最新二次函数单元测试题及答案

合集下载

二次函数单元测试题及答案

二次函数单元测试题及答案

二次函数单元测试题及答案一、选择题(每题3分,共30分)1. 若二次函数y=ax^2+bx+c的图像开口向上,则a的取值范围是()A. a > 0B. a < 0C. a = 0D. a ≠ 0答案:A2. 二次函数y=-3x^2+6x-2的对称轴是()A. x = -1B. x = 1C. x = 2D. x = 0答案:B3. 二次函数y=x^2-4x+c的顶点坐标是()A. (2, c-4)B. (2, c+4)C. (-2, c-4)D. (-2, c+4)答案:A4. 若二次函数y=x^2-6x+c的图像与x轴有两个交点,则c的取值范围是()A. c > 9B. c < 9C. c = 9D. c ≠ 9答案:B5. 二次函数y=2x^2-4x+3的最小值是()A. 1B. 2C. 3D. 4答案:C6. 二次函数y=-2x^2+4x+1的图像与y轴的交点坐标是()A. (0, -1)B. (0, 1)C. (0, 3)D. (0, 5)答案:B7. 若二次函数y=ax^2+bx+c的图像与x轴没有交点,则a和b的取值关系是()A. a > 0, b^2 > 4acB. a < 0, b^2 > 4acC. a > 0, b^2 < 4acD. a < 0, b^2 < 4ac8. 二次函数y=x^2-2x+1的图像的顶点坐标是()A. (1, 0)B. (1, 1)C. (0, 1)D. (2, 1)答案:B9. 二次函数y=x^2-6x+5的图像开口方向是()A. 向上B. 向下C. 向左D. 向右答案:A10. 若二次函数y=2x^2-4x+1的图像与x轴有一个交点,则该交点的坐标是()A. (1, 0)B. (2, 0)C. (-1, 0)D. (0, 0)答案:A二、填空题(每题3分,共15分)1. 二次函数y=x^2-2x+1的对称轴方程是______。

二次函数 单元检测试卷(含答案)

二次函数 单元检测试卷(含答案)

二次函数单元检测试卷(含答案)二次函数复套卷时间:120分钟满分:150分班级:__________ 姓名:__________ 得分:__________一、选择题(本题共12小题,每小题3分,共36分)1.下列各式中,y是x的二次函数的是()A。

y = 1/2xB。

y = 2x + 1C。

y = x^2 + x - 2D。

y^2 = x^2 + 3x / x2.抛物线y = 2x^2 + 1的顶点坐标是()A。

(2.1)B。

(0.1)C。

(1.0)D。

(1.2)3.二次函数y = ax^2 + bx - 1 (a ≠ 0)的图像经过点(1.1),则a +b + 1的值是()A。

-3B。

-1C。

2D。

34.抛物线y = x^2 - 2x - 3与x轴的交点个数是()A。

0个B。

1个C。

2个D。

3个5.下列函数中,当x。

0时,y随x值的增大而先增大后减小的是()A。

y = x^2 + 1B。

y = x^2 - 1C。

y = (x + 1)^2D。

y = -(x - 1)^26.二次函数y = ax^2 + bx + c的部分对应值如下表:x。

y2.51.-31.-42.-33.…二次函数图像的对称轴是()A。

直线x = 1B。

y轴C。

直线x = -1D。

直线x = -27.如图,二次函数y = ax^2 + bx + c的图像与x轴相交于(-2.0)和(4.0)两点,当函数值y。

0时,自变量x的取值范围是()A。

x < -2B。

-2 < x < 4C。

x。

0D。

x。

48.二次函数y = ax^2 + bx + c的图像如图所示,那么一次函数y = ax + b的图像大致是()9.某种品牌的服装进价为每件150元,当售价为每件210元时,每天可卖出20件,现需降价处理,且经市场调查:每件服装每降价2元,每天可多卖出1件。

在确保盈利的前提下,若设每件服装降价x元,每天售出服装的利润为y元,则y与x的函数关系式为()A。

人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

第二十二章二次函数一、选择题1. 关于二次函数y=x2与y=−x2的图象,下列说法错误的是( )A.对称轴都是y轴B.顶点都是坐标原点C.与x轴都有且只有一个交点D.它们的开口方向相同2. 如图,关于抛物线y=(x−1)2−2,下列说法错误的是( )A.顶点坐标为(1,−2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小3. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x−2)2+3C.y=3(x+2)2−3D.y=3(x−2)2−34. 如图是二次函数y=−x2+2x+4的图象,使y≤4成立的x的取值范围是( )A . 0≤x ≤2B . x ≤0C . x ≥2D . x ≤0 或 x ≥25. 一抛物线的形状、开口方向与 y =12x 2−2x +3 相同,顶点为 (−2,1),则此抛物线的解析式为 A . y =12(x−2)2+1 B . y =12(x +2)2−1 C . y =12(x +2)2+1D . y =12(x +2)2−16. 心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x (min) 之间是二次函数关系,当提出概念 13 min 时,学生对概念的接受能力最大,为 59.9;当提出概念 30 min 时,学生对概念的接受能力就剩下 31,则 y 与 x 满足的二次函数表达式为 ( )A .y =−(x−13)2+59.9B .y =−0.1x 2+2.6x +31C .y =0.1x 2−2.6x +76.8D .y =−0.1x 2+2.6x +437. 已知点 (−1,y 1),(−312,y 2),(12,y 3) 在函数 y =3x 2+6x +12 的图象上,则 y 1,y 2,y 3 的大小关系为 ( ) A . y 1>y 2>y 3B . y 2>y 1>y 3C . y 2>y 3>y 1D . y 3>y 1>y 28. 在某建筑物上从 10 m 高的窗口 A 用水管向外喷水,喷出的水流呈抛物线状,如图所示,如果抛物线的最高点 M 离墙 1 m ,离地面403 m ,则水流落在点 B 与墙的距离 OB 是 ( )A . 2 mB . 3 mC . 4 mD . 5 m9. 二次函数 y =ax 2+bx +c (a ≠0) 的大致图象如图所示,顶点坐标为 (−2,−9a ),下列结论:① 4a +2b +c >0;② 5a−b +c =0;③若方程a(x+5)(x−1)=−1有两个根x1和x2,且x1<x2,则−5<x1<x2<1;④若方程∣ax2+bx+c∣=1有四个根,则这四个根的和为−4.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题10. 如果y=(m2−1)x m2−m是二次函数,则m=.11. 若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为.12. 若抛物线y=x2−2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.13. 如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(−3,−6),点B(1,−2),则关于x的不等式ax2+bx<mx+n的解集为.14. 如图,二次函数y=ax2+bx+3的图象经过点A(−1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15. 已知抛物线:y=ax2+bx+c(a<0)经过A(2,4),B(−1,1)两点,顶点坐标为(ℎ,k),则下列正确结论的序号是.①b>1;②c>2;③ℎ>1;④k≤1.216. 物体自由下落的高度 ℎ(单位:m )与下落时间 t (单位:s )之间的关系是 ℎ=4.9t 2,有一个物体从 44.1m 高的建筑物上自由下落,到达地面需要s .17. 如图,在平面直角坐标系中,抛物线 y =13x 2 经过平移得到抛物线 y =13x 2−2x ,其对称轴与两段抛物线所围成的阴影部分的面积为.三、解答题18. 已知二次函数 y =a (x−1)2+4 的图象经过点 (−1,0).(1) 求这个二次函数的解析式;(2) 判断这个二次函数的开口方向,对称轴和顶点坐标.19. 已知二次函数 y =x 2+4x +3.(1) 用配方法将二次函数的表达式化为 y =a (x−ℎ)2+k 的形式;(2) 在平面直角坐标系 xOy 中,画出这个二次函数的图象;(3) 根据(2)中的图象,写出一条该二次函数的性质.20. 如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(32,32);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P作PQ∥y轴交线段OB于点Q.(1) 求抛物线的解析式;(2) 当PQ的长度为最大值时,求点Q的坐标;(3) 点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.21. 在平面直角坐标系xOy中,抛物线y=ax2−4ax+3a−2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1) 当抛物线过原点时,求实数a的值;(2) ①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3) 当AB≤4时,求实数a的取值范围.22. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时点O,P之间的距离是多少?(请写出求解过程)23. 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1) 求y与x之间的函数表达式.(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3) 若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24. 如图所示抛物线y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1) 求抛物线的解析式及其对称轴.(2) 点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长最小值.(3) 点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.答案一、选择题1. D2. D3. A4. D5. C6. D7. C8. B9. B二、填空题10. 211. 612. m>113. x<−3或x>114. x1=−1,x2=315. ①②③16. 317. 9三、解答题18.(1) 把(−1,0)代入二次函数解析式得:4a+4=0,即a=−1,则函数解析式为y=−(x−1)2+4.(2) ∵a=−1<0,∴抛物线开口向下,顶点坐标为(1,4),对称轴为直线x=1.19.(1) y=x2+4x+3=x2+4x+22−22+3 =(x+2)2−1.(2) 略(3) 当x<−2时,y随x的增大而减小,当x>−2时,y随x的增大而增大.(答案不唯一)20.(1) ∵抛物线顶点为C(1,2),∴设抛物线的解析式为y=a(x−1)2+2(a≠0).∵点B(32,32)在抛物线上,∴32=a(32−1)2+2,∴a=−2,∴抛物线的解析式为y=−2(x−1)2+2,即y=−2x2+4x.(2) 设点P的坐标为(x,−2x2+4x)(0<x<32),则点Q的坐标为(x,x),∴PQ=−2x2+4x−x=−2x2+3x=−2(x−34)2+98,∵−2<0,∴当x=34时,PQ的长度取最大值,∴当PQ的长度为最大值时,点Q的坐标为(34,34).(3) (12,12)21.(1) ∵点O(0,0)在抛物线上,∴3a−2=0,a=23.(2) ①对称轴为直线x=2;②顶点的纵坐标为−a−2.(3) (i)当a>0时,依题意,{−a−2<0,3a−2≥0.解得a≥23.(ii)当a<0时,依题意,{−a−2>0,3a−2≤0,解得a<−2.综上,a<−2或a≥23.22.(1) 以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).∵点A在抛物线上,∴8=a×42,解得a=12,∴所求抛物线的函数解析式为:y=12x2.(2) 找法:延长AC,交建筑物造型所在抛物线于点D,则点A,D关于OC对称.连接BD交OC于点P,则点P即为所求.(3) 由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(−4,8),设直线BD的函数解析式为y=kx+b,∴{2k+b=2,−4k+b=8,解得:k=−1,b=4.∴直线BD的函数解析式为y=−x+4,把x=0代入y=−x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O,P之间的距离是4米.23.(1) y=300+30(60−x)=−30x+2100.(2) 设每星期的销售利润为W元,则W=(x−40)(−30x+2100)=−30(x−55)2+6750.所以当x=55时,W取最大值,为6750.所以每件售价定为55元时,每星期的销售利润最大,最大利润是6750元.(3) 由题意得(x−40)(−30x+2100)≥6480,解得52≤x≤58.当x=52时,销售量为300+30×8=540(件);当x=58时,销售量为300+30×2=360(件).所以若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.24.(1) ∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3)=ax2−2ax−3a,故−3a=3,解得a=−1,故抛物线的表达式为:y=−x2+2x+3 ⋯⋯①,对称轴为:直线x=1.(2) ACDE的周长=AC+DE+CD+AE,其中AC=10,DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点Cʹ(2,3),则CD=CʹD,取点Aʹ(−1,1),则AʹD=AE,故:CD+AE=AʹD+DCʹ,则当Aʹ,D,Cʹ三点共线时,CD+AE=AʹD+DCʹ最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=10+1+AʹD+DCʹ=10+1+AʹCʹ=10+1+13.(3) 如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C−y P):12AE×(y C−y P)=BE:AE,则BE:AE=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E,C的坐标代入一次函数表达式:y=kx+3,解得:k=−6或−2,故直线CP的表达式为:y=−2x+3或y=−6x+3 ⋯⋯②,联立①②并解得:x=4或8(不合题意已舍去),故点P的坐标为(4,−5)或(8,−45).。

第二十二章-二次函数-单元测试(含答案)

第二十二章-二次函数-单元测试(含答案)

第二十二章二次函数学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知二次函数223y x x =--,点P 在该函数的图象上,点P 到x 轴、y 轴的距离分别为1d 、2d .设d d d =+,下列结论中:①④231(x 4点B C .52D .535.已知二次函数2y x bx c =++的图象上有三个点()11,y -)、()21,y 、()33,y ,若13y y =,则( ).A .21y c y >>B .12c y y <<C .12c y y >>D .21y c y <<6.已知二次函数y=ax 2+bx+c (a≠0)的图象如图,在下列代数式中(1)a+b+c >0;(2)﹣4a <b <﹣2a (3)abc >0;(4)5a ﹣b+2c <0; 其中正确的个数为( )78①93的“特征数”为[1,2,3]-.若“特征数”为12,2,2m m m --⎢⎥⎣⎦的二次函数的图象与x 轴只有一个交点,则m的值为( )A .2-或2B .12-C .2-D .210.某同学在体育训练中掷出的实心球的运动路线呈如图所示的抛物线形,若实心球运动的抛物线的解析式为()21349y x =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离,则该同学此次掷球的成绩(即OA 的长度)是( )A .4mB .6mC .8mD .9m11.已知函数223y x x =-+,当0x m ≤≤时,有最大值3,最小值2,则m 的取值范围是( )A .1m ≥B .02m ≤≤C .12m ≤≤D .2m ≤12.有一拱桥洞呈抛物线状,这个桥洞的最大高度是16 m ,跨度为40 m ,现把它的示意图(如图)放在平面直角坐标系中,则抛物线的表达式为( )A .281255x y x =+B .218255y x x =-+C .251825y x x =--D .25125168y x x +=+ 二、填空题13.已知抛物线22161y x x =-+,则这条抛物线的对称轴是直线 .14.已知抛物线()21433y x =--的部分图象如图所示,则图象再次与x 轴相交时的坐标是 .15.已知抛物线()20y ax bx c a =++≠图象的顶点为()2,3P -,且过()3,0A -,则抛物线的关系式为 .16.已知222b c c a a bk a b c+++===,0a b c ++≠,将抛物线22y x =向右平移k 个单位,再向上平移2k 个单位后,所得抛物线的表达式为 .对于平移后的抛物线,当25x ……时,y 的取值范围是 .17.设关于x 的方程()2440x k x k +--=有两个不相等的实数根12,x x ,且1202x x <<<,那么k 的取值范围是 .三、解答题18.己知二次函数y =ax 2+bx +c (a ,b ,c 均为常数且0a ≠).(1)若该函数图象过点(1,0)A -,点(3,0)B 和点(0,3)C ,求二次函数表达式:(2)若21b a =+,2c =,且无论a 取任何实数,该函数的图象恒过定点,求出定点的坐标.(4)将这个函数的图象向右平移2个单位长,向上平移1个单位长,写出平移后的二次函数解析式.20.高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资,已知生产每件产品的成本是40元.在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x (元),年销售量为y(万件),年获利(年获利=年销售额一生产成本—投资)为z(万元).(1)试写出y与x之间的函数关系式(不写x的取值范围);(2)试写出z与x之间的函数关系式(不写x的取值范围);(3)公司计划,在第一年按年获利最大确定销售单价进行销售;到第二年年底获利不低于1130万元,请借助函数的大致图象说明:第二年的销售单价x(元)应确定在什么范围内?21.珊珊度假村共有客房50间供游客居住,当每个房间的定价为每天200元时,所有房间刚好可以住满,根据经验发现,每个房间的定价每增加10元,就会有1个房间空闲,对有游客入住的房间,宾馆需对每个房间支出每天20元的各种费用.设每个房间的定价增加x元,每天的入住量为y个,度假村住宿每天的利润为w元.(1)求y与x的函数关系式;(2)求w与x的函数关系式,并求客房收入每天的最大利润是多少?(3)当x为何值时,客房收入每天的利润不低于10350元?22.篮球是一项广受喜爱的运动.学习了二次函数后,小江同学打篮球时发现,篮球投出时在空中的运动可近似看作一条抛物线,于是建立模型,展开如下研究:如图,篮框距离地面3m,某同学身高2m,站在距离篮球架4mL 处,从靠近头部的O点将球正对篮框投出,球经过最高点时恰好进入篮框,球全程在同一水平面内运动,轨迹可看作一条抛物线C.不计篮框和球的大小、篮板厚度等.(1)求抛物线C的表达式;(2)研究发现,当球击在篮框上方0.2m及以内范围的篮板上时,球会打板进框.若该同学正对篮框,改用跳投的方式,出手点O位置升高了0.5m,要能保证进球,求L的取值范围.(计算结果保留小数点后一位)23.如图1,在平面直角坐标系中,是坐标原点,抛物线与轴正半轴交于点,与轴交于点,连接,点分别是的中点.,且始终保持边经过点,边经过点,边与轴交于点,边与轴交于点.(1)填空,的长是 ,的度数是 度(2)如图2,当,连接①求证:四边形是平行四边形;②判断点是否在抛物线的对称轴上,并说明理由;(3)如图3,当边经过点时(此时点与点重合),过点作,交延长线上于点,延长到点,使,过点作,在上取一点,使得(若在直线的同侧),连接,请直接写出的长.24.如图,抛物线239344y x x =-++与x 轴交于点A ,与y 轴交于点B .在线段OA 上有一动点(m,0)E (不与,O A 重合),过点E 作x 轴的垂线交AB 于点N ,交抛物线于点P ,过点P 作PM AB ⊥于点M .(1)求直线AB的函数解析式;(参考答案:题号12345678910答案B D B A D A C D C D 题号1112 答案CB1.B 2.D 3.B 4.A 5.D 6.A 7.C 8.D 9.C 10.D 11.C 12.B 13.4x =14.(7,0)15.23129y x x =---16.22(1)2y x =+-1670x ……17.-2<k <0 18.(1)223y x x =-++(2)()0,2,()2,0-19.(1)221y x =-;(2)17;(3)略;(4)2288y x x =-+.20.(1)y=-110x+30;(2)z=-110x 2+34x-3200;(3)第二年的销售单价应确定在不低于120元且不高于220元的范围内.21.(1)5010x y =-(2)(3)22(2)2312 24。

第二十二章 二次函数 单元测试(含答案) 2024-2025学年人教版数学九年级上册

第二十二章 二次函数 单元测试(含答案) 2024-2025学年人教版数学九年级上册

第二十二章 二次函数一、选择题(每题3分,共24分)1.下列各式中,y 是x 的二次函数的是( )A .y =1x 2B .y =x 2+1x +1C .y =2x 2−1D .y =x 2−12.下列抛物线中,与y =−3x 2+1抛物线形状、开口方向完全相同,且顶点坐标为(−1,2)的是( )A .y =−3(x +1)2+2B .y =−3(x−1)2+2C .y =3(x +1)2+2D .y =−3(x +1)2+23.在平面直角坐标系中,将二次函数y =3x 2的图象向下平移3个单位长度,所得函数的解析式为( )A .y =3x 2−1B .y =3x 2+1C .y =3x 2−3D .y =3x 2+34.若A (−1,y 1),B (1,y 2),C (4,y 3)三点都在二次函数y =−(x−2)2+k 的图象上,则y 1,y 2,y 3的大小关系为( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 1<y 2D .y 3<y 2<y 15.二次函数y =−x 2−2x +c 2−2c 在−3≤x ≤2的范围内有最小值为−5,则c 的值( )A .3或−1B .−1C .−3或1D .36.已知二次函数y =x 2−3x +m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程x 2−3x +m =0的两实数根是( )A .x 1=0,x 2=−1B .x 1=1,x 2=2C .x 1=1,x 2=0D .x 1=1,x 2=37.如图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面3m ,水面宽6m .如图(2)建立平面直角坐标系,则抛物线的解析式是( )A .y =−13x 2B .y =13x 2C .y =−3x 2D .y =3x 28.如图,已知经过原点的抛物线y =a x 2+bx +c(a ≠0)的对称轴是直线x =−1,下列结论中:①ab >0,②a +b +c >0,③当−2<x <0时y <0.正确的个数是( )A.0个B.1个C.2个D.3个二、填空题(每题4分,共20分)9.抛物线y=−3(x−1)2−2的对称轴是直线 .10.若y=(m−2)x m2−2+x−3是关于x的二次函数.则m的值为 .11.抛物线y=a x2+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点为(3,0),对称轴为直线x=1,则当y≤0时,x的取值范围是 .12.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为2m处达到最高,高度为5m,水柱落地处离池中心距离为6m,则水管的长度OA是 m.13.如图,在平面直角坐标中,抛物线y=a x2+bx(a>0)和直线y=kx(k>0)交于点O和点A,则不等式a x2 +bx<kx的解集为 .三、解答题(共56分)14.如图所示,二次函数y=a x2+bx+c(a≠0)的图保与x轴相交于A,B两点,其中点A的坐标为(−1,0),M(2,9)为抛物线的顶点.(1)求抛物线的函数表达式.(2)求△MCB的面积.15.如图所示,在平面直角坐标系中,二次函数y=a x2+4x−3的图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后的图象所对应的二次函数的表达式. 16.已知,一个铝合金窗框如图所示,所使用的铝合金材料长度为18m.设AB长为xm,窗户的总面积为Sm2.(1)求S关于x的函数表达式.(2)若AB的长不能低于2m,且AB<BC,求此时窗户总面积S的最大值和最小值.17.第十九届亚运会在杭州隆重举办,政府鼓励全民加强体育锻炼,李明在政府的扶持下投资销售一种进价为每件50元的乒乓球拍.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=−10x+900.(1)设月利润为W(元),求W关于x的函数表达式.(2)销售单价定为每件多少元时,所得月利润最大?最大月利润为多少元?(3)若物价部门规定这种乒乓球拍的销售单价不得超过75元,李明想使获得的月利润不低于3000元,求销售单价x的取值范围.18.如图,二次函数y=a x2+bx+c的图象交x轴于A(−1,0),B(2,0),交y轴于C(0,−2).(1)求二次函数的解析式;(2)若点M为该二次函数图象在第四象限内一个动点,求点M运动过程中,四边形ACMB面积的最大值;(3)点P在该二次函数图象的对称轴上,且使|PB−PC|最大,求点P的坐标。

二次函数测试题及答案

二次函数测试题及答案

二次函数测试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是二次函数的一般形式?A. y = 2x + 1B. y = x^2 + 3x + 2C. y = 3x^3 - 5D. y = 4/x答案:B2. 二次函数y = ax^2 + bx + c的顶点坐标为(h, k),那么h的值为:A. -b/2aB. -b/aC. b/2aD. b/a答案:C3. 二次函数y = 2x^2 - 4x + 3的对称轴方程是:A. x = 1B. x = -1C. x = 2D. x = -2答案:A4. 如果二次函数y = ax^2 + bx + c的图象开口向上,那么a的值:A. 大于0B. 小于0C. 等于0D. 可以是任意实数答案:A5. 二次函数y = -x^2 + 4x - 3的顶点坐标是:A. (1, 2)B. (2, 1)C. (3, 0)D. (3, 4)答案:C6. 二次函数y = 3x^2 - 6x + 5的图象与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个答案:C7. 二次函数y = x^2 - 4x + 4的最小值是:A. 0B. 4C. -4D. 1答案:A8. 二次函数y = 2x^2 - 4x + 3的图象开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A9. 二次函数y = -x^2 + 2x + 3的图象与y轴的交点坐标是:A. (0, 3)B. (0, -3)C. (0, 5)D. (0, -5)答案:A10. 二次函数y = 5x^2 - 10x + 8的图象与x轴的交点坐标是:A. (2, 0)B. (-2, 0)C. (1, 0)D. (-1, 0)答案:A二、填空题(每题4分,共20分)1. 二次函数y = ax^2 + bx + c的图象开口向上,且经过点(2, 0),则a的值至少为______。

答案:02. 二次函数y = 2x^2 - 4x + 3的顶点坐标是(______, ______)。

二次函数单元测试题及答案

二次函数单元测试题及答案

二次函数单元测试题及答案1. 选择题(每题2分)1. 下列函数中,属于二次函数的是:A. y = 3x + 2B. y = x^2 + 3x - 2C. y = √xD. y = |x|答案:B2. 二次函数y = 2x^2 + 3x - 4的图像开口方向是:A. 向上开口B. 向下开口答案:A3. 函数y = -x^2 + 5x + 3的顶点坐标是:A. (3, 8)B. (-3, 2)C. (5, 8)D. (-5, 3)答案:A4. 函数y = x^2 - 4x + 4的轴对称线方程为:A. x = 2B. x = 4C. x = -2D. x = -4答案:A5. 函数y = x^2 + 6x + 9的值域是:A. (-∞, 9)B. [9, +∞)C. (-∞, 0)D. [0, +∞)答案:B2. 填空题(每题3分)1. 二次函数y = -2x^2 + 4x - 1的判别式为_______。

答案:402. 函数y = x^2 + bx + c的顶点坐标是(-2, 1),则b和c的值分别为_______。

答案:b = 4,c = -33. 函数y = 3x^2 - 6x + k的图像与x轴有两个交点,则k的值为_______。

答案:k > 04. 函数y = -x^2 - 4x + m的轴对称线方程为x = 2,则m的值为_______。

答案:m = 35. 函数y = ax^2 + bx + 2的值域是(-∞, 1],则a和b的关系是_______。

答案:a < 0,b > 03. 计算题(每题5分)1. 求二次函数y = -3x^2 + 6x + 9的顶点坐标和对称轴方程。

解答:首先,二次函数的顶点坐标可以通过公式 h = -b/2a 和 k = f(h) 来求得。

其中,h 表示对称轴的横坐标,k 表示顶点的纵坐标。

对于给定的函数 y = -3x^2 + 6x + 9,我们可以得到 a = -3,b = 6,c = 9。

2024年九年级数学上册《二次函数》单元测试及答案解析

2024年九年级数学上册《二次函数》单元测试及答案解析

第二十二章二次函数(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米:当x=3时,y=18,那么当成本为3.2×105元时,边长为()A.1.6×103厘米B.4×102厘米C.0.4×103厘米D.2×103厘米2.如表中列出的是一个二次函数的自变量x与函数y的几组对应值,则下列关于这个二次函数的结论中,正确的是()x....-1034....y....0-5-8-5....A.图象的开口向下B.有最小值-8C.图象与x轴的一个交点是5,0D.图象的对称轴是x=3 23.一次函数y=ax+b和二次函数y=ax2+bx在同一平面直角坐标系中的大致图象可能是()A. B.C. D.4.坐标平面上有两个二次函数的图像,其顶点M、N皆在x轴上,且有一水平线与两图像相交于A、B、C、D四点,各点位置如图所示,若AB=12,BC=4,CD=6,则MN的长度是()A.8B.9C.10D.115.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为1,n,且与x轴的一个交点在点3,0和4,0之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a c-n;④一元二次方程ax2+bx+c =n -1有两个不相等的实数根;⑤若方程ax 2+bx +c =0的两根分别为x 1,x 2,则x 1+x 2=2.其中正确结论的个数有()A.5个B.4个C.3个D.2个6.如图,在正方形ABCD 中,点B ,C 的坐标分别是(-2,1),(2,0),点D 在抛物线y =13x 2+bx 的图像上,则b 的值是()A.23B.13C.73D.437.如图,排球运动员站在点O 处练习发球,球从点O 正上方2m 的A 处发出,其运行的高度y (m )与水平距离x (m )满足关系式y =-160x -6 2+2.6.已知球网与点O 的水平距离为9m ,高度为2.43m ,球场的边界距点O 的水平距离为18m .下列判断正确的是()A.球运行的最大高度是2.43mB.球不会过球网C.球会过球网且不会出界D.球会过球网且会出界8.如图,抛物线G :y 1=a (x +1)2+2与抛物线H :y 2=-(x -2)2-1交于点B (1,-2),且分别与y 轴交于点D ,E .过点B 作x 轴的平行线,交抛物线于点A ,C .则以下结论:①抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;②无论x取何值,y2总是负数;③当-3<x<1时,随着x的增大,y1-y2的值先增大后减小;④四边形AECD为正方形.其中正确的个数是()A.1B.2C.3D.49.设二次函数y=a x+mx+m-k(a<0,m,k是实数),则()A.当k=2时,函数y的最大值为-4aB.当k=2时,函数y的最大值为-2aC.当k=4时,函数y的最大值为-4aD.当k=4时,函数y的最大值为-2a10.如图,已知点A-1,0,点B2,3.若抛物线y=ax2-x+2(a为常数,a≠0)与线段AB有两个不同的公共点,则a的取值范围是()A.a≥3B.a≤-3或34≤a<1C.-3<a<1或a≥3D.34≤a<1二、填空题(本大题共6小题,每小题3分,共18分)11.标准大气压下,质量一定的水的体积V cm3与温度t°C之间的关系满足二次函数V=18t2+104t>0,则当温度为4°C时,水的体积为cm3.12.已知二次函数y=x2-2x+1的图象向左平移两个单位得到抛物线C,点P2,y1,Q3,y2在抛物线C 上,则y1y2(填“>”或“<”);13.在单位为1的正方形网格中,存在一平面直角坐标系.二次函数y1=a1x2+b1x+c1,y2=a2x2+b2x+c2的图象位于如图位置上,若它们的图象位置关系具有对称性,请描述它们的对称关系:,求出y2与直线y=32x+7的交点坐标为.14.如图,将抛物线y =x 2-2x -3在x 轴下方部分沿x 轴翻折,其余部分保持不变,得到图像C 1,当直线y =x +b 与图像C 1恰有两个公共点时,b 的取值范围是.15.九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB ⊥CD 于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得AE =6.6m ,OE =1.4m ,OB =6m ,OC =5m ,OD =3m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是cm 2.16.如图,二次函数y =33x 2-433x +3的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C .现有一长为3的线段DE 在直线y =32上移动,且在移动过程中,线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等.若线段DE 左端点D 的橫坐标为t ,则t 的取值范围是.三、(本大题共4小题,每小题6分,共24分)17.已知二次函数的图像以A-1,4.为顶点,且过点B2,-5(1)求该函数图像与坐标轴的交点坐标;(2)将函数图像向左平移几个单位,该函数图像恰好经过原点.18.飞机降落后滑行的距离S(单位:m)关于滑行时间t(单位:s)的函数解析式是S=at²+bt,当t=5时,S=262.5;当t=10时,S=450.(1)求该函数的解析式;(2)请结合平面直角坐标系中给出的点,画出符合题意的函数图象,并写出飞机降落后滑行到停下来前进了多远?19.已知一次函数y=ax+b的图像上有两点A、B,它们的横坐标分别是2、-1,若二次函数y=x 2的图像经过A、B两点.(1)求一次函数解析式并在平面直角坐标系内画出两个函数的图像;(2)若P m,y1两点都在二次函数y=x 2的图像上,试比较y1与y2的大小. ,Q m+1,y220.在平面直角坐标系中,抛物线y=x2+bx+c交x轴于A-1,0两点,交y轴于点C,点P m,n,B3,0在抛物线上.(1)求抛物线的表达式及顶点坐标;(2)若此抛物线点P右侧的部分(不含点P)上恰好有三个点到x轴的距离均为2,请直接写出m的取值范围.四、(本大题共3小题,每小题8分,共24分)21.如图,在平面直角坐标系xOy中,已知抛物线的解析式是y1=x2,直线l的解析式是y2=-14,点F0,1 4,点P是在该抛物线上的动点,连接PF,过P作PN⊥l.(1)求证:PF=PN;(2)设点E-2,6,求PE+PF的最小值及此时点P的坐标.22.甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出,如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车,另外,公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.说明:①汽车数量为整数;②月利润=月租车费-月维护费;在两公司租出的汽车数量相等且都为x(单位:辆,0<x≤50)的条件下,甲的利润用y1表示(单位:元),乙的利润用y2(单位:元)表示,根据上述信息,解决下列问题:(1)分别表示出甲、乙的利润,什么情况下甲、乙的利润相同?(2)甲公司最多比乙公司利润多多少元?(3)甲公司热心公益事业,每租出1辆汽车捐出a元(a>0)给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且仅当两公司租出的汽车均为16辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.23.为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x,y轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD的读数为x,CD读数为y,抛物线的顶点为C.(1)(Ⅰ)列表:①②③④⑤⑥x023456y01 2.254 6.259(Ⅱ)描点:请将表格中的x,y描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y与x的关系式;(2)如图3所示,在平面直角坐标系中,抛物线y=a x-h2+k的顶点为C,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB,竖直跨度为CD,且AB=m,CD=n,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数y=a x-h2+k平移,使得顶点C与原点O重合,此时抛物线解析式为y=ax2.①此时点B 的坐标为;②将点B 坐标代入y=ax2中,解得a=;(用含m,n的式子表示)方案二:设C点坐标为h,k①此时点B的坐标为;②将点B坐标代入y=a x-h2+k中解得a=;(用含m,n的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy中有A,B两点,AB=4,且AB∥x轴,二次函数C1:y1=2x+h2+k和C2:y2=a x+h2+b都经过A,B两点,且C1和C2的顶点P,Q距线段AB的距离之和为10,求a的值.五、(本大题共2小题,每小题12分,共24分)24.中新社上海3月21日电(记者缪璐)21日在上海举行的2023年全国跳水冠军赛女子单人10米跳台决赛中,陈芋汐以416.25分的总分夺得冠军,全红婵位列第二,掌敏洁获得铜牌.在精彩的比赛过程中,全红婵选择了一个极具难度的270C(向后翻腾三周半抱膝).如图2所示,建立平面直角坐标系xOy.如果她从点A3,10起跳后的运动路线可以看作抛物线的一部分,从起跳到入水的过程中,她的竖直高度y(单位:米)与水平距离x(单位:米)近似满足函数关系式y=a x-h.2+k a<0(1)在平时训练完成一次跳水动作时,全红蝉的水平距离x与竖直高度y的几组数据如下:水平距离x/m03 3.54 4.5竖直高度y/m1010k10 6.25根据上述数据,直接写出k的值为,直接写出满足的函数关系式:;(2)比赛当天的某一次跳水中,全红婵的竖直高度y与水平距离x近似满足函数关系y=-5x2+40x-68,记她训练的入水点的水平距离为d1,比赛当天入水点的水平距离为d2,请通过计算比较d1与d2的大小;(3)在(2)的情况下,全红婵起跳后到达最高点B开始计时,若点B到水平面的距离为c,则她到水面的距离y与时间t之间近似满足y=-5t2+c,如果全红婵在达到最高点后需要1.6秒的时间才能完成极具难度的270C动作,请通过计算说明,她当天的比赛能否成功完成此动作?25.综合与实践问题提出某兴趣小组开展综合实践活动,如图1,在正方形ABCD中,E,F分别是AB,AD上一点,且AF=2AE.点M从点E出发,沿正方形ABCD的边顺时针运动;点N同时从点F出发,沿正方形ABCD的边逆时针运动.若两动点的运动速度相同,都为每秒1个单位长度,相遇时M,N两点都停止运动,设点M运动的时间为t秒,△AMN的面积为S,探究S与t的关系.初步感知根据运动的变化,绘制了如图2所示的图象,按不同的函数解析式,图象可分为四段,还有最后一段未画出.(1)AE的长为,AB的长为.(2)a的值为,S的最大值为.延伸探究(3)请求出图2中未画出的最后一段图象对应的函数解析式,并将图象补充完整.(4)求b的值,并求出当S>3时,t的取值范围.第二十二章二次函数(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米:当x=3时,y=18,那么当成本为3.2×105元时,边长为()A.1.6×103厘米B.4×102厘米C.0.4×103厘米D.2×103厘米【答案】B【分析】本题考查了待定系数法求函数解析式的运用,求出函数的解析式是解答本题的关键.设y=kx2,由待定系数法就可以求出解析式,把y=3.2×105代入函数解析式就可以求出结论.【详解】解:设y=kx2,∵当x=3时,y=18,∴9k=18,k=2,∴y=2x2,当成本为3.2×105元时,有2x2=3.2×105,x2=1.6×105,x=4×102.故选:B.2.如表中列出的是一个二次函数的自变量x与函数y的几组对应值,则下列关于这个二次函数的结论中,正确的是()x....-1034....y....0-5-8-5....A.图象的开口向下B.有最小值-8C.图象与x轴的一个交点是5,0D.图象的对称轴是x=3 2【答案】C【分析】本题考查了待定系数法求二次函数解析式,二次函数的图象和性质等知识点,学会根据表格中的信息求得函数的解析式是解题的关键.由表格中的几组数求得二次函数的解析式,然后通过函数的性质即可得出结果.【详解】解:设二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a≠0),由题意可知a-b+c=0c=-59a+3b+c=-8 ,解得a=1b=-4 c=-5 ,∴二次函数的解析式为y=x2-4x-5 =x-5x+1=x -2 2-9,∴函数的图象开口向上,顶点为2,-9 ,图象与x 轴的交点分别为-1,0 和5,0 ,∴图象的对称轴是x =2,函数有最小值-9,∴选项A 、B 、D 不符合题意,选项C 符合题意.故选:C .3.一次函数y =ax +b 和二次函数y =ax 2+bx 在同一平面直角坐标系中的大致图象可能是()A. B.C. D.【答案】B 【分析】本题考查抛物线和直线的性质,本题可先由一次函数y =ax +b 图象得到字母系数的正负,再与二次函数y =ax 2+bx 的图象相比是否一致.【详解】解:A 、由抛物线可知,a <0,x =-b 2a<0,得b <0,由直线可知,a >0,b >0,故本选项不符合题意;B 、由抛物线可知,a >0,x =-b 2a <0,得b >0,由直线可知,a >0,b >0,故本选项符合题意;C 、由抛物线可知,a <0,x =-b 2a <0,得b <0,由直线可知,a <0,b >0,故本选项不符合题意;D 、由抛物线可知,a >0,x =-b 2a>0,得b <0,由直线可知,a <0,b >0,故本选项不符合题意.故选:B4.坐标平面上有两个二次函数的图像,其顶点M 、N 皆在x 轴上,且有一水平线与两图像相交于A 、B 、C 、D 四点,各点位置如图所示,若AB =12,BC =4,CD =6,则MN 的长度是()A.8B.9C.10D.11【答案】B 【分析】本题考查了二次函数的图像与性质,线段长度的相关计算,熟练掌握以上知识点是解题的关键.由AB ,BC ,CD 的长度以及根据二次函数的对称性可以知道,M 和C ,N 和B ,C 和B 横坐标的差,从而推出M 和N 的横坐标之差,得到MN 的长度.【详解】由A、B、C、D四点在同一水平线,可以知道四点纵坐标相同∵AB=12,BC=4,CD=6,∴AC=AB+BC=16,BD=4+6=10∴x C-x M=AC2=8,x N-x B=BD2=5又∵x C-x B=BC=4∴MN=x N-x M=(x N-x B)+(x C-x M)-(x C-x B)=5+8-4=9.故选:B.5.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为1,n,且与x轴的一个交点在点3,0和4,0之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a c-n;④一元二次方程ax2+bx+ c=n-1有两个不相等的实数根;⑤若方程ax2+bx+c=0的两根分别为x1,x2,则x1+x2=2.其中正确结论的个数有()A.5个B.4个C.3个D.2个【答案】B【分析】本题主要考查了二次函数图象与其系数的关系,二次函数的性质等等,根据开口向下得到a<0,再根据顶点坐标结合对称轴公式得到b=-2a>0,即b+2a=0,则可判断②;由对称性可得当x=-1时,y=a-b+c>0,则可判断②;根据函数图象可知抛物线与直线y=n-1有两个交点,则可判断④;根据二次函数与一元二次方程之间的关系可判断④.【详解】解:∵抛物线开口向下,∴a<0,∵顶点坐标为1,n,∴抛物线对称轴为直线x=-b2a=1,∴b=-2a>0,即b+2a=0,∴3a+b=2a+b+a=a<0,②错误;∵当x=3时y>0,抛物线对称轴为直线x=1,∴当x=-1时,y=a-b+c>0,①正确;∵抛物线顶点纵坐标为n,∴4ac-b24a=n,∴b2=4ac-4an=4a c-n,③正确;由图象可得抛物线与直线y=n-1有两个交点,∴ax2+bx+c=n-1有两个不相等的实数根,④正确;∵抛物线对称轴为直线x=1,方程ax2+bx+c=0的两根分别为x1,x2,,∴x1+x22=1,∴x1+x2=2,⑤正确.故选:B .6.如图,在正方形ABCD 中,点B ,C 的坐标分别是(-2,1),(2,0),点D 在抛物线y =13x 2+bx 的图像上,则b 的值是()A.23B.13C.73D.43【答案】B【分析】本题考查二次函数与几何的综合应用,作BE ⊥x 轴,DF ⊥x 轴,证明△BEC ≌△CFD ,进而求出D 点坐标,代入解析式进行求解即可.【详解】解:如图所示,作BE ⊥x 轴,DF ⊥x 轴,则:∠BEO =∠CFD =90°,∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°,∴∠BCE =∠CDF =90°-∠DCF ,∴△BEC ≌△CFD ,∴CF =BE ,DF =CE ,∵点B ,C 的坐标分别是(-2,1),(2,0),∴BE =CF =1,OC =2,DF =CE =2+2=4,∴OF =3,∴D 3,4 ,∵点D 在抛物线y =13x 2+bx 的图像上,∴4=13×32+3b ,∴b =13;故选B .7.如图,排球运动员站在点O 处练习发球,球从点O 正上方2m 的A 处发出,其运行的高度y (m )与水平距离x (m )满足关系式y =-160x -6 2+2.6.已知球网与点O 的水平距离为9m ,高度为2.43m ,球场的边界距点O 的水平距离为18m .下列判断正确的是()A.球运行的最大高度是2.43mB.球不会过球网C.球会过球网且不会出界D.球会过球网且会出界【答案】D【分析】本题主要考查了二次函数的实际应用.根据顶点式的特点可知球运行的最大高度为2.6m,由此即可判断A;求出当x=9时,y的值,再与2.43m进行比较即可判断B;求出当x=18时,y的值,再与0比较即可判断C、D.【详解】解:∵抛物线解析式为y=-160x-62+2.6,∴球运行的最大高度为2.6m,故A说法错误,不符合题意;在y=-160x-62+2.6中,当x=9时,y=-1609-62+2.6=2.45>2.43,∴球会过球网,故B说法错误,不符合题意;在y=-160x-62+2.6中,当x=18时,则y=-16018-62+2.6=0.2>0,∴球会过球网且会出界,故C说法错误,不符合题意,D说法正确,符合题意;故选D.8.如图,抛物线G:y1=a(x+1)2+2与抛物线H:y2=-(x-2)2-1交于点B(1,-2),且分别与y轴交于点D,E.过点B作x轴的平行线,交抛物线于点A,C.则以下结论:①抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;②无论x取何值,y2总是负数;③当-3<x<1时,随着x的增大,y1-y2的值先增大后减小;④四边形AECD为正方形.其中正确的个数是()A.1B.2C.3D.4【答案】C【分析】①先求抛物线G的解析式,再根据抛物线G,H的顶点坐标,判断平移方向和平移距离即可判断②;②根据非负数的相反数或者直接由图像判断即可;③先根据题意得出-3<x<1时,观察图像可知y1 >y2,然后计算y1-y2,进而根据一次函数的性质即可判断;④分别计算出A,E,C,D的坐标,根据正方形的判定定理进行判断即可.【详解】①∵抛物线G:y1=a(x+1)2+2与抛物线H:y2=-(x-2)2-1交于点B1,-2,∴x=1,y=-2,即-2=a(1+1)2+2,解得a=-1,∴抛物线G:y1=-x+12+2,∴抛物线G的顶点(-1,2),抛物线H的顶点为(2,-1),将(-1,2)向右平移3个单位,再向下平移3个单位即为(2,-1),即抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到,故①正确;②∵(x-2)2≥0,∴-(x-2)2≤0,∴y2=-x-22-1≤-1,∴无论x取何值,y2总是负数,故②正确;③∵B1,-2,∵将y=-2代入抛物线G:y1=-x+12+2,解得x1=-3,x2=1,∴A(-3,-2),将y=-2代入抛物线H:y2=-x-22-1,解得x1=3,x2=1,∴C(3,-2),∵-3<x<1,从图像可知抛物线G的图像在抛物线H图像的上方,∴y1>y2∵y1-y2=-(x+1)2+2-[-(x-2)2-1]=-6x+6∴当-3<x<1,随着x的增大,y1-y2的值减小,故③不正确;④设AC与y轴交于点F,∵B1,-2,∴F(0,-2),由③可知∴A(-3,-2),C(3,-2),∴AF=CF,AC=6,当x=0时,y1=1,y2=-5,即D(0,1),E(0,-5),∴DE=6,DF=EF=3,∴四边形AECD是平行四边形,∵AC=DE,AC⊥DE,∴四边形AECD是正方形,故④正确,综上所述,正确的有①②④,故选:C .【点睛】本题考查了二次函数图像与性质,一次函数的性质,平移,正方形的判定定理,解题的关键是综合运用以上知识.9.设二次函数y =a x +m x +m -k (a <0,m ,k 是实数),则()A.当k =2时,函数y 的最大值为-4aB.当k =2时,函数y 的最大值为-2aC.当k =4时,函数y 的最大值为-4aD.当k =4时,函数y 的最大值为-2a【答案】C【分析】此题考查了二次函数的图象和性质、求二次函数的最值,求出二次函数y =a x +m (x +m -k )与x 轴的交点坐标是-m ,0 ,-m +k ,0 .得到二次函数的对称轴是直线x =-m -m +k 2=-2m +k 2.根据开口方向进一步求出最值即可.【详解】解:由题意,令y =0,∴a x +m (x +m -k )=0,∴x 1=-m ,x 2=-m +k .∴二次函数y =a x +m (x +m -k )与x 轴的交点坐标是-m ,0 ,-m +k ,0 .∴二次函数的对称轴是:直线x =-m -m +k 2=-2m +k 2.∵a <0,∴y 有最大值.当x =-2m +k 2,y 最大,即y =a -2m +k 2+m -2m +k 2+m -k =-k 24a 当k =4时,函数y 的最大值为-4a ;当k =2时,函数y 的最大值为-a .综上,C 选项正确.故选:C .10.如图,已知点A -1,0 ,点B 2,3 .若抛物线y =ax 2-x +2(a 为常数,a ≠0)与线段AB 有两个不同的公共点,则a 的取值范围是()A.a ≥3B.a ≤-3或34≤a <1C.-3<a <1或a ≥3D.34≤a <1【答案】B【分析】本题考查了二次函数和一次函数的综合问题,先求出直线AB 的解析式,令x +1=ax 2-x +2,根据有两个交点求出a 的取值范围,再分a >0和a <0两种情况讨论即可得到答案;【详解】解:设AB 所在直线为y =kx +b ,∵A -1,0 ,B 2,3 ,∴-k +b =02k +b =3,解得:k =1b =1 ,∴y =x +1,当x +1=ax 2-x +2时,∵二次函数与线段AB 有两个不同的公共点,∴(-2)2-4a ×1>0,解得:a <1,①当0<a <1时,此时函数的开口向上,∴a ×(-1)2-(-1)+2≥0,a ×22-2+2≥3,解得:34≤a <1,②当a <0时此时函数的开口向下,∴a ×(-1)2-(-1)+2≤0,a ×22-2+2≤3,解得:a ≤-3,综上所述得:34≤a <1,a ≤-3,故选:B .二、填空题(本大题共6小题,每小题3分,共18分)11.标准大气压下,质量一定的水的体积V cm 3 与温度t °C 之间的关系满足二次函数V =18t 2+104t >0 ,则当温度为4°C 时,水的体积为cm 3.【答案】106【分析】本题考查二次函数的应用,细心计算是解题的关键.将t =4代入解析式求值即可.【详解】解:∵V =18t 2+104t >0 ,当t =4°C 时,V =18×42+104=106cm 3 ,∴水的体积为106cm 3.故答案为:106.12.已知二次函数y =x 2-2x +1的图象向左平移两个单位得到抛物线C ,点P 2,y 1 ,Q 3,y 2 在抛物线C 上,则y 1y 2(填“>”或“<”);【答案】<【分析】本题主要考查了二次函数图象的平移以及二次函数的性质,由平移的规律可得出抛物线C 的解析式为y =x +1 2,再利用二次函数图象的性质可得出答案.【详解】解:y =x 2-2x +1=x -1 2,∵二次函数y =x 2-2x +1的图象向左平移两个单位得到抛物线C ,∴抛物线C 的解析式为y =x +1 2,∴抛物线开口向上,对称轴为x =-1,∴当x >-1时,y 随x 的增大而增大,∵2<3,∴y 1<y 2,故答案为:<.13.在单位为1的正方形网格中,存在一平面直角坐标系.二次函数y 1=a 1x 2+b 1x +c 1,y 2=a 2x 2+b 2x +c 2的图象位于如图位置上,若它们的图象位置关系具有对称性,请描述它们的对称关系:,求出y 2与直线y =32x +7的交点坐标为.【答案】关于点-32,0 成中心对称-1,112 ,8,19 【分析】本题主要考查了二次函数的图像和性质,以及二次函数与一次函数的交点等知识.(1)根据抛物线图像可求出y 1顶点坐标为-5,-1 ,开口向下;抛物线y 2顶点坐标为2,1 ,开口向上,根据点坐标与二次函数的图像可得出答案.(2)用待定系数法求出抛物线y 2的函数解析式,再令32x +7=12x -2 2+1,进一步求解即可求出y 2与直线y =32x +7的交点坐标.【详解】解:由图象可得抛物线y 1顶点坐标为-5,-1 ,开口向下;抛物线y 2顶点坐标为2,1 ,开口向上,∵点-5,-1 与点2,1 关于点-32,0对称,∴抛物线y 1与抛物线y 2关于点-32,0成中心对称.设抛物线y 2解析式为y 2=a x -2 2+1,由图象可得抛物线经过(4,3),将(4,3)代入y 2=a x -2 2+1得3=4a +1,解得a =12,∴y 2=12x -2 2+1,令32x +7=12x -2 2+1,解得x 1=-1,x 2=8,将x 1=-1代入y =32x +7得y =112,把x 2=8代入y =32x +7得y =19,∴y 2与直线y =32x +7的交点坐标为-1,112 ,8,19 ,故答案为:-1,112 ,8,19 .14.如图,将抛物线y =x 2-2x -3在x 轴下方部分沿x 轴翻折,其余部分保持不变,得到图像C 1,当直线y =x +b 与图像C 1恰有两个公共点时,b 的取值范围是.【答案】b >134或-3<b <1【分析】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程,也考查了抛物线与直线的交点问题.解决本题的关键是利用数形结合的思想的运用.通过解方程x 2-2x -3=0得到A 、B 的坐标,利用二次函数的性质得到顶点的坐标,可写出图象y =x -1 2-4-1<x <3 沿x 轴翻折所得图象的解析式为y =-x -1 2+4=-x 2+2x +3-1<x <3 ,然后求出直线y =x +b 与y =-x 2+2x +3-1<x <3 相切b 的值,直线y =x +b 过A 和过B 点所对应的b 的值,再利用图象可判断直线y =x +b 与此图象有且只有两个公共点时b 的取值范围.【详解】解:当y =0时,x 2-2x -3=0,解得x 1=-1,x 2=3,则A -1,0 ,B 3,0 ,y =x 2-2x -3=x -1 2-4,则顶点坐标为1,-4 ,把图象y =x -1 2-4-1<x <3 沿x 轴翻折所得图象的解析式为y =-x -1 2+4=-x 2+2x +3-1<x <3 ,如图,当直线y =x +b 与y =-x 2+2x +3-1<x <3 相切时,直线与新函数图象有三个交点,此时x +b =-x 2+2x +3有两个相等的实数解,方程整理得x 2-x +b -3=0,Δ=(-1)2-4(b -3)=0,解得b =134,∴当b >134时,直线y =x +b 与图像C 1恰有两个公共点,当直线y =x +b 过A -1,0 时,-1+b =0,解得b =1,当直线y =x +b 过B 3,0 时,3+b =0,解得b =-3,所以,当-3<b <1时,直线y =x +b 与此图象有且只有两个公共点.综上可知,当直线y =x +b 与图像C 1恰有两个公共点时,b 的取值范围是b >134或-3<b <1.故答案为:b >134或-3<b <1.15.九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB ⊥CD 于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得AE =6.6m ,OE =1.4m ,OB =6m ,OC =5m ,OD =3m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是cm 2.【答案】46.4【分析】本题考查了二次函数的应用.要利用围墙和围栏围成一个面积最大的封闭的矩形菜地,那就必须尽量使用原来的围墙,观察图形,利用AO 和OC 才能使该矩形菜地面积最大,分情况,利用矩形的面积公式列出二次函数,利用二次函数的性质求解即可.【详解】解:要使该矩形菜地面积最大,则要利用AO 和OC 构成矩形,设矩形在射线OA 上的一段长为xm ,矩形菜地面积为S ,当x ≤8时,如图,则在射线OC 上的长为16-x -1.4+52=19.6-x 2则S =x ⋅19.6-x 2=-12x 2+9.8x =-12x -9.8 2+48.02,∵-12<0,∴当x ≤9.8时,S 随x 的增大而增大,∴当x =8时,S 的最大值为46.4;当x >8时,如图,则矩形菜园的总长为16+6.6+5 =27.6m ,则在射线OC 上的长为27.6-2x 2则S =x ⋅13.8-x =-x 2+13.8x =-x -6.9 2+47.61,∵-1<0,∴当x <6.9时,S 随x 的增大而减少,∴当x >8时,S 的值均小于46.4;综上,矩形菜地的最大面积是46.4cm 2;故答案为:46.4.16.如图,二次函数y =33x 2-433x +3的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C .现有一长为3的线段DE 在直线y =32上移动,且在移动过程中,线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等.若线段DE 左端点D 的橫坐标为t ,则t 的取值范围是.【答案】-32≤t ≤2【分析】本题考查了二次函数的性质,两点距离公式,轴对称的性质,三角形三边关系,先求出点A ,点B ,点C 坐标,分三种情况讨论,由两点间距离公式和三角形三边关系可求解.【详解】解:∵二次函数y =33x 2-433x +3的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C 当x =0时,y =3,当y =0时,33x 2-433x +3=0,解得:x 1=1,x 2=3∴A 1,0 ,B 3,0 ,C 0,3 ,对称轴为直线x =2如图所示,∵线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等∴P A =PB 或PB =PC 或PC =P A ,∵段DE 在直线y =32上移动,∴点P 的纵坐标为32,设P x ,32①若PC =P A ,∴x 2+3-322=x -1 2+32 2解得:x =12∴P 12,32∴P A =PC =1,PC =7∵P A +PB =2<7∴不能构成三角形,舍去;②若PB =PC ,∴x 2+3-322=x -3 2+32 2解得:x =32∴P 32,32∵PB =PC =3,P A =1∴能构成三角形,③若P A =PB∴x-12+322=x-32+322解得:x=2∴P A=PB=72,PC=194∵P A+PB>PC,∴P A,PB,PC能组成三角形;∵点P在长为3的线段DE上,∴线段DE左端点D的横坐标为t的取值范围为32-3≤t≤2,即-32≤t≤2故答案为:-32≤t≤2.三、(本大题共4小题,每小题6分,共24分)17.已知二次函数的图像以A-1,4为顶点,且过点B2,-5.(1)求该函数图像与坐标轴的交点坐标;(2)将函数图像向左平移几个单位,该函数图像恰好经过原点.【答案】(1)与y轴的交点坐标为(0,3);与x轴的交点坐标为(-3,0),(1,0)(2)向左平移1个单位,该函数图象恰好经过原点【分析】本题考查了二次函数的图象和性质,待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.(1)设顶点式y=a(x+1)2+4,然后把(2,-5)代入求出a的值即可得出二次函数解析式;通过解方程-(x+1)2+4=0可得抛物线与x轴的交点坐标,通过计算自变量为0时的函数值可得到抛物线与y轴的交点坐标;(2)由于抛物线与x轴的交点坐标为(-3,0),(1,0),把点(1,0)向左平移1个单位到原点,所以把抛物线解析式y=-(x+1)2+4向左平移1个单位,该函数图象恰好经过原点.【详解】(1)解:设抛物线解析式为y=a(x+1)2+4,把(2,-5)代入得9a+4=-5,解得a=-1,所以抛物线解析式为y=-(x+1)2+4;当x=0时,y=-(x+1)2+4=-1+4=3,则抛物线与y轴的交点坐标为(0,3);当y=0时,-(x+1)2+4=0,解得x1=1,x2=-3,则抛物线与x轴的交点坐标为(-3,0),(1,0);(2)解:因为抛物线与x轴的交点坐标为(-3,0),(1,0),所以把抛物线解析式y=-(x+1)2+4向左平移1个单位,该函数图象恰好经过原点.18.飞机降落后滑行的距离S(单位:m)关于滑行时间t(单位:s)的函数解析式是S=at²+bt,当t=5时,S=262.5;当t=10时,S=450.。

第一章 二次函数 单元测试卷(含答案)2024-2025学年浙教版数学九年级上册

第一章 二次函数 单元测试卷(含答案)2024-2025学年浙教版数学九年级上册

二次函数单元测试卷一、选择题(每题3分,共30分)1.下列各式中,y是x的二次函数的是( )A.y=1x2B.y=x2+1x+1C.y=2x2−1D.y=x2−12.一个二次函数图象的顶点坐标是(2,4),且过另一点(0,−4),则这个二次函数的解析式为( )A.y=−2(x+2)2+4B.y=2(x+2)2−4C.y=−2(x−2)2+4D.y=2(x−2)2−43.已知A(−1,y1),B(1,y2),C(3,y3)三点都在抛物线y=x2−3x+m上,则y1、y2、y3的大小关系为( )A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y2<y14.将抛物线y=3x2+2先向左平移2个单位长度,再向下平移3个单位长度,则得到的抛物线的解析式为( )A.y=3(x−2)2−1B.y=3(x−2)2+5C.y=3(x+2)2−1D.y=3(x+2)2+55.在同一直角坐标系中,函数y=ax2+b与y=ax+b(a,b都不为0)的图象的相对位置可以是( )A.B.C.D.6.若m<n<0,且关于x的方程a x2−2ax+3−m=0(a<0)的解为x1,x2(x1<x2),关于x的方程a x2−2ax+3−n=0(a<0)的解为x3,x4(x3<x4).则下列结论正确的是( )A.x3<x1<x2<x4B.x1<x3<x4<x2C.x1<x2<x3<x4D.x3<x4<x1<x27.已知二次函数y=a x2+bx+c满足以下三个条件:①b2a>4c,②a−b+c<0,③b<c,则它的图象可能是( )A.B.C.D.8.小明在解二次函数y=a x2+bx+c时,只抄对了a=1,b=4,求得图象过点(−1,0).他核对时,发现所抄的c比原来的c值大2.则抛物线与x轴交点的情况是( )A.只有一个交点B.有两个交点C.没有交点D.不确定9.已知二次函数y=x2−bx+1,当−32≤x≤12时,函数y有最小值12,则b的值为( )A.−2或32B.−116或32C.±2D.−2或−11610.如图,把二次函数y=a x2+bx+c(a≠0)的图象在x轴上方的部分沿着x轴翻折,得到的新函数叫做y=a x2+bx+c(a≠0)的“陷阱”函数.小明同学画出了y=a x2+bx+c(a≠0)的“陷阱”函数的图象,如图所示并写出了关于该函数的4个结论,其中正确结论的个数为( )①图象具有对称性,对称轴是直线x=1;②由图象得a=1,b=−2,c=−3;③该“陷阱”函数与y轴交点坐标为(0,−3);④y=−a x2−bx−c(a≠0)的“陷阱”函数与y=a x2+bx+c(a≠0)的“陷阱”函数的图象是完全相同的.A.1B.2C.3D.4二、填空题(每题4分,共24分)11.若y=(m2+m)x m2+1−x+3是关于x的二次函数,则m= .12.如图所示,某大桥有一段抛物线形的拱梁,抛物线的解析式为y=ax2+bx.小强骑自行车从拱梁一端沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10 s时和26 s时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需 s. 13.二次函数y=ax2+bx+c的图象与x轴交于A,B两点,顶点为C,其中点A,C坐标如图所示,则一元二次方程ax2+bx+c=0的根是 第12题图第13题图第16题图14.若把二次函数y=x2−2x−2化为y=(x−ℎ)2+k的形式,其中ℎ,k为常数,则ℎ+k= .15.y关于x的二次函数y=a x2+a2,在−1≤x≤1时有最大值6,则2a= .16.如图,在平面直角坐标系中,抛物线y=1x2−3x与x轴的正半轴交于点E.矩形ABCD2的边AB在线段OE上,点C、D在抛物线上,则矩形ABCD周长的最大值为 .三、综合题(17-20、22每题6分,21、23每题8分,共46分)17.已知点M为二次函数y=−(x−m)2+4m+1图象的顶点,直线y=kx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由;(2)如图,若二次函数图象也经过点A,B,且kx+5>−(x−m)2+4m+1,根据图象,直接写出x的取值范围.18.如图,二次函数y=a x2+2ax+c的图象与x轴交于A,B两点(点A在点B的左侧),与y轴正半轴交于点C,且OA=OC=3.(1)求二次函数及直线AC的解析式.(2)P是抛物线上一点,且在x轴上方,若∠ABP=45°,求点P的坐标.19.为了振兴乡村经济,增加村民收入,某村委会干部带领村民把一片坡地改造后种植了优质葡萄,今年正式上市销售,并在网上直播推销优质葡萄.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为y={mx−76m(1≤x<20,x为正整数),n(20≤x≤30,x为正整数),且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售葡萄的成本是18元/千克,每天的利润是W元.(1)m= ,n= ;(2)销售优质葡萄第几天时,当天的利润最大?最大利润是多少?20.如图,△ABC中,AC=BC,∠ACB=90°,A(−2,0),C(6,0),反比例函数y=kx (k≠0,x>0)的图象与AB交于点D(m,4),与BC交于点E.(1)求m,k的值;(2)点P为反比例函数y=kx(k≠0,x>0)图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作PM∥AB,交y轴于点M,过点P作PN∥x轴,交BC于点N,连接MN,求△PMN面积的最大值,并求出此时点P的坐标.21.如图,已知二次函数y=a x2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=a x2+2x+c的表达式;(2)连接PO,PC,并把ΔPOC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.22.根据以下素材,探索完成任务.如何设计跳长绳方案素材1图1是集体跳长绳比赛,比赛时,各队跳绳10人,摇绳2人,共计12人.图2是绳甩到最高处时的示意图,可以近似的看作一条抛物线,正在甩绳的甲、乙两位队员拿绳的手间距6米,到地面的距离均为1米,绳子最高点距离地面2.5米.素材2某队跳绳成员有6名男生和4名女生,男生身高1.70米至1.80米,女生身高1.66米至1.68米.跳长绳比赛时,可以采用一路纵队或两路纵队并排的方式安排队员位置,但为了保证安全,人与人之间距离至少0.5米.问题解决任务1确定长绳形状在图2中建立合适的直角坐标系,并求出抛物线的函数表达式.任务2探究站队方式当该队以一路纵队的方式跳绳时,绳子能否顺利的甩过所有队员的头顶?任务3拟定位置方案为了更顺利的完成跳绳,现按中间高两边低的方式居中安排站位.请在你所建立的坐标系中,求出左边第一位跳绳队员横坐标的最大取值范围.23.如图,对称轴为直线x=−1的抛物线y=a x2+bx+c(a≠0)与x轴相交于A,B两点,其中点A的坐标为(−3,0),且点(2,5)在抛物线y=a x2+bx+c上.(1)求抛物线的解析式;(2)点C为抛物线与y轴的交点;①点P在抛物线上,且S△POC=4S△BOC,求点P点坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.答案解析部分1.【答案】C2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】B9.【答案】A10.【答案】C11.【答案】112.【答案】3613.【答案】x1=-2,x2=114.【答案】-215.【答案】2或−616.【答案】1317.【答案】(1)解:点M在直线y=4x+1上,∵y=−(x−m)2+4m+1,∴点M坐标为(m,4m+1),把x=m代入y=4x+1上得y=4m+1,∴点M(m,4m+1)在直线y=4x+1上;(2)解:把x=0代入y=kx+5,可得y=5,∴点B坐标为(0,5),把(0,5)代入y=−(x−m)2+4m+1,可得5=−m2+4m+1,解得m1=m2=2,∴y=−(x−2)2+9,把y=0代入y=−(x−2)2+9,可得0=−(x−2)2+9,解得x1=−1,x2=5,∵点A在x轴正半轴上,∴点A坐标为(5,0),∴x<0或x>5时,kx+5>−(x−m)2+4m+1.18.【答案】(1)解:∵OA=OC=3,∴点A(−3,0),C(0,3),∴{9a−6a+c=0c=3,解得{a=−1c=3,∴二次函数的解析式为y=−x2−2x+3,设直线AC的解析式为y=kx+b(k≠0),将点A(−3,0),C(0,3)代入,得{−3k+b=0b=3,解得{k=1b=3,∴直线AC的解析式为y=x+3;(2)解:如图,过点B作BP⊥AC交抛物线于点P,∵OA=OC,OA⊥OC,∴∠CAB=45°,∴∠ABP=45°,∴直线PB可以看作由直线y=-x向右平移得到,∴设PB的解析式为y=−x+m,∵二次函数的表达式为y=−x2−2x+3,令y=0,即−x2−2x+3=0,解得x1=−3,x2=1,∴点B(1,0),代入y=−x+m,得m=1,∴PB的解析式为y=−x+1,联立得{y=−x2−2x+3y=−x+1,解得{x=1y=0或{x=−2 y=3,∴点P的坐标为(−2,3).19.【答案】(1)−12;25(2)解:由(1)知第x天的销售量为20+4(x−1)=(4x+16)千克.当1≤x<20时,W=(4x+16)(−12x+38−18)=−2x2+72x+320=−2(x−18)2+968,∴当x=18时,W取得最大值,最大值为968.当20≤x≤30时,W=(4x+16)(25−18)=28x+112.∵a=28>0,∴W随x的增大而增大,∴W最大=28×30+112=952.∵968>952,∴当x=18时,W最大=968.答:销售优质葡萄第18天时,当天的利润最大,最大利润是968元.20.【答案】(1)解:∵A(−2,0),C(6,0),∴AC=8.又∵AC=BC,∴BC=8.∵∠ACB=90°,∴点B(6,8).设直线AB的函数表达式为y=ax+b,将A(−2,0),B(6,8)代入y=ax+b,得{a=1,b=2.∴直线AB的函数表达式为y=x+2.将点D(m,4)代入y=x+2,得m=2.∴D(2,4).将D(2,4)代入y=kx,得k=8.(2)解:延长NP交y轴于点Q,交AB于点L.∵AC=BC,∠BCA=90°,∴∠BAC=45°.∵PN∥x轴,∴∠BLN=∠BAC=45°,∠NQM=90°.∵AB∥MP,∴∠MPL=∠BLP=45°,∴∠QMP=∠QPM=45°,∴QM=QP.设点P 的坐标为(t ,8t),(2<t <6),则PQ =t ,PN =6−t .∴MQ =PQ =t .∴S △PMN =12⋅PN ⋅MQ =12⋅(6−t)⋅t =−12(t−3)2+92.∴当t =3时,S △PMN 有最大值92,此时P(3,83).21.【答案】(1)解:将点B 和点C 的坐标代入 y =a x 2+2x +c ,得 {c =39a +6+c =0 ,解得 a =−1 , c =3 .∴ 该二次函数的表达式为 y =−x 2+2x +3 .(2)解:若四边形POP′C 是菱形,则点P 在线段CO 的垂直平分线上;如图,连接PP′,则PE ⊥CO ,垂足为E ,∵ C (0,3),∴ E(0, 32 ),∴ 点P 的纵坐标等于 32 .∴−x 2+2x +3=32 ,解得 x 1=2+102, x 2=2−102(不合题意,舍去),∴ 点P 的坐标为( 2+102, 32 ).(3)解:过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (m , −m 2+2m +3 ),设直线BC 的表达式为 y =kx +3 ,则 3k +3=0 , 解得 k =−1 .∴直线BC 的表达式为 y =−x +3 .∴Q 点的坐标为(m , −m +3 ),∴QP =−m 2+3m .当 −x 2+2x +3=0 ,解得 x 1=−1,x 2=3 ,∴ AO=1,AB=4,∴ S 四边形ABPC =S △ABC +S △CPQ +S △BPQ= 12AB ⋅OC +12QP ⋅OF +12QP ⋅FB = 12×4×3+12(−m 2+3m)×3当 m =32时,四边形ABPC 的面积最大.此时P 点的坐标为 (32,154) ,四边形ABPC 的面积的最大值为 758.22.【答案】解:任务一:以左边摇绳人与地面的交点为原点,地面所在直线为 x 轴,建立直角坐标系,如图:由已知可得, (0,1) , (6,1) 在抛物线上,且抛物线顶点的纵坐标为 2.5 ,设抛物线解析式为 y =a x 2+bx +c ,∴{c =136a +6b +c =14ac−b 24a=52 ,解得 {a =−16b =1c =1,∴抛物线的函数解析式为 y =−16x 2+x +1 ;任务二:∵y =−16x 2+x +1=−16(x−3)2+52,∴抛物线的对称轴为直线 x =3 ,10 名同学,以直线 x =3 为对称轴,分布在对称轴两侧,男同学站中间,女同学站两边,对称轴左侧的 3 位男同学所在位置横坐标分布是 3−0.5×12=114 , 114−0.5=94和 94−0.5=74,当 x =74 时, y =−16×(74−3)2+52=21596≈2.24>1.8 ,∴绳子能顺利的甩过男队员的头顶,同理当 x =34 时, y =−16×(34−3)2+52=5332≈1.656<1.66 ,∴绳子不能顺利的甩过女队员的头顶;∴绳子不能顺利的甩过所有队员的头顶;任务三:两路并排,一排 5 人,当 y =1.66 时, −16x 2+x +1=1.66 ,解得 x =3+3145 或 x =3−3145,但第一位跳绳队员横坐标需不大于 2 (否则第二、三位队员的间距不够 0.5 米)∴3−3145<x ≤2 .23.【答案】(1)解:∵抛物线的对称轴为直线x =−1,又∵点A(−3,0)与(2,5)在抛物线上,∴{9a−3b +c =04a +2b +c =5−b 2a=−1,解得{a =1b =2c =−3,∴抛物线的解析式为y =x 2+2x−3;(2)解:①由(1)知,二次函数的解析式为y =x 2+2x−3,∴抛物线与y 轴的交点C 的坐标为(0,−3),与x 轴的另一交点为B(1,0),则OC =3,OB =1,设P 点坐标为(x ,x 2+2x−3),∵S △POC =4S △BOC ,∴12×3×|x|=4×12×3×1,∴|x|=4,则x =±4,当x =4时,x 2+2x−3=16+8−3=21,当x =−4时,x 2+2x−3=16−8−3=5,∴点P 的坐标为(4,21)或(−4,5);②如图,设直线AC 的解析式为y =kx +t ,将A(−3,0),C(0,−3)代入得{−3k +t =0t =−3,解得{k =−1t =−3,∴直线AC 的解析式为y =−x−3,设Q 点坐标为(x ,−x−3),−3≤x ≤0,则D 点坐标为(x ,x 2+2x−3),∴QD =(−x−3)−(x 2+2x−3)=−x 2−3x =−(x +32)2+94,∴当x =−32时,线段QD 的长度有最大值94.。

二次函数单元测试题及答案

二次函数单元测试题及答案

二次函数单元测试题及答案一、选择题1. 二次函数y = ax^2 + bx + c中,当a的值变为原来的2倍时,函数图像如何变化?A. 向上平移B. 向下平移C. 向左平移D. 向右平移答案:B2. 下列哪个选项是二次函数的标准形式?A. y = x^2 + 2x + 1B. y = 2x^2 - 3x + 4C. y = 3x + 4D. y = x - 2答案:B3. 若二次函数y = -2x^2 + 3x + 1的顶点坐标为(1, 2),则下列哪个选项是正确的?A. a = -2, b = 3, c = 1B. a = 2, b = -3, c = -1C. a = -2, b = -3, c = -1D. a = 2, b = 3, c = 1答案:A4. 二次函数y = 3x^2 - 6x + 9的最小值是多少?A. 0B. 3C. 9D. 无法确定答案:C5. 如果二次函数y = x^2 + 4x + 4的图像与x轴相交于两点A和B,那么线段AB的长度是多少?A. 2B. 4C. 6D. 8答案:C二、填空题6. 已知二次函数y = 2x^2 - 5x + 3,其顶点坐标为__________。

答案:(1, -1)7. 函数y = -x^2 + 4x - 3的最大值是__________。

答案:18. 若二次函数y = 3x^2 - 2x - 5的图像关于y轴对称,则新的函数表达式为y = __________。

答案:y = 3x^2 + 2x - 5三、解答题9. 已知二次函数y = -2x^2 + 6x + 3,求该函数在x = -1时的函数值。

答案:当x = -1时,y = -2*(-1)^2 + 6*(-1) + 3 = -2 - 6 + 3 =-5。

10. 给定二次函数y = x^2 - 6x + 9,求该函数的对称轴方程。

答案:对称轴为x = -b/(2a) = -(-6)/(2*1) = 3。

二次函数单元测试题及答案

二次函数单元测试题及答案

二次函数单元测试题一、选择题(本题共计7 小题,每题3 分,共计21分,)1. 下列函数中是二次函数的是()+x2A.y=ax2+bx+cB.y=3x2+1C.y=2(x+1)2−2x2D.y=1x2. 已知二次函数的图象如右图,则下列结论中,正确的结论有()①a+b+c>0②a−b+c<0③abc<0④b=2a⑤b>0.A.5个B.4个C.3个D.2个3. 若正方形的边长为6,边长增加x,面积增加y,则y关于x的函数解析式为()A.y=(x+6)2B.y=x2+62C.y=x2+6xD.y=x2+12x4. 已知二次函数y=a(x+1)2−b(a≠0)有最小值1,则a,b的大小关系为()A.a>bB.a<bC.a=bD.不能确定5. 二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0, 1)和(−1, 0).下列结论:①ab<0;②b2>4ac;③0<b<1;④当x<−1时,y< 0.其中正确结论的个数是()A.1B.2C.3D.46. 设函数y=a(x−ℎ)2+k(a,ℎ,k是实数,a≠0),当x=1时,y=1;当x=8时,y =8,()A.若ℎ=4,则a<0B.若ℎ=5,则a>0C.若ℎ=6,则a<0D.若ℎ=7,则a>07. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①abc> 0;②b2−4ac<0;③4a−2b+c<0;④b=−2a.则其中结论正确的是()A.①③B.③④C.②③D.①④二、填空题(本题共计10 小题,每题3 分,共计30分,)8. 抛物线y=x2+x+2上三点(−2, a)、(−1, b),(3, c),则a、b、c的大小关系是________.9. 将函数y=−12(x−1)2+5图象向________平移________个单位可得函数y=−12(x+1)2+5的图象.10. 抛物线y=−3x2+8向右平移5个单位的抛物线的函数关系式是________.11. 已知二次函数y=x2,在−1≤x≤3内,函数的最小值为________.12. 不等式x2+px>4x+p−3对于一切0≤p≤4均成立,则实数x的取值范围是________.13. 已知抛物线y=x2−kx−8经过点P(2, −8),则k=________,这条抛物线的顶点坐标是________.14. 用配方法将抛物线y=x2+2√3x+1化成y=(x+ℎ)2+k的形式是________.15. 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为________米.16. 在二次函数y=ax2+bx+c的图象如图所示,下列说法中:①b2−4ac<0;>0;③abc>0;④a−b−c>0,说法正确的是________(填序②−b2a号).17. 如图,在平面直角坐标系中,抛物线y=−x2−4x+1与y轴交于点A,过点A平行于x轴的直线交抛物线y=x2于点B、C两点,点P在抛物线y=−x2−4x+1上且在x轴的上方,连接PB、PC,则△PBC面积的最大值是________.三、解答题(本题共计6 小题,共计60分,)18. 已知抛物线y=x2−2x−3.(1)直接写出抛物线的开口方向、对称轴和顶点坐标;(2)若抛物线与x轴的两个交点为A、B,与y轴的一个交点为C,画草图,求△ABC的面积.19. 利用二次函数y=12x2+x+2的图象和性质,求方程−12x2+x+2=0在3和4之间的根的近似值.(结果精确到0.1)20. 已知二次函数y=x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(1, 0),与y轴的交点坐标为(0, −3).(1)求出b、c的值,并写出此二次函数的解析式;(2)根据图象,直接写出函数值y为正数时,自变量x的取值范围.21. 如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=−112x2+23x+53.则他将铅球推出的距离是10m.22. 抛物线y=−x2+2x+3的顶点为D,它与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求顶点D的坐标;(2)求直线BC的解析式;(3)求△BCD的面积;(4)当点P在直线BC上方的抛物线上运动时,△PBC的面积是否存在最大值?若存在,请求出这个最大值,并且写出此时点P的坐标;若不存在,请说明理由.23. 已知如图,在平面直角坐标系xOy中,点A,B,C分别为坐标轴上的三个点,且OA= 1,OB=3,OC=4.(1)求经过A,B,C三点的抛物线的解析式;(2)在平面直角坐标系xOy中是否存在一点P,使得以点A,B,C,P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点M为该抛物线上一动点,在(2)的条件下,请求出使|PM−AM|最大时点M的坐标,并直接写出|PM−AM|的最大值.参考答案一、选择题(本题共计7 小题,每题 3 分,共计21分)1.【答案】B【考点】二次函数的定义【解答】解:A、y=ax2+bx+c,其中a≠0,故本选项错误;B、y=3x2+1,故本选项正确;C、y=2(x+1)2−2x2,整理后不含二次项,故本选项错误;+x2,不是整式,故本选项错误;D、y=1x故选B.2.【答案】B【考点】二次函数图象与系数的关系【解答】解:根据图象,当x=1时,y=a+b+c>0,当x=−1时,y=a−b+c<0,可知①②正确;>0,且抛物线开口向下,a<根据图象与y轴的交点位置可知c>0,根据对称轴x=−b2a0,可知b>0,abc<0,故③⑤正确;=1得b=−2a,可知④错误.根据对称轴x=−b2a正确的是①②③⑤4个,故选B.3.【答案】D【考点】根据实际问题列二次函数关系式【解答】解:原边长为6的正方形面积为:6×6=36,边长增加x后边长变为:x+6,则面积为:(x+6)2,∴ y=(x+6)2−36=x2+12x.故选:D.4.【答案】A【考点】二次函数的最值【解答】解:∴ 二次函数y=a(x+1)2−b(a≠0)有最小值,∴ 抛物线开口方向向上,即a>0;又最小值为1,即−b=1,∴ b=−1,∴ a>b.故选A.5.【答案】D【考点】二次函数图象上点的坐标特征二次函数图象与系数的关系抛物线与x轴的交点【解答】∴ 二次函数y=ax2+bx+c(a≠0)过点(0, 1)和(−1, 0),∴ c=1,a−b+c=0.>0,①∴ 抛物线的对称轴在y轴右侧,∴ x=−b2a∴ a与b异号,∴ ab<0,正确;②∴ 抛物线与x轴有两个不同的交点,∴ b2−4ac>0,∴ b2>4ac,正确;③∴ 抛物线开口向下,∴ a<0,∴ ab<0,∴ b>0.∴ a−b+c=0,c=1,∴ a=b−1,∴ a<0,∴ b−1<0,b<1,∴ 0<b<1,正确;④由图可知,当x<−1时,y<0,正确;综上所述,正确的结论有①②③④.6.【答案】C【考点】二次函数的性质待定系数法求二次函数解析式二次函数图象上点的坐标特征【解答】当x=1时,y=1;当x=8时,y=8;代入函数式得:,∴ a(8−ℎ)2−a(1−ℎ)2=7,整理得:a(9−2ℎ)=1,若ℎ=4,则a=1,故A错误;若ℎ=5,则a=−1,故B错误;若ℎ=6,则a=-,故C正确;若ℎ=7,则a=-,故D错误;7.【答案】B【考点】二次函数图象与系数的关系【解答】解:由抛物线的开口向下,得到a<0,>0,∴ b>0,∴ −b2a由抛物线与y轴交于正半轴,得到c>0,∴ abc<0,选项①错误;又抛物线与x轴有2个交点,∴ b2−4ac>0,选项②错误;∴ x=−2时对应的函数值为负数,∴ 4a−2b+c<0,选项③正确;=1,即b=−2a,选项④正确,∴ 对称轴为直线x=1,∴ −b2a则其中正确的选项有③④.故选B二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 8.【答案】c >a >b【考点】二次函数图象上点的坐标特征【解答】解:∴ 二次函数的解析式为y =x 2+x +2=(x +12)2+74, ∴ 抛物线的对称轴为直线x =−12,∴ (−2, a)、(−1, b),(3, c),∴ 点(3, c)离直线x =−12最远,(−1, b)离真相x =−12最近, 而抛物线开口向上,∴ c >a >b ;故答案为c >a >b .9.【答案】左,2【考点】二次函数图象与几何变换【解答】解:由“左加右减”的原则将函数y =−12(x −1)2+5的图象向左平移2个单位,所得二次函数的解析式为:y =−12(x +1)2+5; 故答案为:左,2.10.【答案】y =−3(x −5)2+8【考点】二次函数图象与几何变换【解答】解:∴ 抛物线y =−3x 2+8顶点坐标为(0, 8),向右平移5个单位后,顶点坐标为(5, 8),由顶点式,得平移后抛物线解析式为y =−3(x −5)2+8.故本题答案为:y =−3(x −5)2+8.11.【答案】【考点】二次函数的最值【解答】解:y=x2的对称轴为x=0,且−1≤x≤3,故x=0时,取最小值,最小值为0,故答案为:0.12.【答案】x<−1或x>3.【考点】二次函数与不等式(组)【解答】∴ x2+px>4x+p−3,∴ x2−1>4x−px+p−4,∴ x2−1>(4−p)x+p−4,∴ x2−1>(4−p)(x−1),当p=4时,x2−1>0,画出函数y=x2−1的图象,找出x轴上方所对应的x的取值范围得到x>1或x<−1;当p=0时,x2−4x+3>0,画出函数y=x2−4x+3的图象,找出x轴上方所对应的x的取值范围得到x<1或x>3;当0<p<4,①当x>1,不等式变形为x+1>4−p>0,解得x>−1,则x>1;②当x<1,不等式变形为x+1<4−p,则x+1<0,解得x<−1,则x<−1;∴ x>1或x<−1;综上所述,实数x的取值范围为x<−1或x>3.13.【答案】2,(1, −9)【考点】待定系数法求二次函数解析式【解答】解:∴ 抛物线y=x2−kx−8经过点P(2, −8),∴ 4−2k−8=−8,解得k=2,∴ 此抛物线的解析式为y=x2−2x−8,配方得y=(x−1)2−9,∴ 这条抛物线的顶点坐标是(1, −9).14.【答案】y=(x+√3)2−2【考点】二次函数的三种形式【解答】解:y=x2+2√3x+1=x2+2√3x+3−3+1=(x+√3)2−2.故化成y=(x+ℎ)2+k的形式是y=(x+√3)2−2.15.【答案】0.5【考点】二次函数的应用【解答】解:以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0, 2.5),B(2, 2.5),C(0.5, 1),设函数解析式为y=ax2+bx+c,把A,B,C三点分别代入得出c=2.5,同时可得4a+2b+c=2.5,0.25a+0.5b+c=1,解之得a=2,b=−4,c=2.5.∴ y=2x2−4x+2.5=2(x−1)2+0.5.∴ 2>0,∴ 当x=1时,y=0.5米.故答案为:0.5.16.【答案】②③④【考点】二次函数图象与系数的关系【解答】解:由图可知,抛物线与x轴有2个交点,所以b2−4ac>0,故①错误;>0,故②正确;对称轴在y轴右侧,则x=−b2a抛物线开口向上,则a>0,而对称轴在y轴右侧,则a、b异号,所以b<0,其与y轴的交点(0, c)位于y轴的负半轴,则c<0,所以abc>0,故③正确;∴ a>0,b<0,c<0,∴ a−b−c>0,故④正确;故答案为:②③④.17.【答案】4【考点】二次函数图象上点的坐标特征抛物线与x轴的交点【解答】当x=0时,y=−x2−4x+1=1,则A(0, 1),当y=1时,x2=1,解得x1=1,x2=−1,则B(−1, 1),C(1, 1),∴ BC=2,设P(x, −x2−4x+1),P点在BC上方时,△PBC面积有最大值,⋅2⋅(−x2−4x+1−1)=−x2−4x=−(x+2)2+4,∴ S△PBC=12∴ 当x=−2时,△PBC面积的最大值为4.三、解答题(本题共计6 小题,每题10 分,共计60分)18.【答案】解:(1)∴ y=x2−2x−3=(x−1)2−4,∴ 该抛物线开口向上,对称轴为x=1,顶点坐标为(1, −4).(2)按点A在点B的左侧画出草图,如图所示.∴ y=x2−2x−3=(x+1)(x−3),∴ 点A(−1, 0),点B(3, 0),当x=0时,y=−3,∴ 点C(0, −3),∴ S△ABC=12AB⋅OC=12×[3−(−1)]×|−3|=6.【考点】抛物线与x轴的交点【解答】解:(1)∴ y=x2−2x−3=(x−1)2−4,∴ 该抛物线开口向上,对称轴为x=1,顶点坐标为(1, −4).(2)按点A在点B的左侧画出草图,如图所示.∴ y=x2−2x−3=(x+1)(x−3),∴ 点A(−1, 0),点B(3, 0),当x=0时,y=−3,∴ 点C(0, −3),∴ S△ABC=12AB⋅OC=12×[3−(−1)]×|−3|=6.19.【答案】解:方程−12x2+x+2=0根是函数y=12x2+x+2与x轴交点的横坐标.如图所示:二次函数y=12x2+x+2的图象,由图象可知方程有两个根,一个在−2和−1之间,另一个在3和4之间.当x=3.2时,y=0.08;当x=3.3时,y=−0.145;因此,x=3.2是方程的一个近似根,故方程−12x2+x+2=0在3和4之间的根的近似值为x≈3.2.图象法求一元二次方程的近似根【解答】解:方程−12x 2+x +2=0根是函数y =12x 2+x +2与x 轴交点的横坐标.如图所示:二次函数y =12x 2+x +2的图象,由图象可知方程有两个根,一个在−2和−1之间,另一个在3和4之间.当x =3.2时,y =0.08;当x =3.3时,y =−0.145;因此,x =3.2是方程的一个近似根,故方程−12x 2+x +2=0在3和4之间的根的近似值为x ≈3.2. 20.【答案】解:(1)由二次函数y =x 2+bx +c 的图象经过(1, 0)和(0, −3)两点,得{1+b +c =0c =−3, 解这个方程组,得{b =2c =−3; ∴ 抛物线的解析式为y =x 2+2x −3.(2)当x <−3或x >1时,y >0.【考点】待定系数法求二次函数解析式二次函数与不等式(组)【解答】解:(1)由二次函数y =x 2+bx +c 的图象经过(1, 0)和(0, −3)两点,得{1+b +c =0c =−3, 解这个方程组,得{b =2c =−3; ∴ 抛物线的解析式为y =x 2+2x −3.(2)当x <−3或x >1时,y >0.21.【答案】当y =0时,−112x 2+23x +53=0,解之得x 1=10,x 2=−2(不合题意,舍去),所以推铅球的距离是10米.二次函数的应用【解答】当y =0时,−112x 2+23x +53=0,解之得x 1=10,x 2=−2(不合题意,舍去),所以推铅球的距离是10米.22.【答案】函数的对称轴为:x =1,当x =1时,y =−1+2+3=4,故点D(1, 4);y =−x 2+2x +3的顶点为D ,它与x 轴交于A ,B 两点,与y 轴交于点C ,则点A 、B 、C 的坐标分别为:(−1, 0)、(3, 0)、(0, 3),将点B 、C 的坐标代入一次函数表达式:y =kx +b 得:{0=3k +b b =3 ,解得:{k =−1b =3, 故直线BC 的表达式为:y =−x +3;过点D 作DG // y 轴交BC 于点G ,则点G(1, 2),△BCD 的面积=12×DG ×OB =12×(4−2)×3=3; 过点P 作y 轴的平行线交BC 于点H ,设点P(x, −x 2+2x +3),点H(x, −x +3),则S △PBC =12×PH ×OB =32(−x 2+2x +3+x −3)=−32x(x −3), ∴ −32<0,∴ S △PBC 有最大值,最大值为:278,此时点P(32, 154).【考点】二次函数综合题【解答】函数的对称轴为:x =1,当x =1时,y =−1+2+3=4,故点D(1, 4);y =−x 2+2x +3的顶点为D ,它与x 轴交于A ,B 两点,与y 轴交于点C ,则点A 、B 、C 的坐标分别为:(−1, 0)、(3, 0)、(0, 3),将点B 、C 的坐标代入一次函数表达式:y =kx +b 得:{0=3k +b b =3 ,解得:{k =−1b =3, 故直线BC 的表达式为:y =−x +3;过点D 作DG // y 轴交BC 于点G ,则点G(1, 2),△BCD 的面积=12×DG ×OB =12×(4−2)×3=3;过点P 作y 轴的平行线交BC 于点H ,设点P(x, −x 2+2x +3),点H(x, −x +3),则S △PBC =12×PH ×OB =32(−x 2+2x +3+x −3)=−32x(x −3), ∴ −32<0, ∴ S △PBC 有最大值,最大值为:278,此时点P(32, 154). 23.【答案】解:(1)设抛物线的解析式为y =ax 2+bx +c .由题意可知,A(1, 0),B(0, 3),C(−4, 0),∴ {a +b +c =0,c =3,16a −4b +c =0,解得:a =−34,b =−94,c =3,∴ 经过A ,B ,C 三点的抛物线的解析式为y =−34x 2−94x +3.(2)在平面直角坐标系xOy 中存在一点P ,使得以点A ,B ,C ,P 为顶点的四边形为菱形,理由如下:如图,∴ OB =3,OC =4,OA =1,∴ BC =AC =5.当BP 平行且等于AC 时,四边形ACBP 为菱形,∴ BP =AC =5,且点P 到x 轴的距离等于OB ,∴ 点P 的坐标为(5, 3).当点P 在第二、三象限时,以点A ,B ,C ,P 为顶点的四边形只能是平行四边形,不是菱形,则当点P 的坐标为(5, 3)时,以点A ,B ,C ,P 为顶点的四边形为菱形.(3)设直线PA 的解析式为y =kx +b(k ≠0).∴ A(1, 0),P(5, 3),∴ {5k +b =3,k +b =0, 解得:{k =34,b =−34, ∴ 直线PA 的解析式为y =34x −34. 当点M 与点P ,A 不在同一直线上时,根据三角形的三边关系可得:|PM −AM|<PA ,当点M 与点P ,A 在同一直线上时,|PM −AM|=PA ,∴ 当点M 与点P ,A 在同一直线上时,|PM −AM|的值最大,即点M 为直线PA 与抛物线的交点,解方程组{y =34x −34,y =−34x 2−94x +3, 得{x 1=1,y 1=0 或{x 2=−5,y 2=−92, ∴ 当点M 的坐标为(1,0)或(−5, −92)时,|PM −AM|的值最大,此时|PM −AM|的最大值为5.【考点】二次函数综合题待定系数法求二次函数解析式【解答】解:(1)设抛物线的解析式为y =ax 2+bx +c .由题意可知,A(1, 0),B(0, 3),C(−4, 0),∴ {a +b +c =0,c =3,16a −4b +c =0,解得:a =−34,b =−94,c =3, ∴ 经过A ,B ,C 三点的抛物线的解析式为y =−34x 2−94x +3. (2)在平面直角坐标系xOy 中存在一点P ,使得以点A ,B ,C ,P 为顶点的四边形为菱形,理由如下:如图,∴ OB =3,OC =4,OA =1,∴ BC =AC =5.当BP 平行且等于AC 时,四边形ACBP 为菱形,∴ BP =AC =5,且点P 到x 轴的距离等于OB ,∴ 点P 的坐标为(5, 3).当点P 在第二、三象限时,以点A ,B ,C ,P 为顶点的四边形只能是平行四边形,不是菱形,则当点P 的坐标为(5, 3)时,以点A ,B ,C ,P 为顶点的四边形为菱形.(3)设直线PA 的解析式为y =kx +b(k ≠0).∴ A(1, 0),P(5, 3),∴ {5k +b =3,k +b =0, 解得:{k =34,b =−34, ∴ 直线PA 的解析式为y =34x −34.当点M与点P,A不在同一直线上时,根据三角形的三边关系可得:|PM−AM|<PA,当点M与点P,A在同一直线上时,|PM−AM|=PA,∴ 当点M与点P,A在同一直线上时,|PM−AM|的值最大,即点M为直线PA与抛物线的交点,解方程组{y=34x−34,y=−34x2−94x+3,得{x1=1,y1=0或{x2=−5,y2=−92,∴ 当点M的坐标为(1,0)或(−5, −92)时,|PM−AM|的值最大,此时|PM−AM|的最大值为5.。

二次函数单元测试题及答案

二次函数单元测试题及答案

二次函数单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是二次函数的一般形式?A. y = ax^2 + bx + cB. y = (x - h)^2 + kC. y = ax^2 + bx + c + dD. y = ax^2 + bx答案:C2. 若二次函数y = ax^2 + bx + c的图像开口向上,则a的值是:A. 正数B. 负数C. 零D. 任意实数答案:A3. 二次函数y = ax^2 + bx + c的顶点坐标是:A. (-b, c)B. (-b/2a, c)C. (-b/a, c)D. (-b/2a, 4ac - b^2 / 4a)答案:D4. 二次函数y = ax^2 + bx + c的对称轴是:A. x = -bB. x = -b/2aC. x = b/2aD. x = b/a答案:B5. 若二次函数y = ax^2 + bx + c与x轴有两个交点,则判别式Δ的值是:A. Δ > 0B. Δ < 0C. Δ = 0D. Δ ≤ 0答案:A二、填空题(每题2分,共10分)6. 二次函数y = 2x^2 - 4x + 3的顶点坐标是________。

答案:(1, 1)7. 若二次函数y = ax^2 + bx + c的图像与y轴交于(0, k),则k等于________。

答案:c8. 当a > 0时,二次函数y = ax^2 + bx + c的图像开口________。

答案:向上9. 二次函数y = -3x^2 + 6x + 5的对称轴方程是________。

答案:x = 110. 若二次函数y = ax^2 + bx + c与x轴相交于两点,则判别式Δ必须________。

答案:大于0三、解答题(每题5分,共20分)11. 已知二次函数y = ax^2 + bx + c的图像经过点(1, 2)和(-1, 0),求a和b的值。

解答:将点(1, 2)代入函数得:a + b + c = 2将点(-1, 0)代入函数得:a - b + c = 0两式相减得:2b = 2,即b = 1将b代入任一式得:a + c = 1由于题目条件不足,无法唯一确定a和c的值。

二次函数单元测试(附参考答案)

二次函数单元测试(附参考答案)

二次函数单元测试卷一、选择题(20分)1.二次函数y=x2﹣x+1的图象与x轴的交点个数是( )A.0个B.1个C.2个D.不能确定2.若二次函数y=ax2﹣x+c的图象上所有的点都在x轴下方,则a,c应满足的关系是( ) A.B.C.D.3.已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则有( ) A.a>0,b>0 B.a>0,c>0 C.b>0,c>0 D.a,b,c都小于04.若抛物线y=ax2﹣6x经过点(2,0),则抛物线顶点到坐标原点的距离为( )A. B. C. D.5.如图,二次函数y=x2﹣4x+3的图象交x轴于A,B两点,交y轴于C,则△ABC的面积为( )A.6 B.4 C.3 D.16.已知抛物线y=ax2+bx+c如图所示,则关于x的方程ax2+bx+c﹣8=0的根的情况是( ) A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等的实数根D.没有实数根7.二次函数y=4x2﹣mx+5,当x<﹣2时,y随x的增大而减小;当x>﹣2时,y随x的增大而增大,那么当x=1时,函数y的值为( )A.﹣7 B.1 C.17 D.258.(1997•山东)若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( )A.开口向上,对称轴是y轴B.开口向下,对称轴是y轴C.开口向下,对称轴平行于y轴D.开口向上,对称轴平行于y轴9.如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为y=﹣x2+4x+2,则水柱的最大高度是( )A.2 B.4 C.6 D.2+10.用长为6m的铝合金型材做一个形状如图所示的矩形窗框,要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成( )A.1.5m,1m B.1m,0.5m C.2m,1m D.2m,0.5m二、填空题(20分):11.若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为__________.12.二次函数y=﹣x2+6x﹣9的图象与x轴的交点坐标为__________.13.抛物线y=x2﹣4x+3的顶点及它与x轴的交点三点连线所围成的三角形面积是__________.14.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(﹣1,﹣3.2)及部分图象(如图),由图象可知关于x的方程ax2+bx+c=0的两个根分别是x1=1.3和x2=__________.15.在同一坐标系内,抛物线y=ax2与直线y=2x+b相交于A、B两点,若点A的坐标是(2,4),则点B的坐标是__________.16.将抛物线y=ax2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,﹣1),那么移动后的抛物线的关系式为__________.17.若二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,则m的取值范围是__________.18.已知抛物线y=ax2+bx+c(a≠0)图象的顶点为P(﹣2,3),且过A(﹣3,0),则抛物线的关系式为__________.19.当n=__________,m=__________时,函数y=(m+n)x n+(m﹣n)x的图象是抛物线,且其顶点在原点,此抛物线的开口__________.20.若抛物线y=ax2+bx+c经过(0,1)和(2,﹣3)两点,且开口向下,对称轴在y轴左侧,则a的取值范围是__________.三、解答题(60分):21.(5分)求二次函数y=x2﹣2x﹣1的顶点坐标及它与x轴的交点坐标.22.(6分)已知抛物线y=x2+x﹣.(1)用配方法求出它的顶点坐标和对称轴;(2)若抛物线与x轴的两个交点为A、B,求线段AB的长.23.(7分)下表给出了代数式x2+bx+c与x的一些对应值:x …0 1 2 3 4 x2+bx+c … 3 ﹣1 3 (1)请在表内的空格中填入适当的数;(2)设y=x2+bx+c,则当x取何值时,y>0;(3)请说明经过怎样平移函数y=x2+bx+c的图象得到函数y=x2的图象?24.(8分)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.25.(7分)二次函数y=x2的图象如图所示,请将此图象向右平移1个单位,再向下平移2个单位.(1)画出经过两次平移后所得到的图象,并写出函数的解析式;(2)求经过两次平移后的图象与x轴的交点坐标,指出当x满足什么条件时,函数值大于0?26.(7分)有一条长7.2米的木料,做成如图所示的“日”字形的窗框,问窗的高和宽各取多少米时,这个窗的面积最大?(不考虑木料加工时损耗和中间木框所占的面积)27.(10分)某公司生产的A种产品,每件成本是2元,每件售价是3元,一年的销售量是10万件.为了获得更多的利润,公司准备拿出一定资金来做广告.根据经验,每年投入的广告费为x(万元)时,产品的年销售量是原来的y倍,且y是x的二次函数,公司作了预测,知x与y之间的对应关系如下表:x(万元)0 1 2 …y 1 1.5 1.8 …(1)根据上表,求y关于x的函数关系式;(2)如果把利润看成是销售总额减去成本和广告费,请你写出年利润S(万元)与广告费x(万元)的函数关系式;(3)从上面的函数关系式中,你能得出什么结论?28.(10分)在直角坐标系中,抛物线y=x2﹣2mx+n+1的顶点A在x轴负半轴上,与y轴交于点B,抛物线上一点C的横坐标为1,且AC=3.(1)求此抛物线的函数关系式;(2)若抛物线上有一点D,使得直线DB经过第一、二、四象限,且原点O到直线DB的距离为,求这时点D的坐标.苏科新版九年级下册《第5章二次函数》2015年单元测试卷(江苏省南通市)一、选择题1.二次函数y=x2﹣x+1的图象与x轴的交点个数是( )A.0个B.1个C.2个D.不能确定【考点】抛物线与x轴的交点.【分析】利用“二次函数的图象和性质与一元二次方程之间的关系”解答即可.【解答】解:判断二次函数图象与x轴的交点个数,就是当y=0时,方程x2﹣x+1=0解的个数,∵△=(﹣1)2﹣4×1×1=﹣3<0,此方程无解,∴二次函数y=x2﹣x+1的图象与x轴无交点.故选A.【点评】主要考查了二次函数的图象和性质与一元二次方程之间的关系,这些性质和规律要求掌握.2.若二次函数y=ax2﹣x+c的图象上所有的点都在x轴下方,则a,c应满足的关系是( ) A.B.C.D.【考点】抛物线与x轴的交点.【分析】根据函数图象上所有点都在x轴下方可知,函数图象开口向下且顶点纵坐标小于0,列出不等式.【解答】解:由题意得:,解得:,故选A.【点评】本题考查了二次函数的图象在x轴下方的性质:开口向下,且与x轴无交点.3.已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则有( ) A.a>0,b>0 B.a>0,c>0 C.b>0,c>0 D.a,b,c都小于0【考点】二次函数图象与系数的关系.【分析】根据函数图象可以得到以下信息:a<0,b>0,c>0,再结合函数图象判断各选项.【解答】解:由函数图象可以得到以下信息:a<0,b>0,c>0,A、错误;B、错误;C、正确;D、错误;故选C.【点评】本题考查了二次函数图象与系数的关系,应先观察图象得到信息,再进行判断.4.若抛物线y=ax2﹣6x经过点(2,0),则抛物线顶点到坐标原点的距离为( )A. B. C. D.【考点】二次函数图象上点的坐标特征.【分析】由抛物线y=ax2﹣6x经过点(2,0),求得a的值,再求出函数顶点坐标,求得顶点到坐标原点的距离.【解答】解:由于抛物线y=ax2﹣6x经过点(2,0),则4a﹣12=0,a=3,抛物线y=3x2﹣6x,变形,得:y=3(x﹣1)2﹣3,则顶点坐标M(1,﹣3),抛物线顶点到坐标原点的距离|OM|==.故选B.【点评】本题考查了二次函数图象上点的坐标特征,先求解析式,再求顶点坐标,最后求距离.5.如图,二次函数y=x2﹣4x+3的图象交x轴于A,B两点,交y轴于C,则△ABC的面积为( )A.6 B.4 C.3 D.1【考点】二次函数综合题.【专题】压轴题.【分析】根据解析式求出A、B、C三点的坐标,即△ABC的底和高求出,然后根据公式求面积.【解答】解:在y=x2﹣4x+3中,当y=0时,x=1、3;当x=0时,y=3;即A(1,0)、B(3,0)、C(0,3)故△ABC的面积为:×2×3=3;故选C.【点评】本题考查根据解析式确定点的坐标.6.已知抛物线y=ax2+bx+c如图所示,则关于x的方程ax2+bx+c﹣8=0的根的情况是( ) A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等的实数根D.没有实数根【考点】抛物线与x轴的交点.【专题】压轴题.【分析】把抛物线y=ax2+bx+c向下平移8个单位即可得到y=ax2+bx+c﹣8的图象,由此即可解答.【解答】解:∵y=ax2+bx+c的图象顶点纵坐标为8,向下平移8个单位即可得到y=ax2+bx+c ﹣8的图象,此时,抛物线与x轴有一个交点,∴方程ax2+bx+c﹣8=0有两个相等实数根.【点评】考查方程ax2+bx+c+2=0的根的情况与函数y=ax2+bx+c的图象与x轴交点的个数之间的关系.7.二次函数y=4x2﹣mx+5,当x<﹣2时,y随x的增大而减小;当x>﹣2时,y随x的增大而增大,那么当x=1时,函数y的值为( )A.﹣7 B.1 C.17 D.25【考点】二次函数的性质.【分析】因为当x<﹣2时,y随x的增大而减小;当x>﹣2时,y随x的增大而增大,那么可知对称轴就是x=﹣2,结合顶点公式法可求出m的值,从而得出函数的解析式,再把x=1,可求出y的值.【解答】解:∵当x<﹣2时,y随x的增大而减小,当x>﹣2时,y随x的增大而增大,∴对称轴x=﹣=﹣=﹣2,解得m=﹣16,∴y=4x2+16x+5,那么当x=1时,函数y的值为25.故选D.【点评】主要考查了如何根据函数的单调性确定对称轴,并根据对称轴公式求字母系数从而求得函数值.8.(1997•山东)若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( )A.开口向上,对称轴是y轴B.开口向下,对称轴是y轴C.开口向下,对称轴平行于y轴D.开口向上,对称轴平行于y轴【考点】二次函数图象与系数的关系.【分析】由直线y=ax+b不经过二、四象限,则a>0,b=0,再判断抛物线的开口方向和对称轴.【解答】解:∵直线y=ax+b不经过二、四象限,∴a>0,b=0,则抛物线y=ax2+bx+c开口方向向上,对称轴x==0.故选A.【点评】本题考查了一次函数和二次函数与其系数的关系,由一次函数判断出a、b的正负,在判断二次函数的性质.9.如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为y=﹣x2+4x+2,则水柱的最大高度是( )A.2 B.4 C.6 D.2+【考点】二次函数的应用.【专题】应用题.【分析】求最大高度,就要把抛物线解析式的一般形式改写成顶点式后,求顶点的纵坐标.【解答】解:y=﹣x2+4x+2=﹣(x﹣2)2+6,∵﹣1<0∴当x=2时,最大高度是6.故选C.【点评】注意抛物线的解析式的三种形式,在解决抛物线的问题中的作用.10.用长为6m的铝合金型材做一个形状如图所示的矩形窗框,要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成( )A.1.5m,1m B.1m,0.5m C.2m,1m D.2m,0.5m【考点】二次函数的应用.【专题】几何图形问题.【分析】本题考查二次函数最小(大)值的求法.【解答】解:设长为x,则宽为,S=x,即S=﹣x2+2x,要使做成的窗框的透光面积最大,则x=﹣=﹣==1.5m.于是宽为==1m,所以要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成1.5m,1m.故选A.【点评】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次项系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.二、填空题:11.若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为4.【考点】抛物线与x轴的交点.【专题】压轴题.【分析】先求出二次函数与x轴的2个交点坐标,然后再求出2点之间的距离.【解答】解:二次函数y=x2﹣2x﹣3与x轴交点A、B的横坐标为一元二次方程x2﹣2x﹣3=0的两个根,求得x1=﹣1,x2=3,则AB=|x2﹣x1|=4.【点评】要求熟悉二次函数与一元二次方程的关系和坐标轴上两点距离公式|x1﹣x2|,并熟练运用.12.二次函数y=﹣x2+6x﹣9的图象与x轴的交点坐标为(3,0).【考点】抛物线与x轴的交点.【分析】解方程﹣x2+6x﹣9=0即可求得函数图象与x轴的交点坐标的横坐标.【解答】解:当y=0时,﹣x2+6x﹣9=0,解得:x=3.∴交点坐标是(3,0).【点评】考查二次函数与一元二次方程的关系.13.抛物线y=x2﹣4x+3的顶点及它与x轴的交点三点连线所围成的三角形面积是1.【考点】抛物线与x轴的交点.【分析】抛物线y=x2﹣4x+3的顶点及它与x轴的交点三点连线所围成的三角形中:底边长为与x轴的两交点之间的距离,高为抛物线的顶点的纵坐标的绝对值,再利用三角形的面积公式即可求出b的值.【解答】解:由题意可得:抛物线的顶点的纵坐标为=﹣1,∴底边上的高为1;∵x2﹣4x+3=0,解得x1=1,x2=3,∴抛物线与x轴的交点为(1,0)、(3,0);由题意得:底边长=|x1﹣x2|=2,∴抛物线y=x2﹣4x+3的顶点及它与x轴的交点三点连线所围成的三角形面积为:×2×1=1.【点评】要求熟悉二次函数与一元二次方程的关系和坐标轴上两点距离公式|x1﹣x2|,并能与几何知识结合使用.14.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(﹣1,﹣3.2)及部分图象(如图),由图象可知关于x的方程ax2+bx+c=0的两个根分别是x1=1.3和x2=﹣3.3.【考点】图象法求一元二次方程的近似根.【专题】压轴题.【分析】先根据图象找出函数的对称轴,得出x1和x2的关系,再把x1=1.3代入即可得x2.【解答】解:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣1,﹣3.2),则对称轴为x=﹣1;所以=﹣1,又因为x1=1.3,所以x2=﹣2﹣x1=﹣2﹣1.3=﹣3.3.故答案为:﹣3.3【点评】考查二次函数和一元二次方程的关系.15.在同一坐标系内,抛物线y=ax2与直线y=2x+b相交于A、B两点,若点A的坐标是(2,4),则点B的坐标是(0,0).【考点】二次函数的性质.【分析】此题可以先将点A的坐标代入抛物线和直线,求得a、b的值,再将两个函数联立成一元二次方程求得另一个交点坐标B.【解答】解:抛物线y=ax2与直线y=2x+b相交于A、B两点,若点A的坐标是(2,4),则点A代入y=ax2,解得a=1;代入y=2x+b,解得:b=0;将两方程联立得:x2=2x,解方程得:x=0或2,则另一交点坐标B为(0,0).【点评】本题考查了待定系数法解函数及两函数图象的交点问题.16.将抛物线y=ax2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,﹣1),那么移动后的抛物线的关系式为y=﹣4(x﹣2)2+3.【考点】二次函数图象与几何变换.【分析】易得新抛物线的顶点,根据顶点式及所给的坐标可得新抛物线的解析式.【解答】解:原抛物线的顶点为(0,0),向右平移2个单位,再向上平移3个单位,那么新抛物线的顶点为(2,3);可设新抛物线的解析式为y=a(x﹣h)2+k,把(3,﹣1)代入得a=﹣4,∴y=﹣4(x﹣2)2+3.【点评】题中由抛物线的顶点求解析式一般采用顶点式;解决本题的关键是得到新抛物线的顶点坐标.17.若二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,则m的取值范围是m>.【考点】抛物线与x轴的交点.【分析】由题意二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,可知(m+5)x2+2(m+1)x+m=0,方程二次项系数(m+5)>0,方程根的判别式△<0,根据以上条件从而求出m的取值范围.【解答】解:∵二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,∴(m+5)>0,△<0,∴m>﹣5,4(m+1)2﹣4(m+5)×m<0,解得m>.故m>【点评】此题主要考查一元二次方程与函数的关系,函数与x轴的交点的横坐标就是方程的根.18.已知抛物线y=ax2+bx+c(a≠0)图象的顶点为P(﹣2,3),且过A(﹣3,0),则抛物线的关系式为y=﹣3x2﹣12x﹣9.【考点】待定系数法求二次函数解析式.【分析】由题知抛物线y=ax2+bx+c(a≠0)图象的顶点为P(﹣2,3),且过A(﹣3,0),将点代入抛物线解析式,再根据待定系数法求出抛物线的解析式.【解答】解:抛物线y=ax2+bx+c(a≠0)图象的顶点为P(﹣2,3),∴对称轴x=﹣=﹣2…①,又∵抛物线过点P(﹣2,3),且过A(﹣3,0)代入抛物线解析式得,由①②③解得,a=﹣3,b﹣12,c=﹣9,∴抛物线的关系式为:y=﹣3x2﹣12x﹣9.【点评】此题考查二次函数的基本性质及其对称轴和顶点坐标,运用待定系数法求抛物线的解析式,同时也考查了学生的计算能力.19.当n=2,m=2时,函数y=(m+n)x n+(m﹣n)x的图象是抛物线,且其顶点在原点,此抛物线的开口向上.【考点】二次函数的性质;二次函数的定义.【分析】对y=(m+n)x n+(m﹣n)x的图象是抛物线的判定,需满足n=2,又其顶点在原点,需满足m﹣n=0,则m、n的值即可求出,根据解得的函数解析式判断抛物线的开口方向.【解答】解:若函数y=(m+n)x n+(m﹣n)x的图象满足是抛物线,且其顶点在原点,则,解得,,故函数y=4x2,又由于a=4>0,则抛物线的开口向上.【点评】本题考查了二次函数的性质,需掌握抛物线函数需满足的条件及开口方向的判定.20.若抛物线y=ax2+bx+c经过(0,1)和(2,﹣3)两点,且开口向下,对称轴在y轴左侧,则a的取值范围是﹣1<a<0.【考点】二次函数的性质.【分析】抛物线经过(0,1)可得c的值,又经过(2,﹣3)可得a和b的关系,又开口向下,对称轴在y轴左侧,则需满足a<0,x=<0,解得a的取值范围.【解答】解:抛物线y=ax2+bx+c经过(0,1)和(2,﹣3)两点,则c=1,4a+2b+c=﹣3,即4a+2b=﹣4,化简得:2a+b=﹣2,又抛物线开口向下,对称轴在y轴左侧,则需满足:,解得:﹣1<a<0.【点评】本题综合考查了二次函数的各种性质,并与不等式结合体现出来.三、解答题:21.求二次函数y=x2﹣2x﹣1的顶点坐标及它与x轴的交点坐标.【考点】二次函数的性质;抛物线与x轴的交点.【分析】本题已知二次函数的一般式,求顶点,可以通过配方法把解析式写成顶点式,求它与x轴的交点坐标,可以设y=0,求方程x2﹣2x﹣1=0的解.【解答】解:∵y=x2﹣2x﹣1=x2﹣2x+1﹣2=(x﹣1)2﹣2∴二次函数的顶点坐标是(1,﹣2)设y=0,则x2﹣2x﹣1=0∴(x﹣1)2﹣2=0(x﹣1)2=2,x﹣1=±∴x1=1+,x2=1﹣.二次函数与x轴的交点坐标为(1+,0)(1﹣,0).【点评】本题考查求二次函数的顶点坐标及x轴交点坐标的求法.22.已知抛物线y=x2+x﹣.(1)用配方法求出它的顶点坐标和对称轴;(2)若抛物线与x轴的两个交点为A、B,求线段AB的长.【考点】二次函数的性质;抛物线与x轴的交点.【分析】(1)此题首先要将函数右边的式子化为完全平方式,才能知道顶点坐标和对称轴;(2)令y=0,求得抛物线在x轴上的交点坐标,那么长度就很快就能求出.【解答】解:(1)∵y=x2+x﹣=(x+1)2﹣3,∴抛物线的顶点坐标为(﹣1,﹣3),对称轴是直线x=﹣1;(2)当y=0时,x2+x﹣=0,解得:x1=﹣1+,x2=﹣1﹣,AB=|x1﹣x2|=.【点评】考查求抛物线的顶点坐标的方法及与x轴交点坐标特点.23.下表给出了代数式x2+bx+c与x的一些对应值:x …0 1 2 3 4 x2+bx+c … 3 ﹣1 3 (1)请在表内的空格中填入适当的数;(2)设y=x2+bx+c,则当x取何值时,y>0;(3)请说明经过怎样平移函数y=x2+bx+c的图象得到函数y=x2的图象?【考点】二次函数图象与几何变换;待定系数法求二次函数解析式;二次函数与不等式(组).【专题】图表型.【分析】根据与x轴的交点坐标得到什么时候y>0.讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.【解答】解:(1)这个代数式属于二次函数.当x=0,y=3;x=4时,y=3.说明此函数的对称轴为x=(0+4)÷2=2.那么﹣=﹣=2,b=﹣4,经过(0,3),∴c=3,二次函数解析式为y=x2﹣4x+3,当x=1时,y=0;当x=3时,y=0.(每空2分)(2)由(1)可得二次函数与x轴的交点坐标,由于本函数开口向上,可根据与x轴的交点来判断什么时候y>0.当x<1或x>3时,y>0.(3)由(1)得y=x2﹣4x+3,即y=(x﹣2)2﹣1.将抛物线y=x2﹣4x+3先向左平移2个单位,再向上平移1个单位即得抛物线y=x2.【点评】常由一些特殊点入与y轴的交点,对称轴等得到二次函数的解析式.24.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【考点】待定系数法求二次函数解析式;二次函数图象与几何变换;抛物线与x轴的交点.【专题】压轴题;分类讨论.【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式.(2)根据的函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标.(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【解答】解:(1)设抛物线顶点式y=a(x+1)2+4将B(2,﹣5)代入得:a=﹣1∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3)令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0)(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0)当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位故A'(2,4),B'(5,﹣5)∴S△OA′B′=×(2+5)×9﹣×2×4﹣×5×5=15.【点评】本题考查了用待定系数法求抛物线解析式、函数图象交点、图形面积的求法等知识.不规则图形的面积通常转化为规则图形的面积的和差.25.二次函数y=x2的图象如图所示,请将此图象向右平移1个单位,再向下平移2个单位.(1)画出经过两次平移后所得到的图象,并写出函数的解析式;(2)求经过两次平移后的图象与x轴的交点坐标,指出当x满足什么条件时,函数值大于0?【考点】二次函数图象与几何变换;二次函数的图象;抛物线与x轴的交点.【专题】压轴题;开放型.【分析】(1)由平移规律求出新抛物线的解析式;(2)令y=0,求出x的值,即可得交点坐标.抛物线开口向上,当x的值在两交点之外y 的值大于0.【解答】解:(1)画图如图所示:依题意得:y=(x﹣1)2﹣2=x2﹣2x+1﹣2=x2﹣2x﹣1∴平移后图象的解析式为:x2﹣2x﹣1(2)当y=0时,x2﹣2x﹣1=0,即(x﹣1)2=2,∴,即∴平移后的图象与x轴交于两点,坐标分别为(,0)和(,0)由图可知,当x<或x>时,二次函数y=(x﹣1)2﹣2的函数值大于0.【点评】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.26.有一条长7.2米的木料,做成如图所示的“日”字形的窗框,问窗的高和宽各取多少米时,这个窗的面积最大?(不考虑木料加工时损耗和中间木框所占的面积)【考点】二次函数的应用.【专题】几何图形问题.【分析】设窗框的宽为x米,窗框的高为,则窗框的面积为S=x•,再求得面积的最大值即可.【解答】解:设窗框的宽为x米,则窗框的高为米.则窗的面积S=x•S=.当x==1.2(米)时,S有最大值.此时,窗框的高为=1.8(米)【点评】本题考查了二次函数在实际生活中的运用.27.某公司生产的A种产品,每件成本是2元,每件售价是3元,一年的销售量是10万件.为了获得更多的利润,公司准备拿出一定资金来做广告.根据经验,每年投入的广告费为x(万元)时,产品的年销售量是原来的y倍,且y是x的二次函数,公司作了预测,知x与y之间的对应关系如下表:x(万元)0 1 2 …y 1 1.5 1.8 …(1)根据上表,求y关于x的函数关系式;(2)如果把利润看成是销售总额减去成本和广告费,请你写出年利润S(万元)与广告费x(万元)的函数关系式;(3)从上面的函数关系式中,你能得出什么结论?【考点】二次函数的应用.【专题】应用题;图表型.【分析】(1)设所求函数关系式为y=ax2+bx+c,代入三点求出a、b、c,(2)由利润看成是销售总额减去成本和广告费列出关系式,(3)把二次函数化成顶点坐标式,观察S随x的变化.【解答】解:(1)设所求函数关系式为y=ax2+bx+c,把(0,1),(1,1.5),(2,1.8)分别代入上式,得解得∴y=﹣x2+x+1(2)S=(3﹣2)×10y﹣x=(﹣x2+x+1)×10﹣x=﹣x2+5x+10.(3)∵S=﹣x2+5x+10=﹣.∴当0≤x≤2.5时,S随x的增大而增大.因此当广告费在0﹣2.5万元之间时,公司的年利润随广告费的增大而增大【点评】本题考查的是二次函数在实际生活中的应用,比较简单.28.在直角坐标系中,抛物线y=x2﹣2mx+n+1的顶点A在x轴负半轴上,与y轴交于点B,抛物线上一点C的横坐标为1,且AC=3.(1)求此抛物线的函数关系式;(2)若抛物线上有一点D,使得直线DB经过第一、二、四象限,且原点O到直线DB的距离为,求这时点D的坐标.【考点】二次函数综合题.【专题】综合题.【分析】(1)欲求抛物线的解析式,需求出m、n的值,根据抛物线的解析式,易得顶点A 的坐标,然后将x=1代入抛物线的解析式中,可得点C的坐标,即可根据AC的长得到第一个关于m、n的等量关系式;由于抛物线的顶点在x轴上,即抛物线与x轴只有一个交点,即根的判别式△=0,联立两个关于m、n的式子即可求出m、n的值,从而得到该抛物线的解析式.(2)根据(1)的抛物线解析式可求得点B的坐标,即可得到OB的长;过O作OM⊥BD 于M,根据题意可知OM=,进而可利用勾股定理求得BM的长;在△EOF中,OM⊥EF,易证得△OBM∽△FOM,根据相似三角形所得比例线段即可求得OF的长,也就得到了F 点的坐标,进而可利用待定系数法求得直线BD的解析式,联立抛物线的解析式即可求出点D的坐标.【解答】解:(1)根据题意,画出示意图如答图所示,过点C作CE⊥x轴于点E;∵抛物线上一点C的横坐标为1,且AC=3,∴C(1,n﹣2m+2),其中n﹣2m+2>0,OE=1,CE=n﹣2m+2;∵抛物线的顶点A在x轴负半轴上,∴A(m,0),其中m<0,OA=﹣m,AE=OE+OA=1﹣m;由已知得,由(1)得n=m2﹣1;(3)把(3)代入(2),得(m2﹣2m+1)2+(m2﹣2m+1)﹣90=0,∴(m2﹣2m+11)(m2﹣2m﹣8)=0,∴m2﹣2m+11=0(4)或m2﹣2m﹣8=0(5);对方程(4),∵△=(﹣2)2﹣4×11=﹣40<0,∴方程m2﹣2m+11=0没有实数根;由解方程(5),得m1=4,m2=﹣2,∵m<0,∴m=﹣2.把m=﹣2代入(3),得n=3,∴抛物线的关系式为y=x2+4x+4(2)∵直线DB经过第一、二、四象限;设直线DB交x轴正半轴于点F,过点O作OM⊥DB于点M,∵点O到直线DB的距离为,∴OM=,∵抛物线y=x2+4x+4与y轴交于点B,∴B(0,4),∴OB=4,∴BM=;∵OB⊥OF,OM⊥BF,∴△OBM∽△FOM,∴,∴,∴OF=2BO=8,F(8,0);∴直线BF的关系式为y=﹣x+4;∵点D既在抛物线上,又在直线BF上,∴,解得,∵BD为直线,∴点D与点B不重合,∴点D的坐标为.【点评】此题是二次函数的综合题,涉及到勾股定理、根的判别式、二次函数解析式的确定、相似三角形的判定和性质以及函数图象交点坐标的求法等重要知识,综合性强,难度较大.。

九年级数学二次函数测试题含答案(精选5套)

九年级数学二次函数测试题含答案(精选5套)

九年级数学 二次函数 单元试卷(一)时间90分钟 满分:100分一、选择题(本大题共10小题,每小题3分,共30分) 1.下列函数不属于二次函数的是( )A.y=(x -1)(x+2)B.y=21(x+1)2C. y=1-3x 2D. y=2(x+3)2-2x 22. 函数y=-x 2-4x+3图象顶点坐标是( )A.(2,-1)B.(-2,1)C.(-2,-1)D.(2, 1)3. 抛物线()12212++=x y 的顶点坐标是( )A .(2,1)B .(-2,1)C .(2,-1)D .(-2,-1)4. y=(x -1)2+2的对称轴是直线( )A .x=-1B .x=1C .y=-1D .y=1 5.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( ) A . 0或2 B . 0 C . 2 D .无法确定6. 二次函数y =x 2的图象向右平移3个单位,得到新的图象的函数表达式是( )A. y =x 2+3B. y =x 2-3C. y =(x +3)2D. y =(x -3)27.函数y=2x 2-3x+4经过的象限是( )A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限 8.下列说法错误的是( )A .二次函数y=3x 2中,当x>0时,y 随x 的增大而增大B .二次函数y=-6x 2中,当x=0时,y 有最大值0 C .a 越大图象开口越小,a 越小图象开口越大D .不论a 是正数还是负数,抛物线y=ax 2(a ≠0)的顶点一定是坐标原点9.如图,小芳在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分,若命中篮圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m10.二次函数y=ax 2+bx +c 的图象如图所示,下列结论错误的是( ) A .a >0. B .b >0. C .c <0. D .abc >0.(第9题) (第10题)3.05m xyx y o二、填空题(本大题共4小题,每小题3分,共12分)11.一个正方形的面积为16cm 2,当把边长增加x cm 时,正方形面积为y cm 2,则y 关于x 的函数为 。

《二次函数》单元测试卷 (含答案)

《二次函数》单元测试卷 (含答案)

《二次函数》单元测试卷 (含答案)考生姓名:______________ 考号:______________时间限制:90分钟一、选择题(每小题2分,共30分)(每小题2分,共30分)1. 下列函数中,是二次函数的是()A. y = x + 2B. y = 2x^2 + 3x + 1C. y = 1/xD. y = √x2. 设二次函数 f(x) = 2x^2 + 5x - 3,那么它的判别式为()A. -13B. 17C. 29D. -393. 若二次函数的图象与x轴有两个交点,则该二次函数的判别式必须为()A. 大于0B. 等于0C. 小于0D. 无法确定4. 已知二次函数 f(x) = 3x^2 + 4x + 2,那么它的对称轴为()A. x = -2/3B. x = -4/3C. x = 4/3D. x = 2/35. 设函数 f(x) = ax^2 + bx + c,若a > 0,则函数图象开口向()A. 上B. 下C. 左D. 右...二、填空题(每小题3分,共30分)(每小题3分,共30分)1. 设二次函数 f(x) = 2x^2 - 5x + 3,那么它的顶点坐标为()答案:(5/4, 37/8)2. 若二次函数 y = ax^2 + bx + c 的顶点坐标为 (2, -3),则 a + b+ c 的值为()答案:-53. 设二次函数 f(x) = -x^2 + 4x + 5,那么它的对称轴的方程为()答案:x = 24. 若二次函数的图象与y轴相交于点 (0, 6),则该二次函数必定为()答案:f(x) = 2x^2 + 35. 设二次函数 f(x) = ax^2 + bx + c,若a > 0,则函数的值域为()答案:( -∞, f(c) ]...三、解答题(共40分)(共40分)1. 解方程 3x^2 - 2x - 1 = 0解答:首先,我们可以求出这个二次方程的判别式:Δ = b^2 - 4ac = (-2)^2 - 4*3*(-1) = 4 + 12 = 16因为判别式大于0,所以方程有两个不相等的实根。

二次函数单元测试题及答案

二次函数单元测试题及答案

二次函数单元测试题及答案一、选择题(每题3分,共30分)1. 二次函数y=ax^2+bx+c(a≠0)的图象开口向上,则a的取值范围是()。

A. a>0B. a<0C. a=0D. a≠0答案:A2. 抛物线y=x^2-4x+3的顶点坐标是()。

A. (1,0)B. (2,1)C. (2,-1)D. (4,3)答案:C3. 若抛物线y=-2x^2+4x-1与x轴有两个交点,则这两个交点的坐标是()。

A. (1/2,0) 和 (3/2,0)B. (1,0) 和 (3,0)C. (1,0) 和 (-3,0)D. (-1,0) 和 (3,0)答案:B4. 二次函数y=ax^2+bx+c(a≠0)的对称轴是直线x=1,则b的值是()。

A. -2aB. 2aC. -aD. a答案:B5. 抛物线y=x^2-6x+8与x轴的交点个数是()。

A. 0B. 1C. 2D. 3答案:C6. 二次函数y=-x^2+2x+3的图象与y轴的交点坐标是()。

A. (0,3)B. (0,-3)C. (0,2)D. (0,-2)答案:A7. 二次函数y=x^2-2x-3与x轴的交点个数是()。

A. 0B. 1C. 2D. 3答案:C8. 抛物线y=-2x^2+4x+1的顶点坐标是()。

A. (1,3)B. (2,5)C. (-1,3)D. (-2,5)答案:A9. 二次函数y=x^2-4x+c的图象经过点(2,0),则c的值是()。

A. 0B. 4C. 8D. 16答案:C10. 抛物线y=x^2-6x+8与直线y=2x-4的交点坐标是()。

A. (2,0) 和 (4,4)B. (2,0) 和 (4,0)C. (2,4) 和 (4,0)D. (0,2) 和 (4,4)答案:A二、填空题(每题3分,共15分)11. 二次函数y=2x^2-4x+1的顶点坐标是()。

答案:(1,-1)12. 二次函数y=-3x^2+6x-3与x轴的交点坐标是()。

(完整版)二次函数测试卷(含答案)

(完整版)二次函数测试卷(含答案)

二次函数单元测试卷一、选择题(每小题3分,共30分)1. 当—2≤ x ≦1,二次函数y=—(x-m )2 + m 2+1有最大值4,则实数m 值为( )A.—47B 。

3或—3C 。

2或-3D 。

2或3或-47 2. 函数22y mx x m =+-(m 是常数)的图像与x 轴的交点个数为()A. 0个 B .1个 C .2个 D .1个或2个3. 关于二次函数2y ax bx c =++的图像有下列命题:①当0c =时,函数的图像经过原点;②当0c >,且函数的图像开口向下时,方程20ax bx c ++=必有两个不相等的实根;③函数图像最高点的纵坐标是244ac b a -;④当0b =时,函数的图像关于y 轴对称.其中正确命题的个数是()A. 1个B .2个C .3个D .4个4。

关于x 的二次函数22(81)8y mx m x m =+++的图像与x 轴有交点,则m 的范围是( )A .116m <-B .116m -≥且0m ≠ C .116m =- D .116m >-且0m ≠5. 下列二次函数中有一个函数的图像与x 轴有两个不同的交点,这个函数是( ) A .2y x =B .24y x =+C .2325y x x =-+D .2351y x x =+-6。

若二次函数2y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x +时,函数值为( ) A .a c + B .a c - C .c - D .c7。

下列二次函数中有一个函数的图像与坐标轴有一个交点,这个函数是( ) A .1x y 2—=B .24y x =+C .1x 2x y 2+=—D .2351y x x =+-8. 抛物线2321y x x =-+-的图象与坐标轴交点的个数是()A .没有交点B .只有一个交点C .有且只有两个交点D .有且只有三个交点9. 函数2y ax bx c =++的图象如图所示,那么关于x 的一元二次方程230ax bx c ++-=的根的情况是()A .有两个不相等的实数根B .有两个异号的实数根C .有两个相等的实数根D .没有实数根10..若把函数y=x 的图象用E (x ,x )记,函数y=2x+1的图象用E (x ,2x+1)记,……则E (x ,122+-x x )可以由E (x ,2x )怎样平移得到?A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位 二、填空题(每小题3分,共24分) 11. 抛物线2283y x x =--与x 轴有个交点,因为其判别式24b ac -=0,相应二次方程23280x x -+=的根的个数为.12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数单元测评(试时间:60分钟,满分:100分)一、选择题(每题3分,共30分)1.下列关系式中,属于二次函数的是(x为自变量)()A. B. C. D.2. 函数y=x2-2x+3的图象的顶点坐标是()A. (1,-4)B.(-1,2)C. (1,2)D.(0,3)3. 抛物线y=2(x-3)2的顶点在()A. 第一象限B. 第二象限C. x轴上D. y轴上4. 抛物线的对称轴是()A. x=-2B.x=2C. x=-4D. x=45. 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是()A. ab>0,c>0B. ab>0,c<0C. ab<0,c>0D. ab<0,c<06. 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限() A. 一 B. 二 C. 三 D. 四7. 如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是()A. 4+mB. mC. 2m-8D. 8-2m8. 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是()9. 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线上的点,且-1<x1<x2,x3<-1,则y1,y2,y3的大小关系是()A. y1<y2<y3B. y2<y3<y1C. y3<y1<y2D. y2<y1<y310.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A. B.C. D.二、填空题(每题4分,共32分)11. 二次函数y=x2-2x+1的对称轴方程是______________.12. 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________.13. 若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________.14. 抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.15. 已知二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ABC 是直角三角形,请写出一个符合要求的二次函数解析式________________.16. 在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面_________m.17. 试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.18. 已知抛物线y=x2+x+b2经过点,则y1的值是_________.三、解答下列各题(19、20每题9分,21、22每题10分,共38分)19. 若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0)(1)求此二次函数图象上点A关于对称轴对称的点A′的坐标;(2)求此二次函数的解析式;20.在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k-5)x-(k+4) 的图象交x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8.(1)求二次函数解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.21.已知:如图,二次函数y=ax 2+bx+c 的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M 为它的顶点. (1)求抛物线的解析式; (2)求△MCB 的面积S △MCB .22.某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.23,如图,已知抛物线21(0)2y x mx n n =++≠与直线y =x 交于A 、B 两点,与y 轴交于点C ,OA =OB ,BC ∥x 轴.(1)求抛物线的解析式.(2)设D 、E 是线段AB 上异于A 、B 的两个动点(点E 在点D 的上方),DE =2,过D 、E 两点分别作y 轴的平行线,交抛物线于F 、G ,若设D 点的横坐标为x ,四边形DEGF 的面积为y ,求x 与y 之间的关系式,写出自变量x 的取值范围,并回答x 为何值时,y 有最大值.答案与解析:一、选择题1.考点:二次函数概念.选A.2.考点:求二次函数的顶点坐标.解析:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k),y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),答案选C.3. 考点:二次函数的图象特点,顶点坐标.解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0),所以顶点在x轴上,答案选C.4. 考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为.解析:抛物线,直接利用公式,其对称轴所在直线为答案选B.5.考点:二次函数的图象特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,答案选C.6. 考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,在第四象限,答案选D.7. 考点:二次函数的图象特征.解析:因为二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,所以抛物线对称轴所在直线为x=4,交x轴于点D,所以A、B两点关于对称轴对称,因为点A(m,0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C.8.考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y轴左侧,交坐标轴于(0,0)点.答案选C.9. 考点:一次函数、二次函数概念图象及性质.解析:因为抛物线的对称轴为直线x=-1,且-1<x1<x2,当x>-1时,由图象知,y随x 的增大而减小,所以y2<y1;又因为x3<-1,此时点P3(x3,y3)在二次函数图象上方,所以y2<y1<y3.答案选D.10.考点:二次函数图象的变化.抛物线的图象向左平移2个单位得到,再向上平移3个单位得到.答案选C.二、填空题11.考点:二次函数性质.解析:二次函数y=x2-2x+1,所以对称轴所在直线方程.答案x=1.12.考点:利用配方法变形二次函数解析式.解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2.13. 考点:二次函数与一元二次方程关系.解析:二次函数y=x2-2x-3与x轴交点A、B的横坐标为一元二次方程x2-2x-3=0的两个根,求得x1=-1,x2=3,则AB=|x2-x1|=4.答案为4.14.考点:求二次函数解析式.解析:因为抛物线经过A(-1,0),B(3,0)两点,解得b=-2,c=-3,答案为y=x2-2x-3.15.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:需满足抛物线与x轴交于两点,与y轴有交点,及△ABC是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-1.16.考点:二次函数的性质,求最大值.解析:直接代入公式,答案:7.17.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:如:y=x2-4x+3.18.考点:二次函数的概念性质,求值.答案:.三、解答题19.考点:二次函数的概念、性质、图象,求解析式.解析:(1)A′(3,-4)(2)由题设知:∴y=x2-3x-4为所求(3)20. 考点:二次函数的概念、性质、图象,求解析式.解析:(1)由已知x1,x2是x2+(k-5)x-(k+4)=0的两根又∵(x1+1)(x2+1)=-8∴x1x2+(x1+x2)+9=0∴-(k+4)-(k-5)+9=0∴k=5∴y=x2-9为所求(2)由已知平移后的函数解析式为:y=(x-2)2-9且x=0时y=-5∴C(0,-5),P(2,-9).21. 解:(1)依题意:(2)令y=0,得(x-5)(x+1)=0,x1=5,x2=-1∴B(5,0)由,得M(2,9)作ME⊥y轴于点E,则可得S△MCB=15.22.思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:总利润=单个商品的利润×销售量.要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大.因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x元,商品的售价就是(13.5-x)元了.单个的商品的利润是(13.5-x-2.5) 这时商品的销售量是(500+200x) 总利润可设为y 元.利用上面的等量关式,可得到y 与x 的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润.解:设销售单价为降价x 元.顶点坐标为(4.25,9112.5).即当每件商品降价4.25元,即售价为13.5-4.25=9.25时,可取得最大利润9112.5元23,(1)∵抛物线212y x mx n =++与y 轴交于点C ,∴C(0,n ) ∵BC ∥x 轴 ∴B 点的纵坐标为n ,∵B 、A 在y =x 上,且OA =OB ∴B (n ,n ),A (-n ,-n ),∴221212n mn n n n mn n n⎧++=⎪⎪⎨⎪-+=-⎪⎩ 解得n =0(舍去),n =-2;m =1,∴所求解析式为:2122y x x =+-;(2)作DH ⊥EG 于H ,∵D 、E 在直线y =x 上,∴∠EDH =45°,∴DH =EH ,∵DE 2∴DH =EH =1,∵D (x ,x ) ∴E (x +1,x +1),∴F 的纵坐标:2122x x +-,G 的纵坐标:21(1)(1)22x x +++-,∴DF =x -(2122x x +-)=2-212x ,EG =(x +1)- [21(1)(1)22x x +++-]=2-21(1)2x +,∴22111[22(1)]1222y x x =-+-+⨯,2132y x x =--+,213()324y x =-++,∴x 的取值范围是-2<x <1 当x =-12时,y 最大值=334.。

相关文档
最新文档