小学五年级-奥数--行程问题电子教案

合集下载

小学奥数行程问题教案

小学奥数行程问题教案

小学奥数行程问题教案一、教学目标1. 让学生理解行程问题的基本概念,如行程、速度、时间等。

2. 培养学生解决行程问题的基本思路和方法。

3. 提高学生逻辑思维能力和解决问题的能力。

二、教学内容1. 行程问题的基本概念介绍。

2. 行程问题的解决步骤和方法讲解。

3. 典型行程问题案例分析。

三、教学重点与难点1. 教学重点:行程问题的基本概念,行程问题的解决步骤和方法。

2. 教学难点:行程问题的灵活应用和解决。

四、教学方法1. 采用讲解法,讲解行程问题的基本概念和解决方法。

2. 采用案例分析法,分析典型行程问题。

3. 采用互动教学法,引导学生积极参与,提高解决问题的能力。

五、教学准备1. 教学课件或黑板。

2. 典型行程问题案例。

3. 练习题。

教案内容:一、教学目标让学生理解行程问题的基本概念,如行程、速度、时间等。

培养学生解决行程问题的基本思路和方法。

提高学生逻辑思维能力和解决问题的能力。

二、教学内容1. 行程问题的基本概念介绍。

行程:物体在一段时间内所经过的路线长度。

速度:物体单位时间内所经过的路线长度。

时间:物体完成一段行程所需的时间。

2. 行程问题的解决步骤和方法讲解。

步骤一:明确行程问题中的已知量和未知量。

步骤二:根据已知量和未知量之间的关系,列出方程。

步骤三:解方程,求解未知量。

步骤四:检验解是否符合实际情况。

3. 典型行程问题案例分析。

案例一:一个人以60千米/小时的速度行驶,行驶了3小时,求他行驶的距离。

案例二:两辆火车相向而行,第一辆火车以40千米/小时的速度行驶,第二辆火车以50千米/小时的速度行驶,两火车相遇需要多长时间?三、教学重点与难点1. 教学重点:行程问题的基本概念,行程问题的解决步骤和方法。

2. 教学难点:行程问题的灵活应用和解决。

四、教学方法1. 采用讲解法,讲解行程问题的基本概念和解决方法。

2. 采用案例分析法,分析典型行程问题。

3. 采用互动教学法,引导学生积极参与,提高解决问题的能力。

小学奥数行程问题教案

小学奥数行程问题教案

小学奥数行程问题教案教案标题:小学奥数行程问题教案教学目标:1. 学生能够理解行程问题的基本概念,并能够应用基本的数学运算解决行程问题。

2. 学生能够培养逻辑思维和问题解决能力,通过解决行程问题提高数学思维能力。

3. 学生能够将数学知识与实际生活相结合,认识到数学在日常生活中的应用。

教学准备:1. 教师准备白板、黑板笔、教学PPT等教具。

2. 学生准备纸笔,课前复习相关知识。

教学过程:Step 1:导入(5分钟)教师通过引入一个简单的行程问题,如小明从家里骑自行车到学校,全程5公里,他骑了3公里后又骑了2公里,问他离学校还有多远?引导学生思考如何解决这个问题。

Step 2:概念讲解(10分钟)教师通过PPT或黑板向学生讲解行程问题的基本概念,如:行程是指从一个地方到另一个地方的路程;行程问题是指通过已知的行程信息,计算未知行程的问题等。

Step 3:解题方法(15分钟)教师通过示例向学生介绍解决行程问题的常用方法,如:方法一:已知行程之和求未知行程:未知行程 = 已知行程之和 - 已知行程。

方法二:已知行程之差求未知行程:未知行程 = 已知行程 - 已知行程之差。

Step 4:练习与讨论(20分钟)教师出示几个不同类型的行程问题,让学生自主尝试解答,并进行讨论。

教师可提供不同难度的问题,以满足不同学生的需求。

Step 5:拓展应用(10分钟)教师通过生活实例或趣味问题,引导学生将所学的行程问题应用到实际生活中,培养学生的数学思维能力。

Step 6:小结与反思(5分钟)教师对本节课的内容进行小结,并鼓励学生对自己的学习进行反思,总结所学的知识和方法。

Step 7:作业布置(5分钟)教师布置相关的作业,巩固学生对行程问题的理解和应用能力。

教学延伸:1. 鼓励学生自主解决更复杂的行程问题,提高解决问题的能力。

2. 引导学生通过编写自己的行程问题,交流分享,提高表达和交流能力。

3. 鼓励学生参加奥数竞赛,提高数学思维和解决问题的能力。

五年级奥数教案-12 行程问题(二)(第二课时) 全国通用

五年级奥数教案-12 行程问题(二)(第二课时) 全国通用

教案教材版本:实验版. 学校: .第二课时米,贝贝行了全程的一半少60米,也就是罗杰比贝贝多行了60×2=120米。

师:在相同的时间里,罗杰为什么会比贝贝多行120米?生:因为罗杰每分钟就比贝贝多行了70-50=20米。

师:那么你能求出什么?生:我知道了,我们能求出贝贝和罗杰两人在相遇所用的时间。

3.学生尝试解答。

教师巡视,关注学生的解答情况,以便讲解时又针对性。

线段图:答案:(60×2)÷(70-50)=6(分)(70+50)×6=720(米)答:贝贝和罗杰两家相距720米。

4.选男女生代表各一名汇报解题过程并讲解。

比一比,看哪位讲解的好。

同桌相互讲解,确保每个学生会做能讲。

5.教师小结。

师:同时从两地出发相向而行,第一次在中点旁相遇,可以求出两车的路程差,进而求出相遇的时间。

(三)大胆闯关1答案:(1000+200)÷8=150(米/秒)答:那么它的速度是每秒150米。

(四)大胆闯关3答案:(60-20)×6=240(米)答:高铁的车长是240米。

(五)大胆闯关4216×3=648(千米)648÷(40+32)=9(时)答:两车从出发到第二次相遇用了9小时。

五、课堂总结师:1.火车过桥完全通过:总路程=桥长+车长完全在桥上:总路程=桥长-车长2.追及问题时间=路程差÷速度差3.相遇问题时间=路程和÷速度和4.多次相遇第一次相遇:路程和=全程第二次相遇:路程和=3×全程第三次相遇:路程和=5×全程。

行程问题教案(共五篇)

行程问题教案(共五篇)

行程问题教案(共五篇)第一篇:行程问题教案课题名称:行程问题教学目标:1:理解相遇、追及问题的中路程、时间、速度的关系2:能准确地画出线段图3:能结合线段图来抓住路程时间速度的关系来求解教学重点与难点:1:掌握把题意转化为线段图来解题2:掌握相遇、追及、行程问题中时间、路程、速度的数理关系教学内容知识点一:相遇问题1:两个物体在同一路段上两个不同的地点相对而行时,如果同时到达某一地点,通常叫做相遇。

2:基本公式:速度和×相遇时间=距离3:解题时的关键在于理清运动过程,抓住两者同时行驶的路程及速度和,同时结合线段图求解。

例题1:例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?分析与解答:这是一道相遇问题。

所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。

(基本相遇问题)练习:1,一辆货车和一辆客车同时从相距450千米的两地相向而行,货车每小时行40千米,客车每小时行50米,问:几小时后两车在途中相遇?2.两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。

两地间的水路长多少千米?3.辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。

8小时后两车相距多少千米?例2:小明住东村,小牛住西村,小明和小牛同时从东村、西村出发到对方家走去,2小时后在途中相遇,小明每小时走3千米,小牛每小时走4千米,东西村相距多少千米?练习二:1,甲车每小时行50千米,乙车每小时行60千米,两车同时从两地相对开出,经过3小时两车可以相遇,两地之间相距多少千米?2,两辆汽车从相距450公里的两地相对开出,3小时后相遇,一辆汽车的速度是每小时80公里,求另一辆汽车的速度?课后作业:1、小明家和小牛家相距14千米,星期六小明和小牛同时从自己家出发向对方家里走去,小明每小时行3千米,小牛每小时走4千米,经过几小时两人在途中相遇?2、甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。

小学奥数行程问题(相遇问题)(教师版)

小学奥数行程问题(相遇问题)(教师版)

1行程之相遇问题1、通过小组合作、自主探究,使学生知道速度的表示法;理解和掌握行程问题中速度、时间、路程三个数量的关系。

2、通过课堂上的合作学习、汇报展示、互动交流,提高学生分析处理信息的能力,培养学生解决实际问题的能力。

3、让学生通过提出问题、解决问题,感受数学来源于生活,在交流评价中培养学生的自信心,体验到成功的喜悦。

甲从A 地到B 地,地,乙从乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A,B 之间这段路程,如果两人同时出发,那么之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程相遇路程=甲走的路程++乙走的路程=甲的速度×相遇时间乙走的路程=甲的速度×相遇时间++乙的速度×相遇时间速度×相遇时间=(甲的速度=(甲的速度++乙的速度)×相遇时间乙的速度)×相遇时间=速度和×相遇时间=速度和×相遇时间. .一般地,相遇问题的关系式为:速度和×相遇时间一般地,相遇问题的关系式为:速度和×相遇时间==路程和。

路程和。

解决行程问题,常常要借助于线段图。

解决行程问题,常常要借助于线段图。

1: 两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。

5小时后,两列火车相距多少千米?(适于五年级程度)解:此题的答案不能直接求出,先求出两车5小时共行多远后,从两地的距离480千米中,减去两车5小时共行的路程,所得就是两车的距离。

480-(40+42)×5=480-82×5=480-410=70(千米)答:5小时后两列火车相距70千米。

2:两个城市之间的路程是500千米,一列客车和一列货车同时从两个城市相对开出,客车的平均速度是每小时55千米,货车的平均速度是每小时45千米。

两车开了几小时以后相遇?(适于五年级程度)解:已知两个城市之间的路程是500千米,又知客车和货车的速度,可求出两车的速度之和。

行程问题小升初奥数综合教案及练习

行程问题小升初奥数综合教案及练习

行程问题(一)教学目标:1. 理解行程问题的基本概念和基本公式。

2. 掌握行程问题的解题方法和技巧。

3. 培养学生的逻辑思维能力和解决问题的能力。

教学内容:1. 行程问题的基本概念:行程、速度、时间、路程。

2. 行程问题的基本公式:路程=速度×时间,时间=路程÷速度,速度=路程÷时间。

3. 行程问题的解题方法和技巧。

教学步骤:1. 引入行程问题的概念,让学生了解行程问题的基本元素:行程、速度、时间、路程。

2. 讲解行程问题的基本公式,让学生理解路程、时间、速度之间的关系。

3. 通过例题讲解行程问题的解题方法和技巧,让学生学会如何解决行程问题。

4. 练习题:让学生运用所学的知识和技巧解决实际问题。

教学评价:1. 课堂讲解:评价学生对行程问题基本概念和公式的理解程度。

2. 练习题解答:评价学生对行程问题解题方法和技巧的掌握程度。

行程问题(二)教学目标:1. 理解行程问题的基本概念和基本公式。

2. 掌握行程问题的解题方法和技巧。

3. 培养学生的逻辑思维能力和解决问题的能力。

教学内容:1. 行程问题的基本概念:行程、速度、时间、路程。

2. 行程问题的基本公式:路程=速度×时间,时间=路程÷速度,速度=路程÷时间。

3. 行程问题的解题方法和技巧。

教学步骤:1. 引入行程问题的概念,让学生了解行程问题的基本元素:行程、速度、时间、路程。

2. 讲解行程问题的基本公式,让学生理解路程、时间、速度之间的关系。

3. 通过例题讲解行程问题的解题方法和技巧,让学生学会如何解决行程问题。

4. 练习题:让学生运用所学的知识和技巧解决实际问题。

教学评价:1. 课堂讲解:评价学生对行程问题基本概念和公式的理解程度。

2. 练习题解答:评价学生对行程问题解题方法和技巧的掌握程度。

行程问题(三)教学目标:1. 理解行程问题的基本概念和基本公式。

2. 掌握行程问题的解题方法和技巧。

小学奥数之行程问题综合型详解教案

小学奥数之行程问题综合型详解教案

小学奥数之行程问题综合型详解教案行程问题综合性详解一、知识详解行程问题核心公式:S=V×T,因此总结如下:1、当路程一定时,速度和时间成反比2、当速度一定时,路程和时间成正比3、当时间一定时,路程和速度成正比从上述总结衍生出来的很多总结如下:4、追及问题:路程差÷速度差=时间5、相遇问题:路程和÷速度和=时间6、流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2船速=(顺水速度+逆水速度)÷27、电梯问题:S=(人与电梯的合速度)×时间8、平均速度:V平=总路程S总÷总时间T总二、典例分析基础1、北京到天津的距离是138千米,甲、乙两人同时从两地出发,甲每小时行48千米,乙每小时行44千米,他们几小时能相遇?2、一辆汽车,从甲地到乙地。

如果每时行45千米,就要晚0.5时到达,如果每时行50千米,就可提前0.5时到达。

问甲、乙两地相距多少千米?4.4时,乘大客车要用几时?4、甲、乙两列火车同时从A、B两城相向开出,4小时相遇。

相遇时,两车所行路程的比是3:4,已知乙车每时行60千米,求A、B 两城相距多少千米?5、李明开车从甲地到乙地,3时行驶330千米,照这样计算,还需5时就可以到达乙地,甲乙两地相距多少千米?拔高6、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。

他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?(核心公式:时间=路程÷速度)解法一:逐步考虑去时:T=返回:T’=T总=解法二:整体思考全程共计:去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:所以总的时间为:7、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。

小学五年级奥数教案--第28讲-行程问题(一)

小学五年级奥数教案--第28讲-行程问题(一)

第28讲行程问题(一)一、专题简析:行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。

行程问题的主要数量关系是:路程=速度×时间。

知道三个量中的两个量,就能求出第三个量。

例1 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇,东、西两地相距多少千米?练习一1、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。

学校到少年宫有多少米?2、一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。

甲、乙两地相距多少千米?例2快车和慢车同时从甲、乙两地相向开出,乙车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?练习二1、兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

弟弟每分钟行多少米?2、汽车从甲地开往乙地,每小时行32千米。

4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地?例3 甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。

求东、西两村相距多少千米?练习三1、甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。

甲到达B地后立即返回A地,在离B地3.2千米处与乙相遇。

A、B两地间的距离是多少千米?2、小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米。

30分钟后小平到家,到家后立即原路返回,在离家350千米处遇到小红。

小红每分钟走多少千米?例4 甲、乙两车早上8点分别从A、B两地同时出发相向而行,到10点时两车相距112.5千米。

五年级奥数,行程问题,教案

五年级奥数,行程问题,教案
□特别满意□满意
□ 一般□差
学牛签字:
教师评定:
1学生上次作业评价:
□好
□较好
□ 一般
□差
2、学生本次上课情况评价:
□好
□较好
□ 一般
教师签字:
□差
附:跟踪回访表家长(学生源自反馈意见:学生阶段性情况分析:
自我总结及调整措施:
主任签字:
学习必备欢迎下载
追及问题中有三个基本的数量关系:
速度差X追及时间=追击距离
追及距离+速度差=追及时间
追及距离+追及时间=速度差
在解答追及问题时,首先应明确这类问题是有 定规律的, 追赶者所用的 时间与被迫追赶者的所用的时间是相等的, 都等于追击时间。抓住这个不变的 量是解题的关键。
本次课后作业:
课后小记:
学生对于本次课的评价:
武汉龙文教育学科辅导教案
学生
教师
学科
时间
星期
时间段
教学目标:
行程问题公式在应用题中的运用
教学重难点:
行程问题公式的换算。
教学流程及授课提纲
知识概括:
有两个人冋时冋方向行走,一个走得快,一个走得慢,当走得慢的人在前, 走得快的人过了一段时间就能追上他, 这就产生了追及问题。起始走得慢的人 在走的快的人的前面的距离,就是走得快的人要追及的距离,被称为追及问题。

五年级奥数培优行程问题综合教案

五年级奥数培优行程问题综合教案

行程问题教学目标:①知识与技能目标:使学生学会分析等量关系,并能解答行程问题②过程与方法目标:让学生在探索、认识行程问题的过程中理解运用数量关系的公式解决问题,帮助学生建立行程问题的概念③情感态度与价值观目标:懂得我们每天在学习无时无刻与困难相遇,我们要勇敢的面对并战胜它教学重点:把题意转化为线段图来解题教学难点:掌握追及行程问题中的时间,路程,速度的数量关系[知识引领与方法]追及问题:路程差÷速度差=追及时间(时间)行程问题(二)[例题精选及训练]【例1】货车和客车同时从东西两地相向而行,货车每小时行驶48千米,客车每小时行驶42千米,两车在离中点18千米处相遇。

求东西两地相距多少千米?提示:由条件“货车每小时行驶48千米,客车每小时行驶42千米”可知货车、客车的速度和是48+42=90千米,由于货车比客车速度快,当货车过了中点又行驶了18千米时,客车距中点还有18千米,因此客车比货车多行驶18×2=36千米。

因为货车每小时比客车多行驶48-42=6千米,这样货车多行驶36千米需要36÷6=6小时,即两车相遇的时间。

所以两地相距90×6=540千米。

练习:1.甲、乙两人同时分别从两地骑车相向而行,甲每小时行驶20千米,乙每小时行驶18千米。

两人相遇时距全程中点3千米。

求全程长多少千米?2.甲、乙两辆汽车同时从东、西两城相向开出,甲车每小时行驶60千米,乙车每小时行驶56千米,两车距中点16千米处相遇。

求东、西两城相距多少千米?3.快车和慢车同时从南、北两地相对开出。

已知快车每小时行驶40千米,经过3小时后,快车已驶过中点25千米,这时与慢车还相距7千米。

慢车每小时行驶多少千米?【例2】甲乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行驶13千米,乙步行每小时走5千米,几小时后甲可以追上乙?提示:这是一道追及问题。

根据题意,甲追上乙时,比乙多行驶了24千米(路程差)。

《行程问题》教学设计(精选5篇)

《行程问题》教学设计(精选5篇)

《行程问题》教学设计《行程问题》教学设计(精选5篇)作为一位优秀的人民教师,通常需要准备好一份教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。

教学设计应该怎么写才好呢?以下是小编帮大家整理的《行程问题》教学设计(精选5篇),希望对大家有所帮助。

《行程问题》教学设计1教学要求:1.能通过画线段图或实际演示,理解什么是”同时出发“”相向而行“、”相遇“等术语,形成空间表象。

2.弄通每经过一个单位时间,两个物体之间的距离变化。

3.掌握两个物体运动中,速度、时间、路程之间的数量关系,会根据此数量关系解答求路程的相遇应用题。

能用不同方法解答相遇求路程的应用题,培养学生的求异思维能力。

4.通过阐明数学在日常生活的广泛应用,激发学生学习数学的兴趣。

教学重点:掌握相遇问题的结构特点,弄通每经过一个单位时间两物体的变化,并能根据速度、时间、路程的数量关系解相遇求路程的应用题。

教学难点:理解行程问题中的”相遇求路程“的解题思路。

教学过程:一、激发1.口答:(1)张华从家到学校每分钟走60米,3分钟走多少米?(2)汽车每小时行40千米,6小时行多少千米?要求:读题列出算式并说出数量关系。

板书:速度×时间=路程提问:这两题研究的是什么?2.揭题:以前研究的行程应用题,是指一个物体、一个人的运动情况,今天我们根据这个数量关系研究两个物体或两个人运动的一种情况。

(板书:应用题)二、尝试1.出示准备题:张华家距李诚家390米,两人同时从家里出发向对方走去。

李诚每分钟走60米,张华每分钟走70米。

(1)读题看线段图,汇报你知道了什么?(回答:这题是两个人同时出发,对着而行;是两个人共同走这段路程的。

)60米60米70米70米张华李诚390米(2)边看演示边说明:象这样两个人对着而行,我们叫它相向而行或相对而行。

(3)看多媒体或实物演示:汇报你发现了什么?(1分钟,张华走了60米,李诚走了70米;2分钟张华走了120米,李诚走了140米,两人的路程和是260米,两人还距离130米;两人走3分钟分别走了180米、210米,两人间的距离变成了0米。

五年级奥数培优行程问题综合教案

五年级奥数培优行程问题综合教案

行程问题教学目标:①知识与技能目标:使学生学会分析等量关系,并能解答行程问题②过程与方法目标:让学生在探索、认识行程问题的过程中理解运用数量关系的公式解决问题,帮助学生建立行程问题的概念③情感态度与价值观目标:懂得我们每天在学习无时无刻与困难相遇,我们要勇敢的面对并战胜它教学重点:把题意转化为线段图来解题教学难点:掌握追及行程问题中的时间,路程,速度的数量关系[知识引领与方法]追及问题:路程差÷速度差=追及时间(时间)行程问题(二)[例题精选及训练]【例1】货车和客车同时从东西两地相向而行,货车每小时行驶48千米,客车每小时行驶42千米,两车在离中点18千米处相遇。

求东西两地相距多少千米?提示:由条件“货车每小时行驶48千米,客车每小时行驶42千米”可知货车、客车的速度和是48+42=90千米,由于货车比客车速度快,当货车过了中点又行驶了18千米时,客车距中点还有18千米,因此客车比货车多行驶18×2=36千米。

因为货车每小时比客车多行驶48-42=6千米,这样货车多行驶36千米需要36÷6=6小时,即两车相遇的时间。

所以两地相距90×6=540千米。

练习:1.甲、乙两人同时分别从两地骑车相向而行,甲每小时行驶20千米,乙每小时行驶18千米。

两人相遇时距全程中点3千米。

求全程长多少千米?2.甲、乙两辆汽车同时从东、西两城相向开出,甲车每小时行驶60千米,乙车每小时行驶56千米,两车距中点16千米处相遇。

求东、西两城相距多少千米?3.快车和慢车同时从南、北两地相对开出。

已知快车每小时行驶40千米,经过3小时后,快车已驶过中点25千米,这时与慢车还相距7千米。

慢车每小时行驶多少千米?【例2】甲乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行驶13千米,乙步行每小时走5千米,几小时后甲可以追上乙?提示:这是一道追及问题。

根据题意,甲追上乙时,比乙多行驶了24千米(路程差)。

小学奥数五年级讲义第五讲行程问题

小学奥数五年级讲义第五讲行程问题

第五讲 行程问题一、教学目标1、学习复杂平均速度的求法;2、理解行程问题中的比列;3、学习发车间隔问题二、知识体系行程中的比例多次相遇、多人相遇环形跑道问题 发车间隔 (四升五暑假) 流水行船 (四升五暑假)火车过桥 (四年级春季)平均速度 (四年级秋季)简单的相遇追及问题 (三、四年级)三、知识要点1、相遇问题: 路程和=速度和×相遇时间 ;追及问题:追及距离=速度差×追及时间2、平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度×总时间3、发车间隔问题(把握三个点)①相邻两辆车的距离=汽车速度×发车间隔时间②每隔一个固定时间就有一辆车和人相遇:相邻两辆车的距离=(人的速度+汽车速度)×固定时间③每隔一个固定时间就有一辆车追上人相邻两辆车的距离=(汽车速度-人的速度)×固定时间例题详解【例1】申老师在黄浦江上练习划龙舟,从A点出发,到200千米外的B点去,前80千米的平均速度为40千米/时,要想使全程的平均速度为50千米/时,剩下的路程应以什么速度行驶?【例2】小彭老师要跑24公里,他先以平均每小时8千米的速度跑完这段距离的三分之二,而后加大速度,问:能否在跑完剩下路程时,使全程的平均速度提高到12千米/小时?【例3】彭老师为了锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回。

假设彭老师在平路上每小时行4千米,上山每小时3千米,下山每小时6千米。

求每天彭老师锻炼要走多少米?【例4】喜羊羊和灰太狼之间距离,灰太狼要跑568步。

如果灰太狼跑9步的时间喜羊羊跑7步,灰太狼跑5步的距离等于喜羊羊4步的距离。

那么它们同时相向而行,相遇时灰太狼跑了多少步?喜羊羊跑了多少步?【例5】甲每分钟走50米,乙每分钟走60米,丙每分钟走60米,丙每分钟走70米。

甲、乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,A、B两地相距多少米?【例6】真真放学后,沿着某条公共汽车路线以不变速度步行回家。

2023-2024学年五年级下学期数学行程(1)(教案)

2023-2024学年五年级下学期数学行程(1)(教案)

20232024学年五年级下学期数学行程(1)(教案)一、教学内容本节课的教学内容主要包括教材第五章第一节《行程》的相关概念和计算方法。

通过本节课的学习,学生将掌握行程的定义、行程的基本公式及其应用。

二、教学目标1. 让学生理解行程的概念,掌握行程的计算方法。

2. 培养学生的逻辑思维能力和解决实际问题的能力。

3. 提高学生的数学素养,使他们在生活中能够运用数学知识解决行程问题。

三、教学难点与重点1. 教学难点:行程公式的理解和应用,以及解决实际行程问题。

2. 教学重点:行程概念的掌握,行程公式的记忆和应用。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。

2. 学具:笔记本、尺子、圆规。

五、教学过程1. 实践情景引入:以火车行驶为例,让学生观察并描述火车的行程。

2. 概念讲解:介绍行程的定义,解释行程的基本公式。

3. 例题讲解:讲解行程的计算方法,引导学生运用行程公式解决问题。

4. 随堂练习:布置具有代表性的练习题,让学生独立完成,并及时给予反馈和讲解。

5. 小组讨论:让学生分组讨论实际行程问题,培养学生的合作意识。

六、板书设计1. 行程的定义2. 行程公式3. 行程公式的应用七、作业设计1. 请用一句话描述行程的概念。

2. 请写出一个行程公式,并解释其含义。

八、课后反思及拓展延伸1. 课后反思:本节课通过实践情景引入,让学生更好地理解了行程的概念。

在讲解行程公式时,注重了学生的参与和互动,提高了他们的学习兴趣。

在布置作业时,注重了题目的多样性和实际意义,有助于巩固所学知识。

2. 拓展延伸:让学生调查生活中的行程问题,如步行、骑车、坐车等,并尝试用所学的行程知识解决问题。

重点和难点解析实践情景引入的环节是我特别重视的部分。

我认为,通过结合实际情境来引入新知识,可以有效地激发学生的兴趣和好奇心。

例如,在讲解行程概念时,我选择了火车行驶作为实例,让学生观察并描述火车的行程。

这样不仅能够让学生对行程有一个直观的理解,还能够让他们意识到数学与实际生活的紧密联系。

2023-2024学年五年级下学期数学行程(四)(教案)

2023-2024学年五年级下学期数学行程(四)(教案)

2023-2024学年五年级下学期数学行程(四)(教案)教学内容本节课主要围绕行程问题中的相遇和追及问题进行深入探讨。

通过具体实例,引导学生理解相遇和追及问题中的基本概念,掌握求解相遇和追及问题的基本方法。

同时,通过分析行程问题的变化,提高学生解决复杂行程问题的能力。

教学目标1. 理解并掌握相遇和追及问题的基本概念。

2. 学会运用基本方法求解相遇和追及问题。

3. 培养学生分析问题、解决问题的能力。

4. 培养学生的合作意识和团队精神。

教学难点1. 相遇和追及问题的基本概念的理解。

2. 求解相遇和追及问题的基本方法的掌握。

3. 复杂行程问题的分析和解决。

教具学具准备1. 教师准备:PPT、行程问题实例、练习题。

2. 学生准备:笔记本、文具。

教学过程1. 导入:通过PPT展示行程问题的实例,引导学生回顾行程问题的基本概念。

2. 新课:讲解相遇和追及问题的基本概念,通过实例演示求解方法。

3. 实例讲解:分析行程问题的变化,引导学生学会解决复杂行程问题。

4. 课堂练习:学生分组进行练习,巩固所学知识。

5. 讨论与分享:学生分组讨论,分享解题心得。

6. 总结:对本节课所学内容进行总结,强调重点和难点。

板书设计1. 2023-2024学年五年级下学期数学行程(四)2. 目录:教学内容、教学目标、教学难点、教具学具准备、教学过程、板书设计、作业设计、课后反思3. 正文:根据教学过程进行板书设计,突出重点和难点。

作业设计1. 书面作业:布置与相遇和追及问题相关的练习题。

2. 实践作业:让学生观察生活中的行程问题,尝试用所学知识解决。

课后反思1. 教师应反思教学过程中学生的接受程度,及时调整教学方法。

2. 教师应关注学生在课堂上的表现,鼓励学生积极参与讨论。

3. 教师应总结本节课的教学效果,为下一节课做好准备。

通过本节课的学习,希望学生能够掌握相遇和追及问题的基本概念和求解方法,提高解决复杂行程问题的能力,培养合作意识和团队精神。

五年级《行程问题》奥数教案

五年级《行程问题》奥数教案

备课教员:第五讲行程问题一、教学目标:1、能通过画线段图或实际演示,理解什么是“同时出发”、“相向而行”、“相遇”等术语,形成空间表象。

2、掌握两个物体运动中,速度、时间、路程之间的数量关系,会根据此数量关系解答求路程的相遇应用题。

能用不同方法解答相遇求路程的应用题,培养学生的求异思维能力。

3、通过阐明数学在日常生活的广泛应用,激发学生学习数学的兴趣。

二、教学重点:掌握相遇问题的结构特点,弄懂每经过一个单位时间两物体的变化,并能根据速度、时间、路程的数量关系解相遇求路程的应用题。

三、教学难点:理解行程问题中的“相遇求路程”的解题思路四、教学准备:PPT五、教学过程:第一课时(40分钟)一、外星游记(5分钟)师:老师遇到了困难,需要同学们帮忙,你们要不要帮忙?生:要。

师:今天我和妈妈打赌,晚上回家我要和她同时到家,但是我妈妈比我下班早。

生:那老师可以走得比老师妈妈快点。

师:那要快多少呢,我妈妈平时一分钟能走40米,她的公司到家里有1000米,而且她是5点钟下班的,我到家的距离是810米,我是5点10分下班。

生:不知道。

师:那你们想到了再告诉我好不好?生:好。

师:今天我们学习的课题与我这个问题有关。

【出示课题:行程问题】二、星海遨游(30分钟)(一)星海遨游1(10分钟)甲、乙两地相距450千米,快慢两列火车同时从两地相向开出。

3小时后两车在距中点12千米处相遇,快车每小时比慢车每小时快多少千米?师:快车和慢车同时从两地相向开出,3小时后两车距中点12千米处相遇,哪辆车行得更多?生:快车。

师:快车多行了多少呢?生:多行了12×2=24(千米)师:这里要计算快车每小时比慢车每小时快多少千米,那我们是不是只要用快车比慢车多行的距离除以时间就能算出了?生:是。

板书:12×2=24(千米)24÷3=8(千米)答:快车每小时比慢车每小时快8千米。

(一)星海历练1(5分钟)甲乙两辆摩托车同时从东与西两地相向开出,甲每小时行40千米,乙每小时行32千米,两车在距中点8千米处相遇,东西两地相距多少千米?分析:甲乙两车同时从两地相向开出,两车在距中点8千米处相遇。

五年级《行程问题(四)流水》奥数教案

五年级《行程问题(四)流水》奥数教案

(五年级)备课教员:第二讲行程问题(四)流水一、教学目标:知识目标1.理解顺水速度、逆水速度、静水速度及水流速度等量的含义,掌握各量间的关系。

2.准确运用公式解流水行船问题。

能力目标初步养成独立思考、自主探究、合作交流的学习方式。

情感目标感受数学的趣味性,从情境中感悟数学的美。

二、教学重点:顺水速度、逆水速度、静水速度及水速等数量间的关系,流水行船问题的解题方法三、教学难点:准确理清顺水速度、逆水速度、静水速度及水速等数量间的关系。

四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:让学生了解流水行船问题的概念,从具体情境中掌握,理解并区分什么是顺水速度、逆水速度、静水速度、水流速度等。

】师:同学们,你们观察过水面吗?当一片叶子掉进水里,叶子会漂得越来越远,而且是顺着一个方向一直飘走,为什么呢?生:因为水在流动。

师:是的,水自己在流动,是有一定的速度,这是水自己的速度,我们把它叫做水流速度。

记住了吗?生:记住了。

师:船如果在静止的水中航行,这个时候船航行的速度我们把它叫做静水速度,也可以叫做船速,明白吗?生:……师:现在老师给你们看一个小动画(点击PPT),这是一艘小船,蓝色部分代表的是水,从左往右代表顺水的方向。

我们先看第一个动画。

(播放PPT)师:我们看到小船从左往右走,是顺着水流动的方向的,我们叫做顺水航行,速度叫做顺水速度,船的速度与水的速度是同一个方向,那么顺水速度就等于静水速度加水流速度。

能理解吗?生:……师:那我们再来看另一个动画,(播放PPT)从右往左逆着水流航行,船的行驶速度会不会变慢?生:……师:所以逆水速度=静水速度-水流速度。

那么通过这个公式我们还可以引申出更多的公式,这就是我们这节课要学习的。

【探究新知,引入新课:我们已经学过了追及相遇问题,了解路程=速度×时间这个公式,也学会运用它的变式,这节课我们要深入学习行程问题中的另一个题型:流水行船问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学五年级-奥数--行程问题第二十四讲行程问题---相遇问题例1:甲乙两人分别从相距27.3千米的两地同时出发相向而行,甲每小时走6.2千米,乙每小时走4.3千米。

两人几小时后相遇?练习 1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18.5千米,乙船每小时行驶15.6千米,经过6小时两船在途中相遇。

两地间的水路长多少千米?2,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。

两车出发后多少小时相遇?3、一列快车和一列慢车分别从甲乙两地同时相向而行。

快车10小时可以到达乙地,慢车15小时可以到达甲地。

已知快车每小时比慢车多行20千米,两车出发后几小时相遇?例2 甲、乙两车同时从东、西两地相向开出,甲车每小时行56.4千米,乙车每小时行48.6千米。

两车在距中点42.9千米处相遇,东、西两地相距多少千米?练习1.甲、乙两汽车同时从两地出发,相向而行。

甲汽车每小时行52.6千米,乙汽车每小时行55.4千米,两车在距中点16.8千米处相遇。

求两地之间的路程是多少千米?2.一辆汽车和一辆摩托车同时从A、B两城相对开出,汽车每小时行62.5千米,摩托车每小时行70千米,当摩托车行到两地中点处时,与汽车还相距30千米。

求A、B两城之间的距离?3.甲乙两地相距60千米,甲乙两人都骑自行车从A城同时出发,甲比乙每小时慢4千米,乙到B城当即折返,于距B城12千米处与甲相遇,那么甲的速度是多少?例3 快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?练习 1、兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

弟弟每分钟行多少米?2.汽车从甲地开往乙地,每小时行32千米。

4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地?3、甲乙两车同时从A、B两地相对开出,4小时后相遇,甲车再开3小时到达B地。

已知甲车每小时比乙车快20千米,则A、B两地相距多少千米?作业1、甲,乙两辆汽车同时从东西两城相向开出,甲车每小时行60千米,乙车每小时行56千米,两车在距中点16千米处相遇.东西两城相距多少千米?2、.甲、乙两辆汽车同时从东西两城相向开出,甲车每小时行84千米,乙车每小时行68千米,两车在距中点32千米处相遇.东西两城相距多少千米?3、.一辆客车和一辆货车同时从甲,乙两地相向而行.客车每小时行80千米,货车每小时行65千米。

货车先行51千米后客车才出发,结果两车正好在甲乙两地中点相遇,这时客车行了多少千米?4、甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需3小时,乙车到达A城需6小时,问:两车出发后多长时间相遇?例4:甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。

求东、西两村相距多少千米?练习:1、甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。

甲到达B 地后立即返回A地,在离B地3.2千米处与乙相遇。

A、B两地间的距离是多少千米?2、小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米。

30分钟后小平到家,到家后立即原路返回,在离家350米处遇到小红。

小红每分钟走多少米?3、甲、乙二人上午7时同时从A地去B地,甲每小时比乙快8千米。

上午11时甲到达B地后立即返回,在距B地24千米处与乙相遇。

求A、B两地相距多少千米?例5:甲、乙两车早上8时分别从A、B两地同时相向出发,到10时两车相距112.5千米。

两车继续行驶到下午1时,两车相距还是112.5千米.A、B两地间的距离是多少千米?练习1:甲、乙两车分别从A、B两地同时相向出发,3小时后,两车还相距120千米。

又行3小时,两车又相距120千米.A、B两地间的距离是多少千米?2、快、慢两车早上6时分别从甲、乙两地同时相向出发,中午12时两车还相距50千米。

两车继续行驶到下午14时,两车又相距170千米.甲、乙两地间的距离是多少千米?3、甲、乙两车分别从A、B两地同时相向出发,8小时相遇。

相遇后两车继续行驶,3小时后两车相距360千米.。

A、B两地间的距离是多少千米?作业1、甲、乙两车从A、B两地同时相向而行,甲车每小时行40千米,乙车每小时行35千米,两车在距中点15千米处相遇。

A、B两地相距多少千米?2、甲乙相距640千米,两辆汽车同时从甲地开往乙地,第一辆汽车每小时行46千米,第二辆汽车每小时行34千米,第一辆汽车到达乙地后立即返回,两辆汽车从开出到相遇共用了几小时?3、甲乙两车同时从东站开往西站。

甲车每小时比乙车多行12千米,甲车行驶4.5小时后到达西站,立即沿原路返回,在距西站31.5千米与乙车相遇,甲车每小时行多少千米?4、两汽车同时从A、B两地相对开出,快车每小时行59千米,慢车每小时行43千米,相遇时,快车比慢车多行96千米,AB两地间的距离是多少千米?5、甲、乙两人同时从A地到B地,甲每分钟比乙多走160米,甲走了27.2分钟后到达B地,立即原路返回,在离B地3.2千米处与乙相遇。

甲每分钟行多少米?6、甲乙两车同时从东西两城同时出发,相向而行,6小时相遇,若两车速度各增加6千米,则5.4小时相遇。

东西两城相距多少千米?7、甲、乙两人同时从A、B两地相向走来,甲每小时走6千米,相遇后,乙再走9千米到A地,甲再走2小时到B地,乙每小时走多少千米?8、小红、小华两人同时从A、B两地相向走来,小红每分走80米,小华每小时走96米,两人相遇后,小华又行了5分钟到达A地,相遇后小红多少分钟到达B地?例4:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。

如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?练习四1,甲乙两队学生从相隔18千米的两地同时出发相向而行。

一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。

甲队每小时行5千米,乙队每小时行4千米。

两队相遇时,骑自行车的同学共行多少千米?2,A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。

一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。

这样一直飞下去,燕子飞了多少千米,两车才能相遇?3、两队同学同时从相距30千米的甲、乙两地相向出发,一只鸽子以每小时20千米的速度在两队同学之间不断往返送信。

如果鸽子从同学们出发到相遇共飞行了30千米,而甲队同学比乙队同学每小时多走0.4千米,求两队同学的行走速度。

例5:甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?练习五:1,甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米?2,甲每小时行9千米,乙每小时行7千米,甲从南庄向南行,同时乙从北庄向北行。

经过3小时后,两人相隔60千米。

南北两庄相距多少千米?3,东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米。

两人的速度各是多少?例6、甲乙两车从相距104千米的两地出发去货场取货(乙车在前)。

甲车每小时行64千米,乙车每小时行48千米。

途中甲车出故障停车修理半小时,甲乙两车相遇时各行了多少千米练习六:1、甲乙两地相距384千米,两辆汽车从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。

甲车开出64千米后,两车才出发,再经过几小时两车相遇?2、两个修路队共修长450米的公路,甲队每天修15米,乙队每天修13米,甲队先修2天后,再和乙队合作,还要多少天才能完成?提高练习:1、东西两镇相距30千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的3倍,3小时后两人相距86千米。

两人的速度各是多少?2、甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。

一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?3、甲乙两地相距352千米。

甲乙两汽车从甲、乙两地对开,甲车每小时行36千米,乙车每小时行44千米。

乙车因事,在甲车开出32千米后才出发。

两车从各自出发起到相遇时,哪辆车走的路程多?多多少千米?4、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两地的距离是多少千米?5、小明与妈妈同时从家出发去距家810千米的电影院看电影。

小明心急,先以每分钟54米的速度跑到电影院,发现票还在妈妈手上,所以马上以原速返回,又在5分钟后与妈妈在路上相遇。

问:妈妈每分钟走多少米?.熟悉追及问题的三个基本公式:路程差=速度差×追及时间;速度差=路程差÷追及时间;追及时间=路程差÷速度差例1:甲乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行13千米,乙步行每小时走5千米。

几小时后甲可以追上乙?1、解放军某部从营地出发,以每小时6千米的速度向目的地前进,8小时后部队有急事,派通讯员骑摩托车以每小时54千米的速度前去联络。

多长时间后,通讯员能赶上队伍?2、小华和小亮的家相距380米,两人同时从家中出发,在同一条笔直的路上行走,小华每分钟走65米,小亮每分钟走55米。

3分钟后小华追上小亮吗?此时两人相距多少米?例2 骑车人与行人同一条街同方向前进,行人在骑自行车人前面50米处,行人每分钟步行60米,两人同时出发,3分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米?1、甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,乙起飞时甲已飞出300千米,甲机每小时行300千米,乙2小时后追上甲飞机,乙飞机每小时飞行多少千米?2、一艘敌舰在离我海防哨所6千米处,以每分钟400米的速度逃走,我快艇立即从哨所出发,10分钟后追上敌舰。

我快艇的速度是每分钟多少米?例3 两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63千米,第一辆汽车先行一会后,第二辆汽车才出发,12小时后追上第一辆车,问第二辆汽车出发时相距第一辆汽车多少千米?1、甲乙两人分别从A村和B村同时向东而行,甲骑车每小时行14千米,乙步行每小时行5千米,2小时后甲追上乙。

相关文档
最新文档