九年级 二次函数单元测试卷附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级二次函数单元测试卷附答案
一、初三数学二次函数易错题压轴题(难)
1.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,其中A(3,0),B(﹣1,0),与y轴交于点C,抛物线的对称轴交x轴于点D,直线y=kx+b1经过点A,C,连接CD.(1)求抛物线和直线AC的解析式:
(2)若抛物线上存在一点P,使△ACP的面积是△ACD面积的2倍,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使线段AQ绕Q点顺时针旋转90°得到线段QA1,且A1好落在抛物线上?若存在,求出点Q的坐标;若不存在,请说明理由.
【答案】(1)2
y x2x3
=-++;3
y x
=-+;(2)(﹣1,0)或(4,﹣5);(3)存在;(1,2)和(1,﹣3)
【解析】
【分析】
(1)将点A,B坐标代入抛物线解析式中,求出b,c得出抛物线的解析式,进而求出点C 的坐标,再将点A,C坐标代入直线AC的解析式中,即可得出结论;
(2)利用抛物线的对称性得出BD=AD,进而判断出△ABC的面积和△ACP的面积相等,即可得出结论;
(3)分点Q在x轴上方和在x轴下方,构造全等三角形即可得出结论.
【详解】
解:(1)把A(3,0),B(﹣1,0)代入y=﹣x2+bc+c中,得
930
10
b c
b c
-++=
⎧
⎨
--+=
⎩
,
∴
2
3
b
c
=
⎧
⎨
=
⎩
,
∴抛物线的解析式为y=﹣x2+2x+3,
当x=0时,y=3,
∴点C的坐标是(0,3),
把A(3,0)和C(0,3)代入y=kx+b1中,得1
1
30
3
k b
b
+=
⎧
⎨
=
⎩
,
∴
1
1
3
k
b
=-
⎧
⎨
=
⎩
∴直线AC的解析式为y=﹣x+3;
(2)如图,连接BC,
∵点D是抛物线与x轴的交点,
∴AD=BD,
∴S△ABC=2S△ACD,
∵S△ACP=2S△ACD,
∴S△ACP=S△ABC,此时,点P与点B重合,
即:P(﹣1,0),
过B点作PB∥AC交抛物线于点P,则直线BP的解析式为y=﹣x﹣1①,∵抛物线的解析式为y=﹣x2+2x+3②,
联立①②解得,
1
x
y
=-
⎧
⎨
=
⎩
或
4
5
x
y
=
⎧
⎨
=-
⎩
,
∴P(4,﹣5),
∴即点P的坐标为(﹣1,0)或(4,﹣5);
(3)如图,
①当点Q在x轴上方时,设AC与对称轴交点为Q',由(1)知,直线AC的解析式为y=﹣x+3,
当x=1时,y=2,
∴Q'坐标为(1,2),
∵Q'D=AD=BD=2,
∴∠Q'AB=∠Q'BA=45°,
∴∠AQ'B=90°,
∴点Q'为所求,
②当点Q在x轴下方时,设点Q(1,m),
过点A1'作A1'E⊥DQ于E,
∴∠A1'EQ=∠QDA=90°,
∴∠DAQ+∠AQD=90°,
由旋转知,AQ=A1'Q,∠AQA1'=90°,
∴∠AQD+∠A1'QE=90°,
∴∠DAQ=∠A1'QE,
∴△ADQ≌△QEA1'(AAS),
∴AD =QE =2,DQ =A 1'E =﹣m , ∴点A 1'的坐标为(﹣m +1,m ﹣2), 代入y =﹣x 2+2x +3中, 解得,m =﹣3或m =2(舍), ∴Q 的坐标为(1,﹣3),
∴点Q 的坐标为(1,2)和(1,﹣3).
【点睛】
本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,三角形“k ”字型全等,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.
2.如图,抛物线()2
50y ax bx a =+-≠经过x 轴上的点1,0A 和点B 及y 轴上的点
C ,经过B C 、两点的直线为y x n =+.
(1)求抛物线的解析式.
(2)点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,PBE △的面积最大并求出最大值.
(3)过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B C 、重合)作直线
AM 的平行线交直线BC 于点Q .若点A M N Q 、、、为顶点的四边形是平行四边形,求
点N 的横坐标.
【答案】(1)2
65y x x =-+- (2)2t =
;(3
或4
【解析】 【分析】
(1)先确定A 、B 、C 三点的坐标,然后用待定系数法解答即可;
(2)先求出AB 、BC 的长并说明△BOC 是等腰直角三角形,再求出点P 到BC 的高d
为
)454d BP sin t =⋅︒=
-,则12PBE
S
BE d =⨯
⨯
)()1244222
t t t =⨯⨯-=-,再根据二次函数的性质即可确定最大值;
(3
)先求出454AM AB sin =⋅︒==N 作直线AM 的平行线交直线BC 于点,Q 则,再说明四边形AMNQ
是平行四边形,得到NQ AM ==;再过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H 结合题意说明NQH 为等腰直角三角
形,求得4NH =
==;设()
2
,65N m m m -+-,则(),0G m ,
(),5H m m -,最后分点N 在x 轴上方时、点N 在x 轴下方且5m >时和1m <三种情况
解答即可. 【详解】
解:()1因为直线y x n =+经过B C 、两点,且点B 在x 轴上,点C 在y 轴上, ∵()(),,00,B n C n -
∴抛物线2
5y ax bx =+-经过点1,0A ,点(),0B n -,点()0,C n ,
∴250505a b an bn n +-=⎧⎪--=⎨⎪-=⎩,解得51,6n a b =-⎧⎪
=-⎨⎪=⎩
所以抛物线的解析式为2
65y x x =-+-.
()2∵()()()1,05,0,0,,5,A B C -
∴4,AB BC BOC ==为等腰直角三角形, ∴45,ABC ∠=
由题意得4,2,02
BP t BE t t =-=<≤