最新文档-化工原理上册天津大学柴诚敬17-18学时-PPT精品文档
化工原理第1章课件PPT

贾绍义 《化工原理》(下册)授课课件 在本课件制作过程中,得到天津大学化工学院化工系的有关教师的 指导和帮助,在此致以诚挚的感谢!由于制作者水平所限, 本课件不妥之处甚至错误在所难免,恳请用户批评指正。 制作者 2008年12月
1
学时安排
总学时48
绪论 第1章 流体流动 第2章 流体输送机械
1学时 13学时 8学时
m pM V RT
T0 pM 22.4Tp0
24
流体的密度
(2)混合物的密度 液体混合物,混合前后体积不变
1
组分的 质量分 数 组分的体 积分数
m
x wA
A
x wB
B
...
x wn
n
气体混合物,混合前后质量不变
m A x VA B xVB ... n x Vn
29
一、牛顿黏性定律
牛顿型流体(Newtonian fluid)
遵循牛顿黏性定律的流体为牛顿型流体。
所有气体和大多数低分子量液体均属牛顿 型流体,如水、空气等。
30
一、牛顿黏性定律
非牛顿型流体(non-Newtonian fluid)
凡不遵循牛顿黏性定律的流体为非牛顿型 流体(non-Newtonian fluid)。
13
三、课程的学习要求
①单元操作设备的选择能力。 ②工程设计能力。
③操作和调节生产过程的能力。
④过程开发或科学研究能力。
14
绪 论
0.1 化工原理课程的性质和基本内容 0.2 单位制和单位换算
15
一、 物理量的单位
1.基本单位和导出单位 基本单位:质量、长度、时间和温度。 导出单位:速度、密度、加速度。 2.绝对单位制和重力单位制 绝对单位制:长度、质量、时间。 重力单位制:长度、时间和力。
化工原理天大柴诚敬

第一章流体流动1.4流体流动的基本方程—、概述流体动力学流体动力学主要研究流体流动过程中流速、压力等物理量的变化规律,研究所采用的基本方法是通过守恒原理(包括及)进行质量、能量及动量衡算,获得物理量之间的内在联系和变化规律。
作衡算时,需要预先指定衡算的空间范围,称之为 ,而包围此控制体的封闭边界称为控制面。
第一章流体流动1.4流体流动的基本方程1・4.1总质量衡算-连续性方程131-11管路系统的总质量衡算如图1・11所示,选择一段管路或容器作为所研究的控制体,该控制体的控制面为管或容器的内壁面、截面1・1与2・2组成的封闭表面。
管路系统的总质量衡算根据质量守恒原理可得_ dM £2,2 q加,1 +」门au=0(1-28)对于定态流动,dM/d0 = O则%,1 = %,2PyLlyAy —(1-29)推广到管路上任意截面q m-QM/i = P2U2^2~........ - puA二常数(1-30) 枉定态流动系统中,流体流经各截面时的质量流量恒定。
对于不可压缩流体,p=常数,则为q v s = u x A x—U2^2= .... —必=常数” -31)冇页压缩性流体流经各截面时的体积流量也不变.流速u与管截面积成反比,截面积越小,流速越大;反之, 截面积越大,流速越小。
此规律与管路的布畫形式及管路上是否有管件、阀则可变形为:(1-31 a)不可压缩流体征圆形管道申,任意截面的对于圆形管道u {%2g 加———... —puA.—吊不可压缩流体Qv.s—LI | iA | ― Lt 2 ^~2 ~—nA二常数—二(牛)2管内定态流动的连续性方程%2 ]注意:以上各式的适用条件例10、例11 (P26)例如附图所示,管路由一段^39 X4mm的管1、一段4 108 X 4mm的管2和两段© 57 XS.&nm 的分支管3a^3b连接而成。
若水以9X10 3JTL/S的体积流量流动,且在两段分支管內的流量相等,试求水在各段管內的速度。
化工原理(上)课后习题解答 天津大学化工学院 柴诚敬 (2)

习题解答绪 论1. 从基本单位换算入手,将下列物理量的单位换算为SI 单位。
(1)水的黏度μ=0.00856 g/(cm·s) (2)密度ρ=138.6 kgf ·s 2/m 4(3)某物质的比热容C P =0.24 BTU/(lb·℉) (4)传质系数K G =34.2 kmol/(m 2·h ·atm) (5)表面张力σ=74 dyn/cm(6)导热系数λ=1 kcal/(m ·h ·℃)解:本题为物理量的单位换算。
(1)水的黏度 基本物理量的换算关系为1 kg=1000 g ,1 m=100 cm则 ()s Pa 1056.8s m kg 1056.81m 100cm 1000g 1kg s cm g 00856.044⋅⨯=⋅⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅=--μ (2)密度 基本物理量的换算关系为1 kgf=9.81 N ,1 N=1 kg ·m/s 2则 3242m kg 13501N s m 1kg 1kgf N 81.9m s kgf 6.138=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅=ρ (3)从附录二查出有关基本物理量的换算关系为1 BTU=1.055 kJ ,l b=0.4536 kg o o 51F C 9=则()C kg kJ 005.1C 95F 10.4536kg 1lb 1BTU kJ 055.1F lb BTU 24.0︒⋅=⎥⎦⎤⎢⎣⎡︒︒⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡︒=p c (4)传质系数 基本物理量的换算关系为1 h=3600 s ,1 atm=101.33 kPa则()kPa s m kmol 10378.9101.33kPa 1atm 3600s h 1atm h m kmol 2.34252G ⋅⋅⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅⋅=-K(5)表面张力 基本物理量的换算关系为1 dyn=1×10–5 N 1 m=100 cm则m N 104.71m 100cm 1dyn N 101cm dyn 7425--⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⨯⎥⎦⎤⎢⎣⎡=σ (6)导热系数 基本物理量的换算关系为1 kcal=4.1868×103 J ,1 h=3600 s则()()C m W 163.1C s m J 163.13600s 1h 1kcal J 104.1868C h m kcall 132︒⋅=︒⋅⋅=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⨯⎥⎦⎤⎢⎣⎡︒⋅⋅=λ 2. 乱堆25cm 拉西环的填料塔用于精馏操作时,等板高度可用下面经验公式计算,即()()()LL310CB4E 3048.001.121078.29.3ραμZ D G A H -⨯=式中 H E —等板高度,ft ;G —气相质量速度,lb/(ft 2·h); D —塔径,ft ;Z 0—每段(即两层液体分布板之间)填料层高度,ft ; α—相对挥发度,量纲为一; μL —液相黏度,cP ; ρL —液相密度,lb/ft 3A 、B 、C 为常数,对25 mm 的拉西环,其数值分别为0.57、-0.1及1.24。
天津大学《化工原理》课程设计报告

《化工原理》课程设计报告真空蒸发制盐系统卤水分效预热器设计学院天津大学化工学院专业化学工程与工艺班级2014学号3014207018姓名孙国铭指导教师马红钦化工流体传热课程设计任务书专业化学工程与工艺班级化工1班姓名孙国铭学号(编号)3014207018(一)设计题目:真空蒸发制盐系统卤水分效预热器设计(二)设计任务及条件1、蒸发系统流程及有关条件见附图。
2、系统生产能力:60 万吨/年。
3、有效生产时间:300天/年。
4、设计内容:Ⅱ效预热器(组)第12345678 台预热器的设计。
5、卤水分效预热器采用单管程固定管板式列管换热器,试根据附图中卤水预热的温度要求对预热器(组)进行设计。
6、卤水为易结垢工质,卤水流速不得低于0.5m/s。
7、换热管直径选为Φ38×3mm。
(三)设计项目1、由物料衡算确定卤水流量。
2、假设K计算传热面积。
3、确定预热器的台数及工艺结构尺寸。
4、核算总传热系数。
5、核算压降。
6、确定预热器附件。
7、设计评述。
(四)设计要求1、根据设计任务要求编制详细设计说明书。
2、按机械制图标准和规范,绘制预热器的工艺条件图(2#),注意工艺尺寸和结构的清晰表达。
设计说明书的编制按下列条目编制并装订:(统一采用A4纸,左装订)(1)标题页,参阅文献1附录一。
(2)设计任务书。
(3)目录。
(4)说明书正文设计简介:设计背景,目的,意义。
由物料衡算确定卤水流量。
假设K计算传热面积。
确定预热器的台数及工艺结构尺寸。
核算总传热系数。
核算压降。
确定预热器附件。
设计结果概要或设计一览表。
设计评述。
(5)主要符号说明。
(6)参考文献。
(7)预热器设计条件图。
主要参考文献1. 贾绍义,柴诚敬. 化工原理课程设计. 天津: 天津大学出版社, 20022. 柴诚敬,张国亮. 化工流体流动和传热. 北京: 化学工业出版社, 20073. 黄璐,王保国. 化工设计. 北京: 化学工业出版社, 20014. 机械制图自学内容:参考文献1,第一章、第三章及附录一、三;参考文献2,第五~七章;参考文献3,第1、3、4、5、11部分。
化工原理课程整体设计.ppt

(2)实践教学模块(18学时) 实验教学
化工原理(基础)实验单独设课。实验内容 包括基本实验、综合性实验、设计型实验和研究 型实验四个层次。通过实验学生巩固和加深了对 课堂教学内容的理解,提过学生的基本实验技能。
2020-11-9
感谢你的观看
18
实习(10学时)
地点:心连心化工有限公司、新乡市酒精厂、新乡 正华化工厂。
(1)理论教学模块 (70学时) ➢ 授课形式:课堂讲授 ➢ 主要内容:流体输送、流体输送机械、传热、吸
收、蒸馏、气液传质设备、干燥。 ➢ 通过化工原理的学习使学生熟练掌握化工生产中
常见单元操作的基本原理、单元操作过程计算、 典型设备的结构及其工艺尺寸的设计、计算等。
2020-11-9
感谢你的观看
17
2020-11-9
感谢你的观看
7
多年来不断加强化工原理课程建设, 注重内涵发展,形成了适合学生特点、 适应社会发展需求、教学内容紧扣学科 前 沿 的 特 色 鲜 明 的 课 程 体 系 。 2006 年 《化工原理》课程被评为校级精品课程。
2020-11-9
感谢你的观看
8
总体 介绍
师 资 情 况
激发学生的学习积极性。
教 学
采用对比式教学法,
方 法
提高学习效果和培养学生创新意识。
理论课与实践课结合与渗透,
培养学生解决实际问题的综合能力。
2020-11-9
感谢你的观看
23
六、教学环境
(一)理论教学:多媒体教学 (二)校内实训基地: 1.校内实训室
在原有化工原理实验设备的基础上,2006 年学院一次性投资100余万元筹建了一个新 的化工原理实验室,仿真实验室。与本课 程有关的实训室基本情况如下:
化工原理天大柴诚敬学时

第—草流体输送机械O 、通过本章学习,拿握化工中常用流体输送机械的基本结构、工作原理和操作特性,能够根据生产工艺要求和流体特性,合理地选择和正确操作流体输送机械,并使之在高效下安全可靠运行。
第二章流体输送机械2. 1概述2.1.1流体输送机械的作用管路对流体输送机械的能量要求由伯努利方程计算。
对于液体,采用以单位重量(1N)流体为基准的伯努利方程式+眷等 + 輕J/" —(2-1)K =立+也Pg7T2dA g心z+誉等+沪方程对于通风机的气体输送系统,在风机进出口截面间采用以单位体积(1m3)为基准的伯努利方程式,乩=Q£AZ+A D +卫-Q + Q 好G ・l/m3HVPa(2-6)流体输送机械除满足工艺上对流量和压头(对气体为风压与风量)两项主要技术指标要求外, 还应满足如下要求:①结构简单,重量轻,投资费用低。
②运行可靠,操作效率高,日常操作费用低。
③能适应被输送流体的特性,如黏度、可燃性、第二章流体输送机械2. 1概述2.1.1流体输送机械的作用2. 1.2流体输送机械的分类r输送液体泵按输送流体J的状态分类1 C通风机I输送气体鼓风机I压缩机动力式(叶轮式)按工作原理分类Y容积式(正位移式)流体作用式第二章流体输送机械2. 2离心泵2. 2. 1离心泵的工作原理和基本结构—・离心泵的工作原理是工业生产中应用最为广泛的液体输送机械。
其突出是结构简单、体积小、流量均匀、调节控制方便、故障少、寿命长、适用范围广(包括流量、压头和介质性质)、购置费和操作费用均较低。
—・离心泵的工作原理122-1离心泵装置简图g :斗r F离心泵的工作原理077//////////离心泵的叶轮吸液方式单吸式双吸式平衡图2-3离心泵的吸液方式图2-4泵壳和导轮泵轴与泵壳之间的密封称为轴封,其作用 是防止泵内高压液体从间隙漏出,或避免外界 空气进入泵内。
常用的轴封装置有填料密封和 机械密封两大类。
化工原理课程设计柴诚敬

化工原理课程设计柴诚敬一、教学目标本节课的教学目标是让学生掌握化工原理的基本概念和基本公式,能够运用化工原理解决实际问题。
具体来说,知识目标包括:了解化工原理的基本概念,掌握化工原理的基本公式,理解化工过程的基本原理。
技能目标包括:能够运用化工原理的基本公式进行计算,能够分析化工过程的基本原理,能够解决实际的化工问题。
情感态度价值观目标包括:培养学生的科学思维能力,提高学生对化工行业的认识和理解,激发学生对化工原理的兴趣和热情。
二、教学内容本节课的教学内容主要包括化工原理的基本概念、基本公式和基本原理。
具体来说,教学大纲如下:1.化工原理的基本概念:介绍化工原理的定义、特点和作用。
2.化工原理的基本公式:讲解化工原理的基本公式,包括质量守恒定律、能量守恒定律、动量守恒定律等。
3.化工过程的基本原理:讲解化工过程的基本原理,包括反应原理、传递原理、控制原理等。
三、教学方法为了达到本节课的教学目标,我将采用多种教学方法进行教学。
包括讲授法、案例分析法和实验法。
1.讲授法:通过讲解化工原理的基本概念、基本公式和基本原理,使学生掌握化工原理的基本知识。
2.案例分析法:通过分析实际的化工过程案例,使学生能够运用化工原理解决实际问题。
3.实验法:通过实验操作,使学生能够直观地了解化工过程的基本原理,提高学生的实践能力。
四、教学资源为了支持本节课的教学内容和教学方法的实施,我将准备以下教学资源:1.教材:选用《化工原理》作为主教材,为学生提供系统的化工原理知识。
2.参考书:提供相关的化工原理参考书,供学生自主学习。
3.多媒体资料:制作多媒体课件,通过图片、动画等形式,丰富学生的学习体验。
4.实验设备:准备化工原理实验设备,为学生提供实验操作的机会。
五、教学评估本节课的教学评估将采用多元化的方式,以全面、客观地评价学生的学习成果。
评估方式包括:1.平时表现:通过观察学生在课堂上的参与度、提问回答、小组讨论等表现,评估学生的学习态度和理解程度。
化工原理课件天大版

4) 混合物的粘度 对常压气体混合物:
1
m
yiui M i 2
1
yi M i 2
对于分子不缔合的液体混合物 :
lg m xi lg ui
5)运动粘度 v
单位: SI制:m2/s;
物理单位制:cm2/s,用St表示。
1St 100cSt 104 m2 / s
三、理想流体与黏性流体
• 黏性流体(实际流体):具有粘性的流体; • 理想流体:完全没有黏性(μ=0)的流体。
•
15、一年之计,莫如树谷;十年之计 ,莫如 树木; 终身之 计,莫 如树人 。2021 年6月上 午10时 55分21 .6.2310 :55Jun e 23, 2021
•
16、提出一个问题往往比解决一个更 重要。 因为解 决问题 也许仅 是一个 数学上 或实验 上的技 能而已 ,而提 出新的 问题, 却需要 有创造 性的想 像力, 而且标 志着科 学的真 正进步 。2021 年6月23 日星期 三10时 55分36 秒10:5 5:3623 June 2021
1.1.3流体的可压缩性与不可压缩流体
• 一、液体的可压缩性 ——在一定温度下,外力每增加一个单位时,
流体体积的相对缩小量。
二、不可压缩流体 密度为常数的流体。
三、流体的流动性——流体不能承受拉力
1.1.4流体的黏性
• 一、牛顿黏性定律
流体的内摩擦力:运动着的流体内部相邻两流体层间的作 用力。又称为粘滞力或粘性摩擦力。
(1-11)
通常液体视为ρ=0,在静止液体内部的不同 高度处任取两平面z1和z2,设两平面的p1 压力分 别为p1和p2。
对dZ段,由于流体静止,有:
F 0
pA ( p dp) A ρgAdZ 0
化工原理(上)课后习题解答-天大柴诚敬主编

大学课后习题解答之化工原理(上)-天津大学化工学院-柴诚敬主编 (普通高等教育“十五”国家级规划教材)部分重点章节 绪 论1. 从基本单位换算入手,将下列物理量的单位换算为SI 单位。
(1)水的黏度μ=0.00856 g/(cm·s)(2)密度ρ=138.6 kgf ·s 2/m 4(3)某物质的比热容C P =0.24 BTU/(lb·℉) (4)传质系数K G =34.2 kmol/(m 2·h ·atm) (5)表面张力σ=74 dyn/cm(6)导热系数λ=1 kcal/(m ·h ·℃)解:本题为物理量的单位换算。
(1)水的黏度 基本物理量的换算关系为1 kg=1000 g ,1 m=100 cm则 ()s Pa 1056.8s m kg 1056.81m 100cm 1000g 1kg s cm g 00856.044⋅⨯=⋅⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅=--μ (2)密度 基本物理量的换算关系为1 kgf=9.81 N ,1 N=1 kg ·m/s 2则 3242m kg 13501N s m 1kg 1kgf N 81.9m s kgf 6.138=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅=ρ(3)从附录二查出有关基本物理量的换算关系为1 BTU=1.055 kJ ,l b=0.4536 kg o o 51F C 9=则()C kg kJ 005.1C 95F 10.4536kg 1lb 1BTU kJ 055.1F lb BTU 24.0︒⋅=⎥⎦⎤⎢⎣⎡︒︒⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡︒=p c (4)传质系数 基本物理量的换算关系为1 h=3600 s ,1 atm=101.33 kPa则()kPa s m kmol 10378.9101.33kPa 1atm 3600s h 1atm h m kmol 2.34252G ⋅⋅⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅⋅=-K(5)表面张力 基本物理量的换算关系为1 dyn=1×10–5 N 1 m=100 cm则m N 104.71m 100cm 1dyn N 101cm dyn 7425--⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⨯⎥⎦⎤⎢⎣⎡=σ (6)导热系数 基本物理量的换算关系为1 kcal=4.1868×103 J ,1 h=3600 s 则()()C m W 163.1C s m J 163.13600s 1h 1kcal J 104.1868C h m kcall 132︒⋅=︒⋅⋅=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⨯⎥⎦⎤⎢⎣⎡︒⋅⋅=λ 2. 乱堆25cm 拉西环的填料塔用于精馏操作时,等板高度可用下面经验公式计算,即()()()LL310CB4E 3048.001.121078.29.3ραμZ D G A H -⨯=式中 H E —等板高度,ft ;G —气相质量速度,lb/(ft 2·h); D —塔径,ft ;Z 0—每段(即两层液体分布板之间)填料层高度,ft ; α—相对挥发度,量纲为一; μL —液相黏度,cP ; ρL —液相密度,lb/ft 3A 、B 、C 为常数,对25 mm 的拉西环,其数值分别为0.57、-0.1及1.24。
化工原理第二版上册-精选文档

基本内容
传热过程 (传热、蒸发)
传质过程 (吸收、精馏、萃取、 干燥、结晶、吸附)
共同特点
实际问题的复 杂性
工程性强、计算量大
过程、体系、设备
化工生产过程
前处理(预处理) 物理过程 化 化学反应过程 化学过程 工 原 后处理(加工) 物理过程 理
2013-08-26
绪论— 化工原理课程的内容和特点
化学工程:研究化学工业和其他过程工业 生产中所进行的化学过程和物理过程共同规律的一门 工程学科。 化学工程是一门工程技术学科,它研究化工产品生产过程的基本规律,并运用这些 规律解决化工生产中的问题。 化 工 原 理
2013-08-26
绪论— 化工原理课程的内容和特点
无机化学
有机化学 分析化学 物理化学 应用化学 合成氨 硫酸制造 氯碱工业 石油化工
化
工
原
理
2013-08-26
绪论 第一章 第二章 流体流动 流体输送机械
第三章
第四章非均相混合物分离及 Nhomakorabea体流态化
液体搅拌
第五章
第六章
化
传热
蒸发
工 原 理
2013-08-26
能正确理解各单元操作的基本原理;了解典型设备的构造、性能和操作原 理,并具有设备选型及校核的基本知识。
化 工 原 理
2013-08-26
绪论— 化工原理课程的内容和特点
4. 化工过程计算的理论基础
物料衡算 - - - 质量守恒 能量守恒 过程方向及程度 能量衡算 平衡关系
化
工
原
理
2013-08-26
绪
目 的 与 要 求
论
通过绪论的学习,应了解化工原理课程的主 要内容,单元操作的分类和特点,工程学科的研 究方法,本课程的学习要求,掌握单位制及单位 换算方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二.离心泵的特性曲线
④离心泵的压头一般随流量加大而下降(在 极小流量时有例外)。此规律和离心泵理论压头 的表达式相一致。
⑤在额定流量下泵的效率为最高。该最高效 率点称为泵的设计点,对应的各项参数称为最佳 工况参数。离心泵铭牌上标出的性能参数即是最 高效率点对应的数值。离心泵应尽可能在高效区 操作(最高效率的92%范围内)。
(NPSH)c
p1,minpv
g
u12 2g
(2-26)
当流体流量一定而且进入阻力平方区时,
(NPSH)c值仅与泵的结构和尺寸有关,由泵的
制造厂实验测定。
24
一.离心泵的安装高度
(2)必需汽蚀余量(NPSH)r
为了确保离心泵的正常操作,将所测得的
(NPSH)c值加上一定的安全量作为必需汽蚀余量 (NPSH)r,列于泵产品样本或绘于泵的特性曲线
应注意区别气缚现象与汽蚀现象。
22
一.离心泵的安装高度
2.离心泵的抗汽蚀性能
汽蚀余量 用NPSH表示,单位为m,其定义式
NPSH p1 u12 pv
g 2g g
(2-25)
泵入口液 体静压头
泵入口液 体动压头
操作温度下液体 的饱和蒸汽压头
23
一.离心泵的安装高度
(1)临界汽蚀余量(NPSH)c
4
一.离心泵的性能参数
总效率由上述三部分构成,即 vhm
(1)闭式叶轮的容积效率值在0.85~0.95。 (2)额定流量下,水力效率最高,其值在0.8~ 0.9的范围。 (3)机械损失可用机械效率来反映,其值在 0.96~0.99之间。
5
一.离心泵的性能参数
4.离心泵的有效功率和轴功率
②在固定转速下,离心泵的流量和压头, 效率不随被输送液体的密度而变,但泵的功率 与液体密度成正比。
8
二.离心泵的特性曲线
③离心泵的轴功率P在流量为零时为最小,
随流量的增大而上升,因而在启动离心泵时应 关闭泵的出口阀,以减少启动电流,保护电机。 待运转正常后,再打开泵出口阀并调节流量至 规定值。同理,停泵时也要先关出口阀,还可 防止排出管中液体倒流,保护叶轮。
10
二.离心泵的特性曲线
设计 点 最佳 工况 参数
高效 区
11
三.影响离心泵性能的因素及性能换算
1.液体物性的影响 (1)液体的密度 流量、压头、泵的效率不随密度而改变
泵的功率与液体密度ρ成正比
12
三.影响离心泵性能的因素及性能换算
(2)液体的黏度
当被输送液体的黏度大于常温水的黏度时,泵 的流量、压头、效率随黏度增加而下降,但轴 功率增加。
2
一.离心泵的性能参数
1.流量 离心泵的流量用q表示,常用单位为L/s、m3/s。 2.压头(扬程) 一般用H表示,单位为J/N或m。 3.效率 (1)容积损失 (2)水力损失 (3)机械效 率
3
一.离心泵的性能参数
(1)容积损失 即泄漏造成的损失。 (2)水力损失 由于液体流经叶片、蜗壳的沿程 阻力,流道面积和方向变化的局部阻力,以及叶 轮通道中的环流和旋涡等因素造成的能量损失。 (3)机械效率 由于高速旋转的叶轮表面与液体 之间摩擦,泵轴在轴承、轴封等处的机械摩擦造 成的能量损失。
离心泵的有效功率是指液体在单位时间内
从叶轮获得的能量
Pe Hqg
(2-19)
由电机输入泵轴的功率称为泵的轴功率,单位
为W或kW。则有
P Pe Hq 1000 102
(2-20)
6
二.离心泵的特性曲线
图2-9 离心泵的特性曲线 7
二.离心泵的特性曲线
①每种型号的离心泵在特定转速下有其独 特的特性曲线,且不受管路特性的影响。
H s
pa p1
g
(2-28)
离心泵的允许吸上真空度值愈大,表示该 泵在一定条件下操作时其抗汽蚀性能愈好。允 许吸上真空度与泵的结构、被输送液体的性质
16
三.影响离心泵性能的因素及性能换算
3.离心泵叶轮外径的影响
q qD D2 2 H HD D2 22 PPD D2 23
离心泵的切割定律 其适用条件是固定转速下,叶轮直径的车销不
大于5%D2。
17
第二章 流体输送机械
2.2 离心泵 2.2.1 离心泵的工作原理和基本结构 2.2.2 离心泵的基本方程式 2.2.3 离心泵的性能参数与特性曲线 2.2.4 离心泵在管路中的运行
g
2u1g2 Hf,01
(2-24a)
20
一.离心泵的安装高度
1.离心泵的安装高度的限制——汽蚀现象
产生原因
动画08
泵吸入口附近压力等于或低于pv。 出现汽蚀的标志
泵扬程较正常值下降3%为标志。
21
一.离心泵的安装高度
汽蚀的危害 (1)泵体产生震动与噪音; (2)泵性能(q、H、η)下降; (3)泵壳及叶轮冲蚀(点蚀到裂缝)。
当液体运动黏度ν大于20cSt时
q cq q H cHH
c
13
14
15
三.影响离心泵性能的因素及性能换算
2.离心泵转速的影响
q q1 2n n1 2
2
H H1 2n n1 2
P P1 2n n1 23
离心泵的比例定律
其 适 用 条 件 是 离 心 泵 的 转 速 变 化 不 大 于 ±20% 。
18
一.离心泵的安装高度
离心泵的安装高度 是指泵的入口距贮 槽液面的垂直距离
安装高度
图2-12离心泵吸液示意图
19
一.离心泵的安装高度
Hg
p0p1
g
2u1g2 Hf,01
(2-24)
泵的允许 安装高度
泵入口处可允 许的最低压力
若贮槽液面上方与大气相通,则p0即为大气压pa
Hg
pap1
第二章 流体输送机械
2.2 离心泵 2.2.1 离心泵的工作原理和基本结构 2.2.2 离心泵的基本方程式 2.2.3 离心泵的性能参数与特性曲线泵的主要性能参数: 流量、压头、效率、轴功率等。 泵的性能参数及相互之间的关系是选泵和进行 流量调节的依据。 离心泵的特性曲线: 主要性能参数之间的关系曲线。 是在一定转速下,用20℃清水在常压下实验测 得的。
上。
其值随流量增加而加大。(NPSH)r越小,泵的抗
气蚀性能越好。
25
一.离心泵的安装高度
必需 汽蚀 余量
图2-13(NPSH)r~q关系曲线
26
一.离心泵的安装高度
(3)允许汽蚀余量NPSH N P S H (N P S H )c0 .5
(2-27)
27
一.离心泵的安装高度
允许吸上真空度