,按照设置交巡警服务平台的原则和任务,分析研究该市现有交巡警服务平台设置方案(参见附件)的合理性。
如果有明显不合理,请给出解决方案。
如果该市地点P(第32个节点)处发生了重大刑事案件,在案发3分钟后接到报警,犯罪嫌疑人已驾车逃跑。
为了快速搜捕嫌疑犯,请给出调度全市交巡警服务平台警力资源的最佳围堵方案。
附件1:A区和全市六区交通网络与平台设置的示意图。
附件2:全市六区交通网络与平台设置的相关数据表(共5个工作表)。
附图1:A区的交通网络与平台设置的示意图附图2:全市六区交通网络与平台设置的示意图说明:(1)图中实线表示市区道路;红色线表示连接两个区之间的道路;(2)实圆点“·”表示交叉路口的节点,没有实圆点的交叉线为道路立体相交;(3)星号“*”表示出入城区的路口节点;(4)圆圈“○”表示现有交巡警服务平台的设置点;(5)圆圈加星号“○*”表示在出入城区的路口处设置了交巡警服务平台;(6)附图2中的不同颜色表示不同的区。
交巡警服务平台的设置与调度

交巡警服务平台的设置与调度1问题的背景近十年来,我国科技带动生产力不断发展,国家经济实力不断增强,然而另一方安全生产形势却相当严峻,每年因各类生产事故造成大量的人员伤亡、经济损失。
尤其是在一些大目标点,作为人类经济、文化、政治、科技信息的中心,由于其“人口集中、建筑集中、生产集中、财富集中”的特点,一旦发生重大事故,将会引起相当惨重的损失。
为了保障安全生产、预防各类事故。
我国正在各省(市)目标点逐步设立交巡警平台。
2010年2月7日,一支名为“交巡警”的全新警种在重庆诞生。
这一警种拥有包括枪支在内的“高精尖”装备,代替过去的交警和巡警。
交巡警平台是将刑事执法、治安管理、交通管理、服务群众四大职能有机融合的新型防控体系。
在人流量极大、治安状况比较复杂、交通持续比较混乱的事故多发带产生强大的司法制衡力、社会治安的驾驭力、打击罪犯的冲击力。
保证在事故发生的第一时间赶到现场。
大力的减少了社会上各种混乱行为的发生。
使居民的生命财产安全得以保障。
2问题的总体分析问题一要求根据中心城区的地图,给出交巡警服务平台管辖区域划分方案策略,城区图中一共有给定坐标的交叉路口92个,城区内的有效路线140条,20个交巡警服务平台。
在划分管辖区域时主要是从规划问题中出发,考虑给定的约束条件,即三分钟内到达事发地点,为方便计算和编写约束条件,将题中的时间和距离统一化为距离处理,称为“等效距离”。
解决此问题时我们只考虑到节点距离。
先算出这20个平台到所有交叉路口的距离然后筛选出小于三分钟所对应的等效距离,然后本着让每个平台管辖的交叉路口数大致相等且不会出现跨点管辖的原则不重复的分配节点给20个平台。
问题二要求给出在重大事件发生时,调度全区20个交巡警服务平台的警力资源,进出A区的13条交通要道实现快速全封锁,此问题的重点是合理安排封锁任务使得实现封锁的总时间最短。
3模型的建立与求解3.1城区各交巡警服务平台管辖范围分配3.1.1理论基础已知任意两个节点z■和z■的坐标(x■,y■)和(x■,y■),可以根据下述公式求出两点间的距离d:d(z■,z■)=■首先,我们确定巡逻的范围限制s,由已知可知,警车接到报警后的速度为v ,其中赶到案发地点的时间要求为t,由此可知:s=v×t将具体数据代入上式可以求得:s=3km3.1.2模型的建立A区域的点集V一共包含92个点,将这些节点的坐标和坐标间的连线导入MATLAB中,并计算出相邻两点间的距离,将其标注在直线上,可以获取该区域的赋权图。
服务平台的设置与调度(7)

交巡警服务平台的设置与调度摘要针对问题一的第一小问,根据已知数据,使用Floyd算法,用C语言程序求解,得出任意两点间的最短路径,再根据题目要求将A区所有路口纳入20个巡警平台的管辖下,具体分配方式见表1。
针对问题一得第二小问,根据第一小问中Floyd算法得到的数据,建立0-1规划模型,用Lingo对模型求解,得出最短全封锁时间为8.0155分钟,调度方案见表2。
针对问题一的第三小问,由第一小问的分配结果可知,在现有巡警服务台的设置下:1、还有6个路口在案发时巡警不能在3min之内到达,即某些地方出警时间过长;2、我们根据巡警服务台的工作量的方差定义工作量不均衡度,结果显示:此时服务台的工作量的不均衡度为8.4314。
我们建立集合覆盖的0—1规划模型,求解结果表明:在增加4个巡警服务台的情况下,使平台的工作量不均衡度降为3.0742。
增加的4个巡警服务台的路口标号见表8。
针对问题二的第一小问,本文定义了两个评价原则,原则一:巡警能在3min 之内到达案发路口;原则二:巡警服务台的工作量均衡度尽量小。
根据以上两个原则对该市现有巡警服务台的设置方案的合理性进行评价,评价结果显示:①全市有138个路口,在案发时巡警不能在3min之内到达;②此时的不均衡度已达40.3。
基于上述两点,现有的巡警服务台设置不合理。
在现有巡警服务台设置不合理的情况下,本文提出改进方案对设置进行优化调整。
保持现有巡警服务台的个数和位置,再在其他路口增设巡警服务台。
具体方案见表11。
针对问题二的第二小问,我们建立了二分图模型,并用匈牙利算法求解最大匹配。
解得了最佳围堵方案见表13。
最短用时为4.1911分钟。
关键词:Floyd算法0-1规划不均衡度二分图匈牙利算法一问题重述为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。
每个交巡警服务平台的职能和警力配备基本相同。
由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。
交巡警服务平台的设置与调度

交巡警服务平台的设置与调度摘要:本文对已有的交通网络与平台设置图进行了分析,定义了城区平均发案率和全市平均发案率两个新概念,建立模型。
首先是三分钟区域圆模型,运用编程求出各可连通节点之间的距离,又采用穷举法对其进行优化。
进一步建立了动态规划模型和0-1规划模型,用得出调用警力资源封锁的最佳方案。
利用增加的服务平台到13个交通要道的距离平均值最小作为目标,得出在28,48,68号增加服务平台最优。
关键词:行驶速度路程测量模型求解中图分类号:g633.3 文献标识码:a 文章编号:1673-9795(2012)04(b)-0191-03按照本文给出的评估模型,对问题进行优化。
1 模型假设(1)警车以匀速行驶,且出警过程中道路畅通,警车行驶正常,能顺利到达事发地。
(2)不考虑天气突变等因素影响行进过程。
(3)在整个出警过程中,走得皆为最短路程。
(4)从嫌疑人反侦察的心理角度考虑,为防止被排查车辆的交巡警怀疑,假设嫌疑人所驾驶车辆车速在或以下。
(5)警车围堵嫌疑人过程中防止引起不必要的恐慌,车速仍限制在60km/h匀速行驶。
(6)在围堵嫌疑人过程中,到达交通要道或路口交点即为到达目的地。
2 模型建立与求解问题1.1的模型建立与求解:为了给各交巡警服务平台分配管辖范围,满足有交巡警在3分钟内到达其所管辖区内的事发地,针对限制条件分析,计算出交巡服务平台的设立路口离其最远的地块的距离即可,那么待设置的交巡警平台的路口需满足的条件如下:在保证出警时道路恒畅通,警车行驶正常的情况下,车速恒为千米/小时,出警时间不得超过分钟,则从交巡警平台到达出事地块所行驶的最大路径:。
(警车的恒定速度;为出警所用时间;为从交巡警平台到达出事地点所行驶的最大路程)由题目所给出数据=3分钟,=60千米/小时,可得:。
此题中共有582个节点,928条可联通的道路,要规划服务台在距离节点3km之内,必求出各道路两路口节点之间的距离,此图并不是每个点都相连,有些点不能直接到达,求出可连通的节点之间的直线距离(为联通的号路口节点到号路口节点之间的距离;为城区平均发案率)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交巡警服务平台的设置与调度摘要警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。
为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。
每个交巡警服务平台的职能和警力配备基本相同。
由于警务资源是有限的,根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源进行模型建立和研究。
首先针对问题(一):问题(1.1)对于A区的交巡警平台得管辖分配问题上,根据题目给出的每个相邻点的坐标,通过MATLAB编程算出相邻两路口之间的距离。
再通过FLOYD 算法求出任意两点之间的最短距离得出92*92的矩阵,从中提取20*92的矩阵,以每个平台到每一节点的最短距离建立模型。
以各交巡警平台到其管辖节点的时间最短为目标函数,建立0—1规划模型,从而得出最佳分配方案。
问题(1.2)依据木桶盛水原理,封堵A区13个路口方案的好坏取决于最晚到达指定封锁路口的交巡警到达时间的长短。
建立以最晚到达时间最短为目标的优化模型,建立0-1规划模型。
借助于LINGO软件编程,从而得出最佳交巡警平台调度方案。
问题(1.3)根据FLOYD算法求出任意两点之间的最短距离得出92*92的矩阵,在时间最短的前提下,运用极差求最小原则建立以工作量平衡且时间最短的多目标规划。
利用SPSS对模型进行方差分析然后针对问题(二)问题(2.1)利用问题(1.3)所建立的多目标规划模型对此问题进行推广应用,得出B,C,D,E,F的分配方案,利用SPSS进行方差分析检验模型的合理性,对不合理区域进行合理分配。
问题(2.2)通过广度优先搜索思想,利用时间步长法对犯罪嫌疑人进行节点围堵。
关键词:FLOYD算法 0-1规划可达性矩阵广度优先搜索一、问题重述“有困难找警察”,是家喻户晓的一句流行语。
警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。
为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。
每个交巡警服务平台的职能和警力配备基本相同。
由于警务资源是有限的,根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源进行讨论。
问题一:(1)附件1中的附图1给出了该市中心城区A的交通网络和现有的20个交巡警服务平台的设置情况示意图,相关的数据信息见附件2。
请为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。
(2)对于重大突发事件,需要调度全区20个交巡警服务平台的警力资源,对进出该区的13条交通要道实现快速全封锁。
实际中一个平台的警力最多封锁一个路口,请给出该区交巡警服务平台警力合理的调度方案。
(3)根据现有交巡警服务平台的工作量不均衡和有些地方出警时间过长的实际情况,拟在该区内再增加2至5个平台,请确定需要增加平台的具体个数和位置。
问题二:(4)针对全市(主城六区A,B,C,D,E,F)的具体情况,按照设置交巡警服务平台的原则和任务,分析研究该市现有交巡警服务平台设置方案(参见附件)的合理性。
如果有明显不合理,请给出解决方案。
(5)如果该市地点P(第32个节点)处发生了重大刑事案件,在案发3分钟后接到报警,犯罪嫌疑人已驾车逃跑。
为了快速搜捕嫌疑犯,请给出调度全市交巡警服务平台警力资源的最佳围堵方案。
二、模型假设1. 假设所给网络图中的交通道路是双行线;2. 假设交巡警的行驶速度不受天气等其他因素影响,速度恒定;3. 假设各路口的发案率和所属警点到路口的次数成正比;4. 假设交巡警在到达各路口所走的路线都是最短路径的路线;5. 假设交巡警接到报案时不考虑反应时间.6. 一个平台的警力最多封锁一个路口;7.每个节点只能被一个服务台管辖三、符号说明D邻接矩阵;D 任意两点间的最短距离矩阵;第i个节点到第j个节点的最短距离;dijX 0-1 整数规划矩阵;t第i个节点到第j个节点最短时间;ij第i节点的按发率;PiS第i个节点的任务量;i四、问题分析首先针对问题(一):问题(1.1)对于A区的交巡警平台得管辖分配问题上,根据题目给出的每个相邻点的坐标,通过MATLAB编程算出相邻两路口之间的距离。
再通过FLOYD 算法求出任意两点之间的最短距离得出92*92的矩阵,从中提取20*92的矩阵,以每个平台到每一节点的最短距离建立模型。
以各交巡警平台到其管辖节点的时间最短为目标函数,建立0—1规划模型,从而得出最佳分配方案。
问题(1.2)依据木桶盛水原理,封堵A区13个路口方案的好坏取决于最晚到达指定封锁路口的交巡警到达时间的长短。
建立以最晚到达时间最短为目标的优化模型,建立0-1规划模型。
借助于LINGO软件编程,从而得出最佳交巡警平台调度方案。
问题(1.3)根据FLOYD算法求出任意两点之间的最短距离得出92*92的矩阵,在时间最短的前提下,运用极差求最小原则建立以工作量平衡且时间最短的多目标规划。
利用SPSS对模型进行方差分析,检验模型。
然后针对问题(二)问题(2.1)利用问题(1.3)所建立的多目标规划模型对此问题进行推广应用,得出B,C,D,E,F的分配方案,利用SPSS进行方差分析检验模型的合理性,对不合理区域进行合理分配。
问题(2.2)通过双向广度优先搜索法MATLAB语言编程找到犯罪嫌疑人的可能的逃跑路径和刑警的捕捉路径的最小生成树的结合点,然后进行计算最短围堵时间。
验证前面模型建立的合理性。
五、模型建立与求解1. 前提:关于平台的分配管理问题,根据题目给出的每个相邻点的坐标,通过MATLAB 编程算出相邻两路口之间的距离。
再通过FLOYD算法求出任意两点之间的最短距离得出92*92的矩阵,从中提取92*20的矩阵。
(见附件92x92矩阵)2. 问题1.1:在出现突发事件时以尽量3分钟能到达为约束条件进行筛选,不能在3分钟到达的节点再选择其与之距离最短的交巡警服务平台进行管辖。
(见表1)表1:问题(1.2)基于预处理得到的所有节点的距离矩阵D,用excle提取出20个警点分别到13个路口的最短距离 ,用此数据组合成一个新的矩阵,类似于问题(1.1)设置一个与之相应的以0,1为变量的整数矩阵,建立以最晚巡警到达路口的时间最短,用的警员最少为目标的优化模型,。
借助有lingo软件进行程序设计,将得到具体的的值(若=1,表示第j个路口属于i警点管辖,若=0,则表示不i警点的管辖范围之内)。
3.问题1.2:基处理得到的所有节点的距离矩阵D,用excle提取出20个警点分别到13个路口的最短距离 ,用此数据组合成一个新的矩阵,设置一个与之相应的以0,1为变量的整数矩阵,建立以最晚巡警到达路口的时间最短为目标的优化模型,利用LINGO得出结果。
设变量X(i,j)表示第j个路口由第i个巡警服务台去封锁X(i,j)=1(第j个路口由第i个巡警服务台去封锁)或 =0(第j个路口由第i个巡警服务台不去封锁)建立如下目标函数:MinZ=V⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⋅⋅⋅=⋅⋅⋅==∑⋅⋅⋅=≤∑⋅⋅⋅==∑∑<*=====)923,2,1;203,2,1(1,0)133,2,1(1)203,2,1(1.201131201131j i x j x i x V d x t s ij i ij j ij i j ij ij4.问题1.3:依据问题1.1所得出结果即各服务平台所管辖的路口,通过SPSS 软件的方差分析得出各个服务台的工作任务情况,然后进行再给工作任务较轻的服务台增加服务节点和增加服务台。
建立如下模型:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⋅⋅⋅=⋅⋅⋅==∑⋅⋅⋅=≤≤⋅⋅⋅=⋅⋅⋅=*≤-*∑⋅⋅⋅=∑∑<+-=====)922,1;202,1(0,)922,1()922,1;202,1(10000003)202,1(1.100/min 201921201921j i Y X j W B X U j i Y D X X Z Y t s Z W U M ij ij i i ij ij ij ij j ij i j 5.问题2.1:利用问题(1.1)的处理数据的方法和问题(1.3)的模型进行处理B,C,D,E,F 后面五个区的巡警合理规划问题。
6.问题2.2:通过双向广度优先搜索法MATLAB 语言编程找到犯罪嫌疑人的可能的逃跑路径和刑警的捕捉路径的最小生成树的结合点,然后进行计算最短围堵时间。
验证前面模型建立的合理性。
六、 模型评价与改进1. 综合运用了floyd算法、lingo多目标优化模型、0-1规划模型,对数据进行了深入分析与处理,妥善的安排了各个警点的执勤任务,保证全市警力任务的高效执行。
2.该模型建立出了在较理想状态下交巡警平台的最优设置,减少了出警时间,可给生活中交巡警平台的设立予参考,具有一定的实际应用价值,可使交巡警在接到任务后更好的利用较短时间分配救援力量和选择最佳行进路径,以争取更多执行任务的时间,以取得更好的执行效果.3.模型的评价与改进该模型有一定的局限性,如现实中不能时刻都保证道路的畅通性.既不能保证出警的时间总是维持在 3 分钟之内.为了更贴近实际,则应考虑道路的畅通性对出警所用时间的影响.另外,在实际生活中也并非到达了事故发生地所在的地块就算到达了事故发生目的地.此处忽略了实际生活中存在的不定因素.这不利于巡警的真实出动,同时也是模型的不足之处。
4. 当今世界经济迅猛发展,城市加速扩张,人口迅速增长,交巡警平台的设置是城市平安的最好保证。
该模型也可运用到其他最优选址问题中去,比如关于消防救援工作最优路径问题、重大生产安全事故应急救援问题、公共交通的最优路径问题等。
参考文献[1]:钱湔.运筹学[M].北京:科学出版社,2000 [2]:[2]:薛定宇,陈阳泉.初等运用数学效果的 matlab 求解[M].北京:清华大学出版社,2004.,8[3]:石辛民,郝正清.基于 matlab 的适用数值计算[M].北京:清华大学出版,北京交通大学出版社,2006,2 [5]:[4]:刁在筠,郑汉鼎等.LINGO 教程[M].北京:清华大学出版社 2006,2 [5]:[5]赵静但琦,Excel软件教程。
北京:高等教育出版社,2006附录Chengxu1(节点与节点之间的距离)x=[‘节点x轴坐标’];%由于数据过大做成了超链接y=[‘节点y轴坐标’]c=[x’ y’];a=zeros(582,582);t=1;j=1;for i=1:582for j=1:582[m]=c(i,:)-c(j,:);m=sqrt(m(1)^2+m(2)^2);a(t,j)=m;j=j+1;endt=t+1;endchengxu2:(邻接矩阵)a1=zeros(582,582);for k=1:582for l=1:582a1(k,l)=inf;if k==la1(k,l)=0;endendendb1=[‘全市交通网中连接两路口节点路线的起点标号’, ‘全市交通网中连接两路口节点路线的终点标号’];for k1=1:928a1(b1(k1,1),b1(k1,2))=a(b1(k1,1),b1(k1,2));a1(b1(k1,2),b1(k1,1))=a(b1(k1,2),b1(k1,1));endchengxu3:(floyd算法)for k2=1:582for k3=1:582for k4=1:582if a1(k3,k4)>(a1(k3,k2)+a1(k2,k4))a1(k3,k4)=(a1(k3,k2)+a1(k2,k4));elsea1(k3,k4)=a1(k3,k4);endendendendChengxu4MODEL:sets:set1/a1..a20/:AI;set2/b1..b13/:BJ;set3(set1,set2):c,x;endsetSDATA:C=@ole('E:\AAA.xls','mydata.elx'); ENDDATAMIN=V;@FOR(SET3(I,J):@SUM(set3:c*x)<V);@FOR(SET2(J):@SUM(SET1(I):X(I,J))=1);@FOR(SET1(I):@SUM(SET2(J):X(I,J))<=1);@FOR(SET3(I,J):@BIN(X(I,J)));ENDChengxu5MODEL:SETS:R/a1..a92/:AI;F/b1..b20/:BJ;Q(F,R):C,D,X,y;ENDSETSDATA:C=@ole('E:\juzhenC.xls','ppp');D=@ole('E:\juzhenD.xls','aaa'); ENDDATAMIN=V-W+Z/1000;@sum(Q(I,J):Y)<Z;@FOR(Q(I,J):X*D-3<=Y*1000000000);@FOR(R(I):@sum(F(J):X(J,I))=1); @FOR(F(J):@SUM(R(I):C*X)>=W);@FOR(F(J):@SUM(R(I):C*X)<=V);@FOR(Q(I,J):@BIN(X(I,J));@BIN(y(I,J)););END。