汽车车身设计
汽车车身设计技术的进步及其与国外的差距

汽车车身设计技术的进步及其与国外的差距一、十五年来我国汽车车身设计技术的进步1.前期开发(概念设计)(1)认识了前期开发的重要性过去对产品的前期开发重视不够。
近年来随着改革开放的深入,与国外技术交流的增多,我国对产品的概念设计已有了认识上的提高,并正在工作实践中贯彻执行。
譬如,过去产品开发是从设计任务书开始的,而设计任务书的形式比较草率。
一些产品由于前期工作做的不充分,致使产品开发出来以后带着许多先天不足。
有些产品设计时只顾追求先进,投产时仍不具备条件,保证不了质量,甚至投产后还要下马。
CA141车投产时装卤素前大灯,后来因为寿命低而又被迫改为白炽灯。
现在开发的新产品比较注意先进性与可行性之间的关系。
为了提高灯具的水平,国内相关行业也在提高,注意到与主机厂的同步开发。
目前曰本与德国的公司都在中国设厂,对国内的灯具行业是一个大的推动。
一个产品从孕育方案到形成一个明确的概念,直至体现到可展示的概念车上,要经过几周到一年多的时间。
在这一段时间里,要做市场调查,预测投入市场后的竞争力如何,成本估算时从投入产出比进行分析,企业会不会赢利。
对企业的设备状况,资源的利用情况,新投入多少?对产品的选型要非常慎重,产品的设计指标是否先进。
与国内外同类车型的对比分析,是否达到先进水平,做到知己知彼。
要经过大量试验、测绘、分析,掌握产品的情况。
对于产品的形体要精心布置,现代汽车是一个多学科技术的集合体,就汽车车身而言,涉及到空气动力学、人机学、结构力学、机械工程学、材料学、美学等等。
(2)改进了设计流程过去产品设计主要流程是美术效果图,1:5~1:1油泥模型北京汉阳,主图板,产品图,样板,主模型,提供给工艺制造部门的主要依据是图纸、样板、主模型。
车身曲面的表达是用制表面的方法,手工绘制。
现在的产品设计比过去有很大提高,由计算机的辅助,已不再绘制过去那样1:1主图板了。
已把设计师从繁重的主图板工作中解放出来。
80年代一汽引进了曰本三菱公司的FK驾驶室技术,那时过渡到线图,线图绘制在薄膜板上,可以站着画,画好图可以卷起来,可以复制传递给下道工序。
汽车车身研发设计流程

汽车车身研发设计流程一、需求分析在汽车车身研发设计的最初阶段,首先要进行需求分析。
这一步骤主要确定新车型的定位、目标市场、消费者需求和竞争对手情况等。
通过对这些信息的综合分析,为后续的设计工作提供明确的方向和目标。
二、概念设计基于需求分析的结果,进行概念设计。
这一阶段主要关注整体造型、风格和车型定位等方面的设计。
通过初步的三维建模和效果图制作,展现新车型的外观和内饰设计理念。
三、详细设计在概念设计得到认可后,进入详细设计阶段。
这一阶段涉及对新车型各个部件的详细设计,如车身结构、零部件尺寸和装配关系等。
同时,还需进行初步的工艺分析和可行性评估。
四、结构设计在详细设计的基础上,进行结构设计。
这一步骤主要关注车身结构和各个零部件的精确建模与设计。
确保结构设计满足性能要求、工艺性和装配需求。
五、性能模拟在结构设计完成后,通过使用专业的仿真软件进行性能模拟,以评估新车型的性能表现。
这包括碰撞安全、动力学性能、空气动力学等方面的模拟。
六、工艺性审查在性能模拟得到满意结果后,进行工艺性审查。
这一步骤主要评估新车型的可制造性和生产效率。
确保新车型的制造工艺可行,设备需求合理,并满足生产节拍要求。
七、供应商选择根据新车型的零部件需求,选择合适的供应商进行合作。
这一过程需综合考虑供应商的技术能力、产品质量、成本和交货期等因素。
与供应商建立良好的合作关系,确保零部件供应的可靠性和经济性。
八、样品制作与测试在确定了零部件供应商后,开始制作新车型的样品并进行一系列的测试。
这些测试包括但不限于装配测试、性能测试、环境适应性测试和碰撞安全性测试等。
确保新车型在实际生产中表现良好,符合设计要求和安全标准。
九、设计验证在样品测试完成后,进行设计验证阶段。
这一步骤主要是对新车型的设计进行全面评估和审核,确保设计满足所有要求,并进行必要的优化和改进。
通过第三方审核或专家评估来进一步确认设计的可靠性和有效性。
十、投产准备在设计验证得到批准后,开始投产准备阶段。
汽 车 车身设计第四章 汽车车身的结构分析与设计

2.整体承载式车身
图4-13 лEA3—677型整体承载式大客车车身及其底座结构
2.整体承载式车身
图4-14 轿车承载式车身上部 1—前围板 2—前轮挡泥板 3—前围内侧板 4—外围内侧板 5—前立柱 6—
门下边梁 7—中立柱 8—后翼子板 9—中立柱内板 10—后围下板 11—车门上框加强板 12—顶盖
(一)非承载式车身
图4-4 轿车车架 a) 周边式车架 b) X形车架 c)梯形车架
(一)非承载式车身
图4-5 丰田皇冠轿车的车架和车身结构 1—车身 2—车架
图4-6 货车驾驶室与车架结构
图4-7 车架的结构类型 a) 中型货车车架 b) 大型货车车架 c、d) 轻型货车车架
(二)半承载式车身
1.基础承载式车身
图4-11 承载式大客车车身类型 a) 基础承载式 b) 整体承载式
1.基础承载式车身
图4-12 瑞典Scania K112型大客车车身和车架 a) Scania K112型大客车车身 b) Scania K112型大客车车身底架
c) Scania K112型大客车车架 1—前段副车架 2—中段格框结构 3—后段副车架
2.整体承载式车身
图4-16 Volkswagen K70型轿车承载式车身
二、车身结构件的结构分析与设计
1)不能破坏造型设计,外露骨架要与外形曲线相吻合。 2)骨架的里板应考虑内护板的紧固。 3)用最佳的截面形状获得最大的截面系数。 4)要满足相邻部件的性能要求,如要适应门锁、铰链、限位器等 的安装和性能要求等。
框上横梁 19—顶盖纵梁 20—上边梁 21—侧窗上梁 22—顶盖横梁 23—侧围搁梁
一、车身承载类型的分析
(一)非承载式车身 (二)半承载式车身 (三)承载式车身 1.基础承载式车身 2.整体承载式车身
车身设计流程

车身设计流程车身设计是汽车设计中非常重要的一个环节,它直接关系到汽车外观的美观性和空气动力学性能。
因此,车身设计流程显得尤为重要。
下面将从概念设计、初步设计、详细设计和验证测试四个方面来介绍车身设计的流程。
首先是概念设计阶段。
在这个阶段,设计师需要对汽车的整体风格和造型进行初步构思和定位。
他们需要根据市场需求、品牌定位和竞争对手的分析,确定汽车的整体设计风格,包括车身线条、外观比例和设计元素等。
在这个阶段,设计师需要进行大量的市场调研和用户需求分析,以确定设计方向和风格。
接下来是初步设计阶段。
在这个阶段,设计师需要将概念设计转化为具体的三维模型和设计草图。
他们需要考虑到汽车的结构、空间布局和制造工艺等因素,以确保设计的可行性和实用性。
同时,他们还需要与工程师和制造工艺师密切合作,以确保设计的可制造性和成本控制。
然后是详细设计阶段。
在这个阶段,设计师需要对初步设计进行深入的细化和完善。
他们需要考虑到每一个细节,包括车身线条、进气格栅、车灯设计、轮毂造型等,以确保整体的和谐和统一。
同时,他们还需要进行多次的设计评审和修改,以确保设计的完美和优化。
最后是验证测试阶段。
在这个阶段,设计师需要将设计的样车进行实车制作和测试。
他们需要对汽车的空气动力学性能、安全性能和稳定性能进行全面的测试和评估,以确保设计的合理和可靠。
同时,他们还需要进行用户体验测试和市场反馈调研,以了解用户的需求和反馈,以便进行最后的修改和优化。
总的来说,车身设计流程是一个复杂而又严谨的过程。
设计师需要在每一个阶段都进行充分的思考和深入的研究,以确保设计的完美和优化。
只有这样,才能设计出符合市场需求和用户喜好的优秀汽车车身。
车身设计重要知识点总结

车身设计重要知识点总结一、设计原则1、空气动力学原理:车身设计中的一个重要方面就是空气动力学,它涉及到车身的气流分析、气动风洞试验以及降低风阻的设计等方面。
这些知识点对于汽车的燃油经济性和性能有着重要的影响。
2、结构设计原则:车身的结构设计是非常重要的,它直接关系到了车身的强度、稳定性和安全性。
因此,在车身设计中需要考虑到各种受力情况,以及选用合适的材料和结构形式。
3、美学原则:车身设计中的美学原则是至关重要的,因为一个好的外形设计可以提高车辆的吸引力和辨识度。
因此,在车身设计中需要注重对比度、曲线美学和比例等方面的设计原则。
4、人机工程学原则:车身设计需要考虑到人机工程学,以保证驾驶员的舒适性和便利性。
这包括对座椅、操纵件和仪表板等方面的设计。
二、设计流程1、概念设计:车身设计的第一步是概念设计,这包括对外形、尺寸和结构等方面的初步设想。
在这一阶段需要考虑到市场需求和设计趋势。
2、方案设计:在概念设计确定后,需要进行方案设计阶段,这包括对车身线条、面板和细节设计的深入研究和反复修改。
3、模型制作:设计师需要根据方案设计来制作车身模型,以便进行视觉和实物检验。
4、评估和修改:制作车身模型后,需要进行评估和修改,以保证车身设计符合产品要求。
5、工程设计:在车身设计确定后,需要进行工程设计,这包括对车身结构和材料等方面的细节设计。
6、工艺设计:最后需要进行工艺设计,以保证车身设计的可生产性和可维护性。
三、材料选择1、钢材:钢材是汽车车身中最主要的材料之一,它的强度和成型性能都比较好,而且成本较低。
2、铝合金:铝合金是轻量化材料的首选,它的密度比钢材小,但强度却很高,而且具有优异的耐腐蚀性和成型性能。
3、碳纤维复合材料:碳纤维复合材料是新型的轻量化材料,它具有密度小、强度高和刚性好的特点,但成本较高。
4、塑料材料:塑料材料适用于车身零部件的生产,它具有成型性好、重量轻和耐腐蚀性强的特点。
四、制造工艺1、冲压成型:冲压是车身成形中常用的工艺,它可以有效地提高产能和成本效益,而且成形精度较高。
3.1 汽车车身设计开发流程与方法

第三章汽车车身设计开发技术与方法3.1汽车车身设计开发流程与方法学3.1.1车身设计开发主要工作内容及流程(程序)1)车身总布置设计及安全法规计算校核(或三维数字虚拟样机Archetype)2)造型设计3)三维曲面和造型面设计4)1:5或1:4 模型及1:1外模型制作或数控加工(或三维数字模型)5)1:1内模型(或三维数字模型)6)发动机舱三维数字模型7)地板三维数字模型8)测量与曲面光顺9)白车身结构详细设计(BIW)(9.1)1:1外模型光顺后数据分块(9.2) 车身设计断面的定义与尺寸确定(9.3) 密封结构确定与密封件选择(9.4) 确定分块线(9.5) 与车身有关的设计硬点的确定(9.6) 左右侧围设计(A, B, C, D柱设计, 前后翼子板设计)(9.7) 顶盖设计(外板, 横梁与纵边梁设计) (9.8) 发动机前围板设计(9.9) A柱下段设计(9.10) 发动机舱与前轮包设计(9.11) 前后灯具设计(9.12) 格栅设计(9.13) 前围板设计(9.14) 前保险杠设计(9.15) 地板总成设计(前中后)(9.16) 后门总成设计(9.17) 前门总成设计(9.18) 尾门总成设计(9.19) 前发动机罩设计(9.20)前风当总成设计10)内饰、外饰设计11)先行车, 螺钉车或概念车的(Prototype)试制,第二轮试验样车(定型车)试制12)碰撞与结构分析及结构优化设计13)成型过程仿真14) 模具与工艺工装设计如图3.1.1为车身详细设计阶段面向对象的产品模型(OPM)并行设计流程图OM2 OM2 OM2 OM2 OM2 OM2T21: CAD T22: DF A可装配设计T23: CAE T24: 评审T25: DFM 可制造设计T26: CS 碰撞仿真IM21: 输入产品模型,请求详细设计OM21: 向下游预发布零部件信息OM22: 输出DF A结果OM23: 输出CAE结果OM24: 输出同意或修改概要设计建议OM25: 输出DFM结果输出OM26: CS结果图3.1.1 汽车车身并行详细设计OPM模型31 32 3334 35T 31: CAPP T 32: CAFD 机算机辅助工装卡具设计(CA FIT DE SIGN)T 33: CAM T 34: MPS(制造过程仿真) T 35: 评审 IM 31: 请求加工过程设计 OM 31: 输出CAPP 结果 OM 33: 输出 CAFD 结果OM 33: 输出CAM 结果 OM 34: 输出MPS结果OM 35: 输出同意或修改详细设计建议图3.1.2 汽车产品开发试制与加工过程设计OPM 模型 g 1: 请求详细设计(结构) g 2: 预发布零部件消息,请求试制或加工过程设计 g 3: 请求修改概念设计(造型设计) g 4: 请求修改详细设计(结构设计)图3.1.3 汽车车身并行开发过程OPM 模型图3.1.4 车型数字化设计过程3.1.2 车身结构设计方法学1 1995年后的先进的车身设计技术与方法1995年后车身设计技术发展与市场需求体现在如下几个方面:图3.1.5 虚拟产品开发描述图3.1.6 白车身设计过程描述图3.1.7 并行设计与开发周期降低图3.1.8 全数字化设计方法图3.1.9 确定设计结构方案图3.1.10 产品设计及工艺设计集成计方法图3.1.12 参数化结构断面设计图3.1.13 全相关参数化的车身开发全过程2 数字化车身结构设计方法学(1)设计硬点设计区的设计方法复杂的结构实际上是众多简单的设计的叠加组合(复杂设计简单化)任何复杂的车身结构设计与设计结果都是由如下两个方面决定: (a) 满足诸多设计硬点的特征结构设计(HARDPOINT DESIGN AREA), 例如, 造型面硬点, 与车身有关的零部件装配孔面及结构等设计硬点, 选定的设计断面结构, 造型分界线硬点, 造型形状形成的设计断面引导线硬点, 车身零件间的焊接装配面, 零件的分块线硬点. (b) 自由设计区设计(FREE DESIGN AREA), 即在满足设计硬点基础上, 进行的自由设计区, 一般非设计硬点的设计区域都属于自由设计区, 自由设计区不同的设计人员会得到不同的设计结果, 这也是自由设计区自由的特点, 但这不等于自由设计区可以胡乱设计, 应遵循如下一些设计原则, 以便才能使设计结构更合理, 水平更高.因此车身设计过程与方法应满足如下公式:车身结构设计特征(BSDF)=自由设计区自由设计特征(FDF)+断面设计硬点决定的设计特征(SDHF)+造型设计硬点决定的特征(IDHF)+造型决定的断面引导主轴线(一个零件多个断面几何中心连线)特征(ISSF)+其他附件或COPY件等确定的设计硬点特征(CDHF)+零件分块线与焊接边界线等的设计硬点特征(BDHF)即为:BSDF=FDF+SDHF+IDHF+ISSF+CDHF+BDHF车身零件结构的设计过程或设计建模(BSDP or BSDM)=用三维CAD软件完成车身结构设计特征的过程或结果(BSDFP or BSDFM)即为:BSDP=BSDFPBSDM=BSDFM车身设计建模(BDM)=完成所有车身零件的设计建模与装配设计建模的总称(TOL_BSDM) 即为:BDM=TOL_BSDM全数字化车身设计开发(BDD)=采用三维CAD 软件完成全部车身设计建模, 并采用CAD/CAE/CAM一体化技术完成车身设计,结构优化及制造(或制造模具)的全过程(3D_CAD/CAE/CAM_BDM).即为:BDD=3D_CAD/CAE/CAM_BDM(2) 自由设计区的设计方法与设计原则a 自由设计区的设计方法(a) 先用三维CAD软件将设计硬点确定的结构与特征连接成一体, 成为一个粗的异型大面, 中间可以用一些平面与设计硬点面的相交获得连接线或倒角线.(b) 对设计硬点之间形成的设计区域-自由设计区每一个进行分析, 强度和刚度一般性要求的部位一般小于50*50mm的面积区域, 可以不加特征结构(加强筋, 加强沉孔(如果没有密封要求), 折边, 卷边等特征结构建模), 但要在边界上导角. 大于50*50的区域一般要加特征以便加强结构并导角,较大的区域不留任何空地, 以便使刚度最大, 材料最省.a 自由设计区的设计准则(a) 最大刚度原则- 自由设计区必须尽力获得最大刚度的设计原则, 因此, 要加加强筋和加强沉孔, 以便获得高水平的设计结构.(b) 最轻量化原则- 设计结构要确保满足刚度要求的基础上使材料最省的原则, 尽可能使结构设计可以使料厚簿一些, 没有密封要求的结构可以用沉孔以便轻量化与刚度最大化的双嬴, 等要充分考虑结构形式和结构方案.(c) 最大园角原则-自由设计区, 一般都是内部结构区域, 不在外观缝隙线条区域. 因此, 为了提高冲压工艺性, 减少制造成本, 应尽可能设计较大的设计过渡园角. 但不能影响设计硬点结构. 在在外观区域应尽可能最小园角原则,最小值为料厚(d) 特征结构最大斜度原则- 筋槽设计的立面尽可能采用较大的斜度. 以便获得较好的制造工艺性, 防止冲压裂纹和褶皱.(e) 最符合工艺性原则-从设计结构上和面的光顺程度上尽可能获得好的制造工艺性, 如材料流动均匀性与制造可能性.(f) 创新与多样化设计原则-自由自由就意味着允许多样化, 也就是创新原则.(g) 最复杂化原则, 因为模具加工不会增加制造成本, 只会降低成本(如材料轻, 成本低了).(h) 满足CAE/OPTIMIZATION结构优化分析设计要求.。
汽车车身结构设计讲解

三、车身基本结构设计——地板设计
4)前地板的中央通道:设计时注意高度变化,Z向高度要根据传动轴在整车的布置 要求,一般在80-100mm之间,具体数值请根据具体车型给定。型面走向在有限的 空间里尽力放缓,与前围下板的搭界面一般采用圆弧型面搭界。 5)地板的漏液孔: 孔的布置主要在前地板上,是由于在整个的地板总成中前地板 最低,并且前面存在下前围板。
具体位置是:前座椅地脚加强梁前方和后方,左右对称,避免孔的位置高于四 周型面 。其数量根据地板型面确定,无具体要求。
15
三、车身基本结构设计——顶盖总成
顶盖是车厢顶部的盖板。从设计角度来讲,重要的是它如何与前、后窗框及与 支柱交界点平顺过渡,以求得最好的视觉感和最小的空气阻力。当然,为了安 全车顶盖还应有一定的强度和刚度,一般在顶盖下增加一定数量的加强梁,顶 盖内层敷设绝热衬垫材料,以阻止外界温度的传导及减少振动时噪声的传递。 代号5700 车身顶盖系统顶盖外板顶盖前横梁总成顶盖后横梁总成顶盖加强梁总成天窗加 强件(带天窗)
非承载式(有车架) 一般货车、大客车、专用车和大部分高级轿车都装有独立的车架,车 身上的载荷主要由车架来承担,车身在一定程度上只承受由车架的弯 曲和扭转变形引起的载荷。 H3,H5为非承载式车身。
4
二、车身分类
承载式(无车架) 承载式车身无车架,车身的刚度和强度通常由车身下部来予以保证,一般 部分高档车和目前主流的中低档轿车车身都属于承载式车身。例如,我公 司开发的部分车型。 C30,C50,H6,M4均为承载式车身。
11
三、车身基本结构设计——地板设计
在现有的车型中,整个地板区域通常分成了三块,前地板、中地板、和后 地板。
12
三、车身基本结构设计——地板设计
汽车车身结构与设计车身概论PPT课件

振动隔离
车身应具备有效的振动隔离能力,以减少发动机、传动系统等振动源对乘员的干扰。通过 优化车身结构和采用适当的减震材料,可以降低振动对乘员的影响。
05 未来汽车车身的发展趋势
轻量化设计
总结词
随着环保意识的提高和节能减排的需求,轻量化设计已成为未来汽车 车身的重要发展趋势。
详细描述
通过采用新型材料(如高强度钢、铝合金、碳纤维复合材料等)和优 化车身结构,降低车身重量,从而提高燃油经济性和减少排放。
优点
提高燃油经济性、减少排放、提升车辆性能。
挑战
技术难度大、成本较高、生产工艺要求高。
智能化设计
01 总结词
随着智能化技术的不断发展, 未来汽车车身将更加智能化, 提高驾驶安全性和舒适性。
热系统来确保正常运行。车身的进风口和散热格栅设计对散热性能有重
要影响。
汽车车身的碰撞安全性
吸能与缓冲
汽车在发生碰撞时,车身应具备一定的吸能与缓冲能力, 以减少对乘员的冲击。通过合理设计车身结构和采用高强 度材料,可以提高碰撞安全性。
乘员保护
在碰撞事故中,车身应能够有效地保护乘员免受伤害。这 包括设计合理的安全气囊、安全带等被动安全装置,以及 优化车身结构以减少对乘员的挤压和撞击。
轻量化
降低车身重量,提高燃油经济 性。
工艺性
便于制造、维修和降低制造成 本。
安全性
满足碰撞法规要求,保证乘员 安全。
耐久性
保证车身在使用寿命内具有良 好的结构和外观保持能力。
经济性
在满足性能要求的前提下,尽 可能降低成本。
03 汽车车身设计
车身设计工程师岗位职责

车身设计工程师岗位职责车身设计工程师是汽车制造企业中非常重要的职位之一,该工程师所从事的工作是负责汽车车身的设计及相关技术工作。
具体职责如下:1. 沟通协调:与同事团队展开协作开发工作,如车身架构设计师、结构工程师等等,协调并制定技术方案,确保车身设计的安全、可靠性及质量达到企业的标准要求。
2. 负责车身设计:车身设计工程师要参与车身结构的计算、校核、材料选择、工艺流程设计以及各种相关的技术方案的把握和规划,协助车身架构设计师、样车制作和更新等,确保设计的效果达到企业要求并不断提高。
3. 产品的设计和翻译工作:将用户需求转化为产品设计需求,完成相关产品的设计工作并汇报设计出的产品范围给外部团队。
需要在全球范围内开发和设计车身,熟悉新兴汽车市场需求、模拟设计,并能及时反馈最新车身技术,提供优质可靠,大众化的汽车产品。
4. 科研开发:车身设计工程师需学习和掌握最新的汽车相关技术和行业发展动态,研发汽车车身相关技术的新理念、新工艺和新解决方案,对车身的轻量化和安全性有着特殊的研究和开发工作要求。
5. 车身型号:我们期望车身设计工程师有丰富的汽车车身品级划分知识和相关设计预算掌握能力,协同相关团队推进车型的技术确定和开发规划。
通过各种研究和评估,开发出适合市场的车型,设置车模的相关参数及外观形态的各种要求,使设计方案实施更加具有前瞻性和竞争性。
6. 质量控制:质量控制是车身设计工程师必须具备的职责范畴之一。
要能够熟练掌握车身工艺的详细工作流程,对整个设计过程起到相应的监督和把控作用。
确保车身的设计和生产过程质量良好,能够满足客户的需求和品质要求。
总的来说,车身设计工程师是需具有广泛技术知识和技能的岗位。
他们需要熟练掌握相关技术知识,与其它团队成员的沟通协作能力,以及全面的质量掌控能力。
通过不断学习和创新,必将创造出越来越高品质的汽车车身设计。
汽车车身设计

第二节 车门布置设计 四、车门与门柱的配合设计 应注意: 1. 门柱的强度和刚度 2. 车门、限位器、门锁闩等安装位置和精度 3. 与密封措施有关的车身结构要求 4. 门和门洞配合的一些控制措施 5. 选择的材料和加工方法等
(一)前门锁啮合处B柱外板截面设计 1. 截取通过前门门锁啮合中心线的x-x截面。在x-x截面上作后门 摆动到全开启位置并超过4°的门边轨迹
检查后门门边运 动间隙解图 1-后门最外极限 位置 2-最内极限 位置 3-后门全开 启并超过4°位置 4-门边最大调节 位置
(一)前门锁啮合处B柱外板截面设计 2. 调整锁支持面与B柱外板的关系,布置锁啮合中心线 3. 根据门合页尺寸h1 画圆弧; 在后门处于关闭位置时,让后门 前侧内板的斜度为 6°。参考前门内板 J 平面确定后门内板 J 平面 4. 根据密封要求,确定B柱外板B、R点,获得B柱宽度尺寸J’ 5. 取 B 柱 侧 外 板 与 前 、 后 门 侧 内 板 平 行 , 其 间 隙 至 少 取 为 11mm;考虑安装线束导管,确定B柱外板斜面P
铰链轴线的倾角计算 a)铰链轴线的倾斜 b)铰链轴线傾角计算 1-侧视铰链位置 2-车门打开位置 3-车门关闭位置 U/D-车门打开60°时车门A点的上升量或下降量
(一)玻璃及玻璃升降系统布置 1.布置玻璃升降系统的已知条件 1)侧视图上车门窗框线(D线),造型给出的车门腰线C,玻 璃上边缘点A和下边缘点B 2)车身最宽处(如坐标3300处)的车门主截面图 3)侧玻璃向车身中心的倾斜度和曲率 4)已知玻璃升降器基本尺寸
(二)车身总宽和车身侧面外形曲面,门洞线、腰线、 门窗口线,玻璃形状和分块,轮罩开口线等
(三)车门周边与车身门框的配合关系
(四)前、后门主要边缘结构和尺寸
车身设计流程

车身设计流程车身设计是汽车制造中的重要环节,它直接影响到汽车外观、空气动力学性能和安全性能。
车身设计流程是一个系统性的工程,需要经过多个阶段的设计和验证,才能最终确定最优的车身设计方案。
下面将详细介绍车身设计的整个流程。
首先,车身设计的第一步是需求分析。
在这一阶段,设计师需要与市场部门、产品规划部门和工程师进行充分的沟通和交流,了解市场需求、产品定位和技术要求。
通过调研市场和用户需求,确定车身设计的基本要求和目标。
接着,是概念设计阶段。
在这一阶段,设计师需要进行创意激发和概念构思,提出不同的设计方案,并进行初步的评估和筛选。
设计师需要考虑到车身的整体造型、空间利用、材料选择等因素,以确保设计方案能够满足需求,并具有一定的市场竞争力。
然后,是详细设计阶段。
在这一阶段,设计师需要对选定的概念设计方案进行深入的细化和优化。
需要考虑到更多的细节问题,如车身结构的强度和刚度、安全性能、制造工艺等方面。
设计师需要利用CAD技术进行三维建模和仿真分析,以验证设计方案的可行性和优劣。
随后,是样车制作阶段。
在这一阶段,设计师需要将详细设计方案转化为实物样车。
需要与工程师和制造部门密切合作,确保样车的制作符合设计要求,并进行必要的调整和改进。
样车制作是车身设计流程中的一个重要环节,直接关系到设计方案的实现和可行性。
最后,是验证和认证阶段。
在这一阶段,设计师需要对样车进行全面的测试和验证,包括碰撞测试、风洞试验、道路试验等。
需要确保车身设计方案满足相关的法规要求和安全标准,并具有良好的空气动力学性能和行驶稳定性。
同时,还需要进行相关认证和审批,以确保车身设计方案能够顺利投产和上市。
总的来说,车身设计流程是一个系统性、复杂性和多学科交叉的工程,需要设计师在不同阶段充分发挥自己的专业技能和创造力,与团队成员紧密合作,共同完成车身设计的全过程。
只有通过严谨的流程和高质量的设计,才能最终实现优秀的车身设计方案,满足市场和用户的需求。
现代汽车车身设计技术课件(完整篇)

现代汽车车身设计技术课件第一部分:引言汽车车身设计是汽车工业中至关重要的一环,它不仅关系到汽车的外观美感,还直接影响到汽车的空气动力学性能、安全性能和舒适性。
随着科技的进步和消费者需求的不断变化,现代汽车车身设计技术也在不断发展和创新。
本课件将带您深入了解现代汽车车身设计技术,包括设计理念、设计流程、材料选择、制造工艺等方面的内容。
一、设计理念现代汽车车身设计强调以人为中心,注重用户体验和情感共鸣。
设计师们通过研究消费者的需求和喜好,结合汽车品牌的特点和定位,创造出符合时代潮流和审美趋势的车身造型。
同时,设计师们还注重车身设计的创新性和可持续性,力求在满足功能需求的同时,实现环保和节能的目标。
二、设计流程1. 市场调研:了解消费者的需求和喜好,分析竞争对手的产品特点,为车身设计提供依据。
2. 概念设计:根据市场调研结果,设计师们提出初步的设计方案,包括车身造型、颜色、材质等方面的构思。
3. 详细设计:在概念设计的基础上,设计师们对车身各个部分进行详细设计,包括车身结构、车门、车窗、车灯等。
4. 工程设计:工程师们根据详细设计图纸,进行车身结构的强度和刚度分析,确保车身的安全性能。
5. 制造工艺设计:根据工程设计图纸,设计师们制定车身制造的工艺流程,包括冲压、焊接、涂装等环节。
6. 试制和验证:根据制造工艺设计,制造出实车样品,进行各项性能测试和验证,确保设计目标的实现。
三、材料选择现代汽车车身设计在选择材料时,需要考虑材料的强度、刚度、轻量化、耐腐蚀性、可回收性等多个方面的因素。
常用的车身材料包括钢材、铝合金、镁合金、碳纤维复合材料等。
设计师们根据车身各个部位的功能需求,选择合适的材料,以实现最佳的性能和成本平衡。
四、制造工艺现代汽车车身制造工艺包括冲压、焊接、涂装等环节。
冲压工艺用于制造车身的外覆盖件,如车门、车顶、翼子板等;焊接工艺用于将各个冲压件焊接成完整的车身结构;涂装工艺用于提高车身的耐腐蚀性和美观性。
汽车车身设计知识点

汽车车身设计知识点一、引言在汽车设计中,车身设计是一项非常重要的工作。
一个好的车身设计不仅能够提供良好的外观美感,还能够影响车辆的性能和安全性。
本文将介绍一些汽车车身设计的知识点。
二、车身设计原则1. 美学原则车身设计的首要原则是满足美学要求。
汽车作为一种交通工具,外观设计必须符合人们审美的需求,具有独特和吸引人的外观,给人以愉悦的感受。
2. 空气动力学原则车身设计需要考虑空气动力学的因素。
通过优化车身线条、减小风阻系数,可以提高汽车的燃油经济性和稳定性,减少噪音。
3. 结构强度原则车身设计必须具备足够的结构强度,以保障乘客的安全。
通过合理选用材料和采用适当的结构设计,可以增强车身的抗冲击性和承载能力。
4. 功能性原则车身设计需要满足车辆功能的要求。
比如,提供充足的内部空间,方便乘客上下车和存放物品,设置合理的门窗和后备箱等。
三、车身设计要素1. 比例与造型车身设计中比例和造型是非常重要的要素。
合理的比例能够给人一种协调和谐的感觉,而独特的造型可以突出品牌特点和个性。
2. 车身线条车身线条的设计可以影响车辆的整体形象。
简洁流畅的线条能够增加车辆的动感和时尚感,而复杂的线条则可能显得杂乱无章。
3. 车身颜色车身颜色是车辆外观设计的重要组成部分。
颜色的选择应根据品牌定位、市场调研和消费者喜好等因素进行考量,以展示品牌形象和个性。
4. 灯光设计汽车灯光设计不仅在夜间行车时提供照明功能,还能起到装饰和警示的作用。
合理的灯光设计可以提高车辆的辨识度和安全性。
5. 车身材料车辆的车身材料直接关系到车身的强度和重量。
常见的车身材料包括钢铁、铝合金、碳纤维等。
选择合适的材料可以实现车身轻量化和节能减排。
四、车身设计流程1. 概念设计概念设计阶段是对车身设计进行初步构思和创意的阶段。
设计师可以借助手绘、数码绘图和三维建模等工具,不断进行创作和修改。
2. 造型设计造型设计阶段是将概念转化为真实的三维模型。
设计师使用粘土或数字模型等方式来塑造车辆的外形,并进行细节和比例的修饰。
汽车车身结构设计

汽车车身结构设计随着汽车产业的不断发展,汽车车身结构设计也变得越来越重要。
汽车车身结构设计涉及到诸多方面,包括安全性、刚性、轻量化、空气动力学性能等。
一个好的车身结构设计不仅可以提高汽车的安全性能,还可以提高燃油经济性和行驶稳定性。
本文将探讨汽车车身结构设计的重要性、设计原则以及新兴技术的应用。
一、汽车车身结构设计的重要性汽车车身结构是汽车的骨架,对汽车的安全性能有着至关重要的影响。
一个优秀的车身结构设计可以最大限度地保护车内乘客,减少碰撞时的能量传递,降低乘员受伤的概率。
同时,良好的车身结构设计也可以提供良好的刚性,提高汽车的防护能力,对车内装置的安全性和稳定性有着显著影响。
二、汽车车身结构设计的原则1. 安全性原则汽车车身结构设计的首要原则是确保乘员的安全。
设计人员应该考虑到各种车辆碰撞情况,包括正面碰撞、侧面碰撞和翻滚等。
合理的车身结构设计可以通过吸能结构和变形区域来减少碰撞时对乘员的冲击力,最大限度地保护乘员的生命安全。
2. 轻量化原则随着环保意识的提高和燃油效率的要求,轻量化成为汽车设计的重要趋势。
汽车车身结构设计应该在确保安全性的前提下,尽可能减少车身的重量。
优化材料的选择和结构的设计,可以在一定程度上降低车身的重量,提高汽车的燃油经济性。
3. 空气动力学原则合理的空气动力学设计可以显著改善汽车的行驶稳定性和燃油经济性。
在车身外形设计中,应该考虑到空气的流动情况,降低空气阻力,减少能量损失,提高汽车的行驶效率。
三、新兴技术在汽车车身结构设计中的应用1. 材料技术的发展随着材料科学的不断进步,新型材料在汽车车身结构设计中的应用也越来越广泛。
高强度钢、铝合金、碳纤维等材料的使用可以在一定程度上提高车身的刚性,降低车身的重量,同时保证乘员的安全。
2. 结构设计的优化现代计算机辅助设计技术的发展为汽车车身结构设计提供了更多的可能性。
通过数值模拟和优化方法,设计人员可以对车身结构进行全面的分析和优化,找到最佳的结构方案,提高汽车的性能。
汽车车身设计

汽车车身设计汽车车身设计指汽车外观与内饰的设计与布局。
它不仅关乎汽车的颜值与品质,也关系到驾乘舒适性、空间利用率与成本控制等方面。
一个成功的车身设计可以显著提升品牌形象,增加产品的消费诱惑力,并延长产品生命周期。
它体现了汽车企业的产品理念与工艺水平,是影响客户选购决策的关键因素之一。
首先,外观设计决定了汽车的整体风格与美学效果。
通过车头灯、车格、侧面线条与车尾设计,可以呈现出运动型、稳重型或前卫科技型等不同的设计风格。
同时,强大的视觉冲击力还可以快速提高品牌知名度与产品认知度。
一款优美大胆的车身外观设计,可以成为企业营销的有力武器。
其次,内饰设计关系到驾乘者的使用体验。
高品质的材料与人性化的布局可以营造轻松舒适的驾乘环境,这有效地提高了驾驶的愉悦度与使用寿命。
同时,细致周到的细节设计,如质感材质、氛围灯光与手机无线充电等,可以在潜移默化中提升产品的高端质感与科技感。
这会增强用户的品牌认同度与忠诚度。
再者,驾驭空间的设计实践了人车融合的理念。
合理布局的座椅、方向盘与中控系统等,不仅确保了操控的便捷性与安全性,也兼顾了驾驶姿势的舒适性与使用的易学性。
这有助于驾驶员长时间高质量地与驾驶环境进行互动,从而提高驾驶的易用性与信任感。
然后,车身设计也关系到整车的成本与制造工艺。
简洁的外观线条与内饰布局,采用易加工与模块化的部件,这可以显著降低设计与生产难度,实现成本的有效控制。
同时,设计需兼顾电子设备、传感器与网络模块的安装与布线,这需要更高的整车设计与工艺能力。
全面考虑各个方面的车身设计,需要汽车企业具备比较先进的研发实力与生产技术。
最后,未来汽车的车身设计将呈现智能化与个性化特征。
客制化的内外饰、ROID驾驶舱与显示屏更替等可以实现个人化定制。
而随着自动驾驶的发展,车内空间布局也将发生革命性变化。
车身设计将不再局限于通过人工驾驶实现人车互动,更加注重通过车载系统为人提供智能服务与增强现实体验。
这需要设计师具有跨界的视野与思维。
(完整版)汽车车身结构与设计期末考试试题

(完整版)汽车车身结构与设计期末考试试题一、名词解释1、车身:供驾驶员操作,以及容纳乘客和货物的场所.2、白车身:已装焊好但尚未喷漆的白皮车身。
3、概念设计:指从产品构思到确定产品设计指标(性能指标),总布置定型和造型的确定,并下达产品设计任务书为止这一阶段的设计工作 .4、H点:H点装置上躯干与大腿的铰接点。
5、硬点:对于整车性能、造型和车内布置具有重要意义的关键点。
6、硬点尺寸:连接硬点之间、控制车身外部轮廓和内部空间,以满足使用要求的空间尺寸。
7、眼椭圆:不同身材的乘员以正常姿势坐在车内时,其眼睛位置的统计分布图形;左右各一,分别代表左右眼的分布图形。
8、驾驶员手伸及界面:指驾驶员以正常姿势入座、身系安全带、右脚踩在加速踏板上、一手握住转向盘时另一手所能伸及的最大空间廓面.9、迎角:汽车前、后形心的连线与水平线的夹角。
10、主动安全性:汽车所具有的减少交通事故发生概率的能力。
11、被动安全性:汽车所具有的在交通事故发生时保护乘员免受伤害的能力。
12、静态密封:车身结构的各连接部分,设计要求对其间的间隙进行密封,而且在使用过程中这种密封关系是固定不动的。
13、动态密封:对车身上的门、窗、孔盖等活动部位之间的配合间隙进行密封,称为动态密封. 14、百分位:将抽取的样本实测尺寸值由小到大排列于数轴上,再将这一尺寸段均分成100份, 则将第n份点上的数值作为该百分位数。
二、简答1、简述车身结构的发展过程。
没有车身——马车上安装挡风玻璃—-木头框架+篷布——(封闭式的)框架(木头或钢)+木板——(封闭式的)框架(木头或钢)+薄钢板——全钢车身——安全车身。
(完整版)汽车车身结构与设计期末考试试题2、车身外形在马车之后,经过了那几种形状的演变?各有何特点?①厢型:马车外形的发展②甲虫型:体现空气动力学原理的流线型车身③船型:以人为本,考虑驾乘舒适性④鱼型:集流线型和船型优点于一身⑤楔型:快速、稳定、舒适。
3.汽车车身结构与设计-车身总体设计

第一节 车身总体布置
一、车身总布置
车身总布置设计是对车身内外形、发动机舱、行 李舱、前后围、地板、车窗、内饰总成和部件 (仪表板、座椅和操纵机构等),以及备胎、燃 油箱和排气系统等,在满足整车布置和造型要求 下进行尺寸控制和布局的过程。
车身总布置图
车身坐标系
车身坐标系按QC/T 490-2013《汽车车身制图》中 的规定:
车身设计中一般采用5 %、50 %和95 %三种百分位的 人体尺寸,分别代表矮小身材、平均身材和高大身材的 人体尺寸。车身设计中,常把第95 %百分位的值作为 设计上限,把第5 %的值作为下限。这样的设计结果可 满足90 %的使用对象。
SAE J826 人体设计样板
早期的车身布置 使用的人体模型 是人体设计样板, 常用塑料板材等 按1:1、1:5、 1:10等常用制图 比例制成,用于 辅助制图、乘员 乘坐空间的布置 和测量、校核空 间尺寸等。
Euro NCAP根据包络线距离(Wrap Around Distance,WAD)把发动机盖进 行了碰撞区域的划分。所谓包络线距离,是指从地面开始计算,围绕汽车前端沿 发动机罩向后,所得的包络线的距离。
概念:驾驶人手伸及界面是指驾驶人以正常姿势入座、身系安全 带、右脚踩在加速踏板上以及一手握住转向盘时,另一手所能伸 及的最大空间界面。
通用布置因子:G 因子,反映乘坐环境布置的代数式:
HR 基准面:用于定位驾驶人手伸及界面的平面。它平行于汽车 坐标系YZ 平面,位于AHP 后方,到AHP 的距离为: d =786 -99G
每张表格对应着一定范围的G 因子值、确定的驾 驶人男女比例和安全带形式。
驾驶人手伸及界面数据表格
驾驶人手伸及界面在车内的定位
汽车车身总布置设计

汽车车身总布置设计汽车车身总布置设计是指对汽车外部车身的整体造型和布局进行设计。
汽车车身设计是汽车设计的重要组成部分,它不仅仅是为了满足美观的要求,更是为了满足汽车功能性、安全性和空气动力学性能等方面的要求。
下面将详细介绍汽车车身总布置设计的相关内容。
汽车车身总布置设计涉及到一系列因素,包括流线型外观、车身尺寸和比例、车门、车窗、前脸和车尾等。
其中,流线型外观是现代汽车设计中非常重要的一个方面,它能够减少空气阻力,提高汽车的稳定性和燃油经济性。
车身尺寸和比例的设计需要考虑车内空间布局和乘坐舒适性,同时还要满足安全性和稳定性的要求。
车门的设计是汽车车身总布置设计中的关键步骤之一、车门不仅仅是一种开启和关闭车辆的装置,它还要具备能够提供良好密封性和防盗性的功能。
此外,车门的设计还需要考虑乘客进出车辆的便利性和安全性,以及车身结构的稳定性。
车窗的设计也是汽车车身总布置设计中的重要一环。
车窗除了提供乘客的视野和采光外,还要具备隔热、隔音和防盗等功能。
在现代汽车设计中,透明材料的应用也成为了一种趋势,例如使用大面积的玻璃和透明塑料来增强汽车外观的时尚感和通透感。
汽车车身的前脸设计是汽车外部造型的重要组成部分。
前脸设计不仅要满足车辆的空气动力学性能和冷却系统的需要,还要与汽车品牌形象相匹配。
一个独特和具有辨识度的前脸设计可以为汽车赋予独特的个性和品牌价值。
车尾的设计也是汽车车身总布置设计中的重要考虑因素之一、车尾的设计既要满足空气动力学的要求,也要与前脸和侧面的设计相协调。
一个动感和流线型的车尾设计可以增强汽车的运动感和美观度。
除了以上提到的设计要素,汽车车身总布置设计还需要考虑其他因素,如车轮的布置、行李箱的布置和车身的结构强度等。
这些因素对于车辆的使用功能、乘坐舒适性和安全性都具有重要影响。
总之,汽车车身总布置设计是汽车设计中不可或缺的一环。
它既要满足汽车的美学要求,又要兼顾汽车的功能性、安全性和空气动力学性能等方面的要求。
汽车车身设计考试重点

现代车身设计:①计算机辅助造型设计②虚拟现实技术③空气动力学模拟④人机工程学技术⑤数字样机技术⑥CAE分析及验证技术⑦模块化设计技术⒈A类车:主要指乘用车,包括轿车,旅行车,多功能车和轻型货车;B类车:主要指商用车,包括重型货车和大客车。
⒉H点是指H点装置上躯干与大腿的铰接点。
⒊硬点:是对于整车性能,造型和车内布置具有重要意义的关键点。
硬点尺寸:是指连接硬点之间、控制车身外部轮廓和内部空间以满足使用要求的尺寸空间。
⒋眼椭圆:指不同身材的成员以正常姿势坐在车内时其眼睛位置的统计分布图形,⒌头廓包络:头廓包络指不同身材的成员以正常姿势坐在适宜位置时其头廓的包络。
⒍.驾驶员手伸及界面:指驾驶员以正常姿势入座,身系安全带,右脚踩在加速踏板上以及一手握住转向盘时,另一手所能伸及的最大空间廓面。
⒎刮净率:实际刮扫区和理论刮扫区重合部分的面积与对应的理论刮扫区面积之比。
⒏白车身:通常指已经焊装好的白皮车身,主要包括车身结构焊接总成和车身闭合件焊接总成,不包括车身附属设备和装饰件。
⒐车身承载:⑴承载式:将车架的功能融入车身的结构又称整体式车身结构,它承载系统的全部功能。
优点:整体刚度大,重量轻,整车高度低,生产效率高。
⑵非承载式:带有独立完整车架的车身结构,车身通过各个橡胶垫或悬置用螺栓与车架连接,载荷主要由车架承担。
优点:由于车身与车架间的弹性连接,使乘坐舒适性提高,给车身的改型带来方便。
【影响车身和车架强度的基本载荷分为两大类:①对称垂直载荷②非对称载荷—典型路面】⒑拓扑模型:是指车身结构中,梁,柱等承载件的空间布置形式。
⒒纵向碰撞理想特性:行人保护和低速防护区,相容区,自身保护区。
⒓对于空间梁单元,每一个节点有6个自由度。
单元刚度矩阵为12×12⒔为了提高扭转刚度,大都采用闭口截面。
⒕白车身结构总成是由承载构件,接头和板壳焊接组成。
⒖接头计算模型分详细接头模型和简化接头模型详细接头模型主要采用板单元模拟,简化接头模型是将详细接头模型简化成由梁单元和弹簧元模拟,超单元是将系统或子结构有限元模型的自由度分为主自由度和副自由度,副自由度依附主自由度而被消去,通常称为劲力减缩,这样可以简化有限元模型而性质基本不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车造型设计的主要步骤:
外部造型工作——造型设计资料收集(前期调研)——产品分析报告造型设计任务书——评审——外部构思草图——评审——设计效果图——评审——小比例模型制作——评审——模型数字化定义——全尺寸胶带图——全尺寸模型塑造——模型装饰设计——评审——模型测量——外模型数字化定义——评审模型冻结——造型文件发布
内部造型工作——造型设计资料收集(前期调研)——产品分析报告造型设计任务书——评审——内部构思草图——评审——设计效果图——评审——全尺寸胶带图——全尺寸内饰模型制作——内饰模型装饰设计——评审——模型测量——内模型数字化定义——评审模型冻结——造型文件发布
前期调研
前期调研是开发设计的必要条件和充分条件,没有前期的调查,无法决定人群的需求和市场的供求量。
产品规划前期,对所要开发的车型都要有详尽的技术与相关因素的资料收集,这样设计师对即将进行的造型构思和风格定位以及功能定位更容易把握,以使得新造型尽可能被目标客户群接受。
在调研的过程中,首先要对目标客户群进行认定、了解其社会价值观和需求走势;再则要明确竞争对手的研究开发目标、投资倾向、车型特征、技术含量和与己竞争的品位差距;还要调查市场车型分类、流行元素、价位取向、功能特征等方面。
再则,汽车的设计制造和销售是一个庞大的网络,需要大量的资金投入,必须经过周密调查研究与论证,不可盲目草率上马,否则会造成市场上的产品滞销,带来重大损失。
使得投产后问题成堆,积重难返。
产品分析报告造型设计任务书
汽车总布置设计(又称初步造型),是将汽车各个总成及其所装载的人员或货物安排在恰当的位置,以保证各总成运转相互协调、乘坐舒适和装卸方便。
为了保证汽车各部分合理的相互关系,需要定出许多重要的控制尺寸。
在这个阶段,需要绘制汽车的总布置图,绘出发动机、底盘各总成、驾驶操作场所、乘员和货物的具体位置以及边界形状;也包括零部件的运动(如前轮转向与跳动)范围校核。
经过汽车总布置设计,就可确定汽车的主要尺寸和基本形状。
创意思维与草图绘制
在进行了一系列的产品前期调研、分析、
评价后,可以根据调研与评价的结果,有
目的、有计划地进行初期的创意构思,这
个阶段会有大量的草图出现,设计师会有
很多有创意的方案。
然后将构思的想法进
行汇总和商讨,成功的设计一定是从多元
的设计脉络中萃取的精华。
集思广益,确定有价值、有意义的方案。
前期草图往往有设计师的一些不确定的构思,缺乏推敲,比较随意和放松,因此,接下来要对前期草图进行筛选,进行新一轮的细节深入讨论与推敲,这时要考虑的问题是造型元素工程的可行性、尺寸比例关系(可深入,见汽车尺寸文件)、主要线条走势(可深入,见汽车流线型设计文件)、以及各细节部位的形、面关系,这些细节设计的成功与否往往决定了整个造型的成败,是设计的关键。
此时绘制的草图尽可能要求透视准确、结构明确、线条干净、材质与形面的表现到位。
草图是设计师的设计灵魂,设计思想的表现,是设计时赋予汽车气质、品位、灵性、和吸引力的关键环节。
效果图绘制与表达
效果图绘制是在创意思维草图的基
础上进行的一项更加深入、更加细化
的表达手段。
通过对优选出来的几种
方案,进行细化构思和细节设计,在
设计的基础上,通过手绘或计算机绘
制,用色彩、光影的明暗效果以及材
料的质感、形面的变化来精确表现汽
车的实际感官效果。
效果图在绘制时,要用三视图、前、
后45度的透视图来表现。
人们通过对效果图的审视,能
够看到其整体效果、色泽及材质优美表现、车体的比例关
系、型态的鲜明特征、设计的主题风格、结构的合理布局
和部件尺寸位置关系,形、面转折变化的走势、以及各个
细节、零部件和表面装饰效果的精确表达,给人以实在、
逼真的效果。
(深入讲解:效果图的表现技法多种多样:
可采用铅笔、钢笔,也可采用毛笔(水彩画或水粉画)等,
而月前较流行的是混合技法——用麦克笔描画、喷笔喷染
以及涂抹、遮挡等同时表现技法。
只要效果良好,表现技
法可不拘一格。
)
制作缩小比例模型
缩小比例模型是在构架上涂敷造型泥雕塑
而成。
轿车缩小模型常用1:5的。
比例,
亦即是真车尺寸的1/5。
英、美等国采用
英制尺寸,模型的比例是3/8。
造型泥是
一种油性混合物,又称油泥,在常温下有
一定硬度(比肥皂硬些),涂敷前须经烘烤。
缩小比例模型是在彩色效果图的基础上更
进一步表达造型构思,具有立体形象,比效果图更有真实感,要求比例严格、曲线流畅、曲面光顺。
雕塑一个缩小比例汽车模型,需要从各个角度审视,反复推敲,精工细雕,因而很难在两三天内完成。
召开选型讨论会
经过初步设计,绘制出一批彩色效果图和
塑制出几个缩小比例模型,就可以召开选
型讨论会。
会议的目的是从若干个造型方
案中选择出一个合适的车型方案,以便作
为技术设计的依据。
选型讨论会主要讨论
审美问题,但也涉及结构、工艺等方面,
故通常由负责人召集造型设计师、结构设
计师和工艺师等参加会议。
选型讨论会结
束,说明选定车型的造型构思基本成熟,
汽车的初步设计亦结束。
模型数字化定义(汽车逆向设计)
(使用三维坐标测量仪。
将模型放在测量台上,测出它表面上足够多点的空间三维坐标,用这些数据就可以在电脑中建立三维模型。
)
在完成了油泥模型制作后,需要在模型上用三维激光扫描设备对油泥模型进行扫描,获得模型点云(深入讲解:点云是在同一空间参考系下表达目标空间分布和目标表面特性的海量点集合。
根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Itensity)。
根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信
息(RGB)。
结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Itensity)和颜色信息(RGB)。
点云的属性包括:空间分辨率,点位精度,表面法向量等。
)然后利用计算机软件(CATIA或UG)对点云进行光顺处理,获得良好的表面质量,这个过程就被称为曲面光顺。
光顺的结果将直接影响到未来车辆内外表面可见区域的反光效果。
良好的车辆表面,我们称为A级曲面(所谓A级曲面的定义,是必须满足相邻曲面间之间隙在0.005mm 以下(有些汽车厂甚至要求到 0.001mm),
切率改变( tangency Change ) 在0.16度
以下,曲率改变 (curvature change) 在0.
005 度以下,符合这样的标准才能确保钣件
的环境反射不会有问题。
)其反光度高,并且
斑马纹连续,变化规则清晰。
(把测量出的数据输入电脑,就可以开始进行三维模型
的制作,未来这些数据将用于控制数控机床)
胶带图
制作油泥模型前需要贴一组精确的胶带图,所谓胶带图是指用不同宽度和不同颜色的胶带在标有坐标网格的白色图板上,借助效果图和参考车型,粘贴出汽车造型轮廓曲线和线条,将汽车整个轮廓、布置尺寸、发动机位置、车架布置及人体样板都显示出来,胶带有很好的伸缩性和不同的宽度,因此能够贴出整洁平顺富有张力的轮廓,非常适合观察和研究汽车的总体造型效果及车身布置情况。
在确定了胶带图后造型师根据胶带图参数来制作卡板,卡板是制作模型的基准,因此胶带图的质量高低严重影响着卡板的质量,也影响着日后油泥模型的质量。
全尺寸模型塑造
制作1:1外部模型。
1:1外部模型是汽车
外形定型的首要依据。
根据缩小比例模型
的放大数据,结合胶带图和1:1效果图的
的修订情况,就可以制造1:1外部模型。
这个模型是在一个带有车轮的构架上涂敷
造型泥而雕塑成的。
由于要用数以吨计的
造型泥,并雕塑得细致、平整、光顺,所
以制造一个1:1外部模型的时间很长,通常需要几个星期。
(油泥模型通常情况下有三层:首先是结构骨架制作,其次骨架表面粘贴多块高密度泡沫材料,再次在高密度泡沫层外是油泥层。
油泥模型制作阶段是整个汽车设计最重要,也是最核心的部分。
可见模型制作文件)
制作1:1内部模型。
1:1内部模型用以审视汽车内部造型效果和检验汽车内部尺寸。
1:1内部模型与1:1外部模型同时制作,其设计和尺寸相互配合。
1:1内部模型的形状、色彩、覆盖饰物的质感和纹理都应制造得十分逼真,使人具有置身于真车室内的感觉。
模型装饰设计
拥有全尺寸模型后,我们开始对汽车的一些细节和装饰物进行设计。
期中包括外部的车身色彩,装饰条等等,还有内部的座椅纹路,桃木的装饰等等。
这步以后整个汽车的外观设计就基本上结束了。
模型测量
在讨论会结束以后就可以对模型的各个部分进行测量。
测量可以通过手工工具和计算机两种方式进行。
获得的数据为后来结构设计的设计提供了尺寸支持,也可对照先前的设计任务书看最后的模型是否达到任务书的要求。
评审模型冻结造型文件发布
对最后审查通过的方案进行详细的归纳汇总,交付企业最高领导审批,使汽车最终定型。
然后提交给下一步的结构设计师。
确定汽车结构(详见汽车结构设计文件)。