人教版九年级数学下册第27章测试题及答案

合集下载

人教版九年级数学下册第二十七章测试题(含答案)

人教版九年级数学下册第二十七章测试题(含答案)

人教版九年级数学下册第二十七章测试题(含答案)题号一二三算计得分一、选择题(1.观察以下每组图形,相似图形是(C),A),B),C),D)2.在比例尺为1∶900000的安徽黄山交通图中,黄山景色区与市政府所在地之间的距离是4 cm,这两地的实践距离是(D)A.2250 km B.3.6 km C.2.25 km D.36 km3.以下各组线段中,不是成比例线段的是(B)A.3,6,2,4 B.4,6,5,10 C.1,2,10, 5 D.2,5,15,2 34.如图,直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,假定ABBC=12,那么DEEF等于(B)A.13 B.12 C.23D.1,第4题图),第5题图),第6题图),第7题图)5.如图,点F在ABCD的边AB上,射线CF交DA的延伸线于点E,那么与△AEF相似的三角形有(C)A.0个B.1个C.2个D.3个6.如图,身高为1.7 m的小明AB站在河的一岸,应用树的倒影去测量河BD的宽度,CD在水中的倒影为C′D,A,E,C′在一条直线上,树CD的高度为5.1 m,BE=3 m,那么河BD的宽度是(B)A.9 m B.12 m C.15 m D.18 m7.如图,在△ABC中,DE∥BC,DB=2AD,△ADE的面积为1,那么四边形DBCE的面积为(D)A.3 B.5 C.6 D.88.(2021·黔西北模拟)如图,△DEF是由△ABC经过位似变换失掉的,点O 是位似中心,D,E,F区分是OA,OB,OC的中点,那么△DEF与△ABC的面积比是(B)A.1∶2 B.1∶4 C.1∶5 D.1∶69.E(-4,2),F(-1,-1),以原点O为位似中心,按相似比2∶1把△EFO 缩小,那么点E的对应点E′的坐标为(B)A.(2,-1)或(-2,1) B.(8,-4)或(-8,4)C.(2,-1) D.(8,-4)第8题图第10题图第11题图如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14CD,以下结论中正确的个数为(B)①∠BAE=30°;②△ABE∽△AEF;③AE⊥EF;④△ADF∽△ECF.A.1个B.2个C.3个D.4个二、填空题(每题4分,共24分)11.如图,在△ABC中,D是AB边上一点,衔接CD,请添加一个条件__∠B =∠ACD或∠ACB=∠ADC或AC2=AD·AB__使△ABC∽△ACD.(只填一个即可)12.△ABC∽△A′B′C′,且AB∶A′B′=3∶4,△A′B′C′的周长是16 cm,那么△ABC的周长是__12__cm__.13.如图,假定五边形ABCDE与五边形A′B′C′D′E′位似,对应边CD=2,C′D′=3.假定位似中心O到A的距离为3,那么O到A′的距离为__4.5__.14.如图,矩形EFGH内接于△ABC,且边FG落在BC上,假定AD⊥BC于D,BC=3,AD=2,EF=23EH,那么EH的长是__32__.第13题图第14题图第16题图15:在平行四边形ABCD中,点E在直线AD上,AE=13AD,衔接CE交BD于点F,那么EF∶FC的值是__23或43__.16.如图,在△ABC中,∠B=90°,AB=6,BC=8,沿DE将△ABC折叠,使点C落在AB边上的C′处,并且C′D∥BC,那么CD的长是__409__.三、解答题(本大题共8小题,共86分)17.(8分)如图,四边形ABCD∽四边形GFEH,且∠A=∠G=70°,∠B=55°,∠E=120°,DC=20,HE=15,HG=21.求∠D,∠F的大小和AD的长.解:∵四边形ABCD∽四边形GFEH,∴∠A=∠G=70°,∠B=∠F=55°,∠E=∠C=120°,∴∠D=360°-∠A-∠B-∠C=360°-70°-55°-120°=115°,DCEH=ADGH,即2015=AD21,解得AD=28.18.(8分)如图,△ABC三个顶点的坐标区分为A(0,-3),B(3,-2),C(2,-4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位失掉的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2∶1,并直接写出点A2的坐标.解:(1)如下图,△A1B1C1,即为所求;(2)如下图,△A2B2C2即为所求,A2的坐标为(-2,-2).19.(8分)如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB和△DCE的顶点都在格点上,ED的延伸线交AB于点F.求证:(1)△ACB∽△DCE;(2)EF⊥AB.证明:(1)∵ACDC=32,BCCE=64=32,∴ACDC=BCEC,又∵∠ACB=∠DCE=90°,∴△ACB∽△DCE.(2)∵△ACB∽△DCE,∴∠ABC=∠DEC,又∵∠ABC+∠A=90°,∴∠DEC+∠A=90°,∴∠AFE=90°,即EF⊥AB.20.(12分)如图,△ABC中,E是BC的中点,AD平分∠BAC,EF∥AD交AC 于F ,假定AB =11,AC =15,求FC 的长.解:过点C 作CG ∥AD 交BA 的延伸线于点G ,那么∠BAD =∠G ,∠CAD =∠ACG ,∵AD 平分∠BAC ,∴∠BAD =∠CAD ,∴∠G =∠ACG ,∴AC =AG ,∵AD ∥GC ,∴AB AG =BD CD ,即AB AC =BD CD =1115,设BD =11x ,那么CD =15x ,BC =26x ,∵E 是BC 的中点,∴BE =CE =13x ,∴DE =2x.∵EF ∥AD ,∴AF FC =DE EC =2x 13x =213,∴CF =1315AC =1315×15=13.21.(12分)如图,我军侦查员在距敌方200 m 的中央发现朋友的一座修建物,但不知其高度,又不能接近修建物,愚钝的侦查员立刻将食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰恰将该修建物遮住,假定食指到眼睛的距离约为40 cm ,食指的长约为8 cm ,你能依据上述条件计算出敌方修建物的高度吗?请你写出计算进程.解:∵40 cm =0.4 m ,8 cm =0.08 m ,∵AG ⊥BC ,AF ⊥DE.∴BC ∥DE ,∴△ABC ∽△ADE ,∴BC ∶DE =AG ∶AF ,∴0.08∶DE =0.4∶200,∴DE =40(m).答:敌方修建物高40 m.22.(12分)如图,E 是正方形ABCD 的边AB 上的动点,EF ⊥DE 交BC 于点F.(1)求证:△ADE ∽△BEF ;(2)设正方形的边长为4,AE =x ,BF =y.当x 取何值时,y 有最大值?并求出这个最大值.(1)证明:∵ABCD 是正方形,∴∠DAE =∠EBF =90°,∴∠ADE +∠DEA =90°,又EF ⊥DE ,∴∠AED +∠FEB =90°,∴∠ADE =∠FEB ,∴△ADE ∽△BEF ; (2)解:由(1)知△ADE ∽△BEF ,又AD =4,BE =4-x ,得y x =4-x 4,得y =14(-x 2+4x)=14[-(x -2)2+4]=-14(x -2)2+1,所以当x =2时,y 有最大值,y 的最大值为1.23.(12分)(2021·毕节)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AD 平分∠CAB 交BC 于D 点,E ,F 区分是AD ,AC 上的动点,求CE +EF 的最小值.解:如下图,在AB 上取点C′,使AC′=AC ,过点C′作C′F ⊥AC ,垂足为F ,交AD 于点E ,在Rt △ABC 中,依据勾股定理可知BA =10.∵AC =AC′,∠CAD =∠C′AD ,AE =AE ,∴△AEC ≌△AEC′,∴CE =EC′,∴CE +EF =C′E +EF.∴当C′F ⊥AC 时,CE +EF 有最小值为FC′,∵C′F ⊥AC ,∠ACB =90°,∴∠AFC′=∠ACB =90°,∴C′F ∥BC ,∴△AFC′∽△ACB ,∴FC′BC =AC′AB ,即FC′8=610,解得FC′=245,即CE +EF 的最小值为245.24.(14分):AB 是⊙O 的直径,直线CP 切⊙O 于点C ,过点B 作BD ⊥CP 于D.(1)求证:△ACB ∽△CDB ;(2)假定⊙O 的半径为1,∠BCP =30°,求图中阴影局部的面积.解:证明:衔接OC,∵直线CP是⊙O的切线,AB是⊙O的直径,∴∠OCD=∠BCD+∠OCB=90°,∠ACB=90°=∠A+∠OBC,又∵OB=OC,∴∠OCB=∠OBC,∴∠BCD=∠A,又∵BD⊥CD,∠ACB =90°,∴∠BDC=∠ACB=90°,∴△ACB∽△CDB;(2)解:过点O作OE⊥BC于点E,那么EB=12BC,∠OEB=90°,∵∠BCP=30°,∴∠OCB=∠OCD-∠BCP=60°,∵OC=OB,∴△OCB是等边三角形.∴∠COB=60°,OC=BC=1,∴BE=12BC=12,在Rt△OBE中,OE=OB2-BE2=3 2,∴S阴影=S扇COB-S△COB=60π360-12×1×32=π6-34。

初中数学(新人教版)九年级下册同步测试:第27章测评(同步测试)【含答案及解析】

初中数学(新人教版)九年级下册同步测试:第27章测评(同步测试)【含答案及解析】

第二十七章测评(时间:45分钟,满分:100分)一、选择题(每小题4分,共32分.下列各小题给出的四个选项中,只有一项符合题目要求)1.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C,直线DF分别交l1,l2,l3于点D,E,F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则DEEF的值为()A.12B.2 C.25D.352.如图,锐角三角形ABC的高CD和高BE相交于点O,则与△DOB相似的三角形个数是()A.1B.2C.3D.43.如图,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上.如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC面积的14,那么点B'的坐标是()A.(3,2)B.(-2,-3)C.(2,3)或(-2,-3)D.(3,2)或(-3,-2)4.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E.若AC=8,BC=6,DE=3,则AD的长为()A.3B.4C.5D.65.已知△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标分别变成原来的2倍,得到点A',B',C'.下列说法正确的是()A.△A'B'C'与△ABC是位似图形,位似中心是点(1,0)B.△A'B'C'与△ABC是位似图形,位似中心是点(0,0)C.△A'B'C'与△ABC是相似图形,但不是位似图形D.△A'B'C'与△ABC不是相似图形6.如图,梯形ABCD的对角线AC,BD相交于点O,G是BD的中点.若AD=3,BC=9,则GO∶BG=()A.1∶2B.1∶3C.2∶3D.11∶207.如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论错误的是()A.EDEA =DFABB.DEBC=EFFBC.BC DE =BFBED.BFBE=BCAE8.在平面直角坐标系中,已知点O(0,0),A(0,2),B(1,0),点P是反比例函数y=-1x图象上的一个动点,过点P作PQ⊥x轴,垂足为点Q.若以点O,P,Q为顶点的三角形与△OAB相似,则相应的点P共有() A.1个 B.2个C.3个D.4个二、填空题(每小题4分,共24分)9.如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若△ABC与△A1B1C1是位似图形,且顶点都在格点上,则位似中心的坐标是.10.已知△ABC的三边长分别为5,12,13,与它相似的△DEF的最小边长为15,则△DEF的周长为.11.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165 cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为.(精确到1 cm)12.如图,在△ABC中,AB=6,AC=4,P是AC的中点,过P点的直线交AB于点Q.若以A,P,Q为顶点的三角形和以A,B,C为顶点的三角形相似,则AQ的长为.13.如图,小明在A时测得某树的影长为2 m,在B时又测得该树的影长为8 m.若两次日照的光线互相垂直,则树的高度为m.14.一古老的捣碎器如图所示,已知支撑柱AB的高为0.3 m,踏板DE长为1.6 m,支撑点A到踏脚D的距离为0.6 m,现在踏脚着地,则捣头点E距地面m.三、解答题(共44分)15.(10分)如图,方格纸中有一条美丽可爱的小金鱼.(1)在同一方格纸中,画出将小金鱼图案绕原点O 旋转180°后得到的图案;(2)在同一方格纸中,并在y轴的右侧,将原小金鱼图案以原点O为位似中心放大,使它们的相似比为2∶1,画出放大后小金鱼的图案.16.(10分)某高中为高一新生设计的学生板凳从侧面看到的图形如图所示.其中BA=CD,BC=20 cm,BC,EF平行于地面AD且到地面AD的距离分别为40 cm,8 cm,为使板凳两腿底端A,D之间的距离为50 cm,则横梁EF的长应为多少?(材质及其厚度等暂忽略不计)17.(12分)如图,在△ABC中,延长BC到点D,使CD=BC.取AB的中点F,连接FD交AC于点E.的值;(1)求AEAC(2)若AB=a,FB=EC,求AC的长.18.(12分)如图,在四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB·AD;(2)求证:CE∥AD;的值.(3)若AD=4,AB=6,求ACAF第二十七章测评一、选择题1.D2.C3.D4.C5.B6.A 根据△AOD ∽△COB ,可以知道ODOB =ADBC =13.由于G 是BD 的中点,从而可以得到GO ∶BG=1∶2. 7.C8.D 在△OPQ 和△OAB 中,∠PQO=∠AOB=90°,当∠POQ=∠ABO 或∠POQ=∠BAO 时,两个三角形相似,故双曲线的每个分支上都有2个点满足题意,即相应的点P 共有4个. 二、填空题9.(9,0) 要确定△ABC 与△A 1B 1C 1的位似中心,只要连接A 1A ,C 1C 并延长,其交点即为位似中心,然后再根据画图的结果,确定位似中心的坐标即可.10.90 ∵△ABC 的三边长分别为5,12,13,∴△ABC 的周长为5+12+13=30.∵与它相似的△DEF 的最小边长为15,∴△DEF 的周长∶△ABC 的周长=15∶5=3∶1,∴△DEF 的周长为3×30=90. 11.8 cm12.3或43 由于以A ,P ,Q 为顶点的三角形和以A ,B ,C 为顶点的三角形有一个公共角(∠A ),因此依据相似三角形的判定方法,过点P 的直线PQ 应有两种作法:一是过点P 作PQ ∥BC ,这样根据相似三角形的性质可得AQAB =APAC ,即AQ6=24,解得AQ=3; 二是过点P 作∠APQ=∠ABC ,交边AB 于点Q ,这时△APQ ∽△ABC ,于是有AQ AC=AP AB ,即AQ 4=26,解得AQ=43.所以AQ 的长为3或43.13.4 直角三角形被斜边上的高分成的两个小直角三角形都与原三角形相似,如图.这个基本图形可称之为“母子三角形”,树高EH 所在的两个“子三角形”相似,即Rt △ECH ∽Rt △DEH ,得EH 2=HC ·HD=2×8.所以EH=4 m .或者利用勾股定理,得{EC 2-ED 2=22-82,EC 2+ED 2=(2+8)2,消去ED 2,得EC 2=20, 所以EH 2=16,所以EH=4 m .14.0.8 ∵△ABD ∽△ECD ,∴AD ∶ED=AB ∶EC ,∴0.6∶1.6=0.3∶EC ,解得EC=0.8 m .三、解答题 15.解 如图所示.16.解 过点C 作CM ∥AB ,交EF ,AD 于点N ,M ,作CP ⊥AD ,交EF ,AD 于点Q ,P.由题意得,四边形ABCM 是平行四边形,∴EN=AM=BC=20 cm . ∴MD=AD-AM=50-20=30(cm).由题意知CP=40 cm,PQ=8 cm,∴CQ=32 cm .∵EF ∥AD ,∴△CNF ∽△CMD. ∴NFMD =CQCP ,即NF30=3240,解得NF=24 cm . ∴EF=EN+NF=20+24=44(cm),即横梁EF 的长应为44 cm .17.解 (1)过点F 作FM ∥AC ,交BC 于点M.∵F 为AB 的中点,∴M 为BC 的中点,即FM ∥AC ,且FM=12AC.由FM ∥AC ,得△FMD ∽△ECD.∴DC DM =EC FM =23,∴EC=23FM=23×12AC=13AC.∴AE AC=AC -EC AC=AC -13AC AC =23.(2)∵AB=a ,∴FB=12AB=12a. 又FB=EC ,∴EC=12a.∵EC=13AC ,∴AC=3EC=32a.18.(1)证明 ∵AC 平分∠DAB ,∴∠DAC=∠CAB.又∠ADC=∠ACB=90°,∴△ADC ∽△ACB.∴AD AC =ACAB ,∴AC 2=AB ·AD.(2)证明 ∵E 为AB 的中点,∴CE=12AB=AE ,∠EAC=∠ECA.∵AC 平分∠DAB ,∴∠CAD=∠CAB. ∴∠DAC=∠ECA.∴CE ∥AD.(3)解 ∵CE ∥AD ,∴∠DAF=∠ECF ,∠ADF=∠CEF ,∴△AFD ∽△CFE ,∴ADCE =AFCF .∵CE=12AB ,∴CE=12×6=3.又AD=4,由ADCE =AF CF ,得43=AFCF, ∴AFAC =47,∴ACAF =74.。

人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)

人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)

人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)一、选择题(每小题6分,共48分)1.在△ABC 中,D 、F 是AB 上的点,E 、H 是AC 上的点,直线DE//FH//BC ,且DE 、FH 将△ABC 分成面积相等的三部分,若线段FH=65,则BC 的长为( ) A .15 B .10 C.6215 D .15322.在△ABC 中,DE//BC ,DE 交AB 于D ,交AC 于E ,且S △ADE :S 四边形DBCE=1:2,则梯形的高与三角形的边BC 上的高的比为( )A .1:2B .1:)12(-C .1:)13(-D .)13(-:33.在Rt △ABC 中,∠C=90°,CD 是斜边AB 上的高,AC=5,BC=8,则S △ACD :S △CBD 为( ) A .85B .6425 C .3925 D .8925 4.如图1—5—1,D 、E 、F 是△ABC 的三边中点,设△DEF 的面积为4,△ABC 的周长为9,则△DEF 的周长与△ABC 的面积分别是( )A.29,16 B. 9,4 C. 29,8 D. 49,165.如图1—5—2,在△ABC 中,AD ⊥BC 于D ,下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC ; (3)ABAC AD CD =;(4)AB 2=BD ·BC 。

其中一定能够判定△ABC 是直角三角形的共有( ) A .3个B .2个C .1个D .0个6.如图1—5—3,在正三角形ABC 中,D ,E 分别在AC ,AB 上,且31AC AD =,AE=BE ,则有( )A. △AED ∽△BED B .△AED ∽△CBD C. △AED ∽△ABD D .△BAD ∽△BCD7.如图1—5—4,PQ//RS//AC ,RS=6,PQ=9,SC 31QC =,则AB 等于( ) A. 415B. 436C. 217D. 58.如图1—5—5,平行四边形ABCD 中,O 1、O 2、O 3是BD 的四等分点,连接AO 1,并延长交BC 于E ,连接EO 2,并延长交AD 于F ,则FDAD等于( )A .3:1B .3:1C .3:2 D. 7:39.如果一个三角形的一条高分这个三角形为两个相似三角形,那么这个三角形必是( ) A .等腰三角形 B. 任意三角形C .直角三角形D .直角三角形或等腰三角形10.在△ABC 和△A'B'C'中,AB : AC=A'B':A'C',∠B=∠B',则这两个三角形( ) A .相似,但不全等 B .全等C .一定相似D .无法判断是否相似11.如图1—6—1,正方形ABCD 中,E 是AB 上的任一点,作EF ⊥BD 于F ,则BEEF为( )A .22B .21C .36D .2图1—6—112.如图1—6—2,把△ABC 沿边AB 平移到△A'B'C'的位置,它们的重叠部分(图中阴影部分)的面积是△ABC 的面积的一半,若2AB =,则此三角形移动的距离AA'是( )A .12-B .22C .1D .21 图1—6—213.如图1—6—3,在四边形ABCD 中,∠A=135°,∠B=∠D=90°,BC=32,AD=2,则四边形ABCD 的面积是( )A .24B .34C .4D .6 图1—6—314.如图1—6—4,平行四边形ABCD 中,G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F ,则图中相似三角形共有( )A .3对B .4对C .5对D .6对15.在直角三角形中,斜边上的高为6cm ,且把斜边分成3:2两段,则斜边上的中线的长为( )A.265cm B .64cm C .65cmD .325cm16.AD 为Rt △ABC 斜边BC 上的高,作DE ⊥AC 于E ,45AC AB =,则EACE=( ) A .2516 B .54C .45D .162517.如图1—6—5,△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC ,已知AB=m ,BC=n ,求CD 的长。

最新人教版九年级数学下册第27章检测题带答案

最新人教版九年级数学下册第27章检测题带答案

最新人教版九年级数学下册第27章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列图形中,各组图形相似的是( C )A .①③B .③④C .①②D .①④ 2.若△ABC ∽△A ′B ′C ′,∠A =40°,∠B =60°,则∠C ′等于( D ) A .20° B .40° C .60° D .80° 3.如图,△ABC 中,点D 在线段BC 上,且△ABC ∽△DBA ,则下列结论一定正确的是( A ) A .AB 2=BC ·BD B .AB 2=AC ·BDC .AB ·AD =BD ·BC D .AB ·AD =AD ·CD,第3题图) ,第5题图) ,第8题图)4.同一时刻,高为2米的测量竿的影子长为1.5米,某古塔的影子长为24米,则古塔的高是( D )A .18米B .20米C .30米D .32米5.如图,点O 是等边三角形PQR 的中心,P ′,Q ′,R ′分别是OP ,OQ ,OR 的中点,则△P ′Q ′R ′与△PQR 是位似三角形.此时,△P ′Q ′R ′与△PQR 的相似比、位似中心分别为( D )A .2,点PB .12,点PC .2,点OD .12,点O6.在四边形ABCD 中,AD ∥BC ,AC 与BD 相交于点O ,如果AD ∶BC =1∶3,那么下列结论中,正确的是( C )A .S △ACD =9S △CODB .S △ABC =9S △ACD C .S △BOC =9S △AOD D .S △DOC =9S △AOD7.根据图中尺寸(AB ∥A ′B ′),那么物像长y(A ′B ′的长)与物体x(AB 的长)之间的函数关系的图象大致是( C )8.如图,E(-4,2),F(-1,-1),以O 为位似中心,按比例尺1∶2,把△EFO 缩小,则点E 的对应点E ′的坐标为( A )A .(2,-1)或(-2,1)B .(8,-4)或(-8,4)C .(2,-1)D .(8,-4)9.如图,边长为1的正方形ABCD 中,点E 在CB 延长线上,连接ED 交AB 于点F ,AF =x(0.2≤x ≤0.8),EC =y ,则在下面函数图象中,大致能反映y 与x 之间的函数关系的是( C ),第9题图) ,第10题图)10.如图,Rt △ABC 中,∠ACB =90°,AC =4,BC =6,以斜边AB 上一点O 为圆心所作的半圆分别与AC ,BC 相切与点D ,E ,则AD =( B ) A .2.5 B .1.6 C .1.5 D .1 二、填空题(每小题3分,共24分) 11.已知a +b b =73,则a -b b =__13__.12.在△ABC 中,AB =8,AC =6,在△DEF 中,DE =4,DF =3,要使△ABC 与△DEF相似,则需要添加一个条件是__∠A =∠D(或BC ∶EF =2∶1)__.(写出一种情况即可)13.如图,已知两点A(2,0),B(0,4),且∠CAO =∠ABO ,则点C 的坐标是__(0,1)__.,第13题图) ,第14题图),第15题图)14.如图,AB 是斜靠在墙壁上的长梯,梯脚B 距离墙脚1.6 m ,梯上点D 距墙1.4 m ,BD 长0.55 m ,则梯子的长为__4.4__m .15.如图,在△ABC 中,点D ,E 分别在AB ,AC 边上,且AE AB =AD AC =12,则△ADE 与△ACB 的周长比为__1∶2__,面积比为__1∶4__.16.如图,AD 是高,EF ∥BC ,EF =3,BC =5,AD =6,则GD =__2.4__.,第16题图) ,第17题图),第18题图)17.如图,点P 为▱ABCD 边AD 上一点,点E ,F 分别是PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,S 1,S 2.若S =2,则S 1+S 2=__8__.18.将三角形纸片(△ABC)按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF ,已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是__127或2__.三、解答题(共66分) 19.(8分)如图,四边形ABCD ∽四边形GFEH ,且∠A =∠G =70°,∠B =55°,∠E =120°,DC =20,HE =15,HG =21.(1)写出它们相等的角及对应边的比例式. (2)求∠D ,∠F 的大小和AD 的长.解:(1)∠A =∠G ,∠B =∠F ,∠C =∠E ,∠D =∠H ,AB GF =BC FE =CD EH =DAHG (2)∠D =115°,∠F =55°,AD =2820.(8分)小方格都是边长为1的正方形,△ABC 与△A ′B ′C ′是关于点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上. (1)画出位似中心O ;(2)求出△ABC 与△A ′B ′C ′的周长比与面积比.解:(1)连接B ′B ,C ′C 并延长相交于一点,此点即为位似中心O ,图略 (2)由图得AB =32+22=13,A ′B ′=62+42=213,所以△ABC 与△A ′B ′C ′的周长比为1∶2,面积比为1∶421.(9分)如图,点D ,E 分别是等边△ABC 的BC ,AC 边上的点,且BD =CE ,AD 与BE 相交于点F.求证:(1)△ABD ≌△BCE ;(2)BD 2=AD ·DF.解:(1)∵△ABC 是正三角形,∴AB =BC ,∠ABC =∠C =60°,又BD =CE ,∴△ABD ≌△BCE (2)∵△ABD ≌△BCE ,∴∠EBC =∠BAD ,又∠BDF =∠ADB ,∴△BDF ∽△ADB ,∴BD AD =DFBD,∴BD 2=AD ·DF22.(9分)如图,身高1.5 m 的人站在离河边3 m 处时,恰好能看到对岸边电线杆的全部倒影,若河岸高出水面高度ED 为0.75 m ,电线杆高MG 为4.5 m ,求河宽.解:∵AB ∥DE ∥MK ,∴∠A =∠EDF =∠K.∵∠DFE =∠KFM ,∴△ACF ∽△DEF ∽△KMF ,∴AC KM =CF MF =1.5+0.754.5=12,DE KM =EF MF =0.754.5=16,设EF =x m ,则MF =6x m ,由2CF =MF ,得2(x +3)=6x ,∴x =32,∴MF =9 m ,∴EM =32+9=10.5(m ),即此河宽为10.5 m23.(10分)如图,△ABC 中,D 为AC 上一点,CD =2DA ,∠BAC =45°,∠BDC =60°,CE ⊥BD 于E ,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由; (3)求△BEC 与△BEA 的面积之比.解:(1)AD =DE ,AE =CE =BE ,证明略 (2)△ADE ∽△AEC (3)作AF ⊥BD 交BD 的延长线于F ,设AD =DE =x ,在Rt △CED 中,CD =2x ,CE =3x ,∴AE =3x ,在Rt △AEF 中,AF =12AE =32x ,∴S △BEC S △BEA =12BE·CE12BE·AF =3x32x =224.(10分)如图,在▱ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B. (1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF=43,求AE 的长.解:(1)∵▱ABCD ,∴AB ∥CD ,AD ∥BC ,∴∠C +∠B =180°,∠ADF =∠DEC ,∵∠AFD +∠AFE =180°,∠AFE =∠B ,∴∠AFD =∠C ,∴△ADF ∽△DEC (2)∵▱ABCD ,∴CD =AB =8,由(1)知△ADF ∽△DEC ,∴AD DE =AFCD ,∴DE =AD ·CD AF =63×843=12,在Rt △ADE 中,AE =DE 2-AD 2=625.(12分)如图,在△ABC 中,∠C =90°,BC =5米,AC =12米.M 点在线段CA 上,从C 向A 运动,速度为1米/秒;同时N 点在线段AB 上,从A 向B 运动,速度为2米/秒.运动时间为t 秒.(1)当t 为何值时,∠AMN =∠ANM?(2)当t 为何值时,△AMN 的面积最大?并求出这个最大值.解:(1)依题意有AM =12-t ,AN =2t ,∵∠AMN =∠ANM ,∴AM =AN ,从而12-t =2t ,解得t =4 (2)作NH ⊥AC 于H ,易证△ANH ∽△ABC ,从而有AN AB =NH BC ,即2t 13=NH5,∴NH =1013t ,从而有S △AMN =12(12-t)·1013t =-513t 2+6013t ,∴当t =6时,S 最大值=18013平方米。

_人教版数学九年级下册第二十七章基础测试题含答案

_人教版数学九年级下册第二十七章基础测试题含答案

27.1图形的相似一、请认真观察下面各组中的两个图形,哪些是形状相同的图形,哪些是形状不同的图形.二、仔细辨认哟!观察下面图形,指出(1)~(9)中的图形有没有与给出的图形(a)、(b)、(c)形状相同的?三、请你画一画,试着把下面的两个图形利用给出的格点放大四、填空1.放大镜下的图形和原来的图形()相似图形,哈哈镜中的图形和原来的图形()相似图形(填“是”或“不是”)2.小颖的妈妈为小颖缝制了一个长50cm,宽30cm的矩形坐垫,又在坐垫的周围缝上一圈宽3cm的花边,妈妈说:“里外两个矩形是相似形”,小颖说:“这两个矩形不是相似形”,你认为谁说得对?并说明你的理由()3.如果两个相似多边形的最长边分别为35cm 和14cm ,那么最短边分别为5cm 和( )cm五、想一想如图:已知A (0,-2),B (-2,1),C (3,2)图4—3—1(1)求线段AB 、BC 、AC 的长.(2)把A 、B 、C 三点的横坐标、纵坐标都乘以2,得到A ′、B ′、C ′的坐标,求 A ′B ′、B ′C ′、A ′C ′的长.(3)以上六条线段成比例吗?(4)△ABC 与△A ′B ′C ′的形状相同吗?参考答案一、(3)、(5)组中的图形形状相同(1)、(2)、(4)、(6)组中的图形形状不同 二、图形(4)、(8)与图形(a )形状相同 图形(6)与图形(b )形状相同 图形(5)与图形(c )形状相同 三、略四、1.是 不是 2.小颖说的对 3.2cm五、解:如图(见原题图)A (0,-2),B (-2,1),C (3,2) (1)由勾股定理得: AB =132322=+ BC =261522=+ AC =2243+=5(2)由已知得A ′(0,-4),B ′(-4,2),C ′(6,4) 由勾股定理得: A ′B ′=1326422=+ B ′C ′=26221022=+A ′C ′=2286+=10 (3)∵21=''=''=''C A AC C B BC B A AB ∴这六条线段成比例(4)△ABC 与△A ′B ′C ′的形状相同.人教版 九年级数学 27.2 相似三角形一、选择题1. (2020·永州)如图,在ABC 中,2//,3AE EF BC EB =,四边形BCFE 的面积为21,则ABC 的面积是( )A. 913B. 25C. 35D. 632. (2019•重庆)下列命题是真命题的是A .如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为2∶3B .如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为4∶9C .如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为2∶3D .如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为4∶93. (2020·哈尔滨)如图,在△ABC 中,点D 在BC 边上,连接AD ,点E 在AC 边上,过点E 作EF ∥BC ,交AD 于点F,过点E 作EG ∥AB ,交BC 于点G,则下列式子一定正确的是( )A .CD EF EC AE = B .AB EG CD EF = C .GC BG FD AF = D .AD AFBC CG =4. (2020·河南)如图,在△ABC 中,∠ACB=90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(-2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A. (32,2)B. (2,2)C. (114,2) D. (4,2)5. (2019•沈阳)已知△ABC ∽△A'B'C',AD 和A'D'是它们的对应中线,若AD =10,A'D'=6,则△ABC与△A'B'C'的周长比是 A .3∶5 B .9∶25 C .5∶3 D .25∶96. (2019•巴中)如图ABCD ,F 为BC 中点,延长AD 至E ,使13DE AD ∶∶,连接EF 交DC 于点G ,则:DEG CFG S S △△=A .2∶3B .3∶2C .9∶4D .4∶97. (2020·新疆)如图,在△ABC 中,∠A =90°,D 是AB 的中点,过点D 作BC 的平行线交AC 于点E ,作BC 的垂线交BC 于点F ,若AB =CE ,且△DFE 的面积为1,则BC 的长为 ········································································································································· ( )A .25B .5C .5D .108. (2020·昆明)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC 是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE ∽△ABC(同一位置的格点三角形△ADE 只算一个),这样的格点三角形一共有( )A.4个B.5个C.6个D.7个ABC二、填空题9. (2020·盐城) 如图,//,BC DE 且,4,10BC DE AD BCAB DE <==+=,则AE AC的值为.10. (2020·吉林)如图,////AB CD EF .若12=AC CE ,5BD =,则DF =______.11. (2019•百色)如图,ABC △与A'B'C'△是以坐标原点O 为位似中心的位似图形,若点()22A ,,()34B ,,()61C ,,()68B',,则A'B'C'△的面积为__________.12. (2020·东营)如图,P 为平行四边形ABCD 边BC 边上一点,E 、F 分别为PA 、PD 上的点,且PA=3PE ,PD=3PF ,△PEF 、△PDC 、△PAB 的面积分别记为S 、1S 、2S ,若S =2,则1S +2S = .13. (2020·郴州)在平面直角坐标系中,将AOB ∆以点O 为位似中心,32为位似比作位似变换,得到11OB A ∆.已知)3,2(A ,则点1A 的坐标是 .14. (2019•台州)如图,直线123l l l ∥∥,A ,B ,C 分别为直线1l ,2l ,3l 上的动点,连接AB ,BC ,AC ,线段AC 交直线2l 于点D .设直线1l ,2l 之间的距离为m ,直线2l ,3l 之间的距离为n ,若90ABC ∠=︒,4BD =,且32m n =,则m n +的最大值为__________.15. (2019•泸州)如图,在等腰Rt ABC △中,90C =︒∠,15AC =,点E 在边CB 上,2CE EB =,点D 在边AB 上,CD AE ⊥,垂足为F ,则AD 长为__________.16. (2020·杭州)如图是一张矩形纸片,点E 在AB 边上,把BCE △沿直线CE 对折,使点B落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,2AE =,则DF =______,BE =______.FDBE A C三、解答题17.(2020·达州)如图,在梯形ABCD 中,//AB CD ,90B ∠=︒,6AB cm =,2CD cm =.P 为线段BC 上的一动点,且和B 、C 不重合,连接PA ,过点P 作PE PA ⊥交射线CD 于点E .聪聪根据学习函数的经验,对这个问题进行了研究:(1)通过推理,他发现△ABP ∽△PCE ,请你帮他完成证明.(2)利用几何画板,他改变BC 的长度,运动点P ,得到不同位置时,CE 、BP 的长度的对应值:当6BC cm =时,得表1:当8BC cm =时,得表2:这说明,点P 在线段BC 上运动时,要保证点E 总在线段CD 上,BC 的长度应有一定的限制.①填空:根据函数的定义,我们可以确定,在BP 和CE 的长度这两个变量中,______的长度为自变量,______的长度为因变量;②设BC mcm =,当点P 在线段BC 上运动时,点E 总在线段CD 上,求m 的取值范围.18. (2020·江苏徐州)我们知道:如图①,点B 把线段AC 分成两部分,如果BC ABAB AC=,那么称点B 为线段AC 的黄金分割点.. (1)在图①中,若AC =20cm ,则AB 的长为 cm ;(2)如图②,用边长为20cm 的正方形纸片进行如下操作:对折正方形ABCD 得折痕EF ,连接CE ,将CB 折叠到CE 上,点B 的对应点H ,得折痕CG .试说明:G 是AB 的黄金分割点;(3)如图③,小明进一步探究:在边长为a 的正方形ABCD 的边AD 上任取点E (AE >DE ),连接BE ,作CF ⊥BE ,交AB 于点F ,延长EF 、CB 交于点P .他发现当PB 与BC 满足某种关系时,E 、F 恰好分别是AD 、AB 的黄金分割点.请猜想小明的发现,并说明理由.A CBGP图① 图 ② 图③人教版 九年级数学 27.2 相似三角形 课时训练-答案一、选择题1. 【答案】B【详解】解:∵//EF BC ∴AEF B AFE C ∠=∠∠=∠,∴AEF ABC ∽∵23AE EB = ∴25AE AB = ∴255242AEB ABCS S⎛⎫==⎪⎝⎭ ∴421AEBBCFESS =四边形 ∵21BCFE S =四边形 ∴AEBS =4∴=25ABCS故选:B .2. 【答案】B【解析】A 、如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为4∶9,是假命题;B 、如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为4∶9,是真命题;C 、如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为16∶81,是假命题;D 、如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为16∶81,是假命题, 故选B .3. 【答案】C 【解析】本题考查了平行线分线段成比例和由平行判定相似,∵EF ∥BC ,∴EC AE FD AF =,∵EF ∥BC ,∴ECAE GC BG =,∴GC BGFD AF =因此本题选C .4. 【答案】B【解析】∵点A ,B 的坐标分别为(-2,6)和(7,0),∴OC=2,AC=6,OB=7,∴BC=9,正方形的边长为2.将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,设正方形与x 轴的两个交点分别为G 、F ,∵EF ⊥x 轴,EF=GF=DG=2,∴EF ∥AC ,D ,E 两点的纵坐标均为2, ∴EF BF AC BC ,即269BF,解得BF=3.∴OG=OB-BF-GF=7-3-2=2,∴ D 点的横坐标为2,∴点D 的坐标为 (2,2).5. 【答案】C【解析】∵△ABC ∽△A'B'C',AD 和A'D'是它们的对应中线,AD =10,A'D'=6, ∴△ABC 与△A'B'C'的周长比=AD ∶A ′D ′=10∶6=5∶3.故选C .6. 【答案】D【解析】设DE x =,∵13DE AD =∶∶,∴3AD x =,∵四边形ABCD 是平行四边形,∴AD BC ∥,3BC AD x ==, ∵点F 是BC 的中点,∴1322CF BCx ==, ∵AD BC ∥,∴DEG CFG △∽△, ∴224()()392DEG CFG S DE x S CF x ===△△,故选D .7. 【答案】A【解析】本题考查了相似三角形的判定与性质,三角形的中位线定理.如答图,过点E 作EG ⊥BC 于G ,过点A 作AH ⊥BC 于H .又因为DF ⊥BC ,所以DF ∥AH ∥EG ,四边形DEGF 是矩形.所以△BDF ∽△BAH ,DF =EG ,所以DF AH =BD BA ,因为D 为AB 中点,所以BD BA =12,所以DF AH =12.设DF =EG =x ,则AH=2x .因为∠BAC =90°,所以∠B +∠C =90°,因为EG ⊥BC ,所以∠C +∠CEG =90°,所以∠B =∠CEG ,又因为∠BHA =∠CGE =90°,AB =CE ,所以△ABH ≌△CEG ,所以CG =AH =2x .同理可证△BDF ∽△ECG ,所以BF EG =BD EC ,因为BD =12AB =12CE ,所以BF =12EG=12x .在R t △BDF 中,由勾股定理得BD 22DF BF +221()2x x +5x ,所以AD =5x ,所以CE =AB =2AD 5x .因为DE ∥BC ,所以AE AC =AD AB =12,所以AE =12AC =CE 5x .在R t △ADE 中,由勾股定理得DE 22AD AE +225()(5)2x x +52x .因△DEF 的面积为1,所以12DE ·DF =1,即12×52x ·x =1,解得x 255,所以DE =522555,因为AD =BD ,AE =CE ,所以BC =2DE =25D .8. 【答案】A【解析】本题考查了相似三角形的判定.符合条件的三角形有四个,如图所示:C因此本题选A .二、填空题9. 【答案】2【解析】∵BC ∥DE ,∴△ADE ∽△ABC ,∴AE AD DEACAB BC ==,设DE =x ,则AB =10-x ∵AD =BC =4,∴4104AE x AC x ==-,∴x 1=8 ,x 2=2(舍去), 824AE AC ==,此本题答案为2 .10. 【答案】10【解析】∵////AB CD EF ,∴AC BDCE DF =, 又∵12=AC CE ,5BD =,∴512DF =,∴10DF =,故答案为:10.11. 【答案】18【解析】∵ABC △与A'B'C'△是以坐标原点O 为位似中心的位似图形,若点()34B ,,()68B',,∴位似比为31=62, ∵()22A ,,()61C ,, ∴()()44122A'C',,,, ∴A'B'C'△的面积为:1116824662818222⨯-⨯⨯-⨯⨯-⨯⨯=, 故答案为:18.12. 【答案】18【解析】本题考查了相似三角形的判定、性质,三角形的面积,解题的关键是根据已知条件推出相似三角形,并由相似比得到面积比.∵PA=3PE ,PD=3PF ,∠APD =∠EPF ,∴△PEF ∽△PAD ,相似比为1︰3, ∵△PEF 的面积为S =2,∴PAD S ∆=9S=9×2=18, ∴1S +2S =PAD S ∆=18.13. 【答案】(,2)【解析】∵将△AOB 以点O 为位似中心,为位似比作位似变换,得到△A 1OB 1,A (2,3),∴点A 1的坐标是:(×2,×3),即A 1(,2).故答案为:(,2).14. 【答案】253【解析】如图,过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE x =,CF y =,BN x =,BM y =, ∵4BD =,∴4DM y =-,4DN x =-,∵90ABC AEB BFC CMD AND ∠=∠=∠=∠=∠=︒, ∴90EAB ABE ABE CBF ∠+∠=∠+∠=︒, ∴EAB CBF ∠=∠,∴ABE BFC △∽△, ∴AE BEBF CF=,即x m n y =,∴xy mn =,∵ADN CDM ∠=∠,∴CMD AND △△,∴AN DNCM DM=,即4243m x n y -==-,2∵23 mn=,∴32n m=,∴5()2m n m+=最大,∴当m最大时,5()2m n m+=最大,∵22333(10)10222mn xy x x x x m==-+=-+=,∴当1010332()2x=-=⨯-时,250332mn m==最大,∴103m=最大,∴m n+的最大值为51025233⨯=.故答案为:253.15. 【答案】92【解析】如图,过D作DH AC⊥于H,则∠AHD=90°,∵在等腰Rt ABC△中,90C=︒∠,15AC=,∴15AC BC==,45CAD∠=︒,∴∠ADH=90°–∠CAD=45°=∠CAD,∴AH DH=,∴CH=AC–AH=15–DH,∵CF AE⊥,∴90DHA DFA∠=∠=︒,又∵∠ANH=∠DNF,∴HAF HDF∠=∠,∴ACE DHC△∽△,∴DH CHAC CE=,∵2CE EB=,CE+BE=BC=15,∴10CE=,1510∴9DH =, ∴2292AD AH DH =+=,故答案为:92.16. 【答案】25-1【解析】设BE =x ,则AB =AE +BE =2+x .∵四边形ABCD 是矩形,∴CD =AB =2+x ,AB ∥CD ,∴∠DCE =∠BEC .由折叠得∠BEC =∠DEC ,EF =BE =x ,∴∠DCE =∠DEC .∴DE =CD =2+x .∵点D ,F ,E 在同一条直线上,∴DF =DE -EF =2+x -x =2.∵AB ∥CD ,∴△DCF∽△EAF ,∴DC EA =DF EF .∴22x +=2x ,解得x 1=5-1,x 2=-5-1.经检验,x 1=5-1,x 2=-5-1都是分式方程的根.∵x >0,∴x =5-1,即BE =5-1.三、解答题17. 【答案】(1)∵AB ∥CD ,∠B=90°,∴∠C=90°, ∵PE ⊥PA ,∠B=90°,∴∠APB +∠EPC=90°,∠APB +∠PAB=90°,∴∠PAB=∠EPC ,在△APB 和△EPC 中,∠PAB=∠EPC ,∠B=∠C=90°,∴△APB ∽△EPC. (2)①BP ;CE ; ②∵△APB ∽△EPC ,∴,∵CD=2,∴CE 的最大值为2,,即BP·CP=12,由表格可知:当BP=2时,CE=2,此时CP=6,BC=BP +CP=8,∴BC 的最大值为8,即0<m <8.18. 【答案】解: (1)10510.解:∵51ABAC -=,AC=20,∴AB=10510.(2)延长CG 交DA 的延长线于点J ,由折叠可知:∠BCG=∠ECG ,∵AD ∥BC ,∴∠J=∠BCG=∠ECG ,∴JE=CE.由折叠可知:E 、F 为AD 、BC 的中点,∴DE=AE=10,由勾股定理可得:22221020105DE CD ++=∴EJ=105AJ=JE-AE=105,∵AJ ∥BC ,∴△AGJ ∽△BGC ,∴1051051AG AJ BG BC--===,∴G 是AB 的黄金分割点.JHGB CA D(3)PB=BC,理由如下:∵E为AD的黄金分割点,且AE>DE,∴AE=51-a.∵CF⊥BE,∴∠ABE+∠CBE=∠CBE+∠BCF=90˚,∴∠ABE=∠FCB,在△BEA和△CFB中,∵90ABE FCBAB BCA FBC∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△BEA≌△CFB,∴BF=AE=51-a.∴51AF BFBF AB-==,∵AE∥BP,∴△AEF∽△BPF,∴AE AF BFPB BF AB==,∵AE=BF,∴PB=AB,∴PB=BC.27.3位似一.选择题1.在平面直角坐标系中,点A(2,2).B(3,﹣2),△AOB与△A'OB'是以原点O为位似中心的位似图形,且两个三角分别在y轴两侧,相似比为3:2.则点B'的坐标是()A.(2,﹣)B.(,﹣3)C.(﹣2,)D.(﹣,3)2.如图,△AOB与△COD是以点O为位似中心的位似图形,相似比为1:2,若A(2,1),则点C的坐标为()A.(1,2)B.(2,1)C.(2,4)D.(4,2)3.如图,△ABC中,三个顶点的坐标分别是A(﹣2,2),B(﹣4,1),C(﹣1,﹣1).以点C为位似中心,在x轴下方作△ABC的位似图形△A'B'C',并把△ABC的边长放大为原来的2倍,那么点A'的坐标为()A.(3,﹣7)B.(1,﹣7)C.(4,﹣4)D.(1,﹣4)4.如图,在平面直角坐标系中,已知点A(2,4),B(4,1),以原点O为位似中心,将△OAB扩大为原来的4倍,则点A的对应点的坐标是()A.(,1)B.(,﹣1)C.(8,16)或(﹣16,﹣8)D.(8,16)或(﹣8,﹣16)5.在平面直角坐标系中,△ABO三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0),以原点O为位似中心,把这个三角形放大为原来的2倍,得到△CDO,则点A的对应点C的坐标为()A.(﹣4,8)B.(4,﹣8)C.(﹣4,8)或(4,﹣8)D.(﹣1,2)或(1,﹣2)6.已知△ABC与△A1B1C1是关于原点为中心的位似图形,且A(2,1),△ABC与△A1B1C1的相似比为,则A的对应点A1的坐标是()A.(4,2)B.(﹣4,﹣2)C.(4,2)或(﹣4,﹣2)D.(6,3)7.如图,在平面直角坐标系xOy中,△ABC和△A'B'C′位似,位似中心为原点O,点A(﹣1,2)、点A'(2,﹣4),若△ABC的面积为4,则△A'B'C′的面积是()A.2B.4C.8D.168.如图,点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,若OA:OA1=1:3,则五边形ABCDE和五边形A1B1C1D1E1的面积比是()A.1:2B.1:3C.1:4D.1:99.如图,平面直角坐标系中,点A(﹣2,0),B(0,1),C(﹣3,2),以原点O为位似中心,把△ABC缩小为△A′B′C′,且△A′B′C′与△ABC的相似比为1:2,则点C的对应点C′的坐标为()A.(﹣1.5,1)B.(﹣1.5,1)或(1.5,﹣1)C.(﹣6,4)D.(﹣6,4)或(6,﹣4)10.如图所示,在边长为1的小正方形网格中,两个三角形是位似图形,则它们的位似中心是()A.点O B.点P C.点M D.点N二.填空题11.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到△A'B'O.若点A的坐标是(1,2),则点A'的坐标是.12.如果两个三角形不仅是相似三角形,而且每组对应点的连线交于一点,那么这两个三角形叫做位似三角形,这个点叫做位似中心.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4.则A1B1的长为.13.如图,在平面直角坐标系中,每个小方格的边长均为1,△AOB与△A′OB′是以原点O为位似中心的位似图形,且位似比为2:1,点A、B都在格点上,则点B′的坐标是.14.如图,已知矩形ABCD和矩形BEFG是位似图形,点O是位似中心,若点D的坐标为(1,2),点F的坐标为(4,4),则点G的坐标是.15.如图,四边形OABC的顶点O为坐标原点,以O为位似中心,作出四边形OA1B1C1与四边形OABC位似,若A(6,0)的对应点为A1(4,0),四边形OABC的面积为27,则四边形OA1B1C1的面积为.三.解答题16.如图,在正方形格中,每一个小正方形的边长都为1,△ABC的顶点分别为A(2,3),B(2,1),C(5,4).(1)写出△ABC的外心P的坐标.(2)以(1)中的外心P为位似中心,按位似比2:1在位似中心的同侧将△ABC放大为△A′B′C′,放大后点A、B、C的对应点分别为A′、B′,C′,请在图中画出△ABC.17.如图,在平面直角坐标系中.△ABC的三个顶点的坐标分别是A(1,3)、B(4,1)、C(1,1).(1)在所给网格中画出△ABC以点O为位似中心的位似图形△A1B1C1.且△ABC与△A1B1C1的相似比为1:2.(2)直线AA1所对应的函数表达式为.18.如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B 的坐标为(﹣1,﹣1).(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1的图形并写出点B1的坐标;(2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C的图形并写出点B2的坐标;(3)把△ABC以点A为位似中心,在x轴下方放大,使放大前后对应边长的比为1:2,在方格纸中画出△AB3C3的图形.参考答案一.选择题1.解:如图,∵△AOB∽△A′OB′,相似比为3:2,B(3,﹣2),∴B′(2,),故选:C.2.解:∵△AOB与△COD是以点O为位似中心的位似图形,相似比为1:2,点A的坐标为(2,1),∴点C的坐标为(2×2,1×2),即(4,2),故选:D.3.解:以C为坐标原点建立平面直角坐标系,则点A在新坐标系中的坐标为(﹣1,3),∵△ABC与△A'B'C'以点C为位似中心,在x轴下方作△ABC的位似图形△A'B'C',把△ABC的边长放大为原来的2倍,∴点A'在新坐标系中的坐标为(1×2,﹣3×2),即(2,﹣6),则点A'的坐标为(1,﹣7),故选:B.4.解:∵点A(2,4),B(4,1),以原点O为位似中心,将△OAB扩大为原来的4倍,∴点A的对应点的坐标是:(8,16)或(﹣8,﹣16).故选:D.5.解:∵△ABO三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0),以原点为位似中心,将这个三角形放大为原来的2倍,得到△CDO,∴点A的对应点C的坐标为:(﹣4,8)或(4,﹣8).故选:C.6.解:△ABC与△A1B1C1是关于原点为中心的位似图形,A(2,1),△ABC与△A1B1C1的相似比为,∴A的对应点A1的坐标是(2×2,1×2)或(﹣2×2,﹣1×2),即(4,2)或(﹣4,﹣2),故选:C.7.解:∵△ABC和△A'B'C′位似,位似中心为原点O,点A(﹣1,2)、点A'(2,﹣4),∴△ABC和△A'B'C′的相似比为:1:2,∵△ABC的面积为4,∴△A'B'C′的面积是:16.故选:D.8.解:∵点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,OA:OA1=1:3,∴五边形ABCDE和五边形A1B1C1D1E1的位似比为:1:3,∴五边形ABCDE和五边形A1B1C1D1E1的面积比是:1:9.故选:D.9.解:以原点O为位似中心,把△ABC缩小为△A′B′C′,且△A′B′C′与△ABC的相似比为1:2,∵点C的坐标为(﹣3,2),∴点C的对应点C′的坐标为(﹣3×,2×)或(3×,﹣2×),即(﹣1.5,1)或(1.5,﹣1),故选:B.10.解:如图所示:两个三角形的位似中心是:点P.故选:B.二.填空题11.解:根据以原点O为位似中心,图形的坐标特点得出,对应点的坐标应乘以﹣2,故点A的坐标是(1,2),则点A′的坐标是(﹣2,﹣4),故答案为:(﹣2,﹣4).12.解:∵△ABC和△A1B1C1是以点O为位似中心的位似三角形,∴OC1:OC=OA1:OA=1:2,A1B1∥AB,∴OA1:OA=A1B1:AB=1:2,∴A1B1=AB=×4=2.故答案为2.13.解:△AOB与△A′OB′是以原点O为位似中心的位似图形,位似比为2:1,点B的坐标为(4,﹣4),∴点B′的坐标为(4×,﹣4×)或(﹣4×,4×),即(2,﹣2)或(﹣2,2),故答案为:(2,﹣2)或(﹣2,2).14.解:∵矩形ABCD,点D的坐标为(1,2),∴AD=BC=2,∵矩形BEFG,点F的坐标为(4,4),∴EF=BG=4,∴===,∴OB=2,故点G的坐标是(2,4).故答案为:(2,4).15.解:∵以O为位似中心,作出四边形OA1B1C1与四边形OABC位似,A(6,0)的对应点为A1(4,0),∴四边形OA1B1C1与四边形OABC的位似比为:4:6=2:3,∴四边形OA1B1C1与四边形OABC的面积比为:4:9,∵四边形OABC的面积为27,∴四边形OA1B1C1的面积为:27×=12.故答案为:12.三.解答题16.解:(1)如图.P点坐标为(4,2);故答案为(4,2);(2)如图,△A′B′C′为所作.17.解:(1)如图,△A1B1C1为所作;(2)设直线AA1的解析式为y=kx+b,把A(1,3),A1(﹣2,﹣6)代入得,解得,所以直线AA1的解析式为y=3x.故答案为y=3x.18.解:(1)如图,△A1B1C1为所作,点B1的坐标为(﹣9,﹣1);(2)如图,△A2B2C为所作,点B2的坐标为(5,5);(3)如图,△AB3C3为所作.。

2023年人教版九年级数学下册第27章《相似》复习检测卷(一)附答案解析

2023年人教版九年级数学下册第27章《相似》复习检测卷(一)附答案解析

2023年九年级数学下册第27章《相似》复习检测卷(一)考试范围:§27.1图形的相似~27.2相似三角形的判定满分:120分一、选择题(每小题3分,共30分)1.将△ABC 的每条边都扩大3倍得到△DEF ,其中点A 、B 、C 的对应点分别是D 、E 、F ,则∠D 与∠A 的关系为()A .∠D =∠AB .∠D =3∠AC .∠D =6∠AD .∠D =9∠A2.如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()3.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E ,B 、D 、F ,AC =8,CE =12,BD =6,则DF 的长为()A .4B .5C .9D .74.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,F 为BC 边上一点,连接AF交DE 于点G ,则下列结论中一定正确的是()A .AD AEAB CE=B .AC AEGF BD=C .BD CEAD AE=D .AG ACAF CE=5.如图,在正方形网格上有两个三角形,且△ABC 和△DEF 相似,则∠BAC 的度数为()A .135°B .125°C .115°D .105°6.如图,△ACP ∽△ABC ,若∠A =100°,∠ACP =20°,则∠ACB 的度数是()A .80°B .60°C .50°D .30°7.如图,在□ABCD 中,EF ∥AB ,DE ∶EA =2∶3,EF =4,则CD 的长为()A .6B .8C .9D .108.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm 、6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为()A .3cmB .4cmC .4.5cmD .5cm9.如图,在矩形ABCD 中,AB =a ,AD =3,按照图中的方式将它分成完全相同的三个矩形,如果每一个小矩形都与矩形ABCD 相似,则a 的值为()第5题第3题第4题第6题第7题第9题第10题A .22B .23C .33D .3210.如图,正方形ABCD 的边长为4,E 是BC 边上一点,过点E 作EF ⊥AE 交CD 边于点F ,则CF 的最大值是()A .0.5B .1C .1.5D .2二、填空题(每小题3分,共18分)11.如图,添加一个条件__________________,使△ADE ∽△ACB .12.如图,在□ABCD 中,E 是AD 的中点,EC 交对角线BD 于点F ,则BF ∶FD 的值为_________.13.如图,在△ABC 中,DE ∥BC ,若AD =1,BD =3,BC =8,则DE 的长为________.14.已知654a b c==,且a +b -2c =6,则a 的值为_______.15.如图,在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数ky x=(k >0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD ,若△OCD ∽△ACO ,则直线OA 的解析式为_______.16.如图,直线l 1∥l 2∥l 3,直线l 1与l 2之间的距离为2,直线l 2与l 3之间的距离为1,等边△ABC 的三个顶点分别在直线l 1、l 2、l 3上,则等边三角形的边长是______.三、解答题(共8题,共72分)17.(8分)如图,四边形ABCD ∽四边形A 'B 'C 'D ',∠BCD =125°,分别求x 、y 、α的值.18.(8分)如图,在矩形ABCD 中,点E 、F 分别在BC 、CD 上,AE ⊥BF 于点M ,若BC =2AB ,探究AE 与BF 的数量关系,并证明你的结论.第10题第11题第16题第12题第13题第15题19.(8分)如图,在四边形ABCD中,AC平分∠BAD,∠ADC=∠ACB=90°.(1)求证:AC2=AB·AD;(2)若BC=3,AB=5,求CD的长.20.(8分)如图,在矩形ABCD中,E是AD上一点,连接BE.(1)请用尺规在BE上求作一点P,使得△PCB∽△ABE(不写作法,保留作图痕迹);(2)若AE=3,AB=4,BC=6,求EP的长.21.(8分)如图,在△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)作DE∥AB交AC于点E,请直接写出另一个与△ABD相似的三角形,并求出DE的长.22.(10分)在△ABC中,AB=6,AC=8,点D、E分别在AB、AC上,连接DE,设BD=x(0<x<6),CE=y(0<y<8).(1)当x=2,y=5时,求证:△AED∽△ABC;(2)若△ADE和△ABC相似,求y与x的函数表达式.23.(10分)如图,在△ABC中,∠ABC=90°,D是斜边AC的中点,连接DB.过点A作AE⊥BD于点F,交BC于点E.(1)求证:EB2=EF・EA;(2)若AB=4,CE=3BE,求AE的长.24.(12分)(1)【问题背景】如图1,D是等边△ABC中AB边上的点,以CD为边在CD的上方作等边△CDE,连接AE,求证:BD=AE;(2)【尝试应用】如图2,D是Rt△ABC中AB边上的一点,∠B=90°,∠BAC=30°,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,∠CED=30°,连接AE,请探究BD与AE的数量关系,并说明理由;(3)【拓展创新】如图3,在Rt△ABC中,∠ABC=90°,点D在AB边上,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,43DE ABCD BC==,DE交AC于F,若AD=3BD,求AFDF的值.《相似》阶段检测卷(一)考试范围:§27.1图形的相似~27.2相似三角形的判定满分:120分一、选择题(每小题3分,共30分)1.将△ABC 的每条边都扩大3倍得到△DEF ,其中点A 、B 、C 的对应点分别是D 、E 、F ,则∠D 与∠A 的关系为()A .∠D =∠AB .∠D =3∠AC .∠D =6∠A D .∠D =9∠A【答案】A .详解:依题意,△ABC 与△DEF 的三边成比例,∴△ABC ∽△DEF ,∴∠A =∠D ,故选A .2.如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()【答案】C .详解:由两个角分别相等的两个三角形相似,知选项A 和B 中的阴影三角形与原三角形相似,选项D 中,阴影三角形的∠A 的两边分别为4-1=3,6-4=2,∵4623=,∠A =∠A ,∴选项D 中的阴影三角形与原三角形相似.而选项C 中,不能保证∠B 的两边成比例,故选C .3.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E ,B 、D 、F ,AC =8,CE =12,BD =6,则DF 的长为()A .4B .5C .9D .7【答案】C .详解:∵a ∥b ∥c ,∴AC BD CE DF =,即8612DF=,解得DF =9,故选C . 4.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,F 为BC 边上一点,连接AF 交DE 于点G ,则下列结论中一定正确的是()A .AD AEAB CE=B .AC AEGF BD=C .BD CEAD AE=D .AG ACAF CE=【答案】C .详解:∵DE ∥BC ,∴BD CE AD AE =,故C 对;AD AEAB AC=,故A 错;AG AE ADAF AC AB==,故D 错;选项B 中的4条线段不成比例,故D 错.故选C .5.如图,在正方形网格上有两个三角形,且△ABC 和△DEF 相似,则∠BAC 的度数为()A .135°B .125°C .115°D .105°【答案】A .详解:∵△ABC 和△DEF 相似,观察角的大小,∠BAC =∠DEF =90°+45°=135°,故选A . 6.如图,△ACP ∽△ABC ,若∠A =100°,∠ACP =20°,则∠ACB 的度数是()A .80°B .60°C .50°D .30°【答案】B .详解:在△ACP 中,∵∠A =100°,∠ACP =20°,∴∠APC =60°.∵△ACP ∽△ABC ,∴∠ACB =∠APC =60°,故选B .7.如图,在□ABCD 中,EF ∥AB ,DE ∶EA =2∶3,EF =4,则CD 的长为()A .6B .8C .9D .10【答案】D .详解:∵EF ∥AB ,∴EF DEAB DA=,∵DE ∶EA =2∶3,EF =4,∴4223AB =+,∴AB =10,则CD =AB =10,故选D .8.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm 、6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为()A .3cmB .4cmC .4.5cmD .5cm【答案】C .详解:设所求的最长边为xcm ,则592.5x=,解得x =4.5,故选C .9.如图,在矩形ABCD 中,AB =a ,AD =3,按照图中的方式将它分成完全相同的三个矩形,如果每一个小矩形都与矩形ABCD 相似,则a 的值为()A .B .C .D .【答案】C .详解:小矩形的边边分别为13a 和3,∵小矩形与矩形ABCD 相似,∴13a ∶3=3∶a ,解得a =±(舍去负值),∴a =C .10.如图,正方形ABCD 的边长为4,E 是BC 边上一点,过点E 作EF ⊥AE交CD 边于点F ,则CF 的最大值是()A .0.5B .1C .1.5D .2【答案】B .详解:∵∠B =∠C =90°,AE ⊥EF ,可证△ABE ∽△ECF ,∴AB BECE CF=,设BE =x ,则CE =4-x ,∴44x x CF =-,∴CF =14x (4-x )=-14(x -2)2+1,当x =2时,CF 取得最大值1,故选B .二、填空题(每小题3分,共18分)11.如图,添加一个条件__________________,使△ADE ∽△ACB .【答案】答案不唯一,可以填下列中的一个:∠ADE =∠C ,∠AED =∠B ,AD AEAC AB=.12.如图,在□ABCD 中,E 是AD 的中点,EC 交对角线BD 于点F ,则BF ∶FD的值为_________.【答案】2.详解:∵四边形ABCD 为平行四边形,∴BC =AD ,BC ∥AD .∵E 为AD 的中点,∴BC =AD =2DE ,由AD ∥BC ,得△BCF ∽DEF ,∴BF ∶FD =BC ∶DE =2.13.如图,在△ABC 中,DE ∥BC ,若AD =1,BD =3,BC =8,则DE 的长为________.【答案】2.详解:∵DE ∥BC ,∴AD DE AB BC =,即1138DE=+,∴DE =2.14.已知654a b c==,且a +b -2c =6,则a 的值为_______.【答案】12.详解:∵654a b c==,故可设a =6x ,b =5x ,c =4x ,代入a +b -2c =6,得:6x +5x -2(4x )=6,解得x =2,∴a =6x =12.15.如图,在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数ky x=(k >0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD ,若△OCD ∽△ACO ,则直线OA 的解析式为_______.【答案】y =2x .详解:设B (t ,k t ),则直线OA 的解析式为y =2ktx .∵B 为OA 的中点,∴A (2t ,2k t ),∴D (2t ,2k t ),OC =2t ,CD =2k t ,CA =2kt.∵△OCD ∽△ACO ,∴OC CD AC OC =,∴OC 2=AC ·CD ,∴4t 2=2k t ·2k t,∴k 2=4t 4,∵k >0,∴k =2t 2,∴直线OA 的解析式为y =2x .16.如图,直线l 1∥l 2∥l 3,直线l 1与l 2之间的距离为2,直线l 2与l 3之间的距离为1,等边△ABC 的三个顶点分别在直线l 1、l 2、l 3上,则等边三角形的边长是______.【答案】2213.F详解:过C 作CE ⊥AC 交AB 的延长线于D ,过C 作CF ⊥l 1于F ,交l 3于H ,过E 作ED ⊥FC 交延长线于D ,∵∠AFC =∠ACE=∠CDE =90°,∴△ACF ∽△CED ,∴DE CD CECF AF AC==,∵△ABC 为等边△,∴CE ,AB =BC =BE ,则CD AF .依题意,FH =FC +CH =2+1=3,由AB =BE ,l 1∥l 3∥ED ,得DH =FH =3,CD =4,∴AF CD AC .三、解答题(共8题,共72分)17.(8分)如图,四边形ABCD ∽四边形A 'B 'C 'D ',∠BCD =125°,分别求x 、y 、α的值.【答案】∵四边形ABCD ∽四边形A 'B 'C 'D ',∴∠C ′=∠C =125°,∴∠α=360°-80°-75°-125°=80°,且AD AB BC A D A B B C =='''''',即45316x y==,解得x =20,y =12.答:x =20,y =12,α=80°.18.(8分)如图,在矩形ABCD 中,点E 、F 分别在BC 、CD 上,AE ⊥BF 于点M ,若BC ,探究AE 与BF 的数量关系,并证明你的结论.【答案】BF AE ,理由如下:∵四边形ABCD 是矩形,∴∠ABC =∠C ,∵AE ⊥BF ,∴∠AMB =∠BAM +∠ABM =90°,又∵∠ABM +∠CBF =90°,∴∠BAM =∠CBF ,∴△ABE ∽△BCF ,∴AE AB BF BC ==,∴BF AE .19.(8分)如图,在四边形ABCD 中,AC 平分∠BAD ,∠ADC =∠ACB =90°.(1)求证:AC 2=AB ·AD ;(2)若BC =3,AB =5,求CD 的长.【答案】(1)∵AC 平分∠BAD ,∴∠DAC =∠CAB .∵∠ADC =∠ACB =90°,∴△ADC ∽△ACB ,∴AD ACAC AB=,∴AC 2=AB ·AD .(2)在Rt △ABC 中,∵BC =3,AB =5,由勾股定理,得AC =4.∵AC 2=AB ·AD ,∴42=5AD ,∴AD =165.在Rt △ADC 中,CD 125.20.(8分)如图,在矩形ABCD 中,E 是AD 上一点,连接BE .(1)请用尺规在BE 上求作一点P ,使得△PCB ∽△ABE(不写作法,保留作图痕迹);(2)若AE =3,AB =4,BC =6,求EP 的长.【答案】(1)如图所示;(2)由勾股定理,得BE 5,由△PCB ∽△ABE ,得BP BC AE BE =,即635BP =,∴BP =185,∴EP =BE -BP =5-185=75.21.(8分)如图,在△ABC 中,AB =2,BC =4,D 为BC 边上一点,BD =1.(1)求证:△ABD ∽△CBA ;(2)作DE ∥AB 交AC 于点E ,请直接写出另一个与△ABD 相似的三角形,并求出DE 的长.【答案】(1)∵AB =2,BC =4,BD =1,∴AB BDBC AB=,又∠ABD =∠CBA ,∴△ABD ∽△CBA .(2)如图,∵DE ∥AB ,∴△CDE ∽△CBA ,∵△ABD ∽△CBA ,∴△CDE ∽△ABD ,∴DE CD BD AB =,即4112DE -=,∴DE =1.5.22.(10分)在△ABC 中,AB =6,AC =8,点D 、E 分别在AB 、AC 上,连接DE ,设BD =x (0<x <6),CE =y (0<y <8).(1)当x =2,y =5时,求证:△AED ∽△ABC ;(2)若△ADE 和△ABC 相似,求y 与x 的函数表达式.【答案】(1)∵AB =6,BD =x =2,∴AD =4.∵AC =8,CE =y =5,∴AE =3.∴AD AEAC AB=.又∵∠EAD =∠BAC ,∴△AED ∽△ABC .(2)分两种情况,1°当△ADE ∽△ABC 时,AD AE AB AC =,则6868x y --=,∴y =43x (0<x <6).2°当△ADE ∽△ACB 时,AD AE AC AB =,则6886x y --=,∴y =34x +72(0<x <6).23.(10分)如图,在△ABC 中,∠ABC =90°,D 是斜边AC 的中点,连接DB .过点A 作AE ⊥BD 于点F ,交BC 于点E .(1)求证:EB 2=EF ・EA ;(2)若AB =4,CE =3BE ,求AE 的长.【答案】(1)∵AE ⊥BD ,∴∠BFE =90°=∠ABC .又∵∠BEF =∠AEB ,∴△EBF ∽△EAB ,∴BE EFAE BE=,∴EB 2=EF ・EA .(2)在Rt △ABC 中,∵D 为斜边AC 的中点,∴BD =CD ,∴∠DBC =∠C .由(1),得△EBF∽△EAB,∴∠EBF=∠EAB,∴∠C=∠EAB.又∠ABE=∠CBA,∴△BAE∽△BCA,∴AB BEBC AB=,∴AB2=BE·BC.∵AB=4,CE=3BE,∴BC=4BE,42=BE(4BE),∴BE=2.∴AE=.24.(12分)(1)【问题背景】如图1,D是等边△ABC中AB边上的点,以CD为边在CD的上方作等边△CDE,连接AE,求证:BD=AE;(2)【尝试应用】如图2,D是Rt△ABC中AB边上的一点,∠B=90°,∠BAC=30°,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,∠CED=30°,连接AE,请探究BD与AE的数量关系,并说明理由;(3)【拓展创新】如图3,在Rt△ABC中,∠ABC=90°,点D在AB边上,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,43DE ABCD BC==,DE交AC于F,若AD=3BD,求AFDF的值.【答案】(1)∵△ABC与△CDE均为等边三角形,∴BC=AC,CD=CE,∠ACB=∠DCE=60°,∴∠BCD=∠ACE,∴△BCD≌△ACE,∴BD=AE.(2)AE=2BD,理由如下:∵∠BAC=∠DEC=30°,∠B=∠EDC=90°,∴△ABC∽△EDC,∴BC AC CD CE=.由条件得∠ACB=∠DCE,AC=2BC,∴∠BCD=∠ACE,∴△BCD∽△ACE,∴12BD BCAE AC==,∴AE=2BD.(3)由(2)得,△BCD∽△ACE,∴AE ACBD BC=,∵43DE ABCD BC==,∴53ACBC=,∴53AE ACBD BC==设BD=a,则AD=3BD=3a,AB=4a,BC=3a,CDa,AE=53BD=53a.∵△AFE∽△DFC ,∴53aAF AEDF CD=.。

人教版数学九年级下学期第27章《相似》测试题含答案

人教版数学九年级下学期第27章《相似》测试题含答案

人教版数学九年级下学期第27章《相似》测试题(测试时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.如果23a b =,则a bb +=( ) A .13 B .12 C .53 D . 352.如图△ABC 中,点D 、E 分别在边AB 、AC 上,31==ACAD ABAE ,则BCED ADE S S 四边形△:的值为( )A 、3:1B 、1:3C 、1:8D 、1:93.如图,Rt △ABC 和Rt △DCA 中,∠B=∠ACD=90°,AD ∥BC ,AB=2,DC=3,则△ABC 与△DCA 的面积比为( )A .2:3B .2:5C .4:9D .2:34.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则DEEF的值为( ).A .12 B .2 C .25 D .355.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3 米,则地面上阴影部分的面积为( )A .0..36π米2B . 0.81π米2C .2π米2D .3. 24π米26.如图,在平面直角坐标系中,以原点为位似中心,将线段CD 放大得到线段AB ,若点B 、C 、D 的坐标分别为B (5,0)、C (1,2)、D (2,0),则点A 的坐标是( )A .(2.5,5)B .(2.5,3)C .(3,5)D .(2.5,4)7.如图,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA , OB ,OC 的中点,则△DEF 与△ABC 的面积比是( )A .1:2B .1:4C .1:5D .1:68.如图,在▱ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,若EF :AF=2:5,则DEFEFBCSS 四边形:为( )A .2:5B .4:25C .4:31D .4:359.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( )A .0.5mB .0.55mC .0.6mD .2.2m10.如图,在△ABC 中,AD 和BE 是高,∠ABE=45°,点F 是AB 的中点,AD 与FE 、BE 分别交于点G 、H ,∠CBE=∠BAD .有下列结论:①FD=F E ;②AH=2CD ;③BC •AD=AE 2;④S △ABC =4S △ADF .其中正确的有( )A.1个 B.2 个 C.3 个 D.4个二、填空题(每小题3分,共30分)11.已知两个相似三角形的周长比是,它们的面积比是________.12.勾股定理与黄金分割是几何中的双宝,前者好比黄金,后者堪称珠玉,生活中到处可见黄金分割的美.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割,已知AB=10 cm,AC>BC,那么AC的长约为____________cm(结果精确到0.1 cm).13.李明同学利用影长测学校旗杆的高度,某一时刻身高1.8米的李明的影长为1米,同时测得旗杆的影长为7米,则学校的旗杆的高为________米.14.在中,,是的中点,过点作直线,使截得的三角形与原三角形相似,这样的直线有________条.15.如图,在□ABCD中,F是AD延长线上一点,连接BF交DC于点E,在不添加辅助线的情况下,请写出图中一对相似三角形:__________________.16.如图,数学趣闻:上世纪九十年代,国外有人传说:“从月亮上看地球,长城是肉眼唯一看得见的建筑物.”设长城的厚度为,人的正常视力能看清的最小物体所形成的视角为,且已知月、地两球之间的距离为,根据学过的数学知识,你认为这个传说________.(请填“可能”或“不可能”,参考数据:)17.△ABC的三边长分别为,,2,△A1B1C1的两边长为1,,要使△ABC∽△A1B1C1,那么△A1B1C1的第三边长为_______.18.如图,等边△ ABC 的边长为30,点M 是边AB 上一动点,将等边△ ABC 沿过点M 的直线折叠,该直线与直线AC 交于点N,使点A 落在直线BC 上的点D 处,且BD:DC=1 :4,折痕为MN,则AN 的长为_____.19.如图:已知在中,是斜边上的高.在这个图形中,与相似的三角形是________(只写一个即可).20.如图,在梯形中,,点、、、是两腰上的点,,,且四边形的面积为,则梯形的面积为________.三、解答题(共60分)21.(本题7分)如图,D是△ABC外一点,E是BC边上一点,∠1=∠2,∠3=∠4.(1)写出图中两对相似三角形(不得添加字母和线);(2)请分别说明两对三角形相似的理由.22.(本题7分)如图,每个小方格都是边长为1个单位的小正方形,A、B、C三点都是格点(每个小方格的顶点叫格点),其中A(1,8),B(3,8),C(4,7).(1)、若D(2,3),请在网格图中画一个格点△DEF,使△DEF ∽△ABC,且相似比为2∶1;(2)、求△ABC中AC边上的高;(3)、若△ABC外接圆的圆心为P,则点P的坐标为23.(本题7分)如图,梯形ABCD中,AB//CD,且AB=2CD,E,F分别是AB,BC的中点.EF与BD相交于点M.(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.24.(本题6分)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F 点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.25.(本题8分)如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=4.求DE的长.26.(本题8分)如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC 的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB= .(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD 相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.27.(本题8分)如图1,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的一动点(不与端点A、D重合),连结PC,过点P作P E⊥PC交AB于点E,在P点运动过程中,图中各角和线段之间是否存在的某种关系和规律?特例求解当E为AB的中点,且AP>AE时,求证:PE=PC.深入探究当点P在AD上运动时,对应的点E也随之在AB上运动,求整个运动过程中B E的取值范围.28.(本题9分)如图,AB是⊙O的直径,直线l与⊙O相切于点C,AE⊥l交直线l于点E、交⊙O于点F,BD⊥l交直线l于点D.(1)求证:△AEC∽△CDB;(2)求证:AE+EF=AB;cm s的速度运动,点Q从点B出发沿(3)若AC=8cm,BC=6cm,点P从点A出发沿线段AB向点B以2/cm s的速度运动,两点同时出发,当点P运动到点B时,两点都停止运动.设运动时线段BC向点C以1/间为t秒,求当t为何值时,△BPQ为等腰三角形?答案(测试时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.如果23a b =,则a bb +=( ) A .13 B .12 C .53 D . 35【答案】C 【解析】先根据比例的性质可得a b +1=23+1,进而可得53a b b +=. 故选C .2.如图△ABC 中,点D 、E 分别在边AB 、AC 上,31==ACAD ABAE ,则BCED ADE S S 四边形△:的值为( )A 、3:1B 、1:3C 、1:8D 、1:9【答案】C 【解析】根据题意可得:△ADE ∽△ACB ,则ADE ACB S S △△:=1:9,则BCED ADE S S 四边形△:=1:8.故选C3.如图,Rt △ABC 和Rt △DCA 中,∠B=∠ACD=90°,AD ∥BC ,AB=2,DC=3,则△ABC 与△DCA 的面积比为( )A .2:3B .2:5C .4:9D .2:3 【答案】C 【解析】由AD ∥BC ,得出∠ACB=∠DAC ,证得△A BC ∽△DCA ,可得AB BC ACDC AC AD==,再由面积的比等于相似比的平方,即可得到24()9ABC DCAS AB SDC ==, 故选C .4.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则DEEF的值为( ).A .12 B .2 C .25 D .35【答案】D .5.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3 米,则地面上阴影部分的面积为( )A .0..36π米2B . 0.81π米2C .2π米2D .3. 24π米2【答案】B 【解析】如图设C ,D 分别是桌面和其地面影子的圆心,依题意可以得到△OBC ∽△OAD ,然后由它们的对应边成比例可以得CB OC AD OD =,再把OD=3,CD=1代入可求出OC= OD-CD=3-1=2,BC=12×1.2=0.6,然后求出地面影子的半径AD=0.9,这样可以求出阴影部分的面积S ⊙D =π×0.92=0.81πm 2,这样地面上阴影部分的面积为0.81πm 2. 故选B6.如图,在平面直角坐标系中,以原点为位似中心,将线段CD 放大得到线段AB ,若点B 、C 、D 的坐标分别为B (5,0)、C (1,2)、D (2,0),则点A 的坐标是( )A .(2.5,5)B .(2.5,3)C .(3,5)D .(2.5,4) 【答案】A7.如图,△D EF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA , OB ,OC 的中点,则△DEF 与△ABC 的面积比是( )A .1:2B .1:4C .1:5D .1:6【答案】B 【解析】由D ,F 分别是OA ,OC 的中点,根据三角形的中位线的性质得DF=12AC ,根据三角形相似的性质可知△DEF 与△ABC 的相似比是1:2,因此△DEF 与△ABC 的面积比是1:4. 故选B .8.如图,在▱ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,若EF :AF=2:5,则DEFEFBCSS 四边形:为( )A .2:5B .4:25C .4:31D .4:35 【答案】C9.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( )A .0.5mB .0.55mC .0.6mD .2.2m 【答案】A【解析】 根据题意可得:1.185.07.1x,解得:x=2.2,则2.2-1.7=0.5m ,即小刚举起的手臂超出头顶0.5m. 10.如图,在△ABC 中,AD 和BE 是高,∠ABE=45°,点F 是AB 的中点,AD 与FE 、BE 分别交于点G 、H ,∠CBE=∠BAD .有下列结论:①FD=FE ;②AH=2CD ;③BC •AD=AE 2;④S △ABC =4S △ADF .其中正确的有( )A.1个 B.2 个 C.3 个 D.4个【答案】D二、填空题(每小题3分,共30分)11.已知两个相似三角形的周长比是,它们的面积比是________.【答案】【解析】∵两个相似三角形的周长比是1:3,∴它们的面积比是,即1:9.故答案为:1:9.12.勾股定理与黄金分割是几何中的双宝,前者好比黄金,后者堪称珠玉,生活中到处可见黄金分割的美.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割,已知AB=10 cm,AC>BC,那么AC的长约为____________cm(结果精确到0.1 cm).【答案】6.2【解析】由题意知AC:AB=BC:AC,∴AC:AB≈0.618,∴AC=0.618×10cm≈6.2(结果精确到0.1cm)故答案为:6.2.13.李明同学利用影长测学校旗杆的高度,某一时刻身高1.8米的李明的影长为1米,同时测得旗杆的影长为7米,则学校的旗杆的高为________米.【答案】12.614.在中,,是的中点,过点作直线,使截得的三角形与原三角形相似,这样的直线有________条.【答案】【解析】作DE∥AB,DF∥BC,可得相似,作∠CDG=∠B,∠ADH=∠C,也可得相似三角形.所以可作4条.故答案为:4.15.如图,在□ABCD中,F是AD延长线上一点,连接BF交DC于点E,在不添加辅助线的情况下,请写出图中一对相似三角形:__________________.【答案】答案不唯一,如△DFE∽△CBE【解析】∵四边形ABCD是平行四边形,∴BC//AD,即BC//DF,∴△DEF∽△CEB,故答案为:△DEF∽△CEB(答案不唯一).16.如图,数学趣闻:上世纪九十年代,国外有人传说:“从月亮上看地球,长城是肉眼唯一看得见的建筑物.”设长城的厚度为,人的正常视力能看清的最小物体所形成的视角为,且已知月、地两球之间的距离为,根据学过的数学知识,你认为这个传说________.(请填“可能”或“不可能”,参考数据:)【答案】不可能这就是说,按照人的最小视角1′观察地球上长城的厚度,最远的距离只能是34.4km,而月球与地球之间的距离为380000km,这个数字很大,它相当于34.4km的11046倍,从这么远看长城,根本无法看见. 17.△ABC的三边长分别为,,2,△A1B1C1的两边长为1,,要使△ABC∽△A1B1C1,那么△A1B1C1的第三边长为_______.【答案】【解析】由三边对应成比例的两个三角形相似,易得相似比为:,故要使△ABC和△A1B1C1的三边成比例,则第三边长为2÷=,故答案为:.18.如图,等边△ ABC 的边长为30,点M 是边AB 上一动点,将等边△ ABC 沿过点M 的直线折叠,该直线与直线AC 交于点N,使点A 落在直线BC 上的点D 处,且BD:DC=1 :4,折痕为MN,则AN 的长为_____.【答案】21或65【解析】①当点A落在如图1所示的位置时,∵BD:DC=1:4,BC=30,∴DB=6,CD=24,设AN=x,则CN=30-x,∴=,∴DM=,BM=,∵BM+DM=30,∴+=30,解得x=21,∴AN=21;②当A在CB的延长线上时,如图2,与①同理可得△BMD∽△CDN,∴得,∵BD:DC=1:4,BC=10,∴DB=10,CD=40,设AN=x,则CN=x-10,∴=,∴DM=,BM=,∵BM+DM=30,∴+=10,解得:x=65,∴AN=65.故答案为:21或65.19.如图:已知在中,是斜边上的高.在这个图形中,与相似的三角形是________(只写一个即可).【答案】20.如图,在梯形中,,点、、、是两腰上的点,,,且四边形的面积为,则梯形的面积为________.【答案】18【解析】∵在梯形ABCD中,AD∥BC,点E、F、G、H是两腰上的点,AE=EF=FB,CG=GH=HD,∴2EH=AD+FG,2FG=EH+BC,∴EH=,FG=,∵四边形EFGH的面积为6cm2,∴(EH+FG)h=6,∴四边形ADEH的面积和四边形FBCG的面积和为:(EH+AD)h+(BC+FG)h=12,则梯形ABCD的面积为:18.故答案为:18.三、解答题(共60分)21.(本题7分)如图,D是△AB C外一点,E是BC边上一点,∠1=∠2,∠3=∠4.(1)写出图中两对相似三角形(不得添加字母和线);(2)请分别说明两对三角形相似的理由.【答案】(1)、△ABD∽△AEC;△ABE∽△ADC;(2)、证明见解析22.(本题7分)如图,每个小方格都是边长为1个单位的小正方形,A、B、C三点都是格点(每个小方格的顶点叫格点),其中A(1,8),B(3,8),C(4,7).(1)、若D(2,3),请在网格图中画一个格点△DEF,使△DEF ∽△ABC,且相似比为2∶1;(2)、求△ABC中AC边上的高;(3)、若△ABC外接圆的圆心为P,则点P的坐标为【答案】(1)图形见解析;(2)、105;(3)、(2,6).【解析】(1)、如图所示;(2)、高105(3)、(2,6);23.(本题7分) 如图,梯形ABCD 中,AB//CD ,且AB=2CD ,E ,F 分别是AB ,BC 的中点.EF 与BD 相交于点M .(1)求证:△EDM ∽△FBM ; (2)若DB=9,求BM .【答案】(1)、证明见解析;(2)、BM=3.24.(本题6分)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM 上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM 上的对应位置为点C ,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D 时,看到“望月阁”顶端点A 在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方O yxAB CDEF法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F 点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.【答案】99m25.(本题8分)如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=4.求DE的长.【答案】(1)、证明见解析;(2)、12 7【解析】(1)∵AD平分∠BAC,∴∠BAD=∠DA,∵∠EAD=∠ADE,∴∠BAD=∠ADE,∴AB∥DE,∴△DCE∽△BCA;(2)、∵∠EAD=∠ADE,∴AE=DE,设DE=x,∴CE=AC﹣AE=AC﹣DE=4﹣x,∵△DCE∽△BCA,∴DE:AB=CE:AC,即x:3=(4﹣x):4,解得:x=127,∴DE的长是127.26.(本题8分)如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC 的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB= .(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD 相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.【答案】(1)证明见解析(2)证明见解析在△ACE和△ABD中,AC ADEAC BADEA AB=⎧⎪∠=∠⎨⎪=⎩,∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②∵△ADF∽△CFP,∴AF•PF=DF•CF,∵∠AFP=∠CFD,∴△AFP∽△CDF.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC﹣∠APC=120°,∴P点为△ABC的费马点.27.(本题8分)如图1,已知在矩形ABCD 中,AB=2,BC=3,P 是线段AD 边上的一动点(不与端点A 、D 重合),连结PC ,过点P 作PE ⊥PC 交AB 于点E ,在P 点运动过程中,图中各角和线段之间是否存在的某种关系和规律? 特例求解当E 为AB 的中点,且AP >AE 时,求证:PE=PC . 深入探究当点P 在AD 上运动时,对应的点E 也随之在AB 上运动,求整个运动过程中BE 的取值范围.【答案】(1)证明见解析;(2)87≤BE <2. (2)深入探究,设AP=x ,AE=y ,∵△AP E ∽△DCP ,∴AP AE DC DP ,即x (3﹣x )=2y ,∴y=12x 3﹣x )=﹣12x +32x=﹣12(x ﹣32)2+98,∴当x=32时,y 的最大值为98,∵AE=y 取最大值时,BE 取最小值为2﹣98=78BE的取值范围为78≤BE <2.28.(本题9分)如图,AB 是⊙O 的直径,直线l 与⊙O 相切于点C ,AE ⊥l 交直线l 于点E 、交⊙O 于点F ,BD ⊥l 交直线l 于点D .(1)求证:△AEC∽△CDB;(2)求证:AE+EF=AB;(3)若AC=8cm,BC=6cm,点P从点A出发沿线段AB向点B以2/cm s的速度运动,点Q从点B出发沿线段BC向点C以1/cm s的速度运动,两点同时出发,当点P运动到点B时,两点都停止运动.设运动时间为t秒,求当t为何值时,△BPQ为等腰三角形?【答案】(1)证明见解析;(2)证明见解析;(3)t=103或t=6017或t=258时又∵AE⊥DE,BD⊥DE,∴OC∥BD∥AE,又∵O是AB的中点,∴OC//AE//BD∴OC=1()2BD AE+,∵AB是⊙O的直径,∴∠AFB=90°,∴∠BFE=90°,又∵∠AED=∠BDE=90°,∴四边形BDEF是矩形,∴BD=FE ,∴AE+EF=AE+BD,∴1(AE)2EF+。

人教版数学九年级下学期第27章《相似》测试卷含答案

人教版数学九年级下学期第27章《相似》测试卷含答案

人教版数学九年级下学期第27章《相似》测试卷(测试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知:线段a、b,且,则下列说法错误的是( )A.a=2cm,b=3cm B.a=2k,b=3k(k≠0)C.3a=2b D.2.下列命题正确的是()A.有一个角对应相等的平行四边形都相似B.对应边成比例的两个平行四边形相似C.有一个角对应相等的两个等腰梯形相似D.有一个角对应相等的菱形是相似多边形3.如果(其中顶点、、依次与顶点、、对应),那么下列等式中不一定成立的是()A.B.∠B=∠E C.D.4.在比例尺为1∶8 000的某学校地图上,矩形运动场的图上尺寸是1 cm×2 cm,那么矩形运动场的实际尺寸应为( )A.80 m×160 m B.8 m×16 m C.800 m×160 m D.80 m×800 m5.如图,在平面直角坐标系中,已知点,,以原点为位似中心,相似比为,把缩小,则点的对应点的坐标是()A.(-1, 2)B.(-9, 18)C.(-9, 18)或(9, -18) D.(-1, 2)或(1, -2)6.如图,点O是△ABC内任一点,点D,E,F分别为OA,OB,OC的中点,则图中相似三角形有( ) A.1对B.2对C.3对D.4对7.已知:如图,在中,,则下列等式成立的是( )A .B .C .D .8.如图,在平行四边形中,是上的一点,直线与的延长线交于点,并与交于点,下列式子中错误的是( )A .B .C .D .9.如图,在中,是边上一点,连接,给出下列条件:①;②;③;④.其中单独能够判定的个数是( )A . 1个B . 2个C . 3个D . 4个 10.点是线段的黄金分割点,且,下列命题:,中正确的有( )A . 1个B . 2个C . 3个D . 4个二、填空题(每小题3分,共30分) 11.如图,在△ABC 中,DE ∥BC ,23AD DB =,则DEBC = .12. 如图,直角三角形ABC 中,︒=∠90ACB ,10=AB , 6=BC ,在线段AB 上取一点D ,作AB DF ⊥交AC 于点F .现将ADF ∆沿DF 折叠,使点A 落在线段DB 上,对应点 记为H ;AD 的中点E 的对应点记为G. 若GFH ∆∽GBF ∆,则AD =______ ____.13.如图,等边ABC △的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=°,则CD 的长为 .14.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O , 若S △DOE :S △COA =1:25,则S △BDE 与S △CDE 的比=___________.15.如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A′B′C′D′E′,已知OA=10cm ,OA′=20cm,则五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的比值是 .16.把一个矩形剪去一个正方形,若剩下的矩形与原矩形相似,则原矩形的长边与短边之比为 17.如图,菱形ABCD 的边长为1,直线l 过点C ,交AB 的延长线于M ,交AD 的延长线于N ,则AM1+AN1= .18.如图,在菱形ABCD 中,E 是BC 边上的点,AE 交BD 于点F ,若EC=2BE ,则BFFD的值是 .19.已知女排赛场球网的高度是2.24米,某排球运动员在一次扣球时,球恰好擦网而过,落在对方场地距离球网4米的位置上,此时该运动员距离球网1.5米,假设此次排球的运行路线是直线,则该运动员击球的高度是米.2.244 1.520.如图,在矩形ABCD中,AB=2,AD=,在边CD上有一点E,使EB平分∠AEC.若P为BC 边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.给出以下五个结论:①点B平分线段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF ;⑤△AEB是正三角形.其中正确结论的序号是.三、解答题(共60分)21.(本题6分)如图,在△ABC中,D是AB上一点,且∠ACD=∠B,已知AD=8cm,BD=4cm,求AC的长.22.(本题6分)如图,在边长为1 的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和格点O,按要求画出格点△A1B1C1和格点△A2B2C2.(1)将△ABC绕O点顺时针旋转90°,得到△A1B1C1;(2)以A1为一个顶点,在网格内画格点△A1B2C2,使得△A1B1C1∽△A1B2C2,且相似比为1:2.23.(本题6分)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.24.(本题8分)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.25.(本题7分)为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一根标杆、皮尺,设计如图所示的测量方案.已知测量同学眼睛A、标杆顶端F、树的顶端E在同一直线上,此同学眼睛距地面1.6米,标杆高为3.2米,且BC=2米,CD=6米,求树ED的高.26.(本题8分)如图,正方形A1A2B1C1,A2A3B2C2,…A n a n+1B n C n,如图位置依次摆放,已知点C1,C2,C3…,C n在直线y=x上,点A1的坐标为(1,0).(1)写出正方形A1A2B1C1,A2A3B2C2,…A n a n+1B n C n,的位似中心坐标;(2)正方形A4A3B4C4四个顶点的坐标.27.(本题8分)如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE•BC=BD•A C;(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.28.(本题11分) (1)、问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)、探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)、应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.答案(测试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知:线段a、b,且,则下列说法错误的是( )A.a=2cm,b=3cm B.a=2k,b=3k(k≠0)C.3a=2b D.【答案】A【解析】选项A,两条线段的比,没有长度单位,它与所采用的长度单位无关,选项A错误;选项B,,根据等比性质,a=2k,b=3k(k≠0),选项B正确;选项C,,根据比例的基本性质可得3a=2b,选项C正确;选项D,,根据比例的基本性质可得a=b,选项D正确.故选A.2.下列命题正确的是()A.有一个角对应相等的平行四边形都相似B.对应边成比例的两个平行四边形相似C.有一个角对应相等的两个等腰梯形相似D.有一个角对应相等的菱形是相似多边形【答案】D3.如果(其中顶点、、依次与顶点、、对应),那么下列等式中不一定成立的是()A.B.∠B=∠E C.D.【答案】C【解析】△ABC∽△DEF,故:A.∠A=∠D正确,故本选项错误;B.∠B=∠E正确,故本选项错误;C.AB=DE不一定成立,故本选项正确;D.正确,故本选项错误.故选C.4.在比例尺为1∶8 000的某学校地图上,矩形运动场的图上尺寸是1 cm×2 cm,那么矩形运动场的实际尺寸应为( )A.80 m×160 m B.8 m×16 m C.800 m×160 m D.80 m×800 m【答案】A解得y=16000(cm)=160(m)∴矩形运动场的实际尺寸是80m×160m.故选A.5.如图,在平面直角坐标系中,已知点,,以原点为位似中心,相似比为,把缩小,则点的对应点的坐标是()A.(-1, 2)B.(-9, 18)C.(-9, 18)或(9, -18) D.(-1, 2)或(1, -2)【答案】D6.如图,点O是△ABC内任一点,点D,E,F分别为OA,OB,OC的中点,则图中相似三角形有( )A.1对B.2对C.3对D.4对【答案】D【解析】因为点D,E,F分别为OA,OB,OC的中点,所以DE是△AOB的中位线,DF是△AOC的中位线,EF是△BOC的中位线,所以DE//AB,DF//AC,EF//BC,所以△DOE∽△AOD,△DOF∽△AOC,△EOF∽△BOC,因为DE是△AOB的中位线,DF是△AOC的中位线,EF是△BOC的中位线,所以,,所以,所以△DEF∽△ABC,因此有四对相似三角形,故选D.7.已知:如图,在中,,则下列等式成立的是()A.B.C.D.【答案】C8.如图,在平行四边形中,是上的一点,直线与的延长线交于点,并与交于点,下列式子中错误的是()A.B.C.D.【答案】D【解析】∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BE,∵CG∥AE,∴四边形AGCF是平行四边形,△BCG∽△BEA,△CEF∽△BEA,∴,,CF=AG,∴DF=BG,,∴选项A、B正确;∵AD∥BE,∴,∴,∴选项C正确,D不正确;故选D.9.如图,在中,是边上一点,连接,给出下列条件:①;②;③;④.其中单独能够判定的个数是()A.1个B.2个C.3个D.4个【答案】B10.点是线段的黄金分割点,且,下列命题:,中正确的有()A.1个B.2个C.3个D.4个【答案】B二、填空题(每小题3分,共30分) 11.如图,在△ABC 中,DE ∥BC ,23AD DB =,则DEBC = .【答案】25【解析】根据AD:DB=2:3可得:AD:AB=2:5,∵DE ∥BC ,∴△ADE ∽△ABC ,∴25DE AD BC AB . 12. 如图,直角三角形ABC 中,︒=∠90ACB ,10=AB , 6=BC ,在线段AB 上取一点D ,作AB DF ⊥交AC 于点F .现将ADF ∆沿DF 折叠,使点A 落在线段DB 上,对应点 记为H ;AD 的中点E 的对应点记为G. 若GFH ∆∽GBF ∆,则AD =______ ____.【答案】3.2 【解析】利用勾股定理列式求出AC=8,设AD=2x ,得到AE=DE=DE 1=A 1E 1=x ,然后求出BE 1=10-3x ,再利用相似三角形对应边成比例列式求出DF=32x ,然后利用勾股定理列式求出E 1F=132x ,然后根据相似三角形对应边成比例列式求解得到x=85,从而可得AD 的长为2×85=165=3.2. 13.如图,等边ABC △的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=°,则CD的长为 .【答案】23.14.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥A C,AE、CD相交于点O,若S△DO E:S△COA=1:25,则S△BDE与S△CDE的比=___________.【答案】1:4【解析】根据S△DOE:S△COA=1:25可得:DE:AC=1:5,则BE:BC=1:4,即BE:CE=1:4,△BDE和△CDE是登高三角形,则S△BDE:S△CDE=BE:EC=1:4.15.如图,以点O为位似中心,将五边形ABCDE放大后得到五边形A′B′C′D′E′,已知OA=10cm,OA′=20cm,则五边形ABCDE的周长与五边形A′B′C′D′E′的周长的比值是.【答案】1:2【解析】由五边形ABCDE与五边形A′B′C′D′E′位似,可得五边形ABCDE∽五边形A′B′C′D′E′,又由OA=10cm,OA′=20cm,即可求得其相似比为1:2,根据相似多边形的周长的比等于其相似比,即可求得答案为五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的比为:OA :OA′=1:2.16.把一个矩形剪去一个正方形,若剩下的矩形与原矩形相似,则原矩形的长边与短边之比为 【答案】152【解析】设原矩形的长为x ,宽为y ,则剩下的矩形的长为y ,宽为(x -y),根据矩形相似可求出比值. 17.如图,菱形ABCD 的边长为1,直线l 过点C ,交AB 的延长线于M ,交AD 的延长线于N ,则AM1+AN1= .【答案】1.18.如图,在菱形ABCD 中,E 是BC 边上的点,AE 交BD 于点F ,若EC=2BE ,则BFFD的值是 .【答案】13【解析】根据菱形的性质得出AD=BC ,AD ∥BC ,求出AD=3BE ,根据相似三角形的判定得出△AFD ∽△EFB ,根据相似得出比例式BF BE DF AD =,代入求出即可求得结果为13. 19.已知女排赛场球网的高度是2.24米,某排球运动员在一次扣球时,球恰好擦网而过,落在对方场地距离球网4米的位置上,此时该运动员距离球网1.5米,假设此次排球的运行路线是直线,则该运动员击球的高度是 米.41.52.24【答案】3.08 【解析】根据三角形相似的性质可得:x24.25.144=+,则x=3.08 20.如图,在矩形ABCD 中,AB=2,AD=,在边CD 上有一点E ,使EB 平分∠AEC.若P 为BC 边上一点,且BP=2CP ,连接EP 并延长交AB 的延长线于F .给出以下五个结论: ①点B 平分线段AF ;②PF=DE ;③∠BEF=∠FEC;④S 矩形ABCD =4S △BPF ;⑤△AEB 是正三角形.其中正确结论的序号是.【答案】①②③⑤在Rt△BPF 中,BF=2,由勾股定理可求得PF=22BF BP +=22343⎛⎫+ ⎪ ⎪⎝⎭=433,∵DE=1,∴PF=433DE ,故②正确;在Rt△BCE 中,EC=1,BC=3,由勾股定理可求得BE=2,∴BE=BF,∴∠BEF=∠F,又∵AB∥CD,∴∠FEC=∠F,∴∠BEF=∠FEC, 故③正确;∵AB=2,AD=3,∴S 矩形ABCD =AB×AD=2×3=23,∵BF=2,BP=433,∴S △BPF =12BF×BP=12×2×433=433, ∴4S △BPF =1633,∴S 矩形ABCD =≠4S △BPF ,故④不正确; 由上可知AB=AE=BE=2,∴△AEB 为正三角形,故⑤正确; 综上可知正确的结论为:①②③⑤.故答案为:①②③⑤. 三、解答题(共60分)21.(本题6分)如图,在△ABC 中,D 是AB 上一点,且∠ACD=∠B,已知AD=8cm ,BD=4cm ,求AC 的长.【答案】4622.(本题6分)如图,在边长为1 的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点)和格点O ,按要求画出格点△A 1B 1C 1和格点△A 2B 2C 2. (1)将△ABC 绕O 点顺时针旋转90°,得到△A 1B 1C 1;(2)以A 1为一个顶点,在网格内画格点△A 1B 2C 2,使得△A 1B 1C 1∽△A 1B 2C 2,且相似比为1:2.【答案】(1)图形见解析;(2)图形见解析.【解析】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A1B2C2,即为所求.23.(本题6分)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.【答案】4.【解析】∵DE⊥AB,∴∠BED=90°,又∠C=90°,∴∠BED=∠C.又∠B=∠B,∴△BED∽△BCA,∴BD DEAB AC,∴DE=BD ACAB⋅=8714⨯=4.24.(本题8分)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【答案】(1)证明见解析;(2) AD=3525.(本题7分)为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一根标杆、皮尺,设计如图所示的测量方案.已知测量同学眼睛A、标杆顶端F、树的顶端E在同一直线上,此同学眼睛距地面1.6米,标杆高为3.2米,且BC=2米,CD=6米,求树ED的高.【答案】8米【解析】如图,过A作AH垂直ED,垂足为H,交线段FC与G,由题知,FG//EH, △AFG∽△AEH,FG AG EH AH=又因为AG=BC=2,AH=BD=2+6=8,FG=FC-GC=3.2 -1.6=1.6,所以1.628EH=,EH=6.4,∴ED=EH+HD=6.4+1.6=8 树ED的高为8米26.(本题8分)如图,正方形A1A2B1C1,A2A3B2C2,…A n a n+1B n C n,如图位置依次摆放,已知点C1,C2,C3…,C n在直线y=x上,点A1的坐标为(1,0).(1)写出正方形A1A2B1C1,A2A3B2C2,…A n a n+1B n C n,的位似中心坐标;(2)正方形A4A3B4C4四个顶点的坐标.【答案】(1)(0,0);(2)A4(8,0),A5(16,0),B4(16,8),C4(8,8).27.(本题8分)如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE•BC=BD•AC;(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.【答案】(1)证明见解析;(2) BC=10.28.(本题11分) (1)、问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)、探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)、应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.【答案】(1)证明见解析;(2)证明见解析;(3) t=1秒或5秒.【解析】(1)、如图1 ∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠ADP =∠BPC ∴△ADP∽△BPC.∴ADBP=APBC.即AD·BC=AP·BP.(2)结论AD·BC=AP·BP 仍成立.理由:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠ADP,∴∠DPC+∠BPC =∠A+∠ADP,∵∠DPC =∠A=θ,∴∠BPC =∠ADP ,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴ADBP=APBC.,∴AD·BC=AP·BP.(3)如图3,过点D作DE⊥AB于点E,∵AD=BD=5,AB=6,∴AE=BE=3,由勾股定理得DE=4,∴DC=DE=4,∴BC=5-4=1,又∵AD=BD,∴∠A=∠B,由已知,∠DPC =∠A,∴∠DPC =∠A=∠B,由(1)、(2)可得:AD·BC=AP·BP,又AP=t,BP=6-t,∴t(6-t)=5×1,解得t1=1,t2=5,∴t的值为1秒或5秒.。

人教版九年级数学下册第二十七章检测卷(含答案)

人教版九年级数学下册第二十七章检测卷(含答案)

第二十七章检测卷时间:120分钟 满分:150分题号 一 二 三 四 五 六 七 八 总分 得分一、选择题(本大题共10小题,每小题4分,满分40分) 1.观察下列每组图形,相似图形是( )2.已知a b =23,那么aa +b 的值为( )A.13B.25C.35D.343.已知△ABC ∽△DEF ,且AB ∶DE =1∶2,则△ABC 的面积与△DEF 的面积之比为( )A .1∶2B .1∶4C .2∶1D .4∶1第4题图 第5题图 第6题图 第7题图4.如图,在△ABC 中,DE ∥BC ,AD AB =13,BC =12,则DE 的长是( )A .3B .4C .5D .65.如图,在6×6的正方形网格中,连接两格点A ,B ,线段AB 与网格线的交点为M ,N ,则AM ∶MN ∶NB 为( )A .3∶5∶4B .1∶3∶2C .1∶4∶2D .3∶6∶56.如图,线段AB 两个端点的坐标分别为A (4,4),B (6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 和D 的坐标分别为( )A .(2,2),(3,2)B .(2,4),(3,1)C .(2,2),(3,1)D .(3,1),(2,2)7.如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC 的延长线上,连接EF ,分别交AD ,CD 于点G ,H ,则下列结论错误的是( )A.EA BE =EG EFB.EG GH =AG GDC.AB AE =BC CFD.FH EH =CF AD8.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为( )A .1.25尺B .57.5尺C .6.25尺D .56.5尺第 8题图 第9题图 第10题图9.如图,在正方形ABCD 中,M 为BC 上一点,ME ⊥AM ,ME 交AD 的延长线于点E .若AB =12,BM =5,则DE 的长为( )A .18 B.1095 C.965 D.25310.如图,在锐角△ABC 中,BC =6,S △ABC =12,两动点M ,N 分别在边AB ,AC 上滑动,且MN ∥BC ,MP ⊥BC ,NQ ⊥BC ,得矩形MPQN .设MN 的长为x ,矩形MPQN 的面积为y ,则y 关于x 的函数图象大致形状是( )二、填空题(本大题共4小题,每小题5分,满分20分)11.比例尺为1∶4000000的地图上,两城市间的图上距离为3cm ,则这两城市间的实际距离为________km.12.如图,已知点B ,E ,C ,F 在同一条直线上,∠A =∠D ,要使△ABC ∽△DEF ,还需添加一个条件,你添加的条件是____________(只需写一个条件,不添加辅助线和字母).第12题图 第14题图13.将一个矩形沿着一条对称轴翻折,如果所得到的矩形与这个矩形相似,那么我们就将这样的矩形定义为“白银矩形”.事实上,“白银矩形”在日常生活中随处可见,如:我们常见的A4纸就是一个“白银矩形”.请根据上述信息求A4纸的较长边与较短边的比值,这个比值是________.14.将三角形纸片(△ABC)按如图折叠,使点C落在AB边上的点D处,折痕为EF.已知AB=AC=3,BC=4,若以点B,D,F为顶点的三角形与△ABC相似,那么CF的长是__________.三、(本大题共2小题,每小题8分,满分16分)15.如图,四边形ABCD∽四边形A′B′C′D′,求x,y的值和α的大小.16.如图,在△ABC中,D是AB上一点,且∠ACD=∠B,已知AD=8cm,BD=4cm,求AC的长.四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,相似比为1∶2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出点C2的坐标.18.如图,AB 是半圆O 的直径,点C 在圆弧上,D 是AC ︵的中点,OD 与AC 相交于点E .求证:△ABC ∽△COE .五、(本大题共2小题,每小题10分,满分20分)19.如图,在△ABC 中,AB =AC =8,BC =6,点D 为BC 上一点,BD =2.过点D 作射线DE 交AC 于点E ,使∠ADE =∠B .求线段CE 的长度.20.如图,在▱ABCD 中,E 是CD 的延长线上一点,连接BE 交AD 于点F ,且AF =2FD . (1)求证:△ABF ∽△CEB ;(2)若△CEB 的面积为9,求▱ABCD 的面积.六、(本题满分12分) 21.如图,△ABC 和△CEF 均为等腰直角三角形,E 在△ABC 内,∠CAE +∠CBE =90°,连接BF .(1)求证:△CAE ∽△CBF ;(2)若BE =1,AE =2,求CE 的长.七、(本题满分12分)22.已知正方形ABCD ,点E 在边CD 上,点F 在线段BE 的延长线上,连接FC ,且∠FCE =∠CBE .(1)如图①,当点E 为CD 边的中点时,求证:CF =2EF ;(2)如图②,当点F 位于线段AD 的延长线上时,求证:EF BE =DEDF.八、(本题满分14分)23.如图①,P 为△ABC 所在平面上一点,且∠APB =∠BPC =∠CP A =120°,则点P 叫作△ABC 的费马点.(1)如果点P 为锐角△ABC 的费马点,且∠ABC =60°. ①求证: △ABP ∽△BCP ;②若P A =3,PC =4,求PB 的长;(2)如图②,已知锐角△ABC ,分别以AB ,AC 为边向外作正△ABE 和正△ACD ,CE 和BD 相交于点P ,连接AP .①求∠CPD 的度数;②求证:点P 为△ABC 的费马点.参考答案与解析1.D 2.B 3.B 4.B 5.B 6.C 7.C 8.B 9.B10.B 解析:如图,过点A 作AD ⊥BC 于点D ,交MN 于点E .∵在锐角△ABC 中,BC =6,S △ABC =12,∴AD ·BC 2=AD ×62=12,解得AD =4.由MN ∥BC ,MP ⊥BC ,NQ ⊥BC ,AD ⊥BC ,易得四边形MPDE 为矩形,∴MP =ED .∵MN ∥BC ,∴△AMN ∽△ABC ,∴AEAD =MN BC ,即AE 4=x 6,解得AE =2x 3,∴ED =AD -AE =4-2x 3,∴MP =4-2x3,∴矩形MPQN 的面积y =MN ·MP =x ⎝⎛⎭⎫4-2x 3=-23x 2+4x =-23(x -3)2+6,∴y 关于x 的函数是二次函数,其函数图象的顶点坐标是(3,6).故选B.11.12012.∠B =∠DEC (答案不唯一)13. 2 14.127或2 解析:由折叠可得DF =CF .设DF =CF =x ,则BF =BC -CF =4-x .以点B ,D ,F 为顶点的三角形与△ABC 相似,分两种情况:①若∠BFD =∠C ,则DF AC =BF BC ,即x 3=4-x4,解得x =127;②若∠BFD =∠A ,则FD AC =BF BA ,即x 3=4-x 3,解得x =2.综上所述,CF 的长为127或2.15.解:∵四边形ABCD ∽四边形A ′B ′C ′D ′,∴x 8=y 11=96,∠C =α,∠D =∠D ′=140°,(4分)∴x =12,y =332,α=∠C =360°-∠A -∠B -∠D =360°-62°-75°-140°=83°.(8分)16.解:∵∠ACD =∠B ,∠A =∠A ,∴△ACD ∽△ABC ,∴AC AB =ADAC .(4分)∵AD =8cm ,BD =4cm ,∴AB =12cm ,(6分)∴AC =8×12=46(cm).(8分)17.解:(1)△A 1BC 1如图所示.(4分)(2)△A 2B 2C 2如图所示,点C 2的坐标为(-6,4).(8分)18.证明:∵AB 为半圆O 的直径,∴∠BCA =90°.∵D 是AC ︵的中点,∴OE ⊥AC ,∴∠OEC =90°=∠BCA .(4分)∵OA =OC ,∴∠BAC =∠OCE ,∴△ABC ∽△COE .(8分)19.解:∵AB =AC ,∴∠B =∠C .∵∠ADC =∠B +∠BAD ,∠ADC =∠ADE +∠CDE ,而∠ADE =∠B ,∴∠BAD =∠CDE ,∴△ABD ∽△DCE ,(5分)∴AB DC =BDCE .∵AB =8,BC =6,BD =2,∴DC =BC -BD =4,∴84=2CE,∴CE =1.(10分)20.(1)证明:∵四边形ABCD 是平行四边形,∴∠A =∠C ,AB ∥CD ,∴∠ABF =∠E ,∴△ABF ∽△CEB .(4分)(2)解:∵AF =2FD ,∴AD =3FD .∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AD =BC ,∴△ABF ∽△DEF ,△CEB ∽△DEF ,∴S △ABF ∶S △DEF =AF 2∶FD 2=4,S △CEB ∶S △DEF =BC 2∶FD 2=AD 2∶FD 2=9.又∵△CEB 的面积为9,∴△DEF 的面积为1,△ABF 的面积为4,∴▱ABCD 的面积为9-1+4=12.(10分)21.(1)证明:∵△ABC 和△CEF 均为等腰直角三角形,∴AC BC =CECF =2,∠ACB =∠ECF=45°.(3分)∵∠ACB =∠ACE +∠BCE ,∠ECF =∠BCF +∠BCE ,∴∠ACE =∠BCF ,∴△CAE ∽△CBF .(6分)(2)解:由(1)可知△CAE ∽△CBF ,∴∠CAE =∠CBF ,AE BF =AC BC = 2.又∵AE =2,∴2BF =2,∴BF = 2.(9分)∵∠CAE +∠CBE =90°,∴∠CBF +∠CBE =90°,∴∠EBF =90°,∴EF 2=BE 2+BF 2=12+(2)2=3,∴EF =3,∴CE =2EF = 6.(12分)22.证明:(1)∵四边形ABCD 是正方形,∴CD =BC .∵点E 为CD 边的中点,∴CE =12CD =12BC .(2分)∵∠FCE =∠CBE ,∠F =∠F ,∴△FCE ∽△FBC ,∴EF CF =CE BC .又∵CE =12BC ,∴EF CF =12,∴CF =2EF .(6分) (2)∵四边形ABCD 是正方形,∴DE ∥AB ,AD ∥BC ,AD =CD ,∴EF BE =DF AD ,∴EF BE =DFCD.(8分)∵AF ∥BC ,∴∠DFE =∠CBE .∵∠FCE =∠CBE ,∴∠DFE =∠FCE .又∵∠FDE =∠CDF ,∴△FDE ∽△CDF ,∴DE DF =DF CD ,∴EF BE =DEDF.(12分)23.(1)①证明:∵∠P AB +∠PBA =180°-∠APB =60°,∠PBC +∠PBA =∠ABC =60°,∴∠P AB =∠PBC .又∵∠APB =∠BPC =120°,∴△ABP ∽△BCP .(4分)②解:由①可知△ABP ∽△BCP ,∴P A PB =PBPC,∴PB 2=P A ·PC =12,∴PB =2 3.(6分) (2)①解:如图,∵△ABE 和△ACD 是正三角形,∴AE =AB ,AC =AD ,∠EAB =∠5=60°.∵∠EAC =∠EAB +∠BAC ,∠BAD =∠BAC +∠5,∴∠EAC =∠BAD ,∴△ACE ≌△ADB ,∴∠1=∠2.∵∠3=∠4,∴∠CPD =∠5=60°.(10分)②证明:由①可知∠1=∠2,∠3=∠4,∴△ADF ∽△PCF ,∴AF ∶PF =DF ∶CF ,∴AF ∶DF =PF ∶CF .∵∠AFP =∠CFD ,∴△AFP ∽△DFC ,∴∠APF =∠ACD =60°.由①可知∠CPD =60°,∴∠APC =∠CPD +∠APF =120°,∠BPC =180°-∠CPD =120°,∴∠APB =360°-∠BPC -∠APC =120°,∴点P 为△ABC 的费马点.(14分)。

人教版九年级数学下册第27章《相似》测试带答案解析

人教版九年级数学下册第27章《相似》测试带答案解析

人教版九年级数学下册第27章《相似》测试带答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题12个小题,每小题4分,共48分)1.下列选项中的两个图形一定相似的是()A.两个等边三角形B.两个矩形C.两个菱形D.两个等腰梯形2.如图,D,E是△ABC边上的两个点,请你再添加一个条件,使得△ABC∽△AED,则下列选项不成立的是()A.ABAE =ACADB.ABAE=BCDEC.∠C=∠ADE D.∠B=∠AED3.如图,△ABC中,点D、E分别在AB、AC上,DE∥BC,DB=2AD,则S△ADE:S△ABC =()A.19B.14C.16D.134.如图,在平面直角坐标系中,C为△AOB的OA边上一点,AC:OC=1:2,过C作CD∥OB 交AB于点D,C、D两点纵坐标分别为1、3,则B点的纵坐标为()5.如图,东汉末年数学家刘徽利用青朱出入图,证明了勾股定理,“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”.若CE=4,DE=2,则正方形BFGH的面积为()A.15 B.25 C.100 D.1176.如图,在平面直角坐标系中,以A(0,1)为位似中心,在y轴右侧作△ABC放大2倍后的位似图形△AB'C,若点B的坐标为(﹣1,3),则点B的对应点B'的坐标为()A.(2,﹣4)B.(1,﹣4)C.(2,﹣3)D.(1,﹣3)7.如图,在△ABC和△AED中,∠CAB=∠DAE=36°,AB=AC、AE=AD,连接CD,连接BE并延长交AC,AD于点F、G.若BE恰好平分∠ABC,则下列结论:①DE=GE;②CD∥AB;③∠ADC=∠AEB;④BF =CF•AC.其中正确的个数为()A.1个B.2个C.3个D.4个(k>0,x>0)的图象上,x过点A 8.如图,在平面直角坐标系中,点A、B在函数y=kx作x轴的垂线,与函数y=−kx(x>0)的图象交于点C,连结BC交x轴于点D.若点A 的横坐标为1,BC=3BD,则点B的横坐标为()A.32B.2C.52D.39.如图,已知△ABC.(1)以点A为圆心,以适当长为半径画弧,交AC于点M,交AB于点N.(2)分别以M,N为圆心,以大于12MN的长为半径画弧,两弧在∠BAC的内部相交于点P.(3)作射线AP交BC于点D.(4)分别以A,D为圆心,以大于12AD的长为半径画弧,两弧相交于G,H两点.(5)作直线GH,交AC,AB分别于点E,F.依据以上作图,若AF=2,CE=3,BD=32,则CD的长是()A.910B.1 C.94D.410.如图,在菱形ABCD中,对角线AC与BD相交于点O,在BC的延长线上取一点E,连接OE交CD于点F.已知AB=5,CE=1,则CF的长是()A.23B.34C.35D.5711.如图,已知点A(0,4),B(4,1),BC⊥x轴于点C.点P为线段OC上一点,且PA⊥PB.则点P的坐标为()A.(1,0)B.(1.5,0)C.(1.8,0)D.(2,0)12.如图,在平面直角坐标系中,矩形ABCD的顶点A在第一象限,B,D分别在y轴上,AB交x轴于点E,AF⊥x轴,垂足为F.若OE=3,EF=1.以下结论正确的个数是()①OA=3AF;②AE平分∠OAF;③点C的坐标为(−4,−√2);④BD=6√3;⑤矩形ABCD 的面积为24√2.A.2个B.3个C.4个D.5个二、填空题(本大题4个小题,每小题4分,共16分)13.如图,在△ABC中,点D在AB边上,点E在AC边上,请添加一个条件_________,使△ADE∽△ABC.14.如图,数学兴趣小组利用硬纸板自制的Rt△ABC来测量操场旗杆MN的高度,他们通过调整测量位置,并使边AC与旗杆顶点M在同一直线上,且Rt△ABC与△AEM在同一个平面内.已知AC=0.8米,BC=0.5米,目测点A到地面的距离AD=1.5米,到旗杆的水平距离AE=20米,则旗杆MN的高度为_____米.15.如图,将菱形ABCD绕点A逆时针旋转到菱形AB′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E,若AB=5,BB′=3则CE的长为________.(x<0)16.如图,点A在x轴的负半轴上,点B在y轴的正半轴上,反比例函数y=kx的图象经过线段AB点的中点C,△ABO的面积为1,则k的值是______.三、解答题(共9个小题,17、18每小题8分,19-25每小题10分,共86分)17.如图,在Rt△ABC中,CD是斜边AB上的高.求证:△ACD∽△ABC.18.已知:如图ΔABC三个顶点的坐标分别为A(−2,−2)、B(−3,−4)、C(−1,−4),正方形网格中,每个小正方形的边长是1个单位长度.(1)以点C为位似中心,在网格中画出△A1B1C,使△A1B1C与ΔABC的位似比为2:1,并直接写出点A1的坐标______;(2)△A1B1C的面积为______.19.如图,△ABC在坐标平面内,三个顶点的坐标分别为A(0,4),B(2,2),C(4,6)(正方形网格中,每个小正方形的边长为1).(1)以点O为位似中心,在第三象限画出△A1B1C1,使△A1B1C1与△ABC位似,且位似比为1:2;(2)画出将线段AB绕点A顺时针旋转90°所得的线段AB2,并求出点B旋转到点B2所经过的路径长.20.在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(2,2),B(4,0),C(4,−4).(1)画出△ABC向左平移6个单位长度后得到的△A1B1C1(2)在y轴右侧画出以点O为位似中心,将△ABC缩小为原来12后得到的△A2B2C2 21.如图,四边形ABCD内接于圆O,AB是直径,点C是BD̂的中点,延长AD交BC的延长线于点E.(1)求证:CE=CD;(2)若AB=3,BC=√3,求AD的长.22.如图,AB是⊙O的直径,点C是⊙O上异于A、B的点,连接AC、BC,点D在BA的延长线上,且∠DCA=∠ABC,点E在DC的延长线上,且BE⊥DC.(1)求证:DC是⊙O的切线;(2)若OAOD =23,BE=3,求DA的长.23.如图,一次函数y=−x−2的图象与y轴交于点A,与反比例函数y=−3x(x<0)的图象交于点B.(1)求点B的坐标;(2)点C是线段AB上一点(不与点A、B重合),若ACBC =12,求点C的坐标.24.如图,AC与BD交于点O,OA=OD,∠ABO=∠DCO,E为BC延长线上一点,过点E作EF//CD,交BD的延长线于点F.(1)求证△AOB≌△DOC;(2)若AB=2,BC=3,CE=1,求EF的长.25.如图,DP是⊙O的切线,D为切点,弦AB//DP,连接BO并延长,与⊙O交于点C,与DP交于点E,连接AC并延长,与DP交于点F,连接OD.(1)求证:AF//OD;(2)若OD=5,AB=8,求线段EF的长.参考答案:1.A【分析】根据相似图形的概念进行判断即可;【详解】解:A、两个等边三角形,三个角都是60°∴它们是相似图形,符合题意;B、两个矩形四个角都是90°,但对应边的比不一定相等∴它们不是相似图形,不符合题意;C、两个菱形角不一定相等∴它们不是相似图形,不符合题意;D、两个等腰梯形对应边的比不一定相等,∴它们不是相似图形;故选:A.【点睛】本题考查的是相似图形的判断,掌握形状相同的图形称为相似图形是解题的关键.2.B【分析】根据题意,已知一个公共角相等,所以再添加一组角相等,或者夹这个角的两边对应成比例即可判断两三角形相似,据此即可求解.【详解】解:已知∠BAC=∠EAD,A. ABAE =ACAD,两边成比例,夹角相等,可证明△ABC∽△AED,不符合题意,B. ABAE =BCDE,不能证明△ABC∽△AED,符合题意,C. ∠C=∠ADE加上条件∠BAC=∠EAD,可证明△ABC∽△AED,不符合题意,D. ∠B=∠AED加上条件∠BAC=∠EAD,可证明△ABC∽△AED,不符合题意,故选:B.【点睛】本题考查了相似三角形的判定,掌握相似三角形的判定定理是解题的关键.3.A【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9.【详解】解:如图:∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB∴△ADE∽△ABC,∵DB=2AD∴AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC=1:9.故选:A.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.4.C【分析】根据CD∥OB得出ACAO =CDOB,根据AC:OC=1:2,得出ACAO=13,根据C、D两点纵坐标分别为1、3,得出OB=6,即可得出答案.【详解】解:∵CD∥OB,∴ACAO =CDOB,∵AC:OC=1:2,∴ACAO =13,∵C、D两点纵坐标分别为1、3,∴CD=3−1=2,∴2OB =13,解得:OB=6,∴B点的纵坐标为6,故C正确.故答案为:6.【点睛】本题主要考查了平行线的性质,平面直角坐标系中点的坐标,根据题意得出ACAO=CD OB =13,是解题的关键.5.D【分析】先求出BC=AD=AB=CD=6,证明△DEF∽△CEB,求出DF=3,则AF=AD+DF=9,由勾股定理得到BF2=AF2+AB2=117,则正方形BFGH的面积为117.【详解】解:∵CE=4,DE=2,∴CD=DE+CE=6,∴BC=AD=AB=CD=6,∵AD∥BC,∴△DEF∽△CEB,∴DFBC =DECE,即DF6=24,∴DF=3,∴AF=AD+DF=9,∴BF2=AF2+AB2=117,∴正方形BFGH的面积为117,故选D.【点睛】本题主要考查了相似三角形的性质与判定,正方形性质,勾股定理,熟知相关知识是解题的关键.6.C【分析】过点A作x轴的平行线DD′,作BD⊥DD′于D,作B′D′⊥DD′于D′,设出B点坐标(x,y),分别表示出AD,BD,A′D′,B′D′,根据位似比列出等式,求解即可解决问题.【详解】解:如图所示,过点A作x轴的平行线DD′,作BD⊥DD′于D,作B′D′⊥DD′于D′,设B′(x,y),则BD=3﹣1=2,AD=1,B′D′=﹣y+1,AD′=x,∵△ABC与△A′B′C的位似比为1:2,∴BDB′D′=ADAD′=12,即2−y+1=1x=12解得:x=2,y=﹣3,∴点B′得坐标为(2,﹣3).故选:C.【点睛】本题考查位似图形的性质,懂得利用位似图形的相似比求解是解题的关键.7.C【分析】利用SAS证明△DAC≌△EAB可得∠ADC=∠AEB,可判断③正确;由全等三角形的性质,三角形的内角和定理及等腰三角形的性质可求解∠ACB的度数,利用角平分线的定义求得∠ACD=∠ABE=36°,即可得∠ACD=∠CAB,进而可证明CD∥AB,即可判断②正确;根据已知条件可求出∠BCF=∠BFC=72°,从而可以得出BC=BF,证明△ABC∽△BFC,即可证明BF2=CF⋅AC,可判断④正确,无法证明DE=GE,即可判断①错误,进而可求解.【详解】∵∠CAB=∠DAE=36°,∴∠CAB−∠CAE=∠DAE−∠CAE,即∠DAC=∠EAB,∵在△DAC和△EAB中{AD=AE∠DAC=∠EABAC=AB,∴△DAC≌△EAB(SAS),∴∠ADC=∠AEB,AC=AB,∠ACD=∠ABE,故③正确;∴∠ACB=∠ABC,∵∠CAB=∠DAE=36°,∴∠ACB=∠ABC=(180°−36°)÷2=72°,∵BE平分∠ABC,∴∠ABE=∠CBE=36°,∴∠ACD=∠ABE=36°,∵∠DCA=∠CAB=36°,∴CD∥AB,故②正确;∵∠BFC=180°−∠ACB−∠CBE=180°−72°−36°=72°,∴∠BFC=∠BCF=72°,∴BF=BC,∵∠BAC=∠CBF=36°,∠ACB=∠BCF,∴△ACB∽△BCF,∴ACBC =BCCF,∴BC2=CF⋅AC,即BF2=CF⋅AC,故④正确;根据题目中的已知条件无法证明DE=GE,故①错误;综上分析可知,正确的个数为3个,故C正确.故选:C.【点睛】本题主要考查全等三角形的判定与性质,平行线的判定,角平分线的定义,三角形的内角和定理,等腰三角形的判定和性质,证明△DAC≌△EAB是解题的关键.8.B【分析】首先设出A的坐标,根据题意得出C的坐标,表示出CE的长度,过点B作BF垂直x轴,证明△CED∼△BFD,由题目条件BC=3BD得出相似比,代换出点B的纵坐标,即可求出B的横坐标.【详解】设点A的坐标为(1,k),设AC与x轴的交点为E,过点B作BF⊥x轴,垂足为F,如图:∵点C在函数y=−kx(x>0)的图象上,且AC⊥x轴,∴C的坐标为(1,−k),∴EC=k,∵BF⊥x轴,CE⊥x轴,∴△CED∼△BFD,∴BFCE =BDCD,又∵BC=3BD,∴BDCD =12,∴BFCE =12=BFk,即BF=12k,∴点B的纵坐标为12k,代入反比例函数解析式:y=kx当y=12k时,x=k12k=2,∴B点的横坐标是2,故选:B.【点睛】本题考查反比例函数及相似三角形,解题关键是将线段比转化为两个相似三角形的相似比,由相似三角形的对应边得出点的坐标.9.C【分析】首先根据题意可知AD平分∠BAC,EF垂直平分AD,再证明四边形AEDF为菱形,可知AE,然后根据平行线分线段成比例得CDDB =CEEA,再代入数值求出答案.【详解】由作法得AD平分∠BAC,EF垂直平分AD,∴∠EAD=∠F AD,EA=ED,F A=FD.∵EA=ED,∴∠EAD=∠EDA,∴∠F AD=∠EDA,∴DE∥AF,同理可得AE∥DF,∴四边形AEDF为平行四边形,而EA=ED,∴四边形AEDF为菱形,∴AE=AF=2.∵DE∥AB,∴CDDB =CEEA,即CD32=32,∴CD=94.故选:C.【点睛】本题主要考查了尺规作角平分线,作线段垂直平分线,特殊平行四边形的判定,平行线分线段成比例等,根据两直线平行列出比例式是解题的关键.10.D【分析】作OG∥CD交BC于点G,根据平行线分线段成比例定理证明BG=CG,根据菱形的性质可得OB=OD,则GO是△BCD的中位线,可求出BG、CG和OG的长,再求出GE 的长,由CF∥GO可得△ECF∽△EGO,根据相似三角形的对应边成比例即可求出CF的长.【详解】解:如图,作OG∥CD交BC于点G,∵四边形ABCD 是菱形,且AB =5,∴BC =CD =AB =5,OB =OD ,∴BG CG =BO DO =1 ,∴BG =CG =12BC =52 ,∴GO 是△BCD 的中位线∴GO =12CD =52,GO ∥CD ∵CE =1,∴GE =CG +CE =52+1=72,∵CF ∥GO ,∴∠ECF =∠EGO∵∠E =∠E∴△ECF ∽△EGO ,∴CF GO =CE GE ,∴CF =GO•CE GE =52×172=57, ∴CF 的长为57,故选:D .【点睛】此题考查菱形的性质、平行线分线段成比例定理、三角形的中位线定理、相似三角形的判定与性质等知识,正确地作出所需要的辅助线是解题的关键.11.D【分析】先证△AOP ∽△PCB ,设OP =x ,CP =4-x ,得出44-x =x 1,解方程即可.【详解】解:∵BC ⊥OC ,∴∠BCP =90°,∠PBC +∠BPC =90°,∵PA⊥PB∴∠APB=90°,∠APO+∠BPC=90°,∴∠APO=∠PBC∵∠AOP=90°,∴∠AOP=PCB=90°,∴△AOP∽△PCB,∴OACP =OPCB,设OP=x,CP=4-x,4 4-x =x1,整理得x2−4x+4=0,解得x=2,经检验4-x=4-2=2≠0,∴x=2是原方程的解∴点P(2,0).故选择D.【点睛】本题考查图形与坐标,三角形相似判定与性质,可化为一元二次方程的分式方程,掌握图形与坐标,三角形相似判定与性质,可化为一元二次方程的分式方程是关键.12.C【分析】根据相似三角形的判定得出△EOB∽△EFA,利用相似三角形的性质及已知OE,EF 的值即可判断结论①;由①分析得出的条件,结合相似三角形、矩形的性质(对角线)即可判断结论②;根据直角坐标系上点的表示及结论①OA=3AF,利用勾股定理建立等式求解可得点A坐标,再根据关于原点对称的点的坐标得出点D坐标,即可判断结论③;由③可知AF=√2,进而得出OA的值,根据矩形的性质即可判断结论④;根据矩形的性质及④可知BD=6√2,利用三角形的面积公式求解即可判断结论⑤.【详解】解:∵矩形ABCD的顶点A在第一象限,AF⊥x轴,垂足为F,∴∠EOB=∠EFA=90°,AC=BD,OD=OA=OB=OC.∵∠AEF=∠BEO,∴△EOB∽△EFA.∵OE=3,EF=1,∴EFEO =AFOB=AFOA=13,即OA=3AF.(①符合题意)∵OA=OB,△EOB∽△EFA,∴∠OAB=∠OBA,∠EAF=EBO.∴∠OAB=∠EAF.∴AE平分∠OAF.(②符合题意)∵OF=OE+EF=3+1=4,∴点A的横坐标为4.∵OA=3AF,∴9AF2−AF2=OF2,即8AF2=16.∴AF=√2,点A的纵坐标为√2.∴A(4,√2).∵点A与点C关于原点对称,∴C(−4,−√2).(③符合题意)∵OA=3AF=3√2,∴BD=OD+OB=2OA=6√2.(④不符合题意)∵S矩形ABCD=S△BCD+S△BAD=2S△BAD,∴S矩形ABCD =2×12×6√2×4=24√2.(⑤符合题意)∴结论正确的共有4个符合题意.故选:C.【点睛】本题考查矩形与坐标的综合应用.涉及矩形的性质,相似三角形的判定与性质,勾股定理,直角坐标系上点的表示,关于原点对称的点的坐标,三角形的面积公式等知识点.矩形的对角线相等且互相平分;两角分别相等的两个三角形相似;相似三角形对应角相等,对应边成比例;两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点位P′(−x,−y).灵活运用相关知识点,通过已知条件建立等式关系是解本题的关键.13.∠ADE=∠B(答案不唯一).【分析】已知有一个公共角,则可以再添加一个角从而利用有两组角对应相等的两个三角形相似来判定或添加夹此角的两边对应成比例也可以判定.【详解】解∶∵∠A=∠A,∴根据两角相等的两个三角形相似,可添加条件∠ADE=∠B或∠AED=∠C证△ADE∽△ABC相似;根据两边对应成比例且夹角相等,可添加条件ADAB =AEAC证△ADE∽△ABC相似.故答案为∶∠ADE=∠B(答案不唯一).【点睛】此题考查了本题考查了相似三角形的判定,解题的关键是掌握相似三角形的判定方法.14.14【分析】利用相似三角形的性质求出EM,利用矩形的性质求出EN,可得结论.【详解】解:∵∠CAB=∠EAM,∠ACB=∠AEM=90°,∴△ACB∽△AEM,∴ACAE =BCEM,∴0.820=0.5EM,∴EM=12.5,∵四边形ADNE是矩形,∴AD=EN=1.5米,∴MN=ME+EN=12.5+1.5=14(米).故旗杆MN的高度为14米,故答案为:14.【点睛】本题考查相似三角形的应用,矩形的性质等知识,解题的关键是正确寻找相似三角形解决问题.15.158【分析】过C作CF∥C′D′交B′C′于F,根据菱形和旋转的性质求得△ABB′∽△B′FC,△ABB′≌△ADD′,可得CF和C′D的长,再由△CFE∽△DC′E求得CE和DE的比即可解答;【详解】解:如图,过C作CF∥C′D′交B′C′于F,AB ′C ′D ′是菱形,则AB ′∥C ′D ′,∴CF ∥AB ′,∴∠B ′FC =∠AB ′F ,∠B ′CF =∠AB ′B ,∵∠AB ′C ′=∠B ,∴∠B ′FC =∠B ,∴△ABB ′∽△B ′FC ,∴AB ′∶B ′C =BB ′∶FC ,AB ′=5,BB ′=3,则B ′C =2,∴FC =65,由旋转性质可得∠BAB ′=∠DAD ′,∵AB =AB ′=AD =AD ′,∴△ABB ′≌△ADD ′,∴BB ′=DD ′=3,∴DC ′=2,∵CF ∥C ′D ′,∴△CFE ∽△DC ′E ,∴CF ∶DC ′=CE ∶DE =65∶2=3∶5,∴CE =DC ×38=158; 故答案为:158; 【点睛】本题考查了菱形的性质,旋转的性质,相似三角形的判定和性质等知识;掌握相似三角形的判定和性质是解题关键.16.−12 【分析】取AO 的中点为M ,取BO 的中点为N ,连接CM ,CN .根据三角形中位线定理,平行线的的性质,矩形的判定定理确定四边形CMON 是矩形,根据相似三角形的判定定理和性质求出△ACM 和△CBN 的面积,进而求出矩形CMON 的面积,再根据反比例函数比例系数k 的几何意义求解即可.【详解】解:如下图所示,取AO 的中点为M ,取BO 的中点为N ,连接CM ,CN .∵C是AB中点,M是AO中点,N是BO中点,∴CM是△ABO中位线,CN是△ABO中位线,AMAO =12,BNBO=12,∴CM∥BO,CN∥AO,∴△ACM∽△ABO,△CBN∽△ABO,∠AMC=∠AOB=90°,∠CNB=∠AOB=90°,∴S△ACMS△ABO =(AMAO)2=14,S△CBNS△ABO=(BNBO)2=14,∠CNO=90°,∠CMO=90°,∴四边形CMON是矩形,∵△ABO的面积是1,∴S△ACM=14S△ABO=14,S△CBN=14S△ABO=14,∴S矩形CMON=S△ABO−S△ACM−S△CBN=12,∵反比例函数y=kx(x<0)的图象经过线段AB点的中点C,∴k=−12,故答案为:−12.【点睛】本题考查反比例函数比例系数k的几何意义,三角形中位线定理,平行线的性质,矩形的判定定理,相似三角形的判定定理和性质,综合应用这些知识点是解题关键.17.见解析【分析】根据两个角相等的两个三角形相似进行证明即可.【详解】证明:如图,∵在Rt△ABC中,CD是斜边AB上的高∴∠ADC=∠ACB=90°∵∠A是公共角∴△ACD∽△ABC.【点睛】本题考查了相似三角形的判定,解题关键是熟练掌握相似三角形的判定定理,准确运用进行推理证明.18.(1)作图见解析;(−3,0)(2)8【分析】(1)延长CA到A1使AA1=CA,延长CB到B1使BB1=CB,从而得到△A1B1C;然后写出点A1的坐标;(2)利用面积公式直接进行求解即可.【详解】(1)解:如图,△A1B1C为所作;点A1的坐标为(−3,0);(2)解:由图可知:S△A1B1C =12B1C⋅A1B=12×4×4=8.【点睛】本题考查位似三角形的作图,解题的关键是:熟练掌握位似三角形的定义:如果两个三角形不仅是相似三角形,而且每组对应点的连线交于一点,对应边互相平行,那么这两个三角形叫做位似三角形.19.(1)见解析(2)√2π【分析】(1)把A、B、C点的横纵坐标都乘以−12得到A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点B的对应点B2,从而得到AB2,然后利用弧长公式计算点B旋转到点B2所经过的路径长.(1)解:∵△ABC在坐标平面内,三个顶点的坐标分别为A(0,4),B(2,2),C(4,6)△A1B1C1与△ABC位似,且位似比为1:2;∴A1(0,−2),B1(−1,−1),C1(−2,−3),如图所示,△A1B1C1即为所求,(2)如图,AB2即为所求,∵AB=√22+22=2√2,=√2π∴点B旋转到点B2所经过的路径长为=90×π×2√2180【点睛】本题考查了求弧长,旋转的性质,位似变换作图,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,掌握以上知识是解题的关键20.(1)见解析(2)见解析【分析】(1)根据平移的性质作图即可;(2)根据位似的性质作图,由图可得出答案.【详解】(1)解:如图,△A1B1C1为所作;(2)解:如图,△A2B2C2为所作;.【点睛】本题考查了作图-位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了平移变换.21.(1)见解析(2)1【分析】(1)连接AC,根据圆周角推论得∠ACB=∠ACE=90°,根据点C是BD̂的中点得∠CAE=∠CAB,CD=CB,用ASA证明△ACE≌△ACB,即可得;(2)根据题意和全等三角形的性质得AE=AB=3,根据四边形ABCD内接于圆O和角之间的关系得∠CDE=∠ABE,即可得ΔEDC∽ΔEBA,根据相似三角形的性质得DEBE =CDAB,即可得(1)证明:如图所示,连接AC,∵AB为直径,∴∠ACB=∠ACE=90°,又∵点C是BD̂的中点∴∠CAE =∠CAB ,CD =CB ,在△ACE 和△ACB 中,{∠ACE =∠ACB AB =AC ∠CAE =∠CAB∴ΔACE ≅ΔACB(ASA),∴CE =CB ,∴CE =CD ;(2)解:∵ΔACE ≅ΔACB ,AB =3,∴AE =AB =3,又∵四边形ABCD 内接于圆O ,∴∠ADC +∠ABC =180°,又∵∠ADC +∠CDE =180°,∴∠CDE =∠ABE ,又∵∠E =∠E ,∴ΔEDC ∽ΔEBA ,∴DE BE =CD AB , 即:2√3=√33, 解得:DE =2,∴AD =AE −DE =1.【点睛】本题考查相似三角形的判定和性质,全等三角形的判定和性质,圆周角定理,理解相关性质定理,正确添加辅助线是解题关键.22.(1)见解析(2)910【分析】(1)连接OC ,先根据等腰三角形的性质可得∠1=∠2,再根据圆周角定理可得∠ACB =∠1+∠3=90°,从而可得∠OCD =90°,然后根据圆的切线的判定定理即可得证;(2)设OA =OB =OC =2x ,则OD =3x ,AD =x,BD =5x ,再根据相似三角形的判定证出△DCO ∼△DEB ,然后根据相似三角形的性质求出x 的值,由此即可得出答案.(1)证明:如图,连接OC,∵OC=OB,∴∠1=∠2,∵AB是⊙O的直径,∴∠ACB=∠1+∠3=90°,∴∠2+∠3=90°,∵∠ACD=∠2,∴∠ACD+∠3=90°,即∠OCD=90°,∴DC⊥OC,又∵OC是⊙O的半径,∴DC是⊙O的切线.(2)解:∵OAOD =23,∴设OA=OB=OC=2x,则OD=3x,∴AD=OD−OA=3x−2x=x,BD=OB+OD=5x,∵CO⊥DC,BE⊥DC,∴BE∥CO,∴△DCO∼△DEB,∴ODBD =OCBE,即3x5x=2x3,解得x=910,∴DA=x=910.【点睛】本题考查了圆的切线的判定定理、圆周角定理、相似三角形的判定与性质等知识点,熟练掌握圆的切线的判定定理和相似三角形的判定定理是解题关键.23.(1)(−3,1)(2)(−1,−1)【分析】(1)由两函数交点的求解方法可得:联立一次函数与反比例函数解析式,求解交点坐标即可.(2)过点C 、B 分别作CD 、BE 垂直于y 轴于D 、E ,易证△ACD ∽△ABE ,根据对应线段成比例以及点C 在直线AB 上,即可求解.【详解】(1)解:∵一次函数和反比例函数交于点B ,∴{y =−x −2y =−3x ,解得:{x 1=−3y 1=1 ,{x 2=1y 2=−3, ∵x <0∴B(−3,1) ;(2)解:如图,过点C 、B 分别作CD 、BE 垂直于y 轴于D 、E ,∴CD ∥BE ,∴∠ACD =∠ABE,∠ADC =∠AEB ,∴△ACD ∽△ABE ,∴AC AB =CD BE , ∵AC BC =12, ∴AC AB=13 , ∴CD BE =AC AB =13,由(1)得:BE =3,∴CD =1 ,∵C 不与点A 、B 重合,点C 是线段AB 上一点,∴C 的横坐标为-1,将其代入直线y =−x −2,可得:y =−1 ,∴C(−1,−1) .【点睛】本题考查了一次函数和反比例函数图象与性质,交点问题,一次函数和坐标轴交点以及一次函数图象上的点的坐标特点,三角形相似的判定与性质,牢固掌握一次函数和二次函数图象与性质是解题的关键.24.(1)证明见解析;(2)EF=83【分析】(1)直接利用“AAS”判定两三角形全等即可;(2)先分别求出BE和DC的长,再利用相似三角形的判定与性质进行计算即可.【详解】解:(1)∵OA=OD,∠ABO=∠DCO,又∵∠AOB=∠DOC,∴△AOB≌△DOC(AAS);(2)∵△AOB≌△DOC(AAS),AB=2,BC=3,CE=1∴AB=DC=2,BE=BC+CE=3+1=4,∵EF//CD,∴△BEF∽△BCD,∴EFCD =BEBC,∴EF2=43,∴EF=83,∴EF的长为83.【点睛】本题考查了全等三角形的判定与性质、平行线分线段成比例的推论、相似三角形的判定与性质等,解决本题的关键是牢记相关概念与公式,能结合图形建立线段之间的关联等,本题较基础,考查了学生的几何语言表达和对基础知识的掌握与应用等.25.(1)见解析(2)83【分析】(1)延长DO交AB于点H,根据切线的性质得到OD⊥DP,根据圆周角定理得到∠BAC=90°,根据平行线的判定定理证明结论;(2)根据垂径定理求出AH、BH,根据勾股定理求出OH,根据相似三角形的性质计算即可.(1)证明:延长DO交AB于点H,∵DP是⊙O的切线,∴OD⊥DP,∵AB//DP,∴HD⊥AB,∵BC为⊙O的直径,∴∠BAC=90°,∴AF//OD;(2)∵OH⊥AB,AB=8,∴BH=AH=4,∴OH=√OB2−BH2=√52−42=3,∵BH//ED,∴△BOH∽△EOD,∴BHED =OHOD,即4ED=35,解得:ED=203,∵∠BAC =90°,DH ⊥AB ,DH ⊥DP ,∴四边形AFDH 为矩形,∴DF =AH =4,∴EF =ED ﹣DF =203﹣4=83.【点睛】本题考查的是切线性质、相似三角形的判定和性质、矩形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.。

人教版九年级数学下册《第27章相似》同步测试(含答案)

人教版九年级数学下册《第27章相似》同步测试(含答案)

九年级数学第27章《相似》同步测试一、选择题:1、已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC与△A1B1C1的面积比为()A.1:1 B.1:3 C.1:6 D.1:92、如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.83、两个相似三角形的对应边的比是2∶3,周长之和是20,那么这两个三角形的周长分别为()A. 8和12B. 9和11C. 7和13D. 8和154、已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为( )A.9 B.4 C.6 D.4.85、位似图形的位似中心可以在( )A.原图形外B.原图形内C.原图形上D.以上三种可能都有6、已知△ABC∽△A1B1C1,且∠A=60°,∠B=95°,则∠C1的度数为( )A.60° B.95° C.25° D.15°7、如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为()A.B.C.D.8、要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm9、如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为.A.10/3 B.4.5 C.3.6 D.810、《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈 B.四丈五尺 C.一丈 D.五尺11、如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE 分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A .①②③B .①C .①②D .②③12、如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:1二、填空题: 13、两三角形的相似比是2:3,则其面积之比是 .14、.若a 4=b 5=c 6,且a -b +c =10,则a +b -c 的值为 . 15、学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB ⊥BD ,CD ⊥BD ,垂足分别为B ,D ,AO=4m ,AB=1.6m ,CO=1m ,则栏杆C 端应下降的垂直距离CD 为 .16、已知a 5=b 3=c 4,则a +2b +c 2a +b +2c=____. 17、在比例尺为1:6 000 000 的海南地图上,量得海口与三亚的距离约为3.7 厘米,则海口与三亚的实际距离约为 千米.18、如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于点G ,若AE=3ED ,DF=CF ,则AG:GF 的值是 .19、已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF的面积为 .20、如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为 .21、在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为 .22、如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则BD:AD的值为 .三、解答题:23、已知矩形ABCD中,AD=3,AB=1.若EF把矩形分成两个小的矩形,如图所示,其中矩形ABEF 与矩形ABCD相似.求AF∶AD的值.24、如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是多大?25、如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为多大?26、已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如果=.求证:EF=EP.27、如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O 经过点C、D、F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.参考答案一、选择题:1、D2、B3、A4、A5、D6、C7、A8、C9、A10、B11、A12、B二、填空题:13、4∶914、615、0.4m16、5/717、22218、6:519、420、2√521、1:422、(√2-1):1三、解答题:23、1∶924、10.5m25、1226、证明:(1)∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵BE⊥AP,DF⊥AP,∴∠BEA=∠AFD=90°,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABE和△DAF中,∴△ABE≌△DAF,∴BE=AF,∴EF=AE﹣AF=AE﹣BE;(2)如图,∵=,而AF=BE,∴=,∴=,∴Rt△BEF∽Rt△DFA,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而BE⊥EP,∴EF=EP.27、(1)证明:在正方形ABCD中,∠ADC=90°,∴∠CDF+∠ADF=90°,∵AF⊥DE,∴∠AFD=90°,∴∠DAF+∠ADF=90°,∴∠DAF=∠CDF,∵四边形GFCD是⊙O的内接四边形,∴∠FCD+∠DGF=180°,∵∠FGA+∠DGF=180°,∴∠FGA=∠FCD,∴△AFG∽△DFC.(2)解:如图,连接CG.∵∠EAD=∠AFD=90°,∠EDA=∠ADF,∴△EDA∽△ADF,∴=,即=,∵△AFG∽△DFC,∴=,∴=,在正方形ABCD中,DA=DC,∴AG=EA=1,DG=DA﹣AG=4﹣1=3,∴CG==5,∵∠CDG=90°,∴CG是⊙O的直径,∴⊙O的半径为.。

(人教版)初中数学九下 第二十七章综合测试01-答案

(人教版)初中数学九下 第二十七章综合测试01-答案

第二十七章综合测试答案解析一、 1.【答案】C【解析】由于甲和乙的对应边不确定,故有三种对应关系,即50 cm 和20 cm 是对应边,60 cm 与20 cm 是对应边,80 cm 和20 cm 是对应边,故选C . 2.【答案】D 【解析】DE BC ∥,AE AD AB AC ∴=,BE CD AE AD =,∴A ,C 正确;DF AB ∥,CDF CAB ∴△∽△,CD DFAC AB∴=,BF AD CF DC =.又AD AE DC BE =,BF AECF BE∴=,∴B 正确,D 错调,故选D . 3.【答案】B【解析】设旗杆高为m x ,由题意得1.52.530x=,18x ∴=. 4.【答案】D【解析】如图所示,若ADB ADC △∽△,则B C ∠=∠,AB AC ∴=,即ABC △为等腰三角形;若ADB CDA △∽△,则B CAD ∠=∠.90B BAD ∠+∠=︒,90CAD BAD ∠∴∠+=︒,即90BAC ∠=︒,ABC∴△为直角三角形,故该三角形为直角三角形或等腰三角形.5.【答案】A【解析】设BME S x =△,DC AB ∥,CDEMBE ∴△△,DE DCEB MB∴=.又因为M 是AB 的中点,AB DC =,21DE DC EB MB ∴== .2CDE MBE S DC S MB ⎛⎫∴= ⎪⎝⎭△△,即=4CDE S x△,4CDE S x ∴=△.MDE △与MBE △的高相同,2MED MEB S DES EB∴==△△,2MED x ∴=△,同理2BEC x ∴=△.23S DMB x x x ∴=+=△,又因为DM 是ABD △的中线,224DAM DMB S S x x x∴==+=△△,44312ABCDCDE BME DAM SS S S S x x x x x ∴=++=+++=△△△阴+.41123ABCDS x Sx ∴==阴,故选A .6.【答案】A【解析】ABC △与DEF △位似,AB DE ∴∥,BC EF ∥,OA OBOD OE∴=,OBC OEF △∽△,BC OB OAEF OE OD∴==.又因为A 是OD 的中点,12BC OA EF OD ∴==. 7.【答案】A【解析】设12233445B B B B B B B B x ====.5511A B A B ∥,5511OA B OA B ∴△△ .555111A B OB A B OB ∴=,即5520=804OB OB x+,543OB x ∴=.同理333111A B OB A B OB =,222111A B OB A B OB =,334348043x x xA B x x ++∴=+,2243348043x xA B x x +∴=+.3350A B ∴=m ,2265A B =m .故选A .8.【答案】D【解析】C ∠是公共角,要使DAC ABC △∽△,∴只需AC CDCB AC=,即2AC CB CD =,故选D . 9.【答案】C 【解析】设AEFS x =△.由题意得AE EH HB ==,EF HG ∥,AEF AHG ∴△∽△,214AEF AHG S AE S AH ⎛⎫∴== ⎪⎝⎭△△,44AHG AEF S S x ∴==△△,43AHG AEF EHGF S S S x x x ∴=-=-=△△四边形.EF BC ∥,AEF ABC ∴△∽△,219AEF ABC S AE S AB ⎛⎫∴== ⎪⎝⎭△△.99ABC AEF S S x ∴==△△,31=93EHGF ABC S x S x ∴=四边形△. 10.【答案】C【解析】DE BC ∥,EF AB ∥,四边形BFED 为平行四边形,2BF DE ∴==.FC CE BF AE =,CE BDAE AD=,FC BD BF AD ∴=.又3AB AD =,9AB =,3AD ∴=,6BD =.6=23FC ∴,4FC ∴=.11.【答案】B 【解析】E 是AD 的中点,132DE AD =∴=.在ABCD中,10CD AB ==,6BC AD == .CBF CDE △∽△.CB BF CD DE ∴=,即6103BF=, 1.8BF ∴=,10 1.88.2AF AB BF =-=-=. 12.【答案】A【解析】设正方形的边长为x ,作EM AD ⊥于M .EM AE ∴==. 9060150BAE BAG GAE ∠=∠+∠=︒+︒=︒,AB AE =,()1180150152AEG ∴∠=︒-︒=︒,601575EGH GAE AEG ∠=∠+∠=︒+︒=︒,同理75EHG ∠=︒,EG EH ∴=,EMH EMG ∴△≌△,∵EM CD ∥,22EMH S S ∴=△.EG EH =,EMH CDH △∽△,2EMH CDH S ED S CD ⎛⎫∴= ⎪⎝⎭△△,即212EMH S S x ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭△,134EMH S S =△,211332242EMH S S S S ∴==⨯=△,即1232S S =,故选A .13.【答案】D【解析】由题意知R P RP ''∥,MP QRPQ '△△,2MP Q RPQS QP S QP ''⎛⎫∴= ⎪⎝⎭△△,即212= .1QP ∴'=,1PP '∴.14.【答案】C【解析】ABO △与A B O ''△位似,原点O 为位似中心,位似比为1:2,且不在同一象限,则点A '的横、纵坐标分别为点A 的横、纵坐标的2-倍.二、15.【答案】相似 三边对应成比例,两三角形相似 【解析】4652697.53===,三边对应成比例,两三角形相似. 16.【答案】5:7 【解析】AD 平分BAC ∠,BAD CAD ∠=∠∴.又DE AC ∥,EDA DAC ∠=∠∴,EDA EAD ∠=∠,DE AE =.DE AC ∥,BDE BCA ∴△∽△,DE BE AC BA ∴=,即525DE DE -=,107DE ∴=,105727DE AC ∴==. BDE ∴△与ABC △的周长之比为5:7.17.【答案】2:5【解析】相似三角形面积的比等于相似比的平方,面积比为4:25.相似比为2:5. 18.【答案】BDE CDF △∽△,ABF ACE △∽△ 【解析】BF AC ⊥,CE AB ⊥,BFC AFB AEC BEC ∠=∠=∠=∠∴.BED CFD ∠=∠,BDE CDF ∠=∠,BDE CDF ∴△∽△.A A ∠=∠,AFB AEC ∠=∠,ABF ACE ∴△∽△.19.【答案】()6,6-或()6,6- ()6,6或()6,6--【解析】把A ,B 两点的横坐标和纵坐标分别乘2或2-,即得到点E ,F 的横坐标和纵坐标. 20.【答案】18【解析】2OA AA '=,:2:3OA OA '∴=,:4:9ABC A B C S S '''=△△.8ABC S ∴=△,18A B C S '''∴=△.三、21.【答案】90ACB CDA ∠=∠=︒,当AB AC AC AD =时,ABC ACD △△,即844AD=,2AD ∴=.当AB AC CA CD =时,ABC CAD △△,即844CD=,2CD ∴=,AD ∴===2AD =或AD =A ,B ,C 为顶点的三角形与以A ,C ,D 为顶点的三角形相似.22.【答案】如图所示,设直线1F F 与AB ,CD ,11C D 分别交于点G ,M ,N ,令BG x =,GM y =.MD GB ∥,DM MFBG GF ∴=.又 1.5DM DC EF =-=,3MF CE ==,1.533x y=+. 又1ND GB ∥,111D N NF BGGF ∴=.又1 1.5D N DM ==,136GF GM MF FF y =++=++1, 1.5463xy ∴=++,解方程组 1.5331.5463x y xy ⎧=⎪+⎪⎨⎪=⎪++⎩,得915x y =⎧⎨=⎩.∴旗杆AB 的高为9 1.510.5+=(m ).23.【答案】(1)证明:∵弧ED 所对的圆周角相等,EBD ECD ∠=∠∴.又A A ∠=∠,ABD ACE ∴△∽△.(2)解法1:BEC BCD S S =△△,BCE ABC BEC S S S =-△△△,ABD BAC BCD S S S =-△△△,ACE ABD S S ∴=△△.又由(1)知ABD ACE △△,∴对应边之比等于1,AB AC ∴=,即ABC △为等腰三角形.解法2:连接ED .BEC △与BCD △的面积相等,有公共底边BC ,∴高相等,即E ,D 两点到BC 的距离相等,ED BC ∴∥.BCE CED ∠=∠∴.又CED CBD ∠=∠,BCE CBD ∠=∠∴.由(1)知ABD ACE △∽△,ABD ACE ∠=∠∴,ABD CBD ACE BCE ∠+∠=∠+∠,ABC ACB ∴∠=∠,AB AC ∴=,即ABC △为等腰三角形.24.【答案】(1)BPQ △是等边三角形.理由:当2t =s 时,212AP =⨯=,224BQ =⨯=.624BP AB AP =∴=--=.BQ BP ∴=. 又60B ∠=︒,BPQ ∴△是等边三角形. (2)过Q 作QE AB ⊥,垂足为E .由2QB t =,得2 60QE tsin =︒=,AP t =,故6PB t =- .()11622BPQ S BP QE t ∴=⨯=-△.(3)QR BA ∥,60QRC A ∠=∠=∴︒,60RQC B ∠=∠=︒ .又60C ∠=︒,QRC ∴△是等边三角形,62QR RC QC t ∴===-.又BE t =,662EP AB AP BE t t t ∴=--=--=-.EP QR ∥,EP QR =,故四边形EPRQ 是平行四边形.PR EQ ∴==.而APR PRQ △△,PR QRAP PR ∴==65t ∴=.∴当65t =s 时,APR PRQ △△. 25.【答案】(1)BF AE ⊥,CG AE ∥,CG BF ∴⊥.∵在正方形ABCD 中,90ABH CBG ∠+∠=︒,且90CBG BCG ∠+∠=︒,90BAH ABH ∠+∠=︒,BAH CBG ∠=∠∴,ABH BCG ∠=∠,AB BC =,ABH BCG ∴△≌△,CG BH ∴=.(2)BFC CFG ∠=∠,90BCF CGF ∠=∠=︒,CFG BFC ∴△∽△,FC GFBF FC∴=,即2FC BF GF =. (3)∵在Rt BCF △中,CG BF ⊥,CBG FBC ∠=∠∴,90BGC BCF ∠=∠=︒,CBG FBC ∴△∽△.BC BG BF BC∴=,2BC BG BF ∴= .AB BC =,2AB BG BF ∴=,22FC FG BF FG AB BG BF BG ∴==,即22FC GF AB GB =.。

人教版数学九年级下学期第27章《相似》单元考试测试卷(配答案)

人教版数学九年级下学期第27章《相似》单元考试测试卷(配答案)

人教版数学九年级放学期期第 27 章《相像》单元测试卷(配答案)(满分120 分,限时120 分钟)一、选择题(每题 3 分,共 30 分 )1.以下四条线段为成比率线段的是( B )A .a= 10,b= 5, c=4, d= 7B . a= 1, b= 3,c=6, d= 2C. a= 8, b=5, c= 4,d= 3 D . a=9, b=3,c= 3, d= 62.两个相像多边形的面积比是9∶ 16,此中较小多边形的周长为36 cm,则较大多边形的周长为( A )A .48 cm B. 54 cm C. 56 cm D. 64 cm3.如图,△ABC 中,∠ A = 78°,AB = 4,AC = 6.将△ ABC 沿图示中的虚线剪开,剪下的暗影三角形与原三角形不相像的是( C )4.如图,为估量某河的宽度,在河对岸边选定一个目标点 A ,在近岸取点B, C,D ,使得 AB ⊥BC ,CD⊥ BC ,点 E 在 BC 上,而且点 A, E, D 在同一条直线上.若测得BE = 20 m, EC= 10 m, CD = 20 m,则河的宽度AB 等于 ( B )A .60 mB .40 m C. 30 m D . 20 m,第 4 题图 )5.如图, E(- 4,2) ,F(- 1,- 1),以,第 5 题图 )O 为位似中心,按比率尺1∶2 把△ EFO,第 6 题图 )减小,则点 E 的对应点 E′的坐标为( A )A .(2,- 1)或 (- 2,1)B . (8,- 4)或 (- 8, 4) C. (2,-1) D . (8,- 4)6.如图,若∠ 1=∠ 2=∠ 3,则图中的相像三角形有( D )A .1 对B. 2 对C.3 对D. 4 对7.如图,在平行四边形 ABCD 中,点 E 在边 DC 上, DE ∶ EC= 3∶1,连结 AE 交 BD 于点 F,则△ DEF 的面积与△ BAF 的面积之比为 ( B )A .3∶ 4 B. 9∶16 C. 9∶ 1 D . 3∶ 1,第 7 题图 ),第 8 题图 ),第 9 题图 ),第 10 题图 )8.如图,在平面直角坐标系的4× 4 的正方形方格中,△ABC是格点三角形(三角形的三个极点是小正方形的极点 ),若以格点 P, A , B 为极点的三角形与△ABC 相像 (全等除外 ),则格点 P 的坐标是 ( D )A .(1, 4) B. (3, 4) C.(3 ,1)D. (1, 4)或 (3, 4)9.如图,在四边形 ABCD 中,∠ B= 90°,AC = 4, AB ∥CD , DH 垂直均分 AC ,点 H 为垂足.设AB = x, AD =y,则 y 对于 x 的函数关系用图象大概能够表示为 ( D )10.如图,在四边形ABCD 中, AD ∥ BC,∠ABC = 90°, E 是 AB 上一点,且 DE ⊥CE.若 AD = 1,BC =2, CD= 3,则 CE 与 DE 的数目关系正确的选项是( B )A .CE=3DEB .CE=2DE C. CE=3DE D. CE= 2DE二、填空题 (每题 3 分,共 24 分 )3.6 厘米,那么A, B 两地的实质距离11.假如在比率1∶ 2000000 的地图上,A ,B 两地的图上距离为为__72__千米.12.如图,已知∠ A =∠ D,要使△ ABC ∽△ DEF ,还需增添一个条件,你增添的条件是 __AB ∥ DE (答案不独一 )__.(只要写一个条件,不增添协助线和字母 ),第 12 题图 ),第 13题图 ),第 14 题图 ),第 15 题图 )13.如图,在△ ABC 中,点 D,E,F 分别在 AB ,AC ,BC 上,DE ∥BC, EF∥ AB. 若 AB = 8,BD = 3,12BF =4,则 FC 的长为 __ 5 __.14.如图,在△ ABC 中, AB = 2, AC = 4,将△ ABC 绕点 C 按逆时针方向旋转获得△ A ′ B′ C,使CB ′∥ AB ,分别延伸 AB , CA ′订交于点 D,则线段 BD 的长为 __6__.2 15.如图,矩形 EFGH 内接于△ ABC ,且边 FG 落在 BC 上,若 AD ⊥BC ,BC=3,AD = 2,EF=3EH,3那么 EH 的长为 __ __.16.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池 ABCD ,东边城墙 AB 长 9 里,南边城墙 AD 长 7 里,东门点E,南门点 F 分别是 AB ,AD 的中点,EG⊥ AB ,FH⊥ AD ,EG= 15 里,HG 经过 A 点,则 FH= __1.05__ 里.,第 16 题图 ),第 17 题图 ),第 18题图 )17. 如图,点 M 是 Rt △ ABC 的斜边 BC 上异于 B , C 的一点 ,过 M 点作直线截△ ABC ,使截得的三角形与△ ABC 相像,这样的直线共有 __3__条.18. 如图,在矩形 ABCD 中, E 是 AD 边的中点 , BE ⊥ AC 于点 F ,连结 DF ,剖析以下四个结论:①△AEF ∽△ CAB ;② CF = 2AF ;③ DF = DC ;④ S 四边形 CDEF = 5S △ABF .此中正确的结论有 __①②③④ __.(填序号 )2三、解答题 (共 66 分)19. (8 分 )图,△ ABC 三个极点的坐标分别为 A(0 , - 3), B(3 , - 2), C(2, - 4),正方形网格中 ,每个小正方形的边长是 1 个单位长度.(1)画出△ ABC 向上平移 6 个单位获得的△ A 1B 1C 1;(2)以点 C 为位似中心 ,在网格中画出△ AB C ,使△ A B C 与△ ABC 位似,且△ A B C 与△ ABC 的2 222 2 2 2 2 2相像比为 2∶ 1,并直接写出点 A 2 的坐标.解: (1)图略(2)图略, A 2(-2, - 2)20. (8 分 )如图,已知 AB ∥ CD , AD ,BC 订交于点 E , F 为 BC 上一点 ,且∠ EAF =∠ C.求证: (1)∠ EAF =∠ B ; (2)AF 2 = FE · FB.解: (1)∵ AB ∥CD , ∴∠ B =∠ C ,又∠ C =∠ EAF , ∴∠ EAF =∠ BAFFE , ∴ AF 2= FE · FB(2)∵∠ EAF =∠ B ,∠ AFE =∠ BFA , ∴△ AFE ∽△ BFA ,则 BF=FA21.(9 分 )如图 ,已知 B ,C ,E 三点在同一条直线上 ,△ ABC 与△ DCE 都是等边三角形 ,此中线段 BD 交AC 于点 G ,线段 AE 交 CD 于点 F.求证: (1)△ ACE ≌△ BCD ; (2) AG GC = AFFE .解: (1)∵△ ABC 与△ CDE 都是等边三角形 ,∴ AC = BC , CE = CD , ∠ ACB =∠ DCE = 60° ,∴∠ ACB +∠ ACD =∠ DCE +∠ ACD ,即∠ ACE =∠ BCD ,可证△ ACE ≌△ BCD (SAS) (2)∵△ ACE ≌△ BCD , ∴∠ AEC =∠ BDC ,可证△ GCD ≌△ FCE (ASA ),∴ CG =CF ,∴△ CFG 为等边三角形 ,∴∠ CGF =∠ ACB= 60° , ∴ GF ∥ CE , ∴AG= AFGC FE22. (9 分 )王亮同学利用课余时间对学校旗杆的高度进行丈量直搁置于旗杆一侧的地面上 ,测得标杆底端距旗杆底端的距离为正直漂亮不到旗杆顶端时为止 ,测得此时人与标杆的水平距离为,他是这样丈量的:把长为 3 m 的标杆垂15 m ,而后往退后 ,直到视野经过标杆顶2 m ,已知王亮的身高为1.6 m ,请帮他计算旗杆的高度. (王亮眼睛距地面的高度视为他的身高)解:依据题意知 AB ⊥ BF , CD ⊥ BF , EF ⊥ BF , EF = 1.6 m ,CD = 3 m , FD =2 m , BD = 15 m ,过 E点作 EH ⊥ AB ,交 AB 于点 H ,交 CD 于点 G ,则 EG ⊥CD , EH ∥FB ,EF = DG = BH , EG = FD ,CG =EGCG 2 3- 1.6 , ∴AH = 11.9m ,因此 AB = AH + HB = AH CD - EF , ∴△ ECG ∽△ EAH , ∴ EH = AH ,即2+ 15=AH +EF =11.9+ 1.6= 13.5(m),即旗杆的高度为 13.5 m23.(10 分 )如图 ,在△ ABC 中,以 AC 为直径的⊙ O 与边 AB 交于点 D ,点 E 为⊙ O 上一点 ,连结 CE 并延伸交 AB 于点 F ,连结 ED.(1)若∠ B +∠ FED = 90° ,求证: BC 是⊙ O 的切线; (2)若 FC = 6, DE = 3,FD = 2,求⊙ O 的直径.解: (1)∵∠ A +∠ DEC =180° ,∠ FED +∠ DEC = 180° , ∴∠ FED =∠ A , ∵∠ B +∠ FED = 90° ,∴∠ B +∠ A = 90° ,∴∠ BCA = 90° ,∴ BC 是⊙ O 的切线 (2)∵∠ CFA =∠ DFE , ∠ FED =∠ A , ∴△DFDE 2 3,解得 AC = 9,即⊙ O 的直径为 9FED ∽△ FAC , ∴FC =AC , ∴6= AC24. (10 分 )如图 ,在平行四边形 ABCD 中,过点 A 作 AE ⊥ BC ,垂足为 E ,连结 DE ,F 为线段 DE 上一点 ,且∠ AFE =∠ B.(1)求证:∠ DAF =∠ CDE ; (2)△ ADF 与△ DEC 相像吗?为何?(3)若 AB = 4,AD = 3 3, AE = 3,求 AF 的长.解: (1)∵∠ AFE =∠ DAF +∠ FDA ,又∵四边形ABCD 为平行四边形,∴∠ B =∠ ADC =∠ ADF +∠CDE ,又∵∠ AFE =∠ B ,∴∠ DAF =∠ CDE (2)△ ADF ∽△ DEC ,原因:∵四边形ABCD 是平行四边形,∴AD ∥ BC ,∴∠ ADF =∠ CED ,由 (1)知∠ DAF =∠ CDE ,∴△ ADF ∽△ DEC (3)∵四边形ABCD是平行四边形,∴ AD ∥ BC ,CD = AB = 4,又∵ AE ⊥ BC ,∴ AE ⊥AD ,在Rt △ ADE 中, DE =AD 2+ AE 2=( 33)2+ 32= 6,∵△ ADFAD AF3 3∽△ DEC ,∴ DE = CD ,∴ 6=AF4 ,∴ AF = 2 325. (12 分 )如图① ,在 Rt△ ABC 中,∠BAC =90°, AD ⊥ BC 于点 D,点 O 是 AC 边上一点,连结BO 交 AD 于点 F, OE⊥ OB 交 BC 边于点 E.(1)求证:△ ABF ∽△ COE;AC= 2 时,如图② ,求OF的值;(2)当 O 为 AC 的中点,AB OEAC= n 时,请直接写出OF 的值.(3)当 O 为 AC 边中点,AB OE解: (1)∵ AD ⊥ BC ,∴∠ DAC +∠ C= 90° .∵∠ BAC = 90°,∴∠ DAC +∠ BAF = 90°,∴∠ BAF =∠C. ∵ OE⊥ OB ,∴∠ BOA +∠ COE = 90°,∵∠ BOA +∠ ABF =90°,∴∠ ABF =∠ COE ,∴△ ABF ∽△COE ( 2)过 O 作 AC 的垂线交 BC 于点 H ,则 OH ∥ AB ,由 (1)得∠ ABF =∠ COE ,∠BAF =∠ C ,∴∠ AFB =∠ OEC ,∴∠ AFO =∠ HEO ,而∠ BAF =∠ C ,∴∠ FAO =∠ EHO ,∴△ OEH ∽△ OFA ,∴OA ∶1 1 OH = OF ∶ OE ,又∵ O 为 AC 的中点, OH ∥AB ,∴ OH 为△ ABC 的中位线,∴ OH =2AB , OA = OC =2 AC OF OFAC ,而AB = 2,∴ OA ∶ OH =2∶ 1,∴ OF ∶ OE = 2∶ 1,即OE = 2 (3)OE = n。

人教版九年级下册数学第二十七章测试卷及答案

人教版九年级下册数学第二十七章测试卷及答案

人教版九年级下册数学第二十七章测试题一、单选题1.如图,在△ABC中,DE∥BC分别交AB,AC于点D,E,若23ADDB=,则下列说法不正确的是()A.AD AEAB AC=B.23AEEC=C.23DEBC=D.421ADEDBCESS=四边形2.在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则EFFC等于()A.13B.12C.23D.323.如图,有一块三角形余料ABC,BC=120mm,高线AD=80mm,要把它加工成一个矩形零件,使矩形的一边在BC上,点P,M分别在AB,AC上,若满足PM:PQ=3:2,则PM的长为()A.60mm B.16013mm C.20mm D.24013mm4.如图,在△ABC中,AB=6,AC=8,BC=10,D是△ABC内部或BC边上的一个动点(与B、C不重合),以D为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.两三角形重叠部分是四边形AGDH,当四边形AGDH的面积最大时,最大值是多少?()A.12B.11.52C.13D.25.已知线段AB的长为4,点P是线段AB的黄金分割点(AP>BP),则PA的长为() A.52B.6﹣2√5C.512D.4﹣56.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,DE∥BC,DF∥AC,若△ADE与四边形DBCE的面积相等,则△DBF与△ADE的面积之比为()A.12B.14C21D.27.如图,正方形OABC的边长为8,点P在AB上,CP交OB于点Q.若S△BPQ=19OQC S,则OQ长为()A.6B.2C.1623D.1638.在△ABC中,点D在边BC上,联结AD,下列说法错误的是()A.如果∠BAC=90°,AB2=BD•BC,那么AD⊥BCB.如果AD⊥BC,AD2=BD•CD,那么∠BAC=90°C.如果AD⊥BC,AB2=BD•BC,那么∠BAC=90°D.如果∠BAC=90°,AD2=BD•CD,那么AD⊥BC9.如图,在△ABC中,点O是∠ABC和∠ACB两个内角平分线的交点,过点O作EF∥BC 分别交AB,AC于点E,F,已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()A.B.C.D.10.如图,已知△ABO与△DCO位似,且△ABO与△DCO的面积之比为1:4,点B的坐标为(﹣3,2),则点C的坐标为()A.(3,﹣2)B.(6,﹣4)C.(4,﹣6)D.(6,4)11.在比例尺是1:8000的南京市城区地图上,太平南路的长度约为25cm,它的实际长度约为()A.320cm B.320m C.2000cm D.2000m12.△DEF和△ABC是位似图形,点O是位似中心,点D,E,F分别是OA,OB,OC的中点,若△DEF的面积是2,则△ABC的面积是()A.2B.4C.6D.8二、填空题13.如图,△ABC 中,D 、E 分别是AB 、AC 上的点(DE 不平行BC ),若使△ADE 与△ABC 相似,则需要添加_____即可(只需添加一个条件).14.如图,已知△ABC 和△ADE 都是等边三角形,点D 在边BC 上,且BD =4,CD =2,那么AF =_____.15.如图,矩形ABCD 中,AB =2,BC =4,剪去一个矩形ABEF 后,余下的矩形EFDC ∽矩形BCDA ,则FC 的长为_____.16.若23a b =,则2a ba +=_____.17.如图,平行四边形ABCD 中,点E 是AD 边上一点,连结EC 、BD 交于点F ,若AE :ED =5:4记△DFE 的面积为S 1,△BCF 的面积为S 2,△DCF 的面积为S 3,则DF :BF =_____,S 1:S 2:S 3=_____.18.如图,在四边形ABCD 中,AD ∥BC ∥EF ,EF 分别与AB ,AC ,CD 相交于点E ,M ,F ,若EM :BC =2:5,则FC :CD 的值是_____.19.如图,已知△ABC ,AB=6,AC=5,D 是边AB 的中点,E 是边AC 上一点,∠ADE=∠C ,∠BAC 的平分线分别交DE 、BC 于点F 、G ,那么AFAG的值为__________.三、解答题20.如图,在△ABC 中,AB =AC ,D 是边BC 的中点,DE ⊥AC ,垂足为点E .(1)求证:DE •CD =AD •CE ;(2)设F 为DE 的中点,连接AF 、BE ,求证:AF •BC =AD •BE.21.如图,已知菱形ABCD ,点E 是AB 的中点,AF ⊥BC 于点F ,联结EF 、ED 、DF ,DE 交AF 于点G ,且AE 2=EG •ED .(1)求证:DE ⊥EF ;(2)求证:BC 2=2DF •BF.22.如图,在ABC 中,D 、E 分别是边AB 、AC 上的点,// DE BC ,点F 在线段DE 上,过点F 作//FG AB 、//FH AC 分别交BC 于点G 、H ,如果::2:4:3BG GH HC .求ADEFGHS S △△的值.23.如图,△ABC的面积为12,BC与BC边上的高AD之比为3:2,矩形EFGH的边EF 在BC上,点H,G分别在边AB、AC上,且HG=2GF.(1)求AD的长;(2)求矩形EFGH的面积.24.如图,四边形ABGH,四边形BCFG,四边形CDEF都是正方形.请在图中找出与△HBC相似的三角形,并说明它们相似的理由.25.如图,在△ABC中,点D为边BC上一点,且AD=AB,AE⊥BC,垂足为点E.过点D作DF∥AB,交边AC于点F,连接EF,EF2=12BD•EC.(1)求证:△EDF∽△EFC;(2)如果14EDFADCSS,求证:AB=BD.参考答案1.C 【分析】根据题意可以得到△ADE ∽△ABC ,然后根据题目中的条件即可推出选项中的说法是否正确,从而可以解答本题.【详解】∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AE AB AC =,AE AD EC DB ==23,DE BC==AD AB =25,ADE ABC S S ∆∆=(AD AB )2=425,∴ADE DBCE S S ∆四边形=421,故A 、B 、D 选项正确,C 选项错误,故选C .【点睛】本题考查相似三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用相似三角形的性质解答问题.2.A 【详解】试题分析:如图,∵四边形ABCD 为平行四边形,∴ED ∥BC ,BC=AD ,∴△DEF ∽△BCF ,∴EF DEFC CB =,设ED=k ,则AE=2k ,BC=3k ,∴EF FC =3k k =13,故选A .考点:1.相似三角形的判定与性质;2.平行四边形的性质.3.A【分析】利用相似三角形的性质构建方程即可解决问题.【详解】如图,设AD交PN于点K,∵PM:PQ=3:2,∴可以假设MP=3k,PQ=2k,∵四边形PQNM是矩形,∴PM∥BC,∴△APM∽△ABC,∵AD⊥BC,BC∥PM,∴AD⊥PN,∴PM AK BC AD=,∴3802 12080k k-=,解得k=20mm,∴PM=3k=60mm,故选A.【点睛】本题考查相似三角形的应用,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.4.A【分析】先判断面积最大时点D的位置,由△BGD∽△BAC,找出AH=8-43GA,得到S矩形AGDH=-43AG2+8AG,确定极值,AG=3时,面积最大,于是得到结论.【详解】∵AB2+AC2=100=BC2,∴∠BAC=90°,∵△DEF∽△ABC,∴∠EDF=∠BAC=90°,如图1延长ED交BC于M,延长FD交BC于N,∵△DEF∽△ABC,∴∠B=∠E,∵EF∥BC,∴∠E=∠EMC,∴∠B=∠EMC,∴AB∥DE,同理:DF∥AC,∴四边形AGDH为平行四边形,∵∠EDF=90°,∴四边形AGDH为矩形,∵GA⊥AC,∴四边形AGDH为正方形,当点D在△ABC内部时,四边形AGDH的面积不可能最大,如图2,点D在内部时(N在△ABC内部或BC边上),延长GD至N,过N作NM⊥AC于M,∴矩形GNMA面积大于矩形AGDH,∴点D在△ABC内部时,四边形AGDH的面积不可能最大,只有点D在BC边上时,面积才有可能最大,如图3,点D在BC上,∵△DEF∽△ABC,∴∠F=∠C,∵EF∥BC.∴∠F=∠BDG,∴∠BDG=∠C,∴DG∥AC,∴△BGD∽△BAC,∴BG GD AB AC=,∴AB AG AH AB AC-=,∴668AG AH -=,∴AH=8-43 GA,S矩形AGDH=AG×AH=AG×(8-43AG)=-43AG2+8AG,当AG=-842()3⨯-=3时,S矩形AGDH最大,S矩形AGDH最大=12.故选A.【点睛】此题主要考查了相似三角形的性质和判定,平行四边形,矩形,极值的确定,勾股定理的逆定理,解本题的关键是作出辅助线,5.A【分析】利用黄金分割的定义得到PA=12AB ,然后把AB=4代入计算即可.【详解】∵点P 是线段AB 的黄金分割点(AP >BP ),∴12AB=12.故选A .【点睛】本题考查了黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC=AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.其中,并且线段AB 的黄金分割点有两个.6.D【分析】根据矩形的性质得到DE=CF ,根据相似三角形的性质得到ADE ABC S S =(DE BC )2=12,求得DE BC=2,设k ,BC=2k ,得到k ,根据相似三角形的性质即可得到结论.【详解】∵DE ∥BC ,DF ∥AC ,∴四边形DFCE 是平行四边形,∴DE=CF ,∵△ADE 与四边形DBCE 的面积相等,∴ADE ABC S S =12,∵DE ∥BC ,∴△ADE ∽△ABC ,∴ADE ABC S S =(DE BC )2=12,∴DE BC=2,设k ,BC=2k ,∴,∵DF ∥AC ,∴△BDF ∽△BAC ,∴△DBF ∽△ADE ,∴BDF ADE S S =(BF DE )2=2⎛⎫⎪⎪⎭=)2故选D .【点睛】本题考查了相似三角形的判定和性质,矩形的性质,熟练掌握相似三角形的判定和性质是解题的关键.7.B【分析】根据正方形的性质得到AB ∥OC ,推出△PBQ ∽△COQ ,根据相似三角形的性质得到OC=3PB ,求得PB=83,于是得到结论.【详解】∵四边形ABCO 是正方形,∴AB ∥OC ,∴△PBQ ∽△COQ ,∴BPQOQC S S =(PB OC)2=19,∴OC=3PB ,∵OC=8,∴PB=83,∵BQ OQ =PB OC =13,∴OQ=34故选B .【点睛】本题考查相似三角形的判定和性质、正方形的性质、平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.D根据相似三角形的判定定理证明相应的三角形相似,根据相似三角形的性质判断即可.【详解】如图:A、∵AB2=BD•BC,∴AB BC BD AB=,又∠B=∠B,∴△BAD∽△BCA,∴∠BDA=∠BAC=90°,即AD⊥BC,故A选项说法正确,不符合题意;B、∵AD2=BD•CD,∴AD CD BD AD=,又∠ADC=∠BDA=90°,∴△ADC∽△BDA,∴∠BAD=∠C,∵∠DAC+∠C=90°,∴∠DAC+∠BAD=90°,∴∠BAC=90°,故B选项说法正确,不符合题意;C、∵AB2=BD•BC,∴AB BC BD AB=,又∠B=∠B,∴△BAD∽△BCA,∴∠BAC=∠BDA=90°,即AD⊥BC,故C选项说法正确,不符合题意;D、如果∠BAC=90°,AD2=BD•CD,那么AD与BC不一定垂直,故D选项错误,不符合题意;故选D.本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.9.A【分析】根据角平分线和平行证明△EBO和△OFC是等腰三角形,再由周长关系得y=8-x,即可解题.【详解】解:∵点O是∠ABC和∠ACB两个内角平分线的交点,EF∥BC,∴∠OBC=∠EOB,∠OBC=∠EBO,∴△EBO是等腰三角形,同理,△OFC是等腰三角形,即BE=EO,CF=OF,∴△AEF的周长y=AE+EF+AF=AB+AC,∵△ABC的周长为8,BC=x,∴y=8-x,即x是关于y的一次函数,图像是递减的直线,故选A【点睛】本题考查了一次函数的实际应用,中等难度,证明等腰三角形,找到函数关系是解题关键. 10.B【分析】利用位似是特殊的相似,若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(-kx,ky).【详解】∵△ABO与△DCO位似,且△ABO与△DCO的面积之比为1:4,∴△ABO与△DCO为1:2,∵点B的坐标为(-3,2),∴点C的坐标为(6,-4),故选B.【点睛】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.11.D【分析】首先设它的实际长度是xcm ,然后根据比例尺的定义,即可得方程:1:800025:x =,解此方程即可求得答案,注意统一单位.【详解】设它的实际长度是xcm ,根据题意得:1:800025:x =,解得:200000x =,2000002000cm m =,∴它的实际长度为2000m .故选D .【点睛】此题考查了比例线段.此题难度不大,解题的关键是理解题意,根据比例尺的定义列方程,注意统一单位.12.D【分析】先根据三角形中位线的性质得到DE=12AB ,从而得到相似比,再利用位似的性质得到△DEF ∽△ABC ,然后根据相似三角形的面积比是相似比的平方求解即可.【详解】∵点D ,E 分别是OA ,OB 的中点,∴DE=12AB ,∵△DEF 和△ABC 是位似图形,点O 是位似中心,∴△DEF ∽△ABC ,∴DEF ABC S S ∆∆=14,∴△ABC 的面积=2×4=8故选D .【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.13.∠ADE=∠C【分析】根据相似三角形判定定理:两个角相等的三角形相似;夹角相等,对应边成比例的两个三角形相似,即可解题.【详解】∵∠A是公共角,如果∠ADE=∠C,∴△ADE∽△ABC,故答案为∠ADE=∠C.【点睛】本题主要考查相似三角形的判定,掌握相似三角形的判定方法是解题的关键,即①有两组角对应相等的三角形相似,②三边对应成比例的两个三角形相似,③两组边对应成比例且夹角相等的两个三角形相似.14.143【分析】根据三角形的角性质定理、相似三角形的性质进行求解.【详解】∵△ABC和△ADE都是等边三角形,∴∠B=∠ADE=∠C=60°,∵∠B+∠BAD=∠ADF+∠FDC,∴∠BAD=∠FDC,∴△ABD∽△FDC,∴DC FC AB BD=,∵BD=4,CD=2,且△ABC是等边三角形,∴AB=BC=BD+DC=6,∴2=6 DC FCAB BD=,∴FC=4 3 ,AF=AC-FC=14 3 .【点睛】本题主要考查的是三角形的角性质定理、相似三角形的性质,熟练掌握是本题的解题关键. 15【分析】根据相似多边形的性质得CD CEAD AB=,即242CE=,然后利用比例性质求出CE,再利用勾股定理计算FC即可.【详解】∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=4,∵四边形EFCD是矩形,∴EF=CD=2,CF=DE,∵余下的矩形EFCD∽矩形BCDA,∴CD CEAD AB=,即242CE=,∴CE=1,∴FC的长【点睛】本题考查了相似多边形的性质:如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形;相似多边形对应边的比叫做相似比.16.4【分析】设a b k23==,则a=2k,b=3k,再代入式子中即可求得结果.【详解】设a b k23==,则a=2k,b=3k,a 2b a+=2k 6k 2k +=8k 2k =4故答案为4【点睛】此题考查了比例的基本性质,熟练掌握性质是解答此题的关键.17.4:916:81:36.【分析】由AE :ED=5:4,得到DE :AD=4:9,根据平行四边形的性质得到AD ∥BC ,AD=BC ,根据相似三角形的性质即可得到结论.【详解】∵AE :ED=5:4,∴DE :AD=4:9,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴△DEF ∽△BCF ,∴49DE DF BC BF ==,∴12S S =(49)2=1681,23S S =94,∴S 1:S 2:S 3=16:81:36,故答案为4:9,16:81:36.【点睛】本题考查了相似三角形的判定和性质,平行四边形的性质,熟练掌握相似三角形的判定和性质是解题的关键.18.35【分析】首先得出△AEM ∽△ABC ,△CFM ∽△CDA ,进而利用相似三角形的性质求出即可.【详解】∵AD ∥BC ∥EF ,∴△AEM ∽△ABC ,△CFM ∽△CDA ,∵EM :BC=2:5,∴25 AM EMAC BC==,设AM=2x,则AC=5x,故MC=3x,∴35 CM CFAC CD==,故答案为3 5.【点睛】此题主要考查了相似三角形的判定与性质,得出25AMAC=是解题关键.19.3 5【分析】由题中所给条件证明△ADF~△ACG,可求出AFAG的值.【详解】解:在△ADF和△ACG中,AB=6,AC=5,D是边AB的中点AG是∠BAC的平分线,∴∠DAF=∠CAG∠ADE=∠C∴△ADF~△ACG∴35 AF AD AG AC==.故答案为3 5 .【点睛】本题考查了相似三角形的判定和性质,难度适中,需熟练掌握.20.(1)证明见解析;(2)证明见解析.【分析】(1)由AB=AC,D是边BC的中点,利用等腰三角形的性质可得出∠ADC=90°,由同角的余角相等可得出∠ADE=∠DCE,结合∠AED=∠DEC=90°可证出△AED∽△DEC,再利用相似三角形的性质可证出DE•CD=AD•CE;(2)利用等腰三角形的性质及中点的定义可得出CD=12BC,DE=2DF,结合DE•CD=AD•CE可得出CE BCDF AD=,结合∠BCE=∠ADF可证出△BCE∽△ADF,再利用相似三角形的性质可证出AF•BC=AD•BE.【详解】(1)∵AB=AC,D是边BC的中点,∴AD⊥BC,∴∠ADC=90°,∴∠ADE+∠CDE=90°.∵DE⊥AC,∴∠CED=90°,∴∠CDE+∠DCE=90°,∴∠ADE=∠DCE.又∵∠AED=∠DEC=90°,∴△AED∽△DEC,∴DE CE AD CD=,∴DE•CD=AD•CE;(2)∵AB=AC,∴BD=CD=12 BC,∵F为DE的中点,∴DE=2DF.∵DE•CD=AD•CE,∴2DF•12BC=AD•CE,∴CE BC DF AD=,又∵∠BCE=∠ADF,∴△BCE∽△ADF,∴BC BE AD AF=,∴AF•BC=AD•BE.【点睛】本题考查了相似三角形的判定与性质、等腰三角形的性质以及余角,解题的关键是:(1)利用相似三角形的判定定理证出△AED∽△DEC;(2)利用相似三角形的判定定理证出△BCE∽△ADF.21.(1)证明见解析;(2)证明见解析.【分析】(1)根据直角三角形的性质得到AE=FE,根据相似三角形的性质得到∠EAG=∠ADG,求得∠DAG=∠FEG,根据菱形的性质得到AD∥BC,求得∠DAG=∠AFB=90°,于是得到结论;(2)由AE=EF,AE2=EG•ED,得到FE2=EG•ED,推出△FEG∽△DEF,根据相似三角形的性质得到∠EFG=∠EDF,根据相似三角形的判定和性质即可得到结论.【详解】(1)∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵AE2=EG•ED,∴AE DE EG AE,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴∠EAG=∠ADG,∵∠AGD=∠FGE,∴∠DAG=∠FEG,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∴∠FEG=90°,∴DE⊥EF;(2)∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴EF EG DE EF=,∵∠FEG =∠DEF ,∴△FEG ∽△DEF ,∴∠EFG =∠EDF ,∴∠BAF =∠EDF ,∵∠DEF =∠AFB =90°,∴△ABF ∽△DFE ,∴AB BF DF EF=,∵四边形ACBD 是菱形,∴AB =BC ,∵∠AFB =90°,∵点E 是AB 的中点,∴FE =12AB =12BC ,∴BC DF =12BF BC ,∴BC 2=2DF•BF .【点睛】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,正确的识别图形是解题的关键.22.2516ADE FGH S S ∆=△.【分析】设BG=2k ,GH=4k ,HC=3k ,根据平行四边形的性质可得DF=BG=2k ,EF=HC=3k ,可得DE=5k ,根据△ADE ∽△FGH 可得22516ADE FGH S DE SGH == ().【详解】解:∵DE BC ‖,∴ADE B∠=∠∴FG AB ‖,∴FGH B∠=∠∴ADE FGH∠=∠同理:AED FHG∠=∠∴ADE FGH∽△△∴2ADE FGH S DE S GH ⎛⎫= ⎪⎝⎭△△∵DE BC ‖,FGAB ‖,∴DF BG =同理:FE HC=∵::2:4:3BG GH HC =,∴设2BG k =,4GH k =,3HC k=∴2DF k =,3FE k =,∴5DE k=∴2525416ADE FGH S k S k ∆⎛⎫== ⎪⎝⎭△【点睛】此题考查相似三角形的判定和性质,平行四边形判定和性质,熟练掌握相似三角形的性质是解题的关键.23.(1)AD =4;(2)矩形EFGH 的面积28849.【分析】(1)设BC=3x ,根据三角形的面积公式列式计算即可;(2)设GF=y ,根据矩形的性质得到HG ∥BC ,得到△AHG ∽△ABC ,根据相似三角形的性质列出比例式,计算即可.【详解】(1)设BC =3x ,则AD =2x ,∵△ABC 的面积为12,∴12×3x×2x =12,解得,x 1=2,x 2=﹣2(舍去),则AD 的长=2x =4;(2)设GF =y ,则HG =2y ,∵四边形EFGH 为矩形,∴HG ∥BC ,∴△AHG ∽△ABC ,∴HG AM BC AD =,即2464y y -=,解得,y =127,HG =2y =247,则矩形EFGH 的面积=127×247=28849.【点睛】本题考查的是相似三角形的判定和性质,矩形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.24.△DBH ∽△HBC ,理由见解析.【分析】根据正方形的性质得到∠A=90°,设AB=x ,则AH=BC=CD=x ,推出BH BD BC BH=,由∠HBC=∠HBC ,即可得到结论.【详解】△DBH ∽△HBC ,理由:∵四边形ABGH ,四边形BCFG ,四边形CDEF 都是正方形,∴A ,B ,C ,D 在一条直线上,∠A =90°,设AB =x ,则AH =BC =CD =x ,∴BHx ,BD =2x ,∴BH BD BC BH =,∵∠HBC =∠HBC ,∴△DBH ∽△HBC .【点睛】此题主要考查了相似三角形的判定方法:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;需注意的是所有的全等三角形都相似.25.(1)证明见解析;(2)证明见解析.【分析】(1)利用两边成比例夹角相等两个三角形相似即可证明;(2)由△EDF ∽△ADC ,推出EDF ADC S S =(ED AD )2=14,推出ED AD =12,即ED=12AD ,由此即可解决问题.【详解】(1)∵AB =AD ,AE ⊥BC ,∴BE =ED =12DB ,∵EF 2=12•BD•EC ,∴EF 2=ED•EC ,即得EF EC =ED EF,又∵∠FED =∠CEF ,∴△EDF ∽△EFC ;(2)∵AB =AD ,∴∠B =∠ADB ,又∵DF ∥AB ,∴∠FDC =∠B ,∴∠ADB =∠FDC ,∴∠ADB+∠ADF =∠FDC+∠ADF ,即得∠EDF =∠ADC ,∵△EDF ∽△EFC ,∴∠EFD =∠C ,∴△EDF ∽△ADC ,∴EDF ADC S S =(ED AD )2=14,∴ED AD =12,即ED =12AD ,又∵ED =BE =12BD ,∴BD =AD ,∴AB =BD .【点睛】本题考查等腰三角形的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。

人教版九年级数学下册第27章测试题及答案

人教版九年级数学下册第27章测试题及答案

人教版九年级数学下册第27章测试题及答案(考试时间:120分钟满分:120分)分数:________第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.在下面的图形中,相似的一组是(C)2.已知△FHB∽△EAD,它们的周长分别为30和15,且FH=6,则EA的长为(A)A.3 B.2 C.4 D.5 3.下列四条线段中能成比例的是(C) A.a=4,b=6,c=5,d=10B.a=2,b=3,c=2,d=3C.a=2,b=2,c=6,d=3D.a=1,b=2,c=3,d=44.在△ABC与△DEF中,∠A=∠D=60°,ABDF=ACDE,如果∠B=50°,那么∠E的度数是(C) A.50°B.60°C.70°D.80°5.如图,以A,B,C为顶点的三角形与以D,E,F为顶点的三角形相似,则这两个三角形的相似比为 ( A )A .2 ∶1B .3 ∶1C .4 ∶3D .3 ∶2第5题图6.如图是用卡钳测量容器内径的示意图,现量得卡钳上A ,D 两个端点之间的距离为10 cm ,AO BO =DO CO =23 ,则容器的内径是( C )A .5 cmB .10 cmC .15 cmD .20 cm第6题图7.如图,在△ABC 中,点D 在边BC 上,点G 在线段AD 上,GE∥BD ,且交AB 于点E ,GF ∥AC ,且交CD 于点F ,则下列结论中一定正确的是 ( A )A.AE AB =CF CD B .AE EB =DF FC C .EG BD =FG AC D .AE AG =AD AB8.如图,在矩形ABCD 中,AB =3,BC =10,点E 在BC 边上,DF⊥AE ,交AE 的延长线于F ,若DF =6,则线段EF 的长为 ( B )A .2B .3C .4D .5第8题图9.如图,P为线段AB上一点,AD与BC交与点E,∠CPD=∠A=∠B,BC交PD与点F,AD交PC于点G,则下列结论中错误的是(A) A.△CGE∽△CBP B.△APD∽△PGDC.△APG∽△BFP D.△PCF∽△BCP第9题图10.如图,在正方形ABCD中,点E是边BC的中点,连接AE,DE,分别交BD,AC于点P,Q,过点P作PF⊥AE交CB的延长线于F,有下列结论:①∠AED+∠EAC+∠EDB=90°;②AP=FP;③AE=102AO;④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36;⑤CE·EF=EQ·DE.其中正确的有(B) A.5个B.4个C.3个D.2个第10题图第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.若△ABC ∽△A ′B ′C ′,∠A =50°,∠C =110°,则∠B ′的度数为__20°__.12.如图,AB ∥CD ∥EF .若AC CE =12 ,BD =5,则DF =__10__.第12题图13.乐乐同学的身高为166 cm ,测得他站立在阳光下的影长为83 cm ,紧接着他把手臂竖直举起,测得影长为103 cm ,那么乐乐竖直举起的手臂超出头顶的长度约为__40__cm.14.如图,平行于BC 的直线DE 把△ABC 分成面积相等的两部分,且点D ,E 分别在边AB ,AC 上,则BD AD 的值为.第14题图15.如图,在两个直角三角形中,∠ACB =∠ADC =90°,AC =6 ,AD =2.当AB =时,△ABC 与△ACD 相似. 第15题图16.如图,△ABC 与△DEA 是两个全等的等腰直角三角形,∠BAC=∠D =90度,BC 分别与AD ,AE 相交于点F ,G ,则图中共有__4__对相似三角形.第16题图17.在▱ABCD 中,AC 是一条对角线,EF ∥BC ,且EF 与AB 相交于点E ,与AC 相交于点F ,3AE =2EB ,连接DF .若S △AEF =1,则S △ADF的值为__52 __.18.如图,等边△ABC 的边长为5,点D ,E ,F 分别在三边AC ,AB ,BC 上,且AE =2,DF ⊥DE ,∠DEF =60°,则DF 的长为2 __.第18题图选择、填空题答题卡一、选择题(每小题3分,共30分)二、填空题(每小题3分,共24分)得分:________11.__20°__ 12.__10__ 13.__40__ 14._15. 16.__4__ 17.__52 __ 18._2 __三、解答题(共66分) 19.(6分)如图,在平面直角坐标系中,每个小正方形的边长都是1个单位长度,△ABC 的顶点都在格点上.(1)以原点O 为位似中心,在第三象限内画出将△ABC 放大为原来的2倍后的位似图形△A 1B 1C 1;(2)已知△ABC 的面积为4,则△A 1B 1C 1的面积是__16__.解:(1)如图,△A 1B 1C 1为所作.20.(8分)如图,在△ABC 中,AB =AC ,点P 在BC 上.(1)求作:△PCD ,使点D 在AC 上,且△PCD ∽△ABP ;(尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC =2∠ABC .求证:PD ∥AB .(1)解:如图所示.(2)证明:∵∠APC=2∠ABC,∠APD=∠ABC,∴∠DPC=∠ABC,∴PD∥AB.21.(8分)赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,求学校旗杆的高度.解:过点D作DE⊥AB于点E,根据题意,得AE ED=11.2,即AE9.6=11.2,解得AE=8.则AB=AE+BE=8+2=10(米).答:学校旗杆的高度为10米.22.(8分)如图,Rt△ABC中,∠ACB=90°,D是BC的中点,CE⊥AD于点E.(1)求证:CD2=DE·DA;(2)当∠BED=47°时,求∠ABC的度数.(1)证明:∵CE⊥AD,∴∠CED=∠ACB=90°,∵∠CDE=∠ADC,∴△CDE∽△ADC,∴CD∶AD=DE∶CD,∴CD2=DE·AD.(2)解:∵D是BC的中点,∴BD=CD.∵CD2=DE·AD,∴BD2=DE·AD,∴BD∶AD=DE∶BD.又∵∠ADB=∠BDE,∴△BDE∽△ADB,∴∠BED=∠ABC.∵∠BED=47°,∴∠ABC=47°.∴∠ABC的度数是47°.23.(10分)如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:△ABE∽△DF A;(2)若AB=6,BC=4,求DF的长.(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°,∴∠DAF =∠AEB .∵DF ⊥AE ,∴∠AFD =∠B =90°,∴△ABE ∽△DF A .(2)解:∵E 是BC 的中点,BC =4,∴BE =2.∵AB =6,∴AE =AB 2+BE 2 =62+22 =210 .∵四边形ABCD 是矩形,∴AD =BC =4.∵△ABE ∽△DF A ,∴AB DF =AE AD ,∴DF =AB ·AD AE =6×4210 =6510 .24.(12分)如图,在△ABC 和△A ′B ′C ′中,D ,D ′分别是AB ,A ′B ′上一点,AD AB =A ′D ′A ′B ′ ,当CD C ′D ′ =AC A ′C ′ =BC B ′C ′ 时,判断△ABC 与△A ′B ′C ′是否相似,并说明理由.解:△ABC 与△A ′B ′C ′相似. 理由:过点D ,D ′分别作DE ∥BC ,D ′E ′∥B ′C ′,DE 交AC 于E ,D ′E ′交A ′C ′于E ′.∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AB =DE BC =AE AC .同理,A ′D ′A ′B ′ =D ′E ′B ′C ′ =A ′E ′A ′C ′ ,∵AD AB =A ′D ′A ′B ′ ,∴DE BC =D ′E ′B ′C ′ ,∴DE D ′E ′ =BC B ′C ′ ,同理,AE AC =A ′E ′A ′C ′ ,∴AC -AE AC =A ′C ′-A ′E ′A ′C ′ ,即EC AC =E ′C ′A ′C ′ ,∴EC E ′C ′ =AC A ′C ′ .∵CD C ′D ′ =AC A ′C ′ =BC B ′C ′ ,∴CD C ′D ′ =DE D ′E ′ =EC E ′C ′ ,∴△DCE ∽△D ′C ′E ′,∴∠CED =∠C ′E ′D ′.∵DE ∥BC ,∴∠CED +∠ACB =180°.同理,∠C ′E ′D ′+∠A ′C ′B ′=180°,∴∠ACB =∠A ′C ′B ′.∵ACA′C′=BCB′C′,∴△ABC∽△A′B′C′.25.(14分)如图,在△ABC中,BA=BC=20 cm,AC=30 cm,点P 从A点出发,沿着AB以每秒4 cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3 cm的速度向A点运动,设运动时间为x 秒.(1)当x为何值时,PQ∥BC;(2)是否存在某一时刻,使△APQ与△CQB相似?若存在,求出此时AP的长;若不存在,请说明理由;(3)当CQ=10时,求S△APQS△ABQ的值.解:(1)由题可得AP=4x,CQ=3x.∵BA=BC=20,AC =30,∴BP =20-4x ,AQ =30-3x .若PQ ∥BC ,则有△APQ ∽△ABC ,∴AP AB =AQ AC ,∴4x 20 =30-3x 30 ,解得x =103 .∴当x =103 时,PQ ∥BC .(2)存在.∵BA =BC ,∴∠A =∠C . 要使△APQ ∽△CQB ,只需AP CQ =AQ CB .此时4x 3x =30-3x 20 ,解得x =109 ,∴AP =4x =409 .要使△APQ ∽△CBQ ,只需AP CB =AQ CQ ,此时4x 20 =30-3x 3x ,解得x 1=-10(舍去),x 2=5. 当x =5时,AP =20.∴AP =409 或20.∴当AP 的长为409 或20时,△APQ 与△CQB 相似.(3)当CQ =10时,3x =10,∴x =103 ,∴AP =4x =403 ,∴S△APQ S△ABQ =APAB=40320=23.。

人教版九年级数学下册 第27章 相似 综合测试卷(含答案)

人教版九年级数学下册  第27章   相似  综合测试卷(含答案)

人教版九年级数学下册第27章 相似 综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1. 要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5 cm ,6 cm 和9 cm ,另一个三角形的最短边长为2.5 cm ,则它的最长边为( ) A .3 cm B .4 cm C .4.5 cm D .5 cm2.如图,D ,E 分别是△ABC 边AB ,AC 上的点,∠ADE =∠ACB ,若AD =2,AB =6,AC =4,则AE 的长是( ) A .1 B .2 C .3 D .43. 如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,则图中相似三角形共有( ) A .1对 B .2对 C .3对 D .4对4. 已知△ABC ∽△A′B′C′,AB =8,A′B′=6,则BCB′C′=( ) A .2 B .43 C .3 D .1695.如图,在▱ABCD 中,F 为BC 中点,延长AD 至E ,使DE ∶AD =1∶3,连接EF 交DC 于点G ,则S △DEG ∶S △CFG =( )A .2∶3B .3∶2C .9∶4D .4∶96.如图,是小孔成像原理的示意图,根据图中标注的数据,蜡烛在暗盒中所成像CD 的长为( ) A.16 cm B.13 cm C.12cm D .1 cm7. 如图,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,∠ACD=∠B,若AD=2BD,BC =6,则线段CD的长为( )A.2 3 B.3 2 C.2 6 D.58.如图,将△DEF缩小为原来的一半,操作方法如下:任意取一点P,连接DP,取DP的中点A,再连接EP,FP,取它们的中点B,C,得到△ABC,则下列说法正确的有( )①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF的周长比是1∶2;④△ABC与△DEF的面积比是1∶2.A.1个B.2个C.3个D.4个9. .如图所示,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20 m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5 m,两个路灯的高度是9 m,则两路灯之间的距离是()A.24 m B.25 m C.28 m D.30 m10. 如图,在正方形ABCD中,点O是对角线AC,BD的交点,过点O作射线OM,ON分别交BC,CD于点E,F,且∠EOF=90°,OC,EF交于点G.给出下列结论:①△COE≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG·OC.其中正确的是( ) A.①②③④B.①②③C.①②④D.③④二.填空题(共8小题,3*8=24)11. 如图,△ABC中,点D,E分别在AB,AC上,DE∥BC,AD∶DB=1∶2,则△ADE与△ABC 的面积的比为______.12. 如图,以点O 为位似中心,将△OAB 放大后得到△OCD ,OA =2,AC =3,则ABCD=______.13. 如图,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,CD ∥AB ,∠ABC 的平分线BD 交AC 于点E ,DE =_______.14. 如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO 的顶点坐标分别为A(-2,-1),B(-2,-3),O(0,0),△A 1B 1O 1的顶点坐标分别为A 1(1,-1),B 1(1,-5),O 1(5,1),△ABO 与△A 1B 1O 1是以点P 为位似中心的位似图形,则P 点的坐标为______________.15.如图,为了测量一池塘的宽DE ,在岸边找到一点C ,测得CD =30 m ,在DC 的延长线上找一点A ,测得AC =5 m ,过点A 作AB ∥DE 交EC 的延长线于点B ,测出AB =6 m ,则池塘的宽DE 为________.16. 如图,在△ABC 中,AC =2,BC =4,D 为BC 边上的一点,且∠CAD =∠B.若△ADC 的面积为a ,则△ABD 的面积为________.17. 《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为________.18. 如图,AB 为⊙O 的直径,点P 为AB 延长线上的一点,过点P 作⊙O 的切线PE ,切点为M ,过A ,B 两点分别作PE 的垂线AC ,BD ,垂足分别为C ,D ,连接AM ,则下列结论正确的是___________.(写出所有正确结论的序号)①AM 平分∠CAB ;②AM 2=AC·AB ;③若AB =4,∠APE =30°,则BM ︵的长为π3;④若AC =3,BD=1,则有CM =DM = 3.三.解答题(共7小题, 66分)19.(8分)如图,在△ABC 中,点D 在AB 上,∠ACD =∠ABC ,若AD =2,AB =6,求AC 的长.20.(8分)如图,在矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于点F.已知AB =6,AD =12,BE =8,求DF 的长.21.(8分) 一般的室外放映的电影胶片上每一个图片的规格是3.5 cm×3.5 cm ,放映的荧屏的规格是2 m×2 m ,若放映机的光源距胶片20 cm ,问:荧屏放在距离光源多远的地方时,放映的图像刚好布满整个荧屏?22.(10分) 如图,在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转得到△OC′D′.已知∠AOB=40°,CD∥AB,AC′与BD′交于点E,与BO交于点F.求∠AEB的度数.23. (10分)如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE·BC=BD·AC;(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.24.(10分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=12,AD=4,BC=9,点P是AB 上一动点.若△PAD与△PBC是相似三角形,求AP的长.25.(12分)如图,在四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)求证∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE∶CP=2∶3,求AE的长.参考答案1-5 CCCBD 6-10 DCCDB 11. 1∶9 12. 2513.955 14. (-5,-1) 15.36 m 16.3a 17.四丈五尺 18. ①②④19. 解:∵∠ACD =∠ABC ,∠A =∠A ,∴△ACD ∽△ABC , ∴AD AC =AC AB, ∵AD =2,AB =6,∴2AC =AC6,∴AC 2=12,∴AC =2 320. 解:∵四边形ABCD 为矩形,DF ⊥AE , ∴∠ABE =∠AFD =90°,AD ∥BC , ∴∠AEB =∠DAF ,∴△ABE ∽△DFA , ∴AE AD =AB DF, ∵在Rt △ABE 中,AB =6,BE =8, ∴AE =10,∴DF =AB·AD AE =6×1210=7.2 21. 解:由题意得四边形ABCD(胶片)与四边形A′B′C′D′(荧屏)是位似图形,且相似比为3.5200=7400.设四边形A′B′C′D′距光源O 的距离为x cm. 则有20x =7400,得x =80007 cm =807 m .即荧屏距光源807m 时,图像刚好布满整个荧屏22. 解:∵△OCD 旋转到△OC′D′,∴OC =OC′,OD =OD′,∠AOC′=∠BOD′, ∵CD ∥AB ,∴OC OA =OD OB ,∴OC′OA =OD′OB ,∴OC′OD′=OAOB,∴△AOC′∽△BOD′, ∴∠OAC′=∠OBD′,又∠AFO =∠BFE ,∴∠AEB =∠AOB =40° 23. 解:(1)∵BE 平分∠ABC ,∴∠ABE =∠CBE , ∵DE ∥BC ,∴∠DEB =∠CBE , ∴∠ABE =∠DEB ,∴BD =DE. ∵DE ∥BC ,∴△ADE ∽△ABC , ∴AE AC =DE BC ,∴AE AC =BD BC, ∴AE·BC =BD·AC(2)设△ABE 中边AB 上的高为h , ∴S △ADE S △BDE =12AD·h12BD·h =AD BD =32, ∵△ADE ∽△ABC ,∴DE BC =ADAB ,∴6BC =35,∴BC =10 24. 解:∵∠B =90°,AD ∥BC ,∴∠A =180°-∠B =90°, ∴∠PAD =∠PBC =90°.设AP 的长为x ,则BP =12-x.若AB 边上存在P 点,使△PAD 与△PBC 相似,那么分两种情况: ① 若△APD ∽△BPC ,则AP ∶BP =AD ∶BC , 即x ∶(12-x)=4∶9,解得x =4813;② 若△APD ∽△BCP ,则AP ∶BC =AD ∶BP , 即x ∶9=4∶(12-x),解得x =6.综上可知,AP 的长为4813或6时,△PAD 与△PBC 是相似三角形25. (1)证明:∵AB =AD ,AC 平分∠BAD , ∴AC ⊥BD ,则∠ACD +∠BDC =90°. ∵AC =AD ,∴∠ACD =∠ADC. ∴∠ADC +∠BDC =90°.又∵PD ⊥AD ,∴∠ADC +∠PDC =90°. ∴∠BDC =∠PDC.(2)解:如图,过点C 作CM ⊥PD 于点M.∵∠BDC =∠PDC ,CM ⊥PD ,AC ⊥BD ,∴CE =CM. ∵∠CMP =∠ADP =90°,∠P =∠P ,∴△CPM ∽△APD.∴CM AD =PCPA.设CM =CE =x ,∵CE ∶CP =2∶3,∴PC =32x.∵AB =AD =AC =1,∴x1=32x 32x +1.解得x =13(x =0不合题意,舍去),即CE =13.经检验,x =13是方程的解且符合题意.故AE =AC -CE =1-13=23.。

人教版初中数学九年级下册《第27章相似》整章测试题(含答案)

 人教版初中数学九年级下册《第27章相似》整章测试题(含答案)

人教版初中数学九年级下册《第27章相似》整章测试题(含答案)(时间90分钟,满分120分)一、填空题(每小题3分,共30分)1、如图1,在△ABC 中,AD :DB=1:2,DE ∥BC ,若△ABC 的面积为9,则四边形DBCE 的面积为 。

2、如图2,D 、E 两点分别在△ABC 的边AB 、AC 上,DE 与BC 不平行,当满足 条件(写出一个即可)时,△ADE ∽△ACB 。

图23、如图3,在8×8的网格中,每个小正方形的顶点叫做格点,△OAB 的顶点都在格点上,请在网格中画出△OAB 的一个位似图形,使两个图形以O 为位似中心,且所画图形与△的位似比为2:1。

图34、在△ABC 中,AB >BC >AC ,D 是AC 的中点,过D 作直线l ,使截得的三角形与原三角形相似,这样的直线l 有 条。

5、如图4,在矩形ABCD 中,AB=2,BC=3,对角线AC 的垂直平分线分别交AD ,BC 于点E 、F ,连结CE ,则CE 的长 。

A BCDE图1图46、雨后天晴,一学生在运动场上玩耍,从他前面2m 远处的一块小积水里,他看到了旗杆顶端的倒影,如果旗杆底端到积水处的距离为40m ,该学生的眼部高度为1.5m ,那么旗杆的高为 。

7、已知两个相似多边形的周长比为1:2,它们的面积和为25,则这两个多边形的面积分别是 和 。

8、如图5,已知在等腰直角三角形ABC 中,∠A=90°,四边形EFDH 为内接正方形,则AE :AB= 。

9、如果点C 是线段AB 靠近B 的黄金分割点,且AC=2,那么AB= 。

10、如图6,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知CE=3cm ,AB=8cm ,则图中阴影部分面积为 cm 2。

二、选择题(每小题4分,共40分)11、如图7,点A 、B 、C 、D 、E 、F 、G 、H 、K 都是7×8方格纸上的格点,为使△DEM ∽△ABC ,则点M 应是F 、G 、H 、K 四点中的( )A 、F B 、G C 、H D 、KABCDFEH图5ABCFED图6图712、已知△ABC ∽△DEF ,AB :DE=1:2,则△ABC 与△DEF 的周长比等于( )A 、1:2 B 、1:4 C 、2:1 D 、4:113、如图8,AB ∥CD ,AE ∥FD ,AE 、FD 分别交BC 于点G 、H ,则图中共有相似三角形( )A 、4对B 、5对C 、6对D 、7对14、已知==,且a-b+c=10,则a+b-c 的值为( )4a 5b 6cA 、6B 、5C 、4D 、315、两个相似五边形,一组对应边的长分别为3cm 和4.5cm ,如果它们的面积之和是78cm 2,则较大的五边形面积是( )cm 2。

(人教版)初中数学九下第二十七章综合测试02-答案

(人教版)初中数学九下第二十七章综合测试02-答案

第二十七章综合测试答案一、1.【答案】B2.【答案】B3.【答案】B4.【答案】C5.【答案】A6.【答案】C7.【答案】D8.【答案】B9.【答案】C10.【答案】D二、11.【答案】612.【答案】2,213.【答案】6514.【答案】10 315.【答案】2 216.【答案】6 517.【答案】127或218.【答案】54三、19.【答案】解:(1)如图所示,线段11A B,即为所求。

(2)如图所示,线段21A B即为所求.(3)2020.【答案】(1)证明:∵AG BC ⊥,AF DE ⊥,∴90AFE AGC .∵EAF GAC ,∴AED ACB .∵EAD BAC ,∴ADE ABC △∽△.(2)解:由(1)可知ADE ABC △∽△,∴35ADAE AB AC 已知90AFEAGC ,EAF GAC ,∴EAF CAG △∽△∴35AF AEAG AC.21.【答案】(1)证明:∵四边形ABCD 是菱形,∴CDAD ,CDP ADP .又∵DP DP ,∴CDP ADP △≌△,∴DCP DAP .(2)解:∵四边形ABCD 是菱形,CD BA ∥,∴CDP FBP△∽△∴12DPCD CP PB BF PF ,∴12CD BF ,12CP PF ,∴A 为BF 的中点,又∵PA BF ⊥,∴PBPF .由(1)知PA CP ,∴12PAPB ,在Rt PAB △中,222122PB PB ,解得433PB ,∴12323PD PB ,∴23BD .22.【答案】解:由题意知BAD BCE .∵90ABD ABE ,∴BAD BCE △∽△,∴BDABBE CB ,∴ 1.79.6 1.2BD ,解得13.6BD.∴河宽BD 是13.6米.23.【答案】解:分两种情况:(1)设点P ,Q 经过 s x 运动到如图①所示位置时,QBP ABC △∽△.这时,2 cm APx ,则(82) cm BP x ,4 cm BQ x ,则BQ BP AB BC ,即482816x x,解得45x ,即点P ,Q 分别从点A ,B 同时出发,经过45秒QBP ABC △∽△.(2)点P ,Q 经过 s a 运动到如图②所示位置时,PBQ ABC △∽△.这时,2 cm AP a ,则(82) cm BP a ,4 cm BQ a ,则BQ BP BC AB,即482168a a ,解得2a ,即点P ,Q 分别从点A ,B 同时出发,经过2秒PBQ ABC △∽△.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级数学下册第27章测试题及答案(考试时间:120分钟满分:120分)分数:________第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.在下面的图形中,相似的一组是(C)2.已知△FHB∽△EAD,它们的周长分别为30和15,且FH=6,则EA的长为(A)A.3 B.2 C.4 D.5 3.下列四条线段中能成比例的是(C) A.a=4,b=6,c=5,d=10B.a=2,b=3,c=2,d=3C.a=2,b=2,c=6,d=3D.a=1,b=2,c=3,d=44.在△ABC与△DEF中,∠A=∠D=60°,ABDF=ACDE,如果∠B=50°,那么∠E的度数是(C) A.50°B.60°C.70°D.80°5.如图,以A,B,C为顶点的三角形与以D,E,F为顶点的三角形相似,则这两个三角形的相似比为 ( A )A .2 ∶1B .3 ∶1C .4 ∶3D .3 ∶2第5题图6.如图是用卡钳测量容器内径的示意图,现量得卡钳上A ,D 两个端点之间的距离为10 cm ,AO BO =DO CO =23 ,则容器的内径是( C )A .5 cmB .10 cmC .15 cmD .20 cm第6题图7.如图,在△ABC 中,点D 在边BC 上,点G 在线段AD 上,GE∥BD ,且交AB 于点E ,GF ∥AC ,且交CD 于点F ,则下列结论中一定正确的是 ( A )A.AE AB =CF CD B .AE EB =DF FC C .EG BD =FG AC D .AE AG =AD AB8.如图,在矩形ABCD 中,AB =3,BC =10,点E 在BC 边上,DF⊥AE ,交AE 的延长线于F ,若DF =6,则线段EF 的长为 ( B )A .2B .3C .4D .5第8题图9.如图,P为线段AB上一点,AD与BC交与点E,∠CPD=∠A=∠B,BC交PD与点F,AD交PC于点G,则下列结论中错误的是(A) A.△CGE∽△CBP B.△APD∽△PGDC.△APG∽△BFP D.△PCF∽△BCP第9题图10.如图,在正方形ABCD中,点E是边BC的中点,连接AE,DE,分别交BD,AC于点P,Q,过点P作PF⊥AE交CB的延长线于F,有下列结论:①∠AED+∠EAC+∠EDB=90°;②AP=FP;③AE=102AO;④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36;⑤CE·EF=EQ·DE.其中正确的有(B) A.5个B.4个C.3个D.2个第10题图第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.若△ABC ∽△A ′B ′C ′,∠A =50°,∠C =110°,则∠B ′的度数为__20°__.12.如图,AB ∥CD ∥EF .若AC CE =12 ,BD =5,则DF =__10__.第12题图13.乐乐同学的身高为166 cm ,测得他站立在阳光下的影长为83 cm ,紧接着他把手臂竖直举起,测得影长为103 cm ,那么乐乐竖直举起的手臂超出头顶的长度约为__40__cm.14.如图,平行于BC 的直线DE 把△ABC 分成面积相等的两部分,且点D ,E 分别在边AB ,AC 上,则BD AD 的值为.第14题图15.如图,在两个直角三角形中,∠ACB =∠ADC =90°,AC =6 ,AD =2.当AB =时,△ABC 与△ACD 相似. 第15题图16.如图,△ABC 与△DEA 是两个全等的等腰直角三角形,∠BAC=∠D =90度,BC 分别与AD ,AE 相交于点F ,G ,则图中共有__4__对相似三角形.第16题图17.在▱ABCD 中,AC 是一条对角线,EF ∥BC ,且EF 与AB 相交于点E ,与AC 相交于点F ,3AE =2EB ,连接DF .若S △AEF =1,则S △ADF的值为__52 __.18.如图,等边△ABC 的边长为5,点D ,E ,F 分别在三边AC ,AB ,BC 上,且AE =2,DF ⊥DE ,∠DEF =60°,则DF 的长为2 __.第18题图选择、填空题答题卡一、选择题(每小题3分,共30分)二、填空题(每小题3分,共24分)得分:________11.__20°__ 12.__10__ 13.__40__ 14._15. 16.__4__ 17.__52 __ 18._2 __三、解答题(共66分) 19.(6分)如图,在平面直角坐标系中,每个小正方形的边长都是1个单位长度,△ABC 的顶点都在格点上.(1)以原点O 为位似中心,在第三象限内画出将△ABC 放大为原来的2倍后的位似图形△A 1B 1C 1;(2)已知△ABC 的面积为4,则△A 1B 1C 1的面积是__16__.解:(1)如图,△A 1B 1C 1为所作.20.(8分)如图,在△ABC 中,AB =AC ,点P 在BC 上.(1)求作:△PCD ,使点D 在AC 上,且△PCD ∽△ABP ;(尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC =2∠ABC .求证:PD ∥AB .(1)解:如图所示.(2)证明:∵∠APC=2∠ABC,∠APD=∠ABC,∴∠DPC=∠ABC,∴PD∥AB.21.(8分)赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,求学校旗杆的高度.解:过点D作DE⊥AB于点E,根据题意,得AE ED=11.2,即AE9.6=11.2,解得AE=8.则AB=AE+BE=8+2=10(米).答:学校旗杆的高度为10米.22.(8分)如图,Rt△ABC中,∠ACB=90°,D是BC的中点,CE⊥AD于点E.(1)求证:CD2=DE·DA;(2)当∠BED=47°时,求∠ABC的度数.(1)证明:∵CE⊥AD,∴∠CED=∠ACB=90°,∵∠CDE=∠ADC,∴△CDE∽△ADC,∴CD∶AD=DE∶CD,∴CD2=DE·AD.(2)解:∵D是BC的中点,∴BD=CD.∵CD2=DE·AD,∴BD2=DE·AD,∴BD∶AD=DE∶BD.又∵∠ADB=∠BDE,∴△BDE∽△ADB,∴∠BED=∠ABC.∵∠BED=47°,∴∠ABC=47°.∴∠ABC的度数是47°.23.(10分)如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:△ABE∽△DF A;(2)若AB=6,BC=4,求DF的长.(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°,∴∠DAF =∠AEB .∵DF ⊥AE ,∴∠AFD =∠B =90°,∴△ABE ∽△DF A .(2)解:∵E 是BC 的中点,BC =4,∴BE =2.∵AB =6,∴AE =AB 2+BE 2 =62+22 =210 .∵四边形ABCD 是矩形,∴AD =BC =4.∵△ABE ∽△DF A ,∴AB DF =AE AD ,∴DF =AB ·AD AE =6×4210 =6510 .24.(12分)如图,在△ABC 和△A ′B ′C ′中,D ,D ′分别是AB ,A ′B ′上一点,AD AB =A ′D ′A ′B ′ ,当CD C ′D ′ =AC A ′C ′ =BC B ′C ′ 时,判断△ABC 与△A ′B ′C ′是否相似,并说明理由.解:△ABC 与△A ′B ′C ′相似. 理由:过点D ,D ′分别作DE ∥BC ,D ′E ′∥B ′C ′,DE 交AC 于E ,D ′E ′交A ′C ′于E ′.∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AB =DE BC =AE AC .同理,A ′D ′A ′B ′ =D ′E ′B ′C ′ =A ′E ′A ′C ′ ,∵AD AB =A ′D ′A ′B ′ ,∴DE BC =D ′E ′B ′C ′ ,∴DE D ′E ′ =BC B ′C ′ ,同理,AE AC =A ′E ′A ′C ′ ,∴AC -AE AC =A ′C ′-A ′E ′A ′C ′ ,即EC AC =E ′C ′A ′C ′ ,∴EC E ′C ′ =AC A ′C ′ .∵CD C ′D ′ =AC A ′C ′ =BC B ′C ′ ,∴CD C ′D ′ =DE D ′E ′ =EC E ′C ′ ,∴△DCE ∽△D ′C ′E ′,∴∠CED =∠C ′E ′D ′.∵DE ∥BC ,∴∠CED +∠ACB =180°.同理,∠C ′E ′D ′+∠A ′C ′B ′=180°,∴∠ACB =∠A ′C ′B ′.∵ACA′C′=BCB′C′,∴△ABC∽△A′B′C′.25.(14分)如图,在△ABC中,BA=BC=20 cm,AC=30 cm,点P 从A点出发,沿着AB以每秒4 cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3 cm的速度向A点运动,设运动时间为x 秒.(1)当x为何值时,PQ∥BC;(2)是否存在某一时刻,使△APQ与△CQB相似?若存在,求出此时AP的长;若不存在,请说明理由;(3)当CQ=10时,求S△APQS△ABQ的值.解:(1)由题可得AP=4x,CQ=3x.∵BA=BC=20,AC =30,∴BP =20-4x ,AQ =30-3x .若PQ ∥BC ,则有△APQ ∽△ABC ,∴AP AB =AQ AC ,∴4x 20 =30-3x 30 ,解得x =103 .∴当x =103 时,PQ ∥BC .(2)存在.∵BA =BC ,∴∠A =∠C . 要使△APQ ∽△CQB ,只需AP CQ =AQ CB .此时4x 3x =30-3x 20 ,解得x =109 ,∴AP =4x =409 .要使△APQ ∽△CBQ ,只需AP CB =AQ CQ ,此时4x 20 =30-3x 3x ,解得x 1=-10(舍去),x 2=5. 当x =5时,AP =20.∴AP =409 或20.∴当AP 的长为409 或20时,△APQ 与△CQB 相似.(3)当CQ =10时,3x =10,∴x =103 ,∴AP =4x =403 ,∴S△APQ S△ABQ =APAB=40320=23.。

相关文档
最新文档